
UFOMQ: An Algorithm for Querying for Similar
Individuals in Heterogeneous Ontologies

Yinuo Zhang1(B), Anand Panangadan2, and Viktor K. Prasanna2

1 Department of Computer Science,
University of Southern California, Los Angeles, CA, USA

yinuozha@usc.edu
2 Ming Hsieh Department of Electrical Engineering,

University of Southern California, Los Angeles, CA, USA
{anandvp,prasanna}@usc.edu

Abstract. The chief challenge in identifying similar individuals across
multiple ontologies is the high computational cost of evaluating similar-
ity between every pair of entities. We present an approach to querying for
similar individuals across multiple ontologies that makes use of the corre-
spondences discovered during ontology alignment in order to reduce this
cost. The query algorithm is designed using the framework of fuzzy logic
and extends fuzzy ontology alignment. The algorithm identifies entities
that are related to the given entity directly from a single alignment link
or by following multiple alignment links. We evaluate the approach using
both publicly available ontologies and from an enterprise-scale dataset.
Experiments show that it is possible to trade-off a small decrease in
precision of the query results with a large savings in execution time.

1 Introduction

With the increasing use of ontologies for storing large amounts of heterogeneous
data in enterprise-scale applications, there has been a corresponding interest
in automatically discovering links between such ontologies [11]. Links between
ontologies are represented as alignments between the entities contained in them.
While a variety of approaches have been proposed in recent years to discover
such alignments [3,11], much less work has been carried out in identifying sim-
ilar individuals in different ontologies. The chief challenge in identifying similar
individuals is the scale of the search space. Potentially, every individual rep-
resented in the ontologies has to be evaluated for its similarity to the query
individual along with all of its properties. Such exhaustive evaluation of the
search space is not feasible in enterprise-scale datasets.

We propose an approach to querying for similar individuals across multi-
ple ontologies that makes use of the alignments discovered during the ontology
linking process. Specifically, if the alignments represent the degree to which two
entities in different ontologies share a particular type of relationship, then a
query algorithm that returns individuals in decreasing order of their similarity
to the target individual only needs to follow alignments starting from all of that
c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 178–189, 2015.
DOI: 10.1007/978-3-319-22729-0 14

UFOMQ: An Algorithm for Querying for Similar Individuals 179

target individual’s properties. Such a query mechanism can be designed using
the framework of fuzzy logic. In prior work [15], we developed UFOM, a uni-
fied framework to generate ontology alignments for computing different types of
correspondences. UFOM is based on a fuzzy representation of ontology match-
ing. In this work, we present algorithms that utilize the fuzzy correspondences
discovered by UFOM to efficiently query for all entities in an ontology that are
similar to a given entity.

The algorithms can identify entities that are related to the given entity
directly from a single alignment link (direct matching) or by following multi-
ple alignment links (indirect matching). The algorithms are specified using a
fuzzy extension of SPARQL (f-SPARQL [2]). The fuzzy SPARQL queries are
then converted to crisp queries for execution. We evaluate this approach using
both publicly available ontologies provided by the Ontology Alignment Evalua-
tion Initiative (OAEI) campaigns and ontologies of an enterprise-scale dataset.
Our experiments show that it is possible to trade-off precision of the similarity
of the identified entities and the running time of the proposed query algorithms.
Compared with a baseline approach (traversing all properties in an ontology),
our proposed approach reduces execution time by 99 %.

The main contributions of this paper are (1) algorithms to efficiently identify
similar entities in ontologies using links discovered during ontology alignment,
(2) use of fuzzy SPARQL extensions to compactly represent similarity queries,
and (3) quantitative evaluation of the approach on real-world datasets. The rest
of the article is organized as follows. Section 2 gives an overview of the related
work. In Sect. 3, we present background concepts and the problem definition.
Section 4 summarizes our previous work on the UFOM ontology alignment app-
roach. Section 5 describes how queries can be executed efficiently using the com-
puted ontology alignment. In Sect. 6, we present the experimental evaluation of
this query approach. We conclude in Sect. 7.

