
Big Data Analytics of Social Networks
for the Discovery of “Following” Patterns

Carson Kai-Sang Leung(B) and Fan Jiang

University of Manitoba, Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

Abstract. In the current era of big data, high volumes of valuable data
can be easily collected and generated. Social networks are examples of
generating sources of these big data. Users (or social entities) in these
social networks are often linked by some interdependency such as friend-
ship or “following” relationships. As these big social networks keep grow-
ing, there are situations in which individual users or businesses want to
find those frequently followed groups of social entities so that they can
follow the same groups. In this paper, we present a big data analytics
solution that uses the MapReduce model to mine social networks for dis-
covering groups of frequently followed social entities. Evaluation results
show the efficiency and practicality of our big data analytics solution in
discovering “following” patterns from social networks.

1 Introduction and Related Works

Nowadays, high volumes of valuable data can be easily collected or generated
from different sources such as social networks. Social networks are generally
made of social entities (e.g., individuals, corporations, collective social units, or
organizations) that are linked by some specific types of interdependencies (e.g.,
kinship, friendship, common interest, beliefs, or financial exchange). A social
entity is connected to another entity as his next-of-kin, friend, collaborator,
co-author, classmate, co-worker, team member, and/or business partner. Big
data analytics of social networks computationally facilitates social studies and
human-social dynamics in these big data networks, as well as designs and uses
information and communication technologies for dealing with social context.

In the current era of big data (including big social network data), various
social networking sites or services—such as Facebook, Google+, LinkedIn, Twit-
ter, and Weibo [16,17]—are commonly in use. For instance, Facebook users can
create a personal profile, add other Facebook users as friends, exchange mes-
sages, and join common-interest user groups. The number of (mutual) friends
may vary from one Facebook user to another. It is not uncommon for a user A
to have hundreds or thousands of friends. Note that, although many of the Face-
book users are linked to some other Facebook users via their mutual friendship
(i.e., if a user A is a friend of another user B, then B is also a friend of A),
there are situations in which such a relationship is not mutual. To handle these
situations, Facebook added the functionality of “follow”, which allows a user
c© Springer International Publishing Switzerland 2015
S. Madria and T. Hara (Eds.): DaWaK 2015, LNCS 9263, pp. 123–135, 2015.
DOI: 10.1007/978-3-319-22729-0 10

124 C.K.-S. Leung and F. Jiang

to subscribe or follow public postings of some other Facebook users without
the need of adding them as friends. So, for any user C, if many of his friends
followed some individual users or groups of users, then C might also be inter-
ested in following the same individual users or groups of users. Furthermore,
the “like” button allows users to express their appreciation of content such as
status updates, comments, photos, and advertisements. For example, when we
liked the page “DEXA Society” (for information about DaWaK), many of our
friends might also be interested in this page.

Similarly, Twitter users can read the tweets of other users by “following”
them. Relationships between social entities are mostly defined by following (or
subscribing) each other. Each user (social entity) can have multiple followers,
and follows multiple users at the same time. The follow/subscribe relationship
between follower and followee is not the same as the friendship relationship (in
which each pair of users usually know each other before they setup the friend-
ship relationship). In contrast, in the follow/subscribe relationship, a user D can
follow another user E while E may not know D in person. For instance, a partic-
ipant attending the DaWaK conference can follow @DEXASociety, but may not
be followed by it. This creates a relationship with direction in a social network.
We use D→E to represent the follow/subscribe (i.e., “following”) relationship
that D is following E.

In recent years, the number of users in the aforementioned social networking
sites has grown rapidly (e.g., 1.44 billion monthly active Facebook users and
302 million monthly active Twitter users at the end of March 2015). This big
number of users creates an even more massive number of “following” relation-
ships. Over the past two decades, several data mining algorithms and techniques
[1,5,8–10] have been proposed. Many of them [7,11,15] have been applied to
mine social networks (e.g., discovery of special events [3], detection of communi-
ties [13,19], subgraph mining [20], as well as discovery of popular friends [6,11],
influential friends [12] and strong friends [18]). In DaWaK 2014, we [4] proposed
a serial algorithm to mine interesting patterns from social networks. While such
an algorithm works well when mining a small focused portion of a social net-
work due to its serial nature, there are situations in which one wants to mine
a larger portion of a big social network. In response, we propose in the current
DaWaK 2015 paper a new big data analytics and mining solution, which uses
the MapReduce model to discover interesting/popular “following” patterns con-
sisting of social entities (or their social networking pages) that are frequently
followed by social entities. Such discovery of “following” patterns helps an indi-
vidual user find popular groups of social entities so that he can follow the same
groups. Moreover, many businesses have used social network media to either
(i) reach the right audience and turn them into new customers or (ii) build a
closer relationship with existing customers. Hence, discovering those who follow
collections of popular social networking pages about a business (i.e., discovering
those who care more about the products or services provided by a business)
helps the business identify its targeted or preferred customers.

