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Preface

Differential equations have been widely explored in many fields, from applications
in physics, engineering, economics, and biology to theoretical mathematical devel-
opments. Its presence in undergraduate and graduate courses of the aforementioned
areas and countless textbooks and papers ensures their usefulness and importance.

A much newer theory, fuzzy sets theory, created to model subjective concepts
whose boundaries are nonsharp, has also been explored in various fields due to
its great applicability and functionality. As soon as the idea of a function with
fuzzy values was born, it raised the idea of some kind of fuzzy differential equation
(FDE) as well. Since then, researches defined different fuzzy derivatives and fuzzy
functions, giving rise to different theories of FDEs. Great part of its development
is in papers and rare textbooks, which usually dedicate few sections to the subject.
An updated textbook entirely devoted to FDEs has been missing and this book is
intended to cover this gap.

This book is aimed at researchers and graduate students interested in FDEs. It
may be useful to scientists of areas such as engineering, biology, and economics
dealing with uncertain dynamical systems and fuzzy concepts, besides mathemati-
cians interested in theoretical developments. The text focuses on fuzzy initial value
problems (FIVPs) and is intended to be a reference textbook with the basics of
various approaches of FDEs. The best known approaches—via Hukuhara derivative,
fuzzy differential inclusions (FDIs) and via extension of the solution are presented,
as well as the recent strongly generalized derivative and the extension of the
derivative operator. This book is the result of years of study aimed at (but not
restricted to) developing the last approach, including new results related to it.

The theory of FDEs via the extension of the derivative operator is based on
fuzzy calculus for fuzzy bunches of functions. This kind of function is a departure
from the generally known fuzzy-set-valued functions. A deeper understanding of
the different kinds of fuzzy functions is needed, which we endeavor to offer to
the reader. Comparisons and links among all the mentioned approaches of FDEs
are provided through an original interpretation that situates the novel theory of the
extension of the derivative operator as the missing link needed to fill the gap to
connecting all approaches.
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viii Preface

The reader is not required to be conversant in fuzzy sets, though it is desired; the
book is intended to cover all the necessary prerequisites in this subject. In order to
understand all the demonstrations, the reader must know basic functional analysis,
but it is not mandatory in order to understand the theory as a whole.

Some highlights that make this book unique are summarized next:

• The text presents the most known approaches of FDEs in an unprecedented view
and with comprehensive historical overview on the subject.

• The book scrutinizes the recent theory of FDEs via extension of the derivative
operator, presenting it for the first time in a textbook.

• The reader is not expected to be conversant in fuzzy sets. A chapter with basic
concepts and illustrative examples is dedicated to eliminate deficiencies.

• The text presents theoretical depth, though it is also intended to serve as a useful
text to researches from application areas.

The authors would like to express their gratitude to Professor Geraldo Silva and
the Springer staff for the assistance provided in preparing the manuscript. The first
and second authors acknowledge CNPq of the Ministry for Science and Technology
of Brazil for financial support.

Sorocaba, Brazil Luciana Takata Gomes
Campinas, Brazil Laécio Carvalho de Barros
Redmond, WA, USA Barnabas Bede
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Chapter 1
Introduction

Fuzzy systems were created to overcome the binary reasoning deep-rooted in the
classical logic and mathematics. Under the dichotomous thinking, statements are
completely true or completely false and elements are totally in or totally out
of a set—never in the halfway or in different degrees. The creation of fuzzy
systems allowed for reproducing the human reasoning in a computer understandable
language and became successful when applied to modeling engineering problems.
The modeling of any phenomena by humans is subjected to the limitation of the
human being in understanding, collecting data, interpreting, and concluding, aside
from their subjective reasoning. Moreover, the classification of the most various
objects is subjected to the possible nonsharp boundaries inherent to the definition
of classes made by humans. For instance, there is no exact bound in the definition of
the group of the “populous cities.” Taking one person by one out of a populous city
we can reduce its population to zero without ever experiencing the exact moment
when we think “now if I take one individual out this city is no more populous.”

Nowadays fuzzy sets and fuzzy logic are present in various fields, from appli-
cations in the industry passing through applications in natural phenomena and
psychology to mathematical theoretical aspects. What applied areas have in com-
mon is the presence of vague and uncertain information and the modeling done by
the human being, whose reasoning is subjective, imprecise and, not uncommonly,
even contradictory. Since mathematical tools are used to modeling all these
applications, its theoretical aspects have to admit the concept of “fuzziness,” that
is, the partial truth of a statement or the partial membership of an element to a
subset. Mathematical concepts such as numbers, sets, metrics, functions, operators,
now have their “fuzzy versions.”

Fuzzy Set Theory Is Not Fuzzy One should not think, however, that the fuzziness
admitted in a natural phenomena and the tools created to deal with it make the theory
fuzzy itself. Zimmermann in [40] clarifies:

© The Author(s) 2015
L.T. Gomes et al., Fuzzy Differential Equations in Various Approaches,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-22575-3_1
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2 1 Introduction

Fuzzy set theory provides a strict mathematical framework (there is nothing fuzzy about
fuzzy set theory!) in which vague conceptual phenomena can be precisely and rigorously
studied.

In truth, taking into account the vague information is more realistic than presuming
it crisp and precise, if it is not in fact.

Fuzzy Differential Equations Modeling of various phenomena frequently makes
use of differential equations. In order to include imprecision, the fuzzy approach is
often used. In particular, differential inclusions and, more recently, FDEs, or even
fuzzy differential inclusions (FDIs) have been used.

In population dynamics, for instance, [23] recalls that individuals may exhibit
some preferences or strategies, that is, inside a group they do not behave all in the
same manner. Environmental or demographic noise is also a source of uncertainty.
Via standard theory of differential equations, it is not possible to take these factors
into account.

The authors of [23, 24] claim for the use of FDIs in population dynamics.
According to these studies, the stochastic approach, via the use of white noise
(a linear term in the differential equation) to model the uncertainty of the dynamics,
is not the most appropriate one. The probabilistic approach would be suitable for
the “hard sciences,” such as physics and electronics, not for a “soft science” as
biology. The white noise would emphasize short time scales and would lead to
mathematically tractable models, hence it was used to treat many problems, but
there are many others that demand for a different approach. The alternative would be
the deterministic noise, including what they call the unknown-but-bounded-noise,
i.e., the imprecision enters the dynamics via a parameter whose only assumption
is that its values belong to a bounded set U, which may depend on time or
the state variable. This approach leads to differential inclusions (see [2]) and
considering some kind of “preference” of some parameter(s) in U determines a
higher membership degree of a more suitable solution. This characterizes FDIs.

It is also possible to define fuzzy derivatives and consider the function as fuzzy
as it has been done by many authors [5, 8, 13, 19, 33, 35, 36]. The first proposal,
based on the Hukuhara derivative for interval-valued functions, has been criticized
for presenting nondecreasing fuzziness. In other words, a dynamical system whose
initial uncertainty is different from zero does not evolve to non-uncertain states. In
the fuzzy context, it means that the solution cannot reach a nonfuzzy value. This
situation is not consistent with the nuclear decay model, for instance. Other cited
approaches succeeded to overcome this shortcoming and each of them is based on
different notions of functions, differentiability, solutions, such that the solutions to
FIVPs may differ greatly from each other.
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1.1 Initial Value Problems

This book treats fuzzy initial value problems (FIVP). An initial value problem (IVP)
is a system of an ordinary differential equation (ODE) together with a value called
initial condition:

�
x0.t/D f .t; x.t//
x.0/D x0

: (1.1)

In what we call the “classical case,” the solution is usually defined as a real-
valued continuous function x.�/ that satisfies the initial condition and the differential
equation at every t in a given domain. The symbol x0.t/ stands for the derivative of x
at t. The function x.�/ is interpreted as a curve such that the velocity and the direction
to be followed are determined by the function f , at each real value t. In this case,
the solution is a real-valued function with real-valued argument. When the context
demands distinction from the fuzzy case, we will call the IVP a “classical IVP” and
the solution a “classical solution.”

This approach is widely used to model physical, biological, chemical phenom-
ena. In a biological interpretation, x can be the number of individuals of a population
(ants, fishes, predators, humans, viruses, infected people), t is time, and f is the rate
with which the population changes in quantity. The ability of modeling various
phenomena, as well as theorems regarding existence of solution and practical
techniques to find it (analytically or numerically), justifies wide use of IVPs.

Fuzzy set theory treats of sets in universes such that the elements have partial
membership degree. That is, it is admissible that an element is not completely in or
completely out of the set, but presents an intermediate degree. The success of fuzzy
set theory, specially in modeling some control problems, has generated interest in
many fields. Several concepts of the “nonfuzzy” theory were extended to the fuzzy
case. This is no different in differential equations theory.

1.2 Fuzzy Initial Value Problem

IVP (1.1) becomes a new problem if any parameter presents fuzziness and it is
called FIVP. The first time the term fuzzy differential equation (FDE) was used
was in [21] and only in 1987 did FDE take on characteristic of the way it is used
nowadays [19, 35]. Reference [19] made use of the Hukuhara derivative for fuzzy-
set-valued functions and [35] used an equivalent definition. In both studies, the FIVP
was defined using an FDE and a fuzzy initial value:

�
X0.t/D F.t; X.t//
X.0/D X0

: (1.2)



4 1 Introduction

The function F is a fuzzy-set-valued function, that is, its values are fuzzy sets.
Hence, the derivative X0 of the unknown function X is also fuzzy. It means that
the direction to be followed by the solution is a fuzzy set and the solution, at each t,
is a fuzzy set as well.

There is also an integral equation associated with (1.2) as in the classical
case [19]. It involves a fuzzy integral and the Minkowski sum and one realizes that
the solution to this kind of equation always has nondecreasing diameter. That is,
the fuzziness (or, according to the interpretation, the uncertainty) does not decrease
with time. As it will be fully explained in Sect. 4.2, this is considered a shortcoming
since this is not expected from phenomena such as decay in population dynamics.

Generalizations of the Hukuhara derivative fixed this defect (see next Sects. 1.2.1
and 4.3), but before that, other interesting approaches emerged and are still being
intensively studied, namely the FDIs and extension of the solution. These two
approaches are based on a completely different view of fuzzy FDEs. Though they
receive this classification, they are not really FDEs. There is no equality between
the derivative of a fuzzy function and the function that determines the direction of
the dynamic since there is no derivative of fuzzy function. The derivative is that of
classical functions. In the FDIs case, at each pair .t; x/, there are different possible
values of the function f , each one with a membership degree to the set “fuzzy direc-
tion field.” The membership degree of the initial solution (to the set “fuzzy initial
condition”) and the direction field establish the membership degree of a nonfuzzy
function (or its attainable set) to the solution of the FIVP. The common approach
of extension of solution solves classical differential equations. The initial condition
and fuzzy parameters determine the solution, which is usually a fuzzy-set-valued
function.

A novel idea has been recently developed and connects both mentioned interpre-
tations for FIVPs [5, 16, 17]. A fuzzy derivative is proposed, defined via extension of
the derivative operator, denoted by OD, and it turns out to be based on differentiating
classical functions. Moreover, an FDE has to be satisfied. Comparisons of the
results between this and the other approaches are inevitable and, in fact, the new
derivative leads to the same solutions produced by the other methods, provided some
conditions are satisfied (see Sect. 3.3).

In summary:

• A solution to IVP (1.1) is a function x.�/ 2 E.Œa; b�IRn/, where E.Œa; b�IRn/ is a
space of functions from Œa; b� to R

n and f W Œa; b� � R
n ! R

n (see Fig. 1.1).
In words, the solution is a real-valued function and the differential equation
means that its derivative is a real-valued function that depends on the independent
variable (which is real) and the state variable.

