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Abstract Software agents are a well-established approach for modeling autono-
mous entities in distributed artificial intelligence. Iterated negotiations allow for
coordinating the activities of multiple autonomous agents by means of repeated
interactions. However, if several agents interact concurrently, the participants’
activities can mutually influence each other. This leads to poor coordination results.
In this paper, we discuss these interrelations and propose a self-organization
approach to cope with that problem. To that end, we apply distributed reinforce-
ment learning as a feedback mechanism to the agents’ decision-making process.
This enables the agents to use their experiences from previous activities to antici-
pate the results of potential future actions. They mutually adapt their behaviors to
each other which results in the emergence of social order within the multiagent
system. We empirically evaluate the dynamics of that process in a multiagent
resource allocation scenario. The results show that the agents successfully anticipate
the reactions to their activities in that dynamic and partially observable negotiation
environment. This enables them to maximize their payoffs and to drastically out-
perform non-anticipating agents.

1 Introduction

In distributed artificial intelligence, software agents model autonomous entities
which plan and perform their activities in multiagent systems. These autonomous
agents are able to proactively select their actions, to react to changes in their
environment and to interact with each other [31]. In the latter context, iterated
negotiations are a well-established means for coordinating distributed systems
containing multiple agents. The participating agents can negotiate on allocations of
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resources, delegations of tasks, as well as commissions of services. This enables
them to identify appropriate partners which complement their own capabilities in
order to meet their individual objectives [10, 23].

Nevertheless, a problem occurs if several of these interactions take place concur-
rently. In this situation, the participants’ activities can mutually influence each other.
That is, the outcome of each negotiation depends on those being performed simul-
taneously. This is particularly the case in joint negotiations of cooperating agents
which require them to compromise about their desired agreements. In order to enable
efficient and robust multiagent coordination, the agents have to take these interde-
pendencies into account when selecting and evaluating their respective actions in
iterated negotiations. That is, they must adapt their behavior to the activities of others.

In a competitive setting, a game theoretical equilibrium [19] denotes a combi-
nation of each individual agent’s best response to the others’ behaviors. However,
acting in a partially observable environment, the agents are unable to explicitly
compute such an equilibrium. Therefore, we propose to approximate it by means of
agents adapting their activities to each other. Inspired by Niklas Luhmann’s theory
of social systems [15, 17], our approach enables these agents to anticipate the
reactions of others to their own actions. Thus, they can select best responses to the
expected behaviors of others. To that end, we apply distributed reinforcement
learning to the agent decision-making in iterated multiagent negotiations. Using this
technique, each agent learns a best response behavior to the others’ activities
without the necessity to observe them directly. This results in a self-organizing
system of mutually interdependent activity selections in which social order emerges
from the agents’ concurrent learning efforts.

We structure this paper as follows. Section 2 elaborates on concurrent iterated
negotiations and discusses their challenges as well as existing approaches to address
them. Subsequently, Sect. 3 presents the main contribution of this paper which is
threefold. Firstly, we model concurrent negotiations as repeated games and propose
multiagent learning for coordinating them. Secondly, we discuss Luhmann’s notion
of self-organization in social systems and its adaptation for multiagent coordination.
Thirdly, we introduce decentral decision-making criteria for terminating multiagent
negotiations. Section 4 empirically evaluates this approach in a distributed resource
allocation scenario. This evaluation confirms the ability of learning agents to suc-
cessfully anticipate each other’s behaviors and provides insights into the dynamics
of that process. Finally, Sect. 5 concludes on the achievements of this paper and
outlines directions for future research.

2 Iterated Multiagent Negotiations

Iterated multiagent negotiations denote a process of distributed search for an
agreement among two or more participants [13]. This process consists of the
negotiation objects, an interaction protocol, the participating agents, and their
decision-making mechanisms. The negotiation objects determine the search space
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of potential agreements. In the process, the agents exchange proposals which their
counterparts can either accept or reject. While the protocol defines the possible
sequences of messages, an agent selects its actions among those possibilities by
means of its decision-making mechanism. If the agents find a mutually acceptable
agreement according to their individual preferences, the search returns this solution
as its result. Otherwise, it terminates without success.

In the following, we further elaborate on these aspects of multiagent negotia-
tions. In particular, Sect. 2.1 examines negotiation objects and protocols. This
provides the foundations for discussing the challenges of agent decision-making as
well as existing approaches to cope with these challenges in Sect. 2.2.

2.1 Negotiation Objects and Protocols

The negotiation objects define the topic on which the participating agents attempt to
reach agreement [13]. They cover the target of a negotiation such as the desired
service fulfillment or resource allocation. Moreover, they denote the cardinality of
these items: Either single or multiple ones. In the latter case, the agents negotiate on
possible combinations of the target products or services. Many-object negotiations
require them to identify a mutually acceptable compromise out of the range of those
combinations. In the following, we focus on many-object negotiations as they
subsume the special case of single-object ones. Furthermore, they are equivalent to
cooperative activities of several agents attempting to achieve common goals. In that
case, several agents group together in teams [22, 25, 32]. These teams negotiate as
composite entities in order to further their common objectives while competing with
other teams or individual agents.

To structure the negotiation process, there are two basic protocol types for
exchanging proposals [13]. In auction type negotiations, one or more agents
exclusively propose potential agreements while the others only accept or reject
them. An example for this is the Dutch auction in which the auctioneer repeatedly
decreases the proposed price until one or more buyers accept the current offer.
Contrastingly, in negotiations of the bargaining type the agents bilaterally exchange
offers and counter-offers. Hence, they mutually attempt to steer the search in their
individually favored direction. On the one hand, this increases the speed of reaching
an agreement; on the other hand, it requires all participants to be capable of both
evaluating and generating meaningful proposals [10]. In this paper we mainly focus
on negotiations of the auction type. Nevertheless, in Sect. 3.3 we also suggest to
adapt our approach to bargaining type interactions.

