
PEDASA: Priority, Energy and Deadline Aware
Scheduling Algorithm

Maroua Gasmi1,2(B), Olfa Mosbahi2, Mohamed Khalgui2, and Luis Gomes3

1 Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
mra.gsm@gmail.com

2 LISI Lab, INSAT Institute, University of Carthage, Tunis, Tunisia
{olfamosbahi,khalgui.mohamed}@gmail.com

3 Universidade Nova de Lisboa, Lisbon, Portugal
lugo@fct.unl.pt

Abstract. We present a new approach for scheduling workloads con-
taining periodic tasks in soft real-time systems. The proposed algorithm
consists on finding a new set of priorities depending of the three main
criteria identified in a real-time system: fixed priority initially assumed
by user, deadline and energy efficiency. Our proposition involves a com-
putational procedure that is responsible of extracting the new values of
priorities out of the importance of the three factors previously mentioned.
An eventual re-adjustment of the deadlines is also faced all along with
the reloading of the system’s power on specified instants. The resulting
system is, therefore, feasible and effectively schedulable compared to the
mono-criteria algorithms. This contribution allows also the definition of
precise instants of reloading which enforces the new concept of extending
the lifetime of the system.

Keywords: Real-time · Multi-criteria · Scheduling and optimization ·
Energy efficiency

1 Introduction

In a world where technology does not stop evolving, basic daily activities are sub-
stituted by extremely intelligent systems that keep getting optimized by time.
Real-time systems offer a big range of services adapted. Moreover, these systems
consist of one or more subsystems that should respond in a precise and finite
time specified by the external world. Thus, a result obtained after a stated dead-
line remains false even if it is logically right. Consequently, the total correctness
of an operation depends not only upon its logical correctness, but also upon the
time in which it is performed which depends on several criteria. Although many
scheduling algorithms concentrate only on timing constraints, others exist and
need to be acknowledged as well. For this purpose, some works got oriented to
the scheduling using a multi-criteria method. Nevertheless, it is more realistic to
find compromises between the different parameters than to choose a single para-
meter at once. This way, it is possible to partially satisfy the varied objectives.
c© Springer International Publishing Switzerland 2015
H. Fujita and G. Guizzi (Eds.): SoMeT 2015, CCIS 532, pp. 59–72, 2015.
DOI: 10.1007/978-3-319-22689-7 5



60 M. Gasmi et al.

The basic problem in this paper is how to deal with scheduling the existing tasks
while keeping an eye on all of the criteria at once. In the case of a soft real-time
system, it seems crucial to watch the feasibility of most of the tasks while cal-
culating the new priorities. As an example of works who got concerned about
this matter, the author in [11] introduced a multi-criteria algorithm to sched-
ule soft real-time tasks on uniform multiprocessor systems. This approach uses
three criteria, namely deadline, laxity and interval. Similarly, In the work [2], the
approach is carried considering the priority, the processing time as well as the
waiting time of a task. The previously mentioned work, as well as the approach
introduced in [10] treat several parameters while scheduling real-time tasks by
considering a fuzzy reasoning. Although this reasoning is capable of dealing with
uncertainties in a many-valued logic, there are more than the simple “true” or
“false” responses. In fact, this logic only disposes of approximations rather than
fixed and exact analysis especially when extreme precision is required. Another
limiting factor of fuzzy reasoning is the extensive testing it needs to find an
adequate decision. In the contrary, the algorithm RT-DBP [1] takes into account
many scheduling parameters. All the criteria are associated with weight para-
meters in order to give more weight to one criterion in particular depending on
the application requirements. Although this approach uses computational pro-
cedures instead of estimations, the calculations are made during run-time which
can have an impact on the global time processing. Like all the mentioned works,
our approach treats the setting of new priorities depending on the existing cri-
teria. It computes the latter mentioned priorities and finds the exact moments
where the reloading of the system energy should take place. As a matter of fact,
the particularity of the work is that it does not totally ignore the predefined
parameters. Alternatively, it relates to them when it comes to calculating the
new ones. Among these parameters we specifically find the first set up priority
which indicates the degree of importance that a prospective user accords to the
task. The other parameters are eventually, the deadline which is a crucial real-
time efficiency indicator and the level of energy consumption which has a great
impact on the functioning of the system in general. Another advantage presented
in our proposition is the calculation that is performed in an off-line mode. This
way, no computational overheads are imposed on the system during its execu-
tion. In order to explicit our proposition, we expose in the following section the
miscellaneous parameters defining a real-time system model as well as the most
substantial static scheduling algorithms dealing, separately, with the priority,
deadline and energy consumption parameters. The impact of applying each of
these algorithms on a predefined set of tasks is pinpointed through Sect. 3. After
mathematically formalizing the needed elements in Sect. 4, we detail the pro-
posed solution PEDASA in the section that follows. We first start by analyzing
the potential priorities carried out of the predefined parameters. The exact values
of these priorities are, then, set by checking the possibility of a maximum regard
to deadline in parallel with the consideration of the initial priorities respect all
along with an adjustment of periods when necessary. Counting on the resulting
set of priorities, we proceed to the search of the exact moments at which the



