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Abstract. Security assurance cases (security cases) are used to repre-
sent claims for evidence-based assurance of security properties in soft-
ware. A security case uses evidence to argue that a particular claim is
true, e.g., buffer overflows cannot happen. Evidence may be generated
with a variety of methods. Random negative testing (fuzz testing) has
become a popular method for creating evidence for the security of soft-
ware. However, traditional fuzz testing is undirected and provides only
weak evidence for specific assurance concerns, unless significant resources
are allocated for extensive testing. This paper presents a method to apply
fuzz testing in a targeted way to more economically support the creation
of evidence for specific security assurance cases. Our experiments pro-
duced results with target code coverage comparable to an exhaustive
fuzz test run while significantly reducing the test execution time when
compared to exhaustive methods. These results provide specific evidence
for security cases and provide improved assurance.

Keywords: Security · Assurance · Fuzzing · Testing · Genetic-
algorithms · Evidence

1 Introduction

Assurance is confidence that an entity meets its requirements based on evidence
provided by the application of assurance techniques [2]. Security assurance nar-
rows this scope to focus on security claims or requirements. Security assurance
cases (security cases) are used to argue the assurance of specific claims. They
provide a series of evidence-argument-claim structures that, when combined,
provide assurance on the original claim.

A popular tool in security assurance is fuzz testing [6,8–10]. Fuzz testing is an
automated type of random, or semi-random, negative testing that attempts to
cause a target system to crash, hang, or otherwise fail in an unexpected manner
[4–7]. It takes a dynamic analysis approach and tracks the attempted input and
the resulting response from the system – whether or not it fails and, in some
cases, includes the type of failure. In essence, it is a black-box “scattergun”
approach where the accuracy of the “gun” is determined by the fuzzer utilized.

Due to the undirected nature of traditional fuzz testing methods, the evidence
provided by fuzz tests is not specific to particular types of defects and thus fuzz
testing results are only weakly linked to specific security claims. Traditional fuzz
testing tools encounter difficulties, and become ineffective, if most generated
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inputs are rejected early in the execution of the target program [12]. Random
testing usually provides low code coverage [13]. While it is possible to afford a
large amount of resources (time and/or computational) increase the coverage of
fuzz tests, it would be more economically feasible to be able to target the fuzzer
to particular security concerns in order to provide stronger evidence for specific
assurance cases.

Directed fuzz testing approaches exist and include solutions that rely on taint
analysis, symbolic execution, and constraint-solvers to provide a certain level of
introspection [12,14,15]. These approaches are certainly an improvement over
undirected fuzz testing in the quality of evidence provided, but the issues of
performance, complexity, and uncertainty of application in “real world” systems
leave much to be desired. It is an open question if symbolic execution fuzz testing
can consistently achieve high code coverage on “real world” applications [14], and
the symbolic execution “is limited in practice by the imprecision of static analysis
and theorem provers” [13]. Finally, fuzz testing is executed for a certain amount
of time to be considered “good enough”. However “good enough” is a subjective
term and lacks the quantitative properties required to be reviewed as evidence.

In this paper, we present a method for targeted fuzz testing that combines
the input of static code analysis with an optimization function (based on Genetic
Algorithms) that utilizes dynamic code coverage analysis. Our method has been
implemented in a tool prototype (called Hermes) and evaluated in a case study
using a real-world software system (Crawler4j) [31].

The purpose of our research is to investigate the questions: “Is it possible
to use targeted fuzz testing to provide targeted evidence for security assurance
cases? Is it also possible to reduce the computation time required while achieving
the same code coverage as a full fuzz test run?”.

Our evaluative analysis of software (the Crawler4j Java library [31]) using
Hermes produced promising results and achieved near-parity code coverage when
compared to an exhaustive, undirected, fuzz test – or full fuzz test, but each
evaluation was able to do so in reduced execution time.

