
Efficient Cluster Detection by Ordered
Neighborhoods

Emin Aksehirli1(B), Bart Goethals1, and Emmanuel Müller1,2

1 University of Antwerp, Antwerp, Belgium
{emin.aksehirli,bart.goethals}@uantwerpen.be

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
emmanuel.mueller@kit.edu

Abstract. Detecting cluster structures seems to be a simple task, i.e.
separating similar from dissimilar objects. However, given today’s com-
plex data, (dis-)similarity measures and traditional clustering algorithms
are not reliable in separating clusters from each other. For example, when
too many dimensions are considered simultaneously, objects become
unique and (dis-)similarity does not provide meaningful information to
detect clusters anymore. While the (dis-)similarity measures might be
meaningful for individual dimensions, algorithms fail to combine this
information for cluster detection. In particular, it is the severe issue of a
combinatorial search space that results in inefficient algorithms.

In this paper we propose a cluster detection method based on the
ordered neighborhoods. By considering such ordered neighborhoods in
each dimension individually, we derive properties that allow us to detect
clustered objects in dimensions in linear time. Our algorithm exploits
the ordered neighborhoods in order to find both the similar objects and
the dimensions in which these objects show high similarity. Evaluation
results show that our method is scalable with both database size and
dimensionality and enhances cluster detection w.r.t. state-of-the-art clus-
tering techniques.

1 Introduction

In the information era that we live in, there are a huge amount of data about almost
anything. Institutions, both government and private, realized the importance of
data and started to collect any kind of information on their business objects, hop-
ing that theywill derive useful knowledge out of it oneday.Considering the amount,
annotating and labeling the data is often infeasible. Therefore, unsupervised
methods such as clustering are more suitable for knowledge extraction.

One of the challenging effects of this “data hoarding” is the increased num-
ber of attributes associated with each object. Unfortunately, due to the phe-
nomenon of the so called curse of dimensionality, the similarity between objects
becomes meaningless in high dimensional data spaces [5]. This means that the
clusters cannot be separated from each other by (dis-)similarity assessment in
high dimensional space, which in turn poses a serious challenge for traditional

c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 15–27, 2015.
DOI: 10.1007/978-3-319-22729-0 2

16 E. Aksehirli et al.

clustering algorithms such as k-means or hierarchical clustering. Nevertheless,
(dis-)similarity in the individual dimensions can still be exploited and clusters
can be detected in combinations of these dimensions. The open challenge is how
to exploit this (dis-)similarity information in individual dimensions for any com-
bination of dimensions while not falling prey to the exponential nature of this
combinatorial search space.

For example, nowadays a customer can be associated with credit ratings, shop-
ping habits, travel patterns, entertainment choices, sport habits, etc. Even med-
ical conditions or other private information might be available due to the data
integration with a multitude of data sources. Considering all the aforementioned
data, each customer becomes very unique and almost equally dissimilar to any
other customer. This makes the notion of “similar customers” meaningless. Nev-
ertheless, a meaningful customer segmentation can still be achieved by looking at
a subset of dimensions, e.g. travel and sport habits only.

Although similarity between high dimensional objects is not meaningful, sim-
ilarity according to subsets of attributes is still meaningful. To address this
issue, subspace clustering [20] aims at cluster detection in any combination of
the given attributes. Even though they enhance clustering quality compared
to traditional clustering methods, they come with their own challenges. They
suffer from noise sensitivity [1,19], density estimation challenges [4,9,10], many
complex parameters [4,10,12,13], or inefficient search through the combinatorial
search space [2,9].

