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Abstract I present a new mathematical formulation of anticipation. A brief
introduction to the theory of set-valued mappings culminates in a special specimen,
the imminence mapping ImmN of a natural system N. For each process f in N, the
set ImmN fð Þ encompasses all possible further actions arising from f, which one
may consider the ‘imminence’ of f. The imminence mapping definitively charac-
terizes N as a complex relational network of interacting processes and their entailed
potentialities. A natural system N is an anticipatory system if it contains an internal
predictive model of itself and its environment, and in accordance with the model’s
predictions antecedent actions are taken. Consequent manifestations of the internal
predictive model of an anticipatory system are thus embodied in the system’s
imminence, whence the imminence mapping, among all that it entails, eminently
anticipates.

Keywords Relational biology � (M,R)-system � Set-valued mapping � Imminence
mapping � Anticipation

1 A Mathematical Theory of Anticipation

Robert Rosen’s now-classic 1985 monograph Anticipatory Systems [1] has the
subtitle Philosophical, Mathematical, and Methodological Foundations. Its back
cover contains a summary of its premise:

Presents the first detailed study of this most important class of systems which contain
internal predictive models of themselves and/or of their environments and whose predic-
tions are utilized for purposes of present control. This book develops the basic concept of a
predictive model, and shows how it can be embedded into a system of feed-forward control.
Includes many examples and stresses analogies between wired-in anticipatory control and
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processes of learning and adaption, at both individual and social levels. Shows how the
basic theory of such systems throws a new light both on analytic problems (e.g. under-
standing what is going on in an organism or a social system) and synthetic ones (developing
forecasting methods for making individual or collective decisions).

In short, the book reveals a comprehensive theory of anticipation.
In this chapter, I continue the theme of studying anticipation itself, and present a

new mathematical formulation in terms of the set-valued mapping imminence. This
is in some contrast to most of the chapters in the present collection of papers
presented at the ‘Anticipation Across Disciplines: The Interdisciplinary
Perspective’ workshop at Hanse-Wissenschaftskolleg, comprising a cornucopia of
subjects and each chapter showing how anticipation specifically arises or is used
therein. To proceed from particular instances to the general concept is of course a
very common procedure in mathematics. One example, to mention but one analogy,
is that ‘symmetry’ appears abundantly in nature and in every subject of human
endeavour; in the minds of mathematicians the study of symmetry itself is gen-
eralized into group theory.

Robert Rosen was a mathematical biologist. Anticipation is a necessary condi-
tion of life: a living system anticipates. This connection ultimately explains how
Rosen, in his lifelong quest of general principles that would answer the question
‘What is Life?’, happened to write, en passant, ‘the book’ [1] on anticipation. For an
expository introduction to Robert Rosen’s anticipatory systems, the enthused reader
may like to consult [2].

2 Relational Biology

A living system is a material system, so its study shares the material cause with
physics and chemistry. Reductionists claim this, therefore, makes biology reducible
to ‘physics’. Physics, in its original meaning of the Greek word φύσις, is simply (the
study of) nature. So in this sense it is tautological that (the study of) every natural
system is reducible to physics. But the hardcore reductionists, unfortunately, take
the term ‘physics’ to pretentiously mean ‘(the toolbox of) contemporary physics’.

Contemporary physics that is the physics of mechanisms reduces biology to an
exercise in molecular dynamics. This reductionistic exercise, for example practised
in biochemistry and molecular biology, is useful and has enjoyed popular success
and increased our understanding life by parts. Practitioners of this exercise want to
feel that they have solved their problems when they isolate a particular set of parts
and try to assert that from this set of parts will flow the understanding of everything
that they really want to know about life. But it has become evident that there are
incomparably more aspects of natural systems that the physics of mechanisms is not
equipped to explain. The overreaching reductionistic claim of genericity is thus a
misrepresentation and renders it into a falsehood.

Any question becomes unanswerable if one does not permit oneself a large
enough universe to deal with the question. The failure of presumptuous
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reductionism is that of the inability of a small surrogate universe to exhaust the real
one. Equivocations create artefacts. The limits of mechanistic dogma are very
examples of the restrictiveness of self-imposed methodologies that fabricate
non-existent artificial ‘limitations’ on knowledge. The limitations are due to the
nongenericity of the methods and their associated bounded microcosms. In short,
limits pertain to methods, to ways of knowing, but not to knowledge itself. One
learns something new and fundamental about the universe when it refuses to be
exhausted by a posited method.

Biology is a subject concerned with organization of relations. Physicochemical
theories are only surrogates of biological theories, because the manners in which the
shared matter is organized are fundamentally different. Hence the behaviours of the
realizations of these simple mechanistic surrogates are different from those of
complex living systems. This in-kind difference is the impermeable dichotomy
between predicativity and impredicativity.

The issue at hand is the mode of analysis. Reductionism offers one particular
way of decomposing a complex system into simpler subsystems. In molecular
biology this way has to do with isolating fractions that are simpler physiochemical
subsystems, looking at those in isolation, and then trying to recover properties of
the original system from which the fractions came. The assertion of reductionism is
that this is universally adequate, that these are the only kinds of system decom-
positions that one ever needs to use. But fractionation does not describe all
activities: for each activity one gets a separate dynamics and a separate way of
simplifying, while missing all the other activities and their mutual interactions. So,
it is not a matter that one cannot analyse, but that the form of analysis is determined
by the activity that one is trying to understand.

Stated otherwise, each way of looking at a complex system requires its own
description, its own mode of analysis, its own decomposition of the system into
parts. It is the relation of these different and nontrivial descriptions that is going to
be a source of enrichment. Biological systems provide a rich source of insight one
may have into organization itself.

Relational biology is the study of biology from the standpoint of ‘organization of
relations’. It was founded by Nicolas Rashevsky (1899–1972) in the 1950s, thence
continued and flourished under his student (and my mentor) Robert Rosen (1934–
1998). The essence of reductionism in biology is to keep the matter of which an
organism is made, and throw away the organization, with the belief that, since
physicochemical structure implies function, the organization can be effectively
reconstituted from the analytic material parts. Relational biology, on the other hand,
keeps the organization and throws away the matter; function dictates structure,
whence material aspects are synthetically entailed.