There rest of this paper is structured as follows. The next section discusses
background and related work. We introduce Hermes in Sect. 3 and discuss our
evaluation method in Sect. 4. Section 5 present the results of our evaluation
experiment. Finally, we close with concluding remarks and pointers to future
work in Sect. 7.

2 Related Work

2.1 Security Assurance Cases

“Assurance is confidence that an entity meets its requirements based on evidence
provided by the application of assurance techniques” [2]. Security assurance nar-
rows this scope to focus on security claims or requirements. Security assurance
cases (security cases) are used to argue the assurance of specific claims. They
provide a series of evidence-argument-claim structures that, when combined,
provide assurance on the original claim.
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For example, the claim “the REST API is secure against attack” may not be
provable directly. Therefore the main claim will have to be decomposed into a set
of subclaims that must be assured to assure the main claim. Once the subclaims
are assured, the main claim can be considered assured. These subclaims would
include statements such as “The use of the REST API cannot cause a buffer
overflow”. This subclaim would require either more subclaims that must be
assured, or it must provide evidence that sufficiently support the claim.

The types of evidence vary widely depending on design and environment of
a system, however some common types of evidence for security cases include
black-box testing results, white-box testing results, model checking, standards
compliance check lists, fuzz test results, and penetration-test reports.

2.2 Fuzz Testing

Fuzz testing is an automated type of random, or semi-random, negative testing
that attempts to cause a target system to crash, hang, or otherwise fail in an
unexpected manner [4–7]. It takes a dynamic analysis approach and tracks the
attempted input and the resulting response from the system – whether or not
it fails and, in some cases, includes the type of failure. In its traditional form,
it is a black-box scattergun approach where the accuracy of the “scattergun” is
determined by the fuzzer utilized.

Fuzz testing has proved to be a valuable addition to current software security
techniques and has caught the attention of industry leaders such as Microsoft
who have incorporated it into the Security Development Lifecycle (SDL) [9,10].
It is particularly well-suited to discover finite-state machine edge cases via semi-
malformed inputs [6,8]. The partially-correct inputs are able to penetrate the
initial layers of verification in a system and test the bounds of areas that may
have not been considered by the developers or design team. These partially-
correct inputs can be generated from inputs provided to the fuzzer at runtime
where it uses it as a template, or they can be “mutated” from capturing input
information that is known to be correct. These two methods define the two
categories of fuzzers: “Mutation-based” and “generation-based” [6,8].

Generation-based fuzzers use random or brute-force input creation and are
usually customized to generate variations of a particular protocol model or appli-
cation data format that an application uses. Once the fuzzer is connected to the
target it can generate its inputs and track the responses returned [8].

Mutation-based fuzzers do not incorporate a model for generating inputs but
rather use random mutations on a library of known valid inputs [32]. The muta-
tion process may include checksum calculation and other more advanced methods
to penetrate the application’s primary level of input validation [32]. Mutation-
based fuzzers are considered “generic fuzzers” as the need to customize them to
a particular target application is minimal [29]. Limited customization is possible
to target specific parts of the input data format (or protocol) by using a “block-
based approach” that segments the input into separate blocks [33]. Each block
can either be fuzzed or left in its original state. With a block-based approach,



456 C. Shortt and J. Weber

additional information blocks can be created and reused to construct various pro-
tocol definitions, file formats, or validation techniques such as checksums [34].

Directed Fuzzers and Optimization. Directed fuzz testing utilizes methods
to optimize the mutation or generation of inputs, and include solutions that rely
on taint analysis to provide a certain level of introspection [12,15]. Taint analy-
sis relies on a “clean” run to provide a baseline execution pattern for the target
application. It then compares all subsequent executions to the baseline in an
attempt to find discrepancies. Further approaches include the addition of sym-
bolic execution and constraint solvers to take full advantage of the introspective
properties of the taint analysis approach [14].

