New Pack Oriented Solutions for Energy-Aware
Feasible Adaptive Real-Time Systems

Aymen Gammoudi2®) Adel Benzina'2, Mohamed Khalgui',
and Daniel Chillet3

b LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia
{aymen.gammoudil,benzina.adel,khalgui.mohamed}@gmail . com
2 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia
3 IRISA Laboratory, ENSSAT, University of Rennes 1, Rennes, France
daniel.chillet@irisa.fr

Abstract. This paper addresses the management of tasks execution for
real-time reconfigurable systems powered by battery. In this context, one
of major problem concerns the management of battery life between two
different recharges. For this type of systems, a reconfiguration scenario
means the addition, removal or update of tasks in order to manage the
whole system at the occurrence of hardware/software faults, or also to
improve its performance at run-time. When such a scenario is applied,
the system risks a fatal increase in energy consumption, a violation of
real time constraints or a memory saturation. To prevent this type of
problems during the execution, a new scheduling strategy is necessary.
Our proposal is based on the definition of packs of tasks and the man-
agement of different parameters of these packs. For each reconfiguration
scenario, modifications will be performed on packs/tasks parameters in
order to respect the memory, real-time and energy constraints.

Keywords: Embedded system - Reconfiguration - Real-time and low-
power scheduling + OS software optimization + Software analysis

1 Introduction

Nowadays, reconfigurable real-time embedded systems are found in diverse appli-
cation areas including; avionics, automotive electronics, telecommunications,
sensor networks, and consumer electronics. In all of these areas, there is rapid
technological progress, yet, energy concerns are still the bottleneck. The min-
imization of energy consumption is an important criterion for development of
real-time embedded systems due to limitations in the capacity of their batteries;
in addition battery life can be extended by reducing power consumption [11].
The new generation of real-time embedded systems is addressing new criteria
such as flexibility and agility [5]. For these reasons, there is a need to define
strategy/methodology in embedded software engineering and dynamic recon-
figurable embedded technologies as an independent discipline. Concerning the
reconfiguration, two policies are defined in the literature: static and dynamic

© Springer International Publishing Switzerland 2015
H. Fujita and G. Guizzi (Eds.): SoMeT 2015, CCIS 532, pp. 73-86, 2015.
DOI: 10.1007/978-3-319-22689-7_6

74 A. Gammoudi et al.

reconfigurations. Static reconfigurations are applied off-line to apply changes
before the system cold start for a required functional safety [4], whereas dynamic
reconfigurations are applied during the execution (on-line) of the application, i.e.
at run-time. Dynamic reconfiguration can be manually applied by users [9] or
automatically applied by Intelligent Agents [6].

We consider here dynamic reconfiguration and we assume that the system
executes n real-time tasks initially feasible towards real-time scheduling. We also
assume that the system battery is recharged periodically with a recharge period
RP. The general goal of this paper is to ensure that any reconfiguration scenario
changing the implementation of the embedded system does not violate real-time
constraints and does not result in fatal energy over consumption or in mem-
ory saturation. Several research studies [11,12] have focused on the modification
of periods or WCETSs of tasks in order to decrease the processor utilization.
These studies are interesting, but the authors are not interested in the compu-
tation cost of the new parameters since they perform heavy calculations after
any reconfiguration scenario. Moreover, non-logical values of parameters that do
not meet user requirements can be generated. Finally, they do not consider the
memory overflow problem after any reconfiguration scenario. Unlike [11,12], we
are interested in this paper in deterministic solutions to control the computation
cost of parameters that should be realistic while controlling energy and memory
constraints.

As a major contribution of this paper, to respect the memory, real-time and
energy constraints, a new strategy is defined where after each reconfiguration
scenario, suitable and acceptable modifications are performed on parameters of
tasks by using well-defined formulas. After each reconfiguration scenario, [12]
proposes some solutions to be applied in an arbitrary manner in order to mini-
mize the energy consumption, but it is hard to implement the approach proposed
in an embedded platform because it is too complex to be executed on-line. In this
paper, we propose a methodological strategy that solves this drawback. Accord-
ing to system and battery state, this strategy proposes quantitative techniques
to modify periods, reduce execution times of tasks or remove some of them to
ensure real-time feasability, avoiding memory overflow and ensuring a rational
use of remaining energy until next recharge.