In contrast to these methods, we tackle the problem by exploiting local neigh-
borhoods of objects in individual dimensions. These neighborhoods are used as
means for cluster detection in combinations of dimensions. We show that clusters
can be detected directly from these local neighborhoods. Moreover, exploiting
their natural orders, we can avoid common scalability pitfalls in the algorithmic
computation of clusters. In particular, we propose a linear-time algorithm for
detecting cluster structures in dimensions. Key characteristics of our approach
are its scalability w.r.t. both database size and dimensionality, the detection
of clusters with variable scales, and its few user-friendly parameters. Further,
it allows for individual (dis-)similarity measures for each dimension, which is
important for data with different data types, complex distance functions, and
the lack of joint (dis-)similarity measures in combinations of different data types
and dimensions with complex distance functions.

In summary, our contributions are as follows: - A formal analysis of ordered
neighborhoods in the context of cluster detection. - Prove completeness of
cluster detection based on ordered neighborhoods. - A scalable algorithm exploit-
ing ordered neighborhoods for cluster detection in data projections. - Exhaustive
experiments showing that our method (1) works well with variable densities,
(2) scales well with database size and dimensionality, (3) robust w.r.t. noise and
irrelevant dimensions, (4) and suitable for exploratory data analysis in real world
scenarios.

Please find the supplementary for the paper, in which we cover the topics in
detail, along with the implementation and datasets on our website.1

1 http://adrem.uantwerpen.be/clon.

http://adrem.uantwerpen.be/clon

Efficient Cluster Detection by Ordered Neighborhoods 17

2 Formal Properties

We use the ordered local neighborhoods of objects in each individual dimension
as indicators for clustered structures. This idea is based on the observation that
similarity of objects is captured by the order of objects contained in the local
neighborhood [17]. To the best of our knowledge, we are the first ones to exploit
this theoretic principle for scalable cluster detection in high dimensional data.

For our solution, objects only need to be sorted once according to the given
(dis-)similarity measure. This might even be given (for free) due to the index
structures maintained in the relational database system that stores the data.
Based on these ordered neighborhoods, we detect clusters by mining object
sets that re-occur in a similar order in multiple dimensions. Starting with one
dimensional clusters and iteratively refining them allows us to detect clusters in
projections (i.e. dimensions which agree in the similarity of objects) of a high
dimensional data space.

Although the general idea seems simple to implement, it has several open
research questions: Can we guarantee to detect all hidden clusters? How to cap-
ture the neighborhood information, and how can it be exploited for clustering
high dimensional data? In order to answer all of these questions one by one, we
structure our main contributions as follows: We first show that ordered neigh-
borhoods ensure complete cluster detection in Sect. 2.1. Second, we propose a
data transformation from relational data to an ordered neighborhood space and
investigate its properties in Sect. 2.2. We introduce a scalable algorithm that
exploits these properties for cluster detection in Sect. 3.

2.1 Clustering in Neighborhoods

For a relational database D we represent each data object o in D as a vector
defined over attributes A = {A1, A2, · · · , Am}, with oi the value of the object
for the attribute Ai. For each attribute Ai, the projected database is denoted as
DAi . Further, we use δ(o,p) as a dissimilarity between the objects o and p. |S|
denotes the cardinality of set S.

As basic notion we use local neighborhoods based on k-nearest neighborhood
(k-NN), which have already been exploited for lazy classification [7], dimension-
ality reduction [21], collaborative filtering [16] and many other techniques in
various communities [6,11]. For clustering, one has used shared nearest neighbor-
hoods [8], neighborhoods in random projections [18], and frequent co-occurrence
of neighborhoods [2]. In our work, we build the basic clustering principle of our
method on the k-nearest neighborhood of an object, which is the set of objects
that are the most similar to it:

Definition 1 (k-Nearest Neighborhood (k-NN)). Let o ∈ D , δ a dissimi-
larity measure, and the NNk(o) be the kth nearest object to o according to δ, the
k-nearest neighborhood (k-NN) of o is defined as

k-NN(o) = {p ∈ D | δ(o,p) ≤ δ(o,NNk(o))}.