Various techniques can be used for optimizing directed fuzzers with respect
to a defined utility function, such as code coverage. Genetic Algorithms (GA) are
one particularly well suited optimization technique in this context as the concept
of a “genetic information string” defining a vector of features that are switched on
and off during the generation or mutation of fuzzed input provides a natural fit.
The idea behind GA’s is modelled after the natural evolutionary process [17,18].
A GA is used to simulate the evolutionary progress of a population towards a
certain “fitness” goal [19,36]. A “population”, in this case, can be any group
of features (called a feature string, individual, genotype, or chromosome) that
are evaluated to provide a “fitness value” [20]. An evaluation function must be
defined which provides one, or many, performance measures for a given feature
string. The fitness function then determines which feature strings are most “fit”
and should be used for creating the next-generation population [19,20]. Once a
subset of feature strings is selected the next generation is created by mutation
and crossover (also called “mating”) [17,40,41]. An important advantage of a GA
is that it is able to manipulate numerous strings simultaneously. This greatly
reduces the chances of the optimization becoming stuck in a local minima [17].

3 The Hermes Approach

3.1 Overview

The approach we have implemented within Hermes falls under the category of
directed, generation-based fuzzing and combines static and dynamic code analy-
sis along with an optimization process that utilizes Genetic Algorithms. We will
first provide an overview on our method and then discuss its elements in more
detail. It is assumed that our fuzz testing method is used to generate evidence
for security assurance cases, e.g., the ability of a software component to resist
exploitation of certain types of security vulnerabilities. Once the vulnerabilities
to target have been defined, our method starts with applying a static code ana-
lyzer to identify source code locations that may be vulnerable to specific types
of security threats. The goal of our smart fuzzer is then to optimize test case
generation to maximize coverage of the code that contains the potential vulner-
abilities. Since our fuzzer is generation-based, it has a model of the input data
(or protocol) of the software to be tested. Specific features in this model may
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be switched on or off depending on a binary string that controls the random
test case generation process. A first set of such feature strings are randomly
generated and referred to as the first generation of tests. Consequently, the fuzz
testing framework runs the target software with the test cases generated for the
first generation of tests. The code coverage of the vulnerable target areas (deter-
mined by the static analyzer) is analyzed for these initial test runs. The feature
strings that yield the highest code coverage are selected and used for producing
of the next generation of feature strings, using a GA.

3.2 Design

The design of Hermes is based on a client-server architecture which facilitates
both remote and local testing of targets, cf. Fig. 1. The processing for both the
genetic algorithm and the fuzz test generation (using Sulley [43]) happens on the
server side while the client is a thin wrapper that includes the code coverage tool
(EMMA [44]). The client monitors the target and sends the coverage metrics to
the server to complete the asynchronous loop of test, measure, and revise.

Fig. 1. A view of Hermes’ architecture

Hermes relies on static analysis to find the initial sections of code with poten-
tial defects. It then parses, sorts, and identifies the target code that the frame-
work will focus on. The list of targets and a protocol definition that specifies how
to dynamically generate a language-specific protocol are passed to the genetic
algorithm to begin the analysis. Hermes is able to dynamically generate a pro-
tocol for a specific language, with certain features included or excluded, start or
stop the fuzz server, and revise the protocol based on code coverage feedback
and the genetic algorithm’s suggestions.

Protocol generation is achieved by using a protocol template that specifies a
language’s syntax in the Sulley protocol language [43]. Each feature is defined
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using the language’s syntax as building blocks. This allows Hermes to select
which features to include or exclude to create a new protocol. A feature string
determines the inclusion or exclusion of a protocol. The feature strings specified
in Hermes include seven unique features for the target language – in our evalua-
tion, HTML. The HTML features are anchor tags, image tags, div tags, iframe
tags, object tags, javascript tags, and applet tags. Thus a feature string with all
features included would look like the following: (1, 1, 1, 1, 1, 1, 1).

4 Evaluation

Our evaluation procedure is divided into two sections: the undirected fuzz testing
baseline and the directed fuzz testing using Hermes.

We first established a baseline for the metrics specified in Sect. 4.2. This is
achieved by executing the undirected fuzz testing method on the target appli-
cation and logging both the code coverage and the number of mutations for the
configured target area percentage.