2 Related Work

Ontology matching is one of the key research topics in the Semantic Web com-
munity and has been widely investigated in recent years [9,11]. An ontology
matching system discovers correspondences between entities in two ontologies.
Most existing systems adopt multiple strategies such as terminological, struc-
tural, and instance-based approaches to fully utilize information contained in
the ontologies.

However, exact matches do not always exist due to the heterogeneity of
ontologies. Fuzzy set theory has recently been used for ontology matching in
order to address this issue. Todorov et al. [14] propose an ontology matching
framework for multiple domain ontologies. They represent each domain concept
as a fuzzy set of reference concepts. The matches between domain concepts are
derived based on their corresponding fuzzy sets. In [6], a rule base provided by
domain experts is used in the matching process. In that system, both Jaccard
coefficient and linguistic similarity are first calculated for each pair of entities.
Then, the system uses the rule base to generate the final similarity measure of

180 Y. Zhang et al.

each correspondence. The fuzzy set is used as a link between the preliminary
similarities and the final one. Both of the above-described works adopt fuzzy set
theory for the ontology matching task; however they do not provide a formal
definition of a fuzzy representation of correspondence. Moreover, both systems
are specific to equivalence type relations of instances. There is no generic frame-
work to identify correspondences for different types of relations. [12] propose
an approach for automatically aligning instances, relations and classes. They
measure degree of matching based on probability estimate. They focus on discov-
ering different relations between classes and relations. For instances, only equiva-
lence relation is considered. [7] introduce a robust ontology alignment framework
which can largely improve the efficiency of retrieving equivalent instances com-
pared with [12]. In [15], we proposed a unified fuzzy ontology matching (UFOM)
framework to address these two issues. Specifically, UFOM uses fuzzy set the-
ory as a general framework for discovering different types of alignment across
ontologies. It enables representation of multiple types of correspondence rela-
tions and characterization of the uncertainty in the correspondence discovery
process. Section 4 summarizes the UFOM framework.

Federated ontologies facilitate the process of querying and searching for rel-
evant information. Nowadays, hundreds of public SPARQL endpoints have been
deployed on the web. However, most of these are works in progress in terms of dis-
coverability, interoperability, efficiency, and availability [1]. Mora and Corcho [8]
investigate the evaluation of ontology-based query rewriting systems. They pro-
vide a unified set of metrics as a starting point towards a systematic benchmarking
process for such systems. [4] formalizes the completeness of semantic data sources.
They describe different data sources using completeness statements expressed in
RDF and then use them for efficient query answering. [10] presents a duplicate-
aware method to querying over the Semantic Web. Specifically, they generate data
summaries to reduce the number of queries sent to each endpoint. [13] proposes
a query-specific matching method which generates path correspondences to facil-
itate query reformulation. All of these works aim to design a unified framework
for query execution and information integration. However, none of them consider
the uncertainty and ambiguity inherent in ontology correspondences. In our work,
we present a query execution algorithm in which query execution is facilitated by
using ontology correspondences with fuzzy relation types.

3 Problem Definition

The problem of ontology matching problem is to find an alignment A for a pair
of ontologies O1 and O2. An ontology alignment is defined as follows [11],

Definition 1. An ontology alignment A is a set of correspondences between
entities of the matched ontologies O1 and O2.

Definition 2. An ontology correspondence is a 4-tuple: < id, e1, e2, r >,
where id is the identifier for the given correspondence, e1 and e2 are the entities
of the correspondence (e.g., properties in the ontology), and r is the relation type
between e1 and e2 (e.g., equivalence and disjointedness).

