
Chapter 3
Fuzzy Calculus

This chapter treats two types of fuzzy calculus: one for fuzzy-set-valued functions
and other for fuzzy bunches of functions. Section 3.1 reviews definitions of fuzzy
Aumann, Henstock, and Riemann integrals and the Hukuhara derivative and its
generalizations. It also provides some theorems, including a Fundamental Theorem
of Calculus. All these definitions and results were previously presented in the
literature. Section 3.2 introduces derivative and integral for fuzzy bunches of
functions and results concerning them, some of which never published before.
Examples illustrate some of the concepts and theorems, especially in the last section,
where new results provide comparisons between the different approaches.

3.1 Fuzzy Calculus for Fuzzy-Set-Valued Functions

This section reviews some known approaches of integrals (Aumann, Riemann,
and Henstock integrals) and derivatives (Hukuhara and generalized derivatives) for
fuzzy-set-valued functions. It also presents results connecting these fuzzy integrals
and derivatives. The reader interested in other proposals may refer to (e.g., [11–
13, 16]).

3.1.1 Integrals

The first integral proposed for fuzzy-number-valued functions is based on Aumann
integral for multivalued functions [2] and was defined in [21] and [23].
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42 3 Fuzzy Calculus

Denote by S.G/ the subset of all integrable selections of a set-valued function
G W I ! P.Rn/, i.e.,

S.G/ D fg W I ! R
n W g is integrable and g.t/ 2 G.t/; 8t 2 Ig: (3.1)

Definition 3.1 ([21, 23]). The Aumann integral of a fuzzy-set-valued function F W
Œa; b� ! FC .Rn/ over Œa; b� is defined levelwise

�
.A/

Z b

a
F.x/ dx

�
˛

D
Z b

a
ŒF�˛ dx (3.2)

D
�Z b

a
g.x/ dx W g 2 S.ŒF.x/�˛/

�
(3.3)

for all ˛ 2 Œ0; 1�.

The function F W Œa; b� ! FC .Rn/ is said to be Aumann integrable over Œa; b� if
.A/

R b
a F.x/ dx 2 FC .Rn/.

The following integrals have been defined for functions F W Œa; b� ! FC .R/.

Definition 3.2 ([15, 26]). The Riemann integral of a fuzzy-number-valued function
F W Œa; b� ! FC .R/ over Œa; b� is the fuzzy number A such that for every � > 0

there exist ı > 0 such that for any division d W a D x0 < x1 < : : : < xn D b with
xi � xi�1 < ı, i D 1; : : : ; n, and �i 2 Œxi � xi�1�

d1

 
n�1X
iD1

F.�i/.xi � xi�1/; A

!
< �: (3.4)

The function F W Œa; b� ! FC .R/ is said to be Riemann integrable over Œa; b� if
A 2 FC .R/. We denote .R/

R b
a F.x/ dx D A

Definition 3.3 ([7, 26]). Consider ın W a D x0 < x1 < : : : < xn D b a partition of
the interval Œa; b�, �i 2 Œxi � xi�1�, i D 1; : : : ; n, a sequence � in ın and ı.x/ > 0 a
real-valued function over Œa; b�. The division P.ın; �/ is considered to be ı-fine if

Œxi�1; xi� � .�i�1 � ı.�i�1/; �i�1 C ı.�i�1// (3.5)

The Henstock integral of a fuzzy-number-valued function F W Œa; b� ! FC .R/

over Œa; b� is the fuzzy number A such that for every � > 0 there exist a real-valued
function ı such that for any ı-fine division P.ın; �/,

d1

 
n�1X
iD1

F.�i/.xi � xi�1/; A

!
< �: (3.6)



3.1 Fuzzy Calculus for Fuzzy-Set-Valued Functions 43

The function F W Œa; b� ! FC .R/ is said to be Henstock integrable over Œa; b� if
A 2 FC .R/. We denote .H/

R b
a F.x/ dx D A.

Henstock integral is more general than Riemann, i.e., whenever a function is
Riemann integrable, it is Henstock integrable as well.

Remark 3.1. Writing that a function is integrable, without specifying whether it is
Aumann, Riemann, or Henstock, means it is integrable in all these three senses.

Corollary 3.1 ([5, 21, 26]). If a function F W Œa; b� ! FC .R/ is continuous, then it
is integrable. Moreover,

�Z
F

�
˛

D
�Z

f �̨;

Z
f C̨
�

(3.7)

for all ˛ 2 Œ0; 1�.

Theorem 3.1 ([5, 21, 26]). Let F W Œa; b� ! FC .R/ be integrable and a � x1 �
x2 � x3 � b. Then Z x3

x1

F D
Z x2

x1

F C
Z x3

x2

F: (3.8)

Theorem 3.2 ([5, 21, 26]). Let F; G W Œa; b� ! FC .R/ be integrable, then

(i)
R

.F C G/ D R
F C R

G;
(ii)

R
.�F/ D �

R
F, for any � 2 R;

(iii) d1.F; G/ is integrable;
(iv) d1.

R
F;
R

G/ � R
d1.F; G/.

3.1.2 Derivatives

The Hukuhara differentiability for fuzzy functions is based on the concept of
Hukuhara differentiability for interval-valued functions [20].

Definition 3.4 ([22]). Let F W .a; b/ ! FC .Rn/. If the limits

lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0/ �H F.x0 � h/

h
(3.9)

exist and equal some element F0
H.x0/ 2 FC .Rn/, then F is Hukuhara differentiable

(H-differentiable for short) at x0 and F0
H.x0/ is its Hukuhara derivative (H-derivative

for short) at x0.

Example 3.1. The fuzzy-number-valued function of Example 2.6, F.x/ D Ax with
A D .�1I 0I 1/, is an H-differentiable function for x � 0 and

F0
H.x/ D A: (3.10)
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For x < 0, F is not H-differentiable since F.x C h/ �H F.x/ is not defined.
Considering x > 0, F is a particular case of Example 8.30 in [5], which shows
that any function G.x/ D Bg.x/ with g.x/ > 0, g0.x/ > 0 and B a fuzzy number is
H-differentiable. Moreover,

G0
H.x/ D Bg0.x/: (3.11)

An H-differentiable fuzzy function has H-differentiable ˛-cuts (that is, its ˛-cuts
are interval-valued H-differentiable functions). The converse, however, is not true,
unless its ˛-cuts are uniformly H-differentiable (see [21]).

Definition 3.5 ([24]). Let F W Œa; b� ! FC .R/. If

Œ.f �̨/0.x0/; .f C̨/0.x0/� (3.12)

exists for all ˛ 2 Œ0; 1� and defines the ˛-cuts of a fuzzy number F0
S.x0/, then F is

Seikkala differentiable at x0 and F0
S.x0/ is the Seikkala derivative of F at x0.