This paper is organized as follows: Sect.2 presents the state of the art of
reconfigurable embedded systems, low power consumption and real-time schedul-
ing. The third section explains the formalization and a case study. In Sect. 4 we
present the different proposed solutions. We evaluate this solution in Sect. 5.
Finally, we conclude and present our future works in Sect. 6.

2 State of the Art

Several papers in recent years considered real-time and low-power scheduling
policies [8,12,13].

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 75

2.1 Reconfiguration of Embedded Systems

Nowadays, a fair amount of research has been done to develop reconfigurable
embedded systems. In [11] Wang et al. propose a study for feasible low power
dynamic reconfigurations of real-time systems where additions and removals of
real-time tasks are applied at run-time. They aim to minimize the energy con-
sumption after any reconfiguration scenario. The research in [3] proposes an
agent-based reconfiguration approach to save the whole system when faults occur
at run-time. [1] develops an ontology-based agent to perform system reconfigu-
rations that adapt changes in requirements and also in environment. They are
interested in studying reconfigurations of control systems when hardware faults
occur at run-time. Although these rich and useful contributions provide interest-
ing results, no one is reported to address the problem of dynamic reconfigurations
under memory, real-time feasability and energy constraints simultaneously.

2.2 Real-Time Scheduling

Real-time scheduling has been extensively studied in the last three decades [2].
These studies propose several Feasibility Conditions for the dimensioning of real-
time systems. These conditions are defined to enable a designer to grant that
timeliness constraints associated with an application are always met for all pos-
sible configurations. In this paper, Two main classical scheduling are generally
used in real-time embedded systems: RM and EDF. Firstly, EDF is a dynamic
scheduling algorithm used in real-time operating systems. EDF is an optimal
scheduling algorithm on preemptive uniprocessors, in the following sense: if a
collection of independent jobs (each one characterized by an arrival time, an
execution requirement, and a deadline) can be scheduled (by any algorithm)
such that all the jobs complete by their deadlines, then the EDF will sched-
ule this collection of jobs such that all of them complete by their deadlines.
On the other hand, if a set of tasks is not schedulable under EDF, then no
other scheduling algorithm can feasibly schedule this task set. So, compared to
fixed priority scheduling techniques like Rate-Monotonic scheduling, EDF can
guarantee all the deadlines in the system at higher loading. When scheduling
periodic processes that have deadlines equal to their periods, and when the con-
text switching time is negligible, EDF has a utilization bound of 100%. The
necessary and sufficient condition for the schedulability of the tasks follows that
for a given set of n tasks, 7, 79,..., 7, with time periods Ty, T5, ..., T},, and
computation times (worst case execution time, WCET) of Cy, Cs, ..., C,, assum-
ing that T; = D; (period equals to deadline) for each task, the deadline driven
schedule algorithm is feasible if and only if U = Y | % < 1, [7]. Secondly,
RM is an on-line preemptive static priority scheduling strategy for periodic and
independent tasks assuming that T; = D; (period equals to deadline) for each
task 7;. The idea is to determine fixed priorities by task frequencies: tasks with
higher rates (shorter periods) are assigned with a higher priority. The necessary
and sufficient condition for the schedulability of the tasks follows that for a given
set of n tasks, 7, 72,..., 7, with time periods 71, T3, ..., T),, and computation

76 A. Gammoudi et al.

times of C1, Cs, ..., C,, the deadline driven scheduling algorithm is feasible if
Uu=>", % < n(2% —1). In our current work, to ensure the availability of
energy after each reconfiguration scenario, we focus on adapting task parameters
T; or C;. We propose to apply dynamic policy EDF when the performance of
the system is well, otherwise the static policy RM with limited characterigcics.

We use as a notation for this real-time feasibility condition: U = » 1" | = <

Qpolicy,Where oporicy = 1 for EDF scheduling and aporicy = n(2% — 1) for RM
scheduling.