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 61

energy level in a system can be reloaded. This enlarges the time span of the
tasks and gives them the possibility to execute without any power constraints
imposed on them.

2 Background

In this section we aim to introduce the basic axes on which stands the context
of this work. Therefore, we conduct a definition of the elemental real-time model
as well as an overview on the existing mono-criteria scheduling algorithms that
allow a more effective arrangement of the latter.

2.1 Real-Time System Model

Concretely, a real-time systemshouldnecessarily guarantee a responsewithin strict
time constraints, referred to as deadlines. For this matter, three classes are intro-
duced: (i)Hard where missing a deadline is totally fatal, (ii)Firm where few dead-
linemisses are allowable, butmayaffect the quality of servicewithin the systemand
(iii) Soft, like our chosen system, where the practicality of a result debases after
its deadline, thereby altering the efficiency of the system [12]. In a multi-tasking
method, several tasks can be part-way through execution at the same time, and
more than one task is advancing over a specific period of time. The parameters of
a real-time task, denoted as τi, are mainly: (i) Pi Static priority representing the
degree of functional importance related to the task, (ii)Orderi Order of execution
of a task, (iii) Ai Arrival time, (iv) Si Actual starting time, (v) Ci Computation
time also known as Worst Case Execution Time (WCET), (vi) Ti Period, (vii)Di

Deadline, (viii) Ri Response time, (ix) Fi Actual time at which the task finishes
its execution, (x) BFi Best finishing time and (xi) Ei Percentage of power needed
for each task. The execution of the periodic tasks within a system is repeated every
hyper-period, denoted by Thyp. The latter is introduced as the smallest interval of
time after which the periodic patterns of all the tasks are repeated. It is typically
defined as the LCM (least common multiple) of all the periods. In this paper, we
are interested in computing a new set of priorities in order to maximize the number
of feasible tasks.

2.2 Mono-criteria Scheduling Algorithms

A scheduling algorithm enables the orchestration of priorities to the set of tasks.
The performance of such an algorithm is judged for how quickly or how pre-
dictably a scheduled real-time system can respond [8]. Therefore, the assigned
priorities are based on deadline or some other timing constraint. In a time shared
scheduling, such in a multi-tasking system, a scheduler has the power to preempt
a task and to resume its execution after a while [9]. This change is known as a
context switch and several scheduling algorithms use preemption in order to fin-
ish the execution of a higher priority task. In literature, two classes of real-time