To better acquaint with the premises of the Rashevsky–Rosen school of rela-
tional biology (and for a comprehensive illustration of the powers of our approach
to the study of life), the reader is cordially invited to read the two books that I have
(so far) written on the subject. The exploratory journey begins with the monograph
More Than Life Itself: A Synthetic Continuation in Relation Biology [3] (henceforth
denoted by the canonical symbol ML—the notation ‘ML: m.n’ shall refer to Section
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m.n, in Chapter m, of More Than Life Itself), and continues with the monograph
The Reflection of Life: Functional Entailment and Imminence in Relational Biology
[4] (RL). The theme of ML is ‘What is life?’; the theme of RL is “How do two
lifeforms interact?”.

The cast and crew of mathematical and biological characters in ML include
partially ordered sets, lattices, simulations, models, Aristotle’s four causes, graphs,
categories, simple and complex systems, anticipatory systems, and metabolism–

repair [(M,R)-] systems. In RL, the cast and crew are expanded to employ
set-valued mappings, adjacency matrices, random graphs, and interacting entail-
ment networks. The imminence mapping, a special set-valued mapping, equips the
further investigation of functional entailment in complex relational networks.
Imminence in (M,R)-networks that model living systems addresses the topics of
biogenesis and natural selection. Interacting (M,R)-networks with mutually
entailing processes serve as models in the study of symbiosis and pathophysiology.
The formalism also provides a natural framework for a relational theory of virology
and oncology.

Γνώσις, scientia, σoφíα, sapientia: Human knowledge and wisdom are the tools
and servants of human aspiration (cf. ML: 5.1). Their centrifugal tendency has led to
a partition into ‘cultures’ (arts, science, mathematics, …), each further fragmented
into ‘disciplines’ (literature, performing arts, visual arts, physics, chemistry, biol-
ogy, algebra, analysis, topology, …). These fragments then interact in ‘interdisci-
plines’, cross-pollinations that mutually relate and illuminate (e.g., biophysics,
mathematical drama, music psychology, …). But one must not lose sight, among
the disciplines’ infinite diversity in infinite combinations, of their centripetal unity.
There is but one gnosis. A true theory of the organism requires new physics and
new epistemology. Biology does not reduce provincially to physics; biology, rather,
buttresses and extends physics. An expansive notion of science is crucial in han-
dling the kinds of emergence problems that also arise on the human level,
embracing cognitive and social systems. A relational approach to science, in its
original sense of ‘knowledge’, restores to our fragmented disciplines the kind of
integration they possessed in an earlier time, when scientists regarded themselves as
Natural Philosophers.

3 Natural Law and the Modelling Relation

I shall include herein some background material on relational biology to make this
paper (more or less) self-contained. To this end, let me first identify Aristotle’s four
causes as components of a mapping f : X ! Y (ML: Chap. 5). The mapping f may
alternatively be considered as a set of ordered pairs f � X � Y , with the property
that if x; yð Þ 2 f and x; zð Þ 2 f , then y ¼ z. The traditional concept of a mapping is
that which assigns to each element of a given set a definite element of another given
set; i.e., a ‘point-to-point’ map. That is, to each input element x 2 X, by definition
there corresponds a unique output element y 2 Y such that x; yð Þ 2 f . In the
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‘point-pairing’(x, y), y is called the value of the mapping f at the source x. The
collection of all the sources (which is conventionally the whole set X) is the domain
of f, and the collection of all the values (a subset of Y) is the range of f. They are
symmetrically defined thus:

dom fð Þ ¼ x 2 X : 9 y 2 Y x; yð Þ 2 ff g;
ran fð Þ ¼ y 2 Y : 9 x 2 X x; yð Þ 2 ff g: ð1Þ

The relation between x and y in x; yð Þ 2 f is usually denoted y = f(x). To trace the
path of an element as it is mapped, one uses the ‘maps to’ arrow and writes

f : x 7! y: ð2Þ

The input x is the material cause, and the output y is the final cause. The mapping
f itself (the process that pairs each x 2 X with its unique y 2 Y) is the efficient
cause, and the morphic structure, ‘� : � 7! �’ is the formal cause. The processor
(efficient cause) and output (final cause) relationship may be characterized ‘f entails
y’, which may then be denoted using the entailment symbol ⊢ (ML: 5.5, RL: 6.1) as

f ‘ y: ð3Þ

Note that the processor f is that which entails (symbolically ‘f ⊢ ’), and the output
y is that which is entailed (symbolically ‘ ⊢ y’).

Causality is the principle that every effect has a cause, and is a reflection of the
belief that successions of events in the world are governed by definite relations.
Natural Law posits the existence of these entailment relations and that this causal
order can be imaged by implicative order (ML: 4.7).

System is a basic undefined term, a primitive. It takes on the intuitive meaning of
‘a collection of material or immaterial things that comprises one’s object of study’.
In relational, hence non-material, terms, a system may be considered as a network of
interacting processes.

A modelling relation is a commutative functorial (in the category-theoretic
sense; ML: A.10) encoding and decoding between two systems. Between a natural
system (an object partitioned from the physical universe) N and a formal system (an
object in the universe of mathematics) M, the situation may be represented in the
following diagram (ML: 4.14):

ð4Þ
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The encoding ɛ maps the natural system N and its causal entailment c therein to the
formal system M and its internal inferential entailment i; i.e.,

e : N 7! M and e : c 7! i: ð5Þ

The decoding δ does the reverse. The entailments satisfy the commutativity con-
dition that, in diagram (4), tracing through arrow c is the same as tracing through
the three arrows ɛ, i, and δ in succession. This may be symbolically represented by
the ‘composition’

c ¼ d � i � e: ð6Þ

Thence related, M is a model of N, and N is a realization of M. In terms of the
modelling relation, then, Natural Law is an existential declaration of causal
entailment c and the encodings e : N 7!M and e : c 7! i.