• In the novel approach developed in this book, a solution to FIVP (1.2) is a fuzzy
set in a space of functions, that is, X.�/ 2 F .E.Œa; b�IRn//, where F .X/ denotes
all the fuzzy sets of the universe X. It means that each function has membership
degree to the fuzzy set solution X.�/. The differential equation is evaluated at
each t 2 Œa; b� and respective X.t/ with F W Œa; b� � F .Rn/ ! F .Rn/. In other
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Fig. 1.1 Classical IVP: the solution is a function x.�/ 2 E.Œa; b�IR/ and f is a function such that
f W Œa; b� � R ! R

Fig. 1.2 FIVP using OD-derivative: the solution is a fuzzy bunch of functions X.�/ 2
F .E.Œa; b�IR// and F is a fuzzy-set-valued function such that F W Œa; b� � F .R/ ! F .R/

Fig. 1.3 FIVP via FDIs: the solution is a fuzzy bunch of functions X.�/ 2 F .E.Œa; b�IR// and F
is a fuzzy-set-valued function such that F W Œa; b� � R ! F .R/

words, the derivative of the state variable X at t must equal F, which depends on
the real independent variable t and the state variable at t, as illustrated in Fig. 1.2.

• A solution to FDIs is also of type X.�/ 2 F .E.Œa; b�IRn//, but the domain of the
right-hand-side function is crisp, that is, F W Œa; b� � R

n ! F .Rn/ (see Fig. 1.3).
One does not solve an equation involving fuzzy sets but differential inclusions in
the ˛-cuts.
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Fig. 1.4 FIVP using H and GH-derivatives: the solution is a fuzzy-set-valued function X.�/ 2
E.Œa; b�IF .R// and F is such that F W Œa; b� � F .R/ ! F .R/

• The space of the solutions of the approach of Hukuhara derivative
(or H-derivative) and the strongly generalized derivative (or GH-derivative)
is another one: X.�/ 2 E.Œa; b�IF .Rn//. In words, X.�/ is a function that
maps real values into fuzzy values. The right-hand-side function is of type
F W Œa; b� � F .Rn/ ! F .Rn). The illustration of this approach is displayed in
Fig. 1.4.

• Finally, the extension of the solution solves differential equations and extends the
solution at each t 2 Œa; b� such that X.�/ 2 E.Œa; b�IF .Rn//.

The fuzziness in the solution enriches the theory of differential equations since
the solutions are not composed of single points, but of sets of points associated
with membership degrees. The following words are found in [12] where the author
writes about multivalued functions (which is a particular case of fuzzy-set-valued
functions):

while to describe the behaviour of a point valued function is easy (a point can only
displace itself), a set, besides displacing can be larger or smaller, can be convex or not.
All these different facts are relevant to the problem of the existence of solutions and to their
properties.

1.2.1 Historical Overview

The authors of [21] first used the term “fuzzy differential equations,” with a
completely different meaning from nowadays. They used and extended Zadeh’s
definition of the probability of a fuzzy event and solved differential equations
involving the membership function of a given fuzzy set (which was not the unknown
variable).
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Later on, [33] defined the derivative for fuzzy functions based on the concept
of Hukuhara derivative for set-valued functions. The first theorem of existence
using this derivative was proposed by Kaleva [19], where the Lipschitz condition
was used to assure existence and uniqueness of solution to a FIVP. With an
equivalent derivative, in the same year [35] published similar result. Both explored
the equivalence of the FIVP with a fuzzy integral equation using Aumann integral
for fuzzy-set-valued functions proposed by Puri and Ralescu [34] (a generalization
of the Aumann integral for set-valued functions). A version of Peano theorem of
existence of solution was published by Kaleva [20]. Its author proved that the
continuity of the function F in (1.2) and local compactness of the domain and the
codomain of the state variable assured existence of solution to the FIVP.

Many other studies regarding solutions to FIVPs using the Hukuhara derivative
were published. The authors in [38] proposed an existence and uniqueness theorem
based on approximation by successive iterations. Local and global existence and
uniqueness results for functional (or delay) differential equations were established
in [27]. See also [7, 25, 26, 31].

The concept of Hukuhara derivative to solve FDE, in spite their use in many
research articles, is considered to be defective since the differentiable functions have
nondecreasing diameters. Therefore the solutions to differential equations cannot
have decreasing diameter and, consequently, no periodic behavior can be modeled
(nor can contractive behavior), except in the nonfuzzy case.

Based on the theory of differential inclusions for set-valued functions (interested
readers can find good review and list of references in [12] and the main results in
[2, 15]), [1, 3] proposed to solve FDIs. The idea is to solve differential inclusions
considering the membership degrees for initial conditions, right-hand-side functions
and solutions.

Reference [18] suggests to solve differential inclusions for each level of the right-
hand side fuzzy function (a multivalued function). Using this interpretation, [14]
proved an existence theorem for FDIs with fuzzy initial condition. It stated that
if some hypotheses are met, the solutions of the differential inclusions produce a
fuzzy bunch of functions, that is, a fuzzy set in a space of functions. Moreover, its
attainable sets are fuzzy numbers.

The solution of an FDI may present decreasing diameter, overcoming the
Hukuhara defect. This advantage and the richness of the fuzzy and the multivalued
functions led many other authors to study this theory (see [4, 24, 25, 29, 39]).

This approach seems attractive, on the one hand, since it has no fuzzy derivatives.
Hence it avoids the problem of solving equations with fuzzy sets, which looks
much more complicated (minimization and maximization problems have to be
frequently solved). On the other hand, solving differential inclusions is not an easy
task as well. The extension of the solution of the IVP is intuitive and easier to
solve (see [11, 29, 32]). It also preserves the main properties of the nonfuzzy case.
Reference [30] proved that solutions that are stable for classical models are also
stable for the fuzzy case. It does not use any fuzzy derivative, as in FDIs. In fact,
under certain conditions, these two approaches are very similar and produce the
same solutions for FIVPs.
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The theory for the first generalizations of the Hukuhara derivative was proposed
and developed in [8]. The strongly generalized and the weakly generalized dif-
ferentiabilities are derivatives for fuzzy functions that differentiate all Hukuhara
differentiable functions and others, including a class of functions with decreasing
diameter. An existence theorem using the strongly generalized differentiability
was also proven. This result assures two solutions to FIVPs, one for models of
nonincreasing processes and the other one with nondecreasing diameter. A char-
acterization result was obtained in [7] stating that the FDEs are equivalent to
classical differential equation systems. That is, it is possible to solve many FIVPs
by using only classical theory. Some interesting behaviors of solutions to FIVPs via
generalized derivatives are novel in the field of differential equations. Phenomena
such as “switch points,” in which other solutions arise at determined points of the
dynamics (even in very well-behaved dynamics), do not exist in classical theory.

Other more general derivatives—the generalized Hukuhara derivative and the
most general so far, the fuzzy generalized derivative (see [36])—were suggested
more recently. These generalized derivatives have been extensively studied (see
[8, 10, 13, 36]). However, the development of the theory of FDEs using the
generalizations of the Hukuhara differentiability has been limited to the strongly
generalized version (see [8, 9, 22, 28, 37]).

Another derivative, namely the �-derivative, was extended from the case in
which the functions are set-valued to the fuzzy-set-valued ones (see [13]). The
�-derivative is based on the embedding of the family of nonempty compact sets
of Rn in a real normed linear space.

The use of the extension principle to define the derivative and integral operators
was suggested in [6]. These concepts were further investigated and an existence
theorem for solutions to FIVPs was stated in [5]. The proof is based on the
theorem of existence of solutions of FDI, revealing a connection between these two
approaches. The mentioned theorem is part of this book, as well as other results
connecting the extension of the derivative operator and via generalized derivatives.
It will be clear that all approaches mentioned here have some similarities. Some of
these results have already been published [5, 16, 17].
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Chapter 2
Basic Concepts

This chapter introduces concepts such as fuzzy sets, extension principle, fuzzy
numbers, ˛-cuts, fuzzy arithmetic and fuzzy metrics, and the notation we use in
this text. They are fundamental for the reader who is not familiar with the theory
of fuzzy sets in order to understand the following chapters. We also present famous
and important results such as the Characterization Theorem, which characterizes
˛-cuts of fuzzy numbers as nonempty closed and bounded intervals. At the end of
this chapter we present different kinds of fuzzy functions and means of comparing
them, which will be needed when studying the solutions of differential equations
under different approaches. For a deeper understanding, the reader can refer to
[4, 8, 19, 30, 31] and the papers cited herein this book.

2.1 Fuzzy Subsets

Definition 2.1. A fuzzy subset A of a universe U is characterized by a function

�A W U ! Œ0; 1� (2.1)

called membership function.

If

�A W U ! f0; 1g (2.2)

the subset A is said to be crisp.
In the nonfuzzy case (2.2), �A is called the characteristic function (or indicator

function) and it is often denoted by �A. If �A.x/ D 0, then x does not belong to A,
whereas if �A.x/ D 1, then x belongs to A. The fuzzy subset is a generalization in
which an element of U has partial membership to A characterized by a degree in the

© The Author(s) 2015
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interval Œ0; 1�. Hence the assignment �A.x/ D 0 means that x does not belong to A,
while the closer �A.x/ is to 1, the more x is considered in A.

Whenever a function, a set, or any other object is nonfuzzy, we refer to it just
as “function,” “set,” and the like. If we believe it is necessary to stress that it is
nonfuzzy, we use the words crisp, classical, or nonfuzzy.

Some important classical subsets related to fuzzy subsets are defined in what
follows.

Definition 2.2. Given a fuzzy subset A of a topological space U, its ˛-cuts (or
˛-levels) are the subsets

ŒA�˛ D
� fx 2 U W �A.x/ � ˛g; if ˛ 2 .0; 1�

cl fx 2 U W �A.x/ > 0g; if ˛ D 0
(2.3)

where cl Z denotes the closure of the classical subset Z.
The support is

supp A D fx 2 U W �A.x/ > 0g: (2.4)

The core is

core A D fx 2 U W �A.x/ D 1g: (2.5)

Two fuzzy subsets A and B of U are said to be equal if their membership functions
are the same for all element in U (i.e., �A.x/ D �B.x/; 8x 2 U). Or, equivalently, if
all ˛-cuts coincide (ŒA�˛ D ŒB�˛ , for all ˛ 2 Œ0; 1�).

We denote by

• K n the family of all nonempty compact subsets of Rn;
• K n

C the family of all nonempty compact and convex subsets of Rn;
• P.U/ the family of all subsets of U;
• F .U/ the family of all fuzzy sets of U;
• FK .U/ the family of fuzzy sets of U whose ˛-cuts are nonempty compact

subsets of U;
• FC .U/ the family of fuzzy sets of U whose ˛-cuts are nonempty compact and

convex subsets of U.
• E.Œa; b�IRn/ a space of function from Œa; b� to R

n, a � b, a; b 2 R. For instance,
C.Œa; b�IRn/ is the space of continuous functions. Further examples appear in
Appendix A.

If the core of a fuzzy subset is nonempty, the fuzzy subset is called normal. A fuzzy
subset A of a vector space U is said to be fuzzy convex if �A.�x C .1 � �/y/ �
minf�A.x/; �A.y/g for every x; y 2 U, � 2 Œ0; 1�, that is, if its membership function
is quasiconcave. If U D R, this condition assures that the ˛-cuts are intervals
(convex subsets).
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Fig. 2.1 A fuzzy subset in R

that is a fuzzy number

Fig. 2.2 A fuzzy subset in R

that is not a fuzzy number

Definition 2.3. A fuzzy number is a fuzzy convex and normal fuzzy subset in R

with upper semicontinuous membership function and compact support.

The family of the fuzzy numbers coincides with FC .R/ (see Figs. 2.1 and 2.2
for examples of fuzzy sets in R, one that is a fuzzy number and another that is not).
Theorem 2.1 assures that all ˛-cuts of a fuzzy number are nonempty closed and
bounded intervals with some properties whereas Theorem 2.2 is its converse, that
is, if a family of nonempty closed intervals has some properties, they are the ˛-cuts
of a unique fuzzy number. Hence, when dealing with fuzzy numbers it suffices to
operate with their ˛-cuts; it is equivalent to operating with the fuzzy number itself.

