
Balancing Tree Size and Accuracy in Fast
Mining of Uncertain Frequent Patterns

Carson Kai-Sang Leung(B) and Richard Kyle MacKinnon

University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

Abstract. To mine frequent patterns from uncertain data, many exist-
ing algorithms (e.g., UF-growth) directly calculate the expected support
of a pattern. Consequently, they require a significant amount of storage
space to capture all existential probability values among the items in
the data. To reduce the amount of required storage space, some exist-
ing algorithms (e.g., PUF-growth) combine nodes with the same item by
storing an upper bound on expected support. Consequently, they lead to
many false positives in the intermediate mining step. There is trade-off
between storage space and accuracy. In this paper, we introduce a new
algorithm called MUF-growth for achieving a tighter upper bound on
expected support than PUF-growth while balancing the storage space
requirement. We evaluate the trade-off between storing more informa-
tion to further tighten the bound and its effect on the performance of
the algorithm. Our experimental results reveal a diminishing return on
performance as the bound is increasingly tightened, allowing us to make
a recommendation on the most effective use of extra storage towards
increasing the efficiency of the algorithm.

1 Introduction and Related Works

Frequent pattern mining from precise data has become popular since the intro-
duction of the Apriori algorithm [1]. Users definitely know whether an item is
present in, or absent from, a transaction in databases of precise data. Common
pattern mining techniques applied to precise data can be extended to the mining
of interaction patterns [6], sequential patterns [7], social patterns [10], and popu-
lar patterns [17]. However, there are also situations in which users are uncertain
about the presence or absence of items [3,4,9,20]. For example, a physician may
highly suspect (but cannot guarantee) that a coughing patient suffers from the
Middle East respiratory syndrome (MERS). The uncertainty of such suspicion
can be expressed in terms of existential probability (e.g., a 70 % likelihood of
suffering from the MERS). With this notion, each item in a transaction tj in
databases containing precise data can be viewed as an item with a 100 % likeli-
hood of being present in tj .

To handle uncertain data, the tree-based UF-growth algorithm [15] was pro-
posed. In order to compute the exact expected support of each pattern, paths in
the corresponding UF-tree are shared only if tree nodes on the paths have the
c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 57–69, 2015.
DOI: 10.1007/978-3-319-22729-0 5

58 C.K.-S. Leung and R.K. MacKinnon

same item and same existential probability. Hence, due to this more restrictive
path sharing requirement, the UF-tree may be quite large when compared to
the FP-tree [8] for precise data. This issue has been addressed [13,14,16]. For
instance, Calders et al. [5] mined uncertain data with sampling. Expected sup-
port of a pattern X is then estimated based on the average actual support of X
in several random samples (or instantiations). We [18] previously proposed the
PUF-growth algorithm to utilize a concept of item caps (which provide upper
bounds to expected support) together with aggressive path sharing (in which
paths are shared if nodes have the same item in common regardless of existen-
tial probability) to yield a more compact tree. Here, the expected support of X
is estimated based on relevant existential probability values.

In this paper, we study the following questions: Can we further tighten the
upper bound on expected support in PUF-growth? Can the resulting tree still
be as compact as the FP-tree in terms of number of nodes? At what point does
continuing to tighten the upper bound no longer provide an acceptable decrease
in runtime? Our key contributions of this paper are as follows:

1. a metal value uncertain frequent pattern tree (MUF-tree), which can be
as compact as the original FP-tree;

2. a mining algorithm — called MUF-growth— that is guaranteed to find all
and only those frequent patterns with no false negatives (frequent patterns
mistakenly categorized as infrequent) and no false positives (infrequent pat-
terns mistakenly categorized as frequent) from uncertain data at the end of
the mining process; and

3. an empirical analysis of the upper bound in MUF-growth.

The remainder of this paper is organized as follows. The next section presents
background. Then, we present our MUF-tree structure and MUF-growth algo-
rithm in Sects. 3 and 4, respectively. Experimental results are shown in Sect. 5,
and conclusions are given in Sect. 6.