2.3 Low-Power Scheduling

Power reduction techniques can be classified into two categories: static [10] and
dynamic. In [11], the power consumption P is proportional to the processor uti-
lization U. If the processor utilization is minimized, then the power consumption
is automatically minimized: P = k.U?2. Based on the previous formula, Wang
et al. in [11,12], present a simple run-time strategy that reduces the energy con-
sumption. They propose to modify the tasks period T}, assigning a single value
to all tasks which is not reasonable in practice [11]. Another solution proposed
is to reduce WCETSs (C;) assigning a single value to all tasks which is not rea-
sonable in practice [11]. The formulas proposed in [11,12] are simple with soft
calculation, but the main disadvantage is that it is not acceptable for a real-
time system to change the period of tasks more than a certain limit according to
user requirement. Moreover if tasks have very diverse periods Tj;, tasks that have
small periods will be too much affected if they will be aligned with tasks that
have large periods. The system overall will look like a synchronous system driven
by the slowest task. [11,12] propose the same principle to modify WCETs.

To address this problem, we propose to group the tasks that have “similar”
periods in packs by assigning a unique period to all tasks of a pack. This idea is
formalized in Sect. 3. To reduce energy consumption, [11,12] propose to remove
some tasks when the system lacks energy without any reasonable strategy. This
is a suitable approach, but if we have to remove a task, we shall preserve critical
real-time tasks and remove less important ones first. The complete formulation
of this strategy is given in the next sections of this paper. To verify the system’s
behavior, we use the real-time simulator Cheddar.

3 Problem Formalization for Reconfigurable Real-Time
Systems

This section defines a formalization of the problems exposed above illustrated
by different case studies.

3.1 Task Model

We assume in this paper that a real-time embedded system Sys is composed of a
set of tasks that should meet real-time constraints defined in user requirements:

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 7

Sys = {11, 72, ..., 7 }. Like in [7], Each task 7; of Sys is defined by (i) a release
time R;, (ii) its worst case execution time (WCETs) Cj, (iii) a period T;, (iv)
a maximum period Tymaz, (v) a deadline D;, (vi) an importance factor I; and
vii) a memory footprint M F;. Let us explain some parameters: (a) T;maz: is the
maximum period I; can not exceed according to system specification, (b) I;: is
an Integer variable (between 0 and 15), called “importance factor” according to
user functional requirements. If a task has a very high value I;, then the task
is less important, else the task is paramount. In case the embedded system has
a low energy, so it should to remove some tasks according to their importance
factor. Tasks that have I; = 0 are considered critical real-time tasks that can
not admit change in their parameters. Finally (¢) M F;: the memory space used
by the task 7;. In this paper, we assume that T; = D;, then each task 7; will be
described by: 7, = {R;, C;, T;, Tymax, I;, M F;}. After each reconfiguration sce-
nario, it is necessary to check the feasibility of real-time scheduling by verifying
the equation: > | % < Qpolicy-

3.2 Energy Model

We consider that a real-time embedded system is periodically fully recharged,
the energy model is characterized by (i) a quantity of energy available at full
recharge Fynq., (i1) an energy available at time ¢ : AE(t), (iii) a recharge period
RP and (iv) a time remaining until the next recharge At. As define in Sect. 2.3,
the power consumption P is proportional to the processor utilization U. So,
PaU, it means P = k.U?%. Then the power consumption is calculated by:

P=kU?= k.(z; %)2 (1)

We assume in this paper that £ = 1. To ensure that the system will run correctly
until the next recharge, it is necessary that at time t:

P(t).At < AE(t) (2)

P(t) is the power consumption at ¢, that means the power consumption
P(t)g%@. We define Pt (t):%@. After each reconfiguration scenario, we
have to ensure that: P(t)<Pjm:(t): This is the Energy Constraint.

3.3 Memory Model

We suppose that the memory model in a real-time embedded system is charac-
terized by (i) a memory size MS and (ii) an Available memory at time t, AM (¢).
Each task occupies at run-time M F; amount of memory. After each reconfigu-
ration scenario, we must ensure that: ., M F; < AM(t). This is the Memory
Constraint.