Theorem 2.1 (Stacking Theorem, [28]). A fuzzy number A satisfies the following
conditions:

(i) its ˛-cuts are nonempty closed intervals, for all ˛ 2 Œ0; 1�;
(ii) if 0 � ˛1 � ˛2 � 1, then ŒA�˛2 � ŒA�˛1 ;

(iii) for any nondecreasing sequence .˛n/ in Œ0; 1� converging to ˛ 2 .0; 1� we have

1\

nD1

ŒA�˛n D ŒA�˛I (2.6)

and
(iv) for any nonincreasing sequence .˛n/ in Œ0; 1� converging to zero we have

cl

 1[

nD1

ŒA�˛n

!

D ŒA�0: (2.7)

Theorem 2.2 (Characterization Theorem, [28]). If fA˛ W ˛ 2 Œ0; 1�g is a family
of subsets of R such that

(i) A˛ are nonempty closed intervals, for all ˛ 2 Œ0; 1�;
(ii) if 0 � ˛1 � ˛2 � 1, then A˛2 � A˛1 ;
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(iii) for any nondecreasing sequence .˛n/ in Œ0; 1� converging to ˛ 2 .0; 1� we have

1\

nD1

A˛n D A˛I (2.8)

and
(iv) for any nonincreasing sequence .˛n/ in Œ0; 1� converging to zero we have

cl

 1[

nD1

A˛n

!

D A0; (2.9)

then there exists a unique fuzzy number A such that fA˛ W ˛ 2 Œ0; 1�g are its
˛-cuts.

If A is a fuzzy number, we denote its ˛-cuts by A˛ D Œa�̨; aC̨� where a�̨ and aC̨ are
the lower and upper endpoints of the closed interval ŒA�˛ .

A particular kind of fuzzy number is the triangular fuzzy number. The notation
for a triangular fuzzy number A with support Œa; c� and core fbg is .aI bI c/ and its
membership function is given by

�A.x/ D

8
ˆ̂
<

ˆ̂
:

x � a

b � a
; if x 2 Œa; b�

�x C c

c � b
; if x 2 .b; c�

0; if x … Œa; c�

; (2.10)

where a < b < c (see Fig. 2.3 for an example).

Fig. 2.3 Triangular fuzzy number
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A particular set of fuzzy numbers is

F 0
C .R/ D fA 2 FC .R/ W ŒA�˛ D Œa�̨; aC̨�; a�� ; aC� 2 C.Œ0; 1�IR/g; (2.11)

that is, the lower and upper endpoints of the level set functions of each fuzzy number
are continuous in ˛. Some studies have been done using this particular class of fuzzy
numbers (see, e.g., [4, 5]) and it will play an important role in connection with
the Hukuhara and generalized differentiabilities and the OD-derivative (see Chaps. 3
and 4).

The definition of t-norm will be explored in the next section, to define a particular
case of fuzzy arithmetic.

Definition 2.4. A t-norm is a function T W Œ0; 1� � Œ0; 1� ! Œ0; 1� that satisfies the
following properties, for all x; y; u; v 2 Œ0; 1�:

(i) Neutral element: T.x; 1/ D x.
(ii) Commutativity: T.x; y/ D T.y; x/.

(iii) Associativity: T.x; T.y; z// D T.T.x; y/; z/.
(iv) Monotonicity: if x � u and y � v, then T.x; y/ � T.u; v/.

In order to deal with fuzzy subsets of general spaces, we present a generalization of
Theorems 2.1 and 2.2 from the space R to more general topological spaces. Since
we will deal not only with fuzzy subsets of R, but with fuzzy subsets of spaces of
functions as well, we state these results in what follows.

Theorem 2.3 ([7]). Let X be a topological space. A fuzzy subset A 2 FK .X/

satisfies the following conditions:

(i) if 0 � ˛1 � ˛2 � 1, then ŒA�˛2 � ŒA�˛1 ;
(ii) for any nondecreasing sequence .˛n/ in Œ0; 1� converging to ˛ 2 .0; 1� we have

\1
nD1 ŒA�˛n D ŒA�˛I (2.12)

and
(iii) for any nonincreasing sequence .˛n/ in Œ0; 1� converging to zero we have

cl
�[1

nD1ŒA�˛n

� D ŒA�0: (2.13)

Theorem 2.4 ([7]). Let X be a topological space. If fA˛ W ˛ 2 Œ0; 1�g is a family of
subsets of X such that

(i) A˛ are nonempty compact subsets, for all ˛ 2 Œ0; 1�;
(ii) if 0 � ˛1 � ˛2 � 1, then A˛2 � A˛1 ;

(iii) for any nondecreasing sequence .˛n/ in Œ0; 1� converging to ˛ 2 .0; 1� we have

\1
nD1 A˛n D A˛I (2.14)

and
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(iv) for any nonincreasing sequence .˛n/ in Œ0; 1� converging to zero we have

cl
�[1

nD1A˛n

� D A0; (2.15)

then there exists a unique fuzzy subset A 2 FK .X/ such that fA˛ W ˛ 2 Œ0; 1�g
are its ˛-cuts.

We finish this section by presenting the linear structure in FK .Rn/ used in the
literature.

Consider the fuzzy subsets A; B 2 FK .Rn/ and � 2 R,

�ACB.z/ D sup
xCyDz

minf�A.x/; �B.y/g (2.16)

and

��A.z/ D
�

�A.z=�/; if � ¤ 0

�0.z/; if � D 0
(2.17)

where we write �0.z/ instead of �f0g.z/ for simplification.
From the theory presented in the next section, one proves that

ŒA C B�˛ D ŒA�˛ C ŒB�˛ and Œ�A�˛ D �ŒA�˛; (2.18)

where

ŒA�˛ C ŒB�˛ D fa C b W a 2 ŒA�˛; b 2 ŒB�˛g (2.19)

is the Minkowski sum of ŒA�˛ and ŒB�˛ and

�ŒA�˛ D f�a W a 2 ŒA�˛g: (2.20)

2.2 Extension Principle

Zadeh’s extension principle (see [29, 36]), to which we refer as extension principle
in the rest of the text, is the fuzzy version of the united extension (according to [22]),
that extends functions whose inputs and outputs are points to functions whose inputs
and outputs are sets. Given a classical function f and a classical subset A as input,
the united extension Of .A/ is defined as the union of the images of all elements of A
(see Fig. 2.4). In the fuzzy case, it is intuitive that if a membership degree �A.x/ is
assigned to one element x in a subset A, the image y D f .x/ of this element by means
of an injective function has the same membership degree �Of .A/.y/ D �A.x/ (see
Fig. 2.5). If an element has more than one preimage, its membership degree is given
by the supremum of the membership degrees of all possible preimages. This process
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Fig. 2.4 United extension of a function f on a classical subset A: f evaluated at each element of A
defines the united extension of f at A

Fig. 2.5 Extension of a
function f on a fuzzy subset
A: f evaluated at each element
of A, together with its
membership degree to A,
defines the extension Of .A/

µ

µ

of extending a function is known as extension principle and it is defined in the fuzzy
context in Definitions 2.5 and 2.6, where the former is a particular case of the latter.

Definition 2.5 (Extension Principle [29, 36]). Let U and V be two universes and
f W U ! V a classical function. For each A 2 F .U/ we define the extension of f as
Of .A/ 2 F .V/ such that

�Of .A/.y/ D
(

sups2f �1.y/ �A.s/; if f �1.y/ ¤ ¿
0; if f �1.y/ D ¿ ; (2.21)

for all y 2 V, where f �1.y/ D fx 2 U W f .x/ D yg.

Example 2.1. Let

f .x/ D ax C b (2.22)

with a; b 2 R, a ¤ 0. Since f �1.y/ D a�1.y � b/, the extension of f is the fuzzy
function Of such that, given X 2 F .R/,

�Of .X/.y/ D sup
xDa�1.y�b/

�X.x/ D �X.a�1.y � b// (2.23)



18 2 Basic Concepts

for all y 2 R. Or

�Of .X/.ax C b/ D �X.x/ (2.24)

that is,

Of .X/ D aX C b: (2.25)

The next theorem allows us to determine the extension of continuous and/or
surjective functions more easily. It states that it suffices to calculate the image of
the function on each element of the ˛-cut of the argument, in order to obtain the
˛-cut of the image.

Theorem 2.5 ([1, 29]). Let f W Rn ! R
m be a function.

(a) If f is surjective, then a necessary and sufficient condition for

ŒOf .A/�˛ D f .ŒA�˛/ (2.26)

to hold is that supf�A.x/ W x 2 f �1.y/g be attained for each y 2 R
m:

(b) If f is continuous, then Of W FK .Rn/ ! FK .Rn/ is well defined and

ŒOf .A/�˛ D f .ŒA�˛/ (2.27)

for all ˛ 2 Œ0; 1�:

A generalization of item (b) and its proof can be found in [7].

Theorem 2.6 ([7]). Let U and V be two Hausdorff spaces and f W U ! V be a
function. If f is continuous, then Of W FK .U/ ! FK .V/ is well defined and

ŒOf .A/�˛ D f .ŒA�˛/ (2.28)

for all ˛ 2 Œ0; 1�:

Proof (Adapted from [7]). From Definition 2.21, Of .A/ is a fuzzy subset in V.
To prove that Of W FK .U/ ! FK .V/, it is needed to prove that the ˛-cuts ŒOf .A/�˛
are nonempty compact subsets of V. Since f is continuous, it assigns compact
subsets to compact subsets, hence it suffices to prove Equation ŒOf .A/�˛ D f .ŒA�˛/.

Equation (2.28) will be proved. First we show that

(i) f .ŒA�˛/ � ŒOf .A/�˛ . Consider A 2 FK .U/ and y 2 f .ŒA�˛/. Then there exists x 2
ŒA�˛ such that y D f .x/. From Definition 2.21 (extension principle), �Of .A/.y/ D
supx2f �1.y/ �A.x/ � ˛. Hence y 2 ŒOf .A/�˛ and the conclusion is f .ŒA�˛/ �
ŒOf .A/�˛ . Now we show that

(ii) ŒOf .A/�˛ � f .ŒA�˛/. Let us remark first that, since U and V are Hausdorff spaces, a
single point y 2 V is closed. Moreover, the continuity of f implies that f �1.y/ is
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closed. Since ŒA�0 is compact, f �1.y/\ŒA�0 is also compact. For ˛ > 0, consider
y 2 ŒOf .A/�˛ . Then �Of .A/.y/ D supx2f �1.y/ �A.x/ � ˛ > 0 and, therefore, there

exist x 2 f �1.y/ such that f �1.y/ \ ŒA�0 ¤ ¿.

Also, since �A.x/ is upper semicontinuous and f �1.y/ \ ŒA�0 is compact,
the supremum is attained, that is, there exists x 2 f �1.y/ \ ŒA�0 with
�Of .A/.y/ D �A.x/ � ˛. Hence y D f .x/ for some x 2 ŒA�˛ , that is, y 2 f .ŒA�˛/.

For ˛ D 0, the results obtained yield

[

˛2.0;1�

ŒOf .A/�˛ D
[

˛2.0;1�

f .ŒA�˛/ � f .ŒA�0/: (2.29)

Since f .ŒA�0/ is closed,

ŒOf .A/�0 D cl

0

@
[

˛2.0;1�

ŒOf .A/�˛

1

A D cl

0

@
[

˛2.0;1�

f .ŒA�˛/

1

A � f .ŒA�0/: (2.30)

Hence ŒOf .A/�˛ � f .ŒA�˛/ for all ˛ 2 Œ0; 1� and (2.28) follows from (i) and (ii).

