
Semantics-Based Multidimensional Query
Over Sparse Data Marts

Claudia Diamantini, Domenico Potena, and Emanuele Storti(B)

Dipartimento di Ingegneria dell’Informazione,
Università Politecnica delle Marche - Via Brecce Bianche, 60131 Ancona, Italy

{c.diamantini,d.potena,e.storti}@univpm.it

Abstract. Measurement of Performances Indicators (PIs) in highly dis-
tributed environments, especially in networked organisations, is partic-
ularly critical because of heterogeneity issues and sparsity of data. In
this paper we present a semantics-based approach for dynamic calcula-
tion of PIs in the context of sparse distributed data marts. In particu-
lar, we propose to enrich the multidimensional model with the formal
description of the structure of an indicator given in terms of its algebraic
formula and aggregation function. Upon such a model, a set of reasoning-
based functionalities are capable to mathematically manipulate formulas
for dynamic aggregation of data and computation of indicators on-the-
fly, by means of recursive application of rewriting rules based on logic
programming.

Keywords: Logic-based formalisation of performance indicators · Mul-
tidimensional model · Sparse data marts · Query rewriting · Virtual
enterprises

1 Introduction

More and more organisations recognise today the need to monitor their business
performances to detect problems and proactively make strategic and tactical
decisions. In this context, one of the biggest challenges is represented by con-
solidating performance data from disparate sources into a coherent system. Due
to the lack of enforced integrity and relationship, Performance Indicators (PIs)
based on this data are often incomplete, conflicting, or limited to a particular
department/function within the organisation. Such a problem is more critical in
a Virtual Enterprise (VE) environment, where the data providers can be very
different. Heterogeneous organisations are in fact characterised by high levels of
autonomy, that determines several kinds of data integration problems.

In the context of indicator management, such heterogeneities derive from
internal business rules of the enterprise as well as the structure of the informa-
tion system and hence cannot be simply resolved. Indeed, structural heterogene-
ity refers to the granularity level at which data are aggregated. For instance,
some enterprises can have their revenues calculated globally for all its products,
c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 190–202, 2015.
DOI: 10.1007/978-3-319-22729-0 15

Semantics-Based Multidimensional Query Over Sparse Data Marts 191

or disaggregated product by product. Structural heterogeneity also applies to
the formula adopted to calculate an indicator: again, the total revenue can be
given as unique number, or the enterprise can store the total sales and costs
separately. As a consequence, the interaction between granularity and formula
structural heterogeneities needs to be carefully managed. Moreover, after data
reconciliation, in traditional data warehouses query answering is simply realised
by aggregating over the available values, and this can generate unreliable results
(e.g. obtaining a cost of 100 at the 1st semester 2013 and of 500 at the 2nd
semester 2013 can be interpreted erroneously as a sudden increase of costs, while
it turns out that the cost for the 1st semester has been calculated by summing
over the first two months only). For such reasons we believe that awareness of the
completeness of results is a fundamental feature of a supporting environment.
This is especially true at VE level, where besides heterogeneities in dimension
hierarchies and members, usually there is no agreement about which level of
aggregation for data will be used, and also corporate policies about monitoring
may change over time (e.g., a partner can change frequency for data storage
from monthly to weekly basis at any time). As a consequence, sparsity comes
from the fact that, even for the same indicator, data will likely refer to different
members, levels or dimensions.

In this paper we address these problems by presenting a semantic-based app-
roach for multidimensional query over various data marts, capable to cope with
sparse data marts by dynamic calculation of indicators values. The work has
been developed during the EU project BIVEE1, aimed at supporting innovation
in a VE environment, that is therefore the target scenario of the paper. In our
approach, local data are described in global terms by means of a semantic multi-
dimensional model, in which we extend the data cube model with description of
the structure of an indicator in terms of its algebraic formula. The model allows
to reconcile dimensional heterogeneities by referring to the same representation
of dimensions. Moreover, having the semantics of formulas, we are able to resolve
structural heterogeneities by defining paths among cubes that describe how to
compute an indicator on the basis of others.

