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    Chapter 10   
 microRNAs and Cardiovascular Remodeling       

       Koh     Ono    

    Abstract     Heart failure (HF) is associated with signifi cant morbidity and mortality 
attributable largely to structural changes in the heart and with associated cardiac 
dysfunction. Remodeling is defi ned as alteration of the mass, dimensions, or shape 
of the heart (termed cardiac or ventricular remodeling) and vessels (vascular remod-
eling) in response to hemodynamic load and/or cardiovascular injury in association 
with neurohormonal activation. Remodeling may be described as physiologic or 
pathologic; alternatively, remodeling may be classifi ed as adaptive or maladaptive. 
The importance of remodeling as a pathogenic mechanism has been controversial 
because factors leading to remodeling as well as the remodeling itself may be major 
determinants of patients’ prognosis. The basic mechanisms of cardiovascular 
remodeling, and especially the roles of microRNAs in HF progression and vascular 
diseases, will be reviewed here.  
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        Introduction 

  Cardiovascular disease   is the leading cause of morbidity and mortality in developed 
countries.  Cardiovascular remodeling   is thought to be an important aspect of dis-
ease progression in heart failure (HF), regardless of cause. It is manifested clinically 
by changes in cardiac size, shape, and function in response to aging, cardiac injury, 
or increased load. The importance of remodeling as a pathogenic mechanism is not 
completely understood because the factors leading to remodeling have not been 
fully investigated. Generally, pathological processes of the heart are associated with 
an altered expression profi le of genes that are important for cardiac function 
(Fig.  10.1 ) [ 1 ].
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   The regulation of cardiac gene expression is complex, with individual genes 
controlled by multiple transcription factors associated with their regulatory 
enhancer/promoter sequences to activate gene expression [ 2 ]. Moreover, epigenetic 
regulation of gene expression and alternative splicing mechanisms also further 
complicate the patterns of gene expression. microRNAs (miRNAs; miRs) have 
reshaped our view of how gene expression is regulated by adding another layer of 
regulation at the posttranscriptional level. Cardiovascular remodeling encompassed 
many pathologies including cardiac hypertrophy, myocardial ischemia/myocardial 
infarction (MI), cardiac fi brosis, arrhythmia, and vascular diseases that will be dis-
cussed in more detail in the following sections (Fig.  10.2 ).

   The implications of miRNA-derived regulation in cardiovascular pathology have 
only been recognized very recently, and research on miRNAs in relation to such 
diseases has now become a rapidly evolving fi eld. In this chapter, we will summa-
rize the current understanding of miRNA function in the pathogenesis of cardiovas-
cular remodeling.  

    Cardiac Hypertrophy 

    Left ventricular  hypertrophy   is a common fi nding in patients with hypertension and 
it can be diagnosed  either   using an electrocardiogram or by echocardiography. 
Because cardiac hypertrophy, an increase in heart size, is  associated   with nearly all 
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  Fig. 10.1    Pathological processes of the heart under stress       
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forms of HF, it is of great clinical importance that we understand the mechanisms 
responsible for cardiac hypertrophy. Therefore, the regulation of hypertrophy- 
associated genes has attracted great interest from many researchers. 

 Pathological hypertrophy is mainly caused by hypertension, loss of myocytes 
following ischemic damage, and genetic alterations that cause cardiomyopathy. 
Moreover, metabolic abnormality or neurohormonal activation can also lead to 
hypertrophy [ 3 ]. Pathological hypertrophy is the phenotypic endpoint that has been 
most studied in relation to miRNAs in the heart to date. 

 Clinical studies in human hearts have indicated that the fetal gene expression 
program is reactivated in pathologic hypertrophy and failing hearts, which results in 
a switching of structural proteins from adult to fetal isoforms [ 4 ]. It is well known 
that there is a decrease in the fast-shortening-velocity isoform (α-myosin heavy 
chain) coupled with an increase in the slow-shortening-velocity isoform (β-myosin 
heavy chain [β-MHC]) during the transition from cardiac hypertrophy to HF [ 5 ]. 
This contributes to the decrease in contractile function in failing human hearts. 
Interestingly, transcriptome analysis of failing and fetal hearts revealed a similar 
pattern of miRNA expression. More than 80 % of the deregulated miRNAs in fail-
ing hearts displayed a similar expression pattern as in fetal hearts, suggesting that 
reactivation of a fetal miRNA program may contribute to the gene expression pat-
tern of failing hearts [ 6 ]. The most consistent changes were upregulation of miR-21, 
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  Fig. 10.2    Dysregulated microRNAs in cardiovascular disease       
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miR-29b, miR-129, miR-210, miR-211, miR-212, and miR-423, with down-
regulation of miR-30, miR-182, and miR-526. Interestingly, gene expression analy-
sis revealed that most of the upregulated genes were characterized by the presence 
of a signifi cant number of the predicted binding sites for downregulated miRNAs 
and vice versa. 