18 E. Aksehirli et al.

q

|C|-NN(p) |C|-NN(o)

op

C

= C =

(a) Separable cluster

q

q′

op

10-NN(p) 10-NN(o)

C

(b) Non-separable cluster

Fig. 1. Nearest neighborhoods of the objects in a cluster

k-NN(o) captures the similar objects near object o, which we can use for
cluster detection. Figure 1 shows the nearest neighborhoods of the objects in
clusters. Cluster sized nearest neighborhoods of objects in a separable cluster
are equal to the cluster itself. In Fig. 1a, |C|-NN of all 10 objects in C are
equal the C itself. Although the k-NN of some of the objects in a non-separable
cluster include objects that are not in the cluster, the k-NN of the majority
of objects in the cluster include the whole cluster. For example in Fig. 1b, the
neighborhoods of the data points p and q are different from each other although
they are in the same cluster. On the other hand, they are in the |C|-NN of the
8 out of 10 objects in the cluster, shown as �. Therefore, they can be identified
as being in the same cluster by checking their co-occurrences in neighborhoods
of other objects instead of comparing their neighborhoods. This is one of the
advantages of using co-occurrences in neighborhoods instead of shared nearest
neighborhoods.

2.2 Ordered Neighborhoods

In the original space, computing the co-occurrence of object sets in neighbor-
hoods of objects in D requires expensive neighborhood computations. Instead,
we compute the neighborhood of every object once and conduct co-occurrence
search in these neighborhoods.

Definition 2 (Ordered Neighborhood). The ordered neighborhood of o ∈
DAi is the ordered list of the objects in k-NN(o), in which the order reflects the
order of objects in Ai.

k-NN(o) = (· · · ,p, · · · ,q, · · ·) ⇐⇒ p < q

Definition 3 (Ordered Neighborhood Database). An ordered neighbor-
hood database N is the ordered list of ordered neighborhoods. Order of the neigh-
borhoods is the order of objects in DAi . If o < p, then

N Ai = (· · · , k-NN(o), · · · , k-NN(p), · · ·)
For the remaining of the paper, we use neighborhood and k-NN(o) to refer to
the ordered neighborhood, and neighborhood database to refer to the ordered

Efficient Cluster Detection by Ordered Neighborhoods 19

×

×

+

×

×

+

×

A1

A2

×

+

(a) An example dataset

(b) Neighborhoods of size 4

(c) Neighborhoods of size 6

Fig. 2. An example dataset and its neighborhood databases for different sizes

neighborhood database unless it is noted otherwise. Further, if the projection
attribute is clear from the context or it is irrelevant, we drop the attribute and
use N instead.

Let us look at the example dataset in Fig. 2a. Figures 2b and 2c show N A1

of the example dataset with k = 4 and k = 6. Each column in a neighborhood
database represents an object while each row represents the neighborhood of an
object. If an object occurs in a neighborhood, the corresponding cell is white. E.g.,
in Fig. 2b each horizontal white line, which denotes 4-NN, consists of exactly 4
cells.

With a formal analysis, the following properties hold for the neighborhood
DBs, their proofs are provided in Sect. S.1 (in Supplementary):

Property 1 (Consecutive Objects). If two objects are in a neighborhood, all the
objects in between them are also in that neighborhood. Let o,p,q, r ∈ DAi and
o < p < q. o ∈ k-NN(r) ∧ q ∈ k-NN(r) =⇒ p ∈ k-NN(r).

Property 2 (Consecutive Neighborhoods). If an object is in the neighborhood of
two objects, then it is in the neighborhood of all the objects in-between them.
Let o,p,q, r ∈ DAi and o < p < q. If r ∈ k-NN(o) ∧ r ∈ k-NN(q) =⇒ r ∈
k-NN(p).

We can see Properties 1 and 2 in Fig. 2b. While the objects in a neighborhood
are consecutive, an object only appears in consecutive neighborhoods, hence,
they respectively form straight horizontal and vertical lines.

20 E. Aksehirli et al.

Theorem 1 (Recurrent Neighborhoods). Clusters form square structures
on the diagonal of the neighborhood databases.