78 A. Gammoudi et al.

3.4 Reconfiguration Problem

We suppose that Sys is initially composed of n tasks at ¢1, Sys(t1) = {71, 72, ...,
T}, we also suppose that Sys(t1) is feasible. We assume in the following that
the system Sys is dynamically reconfigured at run-time such that its new imple-
mentation is Sys(te) = {71, T2, .., Tn, Tat1s -+, Tm }- The subset {711, ..., T } 18
added to the initial implementation {7y, 7s,...,7,}. To ensure that the system
will run correctly after this reconfiguration scenario, at time t, it is necessary to
check whether the new configuration respects these three constraints:

1. Real-time scheduling feasability constraint, denoted FeasibleC, must verify

m C;
Zi:l f S apolicy (3)

2. Energy constraint, denoted EnergyC, must verify
P(t) < Piimat(t) (4)
3. Memory constraint, denoted MemoryC, must verify
S MF, < AM(t) (5)

After each reconfiguration scenario, one or more of these constraints can be
violated, we have to find the suitable solution to each problem.

3.5 Case Study Problems Illustrations

We present in this section a case study that can show the different problems.
We use this notation to represent certain tasks 7, = {C;, T;, Tymax, I;}. Let us
assume that the system supports the following tasks: 71 = {4, 40,90, 1}, 75 = {6,
15, 50, 1}, 73 = {3,29,80,2} and 74 = {4,40,70,4}. It is assumed that we use
the EDF scheduling (aporicy = 1). We verify the system feasibility condition:

4
C;
U:Zi:0.7034§1 (6)
i=1

then the system is feasible. We suppose that at this time ¢, Ppjm(t) = 1.2 W. It
is assumed also that k = 1, then we calculate the power consumption at ¢:

4
Pt)=k+U?=1x() %)2 = 0.4947TW (7)

i=1 "

P(t) is less than Py, (t), then the Energy constraint is respected.
We suppose now that after a certain execution time, a first reconfigura-
tion is performed. For this reconfiguration, two tasks 75 = {5,20,50,1} and

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 79

76 = {6,25,50,5} are added. Due to this reconfiguration, we must verify if the
system respects the feasibility condition. We then compute U as,

6
Cj
U:Zf:1'193>1 (8)
i=1

Because the value of U is greater than 1, the system is no more feasible after
the reconfiguration. Furthermore, we must also verify the Energy constraint at
this time t:
S o
Pit)=k+U?=1%() —)%>=1423W 9
) > ©)
i=1
As P(t) is higher than Py, (t), then the Energy constraint is not respected.
So, for this reconfiguration scenario, two constraints are then violated:

— Problem1: Real-Time Constraint is violated.
— Problem?2: Energy Constraint is violated.

4 Solutions for Feasible Reconfigurable Real-Time
Systems

In this section, we present the different solutions that we propose to extend
[11,12]. These solutions are mainly based on the modification of the periods
(T;) or the WCETSs (C;) of tasks in order to ensure that the system will run
correctly until the next battery recharge after each reconfiguration scenario and
to satisfy the real-time feasibility and memory constraints. In fact if we take
Eqgs. 1 and 3, we can see that T; and C; are parameters that can be adapted to
apply a new configuration that respects the energy and feasibility constraints.
To ensure that the system is feasible, Wang et al. in [11,12] propose an approche
to modify the tasks period T; assigning the same value to all tasks [11]. Another
solution proposed is to reduce WCET while assigning also the same value to all
tasks [11]. As stated in Sect. 2.3, this approach presents two main drawbacks and
cannot be applied in practice. In this paper, we propose to group the tasks that
have “similar” periods in several Packs, denoted Pk, by assigning a unique new
period TN to all tasks of the first pack Pk;. Moreover all new periods affected
to pack Pk; are multiples of TNew the period affected to tasks belonging to
pack Pk;. We have only to compute the suitable V¢, This solution controls
the complexity of the problem.