Big Data Analytics of Social Networks 125

The remainder of this paper is organized as follows. The next section provides
some background. Then, we present our new big data analytics and mining
solution, which uses the MapReduce model to discover interesting “following”
patterns from big social networks in Sect. 3. Evaluation results are shown in
Sect. 4. Finally, conclusions are given in Sect. 5.

2 Background

High volumes of valuable data (e.g., web logs, texts, documents, business trans-
actions, banking records, financial charts, medical images, surveillance videos,
as well as streams of marketing, telecommunication, biological, life science, and
social media data) can be easily collected or generated from different sources,
in different formats, and at high velocity in many real-life applications in mod-
ern organizations and society. This leads us into the new era of big data [14],
which refer to high-veracity, high-velocity, high-value, and/or high-variety data
with volumes beyond the ability of commonly-used software to capture, manage,
and process within a tolerable elapsed time. This drives and motivates research
and practices in data science—which aims to develop systematic or quantitative
processes to analyze and mine big data—for continuous or iterative exploration,
investigation, and understanding of past business performance so as to gain new
insight and drive science or business planning. By applying big data analytics
and mining (which incorporates various techniques from a broad range of fields
such as cloud computing, data analytics, data mining, machine learning, mathe-
matics, and statistics), data scientists can extract implicit, previously unknown,
and potentially useful information from big data (e.g., big social network data).

Over the past few years, researchers have used a high-level programming
model—called MapReduce [2]—to process high volumes of big data by using
parallel and distributed computing on large clusters or grids of nodes (i.e.,
commodity machines) or clouds, which consist of a master node and multiple
worker nodes. As implied by its name, MapReduce involves two key functions:
(i) the map function and (ii) the reduce function. Specifically, the input data
are read, divided into several partitions (sub-problems), and assigned to dif-
ferent processors. Each processor executes the map function on each partition
(sub-problem). The map function takes a pair of 〈key1, value1〉 and returns a
list of 〈key2, value2〉 pairs as an intermediate result, where (i) key1 and key2
are keys in the same or different domains and (ii) value1 and value2 are the
corresponding values in some domains. Afterwards, these pairs are shuffled and
sorted. Each processor then executes the reduce function on (i) a single key key2
from this intermediate result 〈key2, list of value2〉 together with (ii) the list of all
values that appear with this key in the intermediate result. The reduce function
“reduces”—by combining, aggregating, summarizing, filtering, or transforming—
the list of values associated with a given key key2 (for all k keys) and returns
a single (aggregated or summarized) value value3, where (i) key2 is a key in
some domains and (ii) value2 and value3 are the corresponding values in some
domains. An advantage of using the MapReduce model is that users only need to

126 C.K.-S. Leung and F. Jiang

focus on (and specify) these “map” and “reduce” functions—without worrying
about implementation details for (i) partitioning the input data, (ii) scheduling
and executing the program across multiple machines, (iii) handling machine fail-
ures, or (iv) managing inter-machine communication. Examples of MapReduce
applications include the construction of an inverted index as well as the word
counting of a document for data processing [2].

3 Our Data Analytics Solution for Mining “Following”
Patterns from Big Social Network Data

In this section, we present our new big data analytics and mining solution—
called BigFoP—which mines Big social network data for interesting
“Following”patterns using the MapReduce model.

3.1 “Following” Relationships in Big Social Networks

In social networking sites like Twitter, social entities (users) are linked by “fol-
lowing” relationships such as A→B indicating that a user A (i.e., follower) follows
another user B (i.e., followee). Then, given a social network in which each social
entity is following some other social entities, such a social network can be repre-
sented as a graph G = (V,E) where (i) V is a set of vertices (i.e., social entities)
and (ii) E is a set of directional edges connecting some of these vertices (i.e.,
“following” relationships). See Example 1.