A fuzzy-set-valued function whose domain is not fuzzy is extended using
Definition 2.6. It is a more general case than Definition 2.5 and it has a wider
application.

Definition 2.6 (Extension Principle [29, 36]). Let U and V be two topological
spaces and F W U ! F .V/ a function. For each A 2 F .U/ we define the extension
of F as OF.A/ 2 F .V/ where its (unique) membership function is given by

� OF.A/.y/ D sup
x2U

f�F.x/.y/ ^ �A.x/g: (2.31)

for all y 2 V.

2.3 Fuzzy Arithmetics for Fuzzy Numbers

The ˛-cuts of fuzzy numbers are closed intervals so it is inevitable the influence
of the concepts of the interval arithmetic on the arithmetic of fuzzy numbers. The
first fuzzy arithmetic approach presented in this study is equivalent to the interval
arithmetic with ˛-cuts of fuzzy numbers.
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2.3.1 Standard Interval Arithmetic and Extension Principle

The standard interval arithmetic (SIA) [27] can be regarded as the united extension
of the operators addition (C), subtraction (�), multiplication (�), and division (�)
between real numbers. For instance, the addition of two intervals A D Œa�; aC� and
B D Œb�; bC� is defined by applying the operation “addition” on every single pair
.a; b/ 2 A � B, that is,

A C B D fa C b W a 2 A; b 2 Bg (2.32)

The other three operations are defined likewise, i.e,

A � B D fa � b W a 2 A; b 2 Bg
A � B D fa � b W a 2 A; b 2 Bg
A � B D fa � b W a 2 A; b 2 B; 0 … Bg:

(2.33)

It is obvious from the definition of SIA that the arithmetic for real numbers is a
particular case.

The fuzzy arithmetic based on SIA is the application of SIA on the ˛-cuts of
two fuzzy numbers. It is equivalent to the proposal in [26] of the extension of the
arithmetic operators, defined for real numbers. Given an arithmetic operator ˇ 2
fC; �; �; �g and two fuzzy numbers A and B, the extension principle gives

�AˇB.c/ D sup
aˇbDc

minf�A.a/; �B.b/g: (2.34)

Since the arithmetic operators are continuous functions, they are equivalent to
operating on the elements of the ˛-cuts.

Consider two fuzzy numbers A and B with ˛-cuts ŒA�˛ D Œa�̨; aC̨� and
ŒB�˛ D Œb�̨; bC̨�. Using the extension principle (Definition 2.5), levelwise the sum
is equivalent to

ŒA C B�˛ D Œa�̨ C b�̨; aC̨ C bC̨�; (2.35)

the subtraction is

ŒA � B�˛ D Œa�̨ � bC̨; aC̨ � b�̨�; (2.36)

the product is

ŒA � B�˛ D
�

min
s;r2f�;Cg

as
˛ � br

˛; max
s;r2f�;Cg

as
˛ � br

˛

�

; (2.37)
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and the division is

ŒA � B�˛ D
�

min
s;r2f�;Cg

�
as

˛

br
˛

�

; max
s;r2f�;Cg

�
as

˛

br
˛

��

; 0 … supp B: (2.38)

As mentioned above, this is the same as interval arithmetic on ˛-cuts.
Note that the difference between two identical nonzero width intervals is never

the number zero. The difference in the limit

lim
h!0C

F.x C h/ � F.x/

h
(2.39)

of a constant non-crisp function F is a constant non-crisp fuzzy number. The division
by a variable tending towards zero is not defined. Therefore, to define the derivative
of a fuzzy-number-valued function with the above arithmetic leads to a serious
shortcoming.

This problem in defining the derivative happens due to the fact that this arithmetic
takes into account every possible result. The sum is the same as Minkowski
sum, in which all elements of a subset are added to all elements of the other
subset, generating the largest possible subset as a result. The same happens to the
subtraction. There are some approaches to overcome this, considering some kind of
dependency between the variables.

2.3.2 Interactive Arithmetic

The addition of interactive fuzzy numbers using the generalization of the extension
principle via t-norms (see [10]) provides a means of controlling the growth of
uncertainty in calculations, differently from the arithmetic via traditional extension
principle [13]. To define interactivity, the concept of joint membership function
(analogous to joint possibility distribution, from the possibility theory) is needed.

Definition 2.7. If A1 and A2 are two fuzzy numbers, C is said to be their joint
membership function if

�Ai.ai/ D max
aj2R;j¤i

�C.a1; a2/: (2.40)

Two fuzzy numbers A1 and A2 are said to be noninteractive if their joint
membership function satisfies

�C.a1; a2/ D minf�A1 .a1/; �A2 .a2/g: (2.41)

In words, the joint membership function is given by the t-norm of minimum.
Otherwise, they are said to be interactive.
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The generalization in [10] admits that any t-norm T can replace the min operator
in (2.34). Reference [6] generalizes it even more:

�Of .A1;A2/.c/ D
(

sup.a1;a2/2f �1.c/ �C.a1; a2/; if f �1.c/ ¤ ¿
0; if f �1.c/ D ¿ : (2.42)

Addition, subtraction, multiplication, and division are obtained in [12] extending the
respective classical operators via (2.42) where the joint membership are t-norms.
A particular case of joint membership is used in [6] to define addition and
subtraction of interactive fuzzy numbers. It is based on completely correlated fuzzy
numbers, i.e., given two fuzzy numbers A1 and A2, their joint membership is

�C.a1; a2/ D �A1 .a1/ � �fqa1CrDa2g.a1; a2/ D �A2 .a2/ � �fqa1CrDa2g.a1; a2/;

(2.43)

where �fqa1CrDa2g is the characteristic function of the line

f.a1; a2/ 2 R
2jqa1 C r D a2g: (2.44)

2.3.3 Constraint Interval Arithmetic

The constraint interval arithmetic (CIA), which deals with dependencies, redefines
intervals as single-valued functions [21]. That is, an interval Œa�; aC� is given by the
function AI.a�; aC; �A/ D fa W a D .1 � �A/a� C �AaC; 0 � �A � 1g.

Addition, multiplication, subtraction, and division between two intervals A D
Œa�; aC� and B D Œb�; bC� are given by the formula

A ı B D fz W Œ.1 � �A/a� C �AaC� ı Œ.1 � �B/b� C �AaC�; 0 � �A � 1; 0 � �B � 1g
(2.45)

where ı stands for any of the four arithmetic operations. In the case in which the
two variables are the same,

A ı A D fz W Œ.1 � �A/a� C �AaC� ı Œ.1 � �A/a� C �AaC�; 0 � �A � 1g (2.46)

where, unlike SIA, A � A D Œ0; 0� and A � A D Œ1; 1� (see [23]).
This idea is also defined to the fuzzy case [24], based on the affirmation that

arithmetic of fuzzy numbers is arithmetic of intervals in each ˛-cut. They also have
demonstrated that this arithmetic for fuzzy numbers is the same as gradual number
arithmetic (see [11]).

This approach can be interpreted as a particular case of the arithmetic presented
in Sect. 2.3.2, where A is completely correlated to A with q D 1 and A and B are
noninteractive.
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2.3.4 Hukuhara and Generalized Differences

The Hukuhara difference for intervals was defined in order to overcome the fact that
A � A ¤ f0g for any interval A (see [17]) and it was used to define the Hukuhara
difference for elements of FC .R/ [32].

Definition 2.8 ([32]). Given two fuzzy numbers, A; B 2 FC .R/ the Hukuhara
difference (H-difference for short) A �H B D C is the fuzzy number C such that
A D B C C, if it exists.

Levelwise,

ŒA �H B�˛ D Œa�̨ � b�̨; aC̨ � bC̨� (2.47)

for all ˛ 2 Œ0; 1�.
The Hukuhara difference has the property A�HA D f0g. However, this difference

is not defined for pairs of fuzzy numbers such that the support of a fuzzy number has
bigger diameter than the one that is subtracted. Two other definitions for difference
of fuzzy numbers generalize the Hukuhara difference and are stated next [34, 35].

Definition 2.9 ([34, 35]). Given two fuzzy numbers A; B 2 FC .R/, the generalized
Hukuhara difference (gH-difference for short) A �gH B D C is the fuzzy number C,
if it exists, such that

�
(i) A D B C C or
(ii) B D A � C:

(2.48)

Definition 2.10 ([5, 34]). Given two fuzzy numbers A; B 2 FC .R/, the generalized
difference (g-difference for short) A 	g B D C is the fuzzy number C, if it exists,
with ˛-cuts

ŒA 	g B�˛ D cl
[

ˇ�˛

.ŒA�ˇ 	gH ŒB�ˇ/; 8˛ 2 Œ0; 1�; (2.49)

where the gH-difference 	gH is with interval operands ŒA�ˇ and ŒB�ˇ .

Example 2.2. The fuzzy numbers A and B with membership functions defined by

�A.x/ D
8
<

:

x C 1; if x 2 Œ�1; 0�;

�x C 1; if x 2 .0; 1�;

0; otherwise
�B.x/ D

�
1; if x 2 Œ�1; 1�;

0; otherwise
(2.50)

have, as gH-difference levelwise,

ŒA �gH B�˛ D Œ�˛; ˛�; (2.51)
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for all ˛ 2 Œ0; 1�. This is not a fuzzy number. But for the g-difference we have

ŒA �g B�˛ D cl
[

ˇ�˛

Œ�ˇ; ˇ�

D Œ�1; 1�

(2.52)

for all ˛ 2 Œ0; 1� and this is a fuzzy number.

Example 2.2 illustrates that the Definition 2.10 is more general than Defini-
tion 2.9, that is, it is defined for more pairs of fuzzy numbers. This means that
whenever the gH-difference exists the g-difference exists and it is the same. In terms
of ˛-cuts we have

ŒA �gH B�˛ D Œminfa�̨ � b�̨; aC̨ � bC̨g; maxfa�̨ � b�̨; aC̨ � bC̨g� (2.53)

and

ŒA 	g B�˛ D
"

inf
ˇ�˛

minfa�̌ � b�̌; aC
ˇ � bC

ˇ g; sup
ˇ�˛

maxfa�̌ � b�̌; aC
ˇ � bC

ˇ g
#

:

(2.54)

for all ˛ 2 Œ0; 1�.
The g-difference is not defined for every pair of fuzzy numbers, though [15]. But

among the differences that generalize the H-difference, it is the most general one
proposed so far. This possibility of non-existence of the g-difference is illustrated in
the next example.

Example 2.3. Consider the fuzzy numbers A and B with membership functions
defined by

�A.x/ D
8
<

:

1; if x 2 Œ2; 3�;

0:5; if x 2 Œ0; 2/ [ .3; 5�;

0; otherwise
(2.55)

and

�B.x/ D
8
<

:

1; if x 2 Œ2; 3�;

0:5; if x 2 Œ�1; 2/ [ .3; 4�;

0; otherwise.
(2.56)

The gH-difference levelwise is

ŒA �gH B�˛ D
� f0g; if 0:5 < ˛ � 1;

f1g; if 0 � ˛ � 0:5:
(2.57)
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Hence we have the g-difference levelwise

ŒA �g B�˛ D
� f0g; if 0:5 < ˛ � 1;

f0g [ f1g; if 0 � ˛ � 0:5;
(2.58)

which is not a fuzzy number.

Summary of Hukuhara and generalized differences:

• The gH- and g-differences generalize the H-difference. If the H-
difference between two fuzzy numbers exists, the gH- and g-differences
exist and they all have the same value.

• The g-difference generalizes the gH-difference. If the gH-difference
between two fuzzy numbers exists, the g-difference exists and they have
the same value.

• The Hukuhara and the generalized differences do not always exist. The
H-, gH-, and g-differences between two fuzzy numbers do not always exist.

2.4 Fuzzy Metric Spaces

This section reviews some important definitions and results regarding fuzzy metric
spaces. They can be found, together with proofs, in several references, e.g. [4, 8, 32].