A formal system may simply be considered as a set with additional mathematical
structures. So the mathematical statement e : N 7!M, i.e., the posited existence for
every natural system N a model formal system M, may be stated as the axiom

Everything is a set: ð7Þ

Causal entailment in a natural system is a network of interacting processes, i.e., a
network of mutually entailing efficient causes. The mathematical statement
e : c 7! i, i.e., the functorial correspondence of morphisms, between causality c in
the natural domain and inference i in the formal domain, may thus be stated as an
epistemological principle, the axiom

Every process is a mapping: ð8Þ

Together, the two axioms (7) and (8) are the mathematical foundation of Natural
Law. These self-evident truths serve to explain “the unreasonable effectiveness of
mathematics in the natural sciences”. They also serve to alternatively characterize a
system as a network of interacting mappings.

The prototypical modelling relation (4) may be generalized, so that the systems
N and M may both be natural systems or both be formal systems, and the entail-
ments c and i are corresponding efficient causes; i.e., (4) may simply be a com-
mutative diagram between ‘general systems’ (ML: 4.9). The general modelling
relation has multifarious manifestations: e.g., category theory, analogies, alternate
descriptions, similes, metaphors, and complementarities (ML: 4.16–4.20).
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4 The Many Levels of the Encoding Functor

The collection of all models of a system N is denoted C Nð Þ (ML: 7.27). C Nð Þ is a
lattice (ML: 7.28) as well as a category (ML: 7.29). Let κ(N) be the collection of all
efficient causes in N. An entailment network that models N may be denoted
e Nð Þ 2 C Nð Þ; the collection κ(ɛ(N)) of all efficient causes in the model network
ε(N), in view of the commutativity (6), may be represented by the encoding
e j Nð Þð Þ. Natural Law is the statement

8N 9 e 9M 2 C Nð Þ : M ¼ e Nð Þ ^ 8c 2 j Nð Þ 9 i 2 j Mð Þ : i ¼ e cð Þ: ð9Þ

True to its category-theoretic taxonomy as a functor, the encoding ɛ maps on
many levels (likewise for the decoding functor δ). The assignment e : N 7!M is a
choice mapping (RL: 0.20) that singly selects, as a specific model of the natural
system N, the formal system M from the set C Nð Þ. But in addition to this set-
pairing (N, M) ∊ ɛ, ɛ also functions on the point-pairing level as a mapping
e : N ! M from one set into another—to each input element (material cause)
n 2 N, there corresponds a unique output element (final cause) m 2 M such that
n;mð Þ 2 e; i.e., e : n 7!m.
The mapping e : c 7! i is a functorial correspondence of morphisms

e : j Nð Þ ! j Mð Þ. This process-pairing c; ið Þ 2 e functions on a higher hierarchical
level than point-pairing, because now the output is itself a mapping
i ¼ e cð Þ 2 j Mð Þ, whereas the former output m ¼ e nð Þ 2 M is a point. In ⊢ i, the
final cause itself acts as an efficient cause, while in ⊢ m the output is relayed as a
material input of another efficient cause. The commutativity condition (6) may be
drawn as the element trace

ð10Þ

For a mapping f : x 7! y, ‘that which is entailed’ ⊢ y may take on a secondary
role, when f composes with another mapping. In the sequential composite g � f
(ML: 5.13), the output y of f is used as input (material cause) by another mapping
g : y 7! z (in the material relay x 7! y 7! z), whence ⊢ y is called material
entailment (RL: 6.10). In the hierarchical composite f ⊢ y ⊢ (ML: 5.14), the output
y of f is itself (the efficient cause of) a mapping y : u 7! v (i.e., that which is entailed
is a functional process), whence ⊢ y is called functional entailment (RL: 6.14). In
both compositions, the final cause y of one mapping participates in further
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entailment involving other mappings. The encoding functor ɛ, in particular,
encompasses the two levels of entailment in its effects: ɛ ⊢ m is material entailment,
while ɛ ⊢ i is functional entailment.

The category S of formal systems is the subject of Chap. 7 of ML. An S-object is
a pair X;Kh i, where X is a set and K is a collection of mappings on X (cf. axioms (7)
and (8)). The many operational levels of the encoding functor ɛ are succinctly
embodied in its role as an S-morphism e : N; j Nð Þh i ! M; j Mð Þh i .

5 Metabolism and Repair

Robert Rosen, a stalwart in relational biology, devised a class of relational models
called (M,R)-systems. Indeed, Rosen introduced (M,R)-systems to the world in
1958, in his very first published scientific paper [5]. The M and R may very well
stand for ‘metaphorical’ and ‘relational’ in modelling terms, but they are realized as
‘metabolism’ and ‘repair’. The comprehensive reference is [6] (see also ML:
Chaps. 11–13 and RL: Chap. 7).

Relational biology has a functional view of life, expressed in terms of processes
that organisms manifest, independent of the physical substrata on which they are
carried out. An organism, being a system open to material causation, must have
processes that are modes of interaction with the world. It must have inputs from the
world, typical material inputs which supply energy and which provide the capacity
for renewing the structure of the organism, whatever it might be. So it is a sine qua
non that one has to have a metabolic apparatus. The word metabolism comes from
the Greek μεταβολή, ‘change’, or μεταβολισμός, ‘out-throw’; i.e., an alteration or a
relay of materials. Metabolism, in its most general form, is thus a mapping f : x 7! y
in which⊢ y is material entailment. An organism must also have a genetic apparatus,
information carriers that tell how the products of metabolism are to be assembled.
The genetic apparatus serves two functions: to produce the metabolic apparatus of
the organism and to reproduce it. Rosen called the genetic processes repair, which,
in its most general form, is a mapping f : x 7! y in which⊢ y is functional entailment.

The English word ‘repair’ comes from the Latin re + parare, ‘make ready again’.
It is, of course, a word in common usage, and means ‘restore to good condition or
proper functioning after damage or loss’; ‘renovate or mend by replacing or fixing
parts or by compensating for loss or exhaustion’; ‘set right or make amends for loss,
wrong, or error’. Rosen defined the technical usage of the term ‘repair’ in relational
biology, precedently back in the beginnings of (M,R)-systems in the 1950 s, to mean
a hierarchical process for which ‘the output of a mapping is itself a mapping’. This is
the general telos of ‘repair’, that of an action taken to generate another action. The
entailed process may possibly be previously existing, but repair does not have to be a
‘return to normalcy’ or ‘restore to original condition’; the goal of ‘the fix works’ is
more important. It is unfortunate (but ultimately irrelevant) that the technical term
now, alas, suffers semantic equivocation because of its usage in molecular biology to
insularly mean biochemical repair of a specific molecule, that of ‘DNA (and
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sometimes RNA) repair’. This restricted usage is a very example of the meagre
appropriating the generic. Since the word ‘repair’ is not a specially coined word, its
biological definition is not entitled to a universal decree. And in the absence of a
default, Humpty Dumpty’s rule applies: “When I use a word, it means just what I
choose it to mean—neither more nor less.”

