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Abstract A new image denoising algorithm based on nonsubsampled contourlet
transform is presented. Magnetic Resonance (MR) images corrupted by Rician noise
are transformed into multi-scale and multi-directional contour information, where
a nonlinear mapping function is used to modify the contour coefficients at each
level. The denoising is achieved by improving edge sharpness and inhibiting the
background noise. Experiments show the proposed algorithm preserves the intrinsic
geometrical information of the noised MR image and can be effectively applied to
T1-, T2-, and PD-weighted MR images without any parameter tuning under diverse
noise levels.

1 Introduction

By analysing magnetic resonance (MR) images of the brain, surgeons can make an
appropriate decision for diagnosing many neurological diseases, such as Parkinsons
disease, Alzheimers disease, brain tumors, and stroke. However, MR images are
affected by several artifacts and noise sources. One of them is the random fluctuation
of the MR signal which is mainly due to thermal noise. Such a noise seriously
degrades the acquisition of any quantitative measurements from the MR images,
such as registration, segmentation, classification, and visualization. To obtain reliable
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analysis results, denoising MR image is vital before further analysis steps can be
conducted. MR images are computed from both real and imaginary images, which
are assumed to contain Gaussian distribution noises with zero means. Thus, noise is
image dependent, which follows a Rician distribution, and makes removing noises
difficult [12].

Postprocessing filtering techniques have the advantage of not increasing the acqui-
sition time and, hence have been extensively used in MR image denoising. Most
denoising methods are based on the signal averaging principle by using the spatial
pattern redundancy in the image.However, there are other filtering techniques that use
other statistical estimates such as theMedian [10], Gaussian [1] and Anisotropic Dif-
fusion [16] that have received considerable attention due to their simplicity. Although
these denoising methods can significantly remove noise, they tend to cause blurring
and erase small features if there are high peaks in the histogram, often resulting a
mask effect in uniform regions and other artifacts in the output image.

One way to approaching this problem is to use multi-scale image decomposi-
tion, that is, processing images in each scale independently and recombining each
processed image to obtain the final image.Advances inwavelet theory combinedwith
multi-scale analysis applied to image contrast enhancement can achieve promising
results. The decomposition of images into different frequency ranges permits the iso-
lation of the frequency components introduced by intrinsic deformations or extrinsic
factors in certain subbands [18].

In [13], the undecimated wavelet transform is employed to provide effective rep-
resentation of the noisy coefficients information. However, the 2Dwavelet transform
used is a separable extension of the 1D wavelet transform, which does not work well
in capturing the geometry of image edges [14].

We propose a new image enhancement method based on the nonsubsampled con-
tourlet transform (NSCT) [6]. The proposed algorithm enhances theMR imagewhile
amplifying weak edges and suppressing noise by modifying the NSCT coefficients
using a nonlinear mapping function in each directional subband.

The rest of this paper is organized as follows. In Sect. 2, we explain the intrin-
sic geometrical information based methodology for image denoising. A variety of
experimental results are presented in Sect. 3. Finally, the conclusions are given in
Sect. 4.

2 Methodology

Existing image-denoising methods amplify noise when they amplify weak edges
since they cannot distinguish noise from weak edges. In the frequency domain, both
weak edges and noise produce low-magnitude coefficients. Since weak edges are
geometric structures and noise is not, we can use the NSCT to distinguish them [17].
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2.1 Nonsubsampled Countourlet Transform

In [7], Do and Vetterli proposed the contourlet transform (CT), which is a multiscale
directional representation constructed in the discrete grid by combining theLaplacian
pyramid and the directional filter bank. Due to its directionality and anisotropy CT
can represent curve more sparsely. NSCT, based on the theory of CT, is a kind of
multi-scale, multi-directional computation framework of discrete images. The main
difference lies in that, in the course of decomposition and reconstruction, traditional
upsamplers and downsamplers in CT do not exist in NSCT any more, so that the
NSCT is a fully multi-scale, multi-directional, good time-frequency property and
shift invariant expansion.

NSCT falls into two phases, including nonsubsampled pyramid (NSP) and non-
subsampled directional filter bank (NSDFB). The former phase ensures the multi-
scale property by using two-channel nonsubsampled filter bank, and a low-pass
image with a band-pass one can be produced at each NSP decomposition stage.
The subsequent NSP decomposition stages are carried out to decompose the low-
pass component available iteratively to capture the singularities in the image. As a
result, NSP can result in k + 1 subband images including one low-pass image and k
band-pass images, whose sizes are all the same as that of the source image, where
k denotes the number of decomposition stages. Figure1 gives the NSP decomposi-
tion with k = 3 stages with a 2-D low-pass filter is represented by its z-transform
H0(z)where z = [z1, z2]T and H1(z) = 1− H0(z). The filters for subsequent stages
are obtained by upsampling the filters of the first stage. This gives the multi-scale
property without the need for additional filter design. The NSDFB, constructed by
combining the directional fan filter banks devised by Bamberger and Smith [2], is
two-channel nonsubsampledfilter banks.NSDFBallows the direction decomposition
with l stages in band-pass images fromNSP at each scale and produces 2l directional
subband images which have the same size as the source image. Thus, the NSDFB
endows the NSCT with the multi-direction property and we can benefit a lot from

Fig. 1 Three-stage NSP
decomposition
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Fig. 2 Four-channel
nonsubsampled DFB

the NSDFB because it provides us with more precise directional detail information.
A four-channel NSDFB, constructed with two-channel fan filter banks and parallelo-
gram filters without downsamplers and upsamplers, is illustrated in Fig. 2. Note that
in the second level, the upsampled fan filters Ui (zQ), i = 0, 1 have checker-board
frequency support, and when combined with the filters in the first level give the four
directional frequency decomposition.We use the ‘maxat’ filters and ‘dmaxat7’ filters
for NSP and NSDFB, respectively. The concrete filter banks constuction methods
and more NSCT details can be found in [6].

2.2 Proposed Image Denoising Using Intrinsic
Geometrical Information

NSCT differs from other multi-scale analysis methods in that contourlet transform
allows for different and flexible number of directions at each scale. According the
direction information contours are obtained by directional filter bank concatenated
the neighbouring singular points into local contours in the frequency domain. By
combination of NSP and NSDFB, NSCT is constructed as a fully shift invariant,
multi-scale, andmulti-direction expansion that has better directional frequency local-
ization and a fast implementation. It is worth noting that shift invariance is very
important. Being shift invariant, each pixel of the transform subbands corresponds
to that of the original image in the same spatial location. Therefore, we gather the
geometrical information pixel by pixel from the NSCT coefficients. All directional
contour subbands can be expressed as:

{Cm,d}, m = 1, 2, . . . k, d = 1, 2, . . . lm,

k ∈ (1, 2, . . . N ), lm = 2N .
(1)
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where m and d are the scale and direction of the decomposition respectively, k is the
number of contour decomposition scale, lm is the number of contour decomposition
directions of mth scale and {Cm,d} is the coefficient at the dth directional subband of
the mth scale. We observe that in the NSCT domain, the Rician noise corresponds to
those pixels with small magnitude coefficients in all directional subbands at a specific
pyramidal level. Based on this observation, we can classify pixels into two categories
by analysing the distribution of their coefficients in different subbands. One simple
way is to compute the mean (denoted by mean) and the maximum (denoted by max)
magnitude of the coefficients for each pixel across directional subbands, and then
classify it by:

pixel =
{
noise, if

(
(mean < ασγ ) and (max < ασγ )

)
edge, otherwise

(2)

where α is the amplifying gain of the subbands at a specific pyramidal level (3), σ
is the noise variance of the input MR image and γ is the noise standard deviation of
the subbands at a specific pyramidal level.

α =
log

(
mean

(|Cm,d |)
max

(|Cm,d |)
)

log

(
sin

(
π

2

mean
(|Cm,d |)

max
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)) (3)

We first estimate the noise variance of the input MR image, σ̂ , with the robust
median operator defined in [4] and then compute the noise variance of each subband,
γ̂ , by using [18]. The core requirement for image denoising bymulti-scale transforms
is to suppressingnoisewhile amplifyingweak edges. To this endwemodify theNSCT
coefficients, C̃m,d , by a nonlinear mapping function in each scale and directionwhere
m > 1:

C̃m,d =

⎧⎪⎨
⎪⎩

(
max

(|Cm,d |)
sgn

(
Cm,d

) )
sin

(
π

2
sin

(
π

2

|Cm,d |
max

(|Cm,d |)
)α)√

α

, edge

0, noise.

(4)

We summarize our denoising method in the following algorithm.

1. Compute the NSCT of the input MR image for k levels according to (1).
2. Estimate the noise standard deviation (σ̂ ) of the input image.
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3. For each level of the pyramid where m > 1:

a. Estimate the noise variance (γ̂ ).
b. At each pixel location, compute the mean and the maximum magnitude of

the corresponding coefficients in all directional subbands at this level, and
classify each pixel according to (2) and (3) into “edges” or “noise”.

c. For each directional subband, use the nonlinear mapping function given in
(4) to modify the NSCT coefficients according to the classification.

4. Reconstruct the denoised MR image from the modified NSCT coefficients.

3 Experimental Results

We have compared the performance of our proposed image denoising using intrinsic
geometrical information with two state-of-the-art denoising algorithms, the non-
local mean (NLM) algorithm [3] and a modern wavelet-based denoising algo-
rithm (SURELET) [11] using the 3D-simulated MR images downloaded from the

Fig. 3 Visual quality comparison: Top row; from left to right: a Ground truth T1-weighted image.
b Ground truth corrupted with Rician noise of 13%. Denoised with c NLM, d SURELET and e the
proposed method. Middle row; and bottom row: same results for a simulated T2- and PD-weighted
images
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Fig. 4 Quantitative comparison of the proposed NSTC based denoising method with NLM and
SURELET methods based on a PSNR, b SSIM and c MAD for simulated T1 images corrupted
with Rician noise varying from 5 to 21

BrainWeb database [5]. The simulated T1-, T2-, and PD-weighted synthetic noise-
free MR images are downloaded where the size of each image is 181 × 217 × 181
and the intensity is 256 bins.

Visual quality comparison of the MR images denoised with the NLM, the
SURELET and the proposed method was conducted on the simulated T1-, T2-, and
PD-weighted synthetic noise-free MR images after corrupting the images by Rician
noise [8] with 13%. It can be observed from Fig. 3 that the images denoised with the
proposed method are more closer to the ground truth than the images denoised with
the other approaches.

For a quantitative analysis,MR imageswere degradedwithRician noise for awide
range of noise levels and the denoising efficiency of the algorithms was evaluated
based on the Peak Signal to Noise Ratio (PSNR) [9], the mean Structural Similarity
Index Matrix (SSIM) [19] and the Mean Absolute Difference (MAD) [15]. A higher
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Fig. 5 Quantitative comparison of the proposed NSTC based denoising method with NLM and
SURELET methods based on a PSNR, b SSIM and c MAD for simulated T2 images corrupted
with Rician noise varying from 5 to 21

PSNR, MSSIM and a lower MAD correspond to a higher performance. Figures4, 5
and 6 show the quantitative analysis of of the denoising methods in terms of PSNR,
mean SSIM and MAD. It can be observed from the plots that the proposed method
performs better than the NLM and SURELET based on the quality metrics used for
the evaluation. Furthermore, proposed methodology does not require any parameter
selection and on a PC with 2.5 GHz Intel Core i5 CPU and 8 GB RAM, NSCT costs
on average of 5.23 s to decompose a 181× 217 MR image into directional subbands
and to reconstruct denoised MR image using Matlab1 hence, can be easily applied
for a clinical application.

1The nonsubsampled contourlet toolbox used in this paper can be downloaded at http://www.
mathworks.com/matlabcentral/fileexchange/10049-nonsubsampled-contourlet-toolbox.

http://www.mathworks.com/matlabcentral/fileexchange/10049-nonsubsampled-contourlet-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/10049-nonsubsampled-contourlet-toolbox
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Fig. 6 Quantitative comparison of the proposed NSTC based denoising method with NLM and
SURELET methods based on a PSNR, b SSIM and c MAD for simulated PD images corrupted
with Rician noise varying from 5 to 21

4 Conclusion

We have proposed a novel multi-scale image denoising algorithm to remove Rician
noise from MR images based on the NSCT. We have shown that the new algorithm
can sufficiently remove Rician noise, while simultaneously preserving edges and
fine structures in a given noisy MR image. Experimental results on the BrainWeb
database verified that the intrinsic geometrical information extracted from directional
contour coefficients is quite efficient, speedy and can be effectively applied to T1-,
T2-, and PD-weighted MR images without any parameter tuning under diverse noise
levels.
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