The most used metric for fuzzy numbers is the Pompeiu–Hausdorff, based on
Pompeiu–Hausdorff distance for compact convex subsets of a metric space U. It is
in turn based on the concept of Hausdorff separation.

Definition 2.11. Let A and B be two nonempty compact subsets of a metric space U.
The pseudometric

�.A; B/ D sup
a2A

d.a; B/; (2.59)

where

d.a; B/ D inf
b2B

jja � bjj (2.60)

is called Hausdorff separation.

Definition 2.12. Let A and B be two nonempty compact subsets of a metric space U.
The Pompeiu–Hausdorff metric dH is given by

dH.A; B/ D maxf�.A; B/; �.B; A/g: (2.61)
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For the space FK .U/ (recall that the space of fuzzy numbers FC .R/ is a particular
case where U D R), the Pompeiu–Hausdorff metric is defined as follows.

Definition 2.13. Let A and B be elements of FK .U/, where U is a metric space.
The Pompeiu–Hausdorff metric d1 is defined as

d1.A; B/ D sup
˛2Œ0;1�

dH.ŒA�˛; ŒB�˛/: (2.62)

In the case of fuzzy numbers, that is, A; B 2 FC .R/, d1.A; B/ is rewritten as

d1.A; B/ D sup
˛2Œ0;1�

maxfja�̨ � b�̨j; jaC̨ � bC̨jg: (2.63)

Another known metrics are the endographic and the Lp-type distances.

Definition 2.14. Let A and B be elements of FK .U/, where U is a metric space.
The endographic metric dE is defined as

dE.A; B/ D dH.send.A/; send.B//; (2.64)

where

send.A/ D .ŒA�0 � Œ0; 1�/ \ end.A/ (2.65)

with

end.A/ D f.x; ˛/ 2 R
n � Œ0; 1� W �A.x/ � ˛/g: (2.66)

Definition 2.15. Let A and B be elements of FK .U/, where U is a metric space.
The dp distance is defined as

dp.A; B/ D
�Z 1

0

dH.ŒA�˛; ŒB�˛/pd˛

	1=p

: (2.67)

We denote by B.X; q/ the closed ball

B.X; q/ D fA 2 FC .U/ W d1.X; A/ � qg: (2.68)

The following theorem is a well-known result.

Theorem 2.7 ([33]). The space of fuzzy numbers endowed with the d1 metric,
denoted .FC .R/; d1/, is a complete metric space.

Note that .FC .R/; d1/ is not separable. There exist other metrics that make the
space of fuzzy numbers separable, but not complete (e.g., dp with 1 � p < 1, see
[4] and dE [1, 20]).
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Another important result is the Embedding Theorem. It connects the space of
fuzzy numbers to a subset of pairs of functions, that define the endpoints of the
˛-cuts of fuzzy numbers. In other words, it allows us to use a well-known theory
and tools for real functions, instead of operating with fuzzy numbers, which is more
complicated. A general version of the theorem is for the space FC .Rn/ and is as
follows.

Theorem 2.8 (Embedding Theorem, [18, 25, 32]). There exists a real Banach
space X such that the metric space .FC .Rn/; d1/ can be embedded isometrically
into X.

Another application of the d1 metric is a result analogous to Theorem 2.5 (b),
stated in [16]. It regards continuity of fuzzy-number-valued functions and extension
principle. The concept of fuzzy function will be further explored in the next section.

Theorem 2.9 ([16]). Let F W R ! FC .R/ be a d1-continuous function. Then the
extension OF W FC .R/ ! FC .R/ is well defined, is d1-continuous, and

Œ OF.A/�˛ D
[

a2ŒA�˛

ŒF.a/�˛ (2.69)

for all ˛ 2 Œ0; 1�:

Example 2.4. Let

F.x/ D �x (2.70)

with � 2 FC .R/. Then F is a d1-continuous function and F W R ! FC .R/.
Applying Theorem 2.9,

Œ OF.X/�˛ D
[

x2ŒX�˛

Œ�x�˛ D
[

x2ŒX�˛

xŒ��˛ D ŒX�˛Œ��˛ D Œ�X�˛ (2.71)

where multiplication between intervals and multiplication between fuzzy numbers
is the one defined in Sect. 2.3.1 (SIA).

As a result,

OF.X/ D �X: (2.72)

Since the mentioned results are important in this study, whenever we treat limits
of sequences of fuzzy subsets or continuity of fuzzy-set-valued functions, it will
assumed to be with respect to the d1 metric, unless another distance is specified.
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2.5 Fuzzy Functions

Both the fuzzy bunches of functions and the fuzzy-set-valued functions are called
fuzzy functions in [9]. The same is done in this text. In the literature in general,
operations such as differentiation and integration are defined only for mappings
from a classical space to a fuzzy space, called fuzzy-set-valued function. A mapping
from a fuzzy space to another fuzzy space is more general and it appears in FIVPs
as the function of the right-hand-side of the FDE. A fuzzy-number-valued function is
a more restricted case: it takes classical points to fuzzy numbers. Fuzzy-set-valued
functions are generalizations of set-valued functions. A set-valued function on I is
a mapping G W I ! P.X/ such that G.t/ ¤ ¿ for all t 2 I, where I is usually an
interval. That is, it takes points of I to the powerset of X.

A fuzzy bunch of functions (or fuzzy bunch, for short) is a fuzzy subset of a
space of functions. To be precise, it is not a function, but it is used to define
solutions to fuzzy initial value problems. Also, to each fuzzy bunch of functions
there corresponds a fuzzy-set-valued function, via attainable fuzzy sets. For each
fuzzy bunch F 2 F .E.IIRn//, where E.IIRn/ is a space of functions from I � R

to R
n, the attainable fuzzy sets at t, F.t/, are the fuzzy sets of Rn such that

ŒF.t/�˛ D ŒF�˛.t/ D ff .t/ W f 2 ŒF�˛g: (2.73)

Example 2.5. The mapping F.x/ D Ax, where A D Œ�1; 1� and x 2 R, is a set-
valued function whose images are intervals.

Example 2.6. The mapping F.x/ D Ax, where A D .�1I 0I 1/ and x 2 R, is a
fuzzy-set-valued function whose images are triangular fuzzy numbers.

Example 2.7. Consider f1; f2, and f3 continuous functions on an interval I D Œa; b�.
The fuzzy subset F 2 F .C.Œa; b�IR// such that

�F.f / D
8
<

:

˛; if f D f1 C ˛.f2 � f1/

˛; if f D f3 C ˛.f2 � f3/

0; otherwise
; ˛ 2 Œ0; 1�; (2.74)

has triangular fuzzy numbers as attainable fuzzy sets. This is defined in [14] and is
a particular kind of fuzzy bunch of functions, called triangular fuzzy function.

The fuzzy-number-valued function of the previous example can be constructed
by considering the triangular fuzzy function with f1.x/ D �x, f2.x/ D 0 and f3.x/ D
x, x 2 R and calculating its attainable sets.

Using the definition of attainable sets, to each fuzzy bunch there corresponds only
one fuzzy-set-valued function. But the converse is not true, as the next examples
illustrate.

Example 2.8. The authors in [2] define the fuzzy bunches in FK .A C.Œ0; 2�IR//

[see Appendix A for definition of A C.Œa; b�IR/] such that
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F1 D fx.�/ W x.t/ D a; a 2 Œ0; 2�g
F2 D F1 [ fy.�/ W y.t/ D 2 � tg (2.75)

where x; y W Œ0; 2� ! Œ0; 2�.
We have ŒF1�˛ D ŒF2�˛ D Œ0; 2�, for all ˛ 2 Œ0; 1�, though F1 ¤ F2.

Example 2.9. The fuzzy bunches of functions F1; F2 2 F .C.Œ�1; 1�IR//

�F1 .f / D
8
<

:

˛; if f W f .x/ D �x.1 � ˛/

˛; if f W f .x/ D x.1 � ˛/

0; otherwise
; (2.76)

and

�F2 .f / D
8
<

:

˛; if f W f .x/ D �jxj.1 � ˛/

˛; if f W f .x/ D jxj.1 � ˛/

0; otherwise
; (2.77)

are not equal, though their attainable sets are the same: they are the images of the
function in Example 2.5. Each function in F1 is a straight line on Œ�1; 1�, different
from the functions in F2, as Figs. 2.6 and 2.7 illustrate.

Fig. 2.6 A function of the
support of the fuzzy bunch of
functions F1 of Example 2.9

Fig. 2.7 A function of the
support of the fuzzy bunch of
functions F2 of Example 2.9
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Fig. 2.8 Level set functions of the (a) 1-cut, (b) 0.6-cut, and (c) 0.2-cut of a fuzzy-number-valued
function

Fig. 2.9 Convex combinations of the level set functions of the (a) 1-cut, (b) 0.6-cut, and (c) 0.2-
cut of a fuzzy-number-valued function and construction of the ˛-cuts of the representative bunch
of first kind. These ˛-cuts of the representative bunch of first kind are defined as the union of the
convex combinations corresponding to the ˛-cut and the ˛-cuts above: (d) 1-cut, (e) 0.6-cut, and
(f) 0.2-cut

The level set function that defines the ˛-cuts of a fuzzy-number-valued function
F W x 7! F.x/ will always be denoted f �̨.x/ and f C̨.x/ for this text. That is,

ŒF.x/�˛ D Œf �̨.x/; f C̨.x/�: (2.78)

We are interested in defining fuzzy bunches of functions from fuzzy-number-valued
functions such that the former preserves the main properties of the latter. The
main property is the equivalence of its attainable sets and the fuzzy-number-valued
function.

Given a fuzzy-number-valued function F W Œa; b� ! FC .R/, the idea (in order
to a fuzzy bunch be similar in its properties to that of the fuzzy-set-valued function
that generated it) is to consider the convex combinations of the functions f �̨ and f C̨
(see Figs. 2.8a–c and 2.9a–c). This assures that the attainable sets of the ˛-cuts of
the fuzzy bunches have no “holes,” that is, they are convex subsets of R. Convexity
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Fig. 2.10 Convex combinations of the level set functions of the (a) 1-cut, (b) 0.6-cut, (c) 0.2-cut,
(d), (e) 1-cut with 0.6-cut, (f), (g) 1-cut with 0.2-cut, and (h), (i) 0.2-cut with 0.6-cut of a fuzzy-
number-valued function and construction of the ˛-cuts of the representative bunch of second kind.
These ˛-cuts of the representative bunch of second kind are defined as the union of the convex
combinations corresponding to the ˛-cut and the ˛-cuts above: (j) 1-cut, (k) 0.6-cut, and (l) 0.2-cut

also preserves properties such as continuity and differentiability, which is a very
important point. A possible problem is that an ˛-cut may not contain another ˛-cut
with smaller value of ˛. The solution is to take all convex combinations of the upper
˛-cuts (see Fig. 2.9d–f). Finally, to make compactness (a desirable property) more
likely to occur, the closedness of each ˛-cut is a property that we will require.

Based on these observations, two types of fuzzy bunches are created. The first
one is simpler and the second kind has more elements (contains the elements in the
first kind, see Fig. 2.10). The reason why we define both kinds of fuzzy bunches has
to do with differentiability which will be explained in Sect. 3.2.2.
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Definition 2.16. Consider F W Œa; b� ! FC .R/ where f �̨.x/ and f C̨.x/ are
continuous functions with respect to x.

Define the subsets of functions

A˛ D cl

0

@
[

ˇ�˛

[

0���1

f �
ˇ .�/

1

A; ˛ 2 Œ0; 1� (2.79)

where f �
ˇ .�/ D .1 � �/f �̌.�/ C �f C

ˇ .�/ and

B˛ D cl

0

@
[

ˇ1;ˇ2�˛

[

0���1

f �
ˇ1;ˇ2

.�/
1

A; ˛ 2 Œ0; 1� (2.80)

where f �
ˇ1;ˇ2

.�/ D .1 � �/f �̌
1
.�/ C �f C

ˇ2
.�/.