A well-known protocol for iterated auction type negotiations is the FIPA Iterated
Contract Net [11] as depicted in Fig. 1. It is particularly suitable for situations in
which a consumer agent attempts to find the best partner among the potential
providers of a required service or product. In many-object negotiations, this can
also be a set of agents if no single participant is able to fulfill the initiator’s demands
on its own. However, this approach requires the initiator to address all potential
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participants from the beginning on as there is no way to include additional agents
during the process. If the initial selection is insufficient to fulfill the initiator’s
requirements, the whole negotiation will fail.

2.2 Agent Decision-Making: Challenges and Related Work

If there is exclusively one single initiator agent at any time, its decision-making in
the aforementioned protocol is simple. It only requires to keep track of the par-
ticipants’ offers to identify the currently best agreement, accept it when no further
improvements occur, and reject all other proposals. However, this is not the case if
several of these interactions take place concurrently. In this situation, the partici-
pants receive several cfp messages simultaneously and their subsequent responses
depend on all of these messages. Consequently, these interactions mutually influ-
ence each other’s outcome as the initiator agents compete for the participants’
limited capacities. In order to still achieve the best possible result of the negotiation,
an agent must take the actions of all others into account. That is, it has to find a best
response to its counterparts’ behaviors.

Fig. 1 The FIPA Iterated
Contract Net interaction
protocol (adapted from [11])
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To illustrate the aforementioned problem, Fig. 2 depicts a simple resource
allocation example. This scenario consists of two consumer agents (A,B) acting as
initiators of concurrent negotiations. They attempt to allocate resources from the
provider agents (C,D) of which each has only enough capacity to fulfill the request
of one consumer. If each consumer contacts both providers simultaneously, there
are four different possible outcomes. Only two of those lead to a successful
negotiation result for both consumers. In the other two cases, a single consumer
receives two offers. Because it can only accept one of them, the other provider’s
resource remains unused due to its refuse message terminating the negotiation with
the unsuccessful consumer agent. Hence, the agents have a 50 % chance of
achieving an efficient overall coordination result.

In the general case of a set N of initiators and a set M of participants, an efficient
allocation is equivalent with a surjective mapping (i.e., an onto function) from M to
N. Consequently, the probability for achieving such a result is given by the possible
number of these mappings [18, pp. 84–85;90] divided by the number of all possible
interactions.

Peff ¼ 1

Nj j Mj j
�
XNj j
j¼0

Nj j
j

� �
� �1ð Þ j� Nj j � jð Þ Mj j ð1Þ

Figure 2 shows this probability for varying agent populations. As the number of
consumers increases, a drastically higher supply of resources (i.e., number of
providers) is necessary to ensure a near efficient coordination result. This holds for
both the standard Contract Net protocol as well as its iterated version because in the
latter, a refuse message terminates the interaction with its sender. Consequently,
subsequent iterations can only refine the result of the first one which renders this
protocol inadequate for concurrent negotiations.

To overcome the limitations of the Iterated Contract Net, we slightly modify the
original FIPA protocol of Fig. 1. Instead of narrowing the set of participants to a
subset of the initial receivers in each iteration, we allow for including alternative

Fig. 2 Resource allocation options and probability of achieving an efficient outcome for varying
agent populations in the (Iterated) Contract Net
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ones while keeping their overall number constant. That is, the initiator selects a
fixed number m of participants and replaces those m−k which propose none or only
unacceptable agreements (refuse/reject) with alternative candidates. Thus, it refills
the set of receivers for the next iteration’s call for proposals (cfp) with x new ones
to a size of k + x = m. This enables an initiator to contact participants more than
once, even if they refused their earlier allocation attempts.

Nonetheless, the agents must still find best responses to each other’s activities in
the modified Iterated Contract Net protocol. This is due to the fact that their
activities can still collide which leads to suboptimal outcomes. While they have the
ability to continue their negotiations despite failed allocation attempts, they must
avoid these collisions in future iterations of the interaction. That is, they must
anticipate their counterparts’ behaviors and adequately respond to them to secure
their intended negotiation results. This anticipation is crucial for achieving the
desired outcomes because otherwise the agents would mutually disturb their efforts.
To facilitate that end, the following concepts and methods for finding best
responses are available from related work.

Determining best responses to other agents’ activities is the subject of game
theory [29]. If all agents pursue a best response strategy to the behaviors of the
others, these strategies form a Nash equilibrium [19] in which no single agent can
benefit from changing its current behavior. A Nash equilibrium denotes the agents’
best possible activities in such a strictly competitive setting. Moreover, by
approximating best responses to the others’ behaviors, an agent maximizes its
individual payoff, even if they fail to establish a corresponding best response in
return. Therefore, each agent should select its actions in an iterated negotiation with
respect to the others’ activities.

Existing methods for computing an equilibrium of mutual best responses often
evaluate the structure of the game and are computationally expensive [20].
Nevertheless, each agent only has to identify its own best strategy. Consequently, it
requires a decision-making method for finding its most beneficial activities, given
the actions of the others. A well-known technique for this is the minimax rule [28]
of 2-player decision-making and its generalization for n-player settings [14]. By
assuming the others to pursue their most beneficial courses of actions, this rule
selects the best response to those behaviors. As a result, an equilibrium emerges
from the agents’ mutually dependent action selections.

However, in concurrent negotiations, the minimax approach requires an agent to
be aware of the other participating agents, their possible actions as well as their
preferences (i.e., their scoring functions for the interaction’s outcome). For com-
petitive distributed negotiations, disclosing these trade secrets is inappropriate [10].
Consequently, the agents act in a partially observable environment. In this envi-
ronment, they must coordinate their negotiation behaviors while preserving the
privacy of information. To achieve the latter, combinatorial auctions [8] provide a
means for computing the best allocation of goods or services in a mediated inter-
action process. In these auctions, the participants express their preferences as bids
on combinations of offered items. While such a bid represents the result of an
agent’s valuation of an offer, it hides the agent’s private method for attaining that
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assessment. Moreover, combinatorial auctions are particularly suitable for many
objects as the participants can express bids on arbitrary combinations. Nonetheless,
the winner determination is a centralized process which creates a computational
bottleneck [21]. This is undesirable in distributed systems.