Queries are posed over the global model and rewritten over local cubes. To
overcome the sparsity issue, we introduce a completeness check functionality,
aimed to check the completeness of a result. In any case when a value is not
complete (for instance if the query asks for a semester, but just three months
are available), the completeness check determines alternative ways for its cal-
culation, by exploiting two complementary expansion rules: besides the more
traditional roll-up expansion, we introduce the indicator expansion. Through
such a new operator, the value of an indicator at a given level can be calcu-
lated by other indicator values at the same level, through its formula. Moreover,
through logic-based formula manipulation it is possible to derive non-explicitly
defined formulas from others. This novel approach enables to (1) dynamically
derive non-materialized data through expansion rules and (2) obtain an answer

1 http://www.bivee.eu.

http://www.bivee.eu

192 C. Diamantini et al.

to a query if and only if either it is materialized or it is produced by complete
aggregation, ensuring the quality of results as a by-product.

The rest of the work is structured as follows: in next Section we introduce
a case study that is used along the paper. Section 3 is devoted to present the
semantic multidimensional model while Sects. 4 and 5 respectively address the
query rewriting mechanisms and the completeness check, together with some
implementative details and computational aspects. In Sect. 6 we discuss some
relevant related work in the Literature. Finally, Sect. 7 is devoted to draw con-
clusions and discuss future work.

2 Case Study

In this Section we present a case study that will be used as example in the paper.
Let us consider two enterprises ACME1 and ACME2, each with a data mart and
willing to join a Virtual Enteprise to cooperate for a certain project. In order to
answer queries over the whole VE, their data should refer to the same schema.
However, several structural heterogeneities exists. As for dimensions, in fact,
ProductDim is missing in ACME2, and the others refer to different granularities
(e.g., there are Year and Semester levels for TimeDim in ACME1, but only
Year for ACME2). Finally, also the set of indicators are different: I1 only for
ACME1, I2 and I3 for both. We also know that I1 is aggregated through SUM
and is calculated by ACME1 as I2+I3. I2 and I3 have no formula; the first is
aggregated through AVG and the second through SUM (Fig. 1).

(a) (b)

Fig. 1. Case study. The data marts for enterprises (a) ACME1 and (b) ACME2.

Semantics-Based Multidimensional Query Over Sparse Data Marts 193

3 Semantic Multidimensional Model

The semantic multidimensional model is based on the formal representation of
indicators and their formulas. We introduce here the basic notions of indicator,
dimension and cube.

Indicator. An indicator is a way to measure a phenomenon and here it is
defined as a pair 〈aggr, f〉, where aggr is an aggregation function that repre-
sents how to summarize values of the indicator (e.g. sum, avg, min, max), while
f(ind1, . . . , indn) is a mathematical formula that describes the way the indicator
is computed in terms of other indicators.

According to the classification adopted in data warehouse Literature, aggre-
gation functions can be distributive, algebraic and holistic [1]. Indicator with a
distributive aggregator can be directly computed on the basis of values at the
next lower level of granularity, e.g. the Total Revenue for the 1st semester 2013
can be computed by summing values for the first six months of the 2013. Alge-
braic aggregators cannot be computed by means of values at next lower levels
unless a set of other indicators are also provided, which transform the alge-
braic indicator in a distributive one; a classical example is given by the average
aggregator (AVG), which must be computed on the basis of values at the lowest
granularity level, whatever is the requested level. Indicators described by holis-
tic functions (e.g. MEDIAN and MODE) can never be computed using values
at next lower level. When no aggregation function is provided, indicators are
computed by combining values of other indicators at the requested level.

We refer to [2,3] for further details about formulas and other properties of
indicators.