62 M. Gasmi et al.

scheduling algorithms are introduced: static or dynamic [5]. In static schedul-
ing, decisions are made during compilation. The parameters of all the tasks are
assumed to be known in advance and a schedule is built based on this assump-
tion. Consequently, no modification can be applied online once the scheduler is
set. On the other hand, the decisions related to the dynamic scheduling are done
at run-time. Although, dynamic schedulers are flexible and adaptive, they can
cause a significant overheads because of consuming run-time processing. Reason
why, several industrial propositions insist on making use of the static scheduling
algorithms instead. Usually, these algorithms use a single criteria for determin-
ing the priorities of the different tasks. This priority can be fixed ahead, as in
Fixed Priority Preemptive (FPP) algorithm, or concluded out of another para-
meter. By parameter we can refer to the period of the task, as in Rate Monotonic
Scheduling (RM), or energy consumption as in Low Energy First (LEF). In the
Fixed Priority Preemptive Algorithm (FPP), the scheduler makes sure that at
any instant, the processor executes the highest priority task among the rest of
the tasks that are currently waiting for execution [13]. As for the Rate Monotonic
scheduling algorithm (RM), the static priorities are assigned based on task
periods [6]. The task with the shortest period gets the highest priority, and
the one whose the period is the longest gets the lowest static priority. Since in
most cases, the period of the task is analogous with its deadline, the Deadline
Monotonic algorithm is an extension of RM. Considering the energy consump-
tion parameter, several works treated the case where the lower the power con-
sumption of a task the most prioritized it is [7]. Compared to the mentioned
algorithms, PEDASA introduces the possibility of assigning new priorities that
take into consideration the three criteria all at once. It also offers the ability of
defining a set of moments at which the energy reloads enhancing therefore the
efficiency of the complete system.

3 Case Study

Through this section, we show by a concrete example how choosing a single
scheduling criteria does not allow the satisfaction of others. For this matter,
let us take an example of a set of six tasks. As mentioned in Sect. 2, each one
is characterized by a static priority P, a period T that also corresponds to its
deadline, a percentage of energy consumption E and an execution time C. The
different values of these criteria are given by Table 1. It is to mention that the

Table 1. Parameters of the tasks.

τ1 τ2 τ3 τ4 τ5 τ6

P 6 5 4 3 2 1

T 120 170 50 80 110 100

E 60 30 50 10 40 20

C 30 10 10 20 10 10



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 63

release time of all the tasks is 0 (e.g. all tasks are assumed to be synchronous).
Each time, we use a scheduling algorithm based on one of the assumed criteria.
At a first time, Fixed Priority Protocol (FPP) is applied to the set of tasks then
Rate Monotonic (RM) and finally the Low Energy First Protocol (LEF).

3.1 Fixed Priority Protocol (FPP)

When using the FPP algorithm, the relation between the priorities of the differ-
ent tasks is defined by the Eq. 1:

P1 > P2 > P3 > P4 > P5 > P6 (1)

The values of the response times using this protocol are {R1 = 30;R2 = 40;
R3 = 50;R4 = 80;R5 = 120;R6 = 220}. Although the tasks conserve their fixed
priorities, it is obvious that some of them miss their deadlines. In fact, only the
execution of the tasks τ1, τ2, τ3 and τ4 goes normally. As for the tasks τ5 and τ6,
their response times exceed their deadlines. Considering the energy consumption
when using this scheduling algorithm, τ1 and τ2 are the only ones executing since
they consume 80 % of the battery.

3.2 Rate Monotonic (RM)

Since the scheduling of the tasks depends on their periods, the relation between
the priorities of these tasks is given by the Eq. 2. This way none of the following
tasks respects the initially given priorities.

P3 > P4 > P6 > P5 > P1 > P2 (2)

Therefore, using this scheduling algorithm only τ3, τ4, τ5 and τ6 (the tasks
with the highest priorities) respect their deadlines. Therefore, the values of the
response time are {R1 = 140;R2 = 240;R3 = 10;R4 = 30;R5 = 50;R6 = 40}.
Changing the order of execution allows τ3, τ4 and τ6 to operate with the existing
power.

3.3 Low Energy First Protocol

When using the Energy aware algorithm, the relation between the priorities of
execution of the different tasks is defined by the Eq. 3 which is totally different
from the initial one.