To overcome this problem, agents should adapt their behaviors during a nego-
tiation according to their experiences throughout that process [27]. Hence, we
propose to enable the agents to learn best responses to each other’s actions from
observations of their personal performance. Deriving beliefs about successful
behavior from the outcome of past interactions has been shown to enable the
approximation of market equilibria in repeated trading activities [12]. That is, buyers
and sellers determine mutually acceptable prices for the traded items by estimating
the probabilities of reaching an agreement for potential price offers. Nevertheless,
this requires the presence of a common currency to express those prices.

In order to allow for best responses according to generic utility assessments, we
rather apply reinforcement learning [26] to multiagent negotiations. This technique
enables the agents to anticipate the expected results of their actions by observing and
learning from the outcome of their previous activities. By adapting their behavior
accordingly, they can establish of social orderwithin the negotiation through a process
of self-organization. They implicitly generate interaction practices which reflect the
identified best responses to the unobservable activities of their competitors. To
accomplish this, an agent receives a reward when performing an action from which it
learns an estimation of the expected reward for potential future actions. Subsequently,
it can select the next action based on this estimation. Multiagent reinforcement
learning [6] has been applied successfully to approximate best response behaviors in
distributed coordination tasks [5, 7]. Therefore, it is a promising approach for deter-
mining an agent’s most beneficial strategy in concurrent iterated negotiations.

3 Multiagent Self-organization in Iterated Negotiations

In the following, we apply multiagent reinforcement learning to concurrent iterated
many-object negotiations. Section 3.1 interprets them as repeated games and pro-
vides a formal notation for the agents’ decision-making environments and behav-
iors. Subsequently, Sect. 3.2 motivates our approach to social self-organization,
introduces its sociological foundations, and applies a stateless version of the Q-
learning approach to agent decision-making. Finally, Sect. 3.3 discusses criteria for
determining acceptable offers to terminate such a negotiation.

3.1 Iterated Multiagent Negotiations as Repeated Games

In order to facilitate a better understanding of the interdependencies of concurrent
agent activities in iterated negotiations, we formalize them using the terminology of
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game theory and reinforcement learning. From this point of view, a single iteration
of a multiagent negotiation is a static (stateless) game. In such a game, each of the
agents performs one action and receives a reward depending on all simultaneously
executed actions. Its formal definition is as follows [6].

Definition 1 (Static Game) A static game is a triple N;~A;~R
� �

. N is a set of agents

being indexed 1,…, n. Each agent i 2 N has a finite set of atomic actions Ai. Thus,
~A ¼ A1; . . .;Anð Þ. ~R ¼ R1; . . .;Rnð Þ is the collection of individual reward functions
for each agent i. Each Ri : A1 � � � � � An ! R returns i’s immediate reward for the
simultaneous execution of agent actions a1,…,an with 8j 2 N : aj 2 Aj.

In a concurrently executed Contract Net, the set of agents N consists of the
initiators of the simultaneous negotiations. Each of them selects a participant to
send its call for proposals specifying the negotiation object. Thus, agent i’s indi-
vidual actions Ai contain all of these possible messages in conjunction with their
respective receivers. Instead of distributing the rewards directly, the participants
subsequently respond with a proposal or a refuse message. A participant’s response
depends on the entirety of messages it received in the current iteration. Each ini-
tiator can rate its individually received response by calculating its respective payoff
(i.e., the negotiation’s expected outcome if it accepts the received offer). Thus, an
agent obtains the conditional reward for its action, even though it is unable to
observe the actions of the others. Iterating this one-shot negotiation several times
results in a stage game [6]. This repeated game describes the agents’
decision-making environment during concurrent iterated negotiations. Only in its
final iteration, an agent bindingly accepts or rejects its received offer. Until then, it
can use the stage game to learn the most beneficial actions for that last static game.

In order to accomplish this learning, the agents repeatedly observe the payoff of
their respective activities which enables them to reason about their expected reward in
further iterations. A rational agent has the objective to maximize its personal payoff.
Hence, it attempts to adopt a behavior which is a best response to the other agents’
actions. In game theoretical terms, a deterministic best response strategy returns an
action which maximizes an agent’s payoff, given the actions of all others [6].

Definition 2 (Best Response) A best response of agent i 2 N to the other agents’
actions a1; . . .; ai�1; aiþ1; . . .; an is an action a�i which leads to the highest reward
given those activities: 8ai 2 Ai : Ri a1; . . .; a�i ; . . .; an

� ��Ri a1; . . .; ai; . . .; anð Þ.
In a competitive environment, each agent strives to maximize its individual

payoff on its own. Therefore, all agents mutually attempt to find a best response to
each other’s activities. Such a situation, in which no single agent can beneficially
deviate from its current behavior, forms a Nash equilibrium [19]. For deterministic
agent strategies, this is defined as follows.

Definition 3 (Nash Equilibrium) A Nash equilibrium is a vector a�1; . . .; a
�
n

� �
, such

that 8i 2 N, each action a�i is a best response to the others.
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A Nash equilibrium does not ensure that the agents maximize their common
payoff in the form of a social welfare optimum.1 Nonetheless, it denotes each
agent’s best possible action relative to the others’ activities if all agents attempt to
maximize their individual payoff. The objective of each agent in concurrent iterated
negotiations is to identify such a best response action in order to select it in its
decision-making.

Additionally, there are negotiations in which not all agents compete with each
other. If two or more agents pursue a common goal, they have to negotiate together
in order to acquire the necessary resources or commission required services. In this
case, these agents can group together in teams [23]. The set of those multiagent
teams MT � 2N is a partition of the set of individual agents. The members of each
team mt 2 MT cooperate in their interactions. To that end, they combine their
individual rewards in a common social welfare function.

