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Abstract. In this paper, a fast and practical algorithm is presented to
estimate the multiple number of lights from every single indoor scene
image in Augmented Reality environmet. This algorithm provides a way
to accurately estimate the position, directions, and intensities properties
of the light sources in a scene. Unlike other state-of-the-art algorithms,
it is able to give accurate results without any essential analysis on the
objects in the scene. It uses the analysis of the saturation channel HSV
data. The evaluation is done by testing a ground truth dataset of syn-
thetic and real images with known properties of lights and then compar-
ing the results with other studies in the field.

Keywords: Illumination estimation - Shadow detection - Photorealistic
augmented reality - Indoor spatial images - Computer vision

1 Introduction

Undoubtedly, the estimation of light illumination is one of the trickiest tasks in
computer vision especially for indoor scenes. Presence of multiple light sources of
different sizes and shapes, intensities and spectral features is a typical condition
for such environments. The image based lighting is relatively the latest advanced
approach for modeling light which achieves high quality results yet at the cost of
processing time [1]. However, the requirements of complex hardware setup with
additional cameras and/or light probes based on highly dynamic and superior
image resolution are the main shortcoming of this approach.

Currently, the demands in the context of augmented reality applications are
exponentially growing, where researchers and engineers have dedicated enormous
efforts. Lately, the feasibility to augment real scenes with arbitrary objects and
animations opened up broad prospects in the areas of design, entertainment, and
human-computer interaction. Therefore, correct estimation of lighting conditions
such as 3D positions and colors inside the scene appears to be a crucial step in
creating the rendering highly realistic and convincing.
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A modified approach that allows direct estimation of the positions of light
sources is proposed but it also uses cumbersome hardware [2]. The most popular
alternatives to image-based lighting approaches usually aim on the detection
and direct analysis of shadings. Generally, these techniques are more suitable
for outdoor environments with strong casts, directed light sources, and simple
geometry. An exhaustive survey of the cast detection methods is provided in [3],
while the possibility of their integration in real-time augmented reality systems
is reviewed in [4,5].

Emergent technologies and vision-based robotics for fine-tuning the digital
images suffer from lighting factors in real images [6, 7]. Information regarding the
light source distribution in an image facilitates in analyzing the objects, shadows,
and noises present in the scene. Initial dismissal of detailed information related
to light sources results inherent difficulty in analyzing the scene in the indoor
environments [8].

Appearances of various lighting sources are found to be the major difficulties
in real-time image processing. Detection of light sources permits one to estimate
their position, direction, and intensity [9-11]. Figure 1 illustrates the background
setting of indoor and outdoor scene illumination.

L:!—' Indoor Light (1)

’ Camera

Indoor Light (2)

Outdoor Light

Fig. 1. Setting of indoor and outdoor scene illumination.

In this work, we generate the information on the localization of light sources
in real scenes. Light source detection involves different techniques including
probe detection which extracts the light properties from a known 3D object.
Nevertheless, these techniques are not applicable to multiple lights and require
the proper understanding of all 3D objects present in the real scene. Thus, we
obtain the information on lighting without accessing any object in the scene
itself. Indoor digital images possess varying numbers and directions of light.
Researchers aim to estimate the approximate number of light sources to recog-
nize the actual cause of occlusion which may appear from an object, shadow
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or noise [7,12-15]. Therefore, the nine directions constriction of every light source
in a 2D image is considered.

The presence of high diffuse sunlight in outdoor scenes makes their geometry
much wider with less disparity lighting levels. Alternatively, indoor scenes suffer
from limited geometry and higher disparity lighting levels due to the presence
of multiple lights with different properties and influences. In fact, clear differ-
entiation between these lights and their properties in the scene are extremely
difficult. Consequently, we focus only on the color, intensity, position, and direc-
tion of each light source.

The algorithm is evaluated based on its accuracy and performance. The accu-
racy is tested using Lopez-Moreno evaluation where the results are compared
with Light Source Detection (LSD) algorithm and synthetic image of known
lights. Meanwhile, the performance of LSD algorithm is based on the number
of frames per second. It is hoped that our systematic assessment on the auto-
matic estimation of illumination characteristics may improve the performance of
sundry applications including real-time digital photography editing, interactive
photorealistic augmented reality, vision-based robotics, medical images, or New
Media Art.

