
Secure Outsourced Frequent Pattern Mining
by Fully Homomorphic Encryption

Junqiang Liu1(B), Jiuyong Li2, Shijian Xu1, and Benjamin C.M. Fung3

1 School of Information and Electronic Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China

jjliu@alumni.sfu.ca
2 School of Information Technology and Mathematical Sciences,

University of South Australia, Adelaide, SA 5001, Australia
3 School of Information Studies, McGill University,

Montreal, QC H3A 1X1, Canada

Abstract. With the advent of the big data era, outsourcing data storage
together with data mining tasks to cloud service providers is becoming a
trend, which however incurs security and privacy issues. To address the
issues, this paper proposes two protocols for mining frequent patterns
securely on the cloud by employing fully homomorphic encryption. One
protocol requires little communication between the client and the cloud
service provider, the other incurs less computation cost. Moreover, a new
privacy notion, namely α-pattern uncertainty, is proposed to reinforce
the second protocol. Our scenario has two advantages: one is stronger
privacy protection, and the other is that the outsourced data can be
used in different mining tasks. Experimental evaluation demonstrates
that the proposed protocols provide a feasible solution to the issues.

Keywords: Privacy and security · Big data · Data mining · Frequent
patterns · Cloud computing

1 Introduction

The big data era is coming with exponentially growing data and increasingly
complicated technologies. On one hand, big data are becoming important assets,
and people are more and more interested in applying data mining technology to
better utilize such assets. On the other hand, the huge volume of big data and
the great complexity of technologies make it hard for an average user or business
to manage and analyze their data. Therefore, outsourcing both data storage and
data mining to cloud service providers is becoming a trend.

While outsourcing data storage and data mining benefits from the scale of
economy and greatly reduces the complexity of deploying information technology,
it comes with the privacy and security issues [10], one of which is the risk of
disclosing sensitive information in the mining process.

In the literature, there are many works on privacy preserving data mining.
Some works [8,15,17,21] retain the mining models at the aggregate level and
c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 70–81, 2015.
DOI: 10.1007/978-3-319-22729-0 6

Secure Outsourced Frequent Pattern Mining 71

preserve the privacy at the data record level. Some [5,20] preserve the privacy
of data records when publishing the mining results. Others [12,19,22] retain
the precise supports of patterns while observing k-support anonymity. However,
no prior work preserves both the privacy of data and the privacy of mining
results while retaining the exactness of the mining results in outsourcing frequent
pattern mining. Moreover, the randomization and group based approaches [2]
employed by the prior works cannot deal with such a scenario.

Fortunately, fully homomorphic encryption emerged as the most promising
method to address security and privacy issues in cloud computing. The concept
of full homomorphism was first introduced by Rivest et al. [16] in 1978, and not
realized until Gentry [9] proposed an ideal lattice based scheme in 2009. Since
then, there were efforts applying homomorphic encryption in data mining, for
example, in answering private queries [13] and in similarity ranking [6], but to
the best of our knowledge no work in frequent pattern mining.

In this paper, we consider a secured outsourcing scenario, that is, to keep
encrypted data in the storage provided by a cloud service provider and to out-
source data mining tasks to the service provider by employing algorithms that
can work on the encrypted data directly. Such a scenario has two advantages:
One is that the encrypted data can be used in various mining tasks while the
randomized data by the priori works can only be used in a specific task. The
other advantage is that by employing fully homomorphic encryption, it releases
much less information in the mining process and thus provides more protection.

Our scenario is nontrivial as the fully homomorphic encryption supports no
comparison operation, i.e., no predicate for a total order. To deal with such a
challenge, we propose two secured protocols. The main contributions are as fol-
lows: First, we propose one protocol, for outsourcing both the encrypted data
and the frequent pattern mining task to a cloud service provider, that requires
little communication between the cloud service provider and the client. Second,
we propose a new privacy notion, namely α-pattern uncertainty, and implement
this privacy notion by shadow mappings. By employing both α-pattern uncer-
tainty and fully homomorphic encryption, we propose another secured protocol
for mining frequent patterns, which incurs less computation cost. Experimental
evaluation shows that our protocols provide a feasible solution to addressing
security and privacy issues when outsourcing frequent pattern mining.