Definition 4 (Social Welfare Function) Asocial welfare function of team mt 2 MT
maps all team members’ rewards to a single value: welfare: R mtj j ! R.

A team’s welfare indicates the joint performance of its member agents by
aggregating their individual rewards. Several different aggregation methods are
available for implementing that function [9]. The most common of those is the
utilitarian welfare function which returns the sum of the team members’ rewards:P

i2mt Ri a1; . . .; anð Þ.
In a negotiation, a team acts as a single initiator agent. That is, a particular

member agent mgr 2 mt becomes the team manager. That agent sends cfp mes-
sages on behalf of all members and collects the respective rewards for the
responses. Then, it aggregates them in the team’s welfare function. This is equiv-
alent to a single agent negotiating several objects. As a result, multiagent teams
attempt to find joint best responses to other teams’ as well as to individual agents’
activities. This replaces the member agents’ rewards in Definition 2 with the team’s
welfare. Consequently, a Nash equilibrium consists of the best combination of
actions for the team given the non-members’ best possible responses to those
activities.

However, both individual agents and multiagent teams are unable to directly
determine whether their concurrent activities form a Nash equilibrium. This is
because there is no entity which can observe all of these behaviors. Instead, they
must derive the best responses solely from their payoffs for the performed actions.
If all agents and teams succeed in this endeavor, a Nash equilibrium emerges from
their distributed efforts. To that end, the next section specifies our approach to self-
organizing negotiations which relies on the anticipation and an adaptation of agent
behaviors.

1A famous example for this is the prisoner’s dilemma in which the equilibrium point is the only
strategy combination not belonging to the Pareto frontier.
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3.2 Anticipation and Behavior Adaptation for Iterated
Negotiations

Niklas Luhmann’s sociological theory of communication systems [15, 17] provides
a fundamental inspiration for our approach to self-organizing negotiations.
According to this theory, social order derives from actors mutually expecting each
other’s activities. These expectations emerge from the actors’ interactions rather
than reflecting static behavioral norms or fixed channels for communication. An
actor observes his counterpart’s behavior and selects his activities according to the
other’s expected reaction. Thus, an actor’s action selection depends on observed
activities of others and vice versa. This feedback loop of observation and expec-
tation enables social structures to emerge from an initial state of ignorance 2 by
means of interaction processes. These structures guide subsequent executions of
those very processes. Luhmann refers to the generation of social structures by the
term self-organization [16].

In previous work, we have applied expectations to the decision-making of
software agents [1–5]. These agents memorize the observable effects of their own
activities. Each time it has to select an action, such an agent evaluates its options
according to its memory entries. That is, it searches for an action which it expects to
predictably lead to an advantageous response. After executing the selected action, it
observes the actual response by the addressed agent and updates its memory with
that observation. That process either increases or decreases the agent’s expectation
for the selected activity depending on whether it under- or overestimated its out-
come. This renewed expectation then becomes available for the anticipation of
activity results in further interactions.

The aforementioned process enables a software agent to anticipate the outcomes
of its activities without having to know their exact causes, the identities of its
competitors, and their respective capabilities. To that end, it assumes its past
observations to be representative for future events. It learns which of its potential
interaction partners best to select in order to reach its goals. In a negotiation, this
allows for an initiator agent to identify those participants which can offer the most
advantageous deals. To achieve this effect, we model the process of generating
expectations and selecting activities according to them by means of reinforcement
learning [26]. In a stage game, this technique allows for the agent to learn from its
experiences to increase its future performance.

A well-understood algorithm for the case of one single learning agent is Q-
learning [30]. In its stateless form, this algorithm estimates expected rewards
(action payoffs) as Q-values Q(a) for each possible action a [7]. A learning agent

2In this state of double contingency, both participants are unable to act because each of their
activities depends on the other’s previous actions and they lack any existing expectations for
selecting them. However, Luhmann notes that this is a highly unstable fixpoint of the interaction’s
dynamics which never actually occurs in real encounters [15, 17]. Instead, every slight action
allows for generating initial expectations which facilitate the emergence of social order.
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uses the following update rule to refine its estimation when observing a reward R(a)
for action a.

Q að Þ  Q að Þ þ k � R að Þ � Q að Þð Þ ð2Þ

If each action is sampled infinitely often, the agent’s Q-values converge to the
unobservable true values Q� for every learning rate k with 0\k� 1 [7, 30]. This
enables the learning agent to select its activities according to their expected payoff
values. Hence, as the values converge, it can identify its individually optimal action.

However, in concurrent iterated negotiation processes, several initiator agents act
simultaneously. This results in interdependent effects of their actions as formalized
in the preceding section. In fact, the convergence property of single agent
Q-learning does not hold for a distributed setting in which several agents simul-
taneously adapt their behaviors. This is because their interdependent activities result
in non-stationary rewards. These rewards depend on the combination of all con-
currently executed actions. Consequently, an agent can observe changing effects of
its actions without being able to influence them or to identify the cause of these
changes. For instance, if two agents attempt to allocate resources from two resource
providers, the first initiator may receive offers or rejects of its attempts depending
on the simultaneous actions of the other initiator. Even if the first agent always
selects the same action, it will be unable to accurately anticipate the reaction
because the second agent may change its behavior. Thus, an agent’s interaction
environment changes during its learning process which can render its existing
expectations invalid.

The same situation arises in social systems. According to Luhmann, commu-
nications are guided by expectation structures in these systems [15, 17]. Through
repeated changes and mutual adaptations, these structures stabilize themselves and
social order emerges. The reason for this effect lies in the reciprocal nature of
expectations. All actors simultaneously generate and refine their expectations. In
this process, they narrow the range of actually occurring communications within the
system. This increases the likeliness of communications being successful. Hence,
the participating actors can mutually anticipate each other’s reactions to their
activities and act accordingly instead of arbitrarily changing their behaviors. While
they retain the ability to react in an unexpected manner, this makes communications
sufficiently predictable to facilitate goal-directed social coordination.

