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Abstract Anticipatory Systems involve intelligent information acquisition and
processing. This presentation provides a combined information, communication, and
computational perspective of these systems using an Information Engine model that
leads to some fundamental definitions of intelligence. An Information Engine model
represents the transformation of raw information to a form that is directly utilized by
the target application just as a thermodynamic engine converts heat into mechanical
work. Taking the analogy of Carnot’s cycle, the area of the information cycle in the
information-need and entropy coordinates of the Information Engine model is
defined as logical work which is proposed here as a unified measure of intelligence
that has the promise of capturing a variety of diverse systems ranging from natural to
constructed and hybrid systems. This model provides a unified concept of the
informational, computational, and intelligence aspects of anticipatory systems and
hybrid intelligent systems across diverse implementations and applications.

Keywords Anticipatory systems � Information engine � Carnot’s cycle � Logical
work � Semiosis � Intelligence � Cooperative systems � Information generation
efficiency � Information utilization efficiency

1 Introduction

An anticipatory System acts not only on the basis of past and present states but also
on the anticipated future states of itself and the environment [1]. Anticipatory
systems are complex and intelligent. As a result they present a great deal of
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challenge in understanding and even greater in attempting to construct them. So far,
anticipatory systems, intelligent systems (AI) and a variety of natural systems such
as biological, social systems, etc., have been studied separately and have resulted in
separate treatments and analyses. These studies, although very rich and extensive
(for an extensive list of related work see references in the compendium by Vladimir
Arshinov and Christian Fuchs [2]), still need to help fill knowledge gaps in han-
dling present day systems that integrate diverse elements. For example they involve
cooperative working of several intelligent agents, or joint working of biological and
mechanistic systems. It is generally known that the primary task in integrating such
systems is to address the optimization of communication, computation, and infor-
mation utilization; however, there is a need for models and methodologies that deal
with all these aspects in a way that is transparent across different system types (e.g.,
machines, biological, social, etc.). Even within communication between similar
entities, the merging of communication and computation has enabled distributed
intelligent systems where communicating entities act on the basis of the “meaning”
of information transacted thus dealing with the intent as opposed to the content. In
general the important part played by communication among the various entities
needs to be addressed from the perspective of meaning and intent rather than merely
transmission and reception. In the work presented here we have drawn upon our
past work [3–5] and attempted to utilize some of those concepts to unify the
understanding and visualization of systems with diversified intelligence. The central
model that facilitates this is the Information Engine concept. Our presentation
begins with an overview of the information engine model and then we show how it
applies in a simple fashion to various systems such as an anticipatory system,
multi-agent system, hybrid brain-machine composite, etc. An important concept
derived from the information engine mechanization is that of Logical Work that is
used to define an intelligence metric that is meaningful across diverse systems.

2 Information Engine

An Information Engine is set up as consisting of an information source, a pro-
cessing agent, and a sink. Detailed discussions of the Information Engine including
optimality are available in our earlier work [3]. Here is a brief overview. This
engine is modeled in a fashion similar to a heat engine where the engine takes heat
from the source and converts some of it into mechanical energy and discards the
rest of the heat to the sink, the mechanical energy is then used to drive external
applications. The performance of the heat engine is analyzed in terms of physical
parameters such as temperature, pressure, volume, entropy, etc. Modeling of the
information engine is motivated by Carnot’s engine of the second law of thermo-
dynamics, which is known to be an optimal heat engine. Carnot’s engine is char-
acterized in terms of temperature and entropy. In order to formulate the information
engine, we define a parameter Information-Need as analogous to temperature and
assign the physical entropy (the sum of Shannon, i.e. the statistical entropy and the
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Kolmogorov/Algorithmic entropy) to information fragments. Although metrization
of information-need continues to be a research topic, some more details are dis-
cussed in our prior work [3]. This engine is seen to work between the information
source and sink to transform the random ensemble entropy (Shannon entropy) of
the source information to algorithmic entropy (Kolmogorov entropy), which gives
the information needed to directly effect the action to drive the desired application
in a way analogous to the conversion of heat to mechanical work by a heat engine
working between a heat source and a heat sink. Considering Semiosis as the action
of extracting meaning from the information ensemble, such an information engine
is representative of a semiotic loop.

Consider two systems S1 and S2 that can communicate and work cooperatively.
Further, consider that the system S2 is assigned an application task for which it has
insufficient information that can be obtained from a source S1. The corresponding
information engine cycle is shown in Fig. 1. The engine starts at the point d with S1
being a source and S2 being a processor of information. During the leg d–a S2
recognizes that it needs a certain fragment of information from S1 to proceed with
the assigned task i.e., the target application. Data containing this information is
obtained by S2 from S1 during a–b. This is followed by the leg b–c during which the
acquired data is processed by S2 to generate the necessary algorithm or compacted
information necessary for actuation. During b–c the processing converts some of the
Shannon entropy that comes from the uncertainty in the acquired data to Algorithmic
(or Kolmogorov) entropy that may be useful to the target application. The next leg
c–d denotes the reduction of entropy due to selection of the algorithms generated in
the processing during b–c and utilized by the system for actuation. The remaining
Shannon entropy is discarded and the cycle restarts by evaluating further information
need through the leg d–a. Thus the useful information made available by the system
to the application is equal to the algorithmic entropy extracted by the system for use
by the application as represented by the leg c–d.