P4 > P6 > P2 > P5 > P3 > P1 (3)

The execution of the tasks proves that the tasks τ3 and τ1 do not respect
their deadlines. The corresponding response times are {R1 = 160;R2 = 40;
R3 = 60;R4 = 20;R5 = 50;R6 = 30}. For a single criteria scheduler, it is dif-
ficult to concentrate on all the different parameters of a real-time system. In
the works related to these scheduling algorithms, the focus on one criteria at
a time leads to ignoring the other ones. This been said, the originality of the
proposed approach lies in respecting all of the mentioned parameters in order to
get a scheduled system that is aware of the deadline constraints and the energy
effectiveness.



64 M. Gasmi et al.

4 Formalization

Through this section, we tend to mathematically represent the underlying assump-
tions. Moreover, we expose the problem treated in this paper analytically. We also
formalize all the aspects related to energy, deadline and initially fixed priorities in
order to have a precise overview on the given problem.

4.1 Energy

The studied system Sys is composed of n tasks {τ1...τn} and takes into account
the energy consumption aspect. We suppose that obtaining the information about
the energy does not require any power consumption and that the battery level gets
restored every specific amount of time. As a consequence, let E(t) be the level of
available energy at the moment t. For a non preemptive scheduling algorithm, it is
possible toknowtheamountof energyconsumedata specificmoment.The function
allowing such awareness is denoted by E

′
i(t) and given by Eq. 4. Therefore, a precise

task τi (i = 1..n) does not consume any power before its starting time Si and right
after its best finishing time BFi (at this level, we consider a non preemptive task).
However inside of the interval limited by these two values, the energy consumption
increases continuously following a general function Consump.

E
′
i(t) =

⎧
⎨

⎩

0 if t ≤ Si ∨ t > BFi

Ei if t = BFi

Consump(t, BFi, Si) otherwise
(4)

where Consump represents the exact equation related to the consumption.
We assume that we do not really have a precise idea on the latter mentioned
function. That’s why in this paper we are supposing that the energy is consumed
exponentially. The amount consumed at the starting moment is 0 and at the best
finishing time the whole amount related to the task is drained.Therefore, we pro-
pose a function that allows having the previously mentioned characteristics and
is given by Formula 5. The scope of this function denoted by β allows having
a proportional increase of consumption and is calculated through the couple of
values of Consump obtained at Si and BFi.

Consump(t, BFi, Si) = 1 − exp− β(t−Si)

β = −log(1− Ei
100 )

BFi−Si

(5)

The power consumption in the system is also dependent on the priority of the
tasks. In fact, the energy is consumed starting from the more prioritized task
and going on. In the best cases, all of the n tasks are executed before the total
exhaustion of the battery. This means that if the energy is consumed in a specific
order, it is preferable that the sum of the amount of energy consumed does not
exceed 100 % of the available power. This case is represented by Eq. 6.

n∑

i=1

EP (i)/100 < 1 (6)



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 65

where EP(i), given by Eq. 7, represents the percentage of energy consumed by
the task that the value of its priority is n+1− i and, as a consequence, its range
of execution is i.

EP (i) = {Ej/∃j, 0 < j ≤ n ∧ Pj = n + 1 − i} (7)

In the general case, let TES(SA) be the set of tasks that are executed before
the total exhaustion of the battery. The number of elements in this set, given by
Eq. 8, totally depends on the chosen scheduling algorithm SA.

TES(SA) = {∃τi/0 < i ≤ n,

n∑

i=1

EP (i)/100 < 1} (8)

In the best case the number of the elements of TES(SA) corresponds to the total
number of tasks in the system. This can be translated by the fact that all the tasks
are applied without the total tiredness of the energy. This is described by Eq. 9.

Card(TES(SA)) = Card(Ts) = n (9)

4.2 Deadline

The respect of deadline within a real-time system is also a crucial need that
demands attention. Therefore, the best real-time scheduling algorithm is the one
that allows all the tasks to finish their execution before reaching their deadlines.
Let TDS(SA) be the set of tasks that respect their deadlines under a given
scheduling algorithm SA. This set is represented by Eq. 10 where the elements
are only the tasks whose their execution (the sum of the arriving and the response
times) does not exceed the predefined deadline.