UFOMQ: An Algorithm for Querying for Similar Individuals 181

Note that in the above definition, the correspondence is exact, i.e., the rela-
tion r strictly holds between the ontology entities e1 and e2. However, in systems
that have to automatically determine the set membership from real-world data,
it is natural that a degree should be associated with the relation between the
entities. The higher the degree is, the higher the likelihood that the relation holds
between them. In order to represent the uncertainty in the correspondences, we
presented a fuzzy variant of ontology alignment in [15].

Definition 3. A fuzzy ontology alignment is a set of fuzzy correspon-
dences in the form of 6-tuple: < id, e1, e2, r, s, c >

where s = μr(e1, e2) is the relation score denoting the membership of (e1, e2)
in relation r, and c is the confidence score computed while generating the cor-
respondence. With this definition of fuzzy correspondence, we can extend the
relation type set with other useful types such as Relevance [15].

A query execution is a process of retrieving a set of individuals I =
{i1, i2, ..., in} which are relevant to a given individual t. I and t can belong
to either one ontology or multiple ontologies. In this paper, we study the case
in which I and t come from two heterogeneous ontologies O1 and O2. The one-
ontology case is a specialization of the multi-ontology one.

A brute force method is to compare t with all property values in O2. The
time complexity of this approach is O(|O2||E2|) where |O2| is the number of
individuals in O2 and |E2| is the number of properties in O2. The brute force
approach is inefficient in terms of search time. In this paper, we describe how
we can improve the query performance using fuzzy alignment information.

4 Unified Fuzzy Ontology Matching (UFOM)

The foundation of UFOMQ algorithm is the fuzzy ontology alignment derived
using the unified fuzzy ontology matching (UFOM) framework [15]. UFOM com-
putes fuzzy ontology correspondences based on both a relation score and a con-
fidence score between every possible entity pair in the ontologies. In order to
provide an extensible framework, every relation score (i.e., for every type of
relation of interest) is computed from a set of pre-defined similarity functions.
The framework is illustrated in Fig. 1.

Fig. 1. Components of the UFOM system for computing fuzzy ontology alignment

182 Y. Zhang et al.

UFOM takes two ontologies as input and outputs a fuzzy alignment between
them. UFOM consists of four components: Preprocessing Unit (PU), Confidence
Generator (CG), Similarity Generator (SG), and Alignment Generator (AG).
PU classifies the entities in the ontologies based on their types. An entity can be
either a class or a property. If it is a property, it is further identified as one of the
following types: ObjectProperty, String DatatypeProperty, Datetime Datatype-
Property, and Numerical DatatypeProperty. Different score computation strate-
gies are developed for different types of entities. CG computes a confidence
score for each correspondence which reflects the sufficiency of the underlying
data resources used to generate this correspondence. Volume and variety are the
two major metrics considered in this step. SG generates a vector of similarities
for each pair of entities. The similarities form the basis for computing corre-
spondences with different types of relation. In UFOM, we consider four types of
similarity: Name-based Similarity, Mutual Information Similarity, Containment
Similarity, and Structural Similarity.

Name-based Similarity is calculated based on both the semantic similarity and
syntactic similarity of between the names of the two properties. Mutual Informa-
tion Similarity models the mutual information that exists between the individu-
als of one entity and the domain represented by the second entity. Containment
Similarity models the average level of alignment between an instance of property
e1 and the most similar instance in property e2. Structural Similarity represents
the degree of structural similarity between two properties as they are represented
within their ontologies. The detailed formulation is presented in [15]

The component AG is responsible for generating a set of fuzzy correspon-
dences in the form of 6-tuples: < id, e1, e2, r, s, c >. It calculates the relation
score r using a fuzzy membership function for each relation type. After both s
and c are derived, AG prunes the correspondences with s and c less than pre-
defined cutoff thresholds sδ and cδ. For instance, the following are examples of
fuzzy correspondences.