2 Related Work

Previous researches on the light detection are mostly based on 2D images in
Computer Vision. They concerned with the object based and statistical based
techniques. Recently, many methods are introduced [13,15-17] since the found-
ing work of Pentland [6]. Majority of them either focused on extracting the
properties of light by receiving information on the image objects or on extort-
ing one direction of light. Fewer methods exploring the shadow detection obtain
information on the light sources [18,19].

Strong assumptions on the background environment are needed for light
source detection. Some of them analyze the objects and others estimate the
geometry. Recovery of the light via object contours analysis is developed. Light
sources illumination are estimated by inserting a hemisphere to the environment
and analyzing the reflectance of light on it [20]. Many of them are based on the
analyses of the reflectance of lights on real objects’ contours in the image [16].
Shadow detection techniques are proven to be satisfactory in tackling the illumi-
nation issues [21-24]. Furthermore, recent works on the object analysis methods
achieved relatively accurate results. Despite intensive efforts the precise detec-
tion of objects in the scene requiring the information of light sources is far from
being achieved.

In the Augmented Reality, the first illumination estimation model was based
on a simple point light source without ambient light assuming uniformly colored
objects. The distant point light source is defined by an illumination direction
[13]. Then, Kanbara [25] used a marker with a mirror ball to resolve geometric
and photometric registration. Two methods rely on the illuminated geometry
with no requirement for knowledge of a specific calibration object, one method
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was proposed by Sato from shadows [26] and another from Shading by Wang
[17]. Then, Wang [20] integrated the above two methods and proposed a new
method for multiple directional source estimation. The model came after had
used omni-directional stereo cameras to capture environment illumination and
to model the distant parts of the environment [26]. Stumpfel [27] introduced
other approach by photographed mirror spheres to capture the illuminants in
the scene. This paper discusses another way to realize the illuminants in real
scene in real-time.

From the get-go, most of the mentioned methods either force constraints
on the scene, require more information for detection like depth sensors, or non
real-time like in image relighting,

3 Light Source Detection Method

This paper attempts to extract multiple light sources from a single indoor scene
image in the absence of any constraint on object detection. The information is
directly acquired from the scene to develop a constraint free detection method.
It is customary to introduce the structure of the light source estimation step-
by-step as shown in Fig. 2. Firstly, a camera is placed in the indoor environment.
Then, the light image is extracted from a single RGB image to extract the lighted
areas of the scene. Synchronously, a shadow image is extracted from the same
image to detect the shadowed areas of the scene. Finally, the calculation of the
illumination properties is performed based on the relation between the lighted
and shadowed areas as described in the following sections.

3.1 Illustration of Light Image

Even though indoor RGB images are captured by high quality cameras, however
the presence of light, noise and scene variations remain a problem to be solved.

Compute Phong
model relative to
the number and

properties of the
detected lights

Fig. 2. The pipeline of the illumination sources detection model.
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Consequently, the user must extract less noise and get more illumination stability
while capturing. The first objective is therefore to control the illumination in the
image. Supposing that the output is a single channel light image, one in interested
to extract lightness levels of each pixel in the RGB image. Let Irgp be the input
of 8-bits RGB image, n is the total number of pixels in the image and &gnss is
the set of the resulted lights. Here each light represents the area of the direct or
indirect real light in Irgp. Then, Irgp and &;gnts can be defined as,

RlleaBl
Irge =

Rn7GnaBn

Co
Ch
glights - 02

Chl
where, R;, G; and B; are the ith red, green and blue channels, respectively.
C; consists of the area Cj(area) of a detected light in some position C;(pos),

direction C;(dir), and intensity C; (int), and nl is the number of detected lights.
C; is expressed as,

area
pos
dir
int

Ci=

To compute each element Cj, the following algorithm comprised of six major
steps is proposed:

Algorithm 1. Light Source Detection

: Convert Irgp to HSL format image Ipg;

: Split I to its Hue, Saturation, and Lightness

: Calculate Otsu’s threshold on the Saturation channel using look-up table

: Filter the I using Gaussian blur

: Extract the set of contours &jignes for the detected spots in I

: Represent the position C(pos) of each element of &;gnts as the center of the contour

Q@Cﬂﬂkww»—l

The red-green-blue (RGB) to Hue-saturation-lightness (HSL) conversion for-
mula is common. The RGB values of one pixel range from 0 to 255 for each
channel. Similarly, the value of each channel in one HSL pixel lies in the range
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of 0 to 1. Consequently, the conversion value of the result is measured by dividing
the Irgp channel value by 255 as hereunder:
Let us assume,