Dimension. A Dimension is the coordinate/perspective along which the indi-
cator is analysed (e.g., delivery time can be analysed with respect to means of
transportation, the deliver and the date of delivery). Referring to the multidi-
mensional model used in data warehouse [4], a dimension D is usually structured
into a hierarchy of levels LD

1 , . . . , LD
n where each level represents a different way

of grouping members of the dimension (e.g., it is useful to group days by weeks,
months and years). The domain of a level LD

j is a set of members denoted by
α(LD

j), e.g. α(Country) = {Portugal, Italy, Ireland,Greece, Spain, . . .}.
Given LD

i � LD
j , the transitive relation that maps a member of LD

i to a mem-
ber of LD

j is defined as partOf ⊆ α(LD
i)×α(LD

j). This enables the possibility to
move from a level to another with higher granularity through aggregation; this
operation is called roll-up, the vice versa is the drill-down. To give some example,
partOf(“2013-01”, “2013”) means that the month “2013-01” is part of the year
“2013”, and partOf(“Valencia”, “Spain”) that “Valencia” is part of “Spain”.
Although the fact that “Valencia is in Spain” is true in general, if an enterprise
operating in Spain does not operate in Valencia, we should not consider (for this
enterprise) values for the member “Valencia”. Hence, we introduced a restriction
partOfe of the partOf relation, such that:

194 C. Diamantini et al.

partOf(mc,mp) ∧ isV alid(mc, e) → partOfe(mc,mp),

where isV alid(mc, e) is true if the member mc makes sense for enterprise e. In
this case each higher level member that is in partOf relation with mc is valid for
e as well. More formally, isV alid(mc, e) ∧ partOf(mc,mp) → isV alid(mp, e).

The partOf (hence partOfe) relation is such that if LD
i � LD

j , each member
of LD

i is in a partOf relation with only one member of LD
j ; and each member

of LD
j is composed by at least one member of LD

i . In other terms, the partOf

relation defines a partition of the members of level LD
i .

As for the case study, let us assume for instance the following relations:
partOfA1

(Barcelona, Spain), partOfA1
(Madrid, Spain), partOfA1

(V alencia,
Spain) for ACME1 and only partOfA2

(Madrid, Spain) for ACME2.

Cube. According to the multidimensional model, each cell within a multidi-
mensional structure contains aggregated data related to elements along each
of its dimensions. We introduce this structure by the notion of cubeElement.
A cubeElement is a storage element of the data mart for a given enterprise, and
is defined as a tuple ce = 〈ind ∈ I,m1 ∈ α(LD1

1), ...,mn ∈ α(LDn
j), e ∈ E, v〉,

where E is a set of enterprises and v is a value for ind.
A cube(ind, e) is the logical grouping of all cubeElements provided by an

enterprise e for an indicator ind, independently from the specific aggregation
level adopted for the dimensions. We can assume the dimensional schema of a
cube for ind (i.e., ds(ind)) to be the set of dimensions compatible with ind,
e.g. ds(I1) = {TimeDim, ProductDim, LocationDim}. A cubeElement in
cube(ind, e) can be however defined over a subset of dimensions in the schema
ds(ind). In such a case, we assume that each missing dimension is aggregated
at the highest level. Finally, the set of all cubes for a Virtual Enterprise is the
global data warehouse.

4 Query Rewriting

Users query the global data warehouse for one or more indicators aggregated
along the desired levels of the dimensions. Here we provide the definition of a
multidimensional query and the query rewriting mechanism. For sake of simplic-
ity, with no loss of generality the following definition refers to a single indicator.

Definition 1. A multidimensional query q over a Virtual Enterprise V is a tuple
〈ind,W,K, V, ρ〉, where:

– ind ∈ I is the requested indicator,
– W is the set of levels {LD1

i , ..., LDn
j } on which to aggregate,

– K is the collection of sets Ki = {mi1, ...,mik}, i = 1, ..., n, of members on
which to filter. Ki can be an empty set. In this case all members of the
corresponding level are considered,

– V = {e1, ..., en} ⊆ E

Semantics-Based Multidimensional Query Over Sparse Data Marts 195

– ρ is true if the result is aggregated at the Virtual Enterprise level; otherwise
the query will return a value for each enterprise in V.