< 1, isbn : author, bkst : desc, relevance, 0.73, 0.92 >
< 2, isbn : author, bkst : desc, equivalence, 0.58, 0.92 >
< 3, isbn : author, bkst : pub, disjoint, 0.83, 0.75 >

5 Query Execution

We now describe the UFOMQ algorithm to efficiently execute queries over two
heterogeneous ontologies using pre-computed fuzzy ontology alignments. In order
to take advantage of the fuzzy representation of the alignments, the query process
consists of two phases: generating a fuzzy SPARQL query and then converting it
to a crisp SPARQL query for execution. We adopt a specific fuzzy extension of
SPARQL called f-SPARQL [2]. An example of f-SPARQL query is given below.

#top-k FQ# with 20
SELECT ?X ?Age ?Height WHERE{

?X rdf:type Student

UFOMQ: An Algorithm for Querying for Similar Individuals 183

?X ex:hasAge ?Age with 0.3.
FILTER (?Age=not very young && ?Age=not very old) with 0.9.
?X ex:hasHeight ?Height with 0.7.
FILTER (?Height close to 175 cm) with 0.8.

}

In this example, “not very young” and “not very old” are fuzzy terms, and
“close to” is a fuzzy operator. Each condition is associated with a user-defined
weight (e.g., 0.3 for age and 0.7 for height) and a threshold (e.g., 0.9 for age and
0.8 for height). The top 20 results are returned based on the score function [2].

1 Identify a set of properties Edirect = {e1, e2, ..., em} in O2 where ej is in a fuzzy
correspondence < id, et, ej , r, s, c > with s ≥ S, s ≥ C and r ∈
{equivalence, relevance}, S and C are user-defined thresholds and et is t’s
identifier property;

2 Identify a set of property triples Eindirect = {{e11, e
2
1, e

3
1}, ..., {e1n, e2n, e3n}} from

O2 where e1j is in a fuzzy correspondence < id, et, e1j , r, s, c > with s ≥ S, s ≥ C
and r ∈ {equivalence, relevance}, and e1j and e2j are the properties of the same
class (intermediate class) where e2j is its identifier, and e3j is the target property
equivalent to e2j ;

3 for each ej in Edirect do
4 Generate a fuzzy SPARQL using the direct matching generation rule;
5 Calculate a seed vector −→s ={ssyn, ssem, scon} for each pair (t, vx) where t is

the given individual and vx is a value in ej ;
6 Generate individuals with grades calculated by a relevance function of −→s in

the instance ontology ontoins;

7 for each {e1j , e
2
j , e

3
j} in Eindirect do

8 Generate a fuzzy SPARQL using the indirect matching generation rule;
9 Calculate a seed vector −→s ={ssyn, ssem, scon} for each pair (t, vx) where t is

the given individual and vx is a value in e1j ;
10 Generate individuals with grades calculated by a relevance function of −→s in

the instance ontology ontoins;

11 Generate a crisp SPARQL by computing the α-cut of the fuzzy terms based on
the membership function and each graph pattern corresponds to a value in
Edirect or Eindirect;

12 Return the individual set I = {i1, i2, ..., in} by executing the crisp SPARQL
over ontoins;

Algorithm 1. UFOMQ - A query algorithm for UFOM

The UFOMQ algorithm is shown in Algorithm 1. The inputs to the algorithm
are two ontologies O1 and O2, a set of fuzzy correspondences pre-computed
using UFOM, and the target individual t ∈ O1. The algorithm returns a set of
individuals from O2 that are similar to t. In our description, we state that the
correspondences are either equivalence or relevance. However, the approach can

184 Y. Zhang et al.

be extended to other types of relations provided the corresponding alignments
are discovered by UFOM.

Steps 1 and 2 in Algorithm 1 identify related properties using fuzzy cor-
respondences generated by UFOM. These properties are computed using two
methods: direct matching and indirect matching (Fig. 2).