If the families fA˛ W ˛ 2 Œ0; 1�g and fB˛ W ˛ 2 Œ0; 1�g each define a fuzzy
bunch of functions, we call them representative affine fuzzy bunch of functions of
first kind (or representative bunch of first kind for short) and representative affine
fuzzy bunch of functions of second kind (or representative bunch of second kind for
short), respectively.

It is important to remark that whenever the symbol QF.x/ is used where QF is a
fuzzy bunch of functions, it refers to the attainable fuzzy sets of QF at x.

Example 2.10. Consider the triangular fuzzy functions of [14] (see Example 2.7)
with f2 � f1 D f3 � f2, that is, the attainable sets are symmetrical triangular fuzzy
numbers, and f1.x/ ¤ f3.x/ for all x. This is an example of representative bunches
of first kind.

Example 2.11. A function F W Œa; b� ! F 0
C .R/ [see (2.11)], where f ˙̨.x/ are

continuous, defines representative bunches of first and second kinds in C.Œa; b�IR/.

Proof. In order to prove this statement, it suffices to demonstrate that the subsets A˛

and B˛ of Definition 2.16 satisfy conditions (i), (ii), (iii), and (iv) of Theorem 2.4.
We prove this with respect to A˛ . For B˛ the reasoning is analogous.

Let us first prove (i), that is, A˛ are nonempty compact sets, for all ˛ 2 Œ0; 1�.

Since A˛ D cl

 
S

ˇ�˛

S

0���1

f �
ˇ .�/

!

contains f ˙̨.�/, it is nonempty. Note that the

continuity in ˛ implies

f ˙̨
n
.x/ ! f ˙̨.x/ if ˛n ! ˛ (2.81)

for ˛n; ˛ 2 I 
 Œ0; 1�, for all x 2 Œa; b�. According to Dini’s Theorem [3],
pointwise convergence implies uniform convergence if the pointwise limits define
a continuous function, the sequence of functions is monotonic and each function is
defined on a compact set. Since this is the case, the convergence is uniform in x.
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Hence

f ˙̨
n
.�/ ! f ˙̨.�/ if ˛n ! ˛: (2.82)

Similarly,

f �n
˛ .�/ ! f �

˛ .�/ if �n ! �: (2.83)

As a consequence,

f �n
˛n

.�/ ! f �
˛ .�/ if ˛n ! ˛ and �n ! � (2.84)

for ˛n; ˛ 2 I 
 Œ0; 1� and �n; � 2 Œ0; 1�.
This means that

S

ˇ�˛

S

0���1

f �
ˇ .�/ is sequentially compact. Since C.Œa; b�IR/ is

a metric space, sequentially compactness is equivalent to compactness. HenceS

ˇ�˛

S

0���1

f �
ˇ .�/ is closed and equals A˛ .

Condition (ii) states that if 0 � ˛1 � ˛2 � 1 then A˛2 � A˛1 . Indeed,

A˛2 D
[

ˇ�˛2

[

0���1

f �
ˇ .�/ �

0

@
[

˛1�ˇ<˛2

[

0���1

f �
ˇ .�/

1

A
[

0

@
[

ˇ�˛2

[

0���1

f �
ˇ .�/

1

A D A˛1 :

(2.85)

We now prove condition (iii), that is, for any nondecreasing sequence .˛n/ in
Œ0; 1� converging to ˛ 2 .0; 1� we have \1

nD1A˛n D A˛ . From condition (ii) we have
A˛ � \1

nD1A˛n . To prove A˛ � \1
nD1A˛n consider f 2 \1

nD1A˛n . The function f is

in each A˛n and it can be written as f D f �n
ˇn

, with ˇn 2 Œ˛n; 1�, �n 2 Œ0; 1� (it is
the same function f but written differently, according to the set A˛ in which it is).
Hence ˇn admits subsequence converging to ˇ 2 Œ˛; 1� and �n admits subsequence
converging to � 2 Œ0; 1�, so that it defines f �

ˇ 2 A˛ . Therefore, A˛ � \1
nD1A˛n and

condition (iii) is proved.
The last condition is proved if for any nonincreasing sequence .˛n/ in Œ0; 1�

converging to zero we have cl
�[1

nD1A˛n

� � A0 and cl
�[1

nD1A˛n

� � A0. We first
simplify the expression

cl

 1[

nD1

A˛n

!

D cl

0

@
1[

nD1

[

ˇ�˛n

[

0���1

f �
ˇ .�/

1

A D cl

0

@
[

ˇ>0

[

0���1

f �
ˇ .�/

1

A : (2.86)

Note that

cl

0

@
[

ˇ>0

[

0���1

f �
ˇ .�/

1

A � cl

0

@
[

ˇ�0

[

0���1

f �
ˇ .�/

1

A D A0 (2.87)
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which is the first inclusion. To prove the second one we need to prove that f 2
A0 D S

ˇ�0

S

0���1

f �
ˇ .�/ implies f 2 cl

 
S

ˇ>0

S

0���1

f �
ˇ .�/

!

. There are two possibilities

for f 2 A0: (a) f 2 S

ˇ>0

S

0���1

f �
ˇ .�/ or (b) f 2 S

ˇD0

S

0���1

f �
ˇ .�/ D S

0���1

f �
0 .�/. We only

need to prove case (b). We use the fact that F.x/ is a fuzzy number and therefore
satisfies

cl

 1[

nD1

Œf �̨
n
.x/; f C̨

n
.x/�

!

D Œf �
0 .x/; f C

0 .x/� (2.88)

for .˛n/ a nonincreasing sequence converging to zero. Hence

f ˙̨
n
.x/ ! f0̇ .x/ and f �n

˛n
.x/ ! f �

0 .x/ (2.89)

for ˛n & 0 and �n ! �, ˛n 2 Œ0; 1� and �n; � 2 Œ0; 1�. Using the same arguments
as before we have

f �n
˛n

.�/ ! f �
0 .�/ (2.90)

uniformly and hence f �
0 .�/ is a point of closure. This means that

f �
0 .�/ 2 cl

0

@
[

ˇ>0

[

0���1

f �
ˇ .�/

1

A : (2.91)

That is, the second inclusion is also satisfied and we have obtained the equality of
condition (iv).

Having proved (i), (ii), (iii), and (iv), it follows that A˛ are ˛-cuts of the
representative bunch of first kind of F.

Example 2.12. Consider the fuzzy-number-valued function F W Œ�1; 1� ! FC .R/

with ˛-cuts

ŒF.x/�˛ D
� 


10x2 � 12; 10x2 C 2
�

; if 0 � ˛ � 0:5

Œ�1; 1� ; if 0:5 < ˛ � 1
: (2.92)

The representative bunch of first kind is given by the ˛-cuts

Œ QF1.�/�˛ D

8
ˆ̂
<̂

ˆ̂
:̂

2[

iD1

[

0���1

y�
i .�/; if 0 � ˛ � 0:5

[

0���1

y�
1 .�/; if 0:5 < ˛ � 1

(2.93)
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Fig. 2.11 Some elements of the support of the representative bunch of first kind of Example 2.12.
The real-valued functions are the convex combinations of a level set function (of a fuzzy number-
valued function) with the opposite level set function in the same ˛-cut

and the representative bunch of second kind is defined by

Œ QF1.�/�˛ D

8
ˆ̂
<̂

ˆ̂
:̂

4[

iD1

[

0���1

y�
i .�/; if 0 � ˛ � 0:5

[

0���1

y�
1 .�/; if 0:5 < ˛ � 1

(2.94)

where

8
ˆ̂
<

ˆ̂
:

y�
1.�/ W y�

1.x/ D .1 � �/.10x2 � 12/ C �.10x2 C 2/;

y�
2.�/ W y�

2.x/ D .1 � �/.�1/ C �;

y�
3.�/ W y�

3.x/ D .1 � �/.�1/ C �.10x2 C 2/;

y�
4.�/ W y�

4.x/ D .1 � �/.10x2 � 12/ C �;

(2.95)

for all � 2 Œ0; 1�.
Figures 2.11 and 2.12 present some of the elements of the supports of QF1.�/

and QF2.�/. It is remarkable that QF2.�/ has more elements in its support than in the
support of QF1.�/ [in fact, QF2.�/ contains QF1.�/]. Moreover, some elements in QF2.�/
have different behavior than those in QF1.�/, though both fuzzy bunches have the
same attainable sets.

Example 2.13. Consider the fuzzy-number-valued function F W Œ0; 0:5� ! F 0
C .R/

with ˛-cuts

ŒF.x/�˛ D
� 


x2 � 3 C ˛; .1 � 2˛/x2 � 2˛ C 2
�

; if 0 � ˛ � 0:5

x2 � 3 C ˛; .2˛ � 1/x2 � 6˛ C 4

�
; if 0:5 < ˛ � 1

: (2.96)
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Fig. 2.12 Some elements of the support of the representative bunch of second kind of Exam-
ple 2.12. The real-valued functions are the convex combinations of a level set function (of a fuzzy
number-valued function) with opposite level set function that may belong to different ˛-cuts

The representative bunch of first kind is given by the ˛-cuts

Œ QF1.�/�˛ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

cl

8
<

:

0

@
[

ˇ>0:5

[

0���1

f �
ˇ

1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

g�
ˇ

1

A

9
=

;
; if 0 � ˛ � 0:5

[

ˇ�˛

[

0���1

f �
ˇ ; if 0:5 < ˛ � 1

D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0

@
[

ˇ�0:5

[

0���1

f �
ˇ

1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

g�
ˇ

1

A; if 0 � ˛ � 0:5

[

ˇ�˛

[

0���1

f �
ˇ ; if 0:5 < ˛ � 1

(2.97)

where
(

f �
ˇ .�/ W f �

ˇ .x/ D .1 � �/.x2 � 3 C ˇ/ C �..2ˇ � 1/x2 � 6ˇ C 4/;

g�
ˇ.�/ W g�

ˇ.x/ D .1 � �/.x2 � 3 C ˇ/ C �..1 � 2ˇ/x2 � 2ˇ C 2/;
(2.98)

for all � 2 Œ0; 1� and ˇ 2 Œ0; 1�.

We define semicontinuity of set-valued functions as follows.

Definition 2.17 ([8]). A set-valued function F W ˝ ! P.Rn/, ˝ 
 R
m, is upper

semicontinuous (usc) at t0 2 ˝ if for every 	 > 0 there exists a ı D ı.t0; 	/ > 0

such that

�.F.t/; F.t0// < 	 (2.99)

if jjt � t0jj < ı, t 2 ˝.

Definition 2.18 ([8]). A set-valued function F W ˝ ! P.Rn/, ˝ 
 R
m, is lower

semicontinuous (lsc) at t0 2 ˝ if for every 	 > 0 there exists a ı D ı.t0; 	/ > 0

such that
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�.F.t0/; F.t// < 	 (2.100)

if jjt � t0jj < ı, t 2 ˝.

The set-valued function F is said to be usc (lsc) if it is usc (lsc) at every t 2 ˝.
If it is both usc and lsc, the function is continuous.

Example 2.14. The set-valued functions F; G W R ! P.R/ such that

F.x/ D
�

Œ�1; 1�; if x D 0

f0g; if x ¤ 0
and G.x/ D

�
Œ�1; 1�; if x ¤ 0

f0g; if x D 0
(2.101)

are usc and lsc, respectively.

The concept of semicontinuity of fuzzy-set-valued functions is similar.

Definition 2.19 ([8]). A fuzzy-set-valued function F W ˝ ! FK .Rn/, ˝ 2 R
m,

is upper semicontinuous (usc) at t0 2 ˝ if for every 	 > 0 there exists a
ı D ı.t0; 	/ > 0 such that

�.ŒF.t0/�˛; ŒF.t/�˛/ < 	 (2.102)

if jjt � t0jj < ı, t 2 ˝, for all ˛ 2 Œ0; 1�.