Example 1. For illustrative purpose, let us consider a small portion of a big social
network as shown in Fig. 1. It can be represented by G = (V,E), where (i) set
V of vertices = {Abel, Biel, Carlos, Desi, Elba, Fabio} and (ii) set E of edges =
{〈Abel, B〉, 〈Abel, E〉, 〈Biel, A〉, 〈Biel, C〉, 〈Biel, E〉, 〈Carlos, A〉, 〈Carlos, E〉,
〈Desi, B〉, 〈Desi, C〉, 〈Desi, E〉, 〈Elba, A〉, 〈Elba, B〉, 〈Elba, C〉, 〈Elba, D〉, 〈Fabio,
A〉, 〈Fabio, B〉, 〈Fabio, C〉, 〈Fabio, E〉}. Here, to avoid the confusion between
followers and followees, we represent followers by their names and followees by
their initials in these 〈follower, followee〉-pairs in the set E of edges. ��

Fig. 1. A sample social network consisting of |V |= 6 users.

Big Data Analytics of Social Networks 127

When compared with the mutual friendship relationships, the “following”
relationships are different in that the latter are directional. For instance, a user B
may be following another user C while C is not following B. As in Example 1, Biel
is following Carlos, but Carlos is not following Biel. This property increases the
complexity of the problem because of the following reasons. The group of users
followed by B (e.g., Biel→{Abel, Carlos, Elba}) may not be same group of users
as those who are following B (e.g., {Abel, Desi, Elba, Fabio}→Biel). Hence,
we need to store directional edges (e.g., 〈Abel, Biel〉, 〈Biel, Abel〉) instead of
undirectional edges (e.g., {Abel, Biel} indicating that Able and Biel are mutual
friends). Given |V | social entities, there are potentially |V |(|V | − 1) directional
edges for “following” relationships (cf. potentially |V |(|V |−1)

2 undirectional edges
for mutual friendship relationships). Besides an increase in storage space, the
computation time also increases because we need to check both directions to
get relationships between pairs of users (e.g., cannot determine whether or not
Carlos→Biel if we only know Biel→Carlos).

3.2 Discovery of “Following” Patterns

As the number of users in social networking sites (e.g., Twitter) is growing
explosively nowadays, the number of “following” relationships between social
network users is also growing. One of the important research problems with
regard to this high volume of data is to discover interesting “following” patterns.
A “following” pattern is a pattern representing the linkages when a significant
number of users follow the same combination/group of users. For example, users
who follow the twitter feed or tweets of NBA also follow the tweets of Adam
Silver (current NBA commissioner). If there are large numbers of users who
follow the tweets of both NBA and Adam Silver together, we can define this
combination (NBA and Adam Silver) of followees as an interesting “following”
pattern (i.e., a frequently followed group).

To discover interesting “following” patterns (i.e., collections of social net-
work pages that are frequently followed by users), we propose a data science
solution called BigFoP that mines Big social network data for interesting
“Following”patterns by using sets of map and reduce functions.

3.3 The First Set of Map-Reduce Functions in BigFoP

Abstractly, BigFoP first applies a map function to each edge as follows:

map1 : 〈edge ID,“following”relationship captured by the edge〉
�→ 〈 follower, individual followee〉, (1)

in which the master node reads and divides big social network data in partitions.
Specifically, the map1 function can be specified as follows:

For each edge e=〈follower, followee〉 ∈ E in social network G=(V,E) do
emit 〈follower, followee, 1〉.

128 C.K.-S. Leung and F. Jiang

This map function is applied to each edge e=〈follower, followee〉 ∈ E in the social
network represented by G = (V,E), and results in a list of 〈follower, followee, 1〉
capturing all existing “following” relationships (between followers and followees)
in the social network. See Example 2.