If F W Œa; b� ! FC .R/ is H-differentiable, then f �̨.x/ and f C̨.x/ are differentiable
and

ŒF0.x0/�˛ D Œ.f �̨/0.x0/; .f C̨/0.x0/�; (3.13)

that is, if F is H-differentiable, it is Seikkala differentiable and the derivatives are
the same [21].

Theorem 3.3 ([21]). Let F W Œa; b� ! FC .Rn/ be an H-differentiable function.
Then it is continuous.

Theorem 3.4 ([21]). Let F; G W Œa; b� ! FC .Rn/ be H-differentiable functions and
� 2 R. Then .F C G/0

H D F0
H C G0

H and .�F/0
H D �F0

H.

If F is Seikkala (or Hukuhara) differentiable, .f �̨/0.x/ � .f C̨/0.x/, hence the
function diam ŒF.x/�˛ D f C̨.x/ � f �̨.x/ is nondecreasing on Œa; b�. It means that the
function has nondecreasing fuzziness. As will be clear in Chap. 4, this is considered
a shortcoming since an H-differentiable function cannot represent a function with
decreasing fuzziness or periodicity. In order to overcome this, the generalized
differentiability concepts were created. They generalize the H-differentiability, that
is, they are defined for more cases of fuzzy-number-valued functions and whenever
the H-derivative of a function exists, its generalization exists and has the same value.

Definition 3.6 ([6, 8]). Let F W .a; b/ ! FC .R/. If the limits of some pair

(i) lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0/ �H F.x0 � h/

h
or

(ii) lim
h!0C

F.x0/ �H F.x0 C h/

�h
and lim

h!0C

F.x0 � h/ �H F.x0/

�h
or
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(iii) lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0 � h/ �H F.x0/

�h
or

(iv) lim
h!0C

F.x0/ �H F.x0 C h/

�h
and lim

h!0C

F.x0/ �H F.x0 � h/

h

exist and are equal to some element F0
G.x0/ of FC .R/, then F is strongly generalized

differentiable (or GH-differentiable) at x0 and F0
G.x0/ is the strongly generalized

derivative (GH-derivative for short) of F at x0.

An (i)-strongly generalized differentiable function presents nondecreasing diam-
eter, since it is the definition of the H-differentiability. (ii)-strongly generalized
differentiability (we call (ii)-differentiability, for short), on the other hand, implies
in nonincreasing diameter. The (iii) and (iv)-differentiability cases correspond to
points where the function changes its behavior with respect to the diameter. It means
that a strongly differentiable non-crisp function may present periodical behavior, as
well as convergence to a single point.

In case F is defined on a closed interval, that is, F W Œa; b� ! FC .R/, we define
the derivative at a using the limit from the right and at b using the limit from the left.

Example 3.2. The fuzzy-number-valued function of Example 2.6, F.x/ D Ax with
A D .�1I 0I 1/, is a GH-differentiable function for x 2 R and

F0
gH.x/ D A: (3.14)

Different from the H-derivative case, the GH-derivative of F is defined for x < 0.
According to Example 8.35 in [5], any function G.x/ D Bg.x/ with B a fuzzy
number and g W .a; b/ ! R differentiable with at most a finite number of roots
in .a; b/ is GH-differentiable. Moreover,

G0
H.x/ D Bg0.x/: (3.15)

Example 3.2 illustrates that, different from the H-derivative, GH-differentiable
functions can have decreasing diameter.

Definition 3.7 ([8]). Let F W .a; b/ ! FC .R/ and x0 2 .a; b/. For a nonincreasing
sequence hn ! 0 and n0 2 N we denote

A.1/
n0

D ˚
n � n0I 9E.1/

n WD F.x0 C hn/ �H F.x0/
�

; (3.16)

A.2/
n0

D ˚
n � n0I 9E.2/

n WD F.x0/ �H F.x0 C hn/
�

; (3.17)

A.3/
n0

D ˚
n � n0I 9E.3/

n WD F.x0/ �H F.x0 � hn/
�

; (3.18)

A.4/
n0

D ˚
n � n0I 9E.4/

n WD F.x0 � hn/ �H F.x0/
�

: (3.19)

The function F is said to be weakly generalized differentiable at x0 if for any
nonincreasing sequence hn ! 0 there exists n0 2 N, such that
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A.1/
n0

[ A.2/
n0

[ A.3/
n0

[ A.4/
n0

D fn 2 NI n � n0g (3.20)

and moreover, there exists an element in FC.R/, such that if for some j 2 f1; 2; 3; 4g
we have card .A.j/

n0 / D C1; then

lim
hn&0;n!1;n2A

.j/
n0

d1

 
E.j/

n

.�1/jC1hn
; F0.x0/

!
D 0: (3.21)

Definition 3.7 is more general than Definition 3.6, that is, it is defined for more
cases of fuzzy-number-valued functions and whenever the latter exists, the former
also exists and has the same value.

The next definition is equivalent to Definition 3.7 (see [10]).

Definition 3.8 ([10, 25]). Let F W .a; b/ ! FC .R/. If the limit

lim
h!0

F.x0 C h/ �gH F.x0/

h
(3.22)

exists and belongs to FC .R/, then F is generalized Hukuhara differentiable (gH-
differentiable for short) at x0 and F0

gH.x0/ is the generalized Hukuhara derivative
(gH-derivative for short) of F at x0.

Theorem 3.5 ([10]). Let F W Œa; b� ! FC .Rn/ be a gH-differentiable function at
x0. Then it is levelwise continuous at x0.

Theorem 3.6 ([10]). Let F W Œa; b� ! FC .R/ be such that the functions f �̨.x/

and f C̨.x/ are real-valued functions, differentiable with respect to x, uniformly in
˛ 2 Œ0; 1�. Then the function F.x/ is gH-differentiable at a fixed x 2 Œa; b� if and
only if one of the following two cases holds:

(a)
�
f �̨�0 .x/ is increasing,

�
f C̨�0 .x/ is decreasing as functions of ˛; and

�
f �
1

�0
.x/ ��

f C
1

�0
.x/, or

(b)
�
f �̨�0 .x/ is decreasing,

�
f C̨�0 .x/ is increasing as functions of ˛; and

�
f C
1

�0
.x/ ��

f �
1

�0
.x/:

Moreover,

	
F0

gH.x/



˛
D Œminf�f �̨�0 .x/;

�
f C̨�0 .x/g; maxf�f �̨�0 .x/;

�
f C̨�0 .x/g�; (3.23)

for all ˛ 2 Œ0; 1�.

The next concept further extends the gH-differentiability.

Definition 3.9 ([25]). Let F W .a; b/ ! FC .R/. If the limit

lim
h!0

F.x0 C h/ �g F.x0/

h
(3.24)
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exists and belongs to FC .R/, then F is generalized differentiable (g-differentiable
for short) at x0 and F0

g.x0/ is the fuzzy generalized derivative (g-derivative for short)
of F at x0.