Definition 2.20 ([8]). A fuzzy-set-valued function F W ˝ ! FK .Rn/, ˝ 2 Rm, is
lower semicontinuous (lsc) at t0 2 ˝ if for every 	 > 0 there exists a ı D ı.t0; 	/ >

0 such that

�.ŒF.t/�˛; ŒF.t0/�˛/ < 	 (2.103)

if jjt � t0jj < ı, t 2 ˝, for all ˛ 2 Œ0; 1�.

The fuzzy-set-valued function F is said to be usc (lsc) if it is usc (lsc) at every
t 2 ˝. If the fuzzy-set-valued function F is usc (lsc), the set-valued functions ŒF�˛ W
˝ ! K n are clearly usc (lsc). The converse implication is not necessarily true,
unless ŒF�˛ are uniformly usc (lsc) in ˛ 2 Œ0; 1�. As a result of these definitions, a
fuzzy-set-valued function F is d1-continuous if and only if it is usc and lsc. In this
text if a function is d1-continuous it will be said that it is continuous. If another
metric is used, we will specify it.

Denote by C.Œa; b�IFC .Rn// the space of continuous fuzzy-set-valued
functions from Œa; b� to FC .Rn/ endowed with the metric H.F; G/ D
supx2Œa;b� d1.F.x/; G.x// for F; G 2 C.Œa; b�IFC .Rn//. The next result is important
to assure existence of solution of FDEs.

Theorem 2.10 ([4]). The space C.Œa; b�IFC .R// is a complete metric space.
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Summary of fuzzy functions:

• Two kinds. This text explores two kinds of fuzzy functions: the fuzzy-
number-valued functions (from R to the space of fuzzy numbers FC .R/)
and fuzzy bunches of functions (fuzzy subsets of spaces of functions).

• One fuzzy-number-valued function to one fuzzy bunch of functions.
Each fuzzy bunch of functions may define a fuzzy-number-valued function
via attainable sets.

• Various fuzzy bunches of functions to one fuzzy-number-valued
function. Each fuzzy-number-valued function may define several fuzzy
bunches of functions. The definition of the representative bunches of first
and second kind help us to choose one fuzzy bunch.

2.6 Summary

Some basic concepts and results were presented in this chapter and we briefly
summarize them:

• A fuzzy set is a set characterized by a membership function �A W U ! Œ0; 1�,
where �A.x/ D 1 means x is completely in the subset A, �A.x/ D 0 means x is
completely out the subset A and 0 < �A.x/ < 1 belongs to A with an intermediate
degree.

• The ˛-cut of a fuzzy subset in U is the collection of elements whose membership
function is at least ˛.

• A fuzzy number is a particular kind of fuzzy subset in R.
• The ˛-cuts of a fuzzy number are nonempty compact intervals. Also, a family of

nonempty compact intervals satisfying some conditions always defines a fuzzy
number.

• Fuzzy-set-valued functions are functions corresponding real numbers to fuzzy
subsets.

• Fuzzy bunches of functions are fuzzy subsets of a space of functions.
• To relate these two last concepts we use the attainable fuzzy sets (from a

fuzzy bunch we obtain a fuzzy-set-valued function) and the representative fuzzy
bunches (from a fuzzy-set-valued function we obtain a fuzzy bunch).
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Chapter 3
Fuzzy Calculus

This chapter treats two types of fuzzy calculus: one for fuzzy-set-valued functions
and other for fuzzy bunches of functions. Section 3.1 reviews definitions of fuzzy
Aumann, Henstock, and Riemann integrals and the Hukuhara derivative and its
generalizations. It also provides some theorems, including a Fundamental Theorem
of Calculus. All these definitions and results were previously presented in the
literature. Section 3.2 introduces derivative and integral for fuzzy bunches of
functions and results concerning them, some of which never published before.
Examples illustrate some of the concepts and theorems, especially in the last section,
where new results provide comparisons between the different approaches.

3.1 Fuzzy Calculus for Fuzzy-Set-Valued Functions

This section reviews some known approaches of integrals (Aumann, Riemann,
and Henstock integrals) and derivatives (Hukuhara and generalized derivatives) for
fuzzy-set-valued functions. It also presents results connecting these fuzzy integrals
and derivatives. The reader interested in other proposals may refer to (e.g., [11–
13, 16]).

3.1.1 Integrals

The first integral proposed for fuzzy-number-valued functions is based on Aumann
integral for multivalued functions [2] and was defined in [21] and [23].

© The Author(s) 2015
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Denote by S.G/ the subset of all integrable selections of a set-valued function
G W I ! P.Rn/, i.e.,

S.G/ D fg W I ! R
n W g is integrable and g.t/ 2 G.t/; 8t 2 Ig: (3.1)

Definition 3.1 ([21, 23]). The Aumann integral of a fuzzy-set-valued function F W
Œa; b� ! FC .Rn/ over Œa; b� is defined levelwise

�

.A/

Z b

a
F.x/ dx

�

˛

D
Z b

a
ŒF�˛ dx (3.2)

D
�Z b

a
g.x/ dx W g 2 S.ŒF.x/�˛/

�

(3.3)

for all ˛ 2 Œ0; 1�.

The function F W Œa; b� ! FC .Rn/ is said to be Aumann integrable over Œa; b� if
.A/

R b
a F.x/ dx 2 FC .Rn/.

The following integrals have been defined for functions F W Œa; b� ! FC .R/.

Definition 3.2 ([15, 26]). The Riemann integral of a fuzzy-number-valued function
F W Œa; b� ! FC .R/ over Œa; b� is the fuzzy number A such that for every 	 > 0

there exist ı > 0 such that for any division d W a D x0 < x1 < : : : < xn D b with
xi � xi�1 < ı, i D 1; : : : ; n, and 
i 2 Œxi � xi�1�

d1

 
n�1X

iD1

F.
i/.xi � xi�1/; A

!

< 	: (3.4)

The function F W Œa; b� ! FC .R/ is said to be Riemann integrable over Œa; b� if
A 2 FC .R/. We denote .R/

R b
a F.x/ dx D A

Definition 3.3 ([7, 26]). Consider ın W a D x0 < x1 < : : : < xn D b a partition of
the interval Œa; b�, 
i 2 Œxi � xi�1�, i D 1; : : : ; n, a sequence 
 in ın and ı.x/ > 0 a
real-valued function over Œa; b�. The division P.ın; 
/ is considered to be ı-fine if

Œxi�1; xi� � .
i�1 � ı.
i�1/; 
i�1 C ı.
i�1// (3.5)

The Henstock integral of a fuzzy-number-valued function F W Œa; b� ! FC .R/

over Œa; b� is the fuzzy number A such that for every 	 > 0 there exist a real-valued
function ı such that for any ı-fine division P.ın; 
/,

d1

 
n�1X

iD1

F.
i/.xi � xi�1/; A

!

< 	: (3.6)
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The function F W Œa; b� ! FC .R/ is said to be Henstock integrable over Œa; b� if
A 2 FC .R/. We denote .H/

R b
a F.x/ dx D A.

Henstock integral is more general than Riemann, i.e., whenever a function is
Riemann integrable, it is Henstock integrable as well.

Remark 3.1. Writing that a function is integrable, without specifying whether it is
Aumann, Riemann, or Henstock, means it is integrable in all these three senses.

Corollary 3.1 ([5, 21, 26]). If a function F W Œa; b� ! FC .R/ is continuous, then it
is integrable. Moreover,

�Z
F

�

˛

D
�Z

f �̨;

Z
f C̨
�

(3.7)

for all ˛ 2 Œ0; 1�.

Theorem 3.1 ([5, 21, 26]). Let F W Œa; b� ! FC .R/ be integrable and a � x1 �
x2 � x3 � b. Then

Z x3

x1

F D
Z x2

x1

F C
Z x3

x2

F: (3.8)

Theorem 3.2 ([5, 21, 26]). Let F; G W Œa; b� ! FC .R/ be integrable, then

(i)
R

.F C G/ D R
F C R

G;
(ii)

R
.�F/ D �

R
F, for any � 2 R;

(iii) d1.F; G/ is integrable;
(iv) d1.

R
F;
R

G/ � R
d1.F; G/.

3.1.2 Derivatives

The Hukuhara differentiability for fuzzy functions is based on the concept of
Hukuhara differentiability for interval-valued functions [20].

Definition 3.4 ([22]). Let F W .a; b/ ! FC .Rn/. If the limits

lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0/ �H F.x0 � h/

h
(3.9)

exist and equal some element F0
H.x0/ 2 FC .Rn/, then F is Hukuhara differentiable

(H-differentiable for short) at x0 and F0
H.x0/ is its Hukuhara derivative (H-derivative

for short) at x0.

Example 3.1. The fuzzy-number-valued function of Example 2.6, F.x/ D Ax with
A D .�1I 0I 1/, is an H-differentiable function for x � 0 and

F0
H.x/ D A: (3.10)
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For x < 0, F is not H-differentiable since F.x C h/ �H F.x/ is not defined.
Considering x > 0, F is a particular case of Example 8.30 in [5], which shows
that any function G.x/ D Bg.x/ with g.x/ > 0, g0.x/ > 0 and B a fuzzy number is
H-differentiable. Moreover,

G0
H.x/ D Bg0.x/: (3.11)

An H-differentiable fuzzy function has H-differentiable ˛-cuts (that is, its ˛-cuts
are interval-valued H-differentiable functions). The converse, however, is not true,
unless its ˛-cuts are uniformly H-differentiable (see [21]).

Definition 3.5 ([24]). Let F W Œa; b� ! FC .R/. If

Œ.f �̨/0.x0/; .f C̨/0.x0/� (3.12)

exists for all ˛ 2 Œ0; 1� and defines the ˛-cuts of a fuzzy number F0
S.x0/, then F is

Seikkala differentiable at x0 and F0
S.x0/ is the Seikkala derivative of F at x0.

If F W Œa; b� ! FC .R/ is H-differentiable, then f �̨.x/ and f C̨.x/ are differentiable
and

ŒF0.x0/�˛ D Œ.f �̨/0.x0/; .f C̨/0.x0/�; (3.13)

that is, if F is H-differentiable, it is Seikkala differentiable and the derivatives are
the same [21].

Theorem 3.3 ([21]). Let F W Œa; b� ! FC .Rn/ be an H-differentiable function.
Then it is continuous.

Theorem 3.4 ([21]). Let F; G W Œa; b� ! FC .Rn/ be H-differentiable functions and
� 2 R. Then .F C G/0

H D F0
H C G0

H and .�F/0
H D �F0

H.

If F is Seikkala (or Hukuhara) differentiable, .f �̨/0.x/ � .f C̨/0.x/, hence the
function diam ŒF.x/�˛ D f C̨.x/ � f �̨.x/ is nondecreasing on Œa; b�. It means that the
function has nondecreasing fuzziness. As will be clear in Chap. 4, this is considered
a shortcoming since an H-differentiable function cannot represent a function with
decreasing fuzziness or periodicity. In order to overcome this, the generalized
differentiability concepts were created. They generalize the H-differentiability, that
is, they are defined for more cases of fuzzy-number-valued functions and whenever
the H-derivative of a function exists, its generalization exists and has the same value.

Definition 3.6 ([6, 8]). Let F W .a; b/ ! FC .R/. If the limits of some pair

(i) lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0/ �H F.x0 � h/

h
or

(ii) lim
h!0C

F.x0/ �H F.x0 C h/

�h
and lim

h!0C

F.x0 � h/ �H F.x0/

�h
or
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(iii) lim
h!0C

F.x0 C h/ �H F.x0/

h
and lim

h!0C

F.x0 � h/ �H F.x0/

�h
or

(iv) lim
h!0C

F.x0/ �H F.x0 C h/

�h
and lim

h!0C

F.x0/ �H F.x0 � h/

h

exist and are equal to some element F0
G.x0/ of FC .R/, then F is strongly generalized

differentiable (or GH-differentiable) at x0 and F0
G.x0/ is the strongly generalized

derivative (GH-derivative for short) of F at x0.