Proof. According to Properties 1 and 2, neighborhoods form continuous shapes.
As we discuss in Sect. 2.1, a cluster is repeated as the neighborhoods of its
objects, hence, the shape should be a square. Since each object is its own nearest
neighbor, squares should be on the diagonal of the neighborhood DB. ��
The two squares in the lower right quarter of the Fig. 2b, which are circled in
red, are the neighborhoods of the objects in the clusters that are denoted by �
and • in Fig. 2a. Similarly, squares on the upper left quarter of Fig. 2c, which
are circled in green and blue, are respectively from the clusters �, �.

Property 3 (Baseline). If there are no clusters in a segment of the dataset, i.e.,
the objects are distributed uniformly, all of the object sets for that segment have
the same amount of recurrency in the neighborhood DB, which is a function of
k, cf. Figure S.1.

Property 4 (Transitivity). If an object o is not in the neighborhood of p > o,
then it is not in the neighborhood of any q > p. Formally let o,p,q ∈ DAi and
o < p < q, o /∈ k-NN(p) =⇒ o /∈ k-NN(q).

In Fig. 2b, we can see that the 6th object occurs in neighborhoods 4 to 9. It does
not occur in any neighborhood before 4 and not in any neighborhood after 9.
We use the transitivity to limit the search space of our Algorithm, cf. Sect. 3,
while the baseline property helps us to discard the segments without a cluster
structure and to eliminate the artifacts that are caused by the transformation.

3 Mining the Neighborhoods

In this section we introduce our proposed algorithm CLON, which efficiently
finds all subspace clusters by using ordered neighborhoods. A detailed expla-
nation and pseudo code of the algorithm can be found in Section S.3 (in the
supplementary).

If a cluster exists only in a subset of dimensions, the irrelevant dimensions
hinder the search and the quality of the cluster. As we mentioned before, this
is often the case in high dimensional spaces. To eliminate the negative effects of
irrelevant dimensions, CLON follows a bottom-up strategy and exploits the fact
that clusters in lower dimensional projections are supersets of clusters in higher
dimensional spaces [9]. Hence, CLON finds the one dimensional clusters first and
then iteratively refines them by evaluating their higher dimensional subsets.

In its first phase, CLON converts the relational database into a neighbor-
hood database. Values in each dimension have to be sorted only once, after
which the neighborhoods can be computed very fast by using a sliding window.
A neighborhood DB is created for each of the dimensions. CLON already ben-
efits from the ordered neighborhoods while creating the neighborhood DBs: It
exploits the consecutiveness properties to store the neighborhood information so

Efficient Cluster Detection by Ordered Neighborhoods 21

that instead of storing the whole neighborhoods, only the start and end of them
are stored. This provides a dramatic memory saving, cf. Algorithm S.1.

In the second phase, the clusters in individual projections are found. As
Theorem 1 states, clusters form recurrent object sets in the neighborhood DB.
It has been proposed to find these recurrent object sets by using frequent itemset
mining methods, however, since these methods are computationally expensive,
only approximate methods are feasible for non-trivial datasets [2]. Our method
CLON exploits the properties of ordered neighborhoods, so that it can mine
these recurrent object sets in linear time instead of exponential time (both in
the number of objects). Thanks to this speed improvement, all maximally large
objects sets that are more recurrent than a certain threshold can be found in a
reasonable time, cf. Sect. 4.3. Therefore in this phase, CLON can identify all of
the recurrent objects sets in all individual projections, that is all one dimensional
clusters, cf. Algorithm S.2.