2 Background

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a
k-itemset (i.e., a pattern consisting of k items), where X ⊆ Item and 1 ≤ k ≤ m.
Then, a transactional database = {t1, t2, . . . , tn} is the set of n transactions,
where each transaction tj ⊆ Item. The projected database of X is the set of all
transactions containing X. Each item xi in a transaction tj = {y1, y2, . . . , yh}
in an uncertain database is associated with an existential probability value
P (yi, tj), which represents the likelihood of the presence of yi in tj . Note that
0 < P (yi, tj) ≤ 1. The existential probability P (X, tj) of a pattern X in tj is then
the product of the corresponding existential probability values of items within
X when these items are independent [11,12]: P (X, tj) =

∏
x∈X P (x, tj). The

expected support expSup(X) of X in the database is the sum of P (X, tj) over
all n transactions in the database: expSup(X) =

∑n
j=1 P (X, tj). A pattern X

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 59

is frequent in an uncertain database if expSup(X) ≥ a user-specified minimum
support threshold minsup.

Given a database and minsup, the research problem of frequent pattern min-
ing from uncertain data is to discover from the database a complete collection
of frequent patterns having expected support ≥ minsup.

3 Our MUF-tree Structure

Recall that PUF-growth utilizes an upper bound to expected support to first find
all potentially frequent patterns, which include (i) true positives (i.e., patterns
with expected support ≥ minsup) and (ii) false positives (i.e., patterns with
expected support < minsup but with upper bound ≥ minsup). Then, PUF-
growth verifies each of the patterns and returns only those truly frequent ones.
To further tighten the upper bound to expected support, we propose (i) the
metal value uncertain frequent pattern tree (MUF-tree) structure in this
section and (ii) the corresponding MUF-growth algorithm in the next section.

The key idea behind the MUF-tree is to keep track of the i-th highest prob-
ability values in the prefix of tj and use them every time a frequent extension
(k > 2) is added to the suffix item during the mining process. Hence, each node
in an MUF-tree keeps (i) an item yr, (ii) an item cap IC (yr, tj), and (iii) a list of
“metal” values, which are the i-th highest existential probabilities in the prefix
of yr in tj . Figure 1(c) shows the contents of an MUF-tree for the database in
Table 1, in which each node maintains (i) an item, (ii) its item cap, and (iii) its
first three metal values (i.e., “silver value” M2(yr, tj), “bronze value” M3(yr, tj)

Fig. 1. Our MUF-tree for the database in Table 1 with minsup = 0.5 and 3 metal values

Table 1. A transactional database of uncertain data

Transactions Transactions

t1 = {a:0.1, b:0.3, c:0.5, d:0.7, e:0.9, f :0.9} t4 = {b:0.3, c:0.6, f :0.5, g:0.1, h:0.6}
t2 = {a:0.8, b:0.2, c:0.4, f :0.6, g:0.1} t5 = {a:0.4, b:0.6, c:0.1, f :0.8, g:0.2, h:0.7}
t3 = {b:0.7, c:0.5, f :0.5, g:0.4} t6 = {a:0.9, b:0.7, c:0.5, d:0.3, e:0.1, f :0.9}

60 C.K.-S. Leung and R.K. MacKinnon

and “copper value” M4(yr, tj)). With this new data structure, a new tighter
upper bound can be given by the product of IC (yr, tj) and the various “metal”
values. The compounded (prefixed) item cap— denoted as CIC (X, tj) — of
any k-itemset X = {x1, x2, . . . , xk} in tj = {y1, y2, . . . , yr, . . . , yh} (where xk = yr)
can then be defined as in Definition 1.