To recap, our Unabashed Dictionary of Relational Biology defines

metabolism ¼ material entailment,

repair ¼ functional entailment:
ð11Þ

Anything that one would want to call ‘alive’ would have to have at least these two
basic functions of M and R. A self-contained (in the very specific sense of closed to
efficient causation, a topic into which I shall not dwell here; for exploration see,
e.g., ML: 6.23 and RL: 7.1–7.3) network of metabolism and repair processes is an
(M,R)-system. (M,R)-systems began as a class of metaphorical, relational paradigms
that define cells. It is, however, not much of a hyperbole to declare that all of
Rosen’s scientific work—his lifelong quest being the answer to the question “What
is life?”—has arisen from a consideration of topics related to the study of (M,R)-
systems. This is because of the

Postulate of Life. A natural system is an organism if and only if it realizes an
(M,R)-system.

(ML: 11.28, RL: 8.30) Here, the word ‘organism’ is used in the sense of a general
living system (including, in particular, cells). Thus an (M,R)-system is the very
model of life; and, conversely, life is the very realization of an (M,R)-system.

A union of interacting (M,R)-systems (or better, their join in the lattice of (M,R)-
systems; cf. ML: 2.1 & 7.28) is itself an (M,R)-system. A multicellular organism has
a life of its own, apart from the fact that the cells that comprise it are alive.
Similarly, in some sense an ecosystem of interacting organisms is itself an
organism. In particular, a symbiotic union of organisms may itself be considered an
organism (RL: 11.12).

6 Set-Valued Mapping

Part I of RL is a pentateuchal exploration of the algebraic theory of set-valued
mappings (RL: Chaps. 1–5). It also contains the motivations and other natural
philosophical reasons on why I consider them congenial and congenital morphisms
for relational biology. The enthused reader is invited to consult RL for further
details on this much-neglected topic in mathematics. My exposition of set-valued
mappings culminates in the imminence mapping, which equips the further inves-
tigation of functional entailment in complex relational networks. In what follows I
am taking the brachistochrone to this plateau, before I proceed to discuss its con-
nection to anticipation.
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A set-valued mapping

F : X � Y ð12Þ

from set X to set Y is a set of ordered pairs F � X � Y . The domain of F is the set X,
denoted by dom Fð Þ. I have invented in RL the special ‘forked arrow’ � to denote
set-valued mappings, in distinction from→ for a standard (single-valued) mapping
f : X ! Y .

For each x ∊ X, define

F xð Þ ¼ y 2 Y : x; yð Þ 2 Ff g � Y : ð13Þ

Note the point-to-set nature of a set-valued mapping, as opposed to ‘point-to-point’
for a standard mapping. The ‘value’ F(x) may contain more than one element, and it
is possible that for some x 2 X, one has F xð Þ ¼ £. The corange of F is the subset
of its domain X containing those points that are mapped to one or more elements
in Y:

cor Fð Þ ¼ x 2 X : F xð Þ 6¼ £f g: ð14Þ

A standard (single-valued) mapping f : X ! Y may be considered a very
specialized set-valued mapping F : X � Y such that, for each x 2 X, the value

F xð Þ ¼ f xð Þf g ð15Þ

is a singleton set. Indeed, one can make the formal definition: a set-valued mapping
F : X � Y is called single-valued if, for each x 2 X; F xð Þ is a singleton set.
A ‘single-valued set-valued mapping’ F : X � Y therefore defines a ‘standard’
mapping f : X ! Y by f : x 7! the single element in F(x). For a single-valued
mapping, cor Fð Þ ¼ dom Fð Þ ¼ X.

The same symbolic representations suffice for the other arrow diagrams; context
determines the nature of the final cause, whether it is an ‘element’, a ‘set’, or some
other entity. Thus, for x 2 X and E ¼ F xð Þ � Y , in the set-valued mapping’s
element-tracing form, one may write

F : x 7! E: ð16Þ

The processor and output relationship may likewise be characterized ‘F entails E’,
which may then be denoted using the entailment symbol ⊢ as

F ‘ E: ð17Þ

The input of F is, as for a standard mapping, still a point x ∊ X, but now the
output of the mapping F at the element x is a set E ¼ F xð Þ � Y . The source
(material cause) and the value (final cause) of a set-valued mapping are thus dif-
ferent in kind from each other, they belonging to different hierarchical levels
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(‘point’ versus ‘set’). The property of ‘that which is entailed’ is inherited by ele-
ments from their containing set: if F entails E, F also entails every member of
E. This is the logical statement

F ‘ E ) 8 y 2 E F ‘ y: ð18Þ

7 Metabolism Bundle and Imminence Mapping

Consider two formal systems H; j Hð Þh i and S; j Sð Þh i; that is, systems H and
S (e.g., (M,R)-networks) with their respective collections κ(H) and κ(S) of efficient
causes. Two systems interact when a process in one system affects another system.
Stated otherwise, an interactive connection S → H happens when the final cause of
a process in κ(S) is further relayed in H. The theme of RL is “How do two lifeforms
interact?”. One ubiquitous biological interaction is symbiosis (RL: Chap. 11),
between a host and a symbiont. This is the source of the symbols H and S. One may
use host–symbiont interaction as a running example of the system interactions now
under consideration.