Example 2. After applying the map1 function to the social network data in
Example 1, our BigFoP returns a list containing 〈Abel, B, 1〉, 〈Abel, E, 1〉,
〈Biel, A, 1〉, 〈Biel, C, 1〉, 〈Biel, E, 1〉, 〈Carlos, A, 1〉, 〈Carlos, E, 1〉, 〈Desi, B, 1〉,
〈Desi, C, 1〉, 〈Desi, E, 1〉, 〈Elba, A, 1〉, 〈Elba, B, 1〉, 〈Elba, C, 1〉, 〈Elba, D, 1〉,
〈Fabio, A, 1〉, 〈Fabio, B, 1〉, 〈Fabio, C, 1〉, and 〈Fabio, E, 1〉. ��
Afterwards, our big data analytics and mining solution BigFoP applies a reduce
function to group and count the number of followers for each followee, as well
as to list these followers for each followee. More specifically, 〈follower, followee,
1〉 pairs from the map1 function are shuffled and sorted. Each processor then
executes the reduce function on the shuffled and sorted pairs to count the number
of followers and list them for each followee. To speed up this big social network
data mining process, BigFoP also allows users to specify the interestingness of
groups of social entities by a frequency threshold. Here, the users can indicate
the minimum number of followers for a group of followees so that the group can
be considered interesting. By incorporating this user preference, BigFoP returns
(i) a list of followers only for those popular followees (i.e., followees who are
frequently followed by at least the minimum number of followers) and (ii) the
count for each followee. In other words, BigFoP applies the following reduce
function:

reduce1:〈followee, list of followers〉
�→ list of 〈interesting followee, follower information〉, (2)

with a detailed definition as follows:

For each followee ∈ 〈 , followee, 〉 emitted by map1 do
set counter[followee] = 0;
set list[followee] = {};
for each follower ∈ 〈follower, followee, 1〉 emitted by map1 do

counter[followee] = counter[followee] + 1;
list[followee] = list[followee] ∪ {follower};

if counter[followee] ≥ user-specified min frequency threshold
then emit 〈followee, counter[followee], list[followee]〉.

This results in (i) a list of followers and (ii) its count for each interesting/popular
followee. See Example 3.

Example 3. Continue with Example 2. Our BigFoP applies the reduce1 function
with user-specified minimum frequency threshold of 2 followers and returns 〈A, 4,
{Biel, Carlos, Elba, Fabio}〉, 〈B, 4, {Abel, Desi, Elba, Fabio}〉, 〈C, 4, {Biel, Desi,
Elba, Fabio}〉, and 〈E, 5, {Abel, Biel, Carlos, Desi, Fabio}〉. Note that our BigFoP
does not return the lists for followees D or F because their corresponding counters
were low (D and F were followed by only 1 and 0 followers, respectively).

Big Data Analytics of Social Networks 129

To summarize, after applying the first set of map1 and reduce1 functions, our Big-
FoP has so far discovered four interesting “following” patterns—in the form of
individual frequently followed social entities—namely, {A}, {B}, {C} and {E},
who are followed by 4, 4, 4 and 5 followers respectively. In other words, each of
these four individual followees is followed by at least 2 followers (the user-specified
minimum frequency threshold). ��

3.4 The Second Set of Map-Reduce Functions in BigFoP

Thereafter, our BigFoP applies a next set of map and reduce functions to mine
interesting “following” patterns in the form of pairs of frequently followed social
entities based on the results from the first set of map1 and reduce1 functions.
For instance, knowing that D and E are unpopular individual followees, it is
guaranteed that any pairs containing followee D or E is also unpopular. By
making use of this knowledge, the search space for mining interesting “following”
patterns can then be pruned effectively. Specifically, the map2 function, which
returns 〈follower, {p} ∪ {followee}, 1〉 for every follower in the follower list of
each popular/interesting individual followee p, can be specified as follows:

map2 : 〈interesting followee p, its follower information〉
�→ 〈follower, followee pair〉, (3)

with a detailed definition as follows:

For each p ∈ 〈p, , list[p]〉 emitted by reduce1 do
for each follower ∈ list[p] do

for each 〈follower, followee〉 ∈ E of social network G=(V,E) do
if isRelevant(followee, p)
then emit 〈follower, {p} ∪ {followee}, 1〉.

Here, isRelevant(followee, p) is a Boolean function checking the relevance (e.g.,
consistence to the mining order) of followee with respect to p. This results in
lists of 〈follower, followee, 1〉, and a list for each popular individual followee p
returned by the reduce1 function. See Example 4.