Once a baseline is established, the evaluation of the directed fuzz testing
method is executed with respect to the same metrics. Each directed evaluation
is compared to its associated undirected counterpart for the given target area
percentage. For example, the directed and undirected evaluations for the top
10 % of offending code are compared, and so on. The procedure steps are outlined
in Fig. 2.

Fig. 2. Evaluation procedure

“Offending code” in these evaluations are the lines of code contained in the
method where a potential defect is found. For example, the top 10 % of the
offending code will reflect the lines of code for each of the top 10 % most-severe
potential defects – based on the FindBugs bugrank metric.

Our evaluation includes ten variations in the percentage of the offending code
in increments of 10 % from 10 % to 100 %. We chose to include these increments



Hermes: A Targeted Fuzz Testing Framework 459

in an attempt to identify possible “sweet-spots” where coverage or performance
would perform exceptionally-well compared to other results.

Both the undirected and directed methods were executed and their code
coverage of the target areas measured. The protocol for the baseline calculation
was kept constant (a full protocol with all features available) and EMMA was
configured to track the code coverage for a given target area. This baseline code
coverage was then compared to the calculated values of Hermes’ directed fuzz
approach.

Directed protocols were generated by Hermes’ genetic algorithm with spe-
cific targets (in this case percentage of most severe offending code) in mind.
The resulting best-fit protocol was then exhaustively evaluated to produce code
coverage and number-of-mutation metrics for that target range.

4.1 Target Application

The target application selected for evaluation is the Crawler4J [31] library. To
fuzz test this library a simple crawler was developed using Crawler4J and con-
figured to connect to the Hermes fuzz test server.

The Crawler4J library was selected for evaluation because it is a Java-
based application with its most recent revision being downloaded just under
15,000 times, it is designed to be extended, and it is open-source. The fact that
Crawler4J is open-source allowed Hermes to provide full introspection and utilize
its white-box features to their fullest extent.

4.2 Measurement

We designed our experiment to evaluate code coverage and performance. Code
coverage was used as the fitness criteria for the genetic algorithm while perfor-
mance was used to supplement the comparison of results. Thus performance was
a secondary goal to maximizing code coverage of the target code.

Code Coverage. Code coverage is a measure of the amount of source code a
specific test suite is able to evaluate.

There are three common forms of code coverage: function coverage, path
coverage, and statement coverage [46]. Function coverage is the number of func-
tions that are called by a given test suite. Statement coverage is the total num-
ber of individual statements executed by the test suite. Path coverage measures
the coverage of all possible routes through the executed code. These values are
compared to the total number of functions, statements, or paths in the target
application to produce a code coverage percentage.

In addition the the general definition of code coverage, Sutton [6] defines
code coverage within the context of fuzz testing to be “the amount of process
state a fuzzer induces a target’s process to reach and execute”.

Code coverage was chosen as a metric for Hermes because, although it is
“well-known that random testing usually provides low code coverage, and per-
forms poorly overall [in that respect]” [13,14], code coverage has been extensively
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used as a metric to measure the performance of fuzz testing [5,16,29,32,46–48],
additionally, there is a general “lack of measurable parameters that describe fuzz
test completeness” to draw from [29]. Specifically, we chose line coverage for the
entire method where a target bug type was identified as the metric used for our
analysis.

Performance. The evaluation of Hermes requires a performance metric. We
chose to evaluate Hermes based on the number of mutations that the fuzzer
generates to achieve a target code coverage. A baseline performance metric is
set by executing an undirected and exhaustive fuzz test on the target while
logging the number of mutations and code coverage achieved.

In the context of the Crawler4J crawler, the number of mutations equals
the number of crawler requests to the server as each request included a single
mutation of the protocol.

Previous research has utilized a variety of performance metrics including
number of fuzzed inputs, total errors found, errors found per hour, and number
of distinct errors found per hour [5,15,16,47].