TDS(SA) = {∀i,∃τi/0 < i ≤ n ∧ Ai + Ri ≤ Di} (10)

The whole system is considered feasible when the number of elements in the set
TDS(SA) is equal to n (the number of tasks in the set Ts). This is represented
by Eq. 11.

Card(TDS(SA)) = Card(Ts) = n (11)

4.3 Priority

The priorities initially fixed in the system are sometimes of extreme functional
importance. Thus, ignoring them for the profit of other parameters can affect
the whole system in an undesirable way. In the perspective of this criterion, let
TPS(SA) be the set of tasks that conserve their initial priorities under a given
scheduling algorithm SA. This set is represented by Eq. 12. We suppose that IRi

is the initial range corresponding to a task τi and resulting from the initial given
priority. FRi(SA), on the other hand, corresponds to the final range obtained
after applying a feasible scheduling algorithm SA. These values correspond to



66 M. Gasmi et al.

the order in which the task should be executed. The following set contains only
the tasks that conserved their order (the ones where IRi = FRi).

TPS(SA) = {∀i,∃τi/0 < i ≤ n ∧ IRi = FRi(SA)} (12)

Similarly, the system is completely feasible if the number of elements in the set
TPS(SA) is equal to n (the number of tasks in the set Ts). This is represented
by Eq. 13.

Card(TPS(SA)) = Card(Ts) = n (13)

4.4 Generalization

Generally speaking, applying a scheduling algorithm can affect the system in
3 different ways. In the first possibility (or the best case), the Eqs. 9, 11 and
13 are all perfectly verified. In the second case, only one of the two conditions
is met and in the worst case none of them is verified. Let ES, DS and PS be
respectively the Boolean verification functions of the Eqs. 9, 11 and 13. Therefore
the formalization of the states that a system can have is given by formula 14.

∀τi ∈ Ts, State(Sys) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ES ∧ DS ∧ PS(State 1)
∨

¬ES ∧ DS ∧ PS(State 2)
∨

¬ES ∧ ¬DS ∧ PS(State 2)
∨

ES ∧ ¬DS ∧ ¬PS(State 2)
∨

ES ∧ DS ∧ ¬PS(State 2)
∨

¬ES ∧ ¬DS ∧ ¬PS(State 3)

(14)

The pinpointed problem is basically how to get the priority, fixed by a user
depending on its preferences, to be respected all along with the deadline, which is a
crucial real-time parameter, and the energy efficiency. The following section details
the proposed solution that solves this confusion in a simple and effective way.

5 Proposed Approach: PEDASA

The solution to the problem mentioned in Sect. 4 is given by the proposed
scheduling algorithm entitled PEDASA. It is a static algorithm that consists
on manipulating certain parameters in order to allow all of tasks to meet their
deadlines and to execute before the exhaustion of the battery. The new sug-
gested priorities take into consideration the importance of the 3 principle criteria:
(i) fixed priority, (ii) deadline and (iii) energy efficiency in the perspective of
each task.



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 67

5.1 Real-Time Reasoning

New Priorities Analysis. The procedure of computing the new priorities is
based on the three importance factors previously mentioned. In fact, αP , αD

and αE are rates related to the importance of respectively the existing priority,
the fixed deadline and the energy efficiency. The relation between these rates is
given by Eq. 15.

0 ≤ αP , αD, αE ≤ 1, αP + αD + αE = 1 (15)

The next step consists on sorting the tasks, each time depending on the para-
meter, while according a positive number that corresponds to their order. Let
mij be the order factor; i (1..n) corresponds to the index of the task and j to
the parameter (1: Fixed Priority, 2: Deadline and 3: Energy consumption). This
number does not exceed the number of elements in the task set Ts. When sorting
the tasks, we consider an ascending order for the fixed priority and a descendant
one for the deadline and the energy consumption. Let M be the matrix relating
the order factors of the tasks to the defined parameters. This matrix, having
as dimensions n (the number of tasks) rows and 3 (corresponds to the system
parameters) columns, is composed of the elements mij . Let K(τi) be the value of
the new priority of the task τi that depends on the importance factors αP , αD

and αE , and the order factors of this latter. We suppose that K is a vector that
contains the new priorities of all the tasks. Therefore, Eq. 16 defines the value
of these new priorities.