Fig. 2. Illustration of direct matching and indirect matching

For direct matching, we retrieve properties in O2 which have fuzzy relations
equivalence and relevance) with t’s identifier property (e.g., ID) using the fuzzy
alignment derived by UFOM. For example, the following SPARQL code retrieves
only the relevant properties of id based on direct matching. Thresholds for rela-
tion score and confidence score (e.g., 0.5 and 0.7) are also specified in the query.

SELECT ?prop WHERE {
?prop ufom:type ‘‘onto2 prop’’.
?corr ufom:hasProp1 onto1:id.
?corr ufom:hasProp2 ?prop.
?corr ufom:relation ‘‘Relevance’’.
?corr ufom:score ?s.
FILTER (?s > 0.5).
?corr ufom:conf ?c.
FILTER (?c > 0.7).

}

Indirect matching is used to identify entities that do not share a single cor-
respondence with t but are related via intermediate properties, i.e., more than
one correspondence. We first identify all intermediate classes in O2. The prop-
erties of such classes have a fuzzy relation with t’s identifier property (e.g., id).

UFOMQ: An Algorithm for Querying for Similar Individuals 185

From these intermediate classes, we discover the properties which are equivalent
to the identifier of the intermediate class. This equivalence relation is found by
checking Object Properties in O2. In contrast to direct matching which outputs
a set of properties, indirect matching produces a collection of triples in the form
of (e1, e2, e3), where e1 is the intermediate class’ property with fuzzy relations
with t’s identifier property, e2 is the intermediate class’ identifier property, and
e3 is the target property equivalent to e2. An example of the indirect matching
approach for the relevance relation as expressed in SPARQL is shown below.
prop1, prop2, and prop3 correspond to e1, e2 and e3 respectively.

SELECT ?prop1 ?prop2 ?prop3 WHERE {
?prop1 ufom:type ‘‘onto2 prop’’.
?prop1 rdfs:domain ?class.
?prop2 ufom:idof ?class.
?prop3 ufom:type ‘‘onto2 prop’’.
?prop3 rdfs:range ?class.
?corr ufom:hasProp1 onto1:id.
?corr ufom:hasProp2 ?prop1.
?corr ufom:relation ‘‘Relevance’’.
?corr ufom:score ?s.
FILTER (?s > 0.5).
?corr ufom:conf ?c.
FILTER (?c > 0.7).

}

Given the properties discovered by direct matching (prop) and indirect
matching (prop1, prop2 and prop3), we can build fuzzy SPARQL queries based
on the rules expressed in Steps 4 and 8:

#top-k FQ# with 20
SELECT ?d WHERE {

?x onto2:id ?d.
?x onto2:prop ?p.
FILTER (?p relevant to t) with 0.75.

}

#top-k FQ# with 20
SELECT ?d WHERE {

?x onto2:prop1 ?p.
?x onto2:prop2 ?c.
?y onto2:prop3 ?c.
?y onto2:id ?d.
FILTER (?p relevant to t) with 0.75.

}

186 Y. Zhang et al.

In the above rules, t is the given individual (the identifier used to represent
the individual) and “relevant-to” is the fuzzy operator.

Since, eventually the fuzzy queries will have to be converted to crisp ones, we
calculate a seed vector −→s ={ssyn, ssem, scon} for each value pair (t, vx) where t is
the given value (e.g., identifier of the given individual) and vx is the value in the
matched properties (e.g., “onto2:prop”) (Steps 5 and 9). −→s represents multiple
similarity metrics including syntactic, semantic, and containment similarities as
described in [15]. The results are used to calculate the relevance scores which
are stored as individuals in the instance ontology ontoins (Steps 6 and 10). In
Step 11, we compute the α-cut of the fuzzy terms based on the membership
function in order to convert to a crisp query. The resulting crisp SPARQL con-
sists of multiple graph patterns and each of these corresponds to a matched
property. The individual set I is derived by executing this crisp SPARQL query.
An example of such a crisp SPARQL query returning individuals ranked based
on their membership grades is shown below.