Example 3.3. Recall the fuzzy-number-valued function of Example 2.13, F W
Œ0; 0:5� ! FC .R/ with ˛-cuts

ŒF.x/�˛ D
� 	

x2 � 3 C ˛; .1 � 2˛/x2 � 2˛ C 2



; if 0 � ˛ � 0:5	
x2 � 3 C ˛; .2˛ � 1/x2 � 6˛ C 4



; if 0:5 < ˛ � 1

: (3.25)

The aim is to calculate the gH and the g-derivative of F.
Equation (2.53) provides easy means to calculate (3.22). For ˛ 2 Œ0; 0:5� one

obtains

ŒF.x C h/ �gH F.x/�˛ D Œ.1 � 2˛/.2xh C h2/; 2xh C h2�: (3.26)

Thus

lim
h!0

ŒF.x C h/ �gH F.x/�˛

h
D Œ.1 � 2˛/2x; 2x� (3.27)

and as consequence

lim
h!0

ŒF.x C h/ �gH F.x/�0

h
D f2xg (3.28)

and

lim
h!0

ŒF.x C h/ �gH F.x/�0:25

h
D Œx; 2x�: (3.29)

The condition

˛ < ˇ ) lim
h!0

ŒF.x C h/ �gH F.x/�ˇ

h
� lim

h!0

ŒF.x C h/ �gH F.x/�˛

h
(3.30)

does not hold, hence limh!0
ŒF.xCh/�gHF.x/�˛

h cannot be a fuzzy number and the
gH-derivative is not defined for this function.

Equation (2.54) can be used in this case to find (3.24), for all ˛ 2 Œ0; 1�. Since
f �̌.xCh/� f �̌.x/ D 2xhCh2 and f C

ˇ .xCh/� f C
ˇ .x/ D .1�2˛/2xhCh2 for ˇ � 0:5

and f �̌.x C h/ � f �̌.x/ D 2xh C h2 and f C
ˇ .x C h/ � f C

ˇ .x/ D .2˛ � 1/2xh C h2 for
ˇ > 0:5, we obtain for ˛ > 0:5:
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lim
h!0

ŒF.x C h/ �g F.x/�˛

h
D cl

[
ˇ�˛>0:5

Œ.2ˇ � 1/2x; 2x� D Œ.2˛ � 1/2x; 2x�:

(3.31)
For ˛ � 0:5, the levelwise limit becomes

cl

0
@ [

0:5�ˇ�˛�0

Œ.1 � 2ˇ/2x; 2x�

1
A[

0
@ [

ˇ>0:5

Œ.2ˇ � 1/2x; 2x�

1
A D Œ0; 2x�: (3.32)

The result is the fuzzy number F0
g W Œ0; 0:5� ! FC .R/ with ˛-cuts

ŒF0
g.x/�˛ D

�
Œ0; 2x� ; if 0 � ˛ � 0:5

Œ.2˛ � 1/2x; 2x� ; if 0:5 < ˛ � 1
: (3.33)

as the g-derivative.

The g-difference is not defined for all pairs of fuzzy numbers, as we showed in
Example 2.3. The same happens to the g-derivative, that is, it is not always well-
defined (see also [17]).

Example 3.4. The definition of the g-derivative of the fuzzy-number-valued
function of Example 2.12 leads to

ŒF0
g.x/�˛ D

� f20xgSf0g; if 0 � ˛ � 0:5

f0g; if 0:5 < ˛ � 1
: (3.34)

That is, it is not a fuzzy-number-valued function. Hence F is not g-differentiable.

The function F in Example 3.4 has f �̨.x/ and f C̨.x/ differentiable real-valued
functions with respect to x, uniformly with respect to ˛ 2 Œ0; 1�, but it is not
g-differentiable. In the case a function is g-differentiable and satisfy the just
mentioned hypothesis, it has a formula that has been proved by [10].

Theorem 3.7. Let F W Œa; b� ! RF with f �̨.x/ and f C̨.x/ differentiable real-valued
functions with respect to x, uniformly with respect to ˛ 2 Œ0; 1�. Then

	
F0

g.x/



˛
(3.35)

D
"

inf
ˇ�˛

minf
�

f �̌�0
.x/;

�
f C
ˇ

�0
.x/g; sup

ˇ�˛

maxf
�

f �̌�0
;
�

f C
ˇ

�0
.x/g

#
(3.36)

whenever F is g-differentiable.
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Proof. See [10].

Summary of the derivatives for fuzzy-number-valued functions:

• The GH-, gH-, and g-derivatives generalize the H-derivative. An
H-differentiable function is always GH-, gH-, and g-differentiable.

• The gH- and g-derivatives generalize the GH-derivative. A GH-
differentiable function is always gH- and g-differentiable.

• The g-derivative generalizes the gH-derivative. A gH-differentiable
function is always g-differentiable.

3.1.3 Fundamental Theorem of Calculus

Fundamental Theorems of Calculus provide connections between derivatives and
integrals, showing that they are inverses of one another.

Theorem 3.8 ([21]). Let F W Œa; b� ! FC .Rn/ be continuous, then G.x/ DR x
a F.s/ds is H-differentiable and

G0
H.x/ D F.x/: (3.37)

Theorem 3.9 ([21]). Let F W Œa; b� ! FC .Rn/ be H-differentiability and the
H-derivative F0

H be integrable over Œa; b�. Then

F.x/ D F.a/ C
Z x

a
F0

H.s/ds; (3.38)

for each x 2 Œa; b�.

The H-differentiable is equivalent to strongly generalized differentiability (i) in
Definition 3.6. For the case (ii) in the same definition, Bede and Gal have proved
the following theorem.

Theorem 3.10 ([9]). Let F W Œa; b� ! FC .R/ be (ii)-differentiable. Then the
derivative F0

G is integrable over Œa; b� and

F.x/ D F.b/ �
Z b

x
F0

G.s/ds; (3.39)

for each x 2 Œa; b�.
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3.2 Fuzzy Calculus for Fuzzy Bunches of Functions

The fuzzy calculus for fuzzy bunches of functions, based on the definitions of
derivative and integral via extension of the correspondent classical operators, was
recently elaborated in [4, 18, 19]. This theory is reviewed and further developed in
the present section.

3.2.1 Integral

The integral operator will be represented by
R

, i.e.,

R W L1.Œa; b�IRn/ ! A C.Œa; b�IRn/

f 7! R t
a f

(3.40)

t 2 Œa; b� (see Appendix for definitions of spaces of functions).

Definition 3.10 ([3, 18]). Let F 2 F .L1.Œa; b�IRn//. The integral of F is given by
OR F, whose membership function is

� OR F
.y/ D

(
supf 2R�1 y �F.f /; if

R �1 y ¤ ;
0; if

R �1 y D ; ; (3.41)

for all y 2 A C.Œa; b�IRn/. In words, OR is the extension of the operator
R

.

