
A Change Impact Analysis Tool: Integration
Between Static and Dynamic Analysis

Techniques

Nazri Kama1(&), Saiful Adli Ismail1, Kamilia Kamardin1,
Norziha Megat Zainuddin1, Azri Azmi1,2,

and Wan Shafiuddin Zainuddin2

1 Advanced Informatics School, Universiti Teknologi Malaysia,
54100 Kuala Lumpur, Malaysia

{mdnazri,saifuladli,kamilia,norziha.kl,

azriazmi}@utm.my
2 CyberSecurity Malaysia, Sapura@Mines, 43300 Seri Kembangan

Selangor, Malaysia
wanshafi@cybersecurity.my

Abstract. Accepting too many software change requests could contribute to
expense and delay in project delivery. On the other hand rejecting the changes
may increase customer dissatisfaction. Software project management might use
a reliable estimation on potential impacted artifacts to decide whether to accept
or reject the changes. In software development phase, an assumption that all
classes in the class artifact are completely developed is impractical compared to
software maintenance phase. This is due to some classes in the class artifact are
still under development or partially developed. This paper is a continuous effort
from our previous work on combining between static and dynamic analysis
techniques for impact analysis. We have converted the approach to an auto-
mated tool and call it a CIAT (Change Impact Analysis Tool). The significant
achievements of the tool are demonstrated through an extensive experimental
validation using several case studies. The experimental analysis shows
improvement in the accuracy over current impact analysis results.

Keywords: Software development � Change impact analysis � Impact analysis

1 Introduction

Managing software changes is crucial in meeting the evolving needs of customers and
later, satisfying their requirements [1]. On one hand taking risk by accepting huge
number of changes will lead to delay in delivering project deadline. On the other hand,
rejecting the changes contribute to customers unsatisfactory. Looking at this scenario, it
is a challenge for software project manager to make a decision when software changes
occur during software development. One type of inputs that can assist the software
project manager to make an effective decision is through an early prediction on the
number of impacted artifacts (or classes) by the changes. The prediction can be done by
performing impact analysis or change impact analysis [2].

© Springer International Publishing Switzerland 2015
H. Fujita and G. Guizzi (Eds.): SoMeT 2015, CCIS 532, pp. 413–424, 2015.
DOI: 10.1007/978-3-319-22689-7_32



Referring to [3–5], impact analysis is defined as a process of investigating potential
consequences of making a change, or estimating what are the artifacts that will be
affected to accomplish a change. In other words, the impact analysis is an activity of
identifying software artifacts that are potentially to be affected by a change. Impact
analysis has been widely used in software maintenance phase rather than software
development phase [6–9]. This is because the current developed impact analysis
solutions assume that all classes or class artifacts are completely developed. Most
solutions use dynamic analysis techniques [10–13] for their impact analysis
implementation.

Our previous works [6–9] have shown that there is a clear difference on change
impact analysis implementation between software maintenance and software devel-
opment phases. This is due to the existence of partially developed classes in the
software development phase. This existence causes the current implementation of
dynamic analysis techniques are impractical to be implemented in the software
development phase. The dynamic analysis technique uses method execution path
model as a source of analysis. This model is developed through reverse engineering
from source code [10–13]. The technique tends to produce inaccurate results because
some method execution paths that involve partially developed classes [7, 8] are not
visible due to they have yet to be implemented. This will led to inaccuracy of the
generated results.

This paper is a continuous works on change impact analysis approach to support
software development activity [6–9]. To note, this paper has close related to our newly
published work in [8]. The difference is that this paper focuses on our experiment in
automating the previously developed manual impact analysis approach whereas in [8]
we extend the automated approach to support change effort estimation. In few recent
studies [14, 15], the combination of static and dynamic approaches has indicated some
noticeable advantages from both worlds. In this paper, we have extended our work to
developing a prototype tool to support the previously developed approach. This paper
will give more explanation on the developed tool rather than the concept of change
impact analysis approach itself. Details explanation on the approach can be found in
[6–9].

This paper is presented: Sect. 2 related work, Sect. 3 explanation on the prototype
tool main screen, Sect. 4 and Sect. 5 provide explanation on evaluation procedure and
its results. Lastly, Sect. 6 concludes and position our future works.

2 Related Work

Based on our literature, impact analysis has two categories that are static analysis
technique and dynamic analysis technique. Our previous definitions have said that the
static analysis technique generates a set of potential impacted classes from software
artifacts. The dynamic analysis technique conversely builds a set of potential impacted
classes through source code execution.