The rest of this paper is organized as follows: Sect. 2 reviews the related
works. Section 3 presents our scenario for securing outsourced frequent pattern
mining. Section 4 proposes our first secured protocol based on fully homomor-
phic encryption. Section 5 proposes the notion of α-pattern uncertainty and our
second protocol. Section 6 evaluates our protocols. Section 7 concludes the paper.

2 Related Works

Our work relates to prior works on privacy preserving frequent pattern mining
and association rule mining. We can only review the most relevant and repre-
sentative works due to space limit.

72 J. Liu et al.

The works [8,15,17,21] retain the data mining models at the aggregate level
and preserve the privacy at the level of individual data records by random per-
turbation or approximation [2]. Concretely, [8,17] proposed to randomize the
data for limiting privacy breaches and to send the randomized data to the server
for data mining. [15] presented a Bloom filter based solution for outsourcing the
task of mining association rules. [21] proposed to generate synthetic data in such
a way that the frequent patterns discovered in the original data can be mined
in the synthetic data and the privacy leakage can be limited.

The works [5,20] preserve the privacy of individual records when publishing
the mining results. [20] hides a subset of sensitive association rules by adding
items to the original data or removing items to tune the supports and confidences
of sensitive rules. [5] deals with privacy threats embedded in mining results by
distorting the supports of patterns to eliminate inference channels.

The works [12,19,22] retain precise patterns with precise supports and
observe the k-support anonymity notion, i.e., each (transformed) item is indis-
tinguishable from at least k − 1 other items w.r.t. their supports, under the
assumption that the attacker knows the exact supports of certain items. Their
approach is to map items to meaningless symbols and to add noise to prevent
re-identification. In [12], the noise is a set of fake transactions consisting of the
original items. In [22], the noise is introduced by adding fake items into the
original transactions. In [19], a pseudo taxonomy tree is employed to facilitate
hiding of the original items and to limit the fake items.

Our work is the first that employs fully homomorphic encryption in privacy
preserving frequent pattern mining although there are works employing fully
homomorphic encryption in other tasks. For example, Hu et al. [13] answered
private queries over a data cloud, and Chu et al. [6] proposed a privacy preserving
similarity ranking protocol based on fully homomorphic encryption.

3 Preliminaries

We consider a secured scenario for outsourcing frequent pattern mining to a
cloud service provider with a guarantee of the privacy and the exactness of both
the data and the mining results, faciliatated by fully homomorphic encryption.

3.1 Frequent Pattern Mining Problem

Frequent pattern mining is one of the fundamental data mining problems [3,11]
with a variety of applications, for example, consumer behavior analysis, design of
goods shelves, inventory control, product promotion, and so on. Given a database
consisting of a group of transactions, frequent patterns are sets of items that are
present in more than a given number of transactions as defined as follows.

Definition 1 (Frequent Patterns). Let I = {i1, i2, · · · , im} be a set of items,
a database D = {(tid1, t1), (tid2, t2), · · · , (tidn, tn)} is a set of transactions where
tidk is the identifier of transaction tk ⊆ I. A pattern p ⊆ I is a set of items

Secure Outsourced Frequent Pattern Mining 73

Table 1. Transaction database D in different representations

(a) D as sets (b) D as bit vectors (c) E(D): the encrypted

tid items tid a b c d e f tid ã b̃ c̃ d̃ ẽ f̃
1 {a, b, c, d, f} 1 1 1 1 1 0 1 1 1 1 1 1 0 1
2 {a, b, c, e} 2 1 1 1 0 1 0 2 1 1 1 0 1 0
3 {b, f} 3 0 1 0 0 0 1 3 0 1 0 0 0 1
4 {a, b, c, d } 4 1 1 1 1 0 0 4 1 1 1 1 0 0
5 {a, c, e} 5 1 0 1 0 1 0 5 1 0 1 0 1 0

from I, and p is contained by a transaction (tid, t) if p ⊆ t. The number of
transactions in D containing p is the absolute support of p, which is denoted as
p.supp. Any pattern is a frequent pattern if its support is equal to or greater than
a user-defined minimum threshold, minSup.