SELECT ?d WHERE {
?x onto2:id ?d.
?x onto2:prop ?p.
?ins onto ins:value1 ?p.
?ins onto ins:value2 t.
?ins onto ins:type ‘‘relevance’’.
?ins onto ins:grade ?g.
FILTER (?g ≥ 0.75).

}
ORDER BY DESC(?g)

Using UFOMQ, the computation cost for retrieving relevant instances can be
reduced. The time complexity of the UFOMQ algorithm is O(|O2||E2(t)|) where
|E2(t)| is the number of properties in O2 which have fuzzy correspondences with
t’s identifier property. We evaluate the computation cost of UFOMQ on datasets
in Sect. 6.

6 Experimental Evaluation

In this section, we present the results of applying the UFOMQ approach to two
datasets. The first is publicly available ontologies from the Ontology Alignment
Evaluation Initiative (OAEI) campaigns [5]. The second dataset comprises of
ontologies of an enterprise-scale dataset.

OAEI Datasets. We first performed a set of experiments to evaluate the query
execution process. The dataset is the Instance Matching (IM) ontology1 from
OAEI 2013. The dataset has 5 ontologies and 1744 instances. The fuzzy align-
ment is generated first using UFOM [15]. Then, we initialize 10 individuals from

1 http://islab.di.unimi.it/im oaei 2014/index.html.

http://islab.di.unimi.it/im_oaei_2014/index.html.

UFOMQ: An Algorithm for Querying for Similar Individuals 187

one of the ontologies and retrieve related individuals from the other ontologies.
WordNet2 and DBPedia3 are used to retrieve the synset and similar entities of a
given individual. The membership grade threshold is set to 0.75. Figure 3 shows
the performance of our query execution component on the IM ontology. Each
data point is generated by averaging the results of 10 individuals.

Fig. 3. Precision and execution time on applying UFOM query execution to the
instance matching ontology

As the relation score threshold increases, both precision and running time
for query execution decrease. This is because the number of correspondences
decreases when we raise the relation score threshold. As a result, we have fewer
correspondences to consider when we generate crisp queries and therefore the
computational time is reduced. The reason precision also decreases is that we lose
some true correspondences when we increase the relation score threshold. Those
correspondences can help in finding more related individuals. However, as shown
in Fig. 3, an increase in the threshold from 0.5 to 0.8 causes precision to decrease
by only 9.3 % while execution time is reduced by 81.1 %. This indicates that the
elimination of correspondences caused by increasing the threshold do not affect
retrieving correct related individuals significantly. This is because the remaining
correspondences are still sufficient to find connections between classes. In terms
of querying for similar individuals, the correspondences between the same pair
of classes have functional overlap.

Enterprise-Scale Dataset. For the evaluation of querying for related individ-
uals, we considered two ontologies from an enterprise-scale information reposi-
tory. Each ontology focuses on a different application area, but they are related
in terms of the entities that they reference. Ontology O1 has 125,865 triples.
Ontology O2 has 651,860 triples. Due to privacy concerns, we do not expose the
real names of the properties and ontologies. We considered two classes, C1 and
C2, in O1 and two classes, C3 an C4, in O2.

We identified 29 fuzzy correspondences between these two ontologies using
UFOM. To evaluate query performance, we selected 10 representative individuals
2 http://wordnet.princeton.edu/.
3 http://dbpedia.org/.

http://wordnet.princeton.edu/
http://dbpedia.org/

188 Y. Zhang et al.

Table 1. Query Execution Time (UFOM vs Baseline)

Scenario UFOM(ms) Baseline(ms)

C1 to C3 259 35974

C2 to C3 173 25706

C1 to C4 487 53937

C2 to C4 401 45752

from C1 or C2 and retrieve their relevant instances from C3 or C4 using the fuzzy
alignment. Both precision and recall achieve 1.0 after we verified the results with
the ground truth obtained by manually examining the ontologies for each of the
automatically retrieved entities. We also generated the average execution time
and the results are shown in Table 1. Compared with the baseline approach which
traverses the values of all properties in O2, our proposed approach reduces the
execution by 99 % on average.