In the third and the last phase, one dimensional clusters are used to find
higher dimensional clusters. For any higher dimensional cluster, there are clusters
that have more or equal number of objects, in the subsets of the dimensions
of the original cluster [2,9,10]. For example, if a cluster exists in dimensions
1, 2, and 3, then a superset of its objects form clusters in dimension pairs (1,2),
(2,3) and (1,3). Therefore, we can find higher dimensional clusters by refining
lower dimensional ones, i.e. removing the objects that are not in the cluster.
CLON refines each one dimensional cluster by checking whether any of its subsets
are recurrent in other dimensions. If there are any, CLON continues with a
depth-first search of higher dimensional clusters by traversing all the possible
dimensions until none of the subsets are large or recurrent enough. Since CLON
uses neighborhood DBs also for higher dimensional search, properties of ordered
neighborhoods are exploited during this phase too. Lastly, the recurrent object
sets are output as clusters along with the dimensions that they are recurrent in,
cf. Algorithm S.3.

CLON requires two user-friendly parameters: (1) Minimum size of a cluster
and (2) the neighborhood size. Selecting the minimum size should be straight-
forward, it depends on the size of the cluster that the user would like to find.
The neighborhood size should be larger than the cluster size. Because of the
recurrency oriented mining, CLON is robust to these parameters. A detailed
discussion about parameter selection can be found in Section S.2.

3.1 Complexity Analysis

For a numeric D that has n objects and d attributes, the computational complex-
ity of transforming it to the neighborhood DB is O(d×n× log(n)×k). Thanks to
the consecutiveness properties, we do not have to store the entire database but
only the start and end of the neighborhoods are enough. Therefore, the space
requirement for the neighborhood DBs is O(n×d) which is equivalent to the stor-
age of the original D . Exploiting the properties of the neighborhood DB allows
us to find one dimensional clusters extremely efficiently, in O(n). Therefore, the
complexity of finding all one dimensional clusters is O(d×n). Total time to find

22 E. Aksehirli et al.

all subspace clusters depends on the dimensionality of the clusters in the data.
Although the computational complexity to search a cluster in a dimension is
linear, the number of dimensions to search is combinatorial. Empirical results in
Sect. 4.3 show that the scalability and efficiency of CLON is not hindered by the
dimensionality of clusters.

4 Empirical Evaluation

4.1 Experimental Setup

We evaluate our method on heterogeneous datasets, i.e., datasets with different
scales, both in terms of dimension scale and cluster distribution. We also con-
duct a set of experiments to evaluate the scalability of our method according to
the number of objects, number of dimensions and the amount of noise. To see
whether our method is a good fit for real world scenarios, we conduct experi-
ments on very high dimensional real world datasets. We compare the quality of
the clusters that are found by our method with the state of the art subspace clus-
tering methods, such as CartiClus [2], FIRES [10], PROCLUS [1], STATPC [12],
and SUBCLU [9], cf. Section S.4.

Object cluster finding capabilities of the methods are evaluated by the super-
vised F1 Measure. Where appropriate, we evaluate the subspace discovery capa-
bilities by using the established E4SC score [14]. Runtime results are given for the
performance versus scale experiments. More information about the experimental
setup can be found in Section S.5. For the reproducibility of the experiments,
a cross-platform implementation of the method and the information about the
datasets are available on our website.

4.2 Heterogeneous Datasets

We measure the cluster discovery capabilities of our method on datasets that
(1) have different scaling in different dimensions and (2) have clusters with dif-
ferent spreads. To evaluate these capabilities we generate two sets of datasets:
One with different scales of dimensions and another one with clusters of different
scales. Details about these datasets can be found in Section S.5.

Figures 3a and 4a show the F1 scores of the methods on a selected subset
of these datasets. Different scale factors are indicated with different colors. On
both set of experiments, CLON produces very stable and high quality clusters.
CartiClus is comparable with CLON, which shows the effectiveness of nearest
neighborhood based clustering. Radius based neighborhood evaluation of FIRES
and distance sensitive projections of PROCLUS cannot cope with scaling. SUB-
CLU and STATPC produce high quality, although unstable, results thanks to
their thorough search. Considering the execution times of CLON and its clos-
est competitors, cf. Fig. 5, we can see the advantages of cluster refining through
dimension search in ordered neighborhoods: CLON consistently produces better
or comparable clusters in an order of magnitude less time.