The number of fuzzed inputs (mutations) was chosen because it is less sub-
jective than a pure time comparison. A time comparison could be improved by
simply increasing the CPU power of the host machine and would introduce a
subjective aspect to our analysis.

4.3 Configuration

The default selection criteria for Hermes’ analyser was set to use the FindBugs
internal “bugrank” metric. Bugrank is calculated by FindBugs using a combi-
nation of the potential defect’s category type and the type of potential defect
found. The bugrank metric represents an overall severity metric for the potential
defect.

The genetic algorithm was configured to be more aggressive in its mutation
capabilities. This allows for more features to be brought back into the “gene
pool” if there is an early, dominating, feature string that does not converge to
a maximum later in the analysis, or if the population size is small. The initial
configuration of the genetic algorithm is detailed in Fig. 3.

High growth ratios and increased mutation rates allow for quicker conver-
gence in simple problems but suffer with more complex problems. These issues

P(Crossover) = 0.5
P(Mutation) = 0.05
Number of Generations = 30
Feature Strings per Generation = 10
Selection Algorithm = Tournament Selection (size=3)
Mutation Limit = 3600

Fig. 3. Initial configuration of Hermes’ genetic algorithm
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can be mitigated partially by increased population sizes and multiple popula-
tions with varying success [37]. In the configuration detailed in Fig. 3, a small
population is used with a higher mutation, and lower crossover, probability. A
higher population increases variability within the population, which will include
more feature strings with high fitness, but it will slow the convergence to a max-
imum. For the purposes of time we chose a small population size of 10 for 30
generations. The mutation limit of 3600 was chosen to limit the amount of time
required to evaluate a single feature string in the genetic algorithm. This initial
mutation limit of 3600 will be used as a “tracer round” to target the full fuzz
testing capabilities.

Typical crossover probabilities lie in the 0.5 to 1.0 range, while typical muta-
tion probabilities are in the 0.005 to 0.05 range [41]. Tournament selection was
used because “ranking and tournament selection are shown to maintain strong
growth under normal conditions, while proportionate selection without scaling
is shown to be less effective in keeping a steady pressure towards convergence”
[37].

We configured Hermes to act as a “honeypot” server where it captures HTTP
requests by providing non-repeating and self-directed links back to itself. Once an
HTTP client, such as a crawler, is captured the server responds with mutated
HTML mixed with valid HTML and begins the fuzz test process. The use of
valid HTML within the server’s response ensures that HTTP clients have a
valid HTML link back to the server so that it may continue to be captured.

5 Results

5.1 Baseline: Undirected Fuzz Testing with Code Coverage

We calculated the baseline by executing a full-fuzz test (brute-force) on the full
protocol definition. By brute-forcing the protocol we are able to produce the
worst-case values for number of mutations, mean code coverage, the standard
deviation for the mean code coverage, the mean code coverage of the targeted
code’s complement, and the standard deviation for the complement’s mean code
coverage. These results are detailed in Table 1. The mean code coverage is used
with the standard deviation to provide an overall value for all of the sections of
targeted code. The target code complement represents the code coverage that is
not part of the target scope. The total number of possible unique mutations for
the full target protocol is 67788. The baseline exhaustively evaluates the protocol
which explains the constant number in the “Mutations” column.

The data in Table 1 follows an expected behaviour where the code coverage
is high and the standard deviation is low when only looking at small sections
of the code, but as the amount of target code increases so does the standard
deviation and the mean coverage decreases.

For the baseline, we observed that a noticeable drop in code coverage and
increase in standard deviation when the target code reaches 40 %. This may
signal that a defect with little or no code coverage was added that was not in
the previous set. In fact, observation of the detailed baseline results for 30 %
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and 40 % showed that two defects are added with little code coverage. This
would cause the drop in coverage we observed. The discrepancy between 30 %
and 40 % is most prevalent in the standard deviation values where we observe a
jump from a standard deviation of 0.1575 to 0.3606 – more than double.

Table 1. Baseline results from an undirected and exhaustive fuzz test with a full
protocol

Targeted Mutations Mean Standard Complement Mean Complement Std.

% of Code Coverage Deviation Coverage Deviation

10 67788 0.8625 0.1304 0.4343 0.4664

20 67788 0.79 0.1485 0.4339 0.4663

30 67788 0.8425 0.1575 0.4334 0.4663

40 67788 0.7036 0.3606 0.4343 0.4664

50 67788 0.7283 0.3548 0.4337 0.4662

60 67788 0.785 0.3145 0.4337 0.4664

70 67788 0.8148 0.2901 0.433 0.4662

80 67788 0.7834 0.3248 0.4334 0.4663

90 67788 0.7493 0.3339 0.433 0.4663

100 67788 0.7415 0.3315 0.4328 0.4663

5.2 Directed Fuzz Testing with Code Coverage

Our evaluation analyzes the target application in two steps:

1. Find the best-fit candidate protocol that performs best under a restricted
number of mutations – in this case 3600 mutations. This is the “tracer round”
that directs the full-fuzz test evaluation. Table 2 details the results for each
best-fit candidate.

2. Exhaustively fuzz test the best-fit protocol to fully evaluate the target appli-
cation with respect to the given target code. Table 3 details the results of
exhaustively fuzzing the best-fit protocols.

The results in Table 2 were surprisingly similar to the baseline detailed in
Table 1 – with a significant reduction in mutations. Most of the mean coverage
results for the best-fit protocols were within 3 % of their baseline counterparts.
This is true for all values except the 80 % evaluation which differed by 5.58 %.
After further investigation it was revealed that this drop in accuracy was due
to a significantly-lower code coverage in a single section of offending code. As
with the baseline, we observe the jump in standard deviation at the 30 % to
40 % mark. Finally, these values do not represent the entire best-fit protocol and
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Table 2. Results from the best-fit candidates produced by Hermes

Targeted Mutations Mean Standard Complement Mean Complement Std.

% of Code Coverage Deviation Coverage Deviation

10 3600 0.8425 0.1622 0.4116 0.4624

20 3600 0.775 0.1636 0.412 0.4625

30 3600 0.8312 0.172 0.4116 0.4624

40 3600 0.6954 0.3623 0.4115 0.4624

50 3600 0.7208 0.3569 0.4115 0.4624

60 3600 0.752 0.3131 0.4094 0.4619

70 3600 0.8064 0.2962 0.4102 0.4622

80 3600 0.7276 0.3472 0.41 0.4621

90 3600 0.7441 0.3343 0.4097 0.4622

100 3600 0.7365 0.3318 0.4108 0.4624

they must be exhaustively evaluated to assure that the results are not simply
“surface” matches.

The results from an exhaustive evaluation of the best-fit protocols are detailed
in Table 3. Here, we observe fluctuations in the number of mutations, and thus
the computation time, of the evaluations. This is the result of Hermes tailoring
each protocol to attack the specified set of potential defects while pruning any
redundant or useless features to minimize the total number of mutations. Fur-
thermore, 8 of the 10 evaluations achieve parity with their baseline counterparts

Table 3. Results from exhaustively evaluating the generated best-fit protocols

Targeted Mutations Mean Standard Complement Mean Complement Std.

% of Code Coverage Deviation Coverage Deviation

10 41964 0.8625 0.1304 0.4171 0.4637

20 51648 0.79 0.146 0.4307 0.4656

30 41964 0.8425 0.1575 0.4347 0.4662

40 35508 0.7027 0.3607 0.4161 0.4635

50 51648 0.7283 0.3548 0.432 0.4657

60 50185 0.785 0.3145 0.4311 0.4658

70 41964 0.81 0.2939 0.4162 0.4638

80 23672 0.7834 0.3248 0.4147 0.4634

90 49162 0.7493 0.3339 0.4316 0.4659

100 49981 0.7415 0.3315 0.4319 0.4658
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on mean code coverage, and the other 2 evaluations are within 0.5 % of their
baseline counterparts.

The standard deviation results followed a similar trend set by the mean cover-
age. Seven of the ten evaluations achieved parity with their baseline counterparts
with the other 3 evaluations within 0.4 % of their baseline counterparts. In one
case, the 20 % evaluation, we observed a decrease in the standard deviation of
the mean coverage while continuing to maintain mean coverage parity.

6 Analysis

6.1 Best-Fit Protocols and Their Accuracy

The best-fit protocols generated by Hermes were produced by selecting the best-
performing protocol in a 3600-mutation evaluation (detailed in Table 2). The
resulting protocols were then exhaustively evaluated (fuzzed) to produce the
values shown in Table 3.

Our analysis compared the code coverage for the 3600-mutation best-fit pro-
tocol and its exhaustively-fuzzed counterpart. We observed that although the full
evaluation achieves better code coverage in every evaluation it does not deviate
from the initial best-fit evaluation with 3600 mutations in a significant manner.
The two major discrepancies are at the 60 % and 80 % evaluations with a differ-
ence of 3.3 % and 5.58 % respectively. Additionally, the full evaluation achieves
a lower or equivalent standard deviation compared to the initial evaluation. The
notable anomalies are at the lower percentage targets (10 %, 20 %, and 30 %)
and at the 80 % evaluation. At these areas we see a lower standard deviation
than the initial best-fit evaluations.

Table 4. A comparison of the baseline and the full evaluations of best-fit protocols

Targeted Difference in Mean Difference Baseline # Full Best-Fit Difference in

% of Code Coverage (%) in Std Deviation Mutations # Mutations # Mutations

10 0 0 67788 41964 25824

20 0 0.0025 67788 51648 16140

30 0 0 67788 41964 25824

40 0.0009 0.0001 67788 35508 32280

50 0 0 67788 51648 16140

60 0 0 67788 50185 17603

70 0.0048 0.0038 67788 41964 25824

80 0 0 67788 23672 44116

90 0 0 67788 49162 18626

100 0 0 67788 49981 17807
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The similarity between the initial and full best-fit evaluations may be due
to the size of the target application or the size of the feature string used in the
genetic algorithm. The deviation between the initial and full evaluations may
increase with a change in either of these two factors.

6.2 Comparing Directed and Undirected Approaches

The directed (full best-fit) evaluations and the undirected (baseline) evaluations
are compared in Table 4. In this table we observe that the full best-fit mean
coverage and standard deviation results achieve near-parity with their baseline
counterparts. Additionally, the areas that did not achieve parity were within
0.5 % of their targets.

We observe from Table 4 that every evaluation was able to reduce the number
of mutations (and thus computation time as described in Sect. 4.2) required. In
the case of the 80 % evaluation Hermes was able to reduce the number of muta-
tions by 65 % from 67788 to 23672 mutations while achieving complete parity in
both mean code coverage and standard deviation. The minimum improvement
observed from our evaluations is a decrease in the number of mutations by 23.8 %
(from 67788 to 51648 mutations) while maintaining parity within 0.5 % of mean
code coverage and standard deviation.

7 Conclusion

Evidence in security assurance cases must be definitive, convincing, and accurate.
The more specific the evidence the stronger the associated assurance argument.
Fuzz testing is has become a popular tool for software security assurance but
in its traditional (undirected) form, it provides only weak evidence for specific
security cases. We have presented a method, tool implementation and experi-
mental results for a directed fuzzer, which can be used to target specific potential
code vulnerabilities. Our experimental results indicate that the method shows
promise in reducing resources needed for covering code that is of interest from
a security perspective (as indicated by static code analysis). We were able to
achieve reductions in execution time (ranging from 23.8 % to 65 %), while tar-
geting specific bug types (in this evaluation we chose the most-severe defects),
and achieving near-equivalent code coverage to an exhaustive fuzz test (within
0.5 %) Clearly, our evaluation to date is limited, since we have only studied one
real-world target software system. Additional experiments are needed to confirm
the generalizability of our results.
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