414 N. Kama et al.



2.1 Static Analysis

Two most related existing static analysis techniques are selected as comparative to the
new proposed approach which are the Use Case Maps (UCM) technique [16] and the
class interactions prediction with impact prediction filters (CIP-IPF) technique [17, 18].

The UCM technique perform impact analysis on the functional requirements and
the high level design models when all the functional requirements have been com-
pletely identified and the high level design models have been fully developed. Nev-
ertheless, the main limitation of this technique is there is no traceability link between
the functional requirements and the high level design models to the actual source codes.
This technique only makes an assumption that the content of these two artifacts are
reflected to the class artifacts in which any affected elements in the UCM models are
indirectly reflected to the affected class artifacts.

Next, CIP-IPF technique [17, 18] uses the class interactions prediction model in
order to define the impacted class artifacts. The advantage of the technique over the
UCM technique is that it has a traceability link between the requirements artifacts and
the class artifacts. Impact of changes at the requirement level to the class artifacts can
be performed based on this traceability link.

In these two techniques, there is a tendency of missing some actual impacted class
due to inconsideration of actual source code analysis. This is based on the precept that
some of the effect of a change from a class to other classes may only be visible through
dynamic or behavior analysis of the changed class [19, 20].

2.2 Dynamic Analysis

Two most related dynamic analysis works are identified in our research which are the
Influence Mechanism technique [11, 13] and the Path Impact technique [12]. These two
techniques analyzing the actual source code in order to predict the impact set which
consists of classes or methods.

The Influence Mechanism technique [11, 13] introduces the Influence Graph
(IG) as a model to identify the impacted classes. However, this technique only analyze
the class artifacts as the only source of analysis with the condition that the source code
are completely developed.

Next, the Path Impact technique [12] uses the Whole Path DAG (Directed Acyclic
Graph) model as a model to identify the impacted classes. The technique is almost
similar to the Influence Mechanism technique as this technique also uses the class
artifacts as a source of analysis and assumes that the class artifacts are completely
developed. In addition to that, this technique also performs a preliminary analysis prior
to performing a detail analysis. The main limitation of this technique is the imple-
mentation is time consuming as the technique opens to a huge number of data when the
analysis goes to a large application.

The main similarity of both techniques in terms of its limitation is there is no
traceability process or formal mapping from requirements artifacts or design models to
the class artifacts. This process is crucial in impact analysis process as changes not only
come from class artifacts but it may also come from design and/or requirements

A Change Impact Analysis Tool: Integration 415



artifacts. Since design and requirements artifacts do interact among them vertically
(between two different artifacts of a same type) and horizontally (between requirement
and design artifacts), changes that happen to them could contribute to different affected
class artifacts. In some circumstances, focusing on the source code analysis may not
able to detect those affected classes.

3 The CIAT

There are two main modules in the Change Impact Analysis Tool (will called “CIAT”
henceforth). The modules are Class Interaction Prediction (CIP) Module and Impact
Analysis Module as in Fig. 1.

The CIP model is a traceability model that shows interactions of all the software
artifacts. This model will be used for static change impact analysis implementation.
This model can be developed in any format, but for the purpose of this project we
developed it for a consistent xml format. It consists of two sections, first section
contains the project information and the second section contains the artifacts
information.

For the impact analysis module, the process begins with performing static impact
analysis to identify direct and indirect impacted classes. The process starts with the
static impact analysis identify direct impacted classes which are the first layer of classes
affected by a particular changes requirement. To note, this layer has yet included
vertical traceability analysis. Later, the identification of indirect impacted classes are
executed by performing the vertical traceability analysis.

Due to space limitation, this paper concentrates on impact analysis module only.
Basically, the interaction between these two modules is done through an interface file
named CIP. This file will be exported from Class Interactions Prediction Module and
imported by Impact Analysis Module. In other words the output of the first CIP Module
acts as an input for impact analysis module.

Overall functionalities of this tool are: (1) To import the CIP file to the system
database; (2) To acquire the change request information; and (3) To perform static and
dynamic impact analysis. See Fig. 2:

Fig. 1. System overview

416 N. Kama et al.



The following sub-sections explain briefly the implementation steps of this tool as
shown in Fig. 3:

3.1 Step 1: Import CIP

The purpose of this procedure is to import the generated CIP model file. The CIP model
file can be an XML (.xml) file or a CIP (.cip) file. Both should have been developed
according to the CIP descriptions in XML format. The tool will extracts the software
artifacts: (1) requirement, (2) design and (3) class information in the CIP model file as
in Fig. 4 below.