The definition corresponds to the classical notion of aggregated OLAP query;
in particular, W and ind are the elements of the target list, W is the desired
roll-up level (or group-by component) while K allows slice and dice (suitable
selections of the cube portion).

In our setting we face with a hybrid virtual-materialized data warehouse,
since the aggregation levels of indicators are not the same for the different enter-
prises. In other terms, the query is posed on the global conceptual schema and
needs to be rewritten in terms of the enterprise local schemas. Finally, the actual
execution is realised over the enterprise logical schema2. We can rewrite a query
for a given cube only if the dimensions requested in the query are a subset of the
cube dimensions. Furthermore, not including a dimension D in the query means
to request it at the highest level, that we conventionally denote by LD

∗ .

Rule 1 (Rewriting q Over a Cube). Given a multidimensional query q =

〈ind, W, K, V, ρ〉, the multidimensional query qc over the cube(ind, e), with e ∈ V ,
is defined as qc = 〈ind,W

′
,K

′
, e〉, where:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a)W
′
= W, K

′
= K if W contains a level for each

dimension in cube(ind, e)

(b)W
′
= W ∪ {LDx∗ }, K

′
= K ∪ {ALL} if ∃ a dimension Dx ∈ cube(ind, e)

that has no corresponding level in W

Otherwise qc cannot be defined.

Example. Given the following query:
〈I1, {Y ear, Country}, {{2013, 2014}, {Spain}}, {ACME1, ACME2}, false〉,
it is rewritten as:
q1 = 〈I1, {Product, Y ear, Country}, {{ALL}, {2013, 2014}, {Spain}ACME1〉
q2 = 〈I1, {Y ear, Country}, {{2013, 2014}, {Spain}}, ACME2〉.
The result of the query qc is defined as the set R(qc) of tuples 〈a,m1, ...,mn, e〉
such that a is a value for ind, every mi belongs to a different level, e ∈ V and
a cubeElement 〈ind,m1, ...,mn, e, a〉 is either (1) materialized in the data mart
or (2) it can derived3. The following rules define how to derive a cubeElement
from other cubeElements.

Rule 2 (Roll-up Expansion). Given mi ∈ α(LD
x), LD

x � LD
y , if a set of cube-

Elements 〈ind, m1, ..., mj , ..., mn, e, aj〉 exists such that mj ∈ α(LD
y) and

partOfe(mj , mi), then the cubeElement 〈ind,m1, ...,mi, ...,mn, e, a〉 can be com-
puted, where a = agg(aj) denotes the aggregation over all elements aj of the
cubeElements under the aggregation function of the indicator ind.
2 We do not focus on this step as it depends on the specific technology used for storage.
3 It is straightforward to see that the result R(qc) of the query qc, derived by applying

the Rule 1 to the query q, is a subset of R(q).

196 C. Diamantini et al.

This rule corresponds to the classical roll-up OLAP operation in data warehouse
systems. We hasten to note that for distributive aggregation function LD

y can be
any level lower than LD

x , while for algebraic functions LD
y must be the bottom

level to assure the exact result.

Rule 3 (Indicator expansion). Let ind = f(ind1, ..., indk) be the formula defin-
ing ind in terms of indicators ind1, ..., indk. If ∃cei = 〈ind,m1, ...,mn, e, ai〉, i =
1, ..., k then the cubeElement 〈ind,m1, ...,mn, e, f(a1, ..., ak)〉 can be computed.

This rule introduces a novel operation that allows us to infer new formulas not
explicitly given, which is made possible by exploiting their formal representation.
It also has to be noted that if a formula for ind was not specified in the model, it
could be derived through mathematical manipulation, as described in a previous
work [5], e.g. from I1 = I2 + I3 a formula for I2 can be computed as I1 − I3.

5 Query Completeness

The notion of answer completeness allows to define rules for the retrieval of data
together with the evaluation of the completeness level of a query.