4.1 Pack Model

Let us note that each time a new period TV¢" is affected to a task that has
originally a period T}, the cost is a delay penalty for this task of TVe® - T;. This
is applicable for tasks of Pack Pk;. For other packs Pk; the period is j* TNew.
So the cost for each task of Pk; is: (T™*-(T; mod TN¢¥)) mod T™¢?. The total

80 A. Gammoudi et al.

cost for the approach is the sum of all these costs. We need to seek the value
TNew that minimizes the cost of the new solution for the whole system:

Znil((TNew — (T mod TN™)) mod TN") is minimal, with T > Min(T;)
(10)

Running Example 1: (Case study). We have 6 tasks. According to Eq. 10
we seek a value of TV that leads to a minimum cost. Possible values of T™Vew
range from 155 to 40s. We found that TV = 265 is the optimal solution.

The same approach is applied when WCET is modified. It is necessary to
seek C'Nev such that:

Zwil((C’New — (C; mod CN™)) mod CN)is minimal, with CN Y > Min(C;)
(11)

Running Example 2: (Case study). We have 6 tasks. According to Eq. 11
we seek CNe¥ then we start the calculation of costs, with CN¢¥ = 3 until
CNew = 6. So CNe? = 3 is minimal with a cost equals to 5.

This approach leads to 2 solutions to make the system feasible denoted (Tgﬁw
and Cgfw) and 2 solutions to be sure that the system respects the energy con-
straint denoted (Tg;“’ and ngew). We present the proposed solutions for each
problem apart.

4.2 Solution A: Modification of Periods Under Real-Time
Scheduling Constraint:

Proposition 1. The extended T; of the task 7; is multiple of TH":

Ci Ci
TNew _ Zpkl Ci + Zsz 2 ot Zij J (12)
RT Qpolicy

Proof. In order to respect the real-time scheduling constraint according to a
scheduling policy “cposicy”: Sy S < Qpoticy- We assign each task to its Pack

i

Pk; according to its period T, Then:

C; C;
Z?+ZQ.T+...+;€:

C:
} S Qpolicy

Pk, Pko J
So,

1 C; C;

T(Z C; + Z 7 +...+ Z 7) < Qpolicy
Then,

pNew _ 2opk Cit Dopy 5 A 2,
RT

Qpolicy

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 81

Since the periods are integer:

>opi Ci T 2 pr, 5 T T Pk,

Qpolicy

TNew .

Now, we assign THE? to tasks of Pky, 2+ THEY to tasks of Pka, ..., j* TREY
to tasks of Pk;. After the modification of the periods, the processor utilization
of tasks is reduced, and can satisfy the real-time scheduling.

Running Example 3: Problem 1 (Case study). According to Eq. 10, the
optimal value of T™V¢" is 15s. Then we have three Packs: Pk; groups tasks that
have periods between 1 and 15, Pks groups tasks that have periods between
16 and 30 and Pkj3 groups tasks that have periods between 31 and 45. The new
period TN 5% that satisfies the real-time constraint is equal to 16 according to
Eq. 12. Then U is equal to 0.9791 < 1. It is obvious that the real-time constraint
is respected after applying a reconfiguration scenario.

4.3 Solution B: Modification of WCETSs Under Real-Time
Scheduling Constraint:

Proposition 2. The extended WCET C; of task 7; is multiple of CR&Y:

New __ Apolicy
Crr" = T 2 g (13)
ZPkl T; + ZPk‘z T; +.t ZPk]‘ T;

i

Proof. We followed the same used technique to calculate the new WCETSs. After
we reconfigure the WCETSs, we should get ZZ 1 T’ < Qpolicy- We assign each
task to its Pack Pk; according to its WCETs Cj, Then:

j.C
Z—+Z—+ +zk:j TS

Pkl Pk}g
So,

PIEES S S e

Pk & Pks &
Then,

CNew _ QXpolicy
1 2 j
Yo Tt pke Tt T ok, B

We assign OREY to tasks of Pkq, 2 CYEY to tasks of Pka,, j * CY&Y to

tasks of Pk;. After the modification of the WCETS, the processor utilization of
tasks is reduced, and can satisfy the real-time scheduling.