The next theorem is a consequence of Theorem 2.6.

Theorem 3.11. If F 2 F .L1.Œa; b�IRn//,
h OR F

i
˛

DR
ŒF�˛

D˚R
f W f 2 ŒF�˛ � L1.Œa; b�IRn/

�
;

(3.42)

for all ˛ 2 Œ0; 1�.

Proof. Since the integral is a continuous operator, the result follows directly from
Theorem 2.6.

We next define a linear structure in F .L1.Œa; b�IRn//. Given two fuzzy bunches
of functions F and G and � 2 R,

�FCG.h/ D sup
f CgDh

minf�F.f /; �G.g/g; (3.43)

��F.f / D
�

�F.h=�/ if � ¤ 0

�0.f / if � D 0
: (3.44)
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Since these operations are extensions of addition and multiplication by scalar, which
are continuous, Theorem 2.6 assures that given F; G 2 FK .L1.Œa; b�IRn// and
� 2 R,

F C G 2 FK .L1.Œa; b�IRn// and ŒF C G�˛ D ŒF�˛ C ŒG�˛ (3.45)

and

�F 2 FK .L1.Œa; b�IRn// and Œ�F�˛ D �ŒF�˛ (3.46)

for all ˛ 2 Œ0; 1�.

Theorem 3.12. Let F; G 2 FK .L1.Œa; b�IRn//, then

(i) OR .F C G/ D OR F C ORG;

(ii) OR �F D � OR F, for any � 2 R.

Proof. From Theorem 2.6 and the linearity of the integral operator,

Œ OR .F C G/�˛ D R
ŒF C G�˛

D R fh W h D f C g; f 2 ŒF�˛; g 2 ŒG�˛g
D fR .f C g/; f 2 ŒF�˛; g 2 ŒG�˛g
D fR f C R

g; f 2 ŒF�˛; g 2 ŒG�˛g
D fR f ; f 2 ŒF�˛g C fR g; g 2 ŒG�˛g
D R

ŒF�˛ C R
ŒG�˛

D Œ OR F�˛ C Œ ORG�˛

(3.47)

and

Œ OR �F�˛ D R
Œ�F�˛

D fR �f W f 2 ŒF�˛g
D f� R f W f 2 ŒF�˛g
D �fR f W f 2 ŒF�˛g
D �

R
ŒF�˛

D �Œ OR F�˛

(3.48)

for all ˛ 2 Œ0; 1�.

Example 3.5. Let A be the symmetrical triangular fuzzy number with support
Œ�a; a�, a > 0. The fuzzy function F.�/ 2 F .L1.Œ0; T�IR// such that

ŒF.�/�˛ D ff .�/ W f .t/ D � t; � 2 ŒA�˛g (3.49)
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where f .�/ W Œ0; T� ! R, for each ˛ 2 Œ0; 1�, has attainable sets

F.t/ D At: (3.50)

To determine the integral of F using Definition 3.10, one needs to explicit the
membership function of A and F:

�A.�/ D

8̂̂
<
ˆ̂:

�

a
C 1; if � a � � < 0

��

a
C 1; if 0 � � < a

0; otherwise

(3.51)

and

�F.f / D

8̂̂
<
ˆ̂:

�

a
C 1; if f .t/ D � t with � a � � < 0

��

a
C 1; if f .t/ D � t with 0 � � < a

0; otherwise

(3.52)

Formula (3.41) states that � OR F
.y/ ¤ 0 only if there exists f such that

R
f D y

and �F.f / ¤ 0. In this example, it happens only if f .t/ D � t with � 2 ŒA�˛ , that is,
y D � t2=2.

� OR F
.� t2=2/ D supR f D� t2=2 �F.f /

D supR .� t/D� t2=2 �F.� t/

D �F.� t/

D
8<
:

�

a C 1; if � a � � < 0

� �

a C 1; if 0 � � < a
0; otherwise

D �A.�/:

(3.53)

Hence

� OR F
.f / D

8̂̂
<
ˆ̂:

�

a
C 1; if f .t/ D � t2=2 with � a � � < 0

��

a
C 1; if f .t/ D � t2=2 with 0 � � < a

0; otherwise

(3.54)

or

ŒF.�/�˛ D ff .�/ W f .t/ D � t2=2; � 2 ŒA�˛g: (3.55)



3.2 Fuzzy Calculus for Fuzzy Bunches of Functions 53

For each ˛ 2 Œ0; 1�, its attainable sets are

F.t/ D At2=2: (3.56)

The Aumann integral of (3.50) can be calculated levelwise and we obtain the

same attainable sets as obtained with OR :

Œ
R

F.t/�˛ D Œ
R

f �̨;
R

f �̨�

D Œ�at2=2; at2=2�

D ŒA�˛t2=2:

(3.57)

The next section introduces the derivative operator for fuzzy bunches of func-
tions. It is defined for more restricted spaces than the integral since they are
extensions of the classical case. Also, different from the integral case, we explore
the derivative on different spaces (Example 3.9) due to the fact that it is not a
continuous operator (in general). We are more interested, though, in differentiating
fuzzy bunches of the space of absolutely continuous functions (see Appendix), since
we can differentiate more elements in this space than in the space of differentiable
functions. Furthermore, it is used and has been explored in the differential inclusions
theory, which, as already mentioned, has important connections with the theory we
propose to develop.

3.2.2 Derivative

The derivative operator in the sense of distributions (see [1]) will be represented by
D, that is,

D W A C.Œa; b�IRn/ ! L1.Œa; b�IRn/

f 7! Df
(3.58)

Thus, there exists Df .t/ a:e:, in Œa; b�:

Definition 3.11. Let F 2 F .A C.Œa; b�IRn//. The derivative of F is given by ODF,
whose membership function is

� ODF.y/ D
�

supf 2D�1y �F.f /; if D�1y ¤ ;
0; if D�1y D ; : (3.59)

for all y 2 L1.Œa; b�IRn/. In words, OD is the extension of operator D.

Example 3.6. Let F.�/ be the same fuzzy bunch as in Example 3.5. We note that
F.�/ 2 F .A C.Œa; b�IR//.
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Following the same reasoning as Example 3.5,

� ODF.�/ D supDf D� �F.f /

D supD.� t/D� �F.� t/
D �F.� t/

D
8<
:

�

a C 1; if � a � � < 0

� �

a C 1; if 0 � � < a
0; otherwise

D �A.�/:

(3.60)

It means that the support of ODF.�/ is composed of constant functions such that,
at each instant t, the derivative of F.�/ is always the fuzzy number A.

Lemma 3.1. For D defined as above, the preimage D�1g is a closed nonempty
subset in the space of functions A C.Œa; b�IRn/ with respect to the uniform norm
for each g 2 L1.Œa; b�IRn/.