 In animal models of cardiac hypertrophy, whole arrays of miRNAs have indi-
cated that separate miRNAs are upregulated, downregulated, or remain unchanged 
with respect to their levels in a normal heart [ 6 – 12 ]. In these studies, some miRNAs 
have been more frequently reported than others, indicating the possibility that these 
miRNAs might have common roles in hypertrophy pathogenesis. 

 Tissue-specifi c expression of miRNAs was fi rst reported in 2002 [ 13 ]. It is known 
that there is a family of so-called myomiRs that are encoded within the introns of the 
separate myosin heavy chain genes. miR-208a, miR-208b, and miR-499 are located 
within the Myh6, Myh7, and Myh7b genes, respectively. It was reported that miR-
208 −/−  mice show reduced cardiac hypertrophy in response to pressure overload [ 14 ]. 
Targets of miR-208a include thyroid hormone receptor-associated protein 1 [ 14 ,  15 ], 
suggesting that miR-208a initiates cardiomyocyte hypertrophy by regulating triiodo-
thyronine-dependent repression of β-MHC expression. miR- 27a also regulates 
β-MHC gene expression by targeting TRβ1 in cardiomyocytes [ 16 ]. Overexpression 
of miR-208a was suffi cient to upregulate Myh7 and to elicit cardiac hypertrophy, 
resulting in systolic dysfunction [ 15 ]. Although miR-208a is required for cardiac 
hypertrophy, the role of miR-208b in these pathologic conditions remains to be elu-
cidated. miR-499 is encoded in an intron of the myh7 gene and is considered likely 
to play a role in myosin gene regulation [ 17 ,  18 ]. 

  miR-1   is also a cardiac and skeletal muscle-specifi c miRNA, and it is probably one 
of the most abundant miRNAs in the heart. It was reported to target a cytoskeletal 
regulatory protein,  twinfi lin 1 (Twf1)  , which binds to actin monomers and prevents 
their assembly into fi laments [ 19 ]. Downregulation of miR-1 induced by hypertro-
phic stimuli, such as transverse aortic constriction or α-adrenergic stimulation with 
phenylephrine, results in increased Twf1 expression, and overexpression of Twf1 is 
suffi cient to induce cardiac hypertrophy. Another target of miR-1 is insulin- like growth 
factor (IGF-1), IGF-1 receptor [ 20 ], calmodulin 1 and 2, Mef2a [ 21 ], and sodium 
calcium exchanger [ 22 ]. Repression of miR-1 and upregulation of IGF-1 was also 
demonstrated in models of cardiac hypertrophy [ 20 ]. miR-1 is downregulated in patients 
with aortic stenosis [ 11 ] and acromegaly associated cardiac hypertrophy [ 20 ]. 

  miR-1   is encoded by two bicistronic clusters—miR-133a-1/miR-1-2 and miR-
133a- 2/miR-1-1. As well as miR-1, miR-133 also has the potential to attenuate 
agonist-induced hypertrophy [ 23 ,  24 ], whereas repression of miR-133 sensitized 
the myocardium to excessive cardiac growth. Therefore, these clusters generate 
antagonizing effects on the stimulation of cardiac hypertrophy. 

 In contrast,  miR-195   was suffi cient to drive pathologic cardiac growth when 
overexpressed in neonatal cardiac myocytes and in transgenic mice [ 7 ]. These 
results suggested that miR-195 is a pro-hypertrophic factor that actively participates 
in the hypertrophic process; however, no direct targets of miR-195 have been 
reported in the context of cardiac hypertrophy.     
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    Myocardial Ischemia and Cell Death 

     A rapidly  increasing   number of studies have shown that cardiac and circulating  miR-
NAs   are markedly  altered   in myocardial ischemia or MI. These novel fi ndings shed 
new light  on   the mechanisms that lead to MI complications, post-MI ventricular 
remodeling, and cardiac repair. Furthermore, recent studies showed that circulating 
miRNAs may represent novel and sensitive biomarkers of MI and, possibly, also func-
tion as an intercellular signaling mechanism (see Chap.   7     of the volume “microRNA: 
Basic Science” for a detailed discussion of miRNA  and cardiac regeneration). 