Fig. 1 Information cycle

Information Concepts in Anticipatory Systems 221



3 Intelligent Systems

There is a large number of Intelligent Systems in existence today, their numbers as
well as variety is increasing. A single system may consist of several diverse sub-
systems with various levels of capability and autonomy collaborating with each
other. Architectural diversity is a fact of life. In general an intelligent system strives
to extract useful information from the given raw information ensemble. The
“intelligence” of system is characterized by the effectiveness with which it does
the above extraction that in turn is concerned with the efficacy of information
transactions and processing to enable taking an action.

An intelligent system can thus be modeled as an information engine which would
transform the raw information to a form that can be directly utilized by the target
application. As described in the previous section such an information engine would
consist of four fundamental processes, recognition of information need, acquisition
of data, processing of the data for information generation, and the separation of the
algorithmic entropy and its use by the application for actualization of its need. These
four processes when represented in the space of Entropy/Information Need, form a
cycle analogous to a thermodynamic cycle (engine) represented in the
Entropy/Temperature space. Since this engine is modeled in terms of fundamental
notions such as Shannon and Kolmogorov entropy, using it to construct measures of
intelligent processing of information in systems is very attractive. Analogy of the
Information Engine with thermodynamic cycles prompts us to consider the area of
the cycle that consists of the product of the Information Need and the Entropy to
be the logical work performed by the information engine in driving the target
application. Logical work becomes a representation of the value produced by the
information engine and when normalized with respect to the information input into
the system, it leads to a measure of intelligence.

4 Semiosis in Intelligent Systems

In intelligent systems actions are dependent upon meanings arrived at by inter-
pretations rather than merely the raw data that is a priori available. Thus, semiosis
as the process of meaning extraction plays a vital role in intelligent systems.
Although there are some excellent expositions on semiotics in the context of
complex systems that offer detailed discussions on semiosis, the information engine
representation ties the concepts together in the form of a concise fundamental
architecture. In discussions of Complex Semiotic Systems for example Cliff Joslyn
[6] states that, “semiotically closed systems maintain cyclic relations of perception,
interpretation, decision, and action with their environments”. It is easily seen that
these relationships are exactly those described by the four legs of our information
engine. Howard Pattee [7] in his discussion of Semiotic Controls, has discussed the
relationship and distinction between dynamics and semiotics as being similar to the
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formal and the functional and goes on to discuss the epistemic cut between them.
Pattee says, “we must ask not what we mean by information but what the infor-
mation itself means in the physical world”. This coincides with our approach that
meaning is equivalent to action. Considering the end action to be the proof of
the meaning, it is representative of the meaning itself. The information content of
the meaning is such that it fulfils the need of the action. Meaning is purposive. The
information engine combines the formal or dynamic effort of information collection
and processing with the functional or purposive aspect of the algorithmic entropy
and information need. Intelligent systems expend their dynamic effort towards
purposive goals. This is accomplished through processing of information and
selection of the results that are capable of neutralizing the need. All four legs of the
information engine are essential for an intelligent system to function and therefore
provide a good basis for modeling an intelligent system.

5 Logical Work Representation of Intelligence

Having said that an intelligent system is purposive, we can use this property to
measure intelligence. Modeling an intelligent system by an information engine
allows us to compare intelligence with the working efficiency of this engine.
Although evaluating the efficiency of a real system is expected to be fairly com-
plicated, studying an ideal cycle such as described above adds useful insights to the
construction of measures of intelligence. In Carnot’s cycle of thermodynamics,
which motivated our Information Engine model, the area of the rectangle describing
the process in temperature-entropy space yields the mechanical work output by the
engine [8]. In a similar fashion, the area of the rectangle representing the infor-
mation engine process in the information need—entropy coordinates can be con-
sidered to be the Logical Work output of the information engine. This is justified by
the following reasoning. Work performed by an information engine must identify
with the functional value of the evolved algorithm to the specific target application
and the intrinsic complexity of the algorithm itself. An information processing
system that generates a piece of information with high complexity which is capable
of satisfying a large portion of the information need is associated with a large
measure of logical work. Thus the product of the neutralized information need and
the Kolmogorov complexity of the algorithm generated is a suitable measure of the
logical work output of the information engine.