Running Example: Given the database D in Table 1(a) and minSup = 3, all
frequent patterns are {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, and {a,b,c}.

While some mining algorithms [4,14] represent transactions as sets of items as
in Table 1(a), some other algorithms [1,18] employ the bit vector representation
where there is a bit vector for each transaction with each bit indicating the
corresponding item’s presence in or absence from the transaction. For example,
Table 1(b) is the bit vector representation of D in Table 1(a).

3.2 Secure Outsourced Mining by Fully Homomorphic Encryption

With our secured scenario, the database is represented by bit vectors [1,18],
and encrypted and kept in the cloud in advance, from which various types of
knowledge can be discovered by outsourcing the corresponding mining tasks.

The encrypted database, denoted as E(D) := Encrypt(pk,Mask(D)), is
derived as follows. First, the Mask function is called to map the items in I
to meaningless symbols in a set Î and to rearrange rows and columns in the
bit-matrix, i.e., the bit vector representation. Second, the bits in Mask(D) are
encrypted by calling the Encrypt function provided by the fully homomorphic
encryption scheme [7,9].

The scheme [7,9] supports any computation that can be expressed by a
boolean circuit C that consists of AND-gates and XOR-gates and takes as input
the plaintext bits. Concretely, this scheme is defined by four functions: a key
generation function, KeyGen, an encryption function, Encrypt, a decryption
function, Decrypt, and an evaluation function, Evaluate.

– KeyGen(λ) generates a secret key sk and a public key pk given a security
parameter λ. The sk is an odd η-bit integer, and the pk is defined as (pk∗, y)
where pk∗ is a set of τ + 1 random γ-bit integers with pk∗

i = sk · qi + 2ri
and qi and ri randomly selected for i ∈ {0, · · · , τ}, and y is a vector of
Θ-components with κ bits of precision after the binary point that will be used
with the encrypted secret key to evaluate a circuit homomorphically.

74 J. Liu et al.

– Encrypt(pk,m1, · · · ,ms) encrypts any s plaintext bits by the public key pk.
The ciphertext ci of mi ∈ {0, 1} for i ∈ {1, · · · , s} is the sum of a subset of
pk∗ plus mi and random noise 2r.

– Decrypt(sk, c1, · · · , ct) decrypts any t ciphertexts by the secret key sk. Each
plaintext bit mi of ci for i ∈ {1, · · · , t} is recovered as (ci mod sk) mod 2.

– Evaluate(pk,C, c1, · · · , ct) takes as input a public key pk, a boolean cir-
cuit C, and t ciphertexts ci, and correctly evaluates the circuit C on cipher-
texts in that if ci = Encrypt(pk,mi) for i ∈ {1, · · · , t}, then Decrypt(sk,
Evaluate(pk,C, c1, · · · , ct)) = C(m1, · · · ,mt).

For the running example, Table 1(c) shows E(D) where I = {a, b, c, d, e, f},
Î = {â, b̂, ĉ, d̂, ê, f̂}, Mask(a) = â, Mask−1(â) = a, and so on. Each entry in
Table 1(c) is the encryption of the corresponding bit in Table 1(b).

An important observation is that the encryption of any bit b contains random
noise, and thus two invocation of Encrypt(pk, b) will yield different results.
Therefore, no comparison is supported on encrypted bits, which has profound
impact on our design of protocols.

3.3 A Variant of the Apriori Algorithm

The Apriori algorithm [4,14] is the most influential algorithm for mining frequent
patterns, which represents a transaction as a set of items as in Table 1(a). The
BinaryApriori algorithm in Algorithm 1 is a variant of Apriori for mining data
in the bit vector representation [1,18] as in Table 1(b), which may be converted
into a homomorphic counterpart that can mine the encrypted data.

Algorithm 1. BinaryApriori(D,minSup)
1: for each candidate c ∈ I do c.supp := countSupport(c,D);
2: L1 := {c ∈ I|c.supp ≥ minSup};
3: for (i := 1; Li �= ∅; i++) do
4: Ci+1 := genCandidates(Li);
5: for each candidate c ∈ Ci+1 do c.supp := countSupport(c,D);
6: Li+1 := {c ∈ Ci+1|c.supp ≥ minSup};
7: end for

BinaryApriori computes the set L1 of frequent patterns of length 1 by
counting every item’s support (at lines 1 to 2), and then finds frequent patterns
of length i + 1 for i ≥ 1 iteratively (at lines 3 to 7) as follows.