 Cardiomyocyte death/apoptosis is a key cellular event in ischemic hearts. There 
are miRNAs that have been shown to exert proapoptotic effects by targeting key 
cardioprotective proteins. It was found that miR-320 expression was consistently 
dysregulated in ischemic hearts [ 25 ]. Ren et al. identifi ed heat-shock protein 20 
(HSP20), a known cardioprotective protein, as a target of miR-320. Knockdown of 
endogenous miR-320 provided protection against cardiomyocyte apoptosis through 
the upregulation of HSP20. miR-34 family members promote growth arrest and 
apoptosis [ 26 ]. Therapeutic inhibition of miR-34 attenuated ischemia-induced 
remodeling and improved cardiac recovery [ 27 ]. One of the targets of miR-34 was 
shown to be a protein phosphatase 1 nuclear targeting subunit (Pnuts) [ 28 ]. 

 On the other hand, there are a number of miRNAs that exert an antiapoptotic 
function by targeting important proapoptotic proteins. The miRNA expression signa-
ture in rat hearts at 6 h after MI revealed that miR-21 expression was signifi cantly 
downregulated in infracted areas but was upregulated in border areas [ 29 ]. Adenoviral 
transfer of miR-21 in vivo decreased cell apoptosis in the border and infracted areas 
through its target gene, programmed cell death 4 (PDCD4), and the activator protein 
1 (AP1) pathway. miR-24 also inhibited cardiomyocyte apoptosis via repression of 
the proapoptotic protein Bim [ 30 ]. Ex vivo miR-24 enrichment, together with miR-
21 and miR-221, improved the therapeutic potential of cardiac progenitor cells upon 
transplantation in ischemic rodents [ 31 ]. Similarly, miR-499 and miR-30 family 
members diminished apoptosis in injured hearts by attenuating activation of dyna-
min-related protein-1 and thus inhibiting mitochondrial fi ssion [ 32 ,  33 ]. 

 Early reperfusion of the ischemic heart remains the most effective intervention 
for improving clinical outcomes after a MI. However, abnormal increases in intra-
cellular Ca 2+  during myocardial reperfusion can cause cardiomyocyte death, known 
as ischemia-reperfusion (I/R) injury. Cardiac I/R injury is also accompanied by 
dynamic changes in the expression of miRNAs; for example, miR-214 is upregulated 
during ischemic injury. Genetic deletion of miR-214 in mice caused a loss of cardiac 
contractility, increased apoptosis, and excessive fi brosis in response to I/R injury 
[ 34 ]. The cardioprotective roles of miR-214 during I/R injury were attributed to 
repression of the mRNA encoding sodium/calcium exchanger 1, a key regulator of 
Ca 2+  infl ux; and to repression of several downstream effectors of Ca 2+  signaling that 
mediate cell death. These results suggested a pivotal role for miR-214 as a regulator 
of cardiomyocyte Ca 2+  homeostasis and survival during cardiac injury. Moreover, 
CaMKIIδ is a shared target of both miR-214 and miR-145 [ 35 ]. miR-145 concomi-
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tantly protects cardiomyocytes from reactive oxygen species by targeting Bnip3 
[ 36 ]. Boosting miR-214 and miR-145 levels to attenuate Ca 2+  overload and cardiac 
cell death may provide a valuable therapeutic benefi t for the treatment or prevention 
of heart failure after I/R injury. 

 Recent studies have shown that some miRNAs are present in circulating blood 
and that they are included in exosomes and microparticles [ 37 ,  38 ]. Recently, results 
obtained in studies of cancer suggest that the profi les of blood circulating miRNAs 
might refl ect the changes observed in cancerous tissue [ 39 ]. This concept has also 
proved valid in cardiovascular disease [ 40 ], and circulating specifi c miRNAs have 
been reported in patients with MI [ 41 ,  42 ]. Moreover, plasma levels of endothelial 
cell-enriched miRNAs, such as miR-126, miR-17, and miR-92a, infl ammation- 
associated miR-155, and smooth muscle-enriched miR-145 were reported to be sig-
nifi cantly reduced in coronary artery disease (CAD) patients compared with healthy 
controls. These results also indicated that they can be used as biomarker candidates 
for CAD [ 43 ]. Therefore, the source and the mechanism of the change determined 
the set of miRNAs that can be used for myocardial ischemia/MI.      