Definition 1. Let tj = {y1, y2, . . . , yr−1, yr, . . . , yh} where h = |tj |. Also, let
Mi(xr, tj) be the i-th metal value, which is the i-th highest existential probability
value among all (r − 1) items in the proper prefix {y1, y2, . . . , yr−1} ⊂ tj. If
X = {x1, x2, . . . , xk} is a k-itemset in tj such that xk = yr, then

CIC (X, tj) =
{

IC (X, tj) if k = 2,
IC (X, tj) × ∏k−1

i=2 Mi(yr, tj) if k ≥ 3,
(1)

where IC (X, tj) = P (yr, tj) × M1(yr, tj). ��
It is interesting to observe that the item cap IC (X, tj) provided by PUF-

growth is a special case of the compounded item cap CIC (X, tj) provided by
MUF-growth when k = 2 (i.e., where no metal values are stored). The general-
ization we present here benefits us by obtaining an increasingly tighter bound
when multiplying successive metal values for larger itemsets k ≥ 3. For example,
when k = 4, CIC (X, tj) involves IC (X, tj), as well M2 (“silver value”) and M3

(“bronze value”). Moreover, in theory, the maximum number of metal values we
can use is ultimately limited above by the length of the largest transaction in
the database. In practice, we will usually use a smaller number. See Sect. 5.

Since the expected support of X is the sum of all existential probabilities of
X over all the transactions containing X, the cap of expected support of X can
then be defined as follows.

Definition 2. The cap of expected support—denoted as expSupCap(X)—of a
pattern X = {x1, . . . , xk} (where k > 1) is defined as the sum (over all n transac-
tions in a database) of all the compounded item caps of xk in all the transactions
that contain X: expSupCap(X) =

∑n
j=1{CIC (X, tj) | X ⊆ tj}. ��

Based on Definition 2, expSupCap(X) for any k-itemset X = {x1, . . . , xk} can be
considered as an upper bound to the expected support of X, i.e., expSup(X) ≤
expSupCap(X). So, if expSupCap(X) < minsup, then X cannot be frequent. Con-
versely, if X is a frequent pattern, then expSupCap(X) ≥ minsup. We take advan-
tage of this property to safely mine all frequent patterns using expSupCap(X) in
place of expSup(X).

Lemma 1. The cap of expected support of a pattern X satisfies the partial down-
ward closure property: All non-empty subsets Y of a frequent pattern X (such
that X and Y share the same suffix item yr) are also frequent. ��
An MUF-tree can be constructed as follows. With the first scan of the uncer-
tain database, we find all distinct frequent items. Then, the MUF-tree is con-
structed with the second database scan in a fashion similar to that of the FP-tree.

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 61

A key difference is that, when inserting a transaction item, we compute its item
cap and its metal values. Only frequent items are inserted into the MUF-tree,
and they are inserted according to some canonical order. If a node contain-
ing that item already exists in a tree path, in addition to updating its item
cap, we also update its metal values by taking the maximum of each computed
metal value and the corresponding existing value. Otherwise, we create a new
node with this item cap and metal values. Similar to the FP-tree, our MUF-tree
maintains horizontal node traversal pointers whose links are adjusted whenever
a new node is created. For a better understanding of the MUF-tree construction,
see Example 1.

Example 1. Consider the uncertain database in Table 1. Let the user-specified
support threshold minsup be set to 0.5 and the number of stored metal values be
equal to three. For simplicity, we arrange items in alphabetical order. After the
first database scan, the expected supports of all items (after removing infrequent
single items) are a:2.2, b:2.3, c:2.6, d:1.0, e:1.0, f :4.2, g:0.8 and h:1.3.

