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Abstract While complex autonomic self-organising systems have received much
attention, simple autonomous systems are also needed for remote sensing applica-
tions, as well as for the Internet of Things. Such autonomous stand-alone unattended
devices may not have access to reliable sources of mains power, and will have to har-
vest energy locally from ambient sources such as vibrations, heat or light. However
energy leakage will also be a problem. This paper proposes a mathematical model
to analyse the performance of such systems in the presence of a random source of
energy, as well as a random source of data. The equilibrium between random energy,
random data and random leakage results in an interesting performance analysis of
these small but ubiquitous systems as a whole. A discussion is also provided about
the effect of transmission errors.

Keywords Autonomous energy harvesting ·Performance evaluation ·Autonomous
wireless sensor

1 Introduction

In recent years, much work has been conducted on self-organised or “autonomic”
communication systems [1] and biologically inspired [2] or adaptive control meth-
ods [3] have been suggested for their management. However many stand-alone
autonomous systems require a very simple organisation for unattended long term
operation. One such area of application is in stand-alone wireless sensors which need
to operate remotely without a change of batteries. Such systems are also motivated
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by the cost or difficulty of access, and also by the potential environmental damage
when one discards batteries, and by the need to save energy in ICT [4, 5].

Thus energy harvesting from solar, thermal, vibrationial, or ambient electromag-
netic radiation including light, are of particular interest [6, 7], especially in remote
sensing and security applications [8–10], and recent research has addressed such
technologies for communications [11]. However much work still needs to be done
to understand the performance of such systems which need to operate autonomously
for very long periods of time.

Earlier work [12] studied the performance of an autonomous energy harvesting
communication node as a function of the random flow of harvested energy using an
“energy packet” model which discretises both the data flow and the energy flow in
the sensor node [13] based on queueing networks [14]. Here we extend the work
to study the ability of such a system to operate in an unattended and autonomous
manner, in the presence of leakage from energy storage units such as batteries or
capacitors.

1.1 The Mathematical Model

An energy harvesting wireless sensor communication node collects data to transmit
at rate λ data packets (DPs) per second from sensing activities, and harvests energy
at rate Λ energy packets (EPs) per second, where one energy packet is the unit of
electrical energy, e.g. micro-joules, collected from light, heat or vibrations, that is
needed to transmit one data packet. The energy harvesting rate Λ and data gathering
rate λ are assumed to be small (i.e. very slow) as compared to the time it takes to
create and transmit a packet via wireless, which may be in the nano or picoseconds.
The node stores energy in a capacitor or battery, and energy leaks in a randommanner
at rate of μ energy packets per second.

The state of the system is represented by K (t), the number of data packets stored at
the node, and by M(t) the number of energy packets that are stored, at at time t ≥ 0.
Since the transmission time at the node is very short, whenever energy is available
and there are data packets waiting they will be instantaneously transmitted till the
energy is depleted: from a state K (t) > 0, M(t) > 0 the system instantaneously
moves to either state (0, M(t) − K (t)) if M(t) ≥ K (t), or to (K (t) − M(t), 0) if
K (t) ≥ M(t).Writing p(n, m, t) = Prob[K (t) = n, M(t) = m], we therefore only
consider p(n, m, t) for pairs of integers (n, m) ∈ S with S = {(0, 0), (n, 0), (0, m) :
n > 0, m > 0}.

2 Finite Capacity Data and Energy Buffers
with Energy Leakage

First note that if both the data buffer and the energy storage capacity are finite, the
system can be modelled as a finite Markov chain whose set of states are given in
Sect. 1.1 with 0 ≤ n ≤ B, 0 ≤ m ≤ E . We note that the process [K (t), M(t), t ≥ 0]
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is an irreducible and aperiodic Markov chain so that the stationary probabilities
p(n, m) = limt→∞ Pr [K (t) = n, M(t) = m] exist and are computed from the
equations:

p(0, 0)[λ + Λ] = Λp(1, 0) + λp(0, 1) + μp(0, 1), (1)

since state (0, 0) is reached if either there was just one data packet and it was trans-
mitted as soon as an energy packet arrived, or there was one energy packet and it
was consumed as soon as a data packet arrived, or one energy packet was lost due to
leakage. When 0 < n < B we have:

p(n, 0)[λ + Λ] = Λp(n + 1, 0) + λp(n − 1, 0), (2)

while:

p(B, 0)Λ = p(B − 1, 0)λ. (3)

We note that these equations have a solution of the form:

p(n, 0) = αnCd , α = λ

Λ
, (4)

where Cd is a constant. For the energy storage system, when 0 < m < E we have:

p(0, m)[λ + Λ + μ] = Λp(0, m − 1) + λp(0, m + 1) + μp(0, m + 1), (5)

while:

p(0, E)[λ + μ] = p(0, E − 1)Λ. (6)

We note that these equations have a solution of the form:

p(0, m) = θmCe, θ = Λ

λ + μ
, (7)

where Ce is a constant. Since the unique stationary probability distribution exists,
we must have Cd = Ce = p(0, 0) by considering Eq. (1):

p(0, 0)(λ + Λ) = Λ(
λ

Λ
)Cd + (λ + μ)(

Λ

λ + μ
)Ce, (8)

0 = (p(0, 0) − Cd)λ + (p(0, 0) − Ce)Λ. (9)
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Using the fact that the probabilities sum to one we have:

1 = p(0, 0) +
B∑

n=1

p(n, 0) +
E∑

m=1

p(0, m), (10)

= p(0, 0)[1 +
B∑

n=1

αn +
E∑

m=1

θm], (11)

= p(0, 0)[1 + (
α(αB − 1)

α − 1
) + (

θ(θ E − 1)

θ − 1
)]. (12)

Hence:

p(0, 0) = 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
, (13)

p(n, 0) = αn 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
, 0 ≤ n ≤ B, (14)

p(0, m) = θm 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
, 0 ≤ m ≤ E . (15)

Also, we can express the marginal probabilities for the queue length of DPs
and EPs as:

pd(n) =
∞∑

m=0

p(n, m) = p(n, 0), n > 0, (16)

pd(0) =
∞∑

m=0

p(0, m) =
∞∑

m=0

θm p(0, 0) = 1 − θ E+1

1 − θ
p(0, 0). (17)

Similarly,

pe(m) =
∞∑

n=0

p(n, m) = p(0, m), m > 0, (18)

pe(0) =
∞∑

n=0

p(n, 0) =
∞∑

n=0

αn p(0, 0) = 1 − αB+1

1 − α
p(0, 0). (19)

Hence:

pd(n) = αn 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
, 0 < n ≤ B, (20)

pe(m) = θm 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
, 0 < m ≤ E . (21)
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3 Energy and Data Packet Loss Due to Finite Energy
and Data Buffers

When the energy storage capacity is finite, or the data packet buffer is finite, we are
bound to have some level of energy loss or data packet loss. These loss rates Le, Ld

in energy and data packets per second, respectively, can easily be computed as:

Le = Λ

∞∑

n=0

p(n, E) = Λθ E 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
. (22)

Ld = λ

∞∑

m=0

p(B, m) = λαB 1 − α − θ + αθ

αB+1(θ − 1) + θ E+1(α − 1) + 1 − αθ
. (23)

For the assumption of very large buffer sizes i.e., both B and E tend to infinity, the
following cases can be considered:

Case 1 If α > 1 and hence θ < 1 or equivalently Λ < λ, so that the energy is not
sufficient enough for the data and Le → 0 and Ld → λ − Λ, as would be expected.

Case 2 If α = 1 and hence θ < 1 or equivalently Λ − μ < λ, the expressions for
Le and Ld are in indeterminate form. However, after some algebra we get Le → 0
and Ld → 0.

Case 3 If α < 1 and θ < 1 or equivalently λ < Λ < λ + μ, in this case there is no
leakage for both buffer, and Le → 0 and Ld → 0.

Case 4 If α < 1 and θ > 1 or equivalently Λ > λ + μ, so that the energy is more
plentiful than it is needed, and Le → Λ−λ−μ and Ld → 0, as would be expected.

Case 5 If α < 1 and θ = 1 or equivalently Λ − λ = μ, the expressions for Le

and Ld are in indeterminate form. However, after some algebra we get Le → 0 and
Ld → 0.

4 Sensors with Transmission Errors

When a transmission error is detected, the same DP will be retransmitted until an
error-free transmission occurs or until energy is depleted. Thus if a DP is waiting in
queue and an EP arrives, the DP is is transmitted and a transmission error may occur
with probability π , so that the DP is not deleted from the queue. Similarly, if a DP
arrives to the node when one or more EPs are waiting, then a transmission error may
occur with probability p and the transmission will be repeated independently with
the probability of error p, and this will be repeated until success occurs or until all
the EPs are depleted.



40 E. Gelenbe and Y.M. Kadioglu

When the transmission errors are considered, we still have the same leakage rate
(μ), DP arrival rate (λ) and EP arrival rate (Λ) and these rates are responsible for the
state transitions (0, m) → (0, m −1), (n, 0) → (n +1, 0) and (0, m) → (0, m +1),
respectively. On the other hand, due to existence of π and p, we need to define some
new state transition rates.

The rate Λπ is for the transition (n, 0) → (n, 0) when n ≥ 1. For this transition,
an EP arrives to an empty energy buffer and since upon arrival of an EP, if another DP
transmission is requested immediately just after a DP transmission with probability
π , then due to lack of an EP, the new DP transmission will not be successful and
will replace the previous one. Similarly, Λ(1 − π) is the rate for the transition
(n, 0) → (n − 1, 0) when n ≥ 1, for which an EP arrives to an empty energy buffer
and another DP transmission is not requested after the DP transmission caused by the
arrival of an energy packet. The rate λp is for the transition (0, 1) → (1, 0) which
occurs when a DP arrives to an empty data buffer and another DP transmission is
requested after the DP transmission caused by the EP already in the queue. In this
case, the DP will have to wait for arrival of another EP. Furthermore, the transition
(0, m) → (0, m −1) when m > 0 occurs with rate λ(1− p). We have this transition
when a DP arrives to an empty data buffer and the transition is served by an EP
already in the queue so that the number of EPs is reduced by 1. Likewise, arrival of
a DP results in a sequence of k successive repetitions of DPs arriving to the node so
that there will be a set of transitions starting from states of the form (0, m), m > 0,
with probability pk(1 − p) where m ≥ k ≥ 0. Therefore, the rate λpk−1(1 − p) is
responsible for the transition (0, m) → (0, m − k) when m ≥ k > 1. Finally, when
we consider arrival of a DP, the number of EP reduces by 1 in energy storage and it
may be followed by another DP transmission request. The number of EPs decreases
with the each DP transmission request so that the mth and final transmission request
cannot be satisfied due to the fact that EPs are depleted. The system moves into state
(1, 0) having depleted all its EPs and having one final DP waiting to be transmitted.
Thus, this transition is (0, m) → (1, 0) with rate λpm . Notice that for any m > 0 the
sum of these probabilities is one:

m−1∑

k=0

pk(1 − p) + pm = 1. (24)

These transitions lead to the equilibrium equations:

p(0, 0)[λ + Λ] = λ

∞∑

l=1

pl−1(1 − p)p(0, l) + Λ(1 − π)p(1, 0) + μp(0, 1), (25)

p(1, 0)[λ + Λ(1 − π)] = λ

∞∑

l=0

pl p(0, l) + Λ(1 − π)p(2, 0), (26)

p(n, 0)[λ + Λ(1 − π)] = λp(n − 1, 0) + Λ(1 − π)p(n + 1, 0), n > 1, (27)
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p(0, m)[λ + Λ + μ] = λ