    Cardiac Fibrosis 

     Cardiac fi brosis   is a major aspect of myocardial remodeling and an important 
 contributor to the development  of   cardiac dysfunction in  diverse   pathologic condi-
tions, such as MI, in ischemic, dilated, and hypertrophic cardiomyopathies, and HF 
[ 44 – 49 ]. The extracellular deposition of collagen by fi broblasts contributes to this 
adverse remodeling. Cardiac fi brosis leads to an increased mechanical stiffness, 
initially causing diastolic dysfunction, and eventually resulting in systolic dysfunc-
tion and overt HF. In addition, fi brosis can also disturb the electrical continuity 
between cardiomyocytes, leading to conduction slowing and hence an increase in 
the chance of arrhythmias. It is also possible that the enhanced diffusion distance for 
cardiac substrates and oxygen to cardiac myocytes, caused by fi brosis, negatively 
infl uences the myocardial balance between energy demand and supply [ 46 ,  47 ]. 

  miR-21   is expressed in all cell types of the cardiovascular system, most promi-
nently in cardiac fi broblasts but rather weakly in cardiomyocytes. Furthermore, 
miR-21 is among the most strongly upregulated miRNAs in response to a variety of 
forms of cardiac stress [ 7 ,  50 ,  51 ]. Thum et al. showed that miR-21 is upregulated 
in cardiac fi broblasts in the failing heart, where it represses the expression of 
 Sprouty homolog 1 (SPRY1)  , a negative regulator of the extracellular signal- 
regulated kinase/mitogen-activated protein kinase (ERK-MAPK) signaling path-
way [ 52 ]. Upregulation of miR-21 in response to cardiac injury was shown to 
enhance ERK-MAPK signaling, leading to fi broblast proliferation and fi brosis. 
Moreover, miR-21-dependent targeting of SPRY1 and PDCD4 was shown to pro-
mote the fi broblastoid phenotype in epicardial-to-mesenchymal transition [ 53 ]. 
Phosphatase and tensin homologue (PTEN) has also been demonstrated to be a 
direct target of miR-21 in cardiac fi broblasts [ 54 ]. Previous reports characterized 
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PTEN as a suppressor of matrix metalloprotease-2 (MMP-2) expression [ 55 ,  56 ]. 
I/R injury in the heart induced miR-21 in cardiac fi broblasts in the infracted region. 
Thus, I/R injury-induced miR-21-limited PTEN function and caused activation of 
the Akt pathway and increased MMP-2 expression in cardiac fi broblasts. 

 On the other hand, miR-29 family members, miR-133, and miR-30 directly 
downregulated key profi brotic proteins. The miR-29 family is composed of three 
members, miR-29a, b, and c. It was shown that the miR-29 family, which is highly 
expressed in fi broblasts, targets mRNAs encoding a multitude of extracellular 
matrix (ECM)-related proteins involved in fi brosis, including col1a1, col3a1, elas-
tin, and fi brillin [ 50 ]. miR-29 was dramatically repressed in the border zone fl ank-
ing the infracted area in a mouse model of MI. Downregulation of miR-29 would be 
predicted to counter the repression of these mRNAs and enhance fi brotic responses. 
Therefore, it is tempting to speculate that upregulation of miR-29 may be a thera-
peutic option for MI. 

  Connective tissue growth factor (CTGF)  , a key molecule involved in fi brosis, 
was shown to be regulated by miR-133 and miR-30, which are both consistently 
downregulated in several models of pathologic hypertrophy and HF [ 57 ]. The 
authors indicated that miR-133 and miR-30 are downregulated during cardiac dis-
ease, which inversely correlated with the upregulation of CTGF. In vitro experi-
ments designed to overexpress or inhibit these miRNAs can effectively repress 
CTGF expression by interacting directly with the 3′-untranslated region (UTR) 
region of the CTGF mRNA. 

 Together, these data indicate that miRNAs are important regulators of cardiac 
fi brosis and are involved in structural heart disease.     