With the second database scan, we insert only the frequent items of each
transaction (with their respective item cap and metal values). For instance, as
shown in Fig. 1(a), when inserting transaction t1 = {a:0.1, b:0.3, c:0.5, d:0.7, e:0.9,
f :0.9}, we store:

1. a:0.10: : : because IC (a, t1) = P (a, t1) = 0.10;
2. b:0.03: : : because IC (b, t1) = P (b, t1) ×M1(b, t1) = 0.3 × 0.1 = 0.03;
3. c:0.15:0.1: : because IC (c, t1) = P (c, t1) ×M1(c, t1) = 0.5 × 0.3 = 0.15 and

M2(c, t1) = 0.1;
4. d:0.35:0.3:0.1: because IC (d, t1) = P (d, t1) ×M1(d, t1) = 0.7 × 0.5 = 0.35,

M2(d, t1) = 0.3 and M3(b, t1) = 0.1;
5. e:0.63:0.5:0.3:0.1 because IC (e, t1) = P (e, t1) ×M1(e, t1) = 0.9 × 0.7 = 0.63,

M2(e, t1) = 0.5, M3(e, t1) = 0.3 and M4(e, t1) = 0.1; as well as
6. f :0.81:0.7:0.5:0.3 because IC (f, t1) = P (f, t1) ×M1(f, t1) = 0.9 × 0.9 =

0.81, M2(f, t1) = 0.7, M3(f, t1) = 0.5 and M4(f, t1) = 0.3.

As t2 shares a common prefix 〈a, b, c〉 with an existing path in the MUF-
tree created when t1 was inserted, (i) the item cap values of those items in the
common prefix are added to their corresponding nodes, and (ii) the metal values
of those items are checked against the metal values for their corresponding nodes,
with only the maximum saved for each node. In this case, IC (a, t2) = 0.8 is added
to the previous value of 0.1 to get 0.9. Similarly, IC (b, t2) = 0.16 is added to the
previous value of 0.03 to get 0.19. For c, IC (c, t2) = 0.32 is added to the previous
value of 0.15 to get 0.47. As M2(c, t2) = 0.2 is higher than the previous M2 value
of 0.1, the new value of 0.2 is stored. As f and g in t2 not sharing any common
prefix with t1, new nodes are created as shown in Fig. 1(b). Figure 1(c) shows
the status of the MUF-tree after inserting all of the remaining transactions. ��

4 Our MUF-growth Algorithm

Here, we propose a pattern-growth mining algorithm called MUF-growth,
which mines frequent patterns from our MUF-tree structure. Recall that the

62 C.K.-S. Leung and R.K. MacKinnon

construction of an MUF-tree is similar to that of a FP-tree, except that metal
values are additionally stored. Thus, the basic operation in MUF-growth for
mining frequent patterns is to construct a projected database for each potential
frequent pattern and recursively mine its potentially frequent extensions.

Based on Lemma 1, we apply the MUF-growth algorithm to our MUF-tree
for generating only those k-itemsets (where k > 1) with caps of expected support
≥ minsup. Similar to other algorithms (e.g., UFP-growth [2]), the mining process
of our MUF-growth may also lead to some false positives in the intermediate step
(e.g., at the end of the second database scan), but all these false positives will be
filtered out with a quick third scan of the database. Hence, our MUF-growth is
guaranteed to return to the user all and only those truly frequent patterns with
neither false positives nor false negatives at the end of the mining process.

Example 2. The MUF-growth algorithm mines extensions of every frequet item.
Consider the MUF-tree in Fig. 1(c). The {f}-conditional tree is created by accu-
mulating all the prefix paths from each f node up to the root. In the very first
recursion, each node in the prefix of each f node takes on the current value
of expSupCap({f}) since the cap of expected support already contains the fre-
quency and existential probability information of f together with the highest
existential probability value in the prefix of f . In addition, each node in the
prefix of f in the global tree inherits the metal values of f when they appear
in the {f}-conditional tree. Thus, the {f}-conditional tree, pictured in Fig. 2(a)
consists of two branches, one for each prefix path of the f -nodes up to the root
that is not shared. The left branch contains 〈a, b, c, d, e〉 with (i) d and e hav-
ing an expSupCap value of 1.62 and (ii) a, b and c have an expSupCap value of
1.62 + 0.96 = 2.58 due to the shared prefix between the two f -nodes. All the
nodes in the left branch contain the metal values 〈0.7, 0.5, 0.3〉 as they are (i) the
default values for d and e by default and (ii) higher than its corresponding value
in {0.4, 0.2, } for a, b and c. The right branch contains 〈b, c〉, each having the
expSupCap value of 0.65 and the M1 value of 0.5.