Definition 2 (Completeness). Given a query q = 〈ind,W,K, V, ρ〉, the result
set R(q) is complete if R(qc) is complete for each qc obtained from the application
of Rule 1.
Given a query qc = 〈ind,W

′
,K

′
, e〉 with K

′
= {K1, ...,Kn}, the result set R(qc)

is complete iif:

– Condition (1) |R(qc)| =
∏n

j=1 |Kj |,
– Condition (2) ∀ tuple 〈a,m1, ...,mn, e〉 ∈ R(qc),

• ∃ a cubeElement ce = 〈ind,m1, ...,mn, e, a〉 or
• ce can be computed by applying a complete roll-up expansion or the indi-

cator expansion rules.

Checking completeness of a multidimensional query over a cube (qc) can be
understood as (condition 1) a tuple-by-tuple calculus of the result set, one for
each possible combination of elements of sets K1, ...,Kn. Each tuple calculus cor-
responds (condition 2) either to the retrieval of the corresponding cubeElement
(if the tuple is materialized) or to the execution of a set of suitable multidi-
mensional queries for that tuple (in this case we speak of a virtual tuple), that
can turn out to be either complete or not. As a consequence, the definition of
query completeness is recursive. Furthermore, Rules 2 and 3 give us rewriting
rules to define the form of queries to compute virtual tuples. Traversing the path
of completeness check gives also as side effect a way to completely rewrite the
original query.

Semantics-Based Multidimensional Query Over Sparse Data Marts 197

5.1 Completeness Procedure

Completeness check is a procedure aimed at verifying the completeness of the
result set for a given query at enterprise level. The procedure takes as input
a query q at enterprise level, and produces as output a list of complete items
and the list of incomplete items. The procedure is composed of the following
macro-processes:

(1) Evaluation of results for the query q
(2) For each incomplete item t of the result:

(2.1) Use of Rules 2 or 3 to determine alternative ways to obtain the item
through a set of new queries q1, . . . , qn

(2.2) Recursive execution for each qi.

In the following, each step is discussed together with an example. Let us con-
sider a query 〈I1, {Y ear, Country}, {{2013, 2014}, {Spain}}, {ACME1, ACME2}〉.
For lack of space, we show the execution of the procedure only on the data
mart for ACME1, after the Rule 1 is exploited. Table 1 shows the cubeElements
materialized in the highly sparse data mart for ACME1, in a tabular form for
convenience of representation.

Table 1. Case study: the content of the data mart for ACME1.

Indicator ProductDim TimeDim LocationDim value

I1 ALL 2013 (Year) Spain (Country) 90

I2 ALL 2014-S1 (Semester) Spain (Country) 70

I2 ALL 2014-S2 (Semester) Spain (Country) 66

I3 ALL 2014 (Year) Barcelona (City) 25

I3 ALL 2014 (Year) Madrid (City) 30

I3 ALL 2014-S1 (Semester) Valencia (City) 10

I3 ALL 2014-S2 (Semester) Valencia (City) 12

Step 1. According to the set K of the query, a table T is defined, including
one placeholder for each possible item of the final result set. The header of the
table is given by the set of levels W specified in the query, while rows are the
cartesian product generated on K. At the beginning, each item is searched in
the data mart. All the items that cannot be found are (temporarily) marked as
incomplete.

Example. Table T includes two items: t1 = 〈I1,ALL,2013,Spain〉 and t2 =
〈I1,ALL,2014,Spain〉. t1 is immediately available as added to the result, while t2
is not found.

198 C. Diamantini et al.

Step 2. If the list of incomplete items is empty (base case), then the query q is
complete, and the execution ends by producing as output the results. Otherwise
for each item t in the list of incomplete items, Rules 2 and 3 are used to derive t
from other cubeElements in the data warehouse. Several alternative derivations
can be possible for t, by applying roll-up over different dimensions (Rule 2) or by
decomposing the indicator through different formulas (Rule 3). Hence, for each
possible derivation a new set of queries q1, . . . , qn is constructed and checked for
completeness, in a recursive fashion, by calling the procedure again. After the
recursive call ends, if every query qi returned a value, the item t is calculated
according to the chosen rule. Otherwise, given that the chosen derivation could
not obtain the value for t, the derivation is discarded, and the next possible
derivation is applied, until no derivation is left. In such a case, if no derivation
is found to be complete, t is definitevely marked as incomplete.