    Arrhythmias 

    One of the  earliest   reports of involvement of miRNA regulation of cardiac repolariza-
tion came  from   Zhou et al. in 2007 with the targeted deletion  of   miR-1-2 in mice. 
Surface electrocardiography in mutant mice demonstrated reduced average heart rate, 
accelerated atrioventricular conduction, and slowed ventricular conduction [ 58 ]. They 
found Irx5 as a target for miR-1-2, which belongs to the Iroquois family of homeodo-
main-containing transcription factors that regulate cardiac repolarization by repress-
ing transcription of KCND2. KCND2 encodes a K +  channel subunit (Kv4.2) 
responsible for the transient outward K +  current (I to ) that is the major determinant of 
the transmural repolarization gradient in the ventricular wall. The increase in Irx5 
protein levels in miR-1-2 mutants corresponded with a decrease in KCND2 
expression. 

 Additional evidence supporting a role for miR-1 in cardiac repolarization and 
arrhythmogenesis came from a rat model of MI induced by occlusion of the coro-
nary artery. It was established that gap junction protein a1 (GJA1; encoding con-
nexin43 [Cx43]) and potassium inwardly rectifying channel, subfamily J, member 
2 (KCNJ2; encoding the K +  channel subunit Kir2.1) are target genes for miR-1 [ 59 ]. 
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Cx43 is critical for inter-cell conductance of excitation [ 60 – 62 ], and Kir2.1 governs 
cardiac membrane potential [ 63 ,  64 ], both of which are important determinants for 
cardiac excitability. 

 To date, the cardiac ion channel genes that have been confi rmed experimentally 
to be targets of miR-1 or miR-133 include GJA1/Cx43/IJ [ 59 ], KCNJ2/Kir2.1/IK1 
[ 59 ], potassium voltage-gated channel, subfamily H (eag-related) member 2 
(KCNH2)/human ether-à-go-go-related gene (HERG)/IKr [ 65 ], potassium voltage- 
gated channel, KQT-like subfamily, member 1 (KCNQ1)/KvLQT1/IKs [ 66 ], and 
potassium voltage-gated channel, Isk-related family, member 1 (KCNE1)/mink/IKs 
[ 66 ]. The fact that altered expression of miRNAs can deregulate expression of car-
diac ion channels provided novel insight into the molecular understanding of car-
diac excitability. 

 miR-212 has been found to be upregulated in both animal models and human HF 
[ 6 ]. KCNJ2/Kir2.1 3′-UTR contains potential miR-212 binding sites and transfec-
tion of HeLa cells with miR-212 reduced inward rectifi er K +  current density, as 
demonstrated by whole-cell patch-clamp recordings [ 67 ]. 

 It was also reported that miR-328 is upregulated in the atria of dogs with induced 
atrial fi brillation (AF) and targets the L-type calcium channel [ 68 ]. Strikingly, inhi-
bition of miR-328 levels with an antagomir reversed the conditions. The fact that 
genetic knockdown of endogenous miR-328 reduced AF vulnerability also suggests 
the potential of miR-328 as a target for AF treatment. 

 Circulating miRNAs, which can be potential biomarkers for AF, were also 
sought. Plasma miR-150 levels from AF patients were substantially lower than that 
from healthy people in a cohort of 105 participants [ 69 ]. miRNAs may serve as 
molecular diagnostic markers for AF in the future.     

    Angiogenesis and Vascular Disease 

     miRNAs are  also   important in vascular development, physiology, and disease. 
Initial evidence for  the   functional roles  of   miRNAs in vascular development was 
provided by the observation that  mice   carrying a Dicer hypomorphic allele died 
prenatally with severely disrupted blood vessel formation [ 70 ]. 

 Profi ling of endothelially expressed miRNAs has been performed using human 
umbilical vein endothelial cells. These results revealed high expression levels of 
miR-221/222, miR-21, let-7 family, miR-17-92 cluster, miR-23-24 cluster, and 
miR-126 in vascular endothelial cells. Among them, miR-126 is the only miRNA 
considered to be expressed specifi cally in endothelial cells [ 71 ]. 