For the {f, c}-conditional tree in Fig. 2(b), the compounding effect of the
metal values is observed because the expSupCap value for each node in the prefix
of c is further multiplied by the first metal value in each list for c. The left
branch in the {f, c}- conditional tree contains 〈a, b〉 with an expSupCap value of

Fig. 2. Conditional trees in the MUF-growth algorithm

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 63

1.806 = 2.58 × 0.7 and the metal values 〈0.7, 0.5, 0.3〉. The right branch contains
just b with an expSupCap value of 0.325 = 0.65 × 0.5 and the metal value 0.5
(which is just repeated as no further values were previously stored). At this
point, if minsup= 2.2, then using just a single metal value M2 has saved us
having to further generate any more candidates which are extensions of {f, c}.

The {f, c, b}-conditional tree consists of a single node a:0.903:0.7,0.5,0.3. If
we take advantage of the second metal value in b’s list, each node in the prefix
of b will take on the expSupCap value of 0.903 = 1.806 × 0.5. If instead we only
decided to store a single metal value in this implementation of MUF-growth,
then we would reuse the first metal value in b’s list. Consequently, each node
in the prefix of b would take on the expSupCap value of 1.2642 = 1.806 × 0.7. In
this case, using extra storage space to accommodate more metal values in each
node allows us to bring the expSupCap value closer to the expected support with
fewer recursive calls to generate candidate extensions. Every time an extra metal
value is used in this manner, the chance goes up that the sub-tree generation
stops earlier and fewer false positives are generated. ��
Since each metal value used during the candidate generation process is a max-
imum among all values in the prefix of an item, MUF-growth finds a complete
set of patterns from an MUF-tree without any false negatives. In addition, with
each additional unique metal value that is stored in the MUF-tree nodes, MUF-
growth does so while generating fewer false positives than existing algorithms. In
much larger databases, the runtime savings caused by this effect are significant.

5 Evaluation Results

This section presents our results on evaluating the following aspects of our MUF-
tree structure and its corresponding MUF-growth algorithm in mining frequent
patterns from uncertain data.

5.1 Analytical Evaluation

Tree Compactness. For any uncertain databases, our MUF-tree has the same
number of nodes as in the existing PUF-tree [18]. Thus, the node count of the MUF-
tree (i) can be equal to that of the FP-tree [8] (when the MUF-tree is constructed
using the frequency-descending order of items) and (ii) is bounded above by total
number of frequent items summed over every transaction in the database.

Tree Completeness. The complete set of mining results (with no false positives
and no false negatives) can be generated because the MUF-tree contains the set
of all of the frequent items from every transaction in the database along with
the compounded item cap (CIC) in each node. Mining based on this compounded
item cap ensures that no frequent k-itemset (k > 1) will be missed.

Tightness of CIC. Recall that the PUF-tree utilizes an item cap (IC), which
is based on the existential probability value P (yr, tj) of yr and the single highest
existential probability value M1(yr, tj) in its prefix. In contrast, our MUF-tree

64 C.K.-S. Leung and R.K. MacKinnon

utilizes a CIC, which is based on various metal values Mi(yr, tj) in addition
to P (yr, tj) and M1(yr, tj).Note that the CIC used in our MUF-tree provides a
tighter upper bound than the IC used in the PUF-tree because candidates are
generated during the mining process with increasing cardinality of X in the CIC
(cf. the IC has no such compounding effect).