Example. t2 is not found and the possible derivations are as follows. By exe-
cuting Rule 2, drill-down can be used to expand either (a) Year to Semester or
(b) Country to City levels. Product cannot be further expanded because it is
the lowest level for ProductDim. By choosing4 Rule 3, I1 is expanded into I2
and I3, given that its formula is I2+I3. Two new queries are then created:

– q
′
1 = 〈I2, {Product, Y ear, Country}, {{ALL}, {2014}, {Spain}}, ACME1〉

– q
′
2 = 〈I3, {Product, Y ear, Country}, {{ALL}, {2014}, {Spain}}, ACME1〉.

No cubeElement is available for q
′
1. Let us suppose that Rule 2 is used in this

case, drilling-down Year in Semester. As a result, three new queries are generated
to retrieve I2 for each semester of 2014 and for Spain. Results are available (i.e.
66 and 70), hence they are aggregated through the aggregation function of I2
(AVG), and a result of 68 is obtained for q

′
1.

As for q
′
2, given that no cubeElements is available as well, Rule 2 is exploited.

In this case drilling-down Year in Semester produces no result, so the derivation
Country in City is tried. For the three cities in the model (Barcelona, Madrid and
Valencia)5, cubeElements are retrieved for the first two (with values 25 and 30)
and only Valencia is missing. Recursively, a new derivation is tried for this incom-
plete item. This time, Rule 2 is executed to drill-down Year to Semester. Finally,
results are available for both semesters, and values are aggregated through the
aggregation function of I3 (SUM), obtaining 12+10=22. q

′
2 is then computed as

25+30+22=77. By backtracking of the recursive procedure, as last step, t2 is
computed as I2+I3, i.e. 68+77=145.

5.2 Implementation and Computational Aspects

In order to define reasoning functionalities and support mathematical manipula-
tion of PIs, the multidimensional model is represented in a logic-based language
4 As the procedure explores the search space, if a solution exists, it is found whatever

rule is chosen, although the order is critical w.r.t. execution time.
5 As described in Sect. 3, in this drill-down for ACME1 we consider only the cities x

such that the relations partOfA1(x, Spain) hold in the data mart.

Semantics-Based Multidimensional Query Over Sparse Data Marts 199

on which automatic inference can be exploited. To this end, we refer to Horn
Logic Programming and in particular to Prolog, relying on XSB6 (a logic pro-
gramming and very efficient deductive database system) as reasoning engine.

While formulas are represented as facts, their manipulation as mathemat-
ical expressions is performed by a set of predicates. To this end, we have
adapted and extended the Prolog Equation Solving System (PRESS) [6] that
constitutes a first-order mathematical theory of algebra in LP, and allows for
common algebraic manipulation of formulas. Among the offered functionalities,
PRESS includes equation solving, equation simplification and rewriting, find-
ing of inequalities and proving identities. Such predicates are useful to support
more advanced reasoning functionalities including those needed to implement
multidimensional query rewriting and completeness check.

This work can be framed in the general theory of query answering using
views over incomplete data cubes. In the case of an implementation using only
virtual views, its computational costs are dominated by the completeness check
procedure. In the worst case, i.e. when no pre-aggregated data at intermediate
levels exists, roll-up expansion has to traverse all the level hierarchy for every
tuple of the result. This leads to a number of queries to be executed equal to
T (1−NL)

1−N , where T is the number of tuples in the database, N is the number
of members of a level that are part of a member of the next higher level (e.g.
three months are part of a quarter). To simplify the calculus, N is assumed to
be constant for each level and member. Finally L is the number of levels in the
hierarchy. Although in practice the worst case rarely occurs, it enlightens the
value of materialization management.