Example 4. Continue with Example 3. Recall that the first set of map1 and
reduce1 functions returns four popular followees A, B, C and E. So, for popular
followee A (followed by four followers Biel, Carlos, Elba and Fabio), the map2

function emits all relevant followees of these four followers: 〈Biel, AC, 1〉, 〈Biel,
AE, 1〉, 〈Carlos, AE, 1〉, 〈Elba, AB, 1〉, 〈Elba, AC, 1〉, 〈Fabio, AB, 1〉, 〈Fabio,
AC, 1〉, and 〈Fabio, AE, 1〉. Note that (i) followees of Abel are not emitted
(because it is not meaningful for Abel to follow himself), (ii) followees of Desi
are not emitted (because Desi does not follow A), (iii) four relationships in the
form 〈 , A, 1〉 (e.g., 〈Biel, A, 1〉) are irrelevant with respect to p=A (because
we already knew these four followers are following single individual followee A
when we started this map2 function and we aimed to find followers who follow
pairs of followees), and (iv) 〈Elba, AD, 1〉 is also irrelevant (because followee D
is unpopular).

130 C.K.-S. Leung and F. Jiang

Similarly, for popular followee B (followed by four followers Abel, Desi, Elba
and Fabio), the map2 function emits all relevant followee of these four followers:
{〈Abel, BE, 1〉, 〈Desi, BC, 1〉, 〈Desi, BE, 1〉, 〈Elba, BC, 1〉, 〈Fabio, BC, 1〉,
〈Fabio, BE, 1〉}. Note that (i) followees of Biel are not emitted (because it is not
meaningful for Biel to follow himself), (ii) followees of Carlos are not emitted
(because Carlos does not follow B), (iii) four relationships in the form 〈 , B, 1〉
(e.g., 〈Desi, B, 1〉) are irrelevant with respect to p=B (because we already knew
these four followers are following single individual followee B when we started
this map2 function and we aimed to find followers who follow pairs of followees),
and (iv) 〈Elba, BD, 1〉 is also irrelevant (because followee D is unpopular).
More important to note is that (v) relationships in the form 〈 , AB, 1〉 (e.g.,
〈Elba, AB, 1〉, 〈Fabio, AB, 1〉) are irrelevant with respect to p=B (because these
relationships are already processed by the map2 function).

Then, for popular followee C (followed by four followers Biel, Desi, Elba and
Fabio), the map2 function emits all relevant followee of these four followers:
{〈Biel, CE, 1〉, 〈Desi, CE, 1〉, 〈Fabio, CE, 1〉}.

Finally, for popular followee E (followed by five followers Abel, Biel, Carlos,
Desi and Fabio), the map2 function does not emit any followee because there is
no relevant followee for these five followers. ��
Similar to reduce1, the reduce2 function shuffles and sorts 〈follower, {p} ∪
{relevant followee}, 1〉 to find and count followers for each followee pair P =
({p} ∪ {relevant followee}) as follows:

reduce2 : 〈followee pair, list of common followers〉
�→ list of 〈interesting followee pair, follower information〉, (4)

with a detailed definition as follows:

For each P ∈ 〈 , followee group P , 〉 emitted by map2 do
set counter[P] = 0;
set list[P] = {};
for each follower ∈ 〈follower, P , 1〉 emitted by map2 do

counter[P] = counter[P] + 1;
list[P] = list[P] ∪ {follower};

if counter[P] ≥ user-specified min frequency threshold
then emit 〈P , counter[P], list[P]〉.

This results in (i) a list of followers and (ii) its count for each interesting/popular
followee pair P .

Example 5. Continue with Example 4. Our BigFoP applies the reduce2 func-
tion with user-specified minimum frequency threshold = 2 followers and returns
〈AB, 2, {Elba, Fabio}〉, 〈AC, 3, {Biel, Elba, Fabio}〉, 〈AE, 3, {Biel, Carlos,
Fabio}〉, 〈BC, 3, {Desi, Elba, Fabio}〉, 〈BE, 3, {Abel, Desi, Fabio}〉, and 〈CE,
3, {Biel, Desi, Fabio}〉. In other words, after applying this second set of map2

and reduce2 functions, our BigFoP algorithm discovered six interesting “follow-
ing” patterns—in the form of pairs of frequently followed social entities—namely,

Big Data Analytics of Social Networks 131

{A,B}, {A,C}, {A,E}, {B,C}, {B,E} and {C, E}, who are followed by 2, 3, 3, 3, 3
and 3 followers respectively. In other words, each of these six followee pairs is fol-
lowed by at least 2 followers (the user-specified minimum frequency threshold).