82 A. Gammoudi et al.

Running Example 4: Problem1 (Case study). According to Eq. 11, the
optimal value of CV¢¥ is 3s. Then we have two Packs: Pk; groups tasks that
have WCETSs between 1 and 3 and Pks groups tasks that have WCETs between
4 and 6. The new WCET CR&¥ satisfies the real-time constraint is equal to 2
according to Eq. 13. Then, U is equal to 0.895 < 1. It is obvious that the real-time
constraint is respected after applying a reconfiguration scenario.

4.4 Solution C: Modification of Periods Under Energy Constraint:

Proposition 3. The extended T; of task 7; is multiple of ngew

Ci Ci
ZPkl OZ + ZP/CQ 7 + A + ZP}{)J 7

/ Primit(t)
k

Proof. Tt is necessary that the current povver P(t) = k.U? should be less than the
critical power Pjimge, with qumt(t)— (). then we should get k.U? < Primit ()

U <4/ P“"”t(t) . So, ZZ 1 T < %t(t) We assign each task to its Pack Pk;

according to its perlod Then

Tpe" = (14)

C; C; Piimit(t)
27t a7 TN T
Pk, Pk Pk,
Primit(t)
S S
Pk: Pk
So,
TNew — (Zpr, Gt 2opny % et ZP’W %)
Primit(t)
Z

We assign T]]EV;“’ to tasks of Pky, 2 % T]];Vgew to tasks of Pkg, ..., j % ngew to
tasks of Pk;. After the modification of the periods, the processor utilization of
tasks is reduced which can respect the energy constraint.

Running Example 5: Problem 2 (Case study). According to Eq. 10, the
optimal value of TV¢" is 15s. Then we have three Packs: Pk; groups tasks that
have periods between 1 and 15, Pk, groups tasks that have periods between 16
and 30 and Pk3 groups tasks that have periods between 31 and 45. The new
period ngew that satisfies the energy constraint remains equal to 15 according to
Eq. 14. Then, U is equal to 1.0392. So, P = k.U? = 1xU? = 1.08 W< 1.2W. It is
obvious that the energy constraint is respected after applying a reconfiguration
scenario.

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 83

Note: In this running example the real-time constraint is violated because U =
1.0392 > 1, we should seek another period by using the solution A and choose
the maximum to satisfy the two constraints.

4.5 Solution D: Modification of Periods Under Energy Constraint:

Proposition 4. The extended WCET C; of task 7; is multiple of CJJEV;“’:

Primit(t)
CNew _ - Qk 2 (15)
by 77 T 2Py 7 o+ b, 1)

Proof. It is necessary that the current power P(t) = k.U? should be less than the
critical power Piimit, With Pliyi)= AE(t) , then we should get k.U? < Pt (1)

Primit(t) m Cy Plsz (t)
U < /7t SO ZZ 1% < Ti

We ass1gn each task to 1ts Pack PE; according to its WCETs C;, Then:

Z?“in“i’ +ZJC /]Dlzmit

Pkq Pko
PN N S
Pk T

So,
| Plimit
ONew _ k
1 2 j
Dok Tt ke T T T 2, T
We assign C};Vge“’ to tasks of Pk, 2*ng€w to tasks of Pk,, j*ngew to tasks

of Pkj. After the modification of the WCETS, the processor utilization of tasks
is reduced, and can respect the energy constraint.

Running Example 6: Problem 2 (Case study). According to Eq. 11, the
optimal value of CN°? is 3s. Then we have two Packs: Pk; groups tasks that
have WCETSs between 1 and 3 and Pks groups tasks that have WCETs between
4 and 6. The new WCET ng@“’ that satisfies the energy constraint is equal
to 2 according to Eq.15. Then, U is equal to 0.894, then Pk = k.U? = 1%
U? = 0.799 < 1.2W. It is obvious that the energy constraint is respected after
applying a reconfiguration scenario.

Note: If the real-time constraint is violated (U > 1), we should seek another
WCET by using the solution B and choose the minimum to satisfy the two
constraints.