In order to evaluate the costs related to execution times for completeness
check, several steps ought to be considered. Here, we report the first results of the
analysis of costs related to Rule 3, that is the novel type of rewriting proposed in
this work. Conceptually, such an operation requires to find all possible rewritings
for a formula and is independent on the size of data. We computed the execution
time for all indicators in the model used for the BIVEE project [2], that includes
356 indicators where each of them has from 2 to 4 other indicators as operands
(2.67 on average, only linear equations). The average execution time7 in such a
case is 735.60ms, ranging from a few ms to 2s.

6 Related Work

The sharing of data coming from distributed, autonomous and heterogeneous
sources asks for methods to integrate them in a unified view, solving heterogene-
ity conflicts [7]. A common approach is to rely on a global schema to obtain an
integrated and virtual view, either with a global-as-view (GAV) or a local-as-view
(LAV) approach [8]. Query answering is one of the main tasks of a data inte-
gration system and involves a reformulation step, in which the query expressed
6 http://xsb.sourceforge.net/.
7 Experiments have been carried on a personal computer powered by an Intel Core

i7-3630QM with 8 GB memory, running Linux Fedora 20.

http://xsb.sourceforge.net/

200 C. Diamantini et al.

by terms of the global schema is rewritten in terms of queries over the sources.
According to the typology of the chosen approach (GAV or LAV), queries are
answered differently, namely by unfolding or query rewriting based on views (see
e.g. [9] in the context of distributed database systems, and [10,11] for data ware-
house integration). Rewriting using views is used also for answering aggregate
queries and as such can be related to the data warehouse field [11]. However,
the multidimensional model has peculiarities that calls for specific studies. Het-
erogeneities hindering the integration of independent data warehouses may be
classified on the basis of conflicts that occur at dimension or measure levels [12].

Recently, semantic representations of the multidimensional model have been
proposed [13,14] mainly with the aim to reduce the gap between the high-level
business view of indicators and the technical view of data cubes, to simplify
and to automatise the main steps in design and analysis. In particular, in [15] a
proprietary script language is exploited to define formulas, with the aim to sup-
port data cube design and analysis, while in [16] authors introduce an indicator
ontology based on MathML, to define PI formulas in order to allow automatic
linking of calculation definitions to specific data warehouse elements. Support
for data cube design is considered in [15], while improvement of OLAP function-
alities are presented in [17]. Both [13,14] tackle the problem of multidimensional
modeling with semantics. The former relies on standard OWL-DL ontology and
reason on it to check the multidimensional model and its summarizability, while
the latter refers to Datalog inference to implement the abstract structure and
semantics of multidimensional ontologies as rules and constraints. Although the
complex nature of indicators is well-known, the compound nature of indicators is
far less explored. Proposals in [11,15,16,18,19] include in the representations of
indicators’ properties some notion of formula in order to support the automatic
generation of customised data marts, the calculation of indicators [15,18], or the
interoperability of heterogeneous and autonomous data warehouses [11]. Any-
way, in the above proposals, formula representation does not rely on logic-based
languages, hence reasoning is limited to formula evaluation by ad-hoc modules.

Logic-based representations of dependencies among indicators are proposed
in [19], although no manipulation of formulas is exploitable in this way.

7 Conclusion

In this paper we presented a semantics-based approach for dynamic calcula-
tion of performance indicators in the context of sparse distributed data marts.
The methodology extends usual operators for query rewriting based on views,
allowing to overcome structural heterogeneities among data mart schemas and
making users aware of the completeness of the result of a query. Apart from the
expressiveness of the reasoner, the approach does not set particular conditions
on the types of formulas. At present our focus is on linear and polynomial formu-
las, since they represent the analytical definition of the 200 adopted indicators
in the BIVEE framework. However, in general PRESS can deal with symbolic,
trascendental and non-differential equations.