∞∑

l=1

pl−1(1 − p)p(0, m + l) (28)

+Λp(0, m − 1) + μp(0, m + 1), m > 0. (29)

Theorem If (Λ−μ)(1− p) < λ < Λ(1−π), the stationary distribution exists and
is given by:

p(0, m) = p(0, 0)Qm, m ≥ 0, (30)

p(n, 0) = p(1, 0)qn−1, n ≥ 1, (31)

where

q = λ

Λ(1 − π)
, Q = λ + μ + Λp − √

(λ + μ + Λp)2 − 4μΛp

2μp
, (32)

and

p(1, 0)

p(0, 0)
= q

(1 − pQ)
= λ2μ

Λ(1 − π)[μ − λ − Λp + √
(λ + Λp + μ)2 − 4μΛp] , (33)

with

p(0, 0) = (1 − q)(1 − Q)(1 − pQ)

q(1 − Q) + (1 − q)(1 − pQ)

= (

2μλ
(Λ(1−π)−λ)

[μ − λ − Λp + √
(λ + Λp + μ)2 − 4μΛp]

+ 2μp

2μp − (λ + Λp + μ) + √
(λ + μ + Λp)2 − 4μΛp

)−1. (34)

Proof To proceedwith the proof, we substitute (30) in (28), which after some algebra
becomes:

Qm[λ + Λ + μ] = λ(1 − p)Qm+1 1

1 − pQ
+ ΛQm−1 + μQm+1, (35)

0 = (Q − 1)[Q2(μp) + Q(−Λp − λ − μ) + Λ], (36)

Q1,2 = λ + μ + Λp ± √
(λ + μ + Λp)2 − 4μΛp

2μp
, (37)

note that Q has to be smaller than 1,

λ + μ + Λp + √
(λ + μ + Λp)2 − 4μΛp

2μp
≥ λ + μ + Λp

2μp
>

1

2
(
1

p
+Λ

μ
) > 1,

(38)
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since p < 1 and μ < Λ. The root Q1 should not be considered, and Q2 is the only
viable root which leads (Λ − μ)(1 − p) < λ.

Also we must have q < 1 and we note that the equation in (31) has a solution of
the form:

p(n, 0) = qn−1Cd , q = λ

Λ(1 − π)
and Cd = p(1, 0) wi th λ < Λ(1 − π). (39)

After further analysis using the fact that the probabilities must sum to one, and q < 1,
Q < 1, we obtain p(0, 0):

(

2μλ
(Λ(1−π)−λ)

[μ − λ − Λp + √
(λ + Λp + μ)2 − 4μΛp]

+ 2μp

2μp − (λ + Λp + μ) + √
(λ + μ + Λp)2 − 4μΛp

)−1.

��

5 Conclusions

Complex autonomic self-organising systems have been at the centre of attention
over the last decade and have included several EU research projects and have met
with wide interest in the literature. On the other hand, simple autonomous systems
which have to operate in unattended remote environments havemetwith less research
interest. Yet important areas such as remote sensing applications, as well as for the
the Internet of Things, require that unattended autonomous systems operate reliably
over long periods of time.

One important area of application is when one cannot change batteries of simple
devices which may also be difficult to connect to the mains for their power needs. In
such cases, the autonomous systemswill have to harvest energy locally from ambient
sources such as vibrations, heat or light, and energy leakage from temporary storage
units, such as rechargeable batteries or capacitors, will also be a problem.

This paper analyses the performance of such systems that are devoted to gathering
data and transmitting it, andwhich use energy harvesting for their operation.We have
proposed a mathematical model to analyse the performance of such systems in the
presence of a random source of energy, a random source of data, and random energy
leakage. The equilibrium between random energy, random data and random leakage
results in an interesting performance analysis of these small but ubiquitous systems.
A preliminary discussion has also been given about how transmission errors can be
included in the model.

Future work will have to incorporate the actual transmission scheme, including
noise and interference, to better understand the optimum autonomous performance
of such systems.
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