Efficient Cluster Detection by Ordered Neighborhoods 23

Our method CartiClus FIRES PROCLUS STATPC SUBCLU
0.0

0.2

0.4

0.6

0.8

1.0

1 4 32 200

F
1
S
co

re

(a) F1 Scores

Our method CartiClus FIRES PROCLUS STATPC SUBCLU
0.0

0.2

0.4

0.6

0.8

1.0

1 4 32 200

E
4
S
C
S
co

re

(b) E4SC Scores

Fig. 3. Quality scores of the methods on datasets with dimension of various scales

Our Method CartiClus FIRES PROCLUS STATPC SUBCLUE
0.0

0.2

0.4

0.6

0.8

1.0

1 4 32 200

F
1
S
co

re

(a) F1 Scores

Our Method CartiClus FIRES PROCLUS STATPC SUBCLUE
0.0

0.2

0.4

0.6

0.8

1.0

1 4 32 200

E
4
S
C
S
co

re

(b) E4SC Scores

Fig. 4. Quality scores of methods on datasets that have clusters of various scales

Figures 3b and 4b show the E4SC scores for the same sets of datasets. While
some of the methods perform poorly on dimension detection, dimension finding
capabilities of the most of them are in parallel with the object cluster find-
ing capabilities. CLON performs better than CartiClus in dimension detection
although they both mine recurrent object sets, cf. Fig. 4b. This is because CLON
is fast enough to mine all subspace clusters instead of a sample of them.

4.3 Scalability Results

We conduct experiments to understand the scalability of our algorithm according
to the data size, dimensionality, and the noise ratio. For these experiments we use
the datasets that are used in the literature for similar comparative studies [2,14].

Figure 5a shows the run times of the methods on datasets with an increasing
number of objects. This set of datasets include 5 different datasets which have
approximately 1500, 2500, 3500, 4500, and 5500 objects and 20 dimensions. Our
method scales well compared to the algorithms that search the combinations of
dimensions.

Figure 5b shows the run times for different methods on datasets with an
increasing number of dimensions. We conduct experiments on 6 different datasets
that have approximately 1500 objects in 5, 10, 15, 25, 50, and 75 dimensions. In
all of these datasets, each cluster exists in approximately 80 % of the dimensions.
Therefore, these experiments also evaluate the performance of the algorithms

24 E. Aksehirli et al.

S1500 S2500 S3500 S4500 S5500
0

1

10

100

1000

10000

Our Method CartiClus FIRES
PROCLUS STATPC SUBCLU

R
u
n
tim

e
(s
e
c o

n
d
s)

(a) Increasing the number of objects

D5 D10 D15 D25 D50 D75
0

1

10

100

1000

10000

Our Method CartiClus FIRES
PROCLUS STATPC SUBCLU

R
u
n
tim

e
(s
e
co

n
d
s)

(b) Increasing the number of dimensions

Fig. 5. Execution times

Our Method CartiClus FIRES PROCLUS STATPC SUBCLU
0

0.2

0.4

0.6

0.8

1

N10 N30 N50 N70

F
1
S
co

re

(a) Increasing the number of noise objects

Our Method CartiClus FIRES PROCLUS STATPC SUBCLU
0

0.2

0.4

0.6

0.8

1

10 50 100 200

F
1
S
co

re

(b) Increasing the number of irrelevant dimen-
sions

Fig. 6. Noise detection capability experiments

regarding dimensionality of clusters. Our method scales well with the increasing
number of dimensions while utilizing the information in combinations of dimen-
sions. Note that the missing values indicates that the method did not complete
in a practical time or failed because of excessive memory requirements.

Figure 6a shows the quality results for the datasets that contain 10 %, 30 %,
50 %, and 70 % noise. Our method and CartiClus can effectively discard noise
thanks to their recurrency and neighborhood based foundation. Only SUBCLU
is on par with these methods because of its thorough search which also makes it
slower around 100 times than our method, cf. Fig. 5.