7 Conclusion

We presented the UFOMQ algorithm which enables scalable and efficient query-
ing for related entities over heterogeneous ontologies. UFOMQ uses the fuzzy
correspondences discovered during ontology alignment as computed by the
previously developed UFOM framework. The query algorithm exploits the
redundancy in the correspondences between classes — similar entities can be
identified by following the strongest correspondences, not necessarily all the cor-
respondences. In experiments performed on publicly available datasets, the query
algorithm achieves a trade-off between precision of the returned query result and
the computational cost of the query execution process. We also demonstrated
the efficiency of UFOMQ in large enterprise-scale datasets.

For future work, we will develop query optimization strategies to facilitate
efficient query execution. We will also adopt different entity identification tech-
niques to improve the usability of the ontology alignment and query framework.

Acknowledgment. This work is supported by Chevron U.S.A. Inc. under the joint
project, Center for Interactive Smart Oilfield Technologies (CiSoft), at the University
of Southern California.

References

1. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., Kagal, L., Fokoue, A.,
Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz,
K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg
(2013)

UFOMQ: An Algorithm for Querying for Similar Individuals 189

2. Cheng, J., Ma, Z.M., Yan, L.: f-SPARQL: a flexible extension of SPARQL. In:
Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS,
vol. 6261, pp. 487–494. Springer, Heidelberg (2010)

3. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Rec.
35(3), 34–41 (2006)

4. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about RDF
data sources and their use for query answering. In: Alani, H., Kagal, L., Fokoue, A.,
Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K.
(eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013)

5. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology
alignment evaluation initiative: six years of experience. In: Spaccapietra, S. (ed.)
Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg
(2011)

6. Fernández, S., Velasco, J.R., Marsá-Maestre, I., López-Carmona, M.A.: Fuzzyalign -
a fuzzy method for ontology alignment. In: KEOD, pp. 98–107 (2012)

7. Lee, S., Lee, J., Hwang, S.-W.: Fria: fast and robust instance alignment. In: 22nd
International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil,
13–17 May 2013, Companion Volume, pp. 175–176 (2013)

8. Mora, J., Corcho, O.: Towards a systematic benchmarking of ontology-based query
rewriting systems. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C.,
Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013,
Part II. LNCS, vol. 8219, pp. 376–391. Springer, Heidelberg (2013)

9. Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z.,
Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping. Data-Centric Sys-
tems and Applications, pp. 3–27. Springer, Heidelberg (2011)

10. Saleem, M., Ngonga Ngomo, A.-C., Xavier Parreira, J., Deus, H.F., Hauswirth,
M.: DAW: Duplicate-AWare federated query processing over the web of data. In:
Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo,
L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218,
pp. 574–590. Springer, Heidelberg (2013)

11. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

12. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. PVLDB 5(3), 157–168 (2011)

13. Tian, A., Sequeda, J.F., Miranker, D.P.: QODI: query as context in automatic data
integration. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira,
J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS,
vol. 8218, pp. 624–639. Springer, Heidelberg (2013)

14. Todorov, K., Geibel, P., Hudelot, C.: A framework for a fuzzy matching between
multiple domain ontologies. In: König, A., Dengel, A., Hinkelmann, K., Kise, K.,
Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 538–547.
Springer, Heidelberg (2011)

15. Zhang, Y., Panangadan, A., Prasanna, V.K.: Ufom: unified fuzzy ontology match-
ing. In: IRI 2014 - Proceedings of the 15th International Conference on Information
Reuse and Integration, San Francisco, CA, USA, 13–15 August 2014

	UFOMQ: An Algorithm for Querying for Similar Individuals in Heterogeneous Ontologies
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Unified Fuzzy Ontology Matching (UFOM)
	5 Query Execution
	6 Experimental Evaluation
	7 Conclusion
	References