Fig. 2. Overall functionalities of CIAT

Fig. 3. Main page form

Fig. 4. Import CIP form

A Change Impact Analysis Tool: Integration 417



3.2 Step 2: Acquire Change Requests

The purpose of this step is to get the required change request information, see Fig. 5.
Acquiring change request will be performed in Acquire Change Request Form (see
Fig. 7). There are seven inputs in Acquire Change Request Form as follow: (1) Iden-
tification Number, which is filled automatically; (2) Change Requester; (3) Requested
Change; (4) Change Priority; (5) Affected Requirements; and (6) Comments, which is
optional.

3.3 Step 3: Impact Analysis Implementation

This step analyses change request document to identify a set of potential impacted
classes. The result of this step is the initial set of impacted classes. After identifying the
initial set of impacted classes, the tool performs impact analysis using two filtration
levels and they are Class Dependency Filtration (CDF) and the Method Dependency
Filtration (MDF) levels.

In brief, the CDF analyzes the initial set of potential impacted classes using static
analysis technique. This analysis is implemented in order to identify the existence of
any interaction links that has no change impact value in the initial set of potential
impacted classes. We define this interaction link as if there is no change happens to one
side of two interacting classes, the other class will not be affected because the opposite
class does not require the changed class for its implementation. For the MDF level, the
following section gives explanation on it.

Fig. 5. Change request form

418 N. Kama et al.



Static Analysis – Class Dependency Filtration Level. In this level, the class
dependency filtration (CDF) will be performed on the static impact analysis results as
in Fig. 6. The process begins with performing static impact analysis to identify direct
and indirect affected classes; the static impact analysis will firstly find the direct
impacted classes which are the first layer of classes affected by a particular changes
requirement without vertical traceability relations consideration. Then indirect impac-
ted classes will be identified by complete traceability search through the CIP interac-
tions to find all related classes to the changed requirement.

Dynamic Analysis – Method Dependency Filtration (MDF). The MDF conducts
another layer of filtration on the CDF level outcomes or results. All method execution
paths from the CDF level results will be extracted and analyzed to remove any false
detected impacted classes. We have selected the backward and forward analysis
technique [13].

There is one main challenge of the current dynamic impact analysis approaches
from the software development phase perspective which is they do not consider par-
tially developed class in their process. This is happening due to the nature of classes in
the software maintenance phase have been fully developed.

We claim that the inclusion of partially developed class analysis plays significant
role in impact analysis from software development perspective. A situation might exist
in the software development phase where of some classes are still under development.
Figure 7 shows the dynamic impact analysis form.

Fig. 6. Sample of CDF filtration on impact analysis

A Change Impact Analysis Tool: Integration 419



4 Evaluation Strategy

The ultimate aim of the prototype development is to answer a question of “does the
developed prototype tool gives an acceptable accuracy of impact analysis results than
the selected current impact analysis techniques? To answer this question, we have
compared the accuracy of the prototype results with current impact analysis approa-
ches: (1) Class Interactions Prediction with Impact Prediction Filters (CIP-IPF)
approach [17, 18]; and (2) the Path Impact approach [11].

We constructed four evaluation attributes: (1) case study; (2) development process;
(3) evaluation metrics; and (4) hypothesis.

4.1 Case Study

We have selected three groups of masters student that is currently undertaking master
of software engineering course. There are five to seven members of each group that
performing various roles in software development activity. We issued several change
request to each group and asked them to perform impact analysis at several specific
phases. Three impact analysis approaches are used: CIP-IPF approach [17, 18], the
Path-Impact approach [11] and the newly developed prototype tool.

4.2 Development Process

Several change requests were issued during the development of a software i.e.,
requirement phase, design phase, coding phase. Waterfall kinds of development

Fig. 7. Sample of dynamic impact analysis

420 N. Kama et al.



structure were selected [21]. For future evaluation, Agile model kinds of development
structure will be taken into consideration.

4.3 Evaluation Metrics

We used the evaluation metrics as described in [19]. Each prediction results on the
impacted classes were grouped according to:

• Not Predicting and Not Changing (NP-NC): number of pairs of classes correctly
predicted to not be changing;

• Predicting and Not Changing (P-NC): number of pairs incorrectly predicted to be
changing;

• Not Predicting and Changing (NP-C): number of classes incorrectly predicted to not
be changing; and

• Predicting and Changing (P-C): number of classes correctly predicted to be
changing.