In the following, we transfer the preceding considerations to concurrent multi-
agent negotiations. If all agents in that setting develop expectations about the
outcomes of their activities and their actions depend on those expectations, those
very outcomes become increasingly predictable. This is because they narrow the
range of selected actions. If they also maximize the payoffs they receive from the
corresponding responses, the agents establish a Nash Equilibrium of mutual best
response activities. Nevertheless, conventional reinforcement learning is unable to
bring about that effect. It suffers from several agents mutually disturbing their
adaptation efforts by changing their behaviors. When an agent perceives an action
to yield inferior outcomes, it has to change its selection and search for an adequate
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alternative option. This change can interfere with the activities of another agent.
That agent is then also obliged to modify its behavior. Therefore, a chain reaction of
adaptations can occur in which disturbances build up and the agents are unable to
obtain social order. To avoid this and instead enable the interactions to converge to
social order, the agents’ action selection method must fulfill two additional con-
ditions [5, 7].

1. At any time, every possible action of an agent must have a non-zero probability
of being selected.

2. An agent’s action selection strategy must be asymptotically exploitive.

Condition 1 ensures the infinite sampling of all agent actions for t!1. An
agent must always have the opportunity to explore alternative courses of action to
be able to react to changes of other agents’ behaviors which affect its own per-
formance. Furthermore, that condition prevents the agents from executing strictly
correlated explorations. That is, no combination of agent actions becomes impos-
sible to occur. This is an extension of the infinite sampling requirement for single
agent Q-learning: In a multiagent setting, each combination of actions must be
executed infinitely often due to the payoff’s dependence on all concurrently trig-
gered other actions. Condition 2 requires the agents to pursue a decaying explo-
ration strategy. This decreases the probability of concurrent exploration activities
over time. Hence, the agents become less likely to disturb each other as their
behaviors become increasingly predictable. As a result, their expectations can settle
to stable social structures. Empirical evidence shows that these agents successfully
establish mutual best responses in a variety of settings [5, 7].

In order to apply this technique to iterated negotiations, we construct the initiator
agent’s behavior as depicted in Fig. 3. This behavior extends the message passing
activities as specified in the FIPA Iterated Contract Net protocol definition [11] with
an initialization step as well as the following repeatedly executed activities.

Fig. 3 Behavior of a learning initiator agent in the Iterated Contract Net

242 J.O. Berndt and O. Herzog



1. Selecting the receivers and contents for the next calls for proposals.
2. Learning from the observed responses.
3. Deciding on whether to terminate or continue the negotiation.

When entering a negotiation, each learning agent i 2 N initializes its Q-Base
(i.e., its memory) Qi in which it stores the expected payoffs Qi(ai) for all its possible
atomic actions ai 2 Ai. Its individual actions Ai consist of all cfp messages, given by
their possible contents and receivers. The message contents depend on the agent’s
preferences toward the negotiation object and the receivers correspond to the
possible providers of that object. In the case of a multiagent team, the team manager
maintains such a memory for each of the member agents. The following consid-
erations cover the decision-making of such a team manager because it subsumes the
special case of an individual agent (being equivalent to a team with a single
member).

Subsequently, the agent enters the iterated part of the negotiation. To select the
next action, it considers all messages ai	Ai and looks up their stored Q-values
Qi(ai). A team manager does this for every member agent individually. In that case,
maintaining a Q-base for the atomic actions instead of their combinations keeps the
required storage space small when using a lookup table [5]. Nevertheless, this
requires the corresponding rewards Ri(ai) to be mutually independent. This is
because the team manager must aggregate those Q-values in the team’s welfare
function to identify the expectedly most beneficial message combinations
maxAmt 2 A1 � � � � � A mtj j.

maxA ¼ arg max
Amt2A1�����A mtj j

X
i2mt

Qi aið Þ
 !

ð3Þ

with ai 2 Amt being the selected action for team member i
Choosing an action set from maxAmt corresponds to a greedy strategy which

maximizes the team’s expected payoff based on its experiences so far. For that
purpose, Eq. 3 computes the utilitarian welfare of the expected action outcomes.
This method maximizes the average payoff of the team’s members without favoring
particular ones over others as long as the expectations accurately anticipate the
actual outcomes. However, a team manager is unable to guarantee this because it is
initially unaware of the available deals in the negotiation and other agents can
change their behaviors which may provide potentials for improving its perfor-
mance. Hence, in order to find out whether there is an even better option, the agent
also has to explore alternative actions.

To this end, we propose to use an e-greedy strategy. That is, in iteration t of the
negotiation, the manager selects the next actions Amt;t from maxAmt. with a prob-
ability of 1� e (with 0\e� 1). If there is more than one best option, it chooses
randomly among them. Alternatively, with a probability of e, the agent selects Amt;t

at random out of all action combinations in A1 � � � � � A mtj j. Moreover, to ensure

Anticipatory Behavior of Software Agents … 243



the aforementioned asymptotically exploitive selection with non-zero probabilities,
it employs a decaying e-greedy strategy. This requires a sequence en with
limt!1et ¼ 0 and 8t 2 N : et [ 0. An example meeting these requirements is the
following quence: 8t[ 0 : et ¼ 1

ln tþ2ð Þ. This sequence leads to high exploration

rates in the beginning of the negotiation which decrease over time. Once an agent
has identified a highly rated combination of actions, it increasingly tends to stick to
those actions as time proceeds.

After selecting the next actions, sending the chosen messages, and collecting the
respective responses, the team manager proceeds with the learning part of its
behavior. To assess the usefulness of the selected actions Amt;t, it evaluates the
response messages result ai; tð Þ, 8ai;t 2 Amt;t for each member agent i 2 mt by
means of an individual utility measure Ui : result aið Þj8ai 2 Aif g ! 0; 1½ 
. It uses
the result of this calculation as the action’s immediate reward Ri ai;t

� �
.