First, BinaryApriori generates the set Ci+1 of candidates of length i + 1
by calling the genCandidates function (at line 4). This function employs the
monotone property: the subsets of a frequent pattern must be frequent.

Second, BinaryApriori counts the support of every candidate c ∈ Ci+1 (at
line 5), and identifies those candidates whose supports are no less than minSup
to get Li+1 (at line 6). The countSupport function computes the support of c
in D by first performing bitwise AND-operation on the columns corresponding
to the constituent items of c and then summing up the resulting bits.

Secure Outsourced Frequent Pattern Mining 75

For the running example, to count the support of {a, b}, countSupport
first performs the bitwise AND-operation on columns a and b in Table 1(b), i.e.
(1, 1, 0, 1, 1)T and (1, 1, 1, 1, 0)T , to produce (1, 1, 0, 1, 0)T , and then sums up the
bits to get the result 3. In short, countSupport can be expressed by a boolean
circuit of AND-gates and OR-gates.

4 Secured Protocol Based on FHE for Pattern Mining

It is nontrivial to protect the security and privacy of outsourced data and fre-
quent pattern mining based on fully homomorphic encryption (FHE), since no
comparison can be performed on encrypted data and hence the server, i.e.,
the cloud service provider, cannot run a frequent pattern mining algorithm on
encrypted data without the help of the client. Therefore, we propose a protocol,
namely Sphene - Secured protocol by homomorphic enumeration, that avoids
the comparison operation on the encrypted data at the server side.

In a preparation step of the Sphene protocol (Step 0 in Fig. 1), the client’s
encrypted database, E(D), is outsourced to the server in advance, and the client
keeps a secret key sk to himself and shares a public key pk with the server.

In interaction steps (Steps 1 - 4 in Fig. 1), the server enumerates patterns of
a given length and counts the number of frequent patterns in the encrypted data
homomorphically, and the client controls the iterations over the pattern length,
which is detailed in the following.

Fig. 1. Sphene - our first protocol for mining frequent patterns based on FHE

76 J. Liu et al.

Step 1: The client encrypts the complement of minSup in �log2|D|�+2 bits,
denoted as E(−minSup), and starts the iterations with length l of 1.

Step 2: The client sends a pattern length l to the server together with the
encrypted complement of minSup, E(−minSup), which will be used by the
server to evaluate if a pattern is frequent homomorphically.

Step 3: The server enumerates every pattern c of length l, computes the
encrypted support of c and an encrypted bit flag that is an encryption of 1 if
c is frequent or that of 0, and adds up such bits to get E(numFreq), i.e., the
encrypted number of frequent patterns of length l, by employing the following.

– countSupport′(pk, c, E(D))) = Evaluate(pk, countSupport, c, E(D)) to
compute the encrypted support of c homomorphically as in Sect. 3.

– isFrequent′(pk,E(c.supp), E(−minSup)) to evaluate 1 XOR-ed with the
most significant “bit” of Add′(pk,E(c.supp), E(−minSup)).

– Add′(pk, ·, ·) to evaluate the sum of encrypted integers homomorphically.

Step 4: The client gets numFreq by decrypting the encrypted number of
frequent patterns sent back from the server. If numFreq is greater than l, the
client starts the next iteration, otherwise it stops since a frequent pattern of
length l + 1 should have l + 1 frequent subsets of length l.

Theorem 1. The Sphene protocol is correct, and is secured in the sense that no
one except the client can know the minimum support threshold and the support
of a pattern, and can infer if a pattern is frequent. An attacker can only infer
that the length of a frequent pattern is no more the number of iterations.

The advantage of this protocol is that the client and the server only need to
exchange little information. However, it needs to count the supports of many
unnecessary candidate patterns, and hence its efficiency might be low when
running on datasets of many items.