The set-valued mapping

MetS!H : j Sð Þ � j Hð Þ ð19Þ

defined by

MetS!H ¼ f ; gð Þ 2 j Sð Þ � j Hð Þ : dom gð Þ\ran fð Þ 6¼ £f g ð20Þ

is called the metabolism bundle of the interaction S→ H. (Recall that metabolism is
material entailment; for an explanation of the usage of the term ‘bundle’, see RL:
10.5). If f ; gð Þ 2 MetS!H , then amaterial relay x 7! f xð Þ 7! g f xð Þð Þmay be defined on
Xg ¼ x 2 dom fð Þ :f f xð Þ 2 dom gð Þ g, but this restriction g � f jXg

may not neces-

sarily be expandable to the sequential composite g � f on all of dom fð Þ, and it may not
be in the existing collections j Hð Þ or j Sð Þ of processes. The mapping g � f jXg

arises

from the interaction S→H. If one denotes the effects of S onH (i.e., the collection of
processes in the interaction S → H) by j S ! Hð Þ, then g � f jXg

2 j S ! Hð Þ .
Another set-valued mapping

Imm S!H : j Sð Þ � j Hð Þ ð21Þ

may be defined, by, for a mapping f 2 j Sð Þ,

Imm S!H fð Þ ¼ j Hð Þ \ ran fð Þ: ð22Þ
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Hierarchical composition f ⊢ g occurs for f 2 j Sð Þ and g 2 j Hð Þ if and only if

g 2 j Hð Þ \ ran fð Þ ¼ Imm S!H fð Þ 6¼ £: ð23Þ

Imm S!H fð Þ contains all the processes in the system H that may be functionally
entailed by the process f 2 j Sð Þ of the system S. In other words, the set
Imm S!H fð Þ contains all possible further actions in the system H arising from
interacting with f 2 j Sð Þ. This ‘global’ manifestation of the ‘local’ functional
entailment may be termed the imminence of f. I have, therefore, given the set-valued
mapping Imm the natural name of imminence mapping (which explains the use of
the expression ‘Imm’ as the symbol for this set-valued mapping). This is a key
concept in RL. Functional entailment is repair in its most general sense, whence the
inter-network imminence Imm S!H fð Þ may be considered a repair effect in the
interaction S → H, whence Imm S!H fð Þ � j S ! Hð Þ.

The analogy between Imm and Met is more apparent if I recast the set-valued
mapping Imm S!H also as a subset of j Sð Þ � j Hð Þ:

Imm S!H ¼ f ; gð Þ 2 j Sð Þ � j Hð Þ : g 2 ran fð Þf g
¼ f ; gð Þ 2 j Sð Þ � j Hð Þ : gf g\ran fð Þ 6¼ £f g: ð24Þ

Now compare (20) and (24).
The two systems H and S need not be disjoint; it may very well happen that

H\S 6¼ £. Indeed, one system may be a subsystem of the other, that S � H. When
H and S are the same system, i.e., when H = S = N, one may define the set-valued
mapping MetN ¼ MetN!N , the metabolism bundle of the system N. The subset
MetN � j Nð Þ � j Nð Þ is the domain on which ‘metabolism’ within the system
N may proceed, containing pairs of processes (f, g) that may participate in the
internal material relay x 7! f xð Þ 7! g f xð Þð Þ. Hence MetN embodies the material
entailment structure in N. The imminence mapping of the system N (also the
imminence mapping on κ(N)) is the set-valued mapping ImmN ¼ ImmN!N . The set
ImmN fð Þ is the collection of all efficient causes of N that lie in the range of
f 2 j Nð Þ, i.e., all the f -entailed entities in κ(N). The imminence mapping ImmN on
κ(N) is thus the functional entailment pattern of the system N.

The two subsets MetN and ImmN of j Nð Þ � j Nð Þ, i.e., metabolism and repair
in the system N, are themselves not necessarily disjoint. The range of a mapping
may contain both materially-entailed and functionally-entailed entities. A single
output set of a set-valued mapping may itself already contain both species. It may
also happen that a single output entity takes on dual roles of being materially
entailed in one interaction and functionally entailed in another.

Final causes of processes are not ends in themselves; they are simply the mul-
tifarious entailed outputs of interacting processes. The more significant final causes
in the entailment network κ(N) of a system N are those that are further relayed as
material and efficient causes. The entailment network κ(N) is completely described
by its processes in composition, whence by the two special set-valued mappings
defined on it: the metabolism bundle MetN generates products through material
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entailment, and the imminence mapping ImmN generates effects though functional
entailment. Every process in κ(N) may function as either ‘metabolism’ or ‘repair’,
even when N is not necessarily a metabolism–repair network per se; indeed, every
system N; j Nð Þh i may be formulated as an (M,R)-network. Together, MetN and
ImmN may be taken as the very definition of the entailment network of the system N.

It is how MetN and ImmN on κ(N) interact that determines the nature of the
nature of the system N. If no closed path of efficient causation exists in N, then it is
a simple system (ML: Chap. 8); otherwise it is a complex system (ML: Chap. 9). In a
closed to efficient causation (clef) system (RL: 7.3), every efficient cause is func-
tionally entailed; this may be completely characterized in terms of the inverse
Imm�1

N of the imminence mapping (RL: 9.2).

8 Synthesis

When two formal systems H; j Hð Þh i and S; j Sð Þh i interact, their entailment net-
works connect to become the join formal system H _ S; j H _ Sð Þh i (RL: 13.2). The
material base set of H _ S is quite straight-forwardly H[S, but the collection
j H _ Sð Þ of join processes is more than the union j Hð Þ[j Sð Þ. This is because in
addition to the processes κ(H) and κ(S) within the two systems, join processes in
j H _ Sð Þ must also include the mutual interactions between H and S: the effects
κ(S → H) of S on H, and the effects κ(H → S) of H on S. Thus

j H _ Sð Þ ¼ j Hð Þ [ j Sð Þ [ j S ! Hð Þ [ j H ! Sð Þ: ð25Þ

Interactive processes between H and S may be synthesized from the set-valued
mappings Met and Imm. Note that

cor Met S!Hð Þ � j Sð Þ; cor Imm S!Hð Þ � j Sð Þ;
cor MetH!Sð Þ � j Hð Þ; cor ImmH!Sð Þ � j Hð Þ: ð26Þ