There are three concepts of efficiency relating to intelligence that emerge from
the above model. Two of these relate to information generation, and information
utilization. The two together determine the third one that represents a measure of
the system intelligence.
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5.1 Information Generation Efficiency

The efficiency of information generation is the ratio of the algorithmic information
generated to the total information input to the system. In terms of the corresponding
entropies this may be written as Information generation efficiency:

L ¼ H2� H1ð Þ=H2 ¼ 1� H1=H2 ð1Þ

5.2 Information Utilization Efficiency

The information utilized depends upon the utility of the generated information.
Thus this is the product of the algorithmic entropy and the need that it satisfies.

U ¼ H2� H1ð Þ � N1� N2ð Þ ð2Þ

This is to be compared with the possible utilization had the total need of N1 been
fulfilled. This would be:

V ¼ H2� H1ð Þ � N1 ð3Þ

Thus, Information utilization efficiency:

M ¼ N1� N2ð Þ=N1 ¼ 1� N2=N1 ð4Þ

It is observed that the information utilization efficiency is similar to the efficiency
of heat to mechanical work conversion in the Carnot’s cycle. This points to the
value of a piece of information for an application to be analogous to the mechanical
work performed by a heat engine. For actuation an application always seeks
meaning in the information.

5.3 Information System Efficiency

This is an indicator of the value of the algorithmic information generated to the
application in relation to the information value that was provided in the raw data to
the system. Information system efficiency:

J ¼ H2� H1ð Þ � N1� N2ð Þ=H2N1 ð5Þ

¼ Info:Generation eff:X Info:Utilization eff: ð6Þ
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We consider Information System Efficiency to be an indicator of the measure of
intelligence in a system. As seen above this can be factored into the capabilities
of the system to generate algorithmic information and that to utilize from it what is
needed.

As an example of such factorization consider a search engine that processes the
enormous data available to narrow down to a set of information fragments that
contain the supplied keywords. However, within the members of the generated set,
one that is the best match to the context is figured out as part of the utilization.

As an observation of the information cycle diagram it is noticed that cycles
described by tall rectangles would be associated with small generated entropy,
characteristic of simple algorithms, however satisfying large needs. On the other
hand, cycles described by broad rectangles are associated with handling large
statistical entropies and that come up with relatively large algorithmic entropy and
correspondingly complex action but satisfy modest needs. One must take cogni-
zance of this composition while constructing intelligent systems.

6 Anticipatory Systems

Robert Rosen defines [1] an anticipatory system as “a system containing a predictive
model of itself and of its environment, which allows it to change state in accord with
the model’s predictions pertaining to a future instant”. Based on the information
engine model we examine an anticipatory system to understand the relationship
between its mechanics and the intelligence in its functioning. Rosen’s definition, as
seen by his modeling relation, may be broken down into two major structural
characteristics of an anticipatory system S2 working in cooperation with another
natural system S1. First, S2 possesses a predictive model of S1, and second, at any
instant, change of state occurs in S2 as a function of its predictions about S1. Since
updates of the model of S1 in S2 necessarily involve communication with S1, it is
seen that the cooperative working of S1 and S2 at once fits the information engine
model. Various aspects of this model are discussed in detail in our previous work [4].
Here we would like to first highlight the way in which the anticipatory nature of the
system is reflected in the information engine model. After this we discuss a high
level architecture applicable to the construction of an anticipatory system.

6.1 Anticipation as the Final Cause

Referring to the diagram of information engine described in the section above, the
system S2 obtains information from S1, which is the environment here, during the
leg a–b. This is a data gathering process. However, it needs to be in consonance
with the need to be fulfilled. Thus it depends upon goal related causality (Aristotle’s
“final cause”) that is part of the leg d–a that projects the need. Once S2 has the raw
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data, it processes it in conformity with its goals and in association with the infor-
mation that it may already possess about S1 in the form of a model of S1; this
happens in the leg b–c by way of conversion of the Shannon entropy to
Kolmogorov entropy. Then during the leg c–d, the separated algorithm is made
available for anticipatory action; this is a part of the intelligence but one that does
not involve anticipation. Anticipation depends upon the recognition and estimation
of need, and this happens during the leg d–a. Optimality of the system is also
closely tied with this function since for minimization of the data acquisition and
processing effort, the data to be collected must be maximally useful for the final
task.

6.2 Architectural View of Anticipatory Systems

Anticipatory Systems involve prediction, communication, processing and inter-
pretation in a knowledge environment. In the past since all these individual areas
progressed independently architecting the combined systems escaped serious
attention. Here we touch upon a few aspects that are useful in engineering such
systems.