5 Privacy Preserving Protocol for Pattern Mining

An alternative to the first protocol is to reduce the workload at the server side
through close coordination between the two sides. That is to let the client lead
the execution of the BinaryApriori algorithm, in particular, to let the client
generate the candidates to be counted by the server. However, such an alternative
may leak more information.

5.1 The Notion of α-Pattern Uncertainty

The privacy risk is that an attacker or the server may infer the total number
of frequent patterns by making use of his knowledge about the BinaryApriori
algorithm, that is, any subset of a candidate is frequent, although he cannot
infer the minimum support threshold minSup, the support of any pattern, and
whether a particular pattern is frequent as all items are masked.

We propose a new privacy notion, namely α-pattern uncertainty, to limit the
server’s certainty in inferring the total number of frequent patterns.

Secure Outsourced Frequent Pattern Mining 77

Definition 2 (α-pattern Uncertainty). A set M of (masked) patterns is α-
uncertain, if an attacker’s certainty in inferring any pattern in M to be a true
candidate pattern is no more than a privacy parameter α set by the client.

For example, if the client sends the masked version of the true candidate pattern
set, Ĉ2 = {{â, b̂}, {â, ĉ}, {b̂, ĉ}} to the server, the server will infer that there
are 3 frequent items although he does not know what â, b̂, and ĉ stand for. But,
if the client sends an expanded set ˆEC2 = Ĉ2 ∪ {{d̂, ê}, {d̂, f̂}, {ê, f̂}}, the
attacker’s certainty of inference may drop to 50 %.

Definition 3 (shadow mappings and shadow patterns). The shadow
mappings, denoted as sMaps, are (1/α− 1) one-to-one and onto functions, that
have the same domain and disjoint ranges, from frequent items to infrequent
items. For each pattern c, shadow patterns of c are generated by applying on c
the functions from sMaps, denoted as shadows(c, sMaps).

To investigate the feasibility of applying FHE in outsourcing frequent patten
mining, a simple technique, shadow mappings (patterns), is proposed, which
however may be subject to further attacks. We leave as a future work an improved
technique that prevents any further inference.

5.2 Privacy Preserving Protocol for Counting Candidates

Our second protocol, namely P3CC - Privacy Preserving Protocol for Counting
Candidates homomorphically in outsourcing frequent pattern mining as shown
in Fig. 2, employs both α-pattern uncertainty and fully homomorphic encryption
as privacy and security measures.

The preparation step of the P3CC protocol (Step 0 in Fig. 2) is the same
as the Sphene protocol. In the interaction steps, the client generates the set
of candidate patterns and the set of shadow patterns, and sends the masked
version EC of their union to the server. The server homomorphically computes
the support of each pattern in EC, and sends the result to the client. The client
recovers and decrypts the result and gets the frequent patterns. The interaction
is further explained with the running example in the following.

Step 1: The client sends the masked candidate set EC = Mask(C1)) =
Mask(I)) = {{â}, {b̂}, {ĉ}, {d̂}, {ê}, {f̂}} to the server.

Step 2: The server counts the support of each masked candidate pattern
homomorphically, and sends the result back to client in the encrypted form.

Step 3: The client recovers the candidate set from the masked one, decrypts
the support of each candidate in C1 = EC ′ and determines the set of frequent
patterns of length 1, L1 = {{a}, {b}, {c}}. Suppose α = 50%, then only one
function is in the shadow mappings, e.g., sMaps = {{(a, d), (b, e), (c, f)}}.

Step 4: The client gets the candidate set C2 = {{a, b}, {a, c}, {b, c}}, and
sends the masked and expanded candidate set EC2 = {{â, b̂}, {â, ĉ}, {b̂, ĉ},{d̂,
ê}, {d̂, f̂}, {ê, f̂}} to the server.

Step 5: The server counts the supports and sends the encrypted result back.

78 J. Liu et al.

Step 6: The client recovers and decrypts the support of each pattern in EC2

and gets L2 = {{a, b}, {a, c}, {b, c}}. As the size of L2 is greater than 2, the
protocol enters a new round by jumping to Step 4, and so on.