Semantics-Based Multidimensional Query Over Sparse Data Marts 201

As extensions, while here we assume a unique aggregation function associated
to each indicator, in future work we will consider different functions to aggre-
gate data according to the dimension. For what concerns costs of computation,
both a complete evaluation and the identification of methodological strategies
to optimise completeness check exploitation (including pruning of search space
and use of caching) will be discussed. Several strategies are possible for data
materialization (e.g. lazy, eager or semi-eager), that is a classical issue in data
warehouse implementation and will be discussed in a future work.

References

1. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

2. Diamantini, C., Genga, L., Potena, D., Storti, E.: Collaborative building of an
ontology of key performance indicators. In: Meersman, R., Panetto, H., Dillon,
T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014.
LNCS, vol. 8841, pp. 148–165. Springer, Heidelberg (2014)

3. Diamantini, C., Potena, D., Storti, E.: SemPI: a semantic framework for the col-
laborative construction and maintenance of a shared dictionary of performance
indicators. Future Generation Comput. Syst. (2015). http://dx.doi.org/10.1016/j.
future.2015.04.011

4. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies, 1st edn. McGraw-Hill Inc, New York (2009)

5. Diamantini, C., Potena, D., Storti, E.: Extending drill-down through semantic
reasoning on indicator formulas. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK
2014. LNCS, vol. 8646, pp. 57–68. Springer, Heidelberg (2014)

6. Sterling, L., Bundy, A., Byrd, L., O’Keefe, R., Silver, B.: Solving symbolic equa-
tions with press. J. Symb. Comput. 7(1), 71–84 (1989)

7. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

8. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Data-
base Systems. PODS 2002, pp. 233–246. ACM, New York, NY, USA (2002)

9. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001)

10. Cohen, S., Nutt, W., Sagiv, Y.: Rewriting queries with arbitrary aggregation func-
tions using views. ACM Trans. Database Syst. 31(2), 672–715 (2006)

11. Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: Olap query
reformulation in peer-to-peer data warehousing. Inf. Syst. 37(5), 393–411 (2012)

12. Tseng, F.S., Chen, C.W.: Integrating heterogeneous data warehouses using xml
technologies. J. Inf. Sci. 31(3), 209–229 (2005)

13. Neumayr, B., Anderlik, S., Schrefl, M.: Towards Ontology-based OLAP: Datalog-
based Reasoning over Multidimensional Ontologies. In: Proceedings of the Fif-
teenth International Workshop on Data Warehousing and OLAP, pp. 41–48 (2012)

14. Prat, N., Megdiche, I., Akoka, J.: Multidimensional models meet the semantic
web: defining and reasoning on owl-dl ontologies for olap. In: Proceedings of the
Fifteenth International Workshop on Data Warehousing and OLAP. DOLAP 2012,
pp. 17–24. ACM, New York, NY, USA (2012)

http://dx.doi.org/10.1016/j.future.2015.04.011
http://dx.doi.org/10.1016/j.future.2015.04.011

202 C. Diamantini et al.

15. Xie, G.T., Yang, Y., Liu, S., Qiu, Z., Pan, Y., Zhou, X.: EIAW: towards a business-
friendly data warehouse using semantic web technologies. In: Aberer, K., Choi,
K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 857–870. Springer, Heidelberg (2007)

16. Kehlenbeck, M., Breitner, M.H.: Ontology-based exchange and immediate applica-
tion of business calculation definitions for online analytical processing. In: Peder-
sen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp.
298–311. Springer, Heidelberg (2009)

17. Priebe, T., Pernul, G.: Ontology-based integration of OLAP and information
retrieval. In: Proceedings of DEXA Workshops, pp. 610–614 (2003)

18. Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos,
J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model.
13(3), 1015–1041 (2012)

19. Popova, V., Sharpanskykh, A.: Modeling organizational performance indicators.
Inf. Syst. 35(4), 505–527 (2010)

	Semantics-Based Multidimensional Query Over Sparse Data Marts
	1 Introduction
	2 Case Study
	3 Semantic Multidimensional Model
	4 Query Rewriting
	5 Query Completeness
	5.1 Completeness Procedure
	5.2 Implementation and Computational Aspects

	6 Related Work
	7 Conclusion
	References