Proof. D�1g is a finite dimensional subspace of A C.Œa; b�IRn/ since D�1g D ff C
k W k 2 R

ng for f 2 A C.Œa; b�IRn/ such that f D R x
a g. Hence D�1g is closed.

Theorem 3.13 ([4]). Let F 2 FK .A C.Œa; b�IRn//. Then

Œ ODF�˛ D DŒF�˛: (3.61)

Proof. This proof will make use of the result: ŒF�0 \ D�1.g/ is compact. It is true
since the subset D�1.g/ is nonempty and it is closed (from Lemma 3.1). Also, ŒF�0 \
D�1.g/ is a closed subset of the compact set ŒF�0, hence it is compact.

We show inclusion Œ OD.F/�˛ � D.ŒF�˛/ considering two cases: ˛ 2 .0; 1� and
later ˛ D 0.

(i) For ˛ 2 .0; 1�, let g 2 Œ OD.F/�˛; then

˛ � OD.F/.g/ D sup
h2D�1.g/

F.h/ D sup
h2ŒF�0\D�1.g/

F.h/ D F.f /

for some f , since F is an upper semicontinuous function (that is, the membership
of F is usc) and ŒF�0 \ D�1.g/ is compact. So, F.f / � ˛. That is, f 2 ŒF�˛ \
D�1.g/. Hence g 2 D.ŒF�˛/:

(ii) For ˛ D 0,

[˛2.0;1�Œ OD.F/�˛ � [˛2.0;1�D.ŒF�˛/ � D.ŒF�0/:

Consequently,

Œ OD.F/�0 D [˛2.0;1�Œ OD.F/�˛ � [˛2.0;1�D.ŒF�˛/ � D.ŒF�0/ D D.ŒF�0/:
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The last equality holds because D is a closed operator.

Now we prove the inclusion D.ŒF�˛/ � Œ OD.F/�˛ . If g 2 D.ŒF�˛/, there exists
f 2 ŒF�˛ such that D.f / D g. Thus,

OD.F/.g/ D sup
h2D�1.g/

F.h/ � F.f / � ˛ ) g 2 Œ OD.F/�˛

for all ˛ 2 Œ0; 1�:

We have proved that Œ OD.F/�˛ � D.ŒF�˛/ and D.ŒF�˛/ � Œ OD.F/�˛ , for all ˛ 2
Œ0; 1�, then (3.61) holds.

Example 3.7. Consider g W Œa; b� ! R a differentiable and positive function, A D
.cI dI e/ a triangular fuzzy number and the fuzzy-number-valued function

F.x/ D Ag.x/: (3.62)

We have

ŒF.x/�˛ D Œf �̨.x/; f C̨.x/� (3.63)

with

f �̨.x/ D Œa C ˛.b � a/�g.x/ and f C̨.x/ D Œe � ˛.e � d/�g.x/ (3.64)

differentiable with respect to x and continuous with respect to ˛.
The continuity in ˛ means that F.x/ 2 F 0

C.R/. It will be proved in Theorem 3.17
that the representative bunch of first kind of this function has compact ˛-cuts in
A C.Œa; b�IR/, since it satisfies the hypotheses of the theorem.

The derivative of the representative bunch of first kind has ˛-cuts

Œ OD QF�˛ D
[
ˇ�˛

[
0���1

.f �
ˇ /0

D .1 � �/Œa C ˛.b � a/�g0 C �Œe � ˛.e � d/�g0
D fa � g0; a 2 ŒA�˛g

(3.65)

for all ˛ 2 Œ0; 1�, that is,

OD QF D Ag0: (3.66)

It is a similar result as in Example 3.2 for GH-derivative, in terms of attainable
sets.

Example 3.8. Let

f .x/ D Becx (3.67)
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be a fuzzy-set-valued function where c is a real constant and B is a fuzzy subset in
R such that B.1/ D 1, B.0:5/ D 0:5 and B.x/ D 0 everywhere else. Hence f .x/

is not differentiable using Hukuhara or any generalized derivatives since it is not
a fuzzy-number-valued function. On the other hand, the fuzzy bunch of functions
with ˛-levels

ŒQf .�/�˛ D
� fy1.�/; y2.�/g; if 0 � ˛ � 0:5

fy1.�/g; if 0:5 < ˛ � 1
;

where y1.x/ D ecx and y2.x/ D 0:5ecx, has (3.67) as attainable fuzzy sets and is OD-
differentiable. Since this ˛-levels are compact subsets of A C.Œa; b�IR/, we apply
Theorem 3.13 and obtain

Œ ODf .�/�˛ D
� fz1.�/; z2.�/g; if 0 � ˛ � 0:5

fz1.�/g; if 0:5 < ˛ � 1
;

where z1.x/ D cecx and z2.x/ D 0:5cecx. Its attainable sets are

ODf .x/ D cBecx: (3.68)

Remark 3.2. The Hukuhara or the generalized derivatives cannot be used to dif-
ferentiate fuzzy-set-valued functions whose images are not fuzzy numbers, as the
function in Example 3.8. On the other hand, one can use the OD on correspondent
fuzzy bunches of functions and regard its attainable fuzzy sets as derivative.

Example 3.9 ([4]). The operator OD W FK .C1.Œa; b�IRn// ! FK .C.Œa; b�IRn// is
well defined and for each F 2 FK .C1.Œa; b�IRn// we have

Œ ODF�˛ D DŒF�˛ (3.69)

for all ˛ 2 Œ0; 1�, if C1.Œa; b�IRn/ is endowed with the norm k x k1D
sup0�t�Tfjx.t/j C jx0.t/jg and C.Œa; b�IRn/ is endowed with the usual supremum
norm. The result follows from Theorem 2.6 since D is a continuous function for
these spaces.

Another possibility of D being a continuous operator is as follows:

Theorem 3.14 ([4]). Consider the subset in A C.Œ0; T�IRn/:

ZT.Rn/ D fx.�/ 2 C.Œ0; T�IRn/ W 9 x0.�/ 2 L1.Œ0; T�IRn/g; (3.70)

with ZT.Rn/ having the uniform norm topology and L1.Œ0; T�IRn/ with the weak*-
topology. Thus,

OD W FK .ZT.Rn// ! FK .L1.Œ0; T�IRn//; (3.71)
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where OD is the extension of the derivative D, is well defined, that is, for each
F 2 FK .ZT.Rn//, the ˛-level Œ ODF�˛ is a compact subset in L1.Œ0; T�I R

n/ and
Œ ODF�˛ D DŒF�˛ .

Proof. The result follows from the Theorem 2.6 because

D W ZT.Rn/ ! L1.Œ0; T�IRn/ (3.72)

is a continuous linear operator (see [1, p. 104]).

Theorem 3.15. Let F; G 2 FK .A C.Œa; b�IRn//, then

(i) OD.F C G/ D ODF C ODG;
(ii) OD�F D � ODF, for any � 2 R.