Fig. 2. P3CC - our second protocol for mining frequent patterns

Theorem 2. The P3CC protocol is correct, and is secured in the sense that no
one except the client can know the minimum support threshold and the support
of a pattern, and can infer if a pattern is frequent. An attacker can only infer
that the length of a frequent pattern is no more the number of iterations, and
infer the total number of frequent patterns with a certainty no more than α.

6 Experimental Evaluation

This section evaluates our protocols experimentally. To the best of our knowl-
edge, there is no prior work on FHE-based frequent pattern mining, and the
related works [5,6,8,12,13,15,17,19–22] consider scenarios that are not compa-
rable to ours. We can only evaluate our protocols, Sphene and P3CC.

Secure Outsourced Frequent Pattern Mining 79

Two datasets are used in experiments. The first is the artificial dataset,
T10I6N50D5kL1k, generated by the generator from the IBM Almaden Quest
research group1. The second is the Chess dataset from FIMI2.

The protocols were implemented upon a general-purposed FHE library that
supports the scheme [7] and uses the GNU multiple precision arithmetic library3.
The implementation renders parallelism by multi-threading. The experiments
were performed on an HP Pavilion dm4 laptop running Ubuntu 12.04.4.

We first evaluate the Sphene and P3CC protocols on the T10I6N50D5kL1k
and chess datasets with varying the minimum support threshold, minSup. For
T10I6N50D5kL1k as shown in Fig. 3(a), P3CC is up to 3 orders of magnitude
more efficient than Sphene. For Chess as shown in Fig. 3(b), P3CC is up to 5
orders of magnitude more efficient than Sphene.

Fig. 3. Running time of two protocols with varying minSup on two datasets

We then evaluate the protocols with varying data features and privacy
requirements. First, Fig. 4(a) shows the result for the artificial dataset with the
number (D) of transactions ranging from 1,000 (D1k) to 10,000 (D10k), which
depicts that both P3CC and Sphene scale almost linearly in database size.

Second, Fig. 4(b) shows the result with the number (N) of distinct items
ranging from 10 (N10) to 100 (N100). While the performance of P3CC is not
highly correlated to this feature, the performance of Sphene fluctuates depending
on which of the two opposite effects with the increase of the number of items will
dominate: one is that the number of candidates in a protocol iteration increases,
the other effect is the the number of iterations decreases (as data get sparser).

Third, Fig. 4(c) shows the result with the number (L) of possible frequent
patterns ranging from 1,000 (L1k) to 6,000 (L6k), which indicates this feature
has little impact on the performance of P3CC and Sphene.

Finally, Fig. 4(d) shows the result with the varying privacy parameter α with
k = 1/α ranging from 1 to 6. While Sphene does not employ the privacy pre-
serving measure, P3CC performs linearly in the privacy parameter.
1 http://miles.cnuce.cnr.it/∼palmeri/datam/DCI/datasets.php/.
2 http://fimi.cs.helsinki.fi/data/.
3 https://gmplib.org/.

http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php/
http://fimi.cs.helsinki.fi/data/
https://gmplib.org/

80 J. Liu et al.

Fig. 4. Evaluation with varying data features on the artificial dataset

In summary, the experimental evaluation demonstrates that while the Sphene
protocol may be not efficient enough for real applications, the P3CC protocol
provides a solution for outsourcing both data storage and frequent pattern min-
ing tasks, although P3CC has higher communication cost than Sphene.

7 Conclusions and Future Work

This paper proposes two secured protocols for mining frequent patterns on the
cloud, which secures the data and the mining process by employing fully homo-
morphic encryption (FHE), and addresses privacy issues by introducing the α-
pattern uncertainty and reinforcing the second protocol by shadow mappings.
Preliminary experimental evaluation shows the feasibility of the protocols.

The future work is to address the limitations of this preliminary work, which
includes: (1) new techniques other than shadow mappings that prevent further
inference attacks when observing the α-pattern uncertainty; (2) handling pos-
sible attacks on the α-pattern uncertainty and on FHE by formal analysis; (3)
distributed mining approaches based on the MapReduce and Spark framework
to improve the efficiency; (4) new homomorphic encryption schemes customized
for frequent pattern mining with lower time complexity.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (61272306), and the Zhejiang Provincial Natural Science
Foundation of China (LY12F02024).

