Hybrid Heuristic Algorithms
for the Multiobjective Load Balancing
of 2D Bin Packing Problems

Muhammed Beyaz, Tansel Dokeroglu and Ahmet Cosar

Abstract 2D Bin packing problem (2DBPP) is an NP-hard combinatorial opti-
mization problem. Multiobjective versions of this well-known industrial engineering
problem can occur frequently in real world application. Recently, Hybrid Evolution-
ary Algorithms have appear as a new area of research with their ability to combine
alternative heuristics and local search mechanisms together for higher quality solu-
tions. In this study, we propose a set of novel multiobjective hybrid genetic and
memetic algorithms that make use of the state-of-the-art metaheuristics and local
search techniques for minimizing the number of bins while also maintaining the load
balance. We analyze the optimization time and the resulting solution quality of the
proposed algorithms on an offline 2DBPP benchmark problem set with 500 instances.
Using these results of exhaustive experiments, we conclude that the proposed hybrid
algorithms are robust with their ability to obtain a high percentage of the optimal
solutions.

1 Introduction

The two-dimensional Bin Packing Problem (2DBPP) consists of planning a set of
rectangular items into a fixed width and height 2D bins orthogonally, without overlap-
ping, while minimizing the number of bins [1-5]. The 2DBPP is an intractable opti-
mization problem and widely faced during the industrial manufacturing processes.
Proposed algorithms find a pareto-optimal solution for both the minimal number of
bins with the most efficiently load-balanced placing of the rectangular items. rotating
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objects (Orientation: whether the objects can be rotated or not is a key aspect of the
2DBPP) in packing creates better results but objects may not be rotatable in every
problem definition. The textile industry can change the orientation of single color
shirts by rotating the shirts while the process is in cutting phase, because there is
no difference between rotation or not. However, the orientation of fragile items is
important in shipping. If an item can be rotated then it is called as non-oriented or
orientation-free. If an object of problem cannot be rotated it is called as oriented
or orientation-fix. Online and offline are two categories of 2DBPP according to the
availability of information about all items. Online bin packing (OnBP) means that
objects arrive one by one and there is no way to know the complete input sequence,
so it must be inserted into a bin immediately without waiting other items. Load bal-
ancing of 2DBPP, is the stabilization of total moments of rectangle items on the left
of Centre of Gravity (CG) of bins with total moments of rectangles on the right of
CG of bins. Euclidean Center of bin is considered as CG of a bin.

In the proposed algorithms, we use solution methods inspired from Evolution-
ary Algorithms (EA). Reproduction, mutation, recombination and selection are key
mechanisms of EA that are used for solving NP-Hard optimization problems. BPP,
Travelling Salesman and Quadratic Assignment Problem [2, 6] are well-known chal-
lenging NP-Hard problems modelled and solved successfully with EAs. Genetic
Algorithm (GA) and Memetic Algorithm (MA) are the most efficient approaches
of EAs. GA mimics the natural evolution process and has the ability to find (near-)
optimal solutions in a large search space. Survival of the fittest individual is a rule
allowing the best solution in each iteration to converge to a (near-) optimal solution
in practical times. In GA, parents mate and produce offsprings and the best individ-
uals are selected to survive to the next generation. MA is another growing area of
EA. The fittest of individuals is selected as the solution of optimization problem. It
mimics natural evolution process but it may differ from GA by performing individual
learning which is also known as meme(s).

We propose two different Multiheuristic Multiobjective GA (MH-MOGA) that
optimize both the minimal number and the load-balancing of the bins. The first pro-
posed multiobjective algorithm, MHO-MOGA, uses heuristics: FNF, FFF, BFDH,
UTS and LGFof to solve oriented multi objective 2D offline BPPs. The second pro-
posed multiobjective algorithm, MHNO-MOGA, uses heuristics: FNF, FFF, BFDH,
UTS, LGFof and LGFi and tries to find a pareto-optimal solution (minimal number
of bins and most effective load-balancing of items) for non-oriented multiobjective
2D offline BPPs.

2 Formulation of the Load-Balancing Problem

Multiobjective 2DBPP with load balancing [7-9] tries to minimize Eq. 1

(C/2+ LB/2) (D



Hybrid Heuristic Algorithms for the Multiobjective ...

where

n
C = ch'
j=1

211

@)

c | B
LB=Y)" Zpijdimij\/(xij + (wij/2) — xc6)* + Oij + (hij/2) — yce)?
j=1li=1

which is subject to
xi + (wiw) + (hih?) < xi + (1 —lejy), Vik,i <k
xi 4+ (wrwy) + (hihy) < xi + (1 —rig), Vijk,i <k
yi + wiw?) + (hihi) < yp + (L —uni), Vi k,i <k
vk + (wewy) + (hihy) < yi + (1 —abjy), Vik,i <k

leix + rijk +unjr +abjx < pij + prj — 1, Vi, k,i <k

c
Zpij =1, Vi
Jj=1

B
Zpij < Mcj, Vj
i=l1

xi + (wiw;i) + (hihy) < W+ (1 = pij))M, Vi, j
yi + (wiw!) + (hih)) < Hj + (1 — p;j)M, Vi, j
wy, u)iy, i, hiy, lejk, rijk, abix, un;i, pij,cj €0, 1, Vi k,i <k
xi,yi >0, Vi
mi; € —1,1, Vi
xcG = (W/2)
yee = (H/2)

B total number of rectangles
C total number of bins

3)

4)
®)
(6)
)
®)

€))

(10)

(1)
(12)
13)
(14)
5)
(16)

a7)



212 M. Beyaz et al.

LB the total sum of load balancing
w;, h; width and height of rectangle i
d; weight of rectangle i
W;, H; width and height of bin j
Xi, yi left-bottom corner of rectangle i as coordinate
xcc x coordinate of center of gravity of bin which is equal to (W/2)
xcg y coordinate of center of gravity of bin which is equal to (H/2)
wy, wiy width of rectangle i is parallel to X and Y axis
hy, hly height of rectangle i is parallel to X and Y axis
lej; rectangle i is placed on the left side of rectangle k
rij; rectangle i is placed on the right side of rectangle k
abjj rectangle i is placed above rectangle k
un;i rectangle i is placed under rectangle k
pij pij = lif rectangle i is placed in bin j otherwise p;; = 0
mij mij = 1if (xl'j + (w,'j/Z) — xcg) > 0 otherwise mij = —1
¢j ¢j = 1ifbin j is used otherwise c; = 0
M an arbitrarily large number used in Bin-M constraints

3 Proposed Algorithms

The chromosome is an array of values representing a possible solution to a 2DBPP.
There are two parts in the chromosome. Rectangle items and a heuristics part that
keeps the heuristics. Permutation encoding which is a form of keeping width-height
of rectangular items and processing sequence between rectangles is used to keep the
identification of rectangles. Gene (rectangle item) packing is done in two different
ways. If Heul is equal to Heu2, then all genes are packed as a whole by using Heul
and the result of Heul shows the number of required bins for solution. If Heul is
different than Heu2, then Heul packs the first half of the genes and Heu2 packs the
second half of the genes. The sum of required bins of Heul and Heu2 shows the
number of required bins for solution. Elitist selection that gives higher chance to
better chromosomes in the population is used in the proposed algorithms.

Single point crossover is used in our algorithms. Three different mutation oper-
ators are used in the algorithms in accordance with the orientation possibility of
the items. The proposed mutation operators work on the rectangular items part of a
chromosome. Swap mutation, rotation mutation (for non-oriented items), and swap-
rotation mutation are the mutation operators.

The proposed MA mimics the natural evolution process. Our algorithms consider
load balancing with center of gravity to each bin. In order to calculate center of gravity,
each bin’s center point is selected as Center of Gravity (CG). When a rectangle box is
inserted, the Euclidean distance of its center to bins CG is calculated and multiplied
by the weight of rectangle. This calculated value is CG of a rectangle. If sign of x
coordinate of rectangle is minus then CG of rectangle is subtracted from total CG
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of Bin. If sign of x coordinate of rectangle is plus then CG of rectangle is added to
total CG of Bin. When all rectangles are inserted to bins, absolute values of total
CG of bins are added. This calculated value is called as CG of a chromosome. The
load balance of a bin is explained in Eq. 18 and load balance of a chromosome is
explained in Eq. 19.

#Rect
LBgin = z dijmij\/(xij + w;j/2) — xce)? + Gij + (hij/2) —ye)*  (18)
Jj=1

#Bin |#Rect |

LBchromosome = 3., | S, djmijJ(xij + (wij /2) = x¢6)? + (ij + (5ij/2) — ye6)?
i=1| j=I

19)

Multiheuristic Oriented Multiobjective GA (MHO-MOGA) is proposed to solve
oriented multiobjective offline 2DBPP. FNF, FFF, BFDH, LGFof and UTS are applied
as heuristics on the base of a GA. Swap mutation operation is used to keep orienta-
tion of items. Multiheuristic Non-Oriented Multiobjective GA (MHNO-MOGA) is
developed for optimization of non-oriented items. Each individual uses one or two
of the heuristics: FNF, FFF, BFDH, UTS, LGFof and LFGi to pack rectangles into
bins. At the beginning of GA, each individual picks one of the heuristics. At the next
phase, an individual can have two different heuristics. Each heuristic is applied to the
corresponding part of rectangle list. Rotation mutation and swap-rotation mutation
are used to change orientation of rectangles. Best result of GA becomes the solution
of the problem.

4 Experimental Setup and Results

Two well known offline 2DBPP instance sets are used for the experiments (Berkey-
Wang and Martello-Vigo) [10, 11]. Experimental setup consists of UTS, LFGi and
GA whose heuristics are FNF, FFF, BFDH and LGFof. First, we apply GA to the
problem and later the best result’s rectangle list is given as input to UTS and LGFi.
The parameter setting for the population size and the number of generations are
decided to be 60 and 40 respectively. These parameter settings are used in all of
the proposed algorithms throughout the experiments. The general results of MHNO-
MOGA experiments are listed in Tables 1 and 2. We compared our results with LGFi
algorithm.

In order to analyze runtime and efficiency of the algorithms, we randomly picked
five different item size (20, 40, 60, 80, 100) 2DBPP. Each test is run for five times. Best
values of FNF, FFF, BFDH, LGFof and LGFi are used as results. For the proposed
algorithms and UTS, we used the average values of the experiments. Comparisons
of algorithms according to 500 instance test setup are also explained in detail. The
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Table 1 Result of MHNO-MOGA Ro for Berkey-Wang instances

M. Beyaz et al.

Class Num of rect | LGFib LGFi cg Pr. algo b Pr. algo cg

1 20 67 230.9 68 67.5
40 131 392.6 131 218.7
60 199 620.5 197 359.6
80 271 877.5 270 584.6
100 317 1123.7 320 676.6
Av. 197 649 197.2 381.4

2 20 10 256.8 10 1.7
40 20 530.6 20 6.4
60 25 993.6 25 160.7
80 32 1107.9 31 134.1
100 39 1078.7 39 195.7
Av. 252 793.5 25 99.7

3 20 50 918.7 49 241.3
40 97 1706.4 95 643.1
60 139 2785.7 139 1073
80 189 3805.2 192 1709
100 227 4422.1 229 2211.8
Av. 1404 2727.6 140.8 1175.6

4 20 10 1794.8 10 0.8
40 19 3940.2 19 8
60 26 4109.7 25 174.8
80 33 5558.4 33 162.9
100 39 7418.4 40 360.7
Av. 25.4 4564.3 25.4 141.4

5 20 62 2097.4 60 555.3
40 117 5039.1 117 2167.1
60 180 7031 177 3292
80 246 9068.5 242 4477
100 290 11640 286 5573.6
Av. 179 6975.2 176.4 3213

6 20 10 47884 10 8
40 19 13578.4 19 14.6
60 23 15069.6 22 202.6
80 30 20176 30 999.9
100 35 25989.9 34 1995.2
Av. 23.4 15920.5 23 644.1

runtime analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for oriented
multiobjective random picked tests are shown in Table 3. MHO-MOGA is reported

to be the most time consuming algorithm.
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Table 2 Result of MHNO-MOGA Ro for Martello-Vigo instances
Class Num of rect | LGFib LGFi cg Pr. algo b Pr. algo cg
7 20 55 1648.6 53 1145.2
40 109 37174 107 2968.7
60 161 6041 155 3869.6
80 223 6989.4 221 6229.4
100 271 9330.1 264 7259.2
Av. 163.8 5545.3 160 4294.4
8 20 56 1858.4 55 873.5
40 111 3877.2 107 2052.2
60 163 5440.7 155 3055.2
80 221 7640.6 214 4818.7
100 269 8981.9 264 6412.7
Av. 164 5559.8 159 3442.5
9 20 143 3012.3 143 2060.1
40 275 6081.2 275 4432.6
60 435 10005.9 435 7661.3
80 573 13963.7 573 9919.7
100 693 16765.3 693 12324
Av. 423.8 9965.7 423.8 7279.5
10 20 41 3800.9 43 396.2
40 75 6710.7 75 732.4
60 104 9447.3 105 1885.1
80 133 12136.1 134 2937.9
100 163 15835.2 165 4615.5
Av. 103.2 9586 104.4 2113.4
Table 3 Runtime of algorithms for oriented multiobjective problems in msec
Rect FNF FFF BFDH UTS LGFof MHO-
MOGA
20 4.1 4.6 4.7 81.7 64.0 17515
40 4.7 4.8 5.0 317.8 29.9 88024
60 5.3 6.4 7.8 27761.4 1529.8 3034228
80 7.6 8.4 9.2 3050.4 334.6 4664450
100 10.6 12.4 17.4 3746.9 291.1 677750
Av. 6.5 7.3 8.8 6991.6 449.9 1696393.4

The general results of second experiment are listed in Tables 4 and 5. We compared
our results with LGFi algorithm.
Result (bin/cg) analysis of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for
oriented multiobjective random picked tests are shown in Table 6.
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Table 4 Result of MHNO-MOGA SwRo for Berkey-Wang instances

M. Beyaz et al.

Class Num of rect | LGFib LGFi cg Pr. algo b Pr. algo cg

1 20 67 230.9 66 76.9
40 131 392.6 125 202.8
60 199 620.5 200 359.2
80 271 877.5 264 630.7
100 317 1123.7 320 711.7
Av. 197 649 195 396.3

2 20 10 256.8 10 1
40 20 530.6 20 8.7
60 25 993.6 25 133
80 32 1107.9 31 131.8
100 39 1078.7 39 245.5
Av. 252 793.5 25 104

3 20 50 918.7 49 260.3
40 97 1706.4 97 581.1
60 139 2785.7 141 1165.3
80 189 3805.2 190 1775.7
100 227 4422.1 228 2335.5
Av. 140.4 2727.6 141 1223.6

4 20 10 1794.8 10 0.5
40 19 3940.2 19 22.6
60 26 4109.7 25 97.1
80 33 5558.4 33 346.4
100 39 7418.4 39 633.6
Av. 254 4564.3 25.2 220

5 20 62 2097.4 60 719.4
40 117 5039.1 116 2027
60 180 7031 177 3444.2
80 246 9068.5 245 5043.8
100 290 11640 286 5154.2
Av. 179 6975.2 176.8 3277.7

6 20 10 4788.4 10 49
40 19 13578.4 19 51.3
60 23 15069.6 22 112.3
80 30 20176 30 502
100 35 25989.9 34 1356.8
Av. 234 15920.5 23 405.5
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Table 5 Result of MHNO-MOGA SwRo for Martello-Vigo instances

Class Numofrect |LGFib LGFicg Pr. algo b Pr. algo cg

7 20 55 1648.6 53 1015.6
40 109 37174 108 2612.5
60 161 6041 156 3880.6
80 223 6989.4 220 6126.4
100 271 9330.1 267 6899.4
Av. 163.8 5545.3 160.8 4106.9

8 20 56 1858.4 53 785.3
40 111 3877.2 107 2170.4
60 163 5440.7 155 3044
80 221 7640.6 214 4521.9
100 269 8981.9 265 6237.6
Av. 164 5559.8 158.8 3351.8

9 20 143 3012.3 143 1885.9
40 275 6081.2 275 4241.6
60 435 10005.9 435 6762.7
80 573 13963.7 573 9355.1
100 693 16765.3 693 11598.4
Av. 423.8 9965.7 423.8 6768.7

10 20 41 3800.9 42 263.2
40 75 6710.7 75 971
60 104 9447.3 102 2616.8
80 133 12136.1 133 3837.2
100 163 15835.2 166 4662.4
Av. 103.2 9586 103.6 2470.1

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof and MHO-MOGA for oriented

single objective 500 problem set are shown in Table 7.

Superiority of MHO-MOGA to FNF, FFF, BFDH, UTS and LGFof for oriented

multiobjective 500 problem set are shown in Table 8.

Runtime analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA
for non-oriented multiobjective random picked tests are shown in Table 9. MHNO-
MOGA is reported to be the most time consuming algorithm.

Result (bin/cg) analysis of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-
MOGA for non-oriented multiobjective random picked tests are shown in Table 10.

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA
(r) for non-oriented multiobjective 500 problem set (according to continuous lower
bound) are shown in Table11.

Superiority of MHO-MOGA (1) versus FNF, FFF, BFDH, UTS, LGFof and LGFi
for non-oriented multiobjective 500 problem set are shown in Table 12.
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Table 6 Results (bin/cg) of algorithms for oriented multiobjective problems

M. Beyaz et al.

Rect FNF FFF BFDH UTS LGFof MHO-
MOGA
20 11 9 9 9 9 9
310.4 167.3 151.3 491.1 301.4 116.6
40 17 13 13 13 12 12
62.4 59.8 50 64.5 332 19.6
60 53 47 47 47 47 46
1207.5 1024.7 1008.5 1103.9 1021.1 813.7
80 30 24 23 24 24 24
1704.5 1850.1 1440.7 900.9 1728.7 421
100 44 31 31 30 30 29
1623.9 1391.2 1098.2 1088.9 1331.2 769.9
Av. 31 24.8 24.6 24.6 24.6 24
981.5 898.6 749.7 729.9 883.1 428.2

Table 7 Results (bin/cg) of heuristics and MHO-MOGA for oriented multiobjective 500 problem

set

Total FNF FFF BFDH UTS LGFof Pr. alg.
Bin 9489 7591 7514 7521 7430 7389
CG 340,954 333,247 319,187 297,483 347,076 126,581

Table 8 MHO-MOGA versus heuristics for oriented multiobjective 500 problem set

FNF

FFF

BFDH

UTS

LGFof

MHO-MOGA
(%)

100

100

100

100

97.2

Table 9 Runtime of algorithms for non-oriented multiobjective problems in msec

Rect FNF FFF BFDH UTS LGFof LGFi MHNO-
MOGA
20 4.1 4.6 4.7 81.7 64.0 65.0 87,615
40 4.7 4.8 5.0 317.8 29.9 30.1 39,027
60 53 6.4 7.8 277614 | 1529.8 2416.4 1545,971
80 7.6 8.4 9.2 3050.4 334.6 257.4 645,442
100 10.6 12.4 17.4 3746.9 291.1 3243 257,878
Av. 6.5 73 8.8 6991.6 449.9 618.6 515186.6
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Table 10 Results (bin/cg) of algorithms for non-oriented multiobjective problems

Rect FNF FFF BFDH UTS LGFof LGFi MHNO-
MOGA
20 11 9 9 9 9 8 8
310.4 167.3 151.3 491.1 301.4 150.9 60
40 17 13 13 13 12 12 12
62.4 59.8 50 64.5 332 51.9 15
60 53 47 47 47 47 46 46
1207.5 1024.7 1008.5 1103.9 1021.1 901.4 700.2
80 30 24 23 24 24 22 21
1704.5 1850.1 1440.7 900.9 1728.7 887.4 821.3
100 44 31 31 30 30 29 28
1623.9 1391.2 1098.2 1088.9 1331.2 1131.2 575
Av. 31 24.8 24.6 24.6 24.6 234 23
981.5 898.6 749.7 729.9 883.1 624.6 434.3

Table 11 Results (bin/cg) of heuristics and MHNO-MOGA (r) for non-oriented multiobjective
500 problem set

Total FNF FFF BFDH UTS LGFof LGFi Pr. Alg.
Bin 9489 7591 7514 7521 7430 7226 7175
CG 340,954 333,247 |319,187 297,483 |347,076 |311,434 113,925

Table 12 MHO-MOGA(r) versus heuristics for non-oriented multiobjective 500 problem set

FNF FEF BFDH UTS LGFof LGFi
MHNO- | 100 100 100 100 100 95
MOGA(r)

(%)

Table 13 Results (bin/cg) of heuristics and MHNO-MOGA(sr) for non-oriented multiobjective
500 problem set

Total FNF FFF BFDH UTS LGFof LGFi Pr. Alg.
Bin 9489 7591 7514 7521 7430 7226 7165
CG 340,954 |333,247 |319,187 |297,483 347,076 |311,434 111,623

Results (bin/cg) of FNF, FFF, BFDH, UTS, LGFof, LGFi and MHNO-MOGA
(sr) for non-oriented multiobjective 500 problem set (according to continuous lower
bound) are shown in Tables 11 and 13.

Superiority of MHNO-MOGA (sr) versus FNF, FFF, BFDH, UTS, LGFof and
LGFi for non-oriented multiobjective 500 problem set are shown in Table 14.
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Table 14 MHO-MOGA (sr) versus heuristics for non-oriented multiobjective 500 problem set

FNF FFF BFDH UTS LGFof LGFi
MHNO- 100 100 100 100 100 96
MOGA(sr)
(%)

5 Conclusions and Future Work

In this study, two novel robust algorithms for the multiobjective optimization of
offline 2DBPP are proposed. Our experimental results show that while the well
known heuristics sometimes produce better results for minimizing the number of bins
in 2DBPP they are not efficient for solving the multiobjective load balancing problem
of 2D bins while also minimizing bins. MHO-MOGA and MHNO-MOGA give better
results not only for minimum number of bins but also for the load balancing of 2D
bins. MHNO-MOGA makes use of rotation and swap-rotation mutation operators.
MHNO-MOGA with rotation mutation outperforms LGFi heuristic for 95.0 % of the
problems. MHNO-MOGA with swap-rotation mutation outperforms LGFi heuristic
for 96.0 % of the problems and 97.2 % of the benchmark problems for the LGFof
heuristic.
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