The corange

cor Met S!Hð Þ ¼ f 2 j Sð Þ : 9 g 2 j Hð Þ dom gð Þ\ran fð Þ 6¼ £f g ð27Þ

contains all the processes in κ(S) that produce metabolism effects in H. Likewise,
cor Imm S!Hð Þ contains all the processes in κ(S) that produce repair effects in
H. Every process may function as either ‘metabolism’ or ‘repair’ (or a combination
thereof), so the union of material entailment and functional entailment
cor Met S!Hð Þ [ cor Imm S!Hð Þ completely describes the effect of j Sð Þ on κ(H). Let
me introduce the notation
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j Sð Þ½ � j Hð Þ� ¼ cor Met S!Hð Þ [ cor Imm S!Hð Þ: ð28Þ

Conversely, cor MetH!Sð Þ and cor ImmH!Sð Þ are the metabolism and repair effects
of of κ(H) on S, whence

j Hð Þ½ � j Sð Þ� ¼ cor MetH!Sð Þ [ cor ImmH!Sð Þ: ð29Þ

Our best approximation of the collection of join processes in H _ S is then the
union of the active processes in κ(H) and κ(S) with these four coranges:

j H _ Sð Þ 	 j Hð Þ [ j Sð Þ
[ cor Met S!Hð Þ [ cor Imm S!Hð Þ
[ cor MetH!Sð Þ [ cor ImmH!Sð Þ ;

ð30Þ

that is,

j H _ Sð Þ 	 j Hð Þ [ j Sð Þ [ j Sð Þ½ � j Hð Þ� [ j Hð Þ½ � j Sð Þ� : ð31Þ

The set-valued mappings Met and Imm are mappings of potentiality. They trace
the possible material and functional entailments arising from a system, i.e., the
system’s possible metabolism and repair effects. This propensity for the emergence
of material and functional entailments inherent in Met and Imm is what allows the
synthetic continuation from j Hð Þ and j Sð Þ to j S ! Hð Þ and j H ! Sð Þ. Note,
however, that one can only reconstruct the interactive processes between H and
S from processes that already exist (but are dormant) in the partitioned j Hð Þ and
j Sð Þ. Note the containments (26); if a process in j H _ Sð Þ becomes extinct in the
fractionation of j H _ Sð Þ into κ(H) and κ(S), then it cannot be recovered through
Met and Imm. Stated otherwise,

j Sð Þ½ � j Hð Þ� ¼ cor Met S!Hð Þ [ cor Imm S!Hð Þ � j S ! Hð Þ ð32Þ

and

j Hð Þ½ � j Sð Þ� ¼ cor MetH!Sð Þ [ cor ImmH!Sð Þ � j H ! Sð Þ; ð33Þ

and both containments may be proper. Thus the unions (30) and (31) are only an
approximation of the union (25), but it is the best effort in the synthesis of the latter
sum from the analytic parts κ(H) and κ(S). (For a thorough discussion of the
amphibology of analysis and synthesis, see ML: 7.43–7.49.)
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9 Internal Predictive Model

In Sect. 6.1 of [1], Rosen gave the following

Definition An anticipatory system is a natural system that contains an internal
predictive model of itself and of its environment, which allows it to change state at
an instant in accord with the model’s predictions pertaining to a later instant.

An anticipatory system is complex, and an (M,R)-system is anticipatory; I have
demonstrated these inclusions in Chap. 10 of ML and in [7].

True to the spirit of relational biology, the crux in this definition is not what an
anticipatory system itself is, but what it does. The entailment process of anticipation
is embedded in its defining component, its

internal � predictive � model ð34Þ

I now explicate these three keywords in some detail.

9.1 Model

Let the anticipatory system be N; j Nð Þh i. The system N partitions the universe
U into self (N itself) and non-self that is its environment, Nc ¼ U
N (ML: 4.1–
4.2). What does N’s having a model of itself and of its environment entail? ‘N itself
and its environment’ is the whole universe: N [ Nc = U. A model is, however, by
necessity incomplete, so it cannot be a model of the ‘whole universe’ U.

Let W � U be the proper subsystem that is actually being modelled. That W is
part of ‘N itself and its environment’ implies it straddles the self | non-self
boundary: H ¼ W\N 6¼ £ and S ¼ W\N c 6¼ £. While W ¼ H[S, its collection
j Wð Þ ¼ j H _ Sð Þ of processes is (as explained in Sect. 8 above) more than the
union j Hð Þ[j Sð Þ. More than the internal processes j Hð Þ � j Nð Þ and the envi-
ronmental processes j Sð Þ � j N cð Þ are involved in the anticipation inherent in N;
one must also consider j S ! Hð Þ � j N c ! Nð Þ (environmental effects on N) and
j H ! Sð Þ � j N ! N cð Þ (how the system N affects its environment).

Thus anticipation inN entails the existence of amodelM 2 C Wð Þ and an encoding
functor e : W ; j Wð Þh i ! M; j Mð Þh i. We have already encountered (in Sect. 4
above) the multilevel entailments of ɛ. In particular, one has material entailment

e : W ! M ð35Þ

and functional entailment

e : j Wð Þ ! j Mð Þ: ð36Þ
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9.2 Predictive

In common English usage, ‘predict’ means ‘foretell, make a statement about the
future’, thus temporal succession is implicit. The word comes from the Latin prae,
‘before’, + dicere, ‘say’. Note, however, the ‘before’ that the Latin prefix prae- (and
pre-) predicates does not necessarily have to refer to time; it may also be before in
place, order, degree, or importance. It is with this general sense that one may
distinguish three temporally different classes of ‘predictions’: (i) extenders,
pre-dictions that are time-independent; (ii) portents, predictions that relate simul-
taneous events; and (iii) transducers, predictions that convert information about the
world at a given instant into information about the world at some later instant.
Time-independent predictions (i) concern a system’s constitutive parameters, while
time-dependent predictions (ii) and (iii) concern a system’s dynamics.

A model M is a reflector of its realization W. The functorial images e : W ! M
and e : j Wð Þ ! j Mð Þ above all serve to archive a copy of W ; j Wð Þh i in
M; j Mð Þh i. An important purpose of modelling is that through the study of the

alternate description M; j Mð Þh i, one produces explanations that decode to help in
one’s understanding of W ; j Wð Þh i. A good model should augur, i.e., suggest
specified outcomes and generate conclusions that are more than the building blocks
used in the construction of the model. A model predicts. To whichever class a
prediction belongs, what shapes the consequents is not what the encoding ɛ supplies
to the model, but, rather, what the decoding δ extracts from the model.