5.2 Empirical Evaluation

We also compared the performance of our MUF-growth algorithm (with vary-
ing numbers of metal values stored per node) with the existing PUF-growth
algorithm. Recall that PUF-growth [18] was shown to outperform UF-growth
[15], UFP-growth [2] and UH-Mine [2]. So, we compare our MUF-growth solely
with PUF-growth in order to clearly evaluate the effect of the tightened upper
bound. Similar to other papers [2] in the sub-community of uncertain frequent
pattern mining, we also used both real life and synthetic databases for our tests.
The synthetic databases, which are generally sparse, are generated within a
domain of 1000 items by the data generator developed at IBM Almaden Research
Center [1]. We also considered several real life databases such as mushroom, retail
and kosarak. We assigned a (randomly generated) existential probability value
from the range (0 %,100 %] to each item in every transaction in the databases.
The name of each database indicates some of its characteristics. For example,
the database u10k5L10100 2 contains 10 K transactions with average transaction
length of 5, each item in a transaction is associated with an existential proba-
bility value that lies within a range of [10 %, 100 %] and the probability values
are spaced out with minimum increment of 5 % (i.e., every 10 % increment is
separated into 2 different values). Due to space constraints, we present here the
results on some of the above databases. All programs were written in C++ and
ran in a Linux environment on an Intel Core i5-661 CPU with 3.33 GHz and
8 GB of RAM. Unless otherwise specified, runtime includes CPU and I/Os for
tree construction, mining, and false-positive removal. While the number of false
positives generated at the end of the second database scan may vary, all algo-
rithms (ours and others) produce the same set of truly frequent patters at the
end of the mining process. The results shown in this section are based on the
average of multiple runs for each case. In all experiments, minsup was expressed
in terms of the absolute support value, and all trees were constructed using the
descending order of expected support.

Number of False Positives. Although PUF-trees and MUF-trees are com-
pact (in fact, the number of nodes in the global tree can be equal to the FP-
tree for both of them), their corresponding algorithms generate some false posi-
tives. Hence, their overall performances depend on the number of false positives
generated. In this experiment, we measured the number of false positives gen-
erated by both algorithms for fixed values of minsup with different databases.
We present some results in Fig. 3 using one minsup value over several probability
distributions for the synthetic database u10k5L10100 and the real-life database
retail10100. In general, MUF-growth was observed to remarkably reduce the num-
ber of false positives when compared with PUF-growth. The primary reason for

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 65

Fig. 3. Number of false positives

this improvement is that the upper bound in this algorithm is much tighter than
that in PUF-growth for higher cardinality itemsets (k > 2), therefore less total
candidates are generated and subsequently less false positives.

On the IBM synthetic database u10k5L10100, MUF-growth generated any-
where from 47 % to as low as 23 % of the false positives generated by the corre-
sponding PUF-growth algorithm as the number of metal values was increased.
On the other hand, with the UC Irvine real-life database retail10100, this effect
is not quite as pronounced. When the number of distinct probability values
is increased, as in the retail10100 10 database, we again see similar numbers
as in the synthetic databases. The wider number of distinct probability values
leads to a higher chance that additional metal values are significantly lower
than the previous values. In synthetic data, the decrease in false positives is
more pronounced even with fewer distinct values as the distribution of items in

66 C.K.-S. Leung and R.K. MacKinnon

Fig. 4. Runtime

transactions becomes completely independent, whereas items in the retail data-
base tend to appear or be absent in predetermined groups.

When changing the range of observed probability values, as in retail 5060
(not shown for brevity), we found that MUF-growth generated fewer than 1.5%
of the total false positives of the corresponding PUF-growth algorithm. Adding
subsequent metal values beyond the first in retail 5060 did not make a significant
difference in the number of false positives generated. The reason is that with only
two closely spaced existential probability values to choose from, each additional
metal value is either the exact same or very close to the previous one, giving
little to no benefit over just reusing the previous value.