K =

⎛

⎝
αP

αD

αE

⎞

⎠ ∗ M (16)

The idea behind this calculation, is to have resultant priorities issued from the
existing ones. Instead of running through all the possibilities, we stay focused on
the preferences given by the system at first place. This guarantees the respect
of the first desired parameters.

Final Values of PEDASA Priorities. Finding the exact values of αP , αD

and αE should be based on a well-founded decision making. Accordingly, the
main intent of this approach is to maximize the number of tasks respecting their
deadlines without totally ignoring the delimited priorities. In fact, the predefined
priority set does not allow the tasks to fully respect their deadlines. Hence, we
aim for less than n tasks respecting the desired arrangement. Thus, while search-
ing for the exact values of αP , αD and αE , we start with a heuristic algorithm
that runs through all the possibilities. Let V ectD and V ectP be the vectors con-
taining, respectively, the number of tasks complying with their deadlines and
initially fixed priorities under different values of the importance factors. Simply,



68 M. Gasmi et al.

these vectors refer to the number of elements of the Eqs. 10 and 12. Two con-
straints are considered while searching for the exact values of αP , αD and αE :
(i) when fixing these values we should have a number of tasks respecting their
deadlines that is greater or equal to the number of tasks whose the old priorities
correspond to the new ones, and (ii) the multiplication of these two numbers
should be the maximum amongst all the possible values. The fact of considering
the multiplication is based on the approximation to the logical operation AND
exposed in [14]. This is mathematically described by Eq. 17. The choice behind
this equation is founded on the desire of guaranteeing, so far, a higher number of
tasks respecting their deadlines while partially obeying the predefined priorities.
However, the complication occurs once the number of deadline-conducted tasks
after calculation is lower than the one initially obtained by the FPP. This way,
we focus on the set of priorities offered by this scheduling algorithm. Neverthe-
less, As long as there are tasks exceeding their deadlines, we proceed to changing
the periods of the latter ones in order to have a fully functional system. The fun-
damental intention here consists on enhancing the values of a minimum number
of periods related to the least prioritized tasks which outstrip their deadlines
and replacing them by their multiples. Yet, the incrementation should obey to
the constraint that we should not outpace the existing hyper-period.

{V alue(αP ), V alue(αD), V alue(αE)} = {αP , αD, αE/
V ectD(αP , αD, αE) ≥ V ectP (αP , αD, αE)

∧V ectP (αP , αD, αE) ∗ V ectD(αP , αD, αE) =
max(V ectD ∗ V ectP )}

(17)

5.2 Energy Consumption Adaptability

After finding the correct order in which the tasks should be executed based on
the PEDASA computation, we introduce the concept of the system reloading.
In fact, instead of manipulating the parameters of the set of tasks, it seems
more efficient to reload the energy within the system, at a specific moment, in
a way that its energy level gets restored. That is why in this part we search for
the instants of energy reloading that enhance the lifespan of the whole system.
Therefore, let tload be the vector of instants, within a hyper-period Thyp, at
which the energy level attains 100 % again. This is analytically represented by
Eq. 18.

∀l, 0 < l ≤ Size(tload) : E(tload(l)) = 100% (18)

Obviously, between the moments t and tload the energy level can either decrease
or remain the same. This depends on the energy required by each task. The
chance of rewinding the system, allows the latter to execute all of its tasks with-
out worrying about the exhaustion of the battery. We proceed in a determinist



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 69

way, since the proposed scheduling algorithm is static. The first step consists on
determining the instants at which each task got preempted by another one of a
higher priority and the ones at which it resumed its execution. It is to mention
that, in the real case, a task can be preempted one or several times during Thyp.
But it is also possible that the task never gets preempted. Generally speaking,
let Preij and Resij respectively be the instants of preemption and resumption
number j for the task τi (i = 1..n). The second step takes in charge the definition
of the new consumption functions that result from the several preemption cases
that a task might have. For this matter, let E

′′
i (t) be the real consumption func-

tion that, based on E
′
i(t), takes into consideration the preemption as well as the

shift in the execution. This function is given by Eq. 19.