84 A. Gammoudi et al.

4.6 Solution E: Removal of Tasks

This solution proposes the removal of less important tasks according to the
importance factor I; in order to minimize the energy consumption after any
reconfiguration scenario of an embedded system that affects the energy con-
straint.

4.7 New Deterministic Solution for Real-Time and Low-Power
Scheduling of Reconfigurable Embedded Systems Under
Memory Constraints

We can implement our approach by this algorithm with complexity O(n). We use
the following functions: ProcessorUtilization(k): It is a function that returns
the processor utilization value when it runs with a given tasks parameters
denoted k. Execution(k): System execution by applying k, Execution(): Regu-
lar execution, Max(a,b): It is a function that returns the maximum between a
and b, Min(a,b): It is a function that returns the minimum between a and b.

Algorithm 1. Decision Strategy

while Reconfiguration do
if (!MemoryC) then
Ezxecution(SolutionE)
else if (FeasibleC) AND (EnergyC) then
Ezecution()
else if (!FeasibleC) AND (EnergyC) then
if (ProcessorUtilization(SolutionA) < ProcessorUtilization(SolutionB)) then
Ezecution(SolutionA)
else
Ezecution(SolutionB)
end if
else if (FeasibleC) AND (!EnergyC) then
if (ProcessorUtilization(SolutionC) < ProcessorUtilization(SolutionD)) then
Ezecution(SolutionC)
else
Ezecution(SolutionD)
end if
else
if (ProcessorUtilization(Maz{SolutionA, SolutionC'}) <
ProcessorUtilization(Min{SolutionB, SolutionD}) then
Ezecution(Maxz{SolutionA, SolutionC'})
else
Ezecution(Min{SolutionB, SolutionD})
end if
end if
end while

5 Evaluation of Performance

To evaluate the current paper’s contribution to the related works (RW) in [11,12].
We assume a case of a system composed of 100 tasks that can be reconfigured
at run-time under memory and energy constraints. For this purpose we adopted
the same set of tasks used in [11] to evaluate this algorithm. We calculate the

New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time 85

Evalution Solution A Evalution Solution B

450 120
400
350

300
——RW

250
% ——RW
150
100 —&-Solution A —@—Solution
20
50

10 20 40 60 80 100 10 20 40 60 80 100

Costof Slowing Ti
Cost of Reducing WCET
@
3

Number of Tasks Number of Tasks

Fig. 1. Cost of modication of periods T; (Solution A) and WCETs C; (Solution B).

cost of our solutions compared to the proposed solution in [11,12]. The cost of a
solution is the total delay introduced to periods T; or to WCETSs C; as explained
in Sect.4.1. In Fig. 1, we show a comparison with RW when we apply Solution
A (Fig.1 left side) and Solution B (Fig. 1 right side). For each reconfiguration
scenario, modifications will be performed on packs/tasks parameters in order to
respect the memory, real-time and energy constraints. Thanks to this concept of
packs, we can notice that our solution is less costly in both cases A and B than
RW. Moreover, our solutions are implemented by an algorithm with complexity
O(n), but the complexity of the algorithm of these related works [12] is O(n?)
(two nested for-loops).
More evaluation work has to be developed through simulation:

— The processor utilization while considering several random distributions of a
set of tasks and comparison with [11,12].
— The total delay (Solution cost) also with randomly distributed set of tasks.

6 Conclusion

This paper is interested in reconfigurable real-time embedded systems when
the battery recharges are done periodically. Our study concerns specifically the
influence of the reconfiguration on memory, energy and real-time feasibility con-
straints. We propose a new strategy that ensures a low-cost feasible real-time
and low-power reconfiguration of embedded systems while meeting memory lim-
its. Thanks to the estimation of available energy after any reconfiguration, the
system is temoporally configured to run the embedded tasks with low-cost com-
putation. In addition to the control of memory, our solution is more realistic
since it generates logical values of real-time parameters to be assigned to differ-
ent packs. This original contribution is more useful than related works in [11,12]
since it is applicable in practice. In our future works, we will be interested in the
implementation of the paper’s contribution that will be evaluated by assuming
real case studies.

86

A. Gammoudi et al.

References

10.