Secure Outsourced Frequent Pattern Mining 81

References

1. Agarwal, R., Aggarwal, C., Prasad, V.V.V.: Depth first generation of long patterns.
In: 6th SIGKDD, pp. 108–118 (2000)

2. Aggarwal, C.C., Yu, P.S.: Privacy-preserving Data Mining: Models and Algorithms.
Springer-Verlag, Boston (2008)

3. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: 1993 SIGMOD, pp. 207–216 (1993)

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Research
Report RJ 9839. IBM Almaden Research Center, San Jose, CA (1994)

5. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: Anonymity preserving pattern
discovery. VLDB J. 17(4), 703–727 (2008)

6. Chu, Y.-W., Tai, C.-H., Chen, M.-S., Yu, P.S.: Privacy-preserving simrank over
distributed information network. In: 12th ICDM, pp. 840–845 (2012)

7. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

8. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: 22nd PODS, pp. 211–222 (2003)

9. Gentry, C.: Fully Homomorphic encryption using ideal lattices. In: 41st ACM Sym-
posium on Theory of Computing, pp. 169–178 (2009)

10. Gellman, R.: Privacy in the clouds: risks to privacy and confidentiality from cloud
computing. In: World Privacy Forum, 23 February (2009)

11. Goethals, B.: Survey on frequent pattern mining. Technical report, University of
Helsinki (2003)

12. Giannotti, F., Lakshmanan, L.V.S., Monreale, A., Pedreschi, D., Wang, H.:
Privacy-preserving mining of association rules from outsourced transaction data-
bases. IEEE Syst. J. 7(3), 385–395 (2012)

13. Hu, H., Xu, J., Ren, C., Choi, B.: Processing private queries over untrusted data
cloud through privacy homomorphism. In: 27th ICDE, pp. 601–612 (2011)

14. Mannila, H., Toivonen, H., Verkamo, A.I.: Efficient algorithms for discovering asso-
ciation rules. In: AAAI Workshop Knowledge Discovery in Databases, KDD 1994,
pp. 181–192 (1994)

15. Qiu, L., Li, Y., Wu, X.: Protecting business intelligence and customer privacy while
outsourcing data mining tasks. Knowl. Inf. Syst. 17(1), 99–120 (2008)

16. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., et al. (eds.) Foundations of Secure Computation, pp.
169–179. Academic Press, New York (1978)

17. Rizvi, S., Haritsa, J.R.: Maintaining data privacy in association rule mining. In:
28th VLDB, pp. 682–693 (2002)

18. Shenoy, P., Haritsa, J.R., Sudarshan, S., Bhalotia, G., Bawa, M., Shah, D.: Turbo-
charging vertical mining of large databases. In: 2000 SIGMOD, pp. 22–33 (2000)

19. Tai, C. H., Yu, P.S., Chen, M.S.: k-support anonymity based on pseudo taxonomy
for outsourcing of frequent itemset mining. In: 16th SIGKDD, pp. 473–482 (2010)

20. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. IEEE Trans. Knowl. Data Eng. 16(4), 434–447 (2004)

21. Wang, Y., Wu, X.: Approximate inverse frequent itemset mining: privacy, com-
plexity, approximation. In: 5th ICDM, pp. 482–489 (2005)

22. Wong, W.K., Cheung, D.W., Hung, E., Kao, B., Mamoulis, N.: Security in out-
sourcing of association rule mining. In: 33rd VLDB, pp. 111–122 (2007)

	Secure Outsourced Frequent Pattern Mining by Fully Homomorphic Encryption
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Frequent Pattern Mining Problem
	3.2 Secure Outsourced Mining by Fully Homomorphic Encryption
	3.3 A Variant of the Apriori Algorithm

	4 Secured Protocol Based on FHE for Pattern Mining
	5 Privacy Preserving Protocol for Pattern Mining
	5.1 The Notion of -Pattern Uncertainty
	5.2 Privacy Preserving Protocol for Counting Candidates

	6 Experimental Evaluation
	7 Conclusions and Future Work
	References