 Studies focusing on individual miRNAs or miRNA clusters suggested the impor-
tance of miRNAs in endothelial cell function and angiogenesis. The miR-17-92 
cluster is one of the most important miRNAs for the regulation of angiogenesis. It 
encodes six miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-
92- 1), which are tightly grouped within an 800 base-pair region, and it is transcrip-
tionally regulated by c-Myc [ 72 ]. In particular, miR-18 preferentially suppressed 
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CTGF, whereas miR-19 targeted the potent angiogenesis-inhibitor thrombospon-
din- 1 to promote tumor angiogenesis [ 73 ]. On the other hand, miR-92a controlled 
the growth of new blood vessels (angiogenesis) [ 74 ]. Forced overexpression of 
miR-92a in endothelial cells blocked angiogenesis, and systemic administration of 
an antagomir to inhibit miR-92a led to enhanced blood vessel growth and functional 
recovery of damaged tissue in mouse models of limb ischemia and MI. Therefore, 
miR-92a may serve as a valuable therapeutic target in the setting of ischemic 
disease. 

  miR-126   is an abundant, endothelial cell-enriched miRNA that is encoded in the 
second intron of an endothelial cell-specifi c gene,  Egfl 7 , and mechano-sensitive 
zinc fi nger transcription factor Klf2a was shown to induce miR-126 expression to 
activate vascular endothelial growth factor signaling [ 75 ]. This work described a 
novel genetic mechanism in which a miRNA facilitated integration of a physiologi-
cal stimulus with growth factor signaling in endothelial cells to guide angiogenesis. 
On the other hand, transfection of endothelial cells with an oligonucleotide that 
decreased miR-126 permitted an increase in tumor necrosis factor-α stimulated vas-
cular adhesion molecule 1 expression and increased leukocyte adherence to endo-
thelial cells [ 76 ]. The apparent role of miR-126 in angiogenesis has led to increasing 
interest in miR-126 overexpression as a therapeutic approach. It has been reported 
that systemic delivery of miR-126 by miRNA-loaded bubble liposomes improved 
blood fl ow and may be useful for the treatment of hind-limb ischemia [ 77 ]. 

 There is increasing evidence that specifi c miRNAs are involved in angiogenesis. 
So far, pro-angiogenic miRNAs include let7f and miR-27b [ 78 ], miR-17-92 cluster 
[ 73 ], miR-126 [ 79 ,  80 ], miR-130a [ 81 ], miR-210, and miR-378 [ 82 ,  83 ]. miRNAs 
that exert anti-angiogenic effects include miR-15/16 [ 84 ,  85 ], miR-20a/b [ 84 ], miR- 
92a [ 74 ], and miR-221/222 [ 86 ,  87 ]. 

 In the context of vascular remodeling, Ji et al. identifi ed miRNAs that are aber-
rantly expressed in the vascular walls after balloon injury [ 88 ]. Modulating an aber-
rantly overexpressed miR-21 via antisense-mediated depletion had a signifi cant 
negative effect on neointimal lesion formation. They also demonstrated that Pten 
and Bcl2 were involved in miR-21-mediated cellular effects. The same group also 
revealed that miR-221 and miR-222 expression levels were elevated in rat carotid 
arteries after angioplasty [ 89 ]. Moreover, they found that p27 (Kip1) and p57 (Kip2) 
were target genes involved in miR-221- and miR-222-mediated effects on vascular 
smooth muscle cell (VSMC) growth. Knockdown of miR-221 and miR-222 resulted 
in decreased VSMC proliferation both in vitro and in vivo. 

  miR-145   is selectively expressed in VSMCs of the vascular wall, and its expression 
was signifi cantly downregulated in vascular walls with neointimal lesion formation. 
The target of miR-145 is KLF5 and its downstream signaling molecule, myocardin. 
Restoration of miR-145 in balloon-injured arteries via Ad-miR-145 inhibited neointi-
mal growth and might be used for treatment of a variety of proliferative vascular 
disorders. 

  Aortic aneurysms   are a common clinical condition that can cause death due to 
aortic dissection or rupture. The association between aortic aneurysm pathogenesis 
and altered TGF-β signaling, infl ammation and apoptosis has been the subject of 
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numerous investigations. Recently, a TGF-β-responsive miR-29 [ 90 ,  91 ] and miR- 
21 [ 92 ] whose targets include Pten, Spry1, Pdcd4, and Bcl2 have been identifi ed to 
play roles in cellular phenotypic modulation during aortic development. It was dem-
onstrated that decreasing the levels of miR-29b or increasing the levels of miR-21 in 
the aortic wall could attenuate aortic aneurysm progression in a porcine pancreatic 
elastase infusion and angiotensin II infusion model of abdominal aortic aneurysms 
in mice [ 90 ,  92 ].      