Based on the groups, the following values were then calculated [20, 22]: (1) Com-
pleteness value: The ratio of the actual class interactions or impacted classes that were
predicted; (2) Correctness value: The ratio of the predicted class interactions that were
actually interacting or impacted classes that were actually impacted; and (3) Kappa
value [19]: This value reflects the accuracy or the prediction (0 is no better than random
chance, 0.4–0.6 is moderate agreement, 0.6–0.8 is substantial agreement, and 0.8–1 is
almost perfect agreement [16, 20]).

4.4 Hypotheses

• H0: CIAT does not give higher accuracy of impact analysis results than the selected
current techniques results

• Ha: CIAT gives higher accuracy of impact analysis results than the selected current
evaluation Results

To validate the hypothesis, an Independent T-Test statistical analysis was used. At the
first stage, we compared Means results between the CIP-IPF approach and the CIAT
whereas the second stage is between Means results of Path Impact technique and
CIAT.

5 Evaluation Results

Table 1 below shows the impact analysis results produced by all selected impact
analysis techniques (CIP-IPF, Path Impact and CIAT).

A Change Impact Analysis Tool: Integration 421



Table 2 below shows the summary of T-Test results.

5.1 Stage 1 Analysis: The CIP-IPF Technique Vs. CIAT

Table 2 shows the CIAT means value is 0.9060 and CIP-IPF approach value is 0.7927.
This indicates that CIAT value is higher than the CIP-IPF approach. Thus, the values
reject the null hypothesis (H0: CIAT does not improve on the CIP-IPF approach results)
and accept the alternate hypothesis (Ha: CIAT approach gives higher accuracy of
impact analysis results than the CIP-IPF approach).

5.2 Stage 2 Analysis: The Path Impact Technique Vs. CIAT

The results show CIAT value is 0.9060 and the Path Impact approach value is 0.7773.
This shows that the CIAT value is higher than the Path Impact approach. Thus, the

Table 1. Impact analysis results produced by all techniques

CR
ID

CIP-IPF Path Impact CIAT
Com
(%)

Corr
(%)

Kappa
value

Com
(%)

Corr
(%)

Kappa
value

Com
(%)

Corr
(%)

Kappa
value

CR1 80 100 0.785 66.7 100 0.652 86.7 100 0.876
CR2 81.3 100 0.821 78.6 100 0.789 92.9 100 0.935
CR3 76.9 100 0.768 80 92.3 0.752 100 93.8 0.944
CR4 83 94 0.795 88.7 94.1 0.85 94.4 94.4 0.903
CR5 83 91 0.767 91.7 91.7 0.852 91.7 91.7 0.852
CR6 82.4 100 0.832 76.5 92.9 0.721 94.1 94.1 0.842
CR7 81.8 90 0.734 80 94.1 0.764 95 95 0.912
CR8 80 100 0.806 78.6 100 0.787 92.9 100 0.935
CR9 75 100 0.752 87.5 100 0.884 87.5 100 0.884
CR10 76 100 0.77 88.2 100 0.892 94.1 100 0.947
CR11 85.7 100 0.863 73.7 93.3 0.695 94.7 94.7 0.908
CR12 80 100 0.773 68.8 100 0.676 87.5 100 0.884
CR13 90.9 90.9 0.83 76.5 100 0.769 94.1 100 0.947
CR14 83 100 0.843 77.8 100 0.784 94.4 100 0.95
CR15 80 92 0.749 80 100 0.804 86.7 100 0.874

Key: Com- Completeness; Corr- Correctness

Table 2. T-Test results

Stage Analysis Technique Means Results

Stage 1 CIP-IPF 0.7927
CIAT 0.9060

Stage 2 Path Impact 0.7773
CIAT 0.9060

422 N. Kama et al.



values reject the null hypothesis (H0: CIAT does not give higher accuracy of impact
analysis results than the Path Impact approach) and accept the alternate hypothesis (Ha:
CIAT gives higher accuracy of impact analysis results than the Path Impact approach).

6 Conclusion and Future Work

Our contribution on this paper is an automated prototype tool. This tool implements our
previously developed change impact analysis approach. The uniqueness of the
approach or the prototype tool is the introduction of Class Dependency Filtration
(CDF) and Method Dependency Filtration (MDF) in impact analysis implementation,
The MDF is used to handle the partially developed class analysis issues. For the future
works, we plan to extend the tool implementation from agile methodology perspective
instead of waterfall methodology.

Acknowledgements. The research is financially supported by Ministry of Education Malaysia
and Universiti Teknologi Malaysia under Prototype Research Grant Scheme (PRGS), Vot No:
4L617.