Ri ai;t
� � ¼ Ui result ai;t

� �� � ð4Þ

As the response messages depend on the concurrent actions of all agents par-
ticipating in the negotiation, their utility implicitly reflects these actions as well.
Thus, it is sufficient for the team manager to evaluate only the observable responses
instead of receiving a conditional reward for all simultaneous activities. In order to
learn from this observation, it subsequently applies the standard update rule as in
Eq. 2 to modify its stored Q-value Qi ai;t

� �
for all performed actions ai;t 2 Amt;t. In

the succeeding iteration, the refined entries in the Q-Base serve as the new Q-values
for these actions.

According to the aforementioned convergence property of the Q-learning rule,
an infinite number of these iterations will lead to each agent and multiagent team
learning to anticipate the best response to the others’ activities. Hence, a Nash
equilibrium will emerge from these distributed learning processes in concurrent
negotiations. Nonetheless, an infinite negotiation never comes to a final result. To
avoid this, each negotiation initiator must decide after an iteration either to accept
its received response messages as the result and terminate the negotiation or to
continue it in the attempt to reach a better outcome. That is, while learning the best
behavior for the repeated interaction process, it must eventually apply its findings to
one single iteration to bring about a result of the negotiation. To facilitate this
decision-making, the next section discusses individual tactics for terminating iter-
ated negotiations.

3.3 Termination of Iterated Negotiations

A learning agent as specified in the preceding section is unable to determine
whether it has already developed a best response behavior or not. Furthermore, it
cannot guarantee that stable social structures have emerged among all negotiating
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agents. This is because it would have to know all other agents’ possible actions as
well as their actual selections, the participants’ respective responses, and the agents’
utility measures for evaluating these responses.

However, disclosing this information is inappropriate for competitive negotia-
tions (cf. Section 2.2). As an alternative, negotiation tactics enable reaching indi-
vidually acceptable agreements without requiring additional information. These
tactics model an agent’s bidding behavior in bargaining type negotiations consisting
of offers and counter-offers. They can depend on the amount of time or other
resources being available as well as on the observable bidding behavior of the
negotiation opponents [10]. Such a tactic provides a function which approaches the
agent’s private reservation value in the course of the negotiation. This value
denotes the minimal offer it is willing to accept. Thus, unless the agents come to a
better agreement at some time during the negotiation, the reservation value denotes
its last offer on which it insists until the end of the negotiation. If at some point in
time neither agent concedes any further, the negotiation terminates without success.

In contrast to bargaining negotiations, in auction type mechanisms like the
Iterated Contract Net it is unnecessary to generate counter-offers. Instead, the ini-
tiator agents only require a decision function which indicates whether or not one or
more received proposals are acceptable. To this end, an agent must consider the
payoff of the current offers. These values are already available from the rein-
forcement learning algorithm (Eq. 4). Thus, we define agent i’s decision function in
dependence of its utility measure Ui for evaluating the perceived results of its
actions (with the manager of a multiagent team using the utility measures of all
member agents). In analogy to the bargaining tactics, the agent has a reservation
level of utilities Ures. This is the minimum utility it will accept for the last offers of
the negotiation. If the reservation level turns out to be unreachable, it will terminate
the negotiation without coming to an agreement.

However, in order to maximize its payoff, the agent must explore alternative
actions in the course of the negotiation. Therefore, it should abstain from choosing
the first option exceeding its reservation level as the final one. Only if it fails to
achieve a better result, the agent should accept the current offer. To this end, we
introduce an agent’s acceptance level of utilities Uacc which denotes the minimum
utility for the current offer to be acceptable. In the case of a multiagent team, the
common welfare of the member agents denotes that utility. As the team manager
attempts to maximize the members’ joint payoff, it has to compare the team’s
welfare to the acceptance level in order to evaluate whether the outcome for the
team is acceptable or not. Varying over time during a negotiation, the acceptance
level resembles an agent’s tactic in bargaining: It consists of a function describing
the agent’s behavior of conceding to its reservation level. To enable the agent to
benefit from its learning ability, this function starts from a sufficiently high value
and decreases monotonically over time. As a result, the agent rejects all but the best
offers in the early iterations. Nevertheless, it becomes increasingly inclined to
compromise about that utility during the negotiation process.

Following from these considerations, a team manager successfully terminates a
negotiation in iteration t if the received offers’ aggregated utility exceeds the current
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acceptance level: Uacc;t\
P
i2mt

Ui result ai;t
� �� �

with ai;t 2 Amt;t being the selected

action for team member i. That is, the team manager computes the welfare of the
whole team and decides whether the result is acceptable as the negotiation’s out-
come. Furthermore, it terminates the process without success if the acceptance level
falls below the reservation level: Uacc,t < Ures. In the latter case, the team failed to
reach an agreement with its interaction partners under the least acceptable condi-
tions. Figure 4 depicts these termination criteria for a range of acceptance level
functions. Analogously to the concession behaviors in bargaining negotiations,
these functions tend toward either the well-known Boulware or the Conceder tactics
[10]. While the former attempts to reach a highly valued agreement as long as
possible, the latter quickly approaches the reservation level.

To implement these tactics, we modify the polynomial time dependent function
presented in [10] according to the aforementioned considerations. In the resulting
function, the acceptance level Uacc,t in iteration t ranges between the initial value
Uacc,0 and the reservation level Ures as long as t adheres to a given deadline tmax.
Moreover, the acceptance level is strictly monotonically decreasing if Uacc,0 > Ures

and tmax is constant.

Uacc;t ¼ Uacc;0 � Uacc;0 � Ures
� � � t

tmax

� �b

ð5Þ

According to this equation, the negotiation is guaranteed to terminate for all
tmax\1. The parameter b controls the agent’s concession behavior: While it
pursues a Boulware tactic if b[ 1, each b\1 leads to a Conceder behavior. The
intensity of these tactics increases the more b deviates from 1 (with b ¼ 1 denoting
the neutral linear tactic).

By means of Eq. 5, an agent controls its negotiation behavior. Setting tmax to a
fixed point in time allows for modeling situations in which the agents must finish
their negotiation before some deadline exceeds. In conjunction with the

Fig. 4 Termination criteria
based on acceptance and
reservation utility levels
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reinforcement learning technique, this termination method enables agents in con-
current multiagent negotiations to adjust their behaviors according to each other’s
distributed activities. While the learning approach facilitates an agent’s anticipation
of best responses to the unobservable behaviors of others, the termination criteria
control the negotiation’s duration. Moreover, deriving from negotiation tactics in
bargaining, the latter even offer the possibility to transfer this approach to bilateral
negotiations. As the acceptance level denotes the minimum utility for an agreement,
an agent can invert its utility measure to generate counter-proposals to the perceived
offers. If a common currency is used, this is easy to accomplish by mapping the
learned values to price offers [12]. However, we leave this adaptation as well as the
analysis of its requirements and implications to future research.

4 Evaluation

In this section, we evaluate our approach to self-organizing multiagent negotiations
in a multiagent simulation. This evaluation covers the dynamics of the agents’
learning efforts as they establish expectations to anticipate the behaviors of their
interaction partners. In the following, Sect. 4.1 describes the design of the simu-
lation experiments while Sect. 4.2 presents and discusses the results.

4.1 Experiment Design and Setup

In order to evaluate the proposed learning approach in iterated multiagent negotia-
tions, we apply it to a distributed resource allocation problem using the simulation
system PlaSMA [24]. Our scenario is an abstraction from a kind of problems
occurring frequently in real-world applications like production scheduling and
logistics [5]. This scenario contains a set N of resource consumer agents which
concurrently negotiate with the resource providers in setM as depicted in Fig. 5. The
member agents of these sets are indexed 1,…,n for the consumers and 1,…,m for the
providers. In addition, the set of consumers is partitioned into n teams of size
k. Consequently, only every kth consumer takes an active part in the negotiation as a
team manager. Each consumer team requires k resource units while every provider

Fig. 5 Many-object resource allocation scenario with n consumers and m = n∙k providers
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has exactly one unit available. Because Mj j ¼ Nj j, there is sufficient supply for
fulfilling that demand. Thus, the agents have to find an appropriate bijection between
the set of consumers and the set of providers. In this case, each consumer allocates its
required amount of resources without interfering with the others.

To approximate a mutual best response allocation in that setting, the team
managers act as initiators of a concurrent iterated negotiation. In each iteration, a
manager selects k providers for a call for proposals, one for each team member. If a
provider still has its resource unit, it sends an offer for the allocation; otherwise it
sends a refusal. In the case of a provider receiving two or more allocation attempts,
it randomly selects one consumer for its offer and refuses all other cfps. The
initiators evaluate these responses by means of the following utility function for
each team member.

Ui rai;t
� � ¼ 1

k
�

0:5m� i�jj jj j
0:5m � 0:9þ 0:1 if rai;t is a proposemessage

0 otherwise

�
ð6Þ

with

8ai;t 2 Amt;t : rai;t ¼ result ai;t
� �

According to Eq. 6, each agent i 2 N has an individual utility function. If the
response to the selected action is an offer, its utility ranges between 0:1

k and 1:0
k

depending on the respective sender. Otherwise, it is zero. Hence, the usefulness of
the different provider’s resources varies for each consumer. Figure 5 depicts the
resulting function. There is only one provider offering an optimal payoff. Because
these providers differ for all consumers, there is exactly one optimal resource
allocation (namely that allocation which maps all consumers to the providers with
the same index). Being unaware of the described scenario and the actions of other
agents, this optimum is difficult to achieve for the team managers. In its attempts to
maximize its performance, a team manager has to find the best activities for each of
its members while competing with the managers of other teams for those results.
This requires it to search for resource providers which reliably offer high payoffs.
The agents must anticipate these outcomes in order to maximize their performance
because an arbitrary selection of actions and mutual disturbances will lead to poor
coordination results.

Our evaluation assesses the capability of the proposed approach to approximate
an allocation with the aforementioned properties. It focuses on the agents’ learning
dynamics in order to evaluate the impact of their self-organization during the course
of a negotiation. To this end, we test it in a scenario with a set of 1200 consumer
agents which we subdivide into 20 teams of 60 members each. We vary the team
managers’ learning rates k between zero and one in order to evaluate their impact
on the learning dynamics. In this context, k ¼ 0 means that an agent maintains no
expectations at all. Thus it selects every action at random. This serves as a baseline
configuration to mark the lower bound of the expectable coordination performance.
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For each agent i 2 N and every atomic action ai 2 Ai, we set the initial Q-values
to Qi aið Þ ¼ 0. This leads to a purely explorative behavior in the beginning of the
negotiation and in case of repeated refusals. This initialization and randomized
action selection avoids a premature over-estimation of potential agreements.
Nonetheless, as soon as an agent observes a (partially) successful combination of
actions, it utilizes the e-greedy strategy to exploit its experience. Thus, the agent
increasingly tends to stick to those actions which have been beneficial in past
iterations.

To terminate the negotiation, the agents employ a time dependent heuristic as
specified in Eq. 5. They use an initial acceptance level of Uacc,0 = 1, a reservation
level of Ures = 0.0, a Boulware negotiation tactic (b ¼ 3), and a deadline of
tmax = 800 iterations. The Boulware tactic increases the impact of their learning as
the agents slowly concede to their reservation levels. Each experiment consists of
120 simulation runs.

4.2 Experiment Results and Discussion

Figure 6 depicts the average number of consumer agent teams participating in the
negotiation over time for varying learning rates. It shows that the agents’ learning
efforts significantly reduce the time required for identifying an acceptable negoti-
ation result. While the non-learning agents require more than 700 iterations for most
of them to terminate their negotiations, the learning rates of k ¼ 0:2 and k ¼ 0:4
achieve this in about 500 iterations. The higher learning rates result in durations
between those values. These results indicate that the generation of social order has a
large impact on the time required for finding an appropriate resource allocation. The
team managers learn which resource providers to contact in order to receive
advantageous offers. Thus, they tend to repeatedly select those options which

Fig. 6 Number of teams participating in the negotiation over the course of time
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provide high payoffs. Although they occasionally explore alternative ones, they
only adopt them if these actions provide a significant advantage over the already
known activities.