∀i, j ∈ ki : E
′′
i (t) =

⎧
⎪⎪⎨

⎪⎪⎩

E
′
i(t + (Si − Ai)) if t ≥ Si ∨ t ≤ Prei1

0 if t ∈ ]Preij , Resij [

E
′
i(t + (Si − Ai) −

ki∑

j=1

(Resij − Preij)) otherwise
(19)

The resulting function ETs(t) (given by Eq. 20) represents the general survey on
the energy consumption at any moment during Thyp. This function is discon-
tinuous and composed of the consumption functions related to each task. Let
πsys(t) be the function that allows having an idea on the specific task executing
at the instant t. This function is given by Eq. 21.

ETs(t) =
{

E
′′
i (t) if πsys(t) = τi
0 if πsys(t) = 0

(20)

πsys(t) =
{

τi if ∃τi/πi(t) = 1
0 otherwise

(21)

Ultimately, the decrease in the available energy levels in the system during the
same period, can be described by ESys(t). Where this function (described by
Eq. 22) is the difference between the available energy level at a precedent moment
and the required energy at the moment that follows.

ESys(t) = ESys(t − 1) − ETs(t) (22)

Supposing that the procedure of reloading the battery is immediate and that
the time it takes is insignificant, the reloading moment should more likely occur
when ESys(t) is zero. As a consequence, the system can dispose of a set of
parameters ready for application without worrying about any future behavior
since the periodicity is always predictable.



70 M. Gasmi et al.

6 Discussion

PEDASA is an optimal scheduling algorithm responsible of defining a new set of
priorities without conducting an exhaustive calculation. In order to reduce this
computation, we proceed to the strategy of limiting the possible priorities to the
relation between the importance and the order factors. The aim of this strategy is
to relate the new set of priorities to the first given parameters of the three criteria
as well. The output of this algorithm is not only the new priorities, but also a new
definition to the periods of the least prioritized tasks in a way that guarantees the



PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm 71

feasibility of the scheduled task set. Moreover, the instants of reloading relevant to
the battery are also resulted from the PEDASA algorithm. Compared to the mono-
criteria scheduling algorithms (FPP, RM and LEF), the number of tasks respect-
ing their deadlines and executing before battery exhaustion (Eqs. 9 and 11) is way
important. However, even if the range of the tasks under the new set priorities is
different from the initial ones it is still substantial compared to the RM and LEF
algorithms. Through Fig. 1, where we consider the case study displayed in Sect. 3,
it is noticeable that the surface of the PEDASA consideration is larger than that of
RM, FPP or LEF schedulers which pinpoints its remarkable contribution. Addi-
tionally, compared to the existing multi-criteria real-time scheduling algorithms
that are based on fuzzy logic, PEDASA offers a more determinist method to find
the new adequate set of priorities and adjusts several parameters to enhance the
performance of the system. Our approach is also reversible. This means that it can
simply refer to a RM, FPP or LEF scheduling if the result that one of them offers
is effectively performed. Consequently, it economizes in terms of energy and time
computation.

Fig. 1. Respect ratio of the parameters energy, deadline and initial priorities.

7 Conclusion

In this paper we introduced PEDASA as a static soft real-time scheduling algo-
rithm that solves the multi-criteria decision making in a computational way. The
performance of this algorithm is then compared with that of FPP, RM and LEF.
It is put in display that our proposed approach not only confirms an important
performance compared to these algorithms but also changes the system into a
more versatile structure. Surely, the establishment of power reloading possibility
in predetermined instants guarantees the continuous functioning of the system.
Similarly, the feasibility of the task set is very accurate with the purpose of the
real-time constraints. Therefore, this algorithm could be more appropriate for
use on the real-time systems that are monitored by users and that require a con-
sistent power level. As a perspective, we wish to apply this new algorithm to a



72 M. Gasmi et al.

system where the three criteria priority, deadline and energy efficiency are very
important features and can be affected by different reconfiguration scenarios.
The wireless sensor network is a potential application of this work [3,4].

References

1. Baccouche, L., Eleuch, H.: Rt-Dbp: a multi-criteria priority assignment scheme
for real-time tasks scheduling. Appl. Math. 6(2), 383–388 (2012)

2. Fahmy, M.: A fuzzy algorithm for scheduling non-periodic jobs on soft real-time
single processor system. Ain Shams Eng. J. 1(1), 31–38 (2010)

3. Gasmi, M., Mosbahi, O., Khalgui, M., Gomes, L.: New pipelined-based solutions
for optimal reconfigurations of real-time systems. In: Proceedings of the European
Simulation and Modelling Conferences (2014)

4. Gasmi, M., Mosbahi, O., Khalgui, M., Gomes, L.: Reconfigurable priority ceiling
protocol under rate monotonic based real-time scheduling. In: 2014 11th Interna-
tional Conference on Informatics in Control, Automation and Robotics (ICINCO),
vol. 1, pp. 42–52. IEEE (2014)

5. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, New York (2011)

6. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In: 1989 Proceedings of Real Time
Systems Symposium, pp. 166–171. IEEE (1989)

7. Lindberg, P., Leingang, J., Lysaker, D., Bilal, K., Khan, S.U., Bouvry, P., Ghani,
N., Min-Allah, N., Li, J.: Comparison and analysis of greedy energy-efficient
scheduling algorithms for computational grids. In: Zomaya, A., Lee, Y.C. (eds.)
Energy Aware Distributed Computing Systems. Wiley, Hoboken (2012)

8. Park, S., Kim, J.H., Fox, G.: Effective real-time scheduling algorithm for cyber
physical systems society. Future Gener. Comput. Syst. 32, 253–259 (2014)

9. Peng, B., Fisher, N., Bertogna, M.: Explicit preemption placement for real-time
conditional code via graph grammars and dynamic programming. Ph.D. thesis,
Wayne State University (2014)

10. Rattanatamrong, P., Fortes, J.A.: Fuzzy scheduling of real-time ensemble systems.
In: 2014 International Conference on High Performance Computing & Simulation
(HPCS), pp. 146–153. IEEE (2014)

11. Salmani, V., Ensafi, R., Khatib-Astaneh, N., Naghibzadeh, M.: A fuzzy-based
multi-criteria scheduler for uniform multiprocessor real-time systems. In: 10th
International Conference on Information Technology, (ICIT 2007), pp. 179–184.
IEEE (2007)

12. Shin, K.G., Ramanathan, P.: Real-time computing: a new discipline of computer
science and engineering. Proc. IEEE 82(1), 6–24 (1994)

13. Wang, Y., Saksena, M.: Scheduling fixed-priority tasks with preemption threshold.
In: 1999 Sixth International Conference on Real-Time Computing Systems and
Applications, RTCSA 1999, pp. 328–335. IEEE (1999)

14. Zadeh, L.A.: The Concept of a Linguistic Variable and Its Application to Approx-
imate Reasoning. Springer, New York (1974)


	PEDASA: Priority, Energy and Deadline Aware Scheduling Algorithm
	1 Introduction
	2 Background
	2.1 Real-Time System Model
	2.2 Mono-criteria Scheduling Algorithms

	3 Case Study
	3.1 Fixed Priority Protocol (FPP)
	3.2 Rate Monotonic (RM)
	3.3 Low Energy First Protocol

	4 Formalization
	4.1 Energy
	4.2 Deadline
	4.3 Priority
	4.4 Generalization

	5 Proposed Approach: PEDASA
	5.1 Real-Time Reasoning
	5.2 Energy Consumption Adaptability

	6 Discussion
	7 Conclusion
	References