References

1. Pfleeger, S.L., Bohner, S.A.: A framework for software maintenance metrics. In:
Proceedings of the International Conference on Software Maintenance, pp. 320–327 (1990)

2. Bennet K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In:
Proceedings of the International Conference on the Future of Sofware Engineering,
pp. 75–87 (2000)

3. Kotonya, G., Somerville, I.: Requirements Engineering: Processes and Techniques. Wiley,
Chichester (1998)

4. Arnold, R.S., Bohner, S.A.: Impact analysis-towards a framework for comparison. In:
CSM-93, Proceedings Conference on Software Maintenance, pp. 292–301, 27–30
September 1993 (1993)

5. Antoniol, G., Canfora, G., Casazza, G.: Information retrieval models for recovering
traceability links between source code and documentation. In: Proceedings of the
International Conference on Software Maintenance, pp. 40–44 (2000)

6. Kama, N.: A change impact analysis approach for the software development phase:
evaluating an integration approach. Int. J. Soft. Eng. Appl. 7(2), 293304 (2013)

7. Kama, N.: Integrated change impact analysis approach for the software development phase.
Int. J. Soft. Eng. Appl. 7(2), 293–304 (2013)

8. Basri, S., Kama, N., Ibrahim, R.: A novel estimation approach for requirement changes
during software development. Int. J. Softw. Eng. Appl. 9(1), 237–252 (2015)

9. Kama, N., Basri, S.: Considering partially developed artifacts in change impact analysis
implementation. J. Softw. 9(8), 2174–2179 (2014)

10. Breech, B., Tegtmeyer, M., Pollock, L.: Integrating influence mechanisms into impact
analysis for increased precision. In: Proceedings of the 22nd International Conference on
Software Maintenance, pp. 55–65 (2006)

A Change Impact Analysis Tool: Integration 423



11. Law, J., Rothermal, G.: Whole program path-based dynamic impact analysis. In:
Proceedings of the 25th International Conference on Software Engineering (ICSE 2003),
pp. 308–318 (2003)

12. Breech, B., Danalis, A., Shindo, S., Pollock, L.: Online impact analysis via dynamic
compilation technology. In: Proceeding of the 20th IEEE International Conference on
Software Maintenance, Washington, US, 11–17 September 2004

13. Law, J., Rothermel. G.: Incremental dynamic impact analysis for evolving software systems.
In: Proceeding of the 14th International Symposium on Software Reliability Engineering,
Washington, US, 17–20 November 2003

14. Tartler, R., Lohmann, D., Scheler, F., Spinczyk, O.: AspectC++: an integrated approach for
static and dynamic adaptation of system software. Knowl.-Based Syst. 23(7), 704–720
(2010)

15. Abaei, G., Selamat, A., Fujita, H.: An empirical study based on semi-supervised hybrid
self-organizing map for software fault prediction. Knowl.-Based Syst. 74, 28–39 (2015)

16. Hassine, J., Rilling, J., Hewitt, J., Dssouli, R.: Change impact analysis for requirement
evolution using use case maps. In: Proceeding of the 8th International Workshop on
Principles of Software Evolution, Washington, US, 5 September 2005

17. Kama, N., French, T., Reynolds, M.: Design patterns consideration in class interactions
prediction development. Int. J. Adv. Sci. Technol. 28, 6 (2011)

18. Kama, N., Azli, F.: Requirement level impact analysis with impact prediction filter. In:
Proceeding of the 4th International Conference on Software Technology and Engineering,
Phuket Thailand, 1–2 September 2012

19. Lindvall, M., Sandahl, K.: How well do experienced software developers predict software
changes. J. Syst. Softw. 43, 1 (1998)

20. Cohen, J.: A coefficient of agreement for nominal scales. J. Educ. Psychol. Measur. 20, 1
(1960)

21. Sommerville, I.: Software Engineering, 7th edn. Pearson Education, New Jersey (2008)
22. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.

J. Biometrics 33, 1 (1977)

424 N. Kama et al.


	A Change Impact Analysis Tool: Integration Between Static and Dynamic Analysis Techniques
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis
	2.2 Dynamic Analysis

	3 The CIAT
	3.1 Step 1: Import CIP
	3.2 Step 2: Acquire Change Requests
	3.3 Step 3: Impact Analysis Implementation

	4 Evaluation Strategy
	4.1 Case Study
	4.2 Development Process
	4.3 Evaluation Metrics
	4.4 Hypotheses

	5 Evaluation Results
	5.1 Stage 1 Analysis: The CIP-IPF Technique Vs. CIAT
	5.2 Stage 2 Analysis: The Path Impact Technique Vs. CIAT

	6 Conclusion and Future Work
	Acknowledgements
	References