Figure 6b shows the capability of irrelevant dimension detection. A dataset
which has 10 clusters hidden in subsets of 10 dimensions is generated. Then,
10, 50, 100 and 200 uniformly randomly generated dimensions are added to
the dataset. Here again, we see that our method, CartiClus and SUBCLU can
effectively discard irrelevant dimensions even though the meaningful structures
are hidden in noise that is 20 times of its size. Some of the methods did not
complete in meaningful time for some of the datasets, including SUBCLU for
more than 100 dimensions.

4.4 Real World Datasets

To evaluate our method, we used two gene expression datasets, Nutt and Alon,
along with a movie rating dataset, movies. Alon is a dataset of 2000 gene expres-
sion across 62 tissues from a colon cancer research. The tissues are grouped

Efficient Cluster Detection by Ordered Neighborhoods 25

into 2 categories: 40 healthy tissues and 22 tissues with tumor [3]. Nutt dataset
contains expressions of 1377 genes on 50 glioma tissue samples that are grouped
into 4 different pathology categories [15]. High dimensional nature of both
datasets make the clustering challenging even for the subspace clustering meth-
ods. Table 1 shows the F1 scores of the methods. “n/a” indicates that the method
did not complete in a practical time or failed because of excessive memory
requirements. These results show that, although our method searches the clus-
ters in combinations of dimensions, it keeps being scalable even for very high
dimensional datasets.

Table 1. F1 scores for gene expression datasets

Alon Nutt

Our method 0.78 0.75

PROCLUS 0.46 0.44

FIRES 0.52 0.55

SUBCLU 0.58 n/a

STATPC n/a n/a

CartiClus n/a n/a

We conduct an exploratory data analysis on a movie ratings dataset from
GroupLens.2 We use 10M movielens dataset which includes 10000054 ratings
applied to 10681 movies by 71567 users from the website http://movielens.org.
We use movies as objects and users as attributes. We start with finding the most
similar 3 movies according to the user ratings. The result is, not surprisingly, the
original Star Wars trilogy. When we lower the similarity threshold, we start to
see a cluster of the Lord of the Rings Trilogy along with some other high profile
movies in clusters of science fiction movies, action movies and crime movies.
Some of the selected clusters are given in Table S.4a.

We continue our analysis by increasing the number of similar movies to 6.
Considering the similarity of the original Star Wars trilogy, we search for a
cluster of all 6 of the released Star Wars movies, with no luck. Actually, lack
of this 6 pack of Star Wars movies cluster does not contradict with the general
opinion of the fans of the franchise because the last 3 movies are not as popular
as the originals. Table S.4b shows some of the interesting clusters of size 6, which
includes a cluster of two most popular trilogies, a cluster of distopian movies, a
cluster of popular thrillers, and a cluster of very popular classic movies.

5 Conclusion

In this paper, we tackle the problem of finding clusters in high dimensional data-
bases. We make a formal analysis of ordered neighborhoods and their intrinsic
2 http://grouplens.org/.

http://movielens.org
http://grouplens.org/

26 E. Aksehirli et al.

properties. We show that co-occurrences in local neighborhoods of objects are
indicators of cluster formations, and hence, clusters can be found by mining
recurrent neighborhoods. We propose a scalable algorithm that exploits these
intrinsic properties to find all of the clusters and their relevant dimensions.
Along with its scalability, key properties of our algorithm include its intuitive
and user friendly parameters, its noise detection capabilities, its adaptivity to
datasets with various scales, and its capability to exploit multiple (dis-)similarity
measures.

Besides conducting experiments on scalability, noise detection, and adap-
tivity; we tested our method on some very high dimensional gene expression
datasets. Further, we did an exploratory analysis on a movie rating dataset to
show that our method is a good fit for real world scenarios. Finally, we supply
a software tool that can be used to interpret the data for further analysis.