Hueq, Saty, Ligy

Insy =
Hue,, Sat,, Lig,
then,

R' — R/255
G' — G/255
B' — B/255

Assuming that C,,;, and Cy, 4, are the minimum and maximum value of each
channel in one pixel, then the difference dif f is calculated from,

Crnae = max(R',G', B')
Cmin = min(R',G', B')
dlff = Cmax - szn

Accordingly,
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Look-up table is calculated and the optimal performance is obtained to
achieve the values of each pixel. Applying Otsu’s thresholding [28] on the Satu-
ration channel image a binary image is obtained. The lighted areas of the scene
is represented by white spots in the binary image and remained black elsewhere
(Fig.3). By blurring the extracted binary image, the contours of the lighted
areas enhanced the smoothness approximation of light which provided better
detection quality.
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Fig. 3. (a) Original images (b) single channel saturation images (c) lighted areas in
binary images.eps

3.2 Shadows Detection

After identifying the albedo spaces, contour detection is implemented to extract
the covered areas of the light sources from the binary image. In this case filled
closed contours representing each light source area are drawn. Contours are
measured by following Suzuki and Abe algorithm [29]. Subsequently, the resulted
contour areas are stored in moments. Each moment M; consists of contour area
and its mass center (C;). In case a moment area covers a small scale in the
image (e.g. 30 pixels), the moment is discarded. If the moment is in large-scale
n

area (e.g. 5 or more) then it is segmented into fixed or automatic number of

moments. The division processes fixed by 2 moments yields,

discard, M yreq<30
Mi = <Mareaa C’L >, % > Marca > 30
Segment(M;,2), Marea > 5

Thus, the achieved result is a set of moments represented by their mass
centers C; each to behave like a source or a reflection of light as displayed in
Fig. 3.

Algorithm 2. Shadows Detection

1: Calculate Otsu’s threshold of the dark colors from the Saturation channel using
look-up table

2: Filter the I} using Gaussian blur

3: Extract the set of contours &spadows for the detected spots in I

4: Represent each element of &spadows as the center of the contour D
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Definitely, the quality of results entirely depends on the proper detection
of each illuminant. Illuminant direction is detected by estimating the differences
between light sources and shadows in the scene. Estimating shadows in the scene
does not essentially mean that only shadowed spaces are detected it also include
dark objects. This is because the presence of dark objects in the scene behave
the same way as shadows vis-a-vis its reflectance properties.

Identification of the shadow behavior in the saturation image clearly reveals
the relation between the light source position, occlusion, and shadow. The results
show that if the mass center of the detected light source is obtained and the mass
center of the shadow is taken in the same way, the direction of the light forms the
marching vector from the light towards the mass center of the shadow moment.
Algorithm 2 explains the steps that are adopted in Light Source Detection in
Algorithm 1.

-

Object/Occlision

Shadowed Area

Fig. 4. Direction of the light source starting from its mass center to that of shadow
centre for the occluded object.

Figure 4 shows the method to resolve the direction of one light source to one
detected shadow. The problem remains in the detection of large number of lights
and shadows in the scene. The distribution of lights and the relation between
them and other shadows in the scene can lead to approximate both the direction
and intensity of each light.

3.3 Light Source Direction and Intensity Detection

This problem is overcome by taking each light and calculating the average dis-
tance between its mass center and all other mass centers shadows in the scene.
The near and far angles for each shadow are considered. In case some angles are
close to each other, the intensity of the light towards this direction must be less
than the farther ones. For some far angles the intensity of the light is higher.
Algorithm 3 shows the steps for computing the multiple light intensities and
light directions.

The algorithm simply considers each of the detected light sources and ana-
lyzes the distances between them and other shadows in the scene. Only the close
lights and shadows are included.
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Algorithm 3. Calculation of multiple lights directions and intensities

: Define C;(int) as 0.5 for all C; in &ights.

: For each light mass center C; in &ignts , €xecute step 2.

: For each shadow mass center D; in £spadows , €xecute step 3 and 4.

: calculate the average distance between C; and D;.

: calculate the C; angle between each shadow. If some shadows are have nearly equal
angles, reduce the intensity value of C; otherwise increase the value.

U W N~

4 Implementation

A data set of several images is gathered to test the accuracy and performance of
the proposed algorithm. Multi-camera Multi-lighting Dome (MCML) Data Sets
are used in [30]. These datasets are image sequences captured in a studio for 20
views evenly paced on a ring inside a lighting dome. All images in the dataset
are captured from a single PC camera that supports HD quality images.