An (i)-strongly generalized differentiable function presents nondecreasing diam-
eter, since it is the definition of the H-differentiability. (ii)-strongly generalized
differentiability (we call (ii)-differentiability, for short), on the other hand, implies
in nonincreasing diameter. The (iii) and (iv)-differentiability cases correspond to
points where the function changes its behavior with respect to the diameter. It means
that a strongly differentiable non-crisp function may present periodical behavior, as
well as convergence to a single point.

In case F is defined on a closed interval, that is, F W Œa; b� ! FC .R/, we define
the derivative at a using the limit from the right and at b using the limit from the left.

Example 3.2. The fuzzy-number-valued function of Example 2.6, F.x/ D Ax with
A D .�1I 0I 1/, is a GH-differentiable function for x 2 R and

F0
gH.x/ D A: (3.14)

Different from the H-derivative case, the GH-derivative of F is defined for x < 0.
According to Example 8.35 in [5], any function G.x/ D Bg.x/ with B a fuzzy
number and g W .a; b/ ! R differentiable with at most a finite number of roots
in .a; b/ is GH-differentiable. Moreover,

G0
H.x/ D Bg0.x/: (3.15)

Example 3.2 illustrates that, different from the H-derivative, GH-differentiable
functions can have decreasing diameter.

Definition 3.7 ([8]). Let F W .a; b/ ! FC .R/ and x0 2 .a; b/. For a nonincreasing
sequence hn ! 0 and n0 2 N we denote

A.1/
n0

D ˚
n � n0I 9E.1/

n WD F.x0 C hn/ �H F.x0/
�

; (3.16)

A.2/
n0

D ˚
n � n0I 9E.2/

n WD F.x0/ �H F.x0 C hn/
�

; (3.17)

A.3/
n0

D ˚
n � n0I 9E.3/

n WD F.x0/ �H F.x0 � hn/
�

; (3.18)

A.4/
n0

D ˚
n � n0I 9E.4/

n WD F.x0 � hn/ �H F.x0/
�

: (3.19)

The function F is said to be weakly generalized differentiable at x0 if for any
nonincreasing sequence hn ! 0 there exists n0 2 N, such that
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A.1/
n0

[ A.2/
n0

[ A.3/
n0

[ A.4/
n0

D fn 2 NI n � n0g (3.20)

and moreover, there exists an element in FC.R/, such that if for some j 2 f1; 2; 3; 4g
we have card .A.j/

n0 / D C1; then

lim
hn&0;n!1;n2A

.j/
n0

d1

 
E.j/

n

.�1/jC1hn
; F0.x0/

!

D 0: (3.21)

Definition 3.7 is more general than Definition 3.6, that is, it is defined for more
cases of fuzzy-number-valued functions and whenever the latter exists, the former
also exists and has the same value.

The next definition is equivalent to Definition 3.7 (see [10]).

Definition 3.8 ([10, 25]). Let F W .a; b/ ! FC .R/. If the limit

lim
h!0

F.x0 C h/ �gH F.x0/

h
(3.22)

exists and belongs to FC .R/, then F is generalized Hukuhara differentiable (gH-
differentiable for short) at x0 and F0

gH.x0/ is the generalized Hukuhara derivative
(gH-derivative for short) of F at x0.

Theorem 3.5 ([10]). Let F W Œa; b� ! FC .Rn/ be a gH-differentiable function at
x0. Then it is levelwise continuous at x0.

Theorem 3.6 ([10]). Let F W Œa; b� ! FC .R/ be such that the functions f �̨.x/

and f C̨.x/ are real-valued functions, differentiable with respect to x, uniformly in
˛ 2 Œ0; 1�. Then the function F.x/ is gH-differentiable at a fixed x 2 Œa; b� if and
only if one of the following two cases holds:

(a)
�
f �̨�0 .x/ is increasing,

�
f C̨�0 .x/ is decreasing as functions of ˛; and

�
f �
1

�0
.x/ �

�
f C
1

�0
.x/, or

(b)
�
f �̨�0 .x/ is decreasing,

�
f C̨�0 .x/ is increasing as functions of ˛; and

�
f C
1

�0
.x/ �

�
f �
1

�0
.x/:

Moreover,



F0

gH.x/
�

˛
D Œminf�f �̨�0 .x/;

�
f C̨�0 .x/g; maxf�f �̨�0 .x/;

�
f C̨�0 .x/g�; (3.23)

for all ˛ 2 Œ0; 1�.

The next concept further extends the gH-differentiability.

Definition 3.9 ([25]). Let F W .a; b/ ! FC .R/. If the limit

lim
h!0

F.x0 C h/ �g F.x0/

h
(3.24)



3.1 Fuzzy Calculus for Fuzzy-Set-Valued Functions 47

exists and belongs to FC .R/, then F is generalized differentiable (g-differentiable
for short) at x0 and F0

g.x0/ is the fuzzy generalized derivative (g-derivative for short)
of F at x0.

Example 3.3. Recall the fuzzy-number-valued function of Example 2.13, F W
Œ0; 0:5� ! FC .R/ with ˛-cuts

ŒF.x/�˛ D
� 


x2 � 3 C ˛; .1 � 2˛/x2 � 2˛ C 2
�

; if 0 � ˛ � 0:5

x2 � 3 C ˛; .2˛ � 1/x2 � 6˛ C 4

�
; if 0:5 < ˛ � 1

: (3.25)

The aim is to calculate the gH and the g-derivative of F.
Equation (2.53) provides easy means to calculate (3.22). For ˛ 2 Œ0; 0:5� one

obtains

ŒF.x C h/ �gH F.x/�˛ D Œ.1 � 2˛/.2xh C h2/; 2xh C h2�: (3.26)

Thus

lim
h!0

ŒF.x C h/ �gH F.x/�˛

h
D Œ.1 � 2˛/2x; 2x� (3.27)

and as consequence

lim
h!0

ŒF.x C h/ �gH F.x/�0

h
D f2xg (3.28)

and

lim
h!0

ŒF.x C h/ �gH F.x/�0:25

h
D Œx; 2x�: (3.29)

The condition

˛ < ˇ ) lim
h!0

ŒF.x C h/ �gH F.x/�ˇ

h

 lim

h!0

ŒF.x C h/ �gH F.x/�˛

h
(3.30)

does not hold, hence limh!0
ŒF.xCh/�gHF.x/�˛

h cannot be a fuzzy number and the
gH-derivative is not defined for this function.

Equation (2.54) can be used in this case to find (3.24), for all ˛ 2 Œ0; 1�. Since
f �̌.xCh/� f �̌.x/ D 2xhCh2 and f C

ˇ .xCh/� f C
ˇ .x/ D .1�2˛/2xhCh2 for ˇ � 0:5

and f �̌.x C h/ � f �̌.x/ D 2xh C h2 and f C
ˇ .x C h/ � f C

ˇ .x/ D .2˛ � 1/2xh C h2 for
ˇ > 0:5, we obtain for ˛ > 0:5:
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lim
h!0

ŒF.x C h/ �g F.x/�˛

h
D cl

[

ˇ�˛>0:5

Œ.2ˇ � 1/2x; 2x� D Œ.2˛ � 1/2x; 2x�:

(3.31)
For ˛ � 0:5, the levelwise limit becomes

cl

0

@
[

0:5�ˇ�˛�0

Œ.1 � 2ˇ/2x; 2x�

1

A
[

0

@
[

ˇ>0:5

Œ.2ˇ � 1/2x; 2x�

1

A D Œ0; 2x�: (3.32)

The result is the fuzzy number F0
g W Œ0; 0:5� ! FC .R/ with ˛-cuts

ŒF0
g.x/�˛ D

�
Œ0; 2x� ; if 0 � ˛ � 0:5

Œ.2˛ � 1/2x; 2x� ; if 0:5 < ˛ � 1
: (3.33)

as the g-derivative.

The g-difference is not defined for all pairs of fuzzy numbers, as we showed in
Example 2.3. The same happens to the g-derivative, that is, it is not always well-
defined (see also [17]).

Example 3.4. The definition of the g-derivative of the fuzzy-number-valued
function of Example 2.12 leads to

ŒF0
g.x/�˛ D

� f20xgSf0g; if 0 � ˛ � 0:5

f0g; if 0:5 < ˛ � 1
: (3.34)

That is, it is not a fuzzy-number-valued function. Hence F is not g-differentiable.

The function F in Example 3.4 has f �̨.x/ and f C̨.x/ differentiable real-valued
functions with respect to x, uniformly with respect to ˛ 2 Œ0; 1�, but it is not
g-differentiable. In the case a function is g-differentiable and satisfy the just
mentioned hypothesis, it has a formula that has been proved by [10].

Theorem 3.7. Let F W Œa; b� ! RF with f �̨.x/ and f C̨.x/ differentiable real-valued
functions with respect to x, uniformly with respect to ˛ 2 Œ0; 1�. Then



F0

g.x/
�

˛
(3.35)

D
"

inf
ˇ�˛

minf



f �̌�0
.x/;



f C
ˇ

�0
.x/g; sup

ˇ�˛

maxf



f �̌�0
;



f C
ˇ

�0
.x/g

#

(3.36)

whenever F is g-differentiable.
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Proof. See [10].

Summary of the derivatives for fuzzy-number-valued functions:

• The GH-, gH-, and g-derivatives generalize the H-derivative. An
H-differentiable function is always GH-, gH-, and g-differentiable.

• The gH- and g-derivatives generalize the GH-derivative. A GH-
differentiable function is always gH- and g-differentiable.

• The g-derivative generalizes the gH-derivative. A gH-differentiable
function is always g-differentiable.

3.1.3 Fundamental Theorem of Calculus

Fundamental Theorems of Calculus provide connections between derivatives and
integrals, showing that they are inverses of one another.

Theorem 3.8 ([21]). Let F W Œa; b� ! FC .Rn/ be continuous, then G.x/ DR x
a F.s/ds is H-differentiable and

G0
H.x/ D F.x/: (3.37)

Theorem 3.9 ([21]). Let F W Œa; b� ! FC .Rn/ be H-differentiability and the
H-derivative F0

H be integrable over Œa; b�. Then

F.x/ D F.a/ C
Z x

a
F0

H.s/ds; (3.38)

for each x 2 Œa; b�.

The H-differentiable is equivalent to strongly generalized differentiability (i) in
Definition 3.6. For the case (ii) in the same definition, Bede and Gal have proved
the following theorem.

Theorem 3.10 ([9]). Let F W Œa; b� ! FC .R/ be (ii)-differentiable. Then the
derivative F0

G is integrable over Œa; b� and

F.x/ D F.b/ �
Z b

x
F0

G.s/ds; (3.39)

for each x 2 Œa; b�.
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3.2 Fuzzy Calculus for Fuzzy Bunches of Functions

The fuzzy calculus for fuzzy bunches of functions, based on the definitions of
derivative and integral via extension of the correspondent classical operators, was
recently elaborated in [4, 18, 19]. This theory is reviewed and further developed in
the present section.

3.2.1 Integral

The integral operator will be represented by
R

, i.e.,

R W L1.Œa; b�IRn/ ! A C.Œa; b�IRn/

f 7! R t
a f

(3.40)

t 2 Œa; b� (see Appendix for definitions of spaces of functions).

Definition 3.10 ([3, 18]). Let F 2 F .L1.Œa; b�IRn//. The integral of F is given by
OR F, whose membership function is

� OR F
.y/ D

(
supf 2R�1 y �F.f /; if

R �1 y ