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Abstract. The incorporation of digital technologies (both multiple purpose and
mathematics action technologies) in mathematical learning environments can
foster and extend discussions among learners and teachers even beyond class
time. That is, learners not only keep reflecting on mathematical ideas or prob-
lems; but also they can review or consult related online resources. Similarly, the
use of dynamic geometry systems provides affordances to construct dynamic
models of tasks where learners can analyse how objects move within the con-
figuration and formulate mathematical relations. In this report, we discuss three
exemplars to characterize ways in which the use of technology extends math-
ematical reasoning in problem solving approaches. This information becomes
important for teachers to value and frame the incorporation of technology in
learning environments. At the end, some limitations of this approach are
discussed.
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1 Introduction

School systems worldwide face a challenge to consistently incorporate the coordinated
use of digital technologies in curriculum proposals and learning environments. In this
context, it is important to discuss what changes the use of technology brings into
contents, structure, and ways of reasoning that learners could develop about concepts
and problems solving competencies. For example, with the use of a dynamic geometry
system, students can construct models where parameters or elements can be moved to
visualize and explore behaviours of mathematical objects. Similarly, learners can
access online information that includes concept definitions and explanations (https://
www.khanacademy.org), problem examples, and in some cases solutions of typical
course problems. As results, teaching/learning environments should not only guide
students to select and analyse pertinent online resources; but also to incorporate that
information into the learning activities. Mobile devices such as tablets o smart phones
can extend learning environments to support peers communication or interaction
almost anytime. That is, the use of technology becomes important to structure extended
conversations among students and teachers to frame and foster problems solving
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experiences. Walling [1] pointed out “this Digital Age shift in schools is not, or should
not be, about hardware and software. It should be about teaching and learning in new
and exciting ways that expand learning opportunities for all students” (p. xiii). How can
mathematics teachers design and implement learning activities where students rely on
the use different technologies to develop mathematical knowledge and problem solving
experiences? To delve into this question, we review the role played by the coordinated
use of digital technology in students’ development of mathematical knowledge. Fur-
thermore, we present and discuss exemplars that illustrate ways in which learners could
formulate problems, transform routine tasks into a set of opportunities to develop deep
mathematical knowledge and engage in collaboration projects to comprehend, refine,
and apply mathematical concepts.

2 Background and Conceptual Framework

In the traditional teaching/learning environments the teacher is the only responsible to
select mathematics tasks and to coordinate the implementation of learning activities. In
general terms, the way teachers and students interact during class activities has
remained consistent over the years. This model has been criticized in terms that its
success depends mainly on the teacher’s individual competencies to select and
implement learning activities, the lack of motivation that students often experience
during the development of the course, and the limited options for students to discuss
curriculum contents beyond syllabus and courses goals. What type of innovations
should learning environments incorporate in order for students to rely on online
resources and technologies to develop mathematical thinking? Alagic and Alagic [2]
pointed out that digital technologies offer teachers and learners affordances to provide a
learning environment that fosters collaboration and direct interaction with peers. Thus,
teaching environments need to be adjusted to take into account and incorporate the use
of diverse technologies in students learning of mathematics. Barbeau [3] argues that in
the process of learning, students face challenges that “often involve explanation,
questioning and conjecturing, multiple approaches, evaluation of solutions for effec-
tiveness and elegance, and construction and evaluation examples” (p. 5). Nowadays, it
is recognized that learning involves a maturation process that requires time for students
to develop an increasingly complex network of connections of concepts and problem
solving strategies. “To learn mathematics more meaningfully, students need to build
connections over time through a coherent learning progression with adequate support
for the affective challenges of maintaining interest and engagement” [4] (p. 34).
Mathematical tasks play a crucial role for students to develop awareness of technology
affordances as a means to comprehend and develop problem-solving competencies.
Tasks are given to students to engage them in thinking in order to experience shifts in
their focus and structure of their attention. Mason [5] stated: …“Tasks are provided for
students to initiate activity, which provides experience and, in order to learn effectively
from experience, it helps to adopt a reflexive stance” (p. 12). With the use of tech-
nologies students continuously reflect on what ways of reasoning about concepts and
problems that are important to detect invariance and to support mathematical rela-
tionships. It is recognized that different digital technologies offer distinct opportunities
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for learners to engage in mathematical thinking. Thus, the existence of several types of
technologies makes necessary to identify what a particular technology can offer to
learners during the process of comprehending mathematical ideas and solving
problems.

Artigue and Mariotti [6] characterize a conceptual framework as a structured but
dynamic entity that articulates research questions, methods to address those questions,
data collection, and interpretation of research results. In this perspective, our research
inquiry is framed around three related fields: mathematical problem solving, digital
technologies, and subjects’ construction of mathematical knowledge [7]. In the prob-
lem solving domain, our interest lies on orienting and discussing learners behaviours
and activities in terms of three constructs: (i) the importance of goals (what do
mathematics learning and problem solving activities involve?), (ii) orientations (what
do learning experiences, beliefs, values, and resources teachers or learners bring into
learning environments?) and (iii) the decision making process involved in dealing with
mathematical tasks [8]. In the field of digital technologies, we identify changes to the
content and learning environments that the use of technology brings to the students’
construction of mathematical knowledge. In particular, we emphasize and make
explicit the potential and opportunities that the coordinated use of digital technologies
offer to subjects to reason about mathematical concepts and problems. Furthermore, the
subjects’ comprehension of mathematical ideas and the development of problem
solving competencies can be framed and structured around a problematizing principle.
Problematizing means that students develop and practice an inquisitive or inquiring
approach to delve into concepts, to identify relationships among data and to solve
mathematical tasks. Likewise, the coordinated use of digital technologies appears
relevant throughout all problem-solving episodes that include problem formulation,
comprehension, representation, exploration, generalization, and communication of
results. In this perspective, learners engage in continuous problem solving activities
that involve:

• Looking for information related to the themes or contents in study through online
books, Wikipedia and WolframAlpha computational knowledge machine. In this
process, students rely on methods and strategies that help them select, analyse,
summarize and contrast the use of available information.

• Learning and fostering several ways to work on problems within a community that
shares and discusses ideas as a part of a group or teams where it is important for
students to listen to others during problem solving approaches.

• Using different digital tools to represent, explore, solve and communicate results, in
particular, the construction and analysis of dynamic models of problems.

• Identifying and discussing partial results that might appear during the solution
process of tasks and share them with other students.

• Looking for different and novel ways to represent and explore problems. In this
process, students are encouraged to find creative solutions to problems.
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3 Exemplars

We present three exemplars to illustrate how the use of technology becomes important
to construct dynamic models of problems in order to engage learners in the process of
recognizing patterns, in looking for arguments to support mathematical relations and in
presenting and communicating results. For each exemplar, we comment on features of
mathematical reasoning that emerges during the solution process of the task. It is
important to mention that the tasks are part of the activities that we have been
implementing in a problem-solving seminar with high school teachers. One goal of the
seminar is to analyse the process that teachers get involved during the tool appropri-
ation and to examine ways of reasoning that they exhibit to represent, explore and solve
the tasks. In this report, we focus on identifying features of mathematical reasoning that
appear during the solution of the tasks associated with the use of the tools. We argue
that teachers themselves need to get involved in problem solving experiences in order
for them to develop resources and strategies to efficiently use technology affordances in
the problem solving approaches. Although the approaches the problems represent part
of the work that high school teachers have shown during the problem solving sessions,
we do not intend to analyse in detail how teachers individually contributed to each task
solution; rather, we aim at characterizing what types of reasoning became involved
during those approaches as a group.

3.1 The Construction of Dynamic Models

The goal is to represent mathematical tasks dynamically. To this end, learners are
guided to develop resources and strategies to construct or build dynamic configurations
of tasks where objects can be moved within the model. Thus, moving points or objects
orderly becomes a crucial strategy to construct dynamic models. Güçler et al. [9] argue
that the use of a dynamic geometry system “allows students to reason quickly from the
specific to the general, from concrete to abstract, from example or illustration to
concept and idea (p. 99). Figure 1 shows triangle ABC and a perpendicular bisector of
side BC. Circle centred at A is a heuristic strategy to move side AC on the plane by
moving point P along the circle. It is observed that a family of triangles is generated
when point P is moved along the circle. What is the locus of point Q when point P is
moved along the circle?

Figure 2 shows that the locus of point Q seems to be a hyperbola. It also shows that
for different positions of point Q it is true that |d(A, Q) – d(Q, B)| is a constant (2.37).
That is, it holds the definition of the hyperbola with foci points A and B. Another
argument to show that the locus is hyperbola involves recognizing that point Q is on
the perpendicular bisector of side BC, then, d(Q, C) = d(Q, B) and d(A, Q) = d(A,
C) + d(C, Q). Therefore, d(A, Q) – d(Q, B) = d(A, C) which is constant (side AC).

What happens if point B is moved along line AB? Figure 3 shows that at one
position the hyperbola becomes an ellipse. Point Q generates de locus and is on the
perpendicular bisector of BC. Then, d(A, Q) + d(Q, B) = d(A, Q) + d(Q, C) = d(A, C).
That is, the sum of the distances from Q to foci A and B is constant (definition of
ellipse).
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Comment: A key activity in mathematical practice is to examine objects or models in
order to identify patterns or invariants. To this end, the use of a dynamic geometry
system (such as GeoGebra) offers affordances for learners to explore the behaviour of
mathematical objects as a result of moving others elements within the model or
dynamic configuration. In this case, a triangle is a model or platform to identify objects

Fig. 1. Triangle ABC and the perpendicular bisector of side BC.

Fig. 2. An empirical argument to show that the locus of Q is a hyperbola.

Fig. 3. The generation of an ellipse within the dynamic model.

302 M. Santos-Trigo et al.



that appear in an analytic geometric course. The construction of a perpendicular
bisector becomes instrumental to generate and justify properties the conic sections. The
objects dynamic exploration involves examining a family of triangles by moving a
particular point (P) and looking for arguments to explain relationships among the
objects. Similarly, finding loci of points is another important strategy to find mathe-
matical relations.

3.2 Patterns’ Recognition

In general terms, a pattern is a rule or way to describe certain type of behaviour of a
finite or infinity family of objects. It can be described verbally or via a formula or
symbolic expressions. There are different types of patterns that might appear in the
study of numbers, shapes, motion, or mathematical objects behaviours. Steen [10]
points out that mathematics is an exploratory science that aims to identify different
types of patterns found in nature phenomena or even patterns created by analysing the
behaviours of other patterns.

…[Thus] patterns can be either real of imagined, visual or mental, static or dynamic, qualitative
or quantitative…They can arise from the world around us, from the depths of space and time, or
from the inner working of the human mind [11] (p. 3).

The process involved in the identification of patterns includes ways to observe what
is important in the situation or phenomenon and to think of what mathematical
resources are need to express it. What tools or resources and ways of thinking do
students need to develop in order to identify and explore different types of mathe-
matical patterns? What type of problems or tasks should teachers discuss with their
students in order to explore, identify, and communicate mathematical patterns?
Addressing these types of questions implies analysing and reflecting on what features
of mathematical thinking are relevant in the process of looking for and examining the
behaviours of mathematical objects. We argue that students not only should deal with a
variety of situations to find and explore patterns; but also teachers should discuss
overly with students what tools and questions become important to recognize and
analyse how the patter behaves.

Within a variety of patterns, the concept of recursion is essential in mathematics,
computers science, biology and even language. Recursion definitions are used to
characterize something in terms of itself. For example, the factorial function is defined
as 1! = 1 and N! = (N − 1)!(N) for N ≥ 2, N integer. Cuoco [12] pointed out that
recursive thinking is a key problem solving approach to build spreadsheet analysis to
explain how banks figure out the monthly payment on a house or car loan. What types
of resources and ways of reasoning should students develop and exhibit to approach
recursive tasks? We use a task that involves a recursive sequence to illustrate that the
use of GeoGebra provides a means for learners to make sense of the task and to initially
explore the sequence behaviour.

The task: Let the real numbers a0 and a1 be given. Define the sequence anf g by an ¼ an�2þan�1
2

for each n� 2. Prove that lim
n!1 an exists and determine its value [13] (p. 77).
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To focus on particular cases in order to make sense of and explore the sequence
behaviour is a common strategy in pattern recognition. The issue is then how the
problem solver decides and implements what a special case to consider or try in order
to shed light on its solution. In this problem, Schoenfeld recommends to evaluate the
sequence for a0 ¼ 0 and a1 ¼ 1 and (as special case) to observe the involved pattern.
Figure 4 shows a dynamic model of the sequence where a0 ¼ 0 and a1 ¼ 1. In http://
www.geogebratube.org/student/m139246 the initial values are associated with two
sliders whose values can be changed by moving the points on the sliders. Visually, the
behaviour of the sequence, for a0 ¼ 0 and a1 ¼ 1, converges to 0:666. . . ¼ 2=3. How
can we get a closed form for the general term an?

We can also begin by finding some of its particular values. The list of terms of the
sequence includes both rational and decimal representations.

an ¼ an�2 þ an�1

2

The initial conditions are a0 ¼ 0 and a1 ¼ 1, then, some terms of the sequence are:

0; 1;
1
2
;
3
4
;
5
8
;
11
16

;
21
32

;
43
64

;
85
128

; . . .

These terms expressed in decimal form are:

0; 1; 0:5; 0:75; 0:625; 0:6875; 0:65625; 0:671875; 0:6640625; . . .

If we continue writing more terms, we can observe that after certain number of
terms of the decimal part includes the digit 6 (looking for patterns). That is, we get
expressions such as 0.666…Here are some examples:

Fig. 4. Visualizing the behaviour of some elements of the sequence
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a10 ¼ 341
512

� 0:666015625

Or

a20 ¼ 349525
5124288

� 0:6666660308

Examining the behaviour of the decimal expression let us to conjecture that the
limit of the sequence is 0:666. . . ¼ 2=3.

Comment: Exploring dynamically the sequence behavior via the use of digital tech-
nologies (GeoGebra) offers students not only a way to visualize graphically the
behavior of the sequence elements associated with the special case; but also (through
the use of sliders) others cases can be visualized. In addition, the use of others tech-
nologies (CAS) became important to carry out numeric and symbolic calculations to
delve into the pattern sequence. Making sense of task statements is essential to rec-
ognize and express patterns that are involved in recursive tasks. Cases that are easy to
handle (a0 ¼ 0 and a1 ¼ 1) often provide useful information to recognize and explore
patterns. Rational and decimal representations of results offer different angles to detect
invariance. For instance, the decimal representation of the generated elements for the
special case led us to visualize the limit; while the rational form led us to focus on the
differences anþ1 � an. Looking at the difference is also an important strategy to detect
patterns. Similarly, expressing the sequence terms in different manners is another useful
to identify interesting behaviors. Table 1 shows some patterns that emerged from the
list of some element of the initial sequence.

3.3 Making Sense and Conjecturing

The task involves analysing properties and relationships associated with linear and
quadratic functions.

The task: Based on a given linear function f , find another linear function g, such as the graph of
the product function h ¼ f :g is tangent to both linear functions. The task is an adjusted version
of a problem used by Wilson and Barnes and it can be found in: http://jwilson.coe.uga.edu/
Texts.Folder/tangent/f(x).g(x)%3Dh(x).html

Table 1. Some patterns involved in the terms of the sequence.

Elements of the sequence Representation involving power of 2

a2 ¼ a0þa1
2 a2 ¼ ð20Þa0þð20Þa1

2

a3 ¼ a1þa0þa1
2

2 ¼ a0þ3a1
22

a3 ¼ ð20Þa0þð21þ20Þa1
22

a4 ¼
a0þa1

2 þa0þ3a1
22

2 ¼ 3a0þ5a1
23

a4 ¼ ð21þ20Þa0þð22þ21�20Þa1
23

a5 ¼
a0þ3a1

22
þ3a0þ5a1

23

2 ¼ 5a0þ11a1
24

a5 ¼ ð22þ21�20Þa0þð23þ22�21þ20Þa1
24
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To make sense of the task, we can begin with a particular case, that is, “given the
function f ðxÞ ¼ xþ 1

2, find a linear function g such as the graph of h ¼ f :g is tangent to
f and g”. Some questions might help learners understand the task: What does it mean
two linear functions are each tangent to its product? Can we sketch some examples? Is
it always possible to find those functions holding the condition? What properties or
how the product of two linear function behave? The use of GeoGebra provides af-
fordances to represent and explore graphically a family of linear functions and their
product by changing through a slider the slope and y-intercept point. Figure 5a shows a
visual solution to the task, and Fig. 5b shows others examples that satisfy the
conditions.
Based on this empirical information, some conjectures emerge:

(i) For two given linear functions f ðxÞ ¼ m1xþ b1 and gðxÞ ¼ m2xþ b2 when the
graph of the product f ðxÞ:gðxÞ is tangent to both f and g then m1 ¼ �m2 (same
slope with opposite sign) and also b1 þ b2 ¼ 1.

(ii) The function f intersects the quadratic function h ¼ hðf ðxÞ:gðxÞÞ at one or two
points and one them (in case that there are two) Bðx1; f ðx1ÞÞ also holds that
gðx1Þ ¼ 1. This is because at the intersection point it is true that f ðx1Þ ¼
hðx1Þ ¼ f ðx1Þ and therefore gðx1Þ ¼ 1. Likewise, when a linear function became
tangent to the parabola, then intersection points between the product function
and the linear function coincide (Fig. 6).

Fig. 5. (a) Finding function g. (b) Examples of some solutions.

Fig. 6. The intersection points of the linear functions and the product function coincide when the
lines are tangent to the product function.
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(iii) When both lines are tangent to the parabola, then the parabola vertex and the
intersection point of both lines (point H) are on the axis of symmetry of the
parabola and the point H, intersection of f and g, is located at the intersection
point of the axis of symmetry and line y ¼ 0:5 (Fig. 7). Furthermore, the
intersection of function product and the axis of symmetry is the vertex (V) of the
parabola.

Comment: Making sense of the task is a crucial step for learners to represent and
explore possible ways to solve it. The use of GeoGebra, in this case, became instru-
mental to associate the sliders with the graphic representation of the linear and qua-
dratic functions. In this process, the analysis of a particular case provides useful
information to formulate a set of conjectures not only to solve the task, but also to
explore others related properties. In addition, the graphic and empirical information can
be used to construct an algebraic approach to the task.

4 Discussion and Final Remarks

A powerful mathematical activity that get heightened with the use of digital technol-
ogy, such as a dynamic geometry system, is making explicit the implicit dynamism of
reasoning about mathematical objects behaviours. The first exemplar illustrates how a
dynamic model of a simple figure (triangle) can be used to generate and explore
properties of the conic sections. Likewise, the dynamic exploration not only involves
analysing family of objects via dragging; but also the identification of new concepts
such as the perpendicular bisector and loci to generate those conic sections. In this
context, a new route to study and structure an analytic course emerges. Furthermore,
the use of the tool affordances could play an important role to explore visually the
behaviour of recursive sequence, second exemplar, and this exploration again provides
useful information to analyse both decimal and rational representation of the sequence

Fig. 7. Identifying the axis of symmetry and the intersection of f and g.
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values. In addition, the visual representation can easily be extended to analyse a family
of cases where the initial values can be modified. It is observed that problem solving
strategies such as “examining special cases” or “assuming the problem as solved” can
be implemented and enhanced with the use of the tool because it is possible to coor-
dinate visual and numeric information about parameter behaviours. The third exemplar
illustrates that a dynamic geometry system allows learners to explore graphically
properties of functions (linear and quadratic, in this case) through changing slider
values that represent main parameters. This exploration can lead learners to formulate a
set of conjectures and patterns to explain relations between linear functions and their
product. In general terms, the systematic use of technology offers learners not only a set
of affordances to make sense and explore concepts or objects embedded in mathe-
matical tasks; but also offer them an opportunity to identify new mathematical results.
It is also important to recognize that teachers need to develop some kind of expertise in
the use of digital technologies and a possible path to develop it is to engage themselves
in problem solving activities as a part of a community that recognize and value
strengths and limitations in the use of technologies. In addition, teachers should also
discuss what new heuristic strategies (dragging, finding foci, quantification of attri-
butes, etc.) emerge during the construction of tasks dynamic models. It is clear that a
limitation in a technology problem solving approach is to work on and follow up a
well-structured curriculum that often includes course and contents sequences. In this
context, a new flexible proposal to organize contents and fundamental concepts in
which the systematic use of digital technologies appears as important in fostering
students’ mathematical thinking and peer collaboration.

Finally, all approaches to the tasks can be put online and all students can access and
continue their analysis and discussion anytime. Thus the tools are used to keep the
discussion alive even outside of classrooms.
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