Proof. This proof is completely analogous to the one of Theorem 3.15, due to the
linearity of the derivative operator.

3.2.3 Fundamental Theorem of Calculus

A result connects the concepts of derivative and integral for fuzzy bunches of
functions as in the classical case and in the fuzzy-set-valued function case.

Theorem 3.16. Let F 2 FK .L1.Œa; b�IRn//. Hence

OD
� OR F

�
D F; (3.73)

that is,

h OD
� OR F

�i˛ D ŒF�˛: (3.74)

for all ˛ 2 Œ0; 1�.

Proof. Since Theorem 3.11 holds,

Œ OR F�˛ D R
ŒF�˛

D fR f W f 2 ŒF�˛g (3.75)

for all ˛ 2 Œ0; 1� and OR F 2 FK .A C.Œ0; T�IRn//. Then Theorem 3.13 holds and,

Œ OD OR F�˛ D DŒ OR F�˛
D fD

R
f W f 2 ŒF�˛g

D ŒF�˛

(3.76)

for all ˛ 2 Œ0; 1� .
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3.3 Comparison

Different fuzzy bunches of functions may present the same attainable fuzzy sets, that
is, more than one fuzzy bunch of functions may correspond to one single fuzzy-set-
valued function. Choosing the suitable fuzzy bunch may lead to equivalence of OD
with derivatives for fuzzy-set-valued functions and equivalence of OR with integrals
for fuzzy-set-valued functions (in terms of attainable sets). This section discloses
similarities of the proposed theory with other approaches.

The motivation for this comparison and the definition of the two different fuzzy
bunches of functions of Definition 2.16 is what happens to the fuzzy-number-valued
functions of Examples 3.3 and 3.4. In the former the gH-derivative does not exist
whereas the g-derivative does and in the latter both do not exist. We calculate the
OD-derivative of the corresponding fuzzy bunches of the fuzzy-valued functions in
Examples 3.3 and 3.4 next. The fuzzy-number-valued functions do not meet the
conditions of the theorems to be stated, revealing the importance of the hypotheses
of these theorems.

Example 3.10. Recall Examples 2.13 and 3.3 where the representative bunch of first
kind are given by the ˛-cuts

Œ QF1.�/�˛ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0
@ [

ˇ�0:5

[
0���1

f �
ˇ

1
A[

0
@ [

˛�ˇ�0:5

[
0���1

g�
ˇ

1
A; if 0 � ˛ � 0:5

[
ˇ�˛

[
0���1

f �
ˇ ; if 0:5 < ˛ � 1

(3.77)

where (
f �
ˇ .�/ W f �

ˇ .x/ D .1 � �/.x2 � 3 C ˇ/ C �..2ˇ � 1/x2 � 6ˇ C 4/;

g�
ˇ.�/ W g�

ˇ.x/ D .1 � �/.x2 � 3 C ˇ/ C �..1 � 2ˇ/x2 � 2ˇ C 2/;
(3.78)

for all � 2 Œ0; 1�. Since
(

.f �
ˇ /0.�/ W f �

ˇ .x/ D .1 � 2� C 2ˇ�/2x;

.g�
ˇ/0.�/ W g�

ˇ.x/ D .1 � 2ˇ�/2x;
(3.79)

using Theorem 3.13 to calculate Œ OD QF1.�/�˛ we obtain

8̂̂
ˆ̂<
ˆ̂̂̂
:

0
@ [

ˇ�0:5

[
0���1

.f �
ˇ /0
1
A[

0
@ [

˛�ˇ�0:5

[
0���1

.g�
ˇ/0
1
A; if 0 � ˛ � 0:5

[
ˇ�˛

[
0���1

.f �
ˇ /0; if 0:5 < ˛ � 1:

(3.80)



3.3 Comparison 59

At x 2 Œ0; 0:8�

Œ OD QF1.x/�˛ D Œm; M� (3.81)

with m as

min

8<
:
0
@ [

ˇ�0:5

[
0���1

.f �
ˇ /0.x/

1
A[

0
@ [

˛�ˇ�0:5

[
0���1

.g�
ˇ/0.x/

1
A
9=
; D 0 (3.82)

if 0 � ˛ � 0:5 and

min

8<
:
[
ˇ�˛

[
0���1

.f �
ˇ /0.x/

9=
; D .2˛ � 1/2x (3.83)

if 0:5 < ˛ � 1. And M equals

max

8<
:
0
@ [

ˇ�0:5

[
0���1

.f �
ˇ /0.x/

1
A[

0
@ [

˛�ˇ�0:5

[
0���1

.g�
ˇ/0.x/

1
A
9=
; D 2x (3.84)

if 0 � ˛ � 0:5 and

max

8<
:
[
ˇ�˛

[
0���1

.f �
ˇ /0.x/

9=
; D 2x (3.85)

if 0:5 < ˛ � 1.
Hence the attainable sets of the OD-derivative are

Œ OD QF1.x/�˛ D
�

Œ0; 2x� ; if 0 � ˛ � 0:5

Œ.2˛ � 1/2x; 2x� ; if 0:5 < ˛ � 1
(3.86)

that is, the same as the g-derivative of the fuzzy-number-valued function F.

Example 3.11. Recall Examples 2.12 and 3.4 where the representative bunch of first
kind is given by the ˛-cuts

ŒF.x/�˛ D
� 	

10x2 � 12; 10x2 C 2



; if 0 � ˛ � 0:5

Œ�1; 1� ; if 0:5 < ˛ � 1
: (3.87)



60 3 Fuzzy Calculus

and the representative bunch of second kind is defined by

Œ QF1.�/�˛ D

8̂
ˆ̂<
ˆ̂̂:

2[
iD1

[
0���1

y�
i .�/; if 0 � ˛ � 0:5

[
0���1

y�
1 .�/; if 0:5 < ˛ � 1

(3.88)

where

8̂̂
<
ˆ̂:

y�
1.�/ W y�

1.x/ D .1 � �/.10x2 � 12/ C �.10x2 C 2/;

y�
2.�/ W y�

2.x/ D .1 � �/.�1/ C �;

y�
3.�/ W y�

3.x/ D .1 � �/.�1/ C �.10x2 C 2/;

y�
4.�/ W y�

4.x/ D .1 � �/.10x2 � 12/ C �;

(3.89)

for all � 2 Œ0; 1�.
The derivatives of the representative bunch of first kind is given by the ˛-cuts

Œ OD QF1.�/�˛ D

8̂
ˆ̂<
ˆ̂̂:

2[
iD1

[
0���1

.y�
i /0.�/; if 0 � ˛ � 0:5

[
0���1

y�
1 .�/; if 0:5 < ˛ � 1

(3.90)

and the representative bunch of second kind is defined by

Œ OD QF2.�/�˛ D

8̂̂
<̂
ˆ̂̂:

4[
iD1

[
0���1

.y�
i /0.�/; if 0 � ˛ � 0:5

f.y1/0.�/g
[

0���1

y�
1.�/; if 0:5 < ˛ � 1

(3.91)

where

8̂̂
<
ˆ̂:

.y1/0.�/ W .y1/0.x/ D 20x;

.y2/0.�/ W .y2/0.x/ D 0;

.y3/0.�/ W .y3/0.x/ D �20x;

.y4/0.�/ W .y4/0.x/ D .1 � �/20x;

(3.92)

for all � 2 Œ0; 1�.
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In terms of attainable sets, the derivative of the representative bunch of first kind
has attainable sets

Œ OD QF1.x/�˛ D
� f0gSf20xg; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
: (3.93)

The derivative of the representative bunch of second kind for x 2 Œ0; 1� has
attainable sets

Œ OD QF2.x/�˛ D
�

Œ0; 20x�; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
(3.94)

and for x 2 Œ�1; 0�,

Œ OD QF1.x/�˛ D
�

Œ20x; 0�; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
: (3.95)

Hence the derivative of the representative bunch of first kind at each x 2 Œ�1; 1�

does not define fuzzy numbers while the derivative of the representative bunch of
second kind does.

Example 3.10 illustrates that the OD-derivative of the fuzzy bunch of first kind
of the given fuzzy-number-valued function F exists but its attainable sets are
not fuzzy numbers (while the gH-derivative of the fuzzy-number-valued function
does not exist). The result that we state next regards the necessary conditions for
equivalence between the gH-derivative of a fuzzy-number-valued function and the
OD-derivative of the corresponding fuzzy bunch of first kind. The result we state later
is connected with Example 3.11, that is, it is necessary that the g-derivative exist
for the equivalence with the derivative of the representative bunch of second kind.
The OD derivative in this last case provided a fuzzy-number-valued function, which
no derivative for fuzzy-number-valued functions that we presented can do.

Theorem 3.17. Let F W Œa; b� ! F 0
C .R/ be such that the functions f �̨.x/ and f C̨.x/

are real-valued functions, differentiable with respect to x, uniformly in ˛ 2 Œ0; 1�.
Suppose also that one of the following two cases holds:

(a)
�
f �̨�0 .x/ is increasing,

�
f C̨�0 .x/ is decreasing as functions of ˛; and

�
f �
1

�0
.x/ � �

f C
1

�0
.x/; (3.96)

or
(b)

�
f �̨�0 .x/ is decreasing,

�
f C̨�0 .x/ is increasing as functions of ˛; and

�
f C
1

�0
.x/ � �

f �
1

�0
.x/: (3.97)
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Then F generates a representative bunch of first kind QF.�/ with compact ˛-levels
and whose OD-derivative has attainable sets

h OD QF.x/
i

˛
D Œminf�f �̨�0 .x/;

�
f C̨�0 .x/g; maxf�f �̨�0 .x/;

�
f C̨�0 .x/g�: (3.98)

In words, the OD-derivative coincides with the gH-derivative at each x.

Proof. We prove that the sets A˛ in Definition 2.16 are ˛-cuts of a fuzzy set in
A C.Œa; b�IR/ using the same arguments as in Example 2.11. The only differ-
ence is to demonstrate compactness, which we do next. Note that any sequence
.f �i

˛i
/ in

S
ˇ�˛

S
0���1

f �
ˇ .�/ has a convergent subsequence whose limit belongs to

S
ˇ�˛

S
0���1

f �
ˇ .�/, due to the continuity of f �

ˇ .�/ as function of the real parameters �

and ˇ defined on closed intervals (compact subsets) Œ0; 1� and Œ˛; 1�, respectively.
And since f ˙̌ are differentiable, so are f �

ˇ . According to [14], the differentiability
with respect to x, uniformly in ˛ 2 Œ0; 1�, assures that if a sequence of functions
converges to a function f , the sequence of its derivatives converges to f 0. Since f is
differentiable, it belongs to A C.Œa; b�IR/. As a result,

S
ˇ�˛

S
0���1

f �
ˇ is compact in

A C.Œa; b�IR/ and it is equal to its closure and hence to A˛ .
We next make use of Theorem 3.13 since QF 2 FK .A C.Œa; b�IR//:

Œ OD QF�˛ D DŒ QF�˛

D
[
ˇ�˛

[
0���1

.f �
ˇ /0 (3.99)

for all ˛ 2 Œ0; 1�. And we observe that for case (a)

[
0���1

.f �
ˇ /0.x/ D Œ.f �̌/0.x/; .f C

ˇ /0.x/� (3.100)

and

.f �̨/0.x/ � .f �̌/0.x/ � .f �
1 /0.x/ � .f C

1 /0.x/ � .f C
ˇ /0.x/ � .f C̨/0.x/ (3.101)

for 0 � ˛ � ˇ � 1,

Œ.f �̌/0.x/; .f C
ˇ /0.x/� � Œ.f �̨/0.x/; .f C̨/0.x/�: (3.102)

Hence

Œ OD QF.x/�˛ D
[
ˇ�˛

Œ.f �̌/0.x/; .f C
ˇ /0.x/�

D Œ.f �̨/0.x/; .f C̨/0.x/�

(3.103)

for all ˛ 2 Œ0; 1�.
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Similarly, case (b) leads to

Œ OD QF.x/�˛ D Œ.f C̨/0.x/; .f �̨/0.x/�: (3.104)

As a result we obtain the desired expression,

h OD QF.x/
i

˛
D 	

minf.f �̨/0.x/; .f C̨/0.x/g; maxf.f �̨/0.x/; .f C̨/0.x/g
 ; (3.105)

for all ˛ 2 Œ0; 1�, which the same as stated in Theorem 3.6 for the gH-derivative.

A similar result for connecting OD-derivative and g-derivative is presented in what
follows.

Theorem 3.18. Let F 2 Œa; b� ! F 0
C.R/ be a function such that f �̨.x/ and f C̨.x/

are differentiable real-valued functions with respect to x, uniformly with respect
to ˛ 2 Œ0; 1�. Then F generates a representative bunch of second kind QF.�/ with
compact ˛-levels and whose OD-derivative has attainable sets with levels Œ OD QF.x/�˛
given by

"
inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

; sup
ˇ�˛

max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

:

#
(3.106)

It means that the values of the g-derivative of F.x/ and the attainable sets of the
OD-derivative of QF.�/ coincide in every x 2 Œa; b�, whenever the g-derivative exists.