The internal predictive model in an anticipatory system augurs future events; i.e.,
its predictions belong to class (iii), transducers. One notes that in order to fulfill its
purpose of making predictions about the future, a model M must have a ‘faster
dynamics’ than its realization W. Tersely, this translates to the predictive model
M operating on a faster internal timescale than the system N; I shall have an
expanded explication later. The enthused reader may consult Chap. 4 of [1] for a
thorough exposition of the encodings of time.

9.3 Internal

The predictive modelling activity of an anticipatory system is self-contained. That
the predictive model is internal means

M; j Mð Þh i � N;j Nð Þh i; ð37Þ

that is to say,

M � N and j Mð Þ � j Nð Þ: ð38Þ
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A summary of the sets and their relationships in their mille verba is in order:

ð39Þ

The encodings (35) and (36) imply

e Wð Þ � M and e j Wð Þð Þ � j Mð Þ: ð40Þ

Together with (38), one has

e Wð Þ � N and e j Wð Þð Þ � j Nð Þ: ð41Þ

The encodings (35) and (36) also immanently entail (ML: 5.18) the corresponding
decoding

d : M ! W ð42Þ

and

d : j Mð Þ ! j Wð Þ; ð43Þ

whence

d Mð Þ � W and d j Mð Þð Þ � j Wð Þ: ð44Þ
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These inclusions are succinct summary statements of the embodiment of antici-
pation, the internal predictive model:

ð45Þ

10 Imminent Anticipation

The now-iconic Fig. 1.1.1 in [1] is the definitive block diagram of Robert Rosen’s
anticipatory system. Therein the object system, the predictive model, and the set of
effectors are represented, respectively, by the symbols S, M, and E. I am now
replacing S with my N, since the symbol S has been otherwise defined as ‘the
symbiont’ S ¼ W\N c. I am also eliminating the circles around the numerical labels
of the arrows, and relabelling the two number-2 arrows as 2 and 2′. After these
mutations, Rosen’s anticipatory system is

ð46Þ

It is crucial to remember that what defines an anticipatory system N is not just
the existence of the internal predictive model—there are two indispensable ingre-
dients: (a) internal predictive model M and (b) response E to the prediction.
The telos of anticipation is for the system N ‘to change state at an instant in accord
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with the model’s predictions pertaining to a later instant’. The central importance of
this telos effected by E is reflected in the largest number of influent and effluent
arrows among the blocks in diagram (46).

In [7], I have explicated how the triumvirate receptor, controller, and effector
from control theory manifest themselves in (M,R)-networks and anticipatory sys-
tems. Here and now it suffices to summarize that, in an (M,R)-network, the con-
troller controls metabolism processes while the effector effects repair functions; and,
in an anticipatory system, the controller is the internal predictive model M while the
effector E carries out the actual response arising from the anticipation process.

The controller, the model M, sets the system response in motion by functionally
entailing the effector E. This entailment is represented by the arrow 1 in (46), and is
contained in the effects j M ! Nð Þ of M on N. As explained in Sect. 8 above, with
only κ(M) on hand, the best approximation of these effects is the union of the
coranges of the metabolism bundle and imminence mapping:

j Mð Þ½ � j Nð Þ� ¼ cor MetM!Nð Þ [ cor ImmM!Nð Þ � j M ! Nð Þ: ð47Þ

The set ImmM!N fð Þ contains all possible further actions in the system N arising
from interacting with f 2 j Mð Þ. The response E of the anticipatory system N to
predictions of the modelM, the arrow 2 in (46), therefore comprises cor ImmM!Nð Þ .

Entailments within the model M are decoded back into the realization W (the
arrow 2′ in (46)), whence the response E also includes d j Mð Þð Þ. Thus

E ¼ cor ImmM!Nð Þ [ d j Mð Þð Þ � j M ! Nð Þ [ j Wð Þ: ð48Þ

Further,

d : j Mð Þ ! j Wð Þ ) d � ImmM!W : j Mð Þ � j Wð Þ: ð49Þ

The dotted arrow 3 represents the updating function. The effector E must be able
to reset the model M according to the controls that have been exerted on the system
N. The details of this iterative ‘remodelling’ process may be found in [7]. The
model M entails E which subsequently entails a renewal of M. This is the
self-contained imminence ImmM on κ(M).

Diagram (46) may now be completely relabelled in terms of the metabolism
bundle and the imminence mapping:

ð50Þ
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11 Anticipatory Imminence

An anticipatory system has to have more than one inherent dynamics, more than
one thing that one may consider ‘time’ (‘real time’ or otherwise). To have antici-
pation of the system’s own subsequent behaviour, something in the system must be
running ‘faster than real time’. This last phrase is an abbreviation, a terse summary
that is interpreted thus: if the trajectories of the system N are parameterized by real
time, then the corresponding trajectories of the model M are parameterized by a
time variable that goes faster than real time. That is, if N and M both start at time t0
in equivalent states, and if (real) time runs until t1 > t0, then M will have proceeded
further along its trajectory than N. It is in this way that the behaviour of M predicts
the behaviour of N: by looking at the state of the model M at ‘present time’ t1, the
system N gets information about its own state at some ‘future time’ t2 > t1 .

It should be clarified that ‘anticipation’ in Rosen’s usage does not refer to an
ability to see or otherwise sense the immediate or the distant future—there is no
prescience or psychic phenomena suggested here. Instead, Rosen suggests that there
must be information about self, about species, and about the evolutionary envi-
ronment, encoded into the organization of all living systems. He observes that this
information, as it behaves through time, is capable of acting causally on the
organism’s present behaviour, based on relations projected to be applicable in the
future. Thus, while not violating time established by external events, organisms
seem capable of constructing an internal surrogate for time as part of a model that
can indeed be manipulated to produce anticipation. The predictive model in an
anticipatory system must not be equivocated to any kind of ‘certainty’ (even
probabilistically) about the future. It is, rather, an assertion based on a model that
runs in a faster time scale. The future still has not yet happened: the organism does
not have definitive knowledge of future itself, but has a model of the future from
which to act accordingly. An anticipatory model may be wrong, and wrong models
often have disastrous consequences. Rosen’s theory of anticipation is a general
qualitative theory that describes all anticipatory systems. It is not a quantitative
theory of single systems for which the lore of large number of systems, hence
statistical reasoning, would ever enter into the picture. In other words, this theory
has nothing to do with stochastics. «Je n’avais pas besoin de cette hypothèse-là».