Runtime. Recall that PUF-growth was shown to outperform UH-Mine [18]
and subsequently UFP-growth [2,19]. Hence, we compared our MUF-growth

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 67

algorithm with different metal values to PUF-growth. The addition of just a sin-
gle metal value in MUF-growth makes a remarkable improvement in the runtime
when compared to PUF-growth. The primary reason is that, even though PUF-
growth finds the exact set of frequent patterns when mining an extension of X,
it may suffer from the high computation cost of generating unnecessarily large
numbers of infrequent candidates and their extensions. The use of the metal
values in MUF-growth ensure that those high cardinality candidates are never
generated due to their expected support caps being much closer to the expected
support.

When comparing our MUF-growth algorithm to it with different metal val-
ues the runtimes are much closer together. We show, in Fig. 4, the runtime of
MUF-growth on the same databases we used earlier in this section. With these
databases we notice a diminishing return on runtime after five or six metal val-
ues. For instance, on the retail10100 database, MUF-growth showed a decrease in
runtime from 127 seconds to 103 seconds as the number of metal values increased
from one to six, followed by subsequent increases in runtime as additional metal
values were used. With the u10k5L10100 databases, similar numbers of metals
values provided a decrease in run time. On the other hand, with the retail 5060
database we notice a diminishing return on runtime after a smaller number of
metal values. For all databases, at the point where the runtime starts increasing
again, the upper bound given by the increased number of metal values is so close
as to be indistinguishable from the bound obtained with fewer metal values, thus
the extra computation is wasted.

Scalability. To test the scalability of MUF-growth, we mined frequent patterns
from increasing sizes of input databases. The experimental results indicate that
our algorithm (i) is scalable with respect to the number of transactions and
(ii) can mine large volumes of uncertain data within a reasonable amount of time.

The experimental results show that our algorithm effectively mines frequent
patterns from uncertain data irrespective of distribution of existential probability
values (whether they are distributed into a narrow or wide range of values) and
whether the data is dense or sparse.

6 Conclusions

In this paper, we proposed (i) the MUF-tree structure for capturing important
information from uncertain data and (ii) the MUF-growth algorithm for min-
ing frequent patterns from the MUF-tree structure. The algorithm obtains upper
bounds on the expected supports of frequent patterns by accumulating item caps
in its tree structure. These item caps are compounded with various metal val-
ues (computed based on the i-th highest existential probabilities of any item in
the prefix) during the mining of potentially frequent patterns. Hence, they fur-
ther tighten the upper bound on expected supports of frequent patterns when
compared to the existing PUF-growth algorithm. Our proposed MUF-growth
algorithm has been shown to generate significantly fewer false positives than

68 C.K.-S. Leung and R.K. MacKinnon

PUF-growth (e.g., up to 1 % of the total value). In all cases, MUF-growth signif-
icantly outperformed PUF-growth. Using extra metal values in MUF-growth to
further tighten the upper bound was shown to be most effective on sparse data,
providing further decreases in both false positives and runtime. Our algorithm is
guaranteed to find all frequent patterns (with no false negatives). Experimental
results show the effectiveness of our MUF-growth algorithm in fast mining of
uncertain frequent patterns when balancing tree size and accuracy.

Acknowledgement. This project is partially supported by NSERC (Canada) and
University of Manitoba.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca,
J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, pp. 487–499. Morgan Kaufmann,
San Francisco (1994)

2. Aggarwal, C.C., Li, Y., Wang, J., Wang, J.: Frequent pattern mining with uncertain
data. In: Elder, J.F., Fogelman-Soulié, F., Flach, P.A., Zaki, M.J. (eds.) ACM KDD
2009, pp. 29–37. ACM, New York (2009)

3. Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic fre-
quent itemset mining in uncertain databases. In: Elder, J.F., Fogelman-Soulié, F.,
Flach, P.A., Zaki, M.J. (eds.) ACM KDD 2009, pp. 119–127. ACM, New York
(2009)

4. Calders, T., Garboni, C., Goethals, B.: Approximation of frequentness probability
of itemsets in uncertain data. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos, D.,
Wu, X. (eds.) IEEE ICDM 2010, pp. 749–754. IEEE, Los Alamitos (2010)

5. Calders, T., Garboni, C., Goethals, B.: Efficient pattern mining of uncertain data
with sampling. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD
2010, Part I. LNCS (LNAI), vol. 6118, pp. 480–487. Springer, Heidelberg (2010)

6. Fariha, A., Ahmed, C.F., Leung, C.K.-S., Abdullah, S.M., Cao, L.: Mining frequent
patterns from human interactions in meetings using directed acyclic graphs. In: Pei,
J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS
(LNAI), vol. 7818, pp. 38–49. Springer, Heidelberg (2013)

7. Fournier-Viger, P., Gomariz, A., Šebek, M., Hlosta, M.: VGEN: fast vertical mining
of sequential generator patterns. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK
2014. LNCS, vol. 8646, pp. 476–488. Springer, Heidelberg (2014)

8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) ACM SIGMOD 2000, pp.
1–12. ACM, New York (2000)

9. Jiang, F., Leung, C.K.-S.: Stream mining of frequent patterns from delayed batches
of uncertain data. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS,
vol. 8057, pp. 209–221. Springer, Heidelberg (2013)

10. Jiang, F., Leung, C.K.-S., Liu, D., Peddle, A.M.: Discovery of really popular friends
from social networks. In: IEEE BDCloud 2014, pp. 342–349. IEEE, Los Alamitos
(2014)

11. Leung, C.K.-S.: Uncertain frequent pattern mining. In: Aggarwal, C.C., Han, J.
(eds.) Frequent Pattern Mining, pp. 417–453. Springer, Switzerland (2014)

Balancing Tree Size and Accuracy in Uncertain Frequent Pattern Mining 69

12. Leung, C.K.-S., Jiang, F.: A data science solution for mining interesting patterns
from uncertain big data. In: IEEE BDCloud 2014, pp. 235–242. IEEE, Los Alamitos
(2014)

13. Leung, C.K.-S., MacKinnon, R.K.: BLIMP: a compact tree structure for uncertain
frequent pattern mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014.
LNCS, vol. 8646, pp. 115–123. Springer, Heidelberg (2014)

14. Leung, C.K.-S., MacKinnon, R.K., Tanbeer, S.K.: Fast algorithms for frequent
itemset mining from uncertain data. In: Kumar, R., Toivonen, H., Pei, J., Huang,
J.Z., Wu, X. (eds.) IEEE ICDM 2014, pp. 893–898. IEEE, Los Alamitos (2014)

15. Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for fre-
quent pattern mining from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M.,
Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer,
Heidelberg (2008)

16. Leung, C.K.-S., Tanbeer, S.K.: Fast tree-based mining of frequent itemsets from
uncertain data. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J.
(eds.) DASFAA 2012, Part I. LNCS, vol. 7238, pp. 272–287. Springer, Heidelberg
(2012)

17. Leung, C.K.-S., Tanbeer, S.K.: Mining popular patterns from transactional data-
bases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp.
291–302. Springer, Heidelberg (2012)

18. Leung, C.K.-S., Tanbeer, S.K.: PUF-tree: a compact tree structure for frequent
pattern mining of uncertain data. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H.,
Xu, G. (eds.) PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 13–25. Springer,
Heidelberg (2013)

19. Tong, Y., Chen, L., Cheng, Y., Yu, P.S.: Mining frequent itemsets over uncertain
databases. PVLDB 5(11), 1650–1661 (2012)

20. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Wang,
J.T.-L. (ed.) ACM SIGMOD 2008, pp. 819–832. ACM, New York (2008)

	Balancing Tree Size and Accuracy in Fast Mining of Uncertain Frequent Patterns
	1 Introduction and Related Works
	2 Background
	3 Our MUF-tree Structure
	4 Our MUF-growth Algorithm
	5 Evaluation Results
	5.1 Analytical Evaluation
	5.2 Empirical Evaluation

	6 Conclusions
	References