    Heart Failure 

    Because all of the  previously   described pathologies, i.e. cardiac hypertrophy, fi bro-
sis, arrhythmia,    and CAD can cause HF, all of the  miRNAs   discussed so far are also 
relevant to this disease entity. 

 Many profi ling studies have been conducted and revealed a large number of miR-
NAs that are differentially expressed in HF, pointing to a new mode of regulation of 
cardiovascular diseases [ 9 ,  11 ,  12 ,  21 ,  57 ,  93 ]. 

 A diverse range of circulating miRNAs have been studied for the detection of 
HF. Tijsen et al. tried to determine whether miRNAs make it possible to distinguish 
clinical HF not only from healthy controls but also from non-HF forms of dyspnea 
[ 40 ]. They revealed that miR423-5p was most strongly related to the clinical diag-
nosis of HF and receiver-operator-characteristics curve analysis showed miR423-5p 
to be a diagnostic predictor of HF, with an area under the curve of 0.91 ( p  < 0.001). 

 From a diagnostic perspective, Goren et al. tried to evaluate a multimarker 
approach to HF diagnosis [ 94 ]. They measured the levels of 186 miRNAs in the sera 
of 30 stable chronic systolic HF patients and 30 controls. The differences in miRNA 
levels between the two groups were characterized, and a score, based on the levels 
of four specifi c miRNAs with the most signifi cant increase in the HF group (miR-
423- 5p, miR-320a, miR-22, and miR-92b) was defi ned. Interestingly, the score was 
utilized to discriminate HF patients from controls with a sensitivity and specifi city 
of 90 %. Moreover, in the HF group, there was a signifi cant association between the 
score and important clinical parameters such as elevated serum natriuretic peptide 
levels, a wide QRS, and dilatation of the left ventricle and left atrium. These results 
suggested that a multimarker approach is useful for the detection of not only HF but 
also left ventricular structure and function. 

 miRNAs are also related to a more specifi c cause of HF, such as chemotherapy- 
induced HF or obesity-related HF. It has been proposed that miRNAs can 
exert their roles in response to treatment with chemotherapeutic agents. For 
example, it was suggested that upregulation of miR-146a after doxorubicin 
(Dox) treatment is involved in acute Dox-induced cardiotoxicity by targeting 
ErbB4 [ 95 ]. Inhibition of both ErbB2 and ErbB4 signaling may be one of 
the reasons why those patients who receive concurrent therapy with Dox and 
trastuzumab suffer from HF. 
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 miRNA microarray analyses and real-time polymerase chain reaction have 
revealed that miR-451 levels were signifi cantly increased in type 2 diabetes mel-
litus mouse hearts [ 96 ]. Calcium-binding protein 39 (Cab39) is a scaffold protein 
of liver kinase B1 (LKB1), an upstream kinase of AMP-activated protein kinase 
(AMPK). Cab39 is a direct target of miR-451 in neonatal rat cardiac myocytes, 
and Cab39 overexpression rescued lipotoxicity. Protein levels of Cab39 and 
phosphorylated AMPK were increased and phosphorylated mammalian target of 
rapamycin was reduced in cardiomyocyte-specifi c miR-451 knockout mouse 
hearts compared with control mouse hearts. Thus, these results demonstrated 
that miR-451 is involved in diabetic cardiomyopathy through suppression of the 
LKB1/AMPK pathway.     

    Conclusion 

 miRNAs have emerged as powerful and dynamic modifi ers of cardiovascular dis-
eases. The miRNA species discussed above are able to directly regulate the expres-
sion of transcription factors, signaling molecules, contractile proteins, and play 
critical roles in cardiovascular remodeling. Work from several investigators have 
demonstrated the ability of exogenously administered miRNA inhibitors or miRNA 
mimics to modulate these pathological processes, thereby ameliorating cardiovas-
cular diseases, which is promising and potentially opens the door for novel thera-
peutic approaches in the future. The potential of circulating miRNAs as biomarkers 
for cardiovascular diseases is also in its early stages. Their roles as prognostic bio-
markers have yet to be elucidated, and larger studies with longer follow-up periods 
will be needed.     
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