��

3.5 Subsequent Sets of Map-Reduce Functions in BigFoP

So far, our BigFoP has found interesting “following” patterns in the form of
(i) individual frequently followed social entities as well as (ii) pairs of frequently
followed social entities. BigFoP then applies similar sets of map and reduce
functions to find triplets, quadruplets, quintuplets and higher (i.e., k-tuplets for
k ≥ 3) of frequently followed social entities:

mapk≥3 : 〈interesting followee(k − 1)-tuplet P , its follower information〉
�→ 〈follower, followee k-tuplet〉, (5)

with a detailed definition as follows:

For each P ∈ 〈P , , list[P]〉 emitted by reducek−1 do
for each follower ∈ list[P] do

for each 〈follower, followee〉 ∈ E of social network G=(V,E) do
if isRelevant(followee, P)
then emit 〈follower, P ∪ {followee}, 1〉.

Again, isRelevant(followee, P) is a Boolean function checking the relevance (e.g.,
consistence to the mining order) of followee with respect to P . Since reduce2 can
be considered as an instance of the reducek≥2 function, the latter can be defined
in a way very similar to that for reduce2 as shown below:

reducek≥2 : 〈followee group, list of common followers〉
�→ list of 〈interesting followee group, follower information〉, (6)

with a detailed definition as follows:

For each P ∈ 〈 , followee group P , 〉 emitted by mapk−1 do
set counter[P] = 0;
set list[P] = {};
for each follower ∈ 〈follower, P , 1〉 emitted by mapk−1 do

counter[P] = counter[P] + 1;
list[P] = list[P] ∪ {follower};

if counter[P] ≥ user-specified min frequency threshold
then emit 〈P , counter[P], list[P]〉.

This results in (i) a list of followers and (ii) its count for each interesting/popular
followee group P . See Example 6.

Example 6. Continue with Example 5. For popular followee group AB (followed
by two followers Elba and Fabio), the map3 function emits three relevant fol-
lowees: {〈Elba, ABC, 1〉, 〈Fabio, ABC, 1〉, 〈Fabio, ABE, 1〉}. Then, for popular

132 C.K.-S. Leung and F. Jiang

followee group AC (followed by three followers Biel, Elba and Fabio), the map3

function emits two relevant followees: {〈Biel, ACE, 1〉, 〈Fabio, ACE, 1〉}. Simi-
larly, for popular followee group BC (followed by three followers Desi, Elba and
Fabio), the map3 function emits two relevant followees: {〈Desi, BCE, 1〉, 〈Fabio,
BCE, 1〉}.

Afterwards, by applying the reduce3 function, our BigFoP discovers the fol-
lowing three interesting “following” patterns {A, B, C}, {A, C, E} and {B, C, E}
with their associated lists and number of followees as 〈ABC, 2, {Elba, Fabio}〉,
〈ACE, 2, {Biel, Fabio}〉, and 〈BCE, 2, {Desi, Fabio}〉.

Based on the results returned by the reduce3 function, BigFoP applies map4

but returns nothing because there is no relevant quadruplet of frequently followed
social entities. This completes the mining process for interesting “following”
patterns from our illustrative example social network. Note that key concepts
and steps illustrated in this example are applicable to any big social network. ��

4 Observations, Evaluation and Discussion

To discover “following” patterns, our BigFoP takes advantages of the MapRe-
duce model. The input social data are divided into several partitions (subprob-
lems) and assigned to different processors. Each processor executes the mapk

and reducek functions (for k ≥ 1). On the surface, one might worry that lots
of communications or exchanges of information are required among processors.
Fortunately, due to the divide-and-conquer nature of our big social network
data analytics solution of discovering “following” patterns, once the original big
social network is partitioned and assigned to each processor (e.g., one processor
is assigned the followers of A, another is assigned the followers of B, a third
one is assigned the followers of C), each processor handles the assigned data
without any reliance on the results from other processors. As observed from the
above examples, the processor assigned for the followers of a popular followee
can apply the subsequent sets of map and reduce functions on data emitted by
that processor. For example, a processor applies map1 and reduce1 to find pop-
ular followee A. That processor can then apply map2 on the data emitted by
reduce1 from that processor to find popular followee group AB (i.e., group con-
taining A). Similarly, the processor applies map3 on the data emitted by reduce2
from the same processor to find subsequent popular followee group ABC. With-
out the need of extra communications and exchanges of data among processors,
our BigFoP discovers all interesting “following” patterns efficiently. Moreover,
if a partition of the big social network is too big to be handled by a single
processor, our BigFoP furthers sub-divide that partition so that the resulting
sub-partitions can be handled by each of the multiple processors.

Furthermore, due to the divide-and-conquer nature of our big social network
data analytics solution of discovering “following” patterns, the amount of data
input for the mapk and reducek functions monotonically decreases as the size of
the popular group of k followees increases. Our BigFoP discovers all interesting
“following” patterns in a space effective manner.

Big Data Analytics of Social Networks 133

Fig. 2. Experimental results of BiigFoP on social network datasets.

As for runtime performance, we compared the performance of our BigFoP
with related works (e.g., FoP-miner [4]). We used real-life social network datasets:
The Stanford Network Analysis Project (SNAP) ego-Facebook dataset and ego-
Twitter dataset (http://snap.stanford.edu/data/). The SNAP Facebook dataset
contains 4,039 social entities and 88,234 connections (“following” relationships)
between these social entities. The SNAP Twitter dataset contains 81,306 social
entities and 1,768,149 connections between these social entities. All experiments
were run using either (i) a single machine with an Intel Core i7 4-core processor
(1.73 GHz) and 8 GB of main memory running a 64-bit Windows 7 operating
system, or (ii) the Amazon Elastic Compute Cloud (EC2) cluster—specifically,
11 High-Memory Extra Large (m2.xlarge) computing nodes (http://aws.amazon.
com/ec2/). We implemented both the existing FoP-miner algorithm and our pro-
posed BigFoP in the Java programming language. The stock version of Apache
Hadoop 0.20.0 was used. The results shown in Fig. 2, in which the x-axis shows
the user-specified minimum frequency threshold (in percentage of the number of
social entities) expressing the interestingness of the mined patterns, are based
on the average of multiple runs. Runtime includes CPU and I/Os in the mining
process of interesting “following” patterns. In particular, Fig. 2(a) shows that
BigFoP provided a speedup of about 8 times when compared with FoP-miner
when mining the SNAP Facebook dataset. Higher speedup is expected when
using more processors. Figure 2(b) shows a similar result for the SNAP Twit-
ter dataset. Moreover, our BigFoP is shown to be scalable with respect to the
number of social entities in the big social network. As ongoing work, we are
conducting more experiments, including an in-depth study on the quality of
discovered “following” patterns.

5 Conclusions

In this paper, we proposed a big data analytics and mining algorithm—called
BigFoP—for discovering interesting “following” patterns. BigFoP helps social

http://snap.stanford.edu/data/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

134 C.K.-S. Leung and F. Jiang

network users to discover groups of frequently followed followees from big social
networks by using the MapReduce model. By applying BigFoP, social network
users (e.g., newcomers) could find popular groups of followees and follow them.
Similarly, a business could find popular groups of followed products and services
and incorporate customers’ feedback on these products and services. Experi-
mental results show the effectiveness of BigFoP in this big data analytics task
of mining social networks for interesting “following” patterns.

Acknowledgement. This project is partially supported by NSERC (Canada) and
University of Manitoba.

References

1. Cuzzocrea, A., Leung, C.K.-S., MacKinnon, R.K.: Mining constrained frequent
itemsets from distributed uncertain data. Future Gener. Comput. Syst. 37, 117–
126 (2014)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

3. Dhahri, N., Trabelsi, C., Ben Yahia, S.: RssE-Miner: a new approach for efficient
events mining from social media RSS feeds. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2012. LNCS, vol. 7448, pp. 253–264. Springer, Heidelberg (2012)

4. Jiang, F., Leung, C.K.-S.: Mining interesting “Following” patterns from social net-
works. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646,
pp. 308–319. Springer, Heidelberg (2014)

5. Jiang, F., Leung, C.K.-S.: Stream mining of frequent patterns from delayed batches
of uncertain data. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS,
vol. 8057, pp. 209–221. Springer, Heidelberg (2013)

6. Jiang, F., Leung, C.K.-S., Liu, D., Peddle, A.M.: Discovery of really popular friends
from social networks. In: IEEE BDCloud 2014, pp. 342–349. IEEE, Los Alamitos
(2014)

7. Kang, Y., Yu, B., Wang, W., Meng, D.: Spectral Clustering for Large-Scale Social
Networks via a Pre-Coarsening Sampling based Nyström Method. In: Cao, T., Lim,
E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015, Part
II. LNCS (LNAI), vol. 9078, pp. 106–118. Springer, Heidelberg (2015)

8. Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncer-
tain data streams with time-fading and landmark models. LNCS TLDKS 8, 174–
196 (2013)

9. Leung, C.K.-S., MacKinnon, R.K.: BLIMP: a compact tree structure for uncertain
frequent pattern mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014.
LNCS, vol. 8646, pp. 115–123. Springer, Heidelberg (2014)

10. Leung, C.K.-S., MacKinnon, R.K., Tanbeer, S.K.: Fast algorithms for frequent
itemset mining from uncertain data. In: Kumar, R., Toivonen, H., Pei, J., Huang,
J.Z., Wu, X. (eds.) IEEE ICDM 2014, pp. 893–898. IEEE, Los Alamitos (2014)

11. Leung, C.K.-S., Tanbeer, S.K.: Mining popular patterns from transactional data-
bases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp.
291–302. Springer, Heidelberg (2012)

12. Leung, C.K.-S., Tanbeer, S.K., Cameron, J.J.: Interactive discovery of influential
friends from social networks. Soc. Netw. Anal. Min. 4(1), Article 154 (2014)

Big Data Analytics of Social Networks 135

13. Ma, L., Huang, H., He, Q., Chiew, K., Wu, J., Che, Y.: GMAC: a seed-insensitive
approach to local community detection. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2013. LNCS, vol. 8057, pp. 297–308. Springer, Heidelberg (2013)

14. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)
15. Mumu, T.S., Ezeife, C.I.: Discovering community preference influence network by

social network opinion posts Mining. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 136–145. Springer, Heidelberg (2014)

16. Rader, E., Gray, R.: Understanding user beliefs about algorithmic curation in the
facebook news feed. In: Begole, B., Kim, J., Inkpen, K., Woo, W. (eds.) ACM CHI
2015, pp. 173–182. ACM, New York (2015)

17. Rajadesingan, A., Zafarani, R., Liu, H.: Sarcasm detection on Twitter: a behavioral
modeling approach. In: Cheng, X., Li, H., Gabrilovich, E., Tang, J. (eds.) ACM
WSDM 2015, pp. 97–106. ACM, New York (2015)

18. Tanbeer, S.K., Leung, C.K.-S., Cameron, J.J.: Interactive mining of strong friends
from social networks and its applications in e-commerce. J. Organ. Comput. Elec-
tron. Commer. 24(2–3), 157–173 (2014)

19. Wei, E.H.-C., Koh, Y.S., Dobbie, G.: Finding maximal overlapping communities.
In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 309–
316. Springer, Heidelberg (2013)

20. Yu, W., Coenen, F., Zito, M., El Salhi, S.: Minimal vertex unique labelled subgraph
mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057,
pp. 317–326. Springer, Heidelberg (2013)

	Big Data Analytics of Social Networks for the Discovery of ``Following'' Patterns
	1 Introduction and Related Works
	2 Background
	3 Our Data Analytics Solution for Mining ``Following'' Patterns from Big Social Network Data
	3.1 ``Following'' Relationships in Big Social Networks
	3.2 Discovery of ``Following'' Patterns
	3.3 The First Set of Map-Reduce Functions in BigFoP
	3.4 The Second Set of Map-Reduce Functions in BigFoP
	3.5 Subsequent Sets of Map-Reduce Functions in BigFoP

	4 Observations, Evaluation and Discussion
	5 Conclusions
	References