Moreover, maintaining expectations for every single action of individual team
members enables the team managers to systematically change their selections for
those individual members. Thus, their activities become both increasingly stable
and successful for small learning rates which leads to early identifications of
acceptable results. By contrast, higher learning rates (k� 0:6) lead to faster adop-
tions of alternative activities. This can lead to mutual disturbances between the
multiagent teams. Hence, they require more time for their negotiations (while still
being superior to a non-learning approach).

Nevertheless, the duration of a negotiation is only loosely connected to the
actually achieved result quality. To complement the preceding results from that
perspective, Fig. 7 depicts the development of the average team welfare during the
negotiation. This confirms the aforementioned effects of the learning rate. The
random action selection results in largely constant welfare values at a low level
around 0.35.

Contrastingly, the learning approach leads to gradually increasing welfare values
over time. This particularly holds for small learning rates. Therefore, the agents
adopt successful behaviors and refine them if they manage to find superior options
for specific actions. As their activities become increasingly predictable, they learn
to anticipate the corresponding outcomes. This is evident in the later iterations
where the welfare increases rapidly. In these iterations, the first teams terminate
their negotiation processes by permanently allocating the offered resources. Other
agents cannot receive any further offers from the corresponding providers.
Consequently, the results of those actions become perfectly predictable.

The more teams finish their negotiation, the easier it is for the remaining ones to
adapt their behaviors accordingly. While the average welfare for these agents is still
suboptimal, its development shows that they are able to establish expectations to
successfully anticipate and increase the outcomes of their activities. This enables

Fig. 7 Development of the received offers’ welfare as well as differences between the expected
and actually observed outcomes for the teams over time
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them to drastically outperform non-anticipating agents. In particular, the anticipa-
tive approach improves the final result by up to more than 130 % (final result of
0:818� 0:001 for k ¼ 0:4 compared to 0:356� 0:001 for k ¼ 0:0).3

Finally, Fig. 7 also presents the differences of the aforementioned observed
welfare values and the expected ones for the selected actions. A small difference
denotes an accurate anticipation of the results while a large one indicates an agent’s
failure to expect the actual outcome of its activities. The figure shows that all
positive learning rates lead to a convergence of these differences toward zero. As a
result, the agents are able to anticipate their negotiation partners’ offers. High
learning rates lead to even smaller deviations from the real outcomes. This confirms
that the agents rapidly adapt their expectations in that case which leads to the
discussed tendency to disturb each other. Because they are equally as fast in their
reactions to those disturbances, they retain their expectations’ accuracy. However,
this hampers their ability to generate stable social structures. By contrast, agents
with lower learning rates accept slightly larger deviations from their expectations
without overreacting to them. This leads to the previously observed higher per-
formance and the successful emergence of social order.

5 Conclusions and Outlook

In this paper we have proposed the application of multiagent reinforcement learning
to concurrent iterated negotiations. We have analyzed the standard negotiation
mechanism for multiagent coordination. This analysis has shown that the mecha-
nism is unable to ensure successful negotiation outcomes. To overcome its short-
comings, our approach enables negotiating agents to anticipate each other’s
behaviors and adapt their own activities accordingly. In that context, the agents can
group together to cooperate with each other within a team while several of these
teams still compete for the best negotiation results.

The anticipation of their activities’ effects allows for the agents’ distributed
approximation of best responses to their counterparts’ actions without requiring
them to directly observe those actions. Taking inspiration from Luhmann’s theory
of social systems [15, 17], we enable the learning agents to derive expectations
from their received offers. The resulting behaviors are generated in a self-organizing
process of anticipation and adaptation. Therefore, they are an emergent effect of the
agents’ concurrent learning efforts. The agents approximate this result by means of
individual decision criteria for the termination of a negotiation process.

For the empirical evaluation of this approach, we have applied it to a multiagent
resource allocation scenario. The results show that the learning agents successfully
anticipate each other’s behaviors. Their performance in terms of negotiation time and
achieved payoff depends on their applied learning rates. If these rates are too small,

3All deviations are half-widths of the 99 % confidence interval.

Anticipatory Behavior of Software Agents … 251



they are unable to develop any expectations at all. If they are too large, the agents tend
to overreact to their observations. Consequently, they require a balanced parameter
setup to facilitate the generation of stable social structures. In that case, their adap-
tation method enables them to achieve high payoffs in small amounts of time.
Nevertheless, all tested parameters lead to (drastic) improvements of the agents’
average performance in comparison with a non-anticipative benchmark setting.

To summarize, the contributions and results of this paper are as follows.

• Anticipation enables software agents to select adequate activities in a partially
observable negotiation setting.

• Social systems theory provides valuable inspiration for implementing antici-
pative behaviors in artificial agents. Their mutual anticipation of those behaviors
leads to the emergence of social order among multiple agents.

• Anticipative behaviors improve the performance of software agents in negoti-
ations by up to more than 130 % (in the evaluated setting with the tested
parameter values).

Nevertheless, there are still questions open for future research. While we have
briefly mentioned the possibility to transfer our method to bargaining type nego-
tiations, its actual implementation and evaluation will be subject to future work.
Moreover, additional analyses of our existing approach will facilitate a better
understanding of its components and their interaction. In particular, to guarantee the
convergence of the reinforcement learning part to mutual best responses, an ana-
lytical assessment of self-organizing negotiations is necessary. Additionally, further
empirical evaluations will focus on different scenarios with heterogeneously
parameterized populations to assess the capabilities and limitations of distributed
learning for the anticipation of agent behaviors in concurrent iterated negotiations.
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