Each imminence mapping in diagram (50) engenders its own time scale. This is
because the imminence mapping verily defines a system’s functional entailment
pattern, through which emerge its faculties of simultaneity and temporal succession,
which in turn characterize the system’s inherent time scale. Inherent time scales
thus arise from system decomposition, and different time scales imply the capability
of nonequivalently fractioning a system into different component subsystems.
Degrees of freedom in manifesting internal models allow ‘internal surrogates of
time’ their multi-scaling and reversibility to produce new information. The idea that
one has to have more than one scale of time in an anticipatory system generalises to
alternate modes of system partition, and these lead to the wider notion of com-
plexity (ML: Chap. 9).
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In Sect. 3 above, we have encountered Aristotle’s four causes as components of
a mapping. Aristotelian analysis can be applied to any entailment structure κ,
simply by asking, as Aristotle did, “Why κ?” (ML: Chap. 5). In any formalism,
there is a natural flow from axioms to theorems, similar to the unidirectional flow of
time. Consider an exemplary entailment that is the conditional statement ‘p → q’
(ML: 0.5). In it, the antecedent p is always earlier than the consequent q (this fact
being reflected explicitly in the Latin prefixes ante- and con-). If there is a proof of
q with p as hypothesis, then q must come later than p. The “arrow of time” is
graphically illustrated in the corresponding arrow ‘→ ’ governing inferential
entailments.

Inferential entailments do not have to occur in ‘real time’; but they always
characterize a time sense of simultaneity and temporal succession, whence function
as portents and transducers (predictive classes (ii) and (iii) discussed in Sect. 9.2
above). Simultaneity and temporal succession are ordinal aspects of time that define
precedence. Qualitative, ordinal time is the Greek concept of καιρός (kairos),
moments marked along a timeline that is a totally ordered set (cf. ML: Chap. 1). In
contrast, stretches of time-passing and waiting time are cardinal aspects of time that
define duration. Quantitative, cardinal time is the Greek concept of χρόνος
(chronos), lengths of time that can be measured. Chronometers—clocks and
watches—do just that; they measure time intervals. Kairos is the algebra of ordinal
time; chronos is the analysis (in the mathematical sense) of cardinal time. Cardinal
numbers are special ordinal numbers, an illustration that quantitative is a meagre
subset of qualitative (ML: 2.25). The traditional view of reductionism is (among
other things) that every perceptual quality can and must be expressible in numerical
terms. In our relational view, the features of natural systems in general, and of
biological systems in particular, that are of interest and importance are precisely
those that are unquantifiable.

The modelling relation establishes analogies between the natural and formal
worlds, in particular those between causality and inference. When decoded, the
inferential emergence of time from p → q becomes a cause-and-effect phenome-
nology. The three causal categories of material, formal, and efficient always respect
this flow of ‘formal time’, because ‘cause’ p always precedes ‘effect’ q in ‘natural
time’. The material, formal, and efficient causation answers to the question “Why
q?” require nothing further than the entailment of q. Final cause, however, requires
something more of its effect q. The Greek term τέλοζ (telos, translated into finis in
Latin), meaning ‘end’ or ‘purpose’, covers two meanings: the end considered as the
object entailed (i.e., q itself), or the end considered as the entailment of the object
(i.e., the entailment of q). To say that something is a final cause of q is to require
that q itself entails something; indeed, a final cause of q must entail the entailment
of q itself (ML: 5.18 & 10.3). This peculiar reflexive character of final causation
leads to its anomalous temporal position, that it appears to be acting back on its own
generating process. Final causation gives the appearance that that the ‘future’ is
actively affecting the ‘past’. In short, the ends entail the means.
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A final cause of an effect is defined in terms of something entailed by the effect.
In the Newtonian paradigm, a state can only entail subsequent states, which are
necessarily later in time than present states. The presence of time as a parameter for
state-transition chronicles then translates into causes must not anticipate effects. The
rejection of finality in Newtonian derivative science is usually cast in this temporal
context, in the form of a ‘Zeroth Commandment’ (ML: 10.5): “Thou shalt not allow
the future to affect the present.” Chapter 7 of [1] is an in-depth argument on why
such rejection is misguided.

In the relational formulation of systems as networks of interacting processes,
there is no (cardinal) time parameter. There are only mappings and their organi-
zations in entailment networks. As noted above, the (ordinal) time sense is implied
by the inherent directionality from cause to effect. Three out of the four Aristotelian
categories of causation manifest the flow from past causes to future effects. In a
mapping f ⊢ y, ‘that which entails’ f ⊢ precedes ‘that which is entailed’ ⊢ y. In the
exceptional category of final cause, functional entailment y ⊢ (i.e., that y is in the
imminence of f, y 2 Imm fð Þ) may be interpreted as an action of the future on the
present. This paradoxical appearance of ‘acausality’ may be resolved by noting that
prediction is simply the anticipation of future events from past ones that entail them,
and that, in the first place, is precisely what causality itself is about.

We have discussed natural law and the modelling relation in Sect. 3 above. We
have now also seen that the notions of causality, inference, and entailment are tied
to imminence, a sense of determination and inevitability. When reformulated in
terms of the sense of time, determination and inevitability of effects from causes
translate temporally not only into postdictability, the entailment of past from
present, but also into its reverse predictability, the entailment of future from present.
Stated yet otherwise, natural law entailment makes the present serve as a surrogate
for both past and future.

Through the imminence mapping Imm, functional entailment pulls the future
into the present, creating the capacity for anticipation. Imminence lets a system use
its entailment pattern to predict something about what will happen to it later. The
internal predictive model in an anticipatory system augurs future events. Thus
equipped, an anticipatory system can access its present and its future at a common
instant of real time, allowing it to control its present actions in the light of the
predicted future.

The imminence mapping anticipates.

To see a world in a grain of sand
And a heaven in a wild flower,
Hold infinity in the palm of your hand
And eternity in an hour.

—William Blake (1803)
Auguries of Innocence
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