Proof. Using the same argument of the previous proof, it follows that the resultant
B˛ in Definition 2.16 are compact sets in A C.Œa; b�IR/ and are the ˛-cuts of the
representative bunch of second kind of F, QF. We use Theorem 3.13 and obtain

Œ OD QF�˛ D DŒ QF�˛

D
[

ˇ;��˛

[
0���1

.f �
ˇ;� /0 (3.107)

We will prove that L D infˇ;��˛

n
.f �

ˇ;� /0.x/
o

is attained, that is, that there exists

a triple .�; ˇ; �/ such that .f �

ˇ;�
/0.x/ D L with ˇ; � 2 Œ˛; 1�, � 2 Œ0; 1�. From the

definition of infimum, y � L if y 2 S
ˇ;��˛

S
0���1

.f �
ˇ;� /0.x/ and there exists a sequence

.yn/, yn D .f �n
ˇn;�n

/0.x/ such that

.f �n
ˇn;�n

/0.x/ ! L; L � .f �n
ˇn;�n

/0.x/: (3.108)

To the sequence .yn/ in R there corresponds a sequence .gn.�// of functions such
that gn.�/ D .f �n

ˇn;�n
/0.�/. This sequence of functions has a convergent subsequence,
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since the set is sequentially compact (where we use the same result in [14] as
previously used). This subsequence of functions defines a subsequence in .yn/,
ynk D gnk .x/. The subsequence .ynk / also converges to L. The limit of gnk .�/ is
attained for some triple .�; ˇ; �/ and its value in x is

.f �

ˇ;�
/0.x/ D lim gnk .x/ D lim ynk D L: (3.109)

Similarly we prove that the supremum M is also attained. Now we prove that

L D inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

: (3.110)

For any .f �
ˇ;� /0.x/, we have

.f �̌/0 � .f �
ˇ;� /0.x/ � .f C

� /0 or .f C
� /0 � .f �

ˇ;� /0.x/ � .f C
ˇ /0: (3.111)

Hence

inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

� inf
ˇ;��˛

n
.f �

ˇ;� /0.x/
o

: (3.112)

Since

[
ˇ�˛

n
.f �̌/0.x/; .f C

ˇ /0.x/
o

�
[

ˇ;��˛

n
.f �

ˇ;� /0.x/
o

(3.113)

the equality of the infimum holds.

Hence the value L D infˇ�˛ min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

is attained by

.f �̌/0.x/ or .f C
ˇ /0.x/, for some ˇ � ˛. The same happens to M D

supˇ�˛ max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o
. As a consequence, there are four possible cases:

(1) L D .f �̌
1
/0.x/ and M D .f C

ˇ2
/0.x/ and any value between L and M is attained

by .f �
ˇ1;ˇ2

/0.x/ for some � 2 Œ0; 1�;

(2) L D .f C
ˇ1

/0.x/ and M D .f �̌
2
/0.x/ and any value between L and M is attained

by .f �
ˇ2;ˇ1

/0.x/ for some � 2 Œ0; 1�;
(3) L D .f �̌

1
/0.x/ and M D .f �̌

2
/0.x/ and any value between L and M is attained by

.f �
ˇ1;ˇ1

/0.x/ or .f �
ˇ2;ˇ1

/0.x/ for some � 2 Œ0; 1�.

(4) L D .f C
ˇ1

/0.x/ and M D .f C
ˇ2

/0.x/ and any value between L and M is attained by

.f �
ˇ1;ˇ1

/0.x/ or .f �
ˇ1;ˇ2

/0.x/ for some � 2 Œ0; 1�.
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It proves that all values in

"
inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

; sup
ˇ�˛

max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o#

(3.114)

are attained.
Then the same expression as in Theorem 3.7 for g-differentiable functions is

found and the desired result is proved.

The attainable sets of the OR -integral of certain bunches of functions also coincide
with integrals for fuzzy-set-valued functions, as it will be stated in Theorem 3.19.

Theorem 3.19. Let F W Œa; b� ! F 0
C .R/ be continuous. Then the OR -integral of the

representative bunch of first kind has attainable fuzzy sets

" OZ x

a

QF
#

˛

D
�Z x

a
f �̨;

Z x

a
f C̨
�

(3.115)

for all ˛ 2 Œ0; 1�.

In words, the OR -integral coincides with the integrals for fuzzy-set-valued func-
tions at each x.

Proof. It is not hard to prove the compacity of A˛ (Definition 2.16) in L1.Œa; b�IR/.
This is assured by the arguments previously used in proving compacity in
A C.Œa; b�IR/. Following the reasoning of the previous results one demonstrate
that A˛ are the ˛-cuts of a fuzzy subset in L1.Œa; b�IR/.

We observe that
R x

a f �
ˇ is well defined and that

Z x

a
f �̨ �

Z x

a
f �
ˇ and

Z x

a
f �
ˇ �

Z x

a
f C̨ (3.116)

for all � 2 Œ0; 1� and 0 � ˛ � ˇ � 1. Hence we obtain, for all ˛ 2 Œ0; 1�,

Œ OR QF�˛ D
[
ˇ�˛

[
�2Œ0;1�

Z x

a
f �
ˇ

D Œ
R

f �̨;
R

f C̨�

(3.117)

where the last identity holds due to the continuity of
R x

a f �
ˇ .x/ on �, ˇ, and x.

Thus, we have proved that the attainable sets of the OR -integral of QF have the same
expression of the integrals for fuzzy-set-valued functions at each x.
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Summary of the comparison of derivatives and integrals:

• Equivalence between gH- and OD-derivatives. The gH-derivative of a cer-
tain class of fuzzy-number-valued functions coincides with the attainable
sets of the OD-derivative (using the representative bunch of first kind).

• Equivalence between g- and OD-derivatives. The g-derivative of a certain
class of fuzzy-number-valued functions coincides with the attainable sets
of the OD-derivative (using the representative bunch of second kind).

• Equivalence among integrals. The Aumann, Riemann, and Henstock
integrals of a certain class of fuzzy-number-valued functions coincide with

the attainable sets of the OR -integral (using the representative bunch of first
kind).

3.4 Summary

This chapter reviewed fuzzy calculus for fuzzy-set-valued functions and presented
the new fuzzy calculus using fuzzy bunches of functions. The concepts and results
here displayed are essential for the development of the various approaches of FDEs,
to be presented in the next chapter. They are summarized next:

• The Hukuhara derivative is defined for a class of fuzzy-set-valued functions
and uses the concept of Hukuhara difference. The strongly generalized
Hukuhara derivative, weakly generalized Hukuhara derivative, generalized
Hukuhara derivative, and the fuzzy generalized derivative generalize the
Hukuhara derivative and are defined for wider classes of fuzzy-number-valued
functions.

• The Aumann, Riemann, and Henstock integrals are defined for fuzzy-set-valued
functions.

• The derivative and the integral via extension of the derivative and integral

operators, denoted by OD and OR , are defined for fuzzy bunches of functions.
• The OD-derivative of a class of fuzzy bunches of functions coincides with the

generalized derivatives in terms of attainable sets.

• The OR -integral of a class of fuzzy bunches of functions coincides with the
integrals for fuzzy-number-valued functions in terms of attainable sets.
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