As seen from the information engine representation, architecting an anticipatory
system calls for engineering four broad categories of functions. It calls for esti-
mating information needs, acquisition of data from all relevant sources, intelligent
processing of information, and planning and commitment to appropriate actions.
Estimation of information needs as well as intelligent processing of data require
knowledge resources. Correspondingly, the total infrastructure may be factored into
the following three categories:

1. Service plane: Sets up communication with all entities, acquires data as needed,
registers service requests, etc.

2. Knowledge plane: Provides knowledge assets, carries out all cognitive pro-
cessing, maintaining knowledge bases, and updates models of self and other
entities.

3. Action plane: Does planning, decides on commitments, and effects actions.

This concept of the planes enables the infrastructure to be implemented using
any combination of hardware, software, firmware, or network assets. This is similar
to the control and user plane concepts used in present day telecommunication
networks. The action plane can be thought of as part of control plane, however, we
prefer to separate it because it has more of an AI flavor while a control plane is
related more to data transport. Although the knowledge plane has been talked about
[9], its use does not seem to be quite so prevalent yet. For an implementation
example, the interested reader is referred to the analytics of the author’s patent on
an adaptive phone for users with dementia or other mental impairments that
illustrates the use of knowledge plane involving cognitive processing [10].
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Further to the resource categorization in the three planes, following aspects merit
special attention while architecting for performance.

• Modeling of various system entities including external world representation
necessary for estimation of information need, acquisition, and processing

• Efficient maintenance of knowledge databases and models in the system
• Use of domain ontologies consistent across the entire system
• Efficient information acquisition and interpretation using robust communication

protocols
• Cognitive processing consistent with the task, data, and the knowledge bases.
• Efficient planning to commit from the outcome of cognitive processing
• Monitoring intelligence measures of the system

Discussions of the above considerations in relation to multi-agent systems are
available in [5]. Further expansion in terms of actual design would depend upon the
specific task situation.

7 Hybrid Cooperative Systems

Since machines are generally not considered as effective as natural systems in
anticipatory capabilities, a composite working of machine and natural system can
have significant merits over the two individually. In “The Limits of Intelligence”
Douglas Fox [11] has projected an analysis to show that it is unlikely that human
brain by itself may evolve considerably further and suggests that a good way to
enhance intelligence would be through augmentation with internet. Undeniably,
although presently difficult to implement, in the future it is quite conceivable that
human brain could be closely coupled with a computing system or other machines
to increase the total intelligence. Will it increase intelligence? And how to optimize
the enhancement? To explore answers to this we must examine and analyze the
information transactions and processing that are expected to occur in the composite
system and then optimize the cooperative working. We cast this problem as a
cooperative multi-agent system and apply the information engine model. Formal
treatment of communication and cooperation among intelligent agents has been
addressed by many authors, for example see Haddadi [12]. Reliability aspects of
such systems are considered in [5]. Here we would like to consider the intelligence
aspect of the cooperative working.

We consider the machine and the brain as two intelligent agents and set up an
information engine between them to examine their cooperative working. To show
that intelligence is increased, we need to observe that now logical work can be
performed in both agents provided they both have the capability to a) identify their
information need from the other and b) they can process the information received
from the other to perform the global service. The contribution of each to the total
will be equal to the logical work performed by each which in turn is determined by
the product of the amount of raw information processed and the need fulfilled by
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each. The enhanced computational capabilities of present day and future machines
with large processing capability suggest that they can make a large contribution to
the logical work. However, according to the information engine model we see that
this will happen only if the machine knows what its information need is. This can
come either from the biological brain in the hybrid system or in a purely mecha-
nistic AI system it would come from a proxy module. Thus in the hybrid system,
the biological part could be assigned the executive function of factoring the
information need of which it will process some and others would be passed to the
machine. Notice that if the biological part were to pass all the information need for
processing to the machine the two together will form only one information engine
that is distributed over multiple locations. Although in either case the total logical
work and correspondingly the intelligence may be increased, the multiple engine
structure may be preferred from robustness and reliability perspective. Evidently
much further work is needed in this open area of research.

8 Conclusion

In this paper we have examined the working of an anticipatory system as a semiotic
loop involving information transaction as well as processing for meaning extraction
in the context of an application task. For this analysis we used the information
engine concept. Based on this we defined Logical Work, a notion of work in logical
spaces that is analogous to the notion of mechanical work in physical systems. We
proposed using logical work as the basis of a unified measure of intelligence that
can be applied to diverse systems ranging from natural to mechanistic and hybrid
systems. The system intelligence was shown to consist of two factors called the
information generation efficiency and the information utilization efficiency. Each of
these can be expressed in terms of the statistical entropy of the input data, the
algorithmic entropy of the output information, and the information need that relates
to the goal of satisfying the application. This kind of modeling demonstrates the
epistemic cut between the dynamic and semiotic parts of the intelligent system; in
fact the logical work output and therefore the intelligent system functioning itself
requires both parts. The application of these principles to anticipatory systems and
hybrid bio-mechanistic systems is illustrated.
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