The experiments are performed in three different scenarios. The first scenario
uses a single light source in a known position, direction, and intensity placed in
the dark area. Figure 5 depicts the steps to estimate the illumination of a single
light source. The lighted areas image in Fig. 5 shows the light and the reflection
of it as dark spots which reveals the mass center of them as a white marker
based on Algorithm 1.

Fig. 5. Scenarios of (a) original image (b) lighted areas image (c) shadowed areas image
(d) resulted image.

The shadowed areas image displays the shadow spaces in the image based
on Algorithm 2 by considering the measurement of the mass centers of each
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detected shadow area. Each estimated light is exemplified by a white arrow to
represent the accuracy of the data. The single arrow’s starting point represents
the position of the light source where its length signifies the intensity of the light
and the head of the arrow indicates its direction.

Fig. 6. (a) Original image (b) lighted areas image (c) shadowed areas image (d) resulted
image.

In the second scenario, two light sources were placed in a dark space. Figure 6
illustrates the same steps as performed in the first experiment. The results
successfully prove the correct position, direction, and intensities of both light
sources. The original image exhibits that the two light sources are situated to
face each other in a dark area and the lighted areas image estimated total six
elements from the original image. Each light is represented as a dark spot, where
only two shadowed elements are detected. However, the arrows in the resulted
image outnumbered the actual number of light sources due to the existence of
reflections.

Figure 7 illustrates the snapshot of an arbitrary indoor scene where the size of
the room is considered to be quite large. The estimated number of light sources
is nine and the number of detected shadowed areas is fifty four. The resulted
image shows that the algorithm had successfully obtained the real light sources
in the scene from the image.

Accurately, speed improvement is a major contribution of this paper. For
1024 x 768 image, the mean processing time is found to vary between 40-60 ms on a
laptop with Intel® Core™ i7-4702MQ CPU at 2.20 GHz (8 cores) and 4 GB RAM.
The algorithm implementation is administered under in-hand system specifica-
tions.
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Fig. 7. (a) Original image (b) lighted areas image (c) shadowed areas image (d) resulted
image.

Table1 summarizes the speed of the algorithm in each of the previously
described experiments. The estimated performances for each experiment do not
exhibit as such big difference between single, two, or multiple light sources.

Table 1. Performance of the algorithm.

Experiment Frame rate
Minimum | Maximum

Single light source 45 54

Two light sources 42 50

Complete indoor scene | 40 49

Our results show an improvement from the Multi View Stereo (MVS) algo-
rithms perspective when compared with the work of Wu et al. [30]. This algo-
rithm is advantageous because it overcomes the case of non-Lambertian objects
compare to Wu et al. Furthermore, their method requires the access of the scene
and the construction of a mesh which leads to slow performance.

Figure 8 depicts the use of similar dataset on the virtual model data with the
difference in results.
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Fig. 8. Implementation on the Wu et al. datasets (a) position, (b) direction, and (c)
intensity of single light source in different poses projected on a synthetic object.

The position, direction, and intensity of a single light source in different
poses projected on a synthetic object are implemented. It produces impressive
results with high level accuracy. The arrows position in the middle of the scene
confronting the object. Furthermore, the arrow is able to follow the real light
direction and for its intensity immediately after changing the direction. In com-
parison to our method the earlier one [30] is unable to detect the real light source,
and only useful for implementing the relighting on the scene. We assert that the
proposed method is efficiently capable in achieving information instantly with
the frequent change of the light position, direction, or intensity.

Fig. 9. Implementation of the results of the algorithm in AR scene (a) positioning a
single light source, (b) two lights, and (c) complex scene with multiple light source and
their projection on a synthetic object.eps

As a result of our previous experiments, Fig.9 shows an AR scene where a
composition of the real scene and a virtual object in real-time after performing
the steps in Fig.3. The provided images where captured in three illumination
states; with a single light source, two lights, and complex scene with multiple
lights.
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5 Conclusions

From the previous work, a novel algorithm for detecting illumination in a scene
was described. The algorithm estimates the lights and the reflected lights with-
out going into detailed analysis. Experiments were done by comparing real and
synthetic datasets. Real time experiments were done using a conventional cam-
era. The comparability of the performance was found less complex than other
image processing techniques. The algorithm has two advantages: it measures the
illumination in the scene without access to the analysis of the scene and it pro-
vides information about the positions, directions and intensities of the detected
illuminants. The confidence of the algorithm’s results can vary dependently on
the size of the room.
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