Acknowledgements. Emmanuel Müller is supported by Post-Doctoral Fellowships
of the Research Foundation – Flanders (FWO). Further, this work is supported by the
Young Investigator Group program of KIT as part of the German Excellence Initiative.

References

1. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering. SIGMOD Rec. 28(2), 61–72 (1999)

2. Aksehirli, E., Goethals, B., Müller, E., Vreeken, J.: Cartification: a neighborhood
preserving transformation for mining high dimensional data. In: ICDM, pp. 937–
942, December 2013

3. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine,
A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. PNAS 96(12), 6745–
6750 (1999)

4. Assent, I., Krieger, R., Müller, E., Seidl, T.: INSCY: indexing subspace clusters
with in-process-removal of redundancy. In: ICDM, pp. 719–724, December 2008

5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

6. Emrich, T., Kriegel, H.-P., Mamoulis, N., Niedermayer, J., Renz, M., Züfle,
A.: Reverse-nearest neighbor queries on uncertain moving object trajectories.
In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A.,
Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp. 92–107. Springer,
Heidelberg (2014)

7. Goldstein, M.: kn-nearest neighbor classification. IEEE TIT 18(5), 627–630 (1972)
8. Jarvis, R., Patrick, E.: Clustering using a similarity measure based on shared near

neighbors. IEEE TC C–22(11), 1025–1034 (1973)
9. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for

high-dimensional data. In: SDM, vol. 4. SIAM (2004)
10. Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.: A generic framework for efficient

subspace clustering of high-dimensional data. In: ICDM, pp. 8, November 2005
11. McCann, S., Lowe, D.: Local naive bayes nearest neighbor for image classification.

In: CVPR, pp. 3650–3656, June 2012

Efficient Cluster Detection by Ordered Neighborhoods 27

12. Moise, G., Sander, J.: Finding non-redundant, statistically significant regions in
high dimensional data: a novel approach to projected and subspace clustering. In:
KDD, KDD 2008, pp. 533–541. ACM, New York (2008)

13. Müller, E., Assent, I., Günnemann, S., Krieger, R., Seidl, T.: Relevant subspace
clustering: Mining the most interesting non-redundant concepts in high dimen-
sional data. In: ICDM, pp. 377–386, December 2009

14. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace
projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)

15. Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C.,
Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M., Deimling,
A.V., Pomeroy, S.L., Golub, T.R., Louis, D.N.: Gene expression-based classification
of malignant gliomas correlates better with survival than histological classification.
Cancer Res. 63(7), 1602–1607 (2003)

16. Park, Y., Park, S., Jung, W., Lee, S.G.: Reversed CF: a fast collaborative filtering
algorithm using a k-nearest neighbor graph. Expert Syst. Appl. 42(8), 4022–4028
(2015)

17. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Sci.
344(6191), 1492–1496 (2014)

18. Schneider, J., Vlachos, M.: Fast parameterless density-based clustering via random
projections. In: CIKM, CIKM 2013, pp. 861–866. ACM, New York (2013)

19. Sequeira, K., Zaki, M.: SCHISM: A new approach for interesting subspace mining.
In: ICDM, vol. 0, pp. 186–193. IEEE Computer Society (2004)

20. Sim, K., Gopalkrishnan, V., Zimek, A., Cong, G.: A survey on enhanced subspace
clustering. Data Min. Knowl. Disc. 26(2), 332–397 (2013)

21. Weinberger, K., Saul, L.: Unsupervised learning of image manifolds by semidefinite
programming. Int. J. Comput. Vis. 70(1), 77–90 (2006)

	Efficient Cluster Detection by Ordered Neighborhoods
	1 Introduction
	2 Formal Properties
	2.1 Clustering in Neighborhoods
	2.2 Ordered Neighborhoods

	3 Mining the Neighborhoods
	3.1 Complexity Analysis

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 Heterogeneous Datasets
	4.3 Scalability Results
	4.4 Real World Datasets

	5 Conclusion
	References