11.

12.

13.

. Al-Safi, Y., Vyatkin, V.: An ontology-based reconfiguration agent for intelligent

mechatronic systems. In: Mafik, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS (LNAI), vol. 4659, pp. 114-126. Springer, Heidelberg (2007)

Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity. In:
Leung, J.Y.T. (ed.) Handbook of Scheduling: Algorithms Models and Performance
Analysis. CRC Press, Boca Raton (2003)

William Brennan, R., Fletcher, M., Norrie, D.H.: A holonic approach to reconfiguring
real-time distributed control systems. In: Mafik, V., Stépankovs, O., Krautwurmové,
H., Luck, M. (eds.) ACAI 2001, EASSS 2001, AEMAS 2001, and HoloMAS 2001.
LNCS (LNAI), vol. 2322, pp. 323-335. Springer, Heidelberg (2002)

Angelov, C., Sierszecki, K., Marian, N.: Design models for reusable and reconfig-
urable state machines. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig,
F.J. (eds.) EUC 2005. LNCS, vol. 3824, pp. 152-163. Springer, Heidelberg (2005)
Gharsellaoui, H., Ben Ahmed, S.: Real-time reconfigurable scheduling of sporadic
tasks. In: Cordeiro, J., Van Sinderen, M. (eds.) ICSOFT 2013. CCIS, vol. 457, pp.
24-39. Springer, Heidelberg (2014)

Khalgui, M., Mosbahi, O., Li, Z., Hanisch, H.: Reconfigurable multi-agent embed-
ded control systems: from modelling to implementation. IEEE Trans. Comput.
60(4), 538-551 (2010)

Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20(1), 46-61 (1973)

Quan, G., Hu, X.: Minimum energy fixed-priority scheduling for variable voltage
processors. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 23(9), 1062-1071
(2003)

. Rooker, M.N., Siinder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G.:

Zero downtime reconfiguration of distributed automation systems: the eCEDAC
approach. In: Maiik, V., Vyatkin, V., Colombo, A.-W. (eds.) HoloMAS 2007. LNCS
(LNAI), vol. 4659, pp. 326-337. Springer, Heidelberg (2007)

Shin, Y., Choi, K.: Power conscious fixed priority scheduling for hard real-time
systems. In: 1999 36th Proceedings of Design Automation Conference, pp. 134—
139 (1999)

Wang, X., Khalgui, M., Li, Z.: Dynamic low power reconfigurations of real-time
embedded systems. In: Proceedings of the 1st International Conference on Perva-
sive and Embedded Computing and Communication Systems, Portugal (2011)
Wang, X., Khemaissia, I., Khalgui, M., Li, Z.: Dynamic low-power reconfiguration
of real-time systems with periodic and probabilistic tasks. IEEE Trans. Autom.
Sci. Eng. 12(1), 258-271 (2014)

Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy.
In: 1995 Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pp. 374-382 (1995)

	New Pack Oriented Solutions for Energy-Aware Feasible Adaptive Real-Time Systems
	1 Introduction
	2 State of the Art
	2.1 Reconfiguration of Embedded Systems
	2.2 Real-Time Scheduling
	2.3 Low-Power Scheduling

	3 Problem Formalization for Reconfigurable Real-Time Systems
	3.1 Task Model
	3.2 Energy Model
	3.3 Memory Model
	3.4 Reconfiguration Problem
	3.5 Case Study Problems Illustrations

	4 Solutions for Feasible Reconfigurable Real-Time Systems
	4.1 Pack Model
	4.2 Solution A: Modification of Periods Under Real-Time Scheduling Constraint:
	4.3 Solution B: Modification of WCETs Under Real-Time Scheduling Constraint:
	4.4 Solution C: Modification of Periods Under Energy Constraint:
	4.5 Solution D: Modification of Periods Under Energy Constraint:
	4.6 Solution E: Removal of Tasks
	4.7 New Deterministic Solution for Real-Time and Low-Power Scheduling of Reconfigurable Embedded Systems Under Memory Constraints

	5 Evaluation of Performance
	6 Conclusion
	References

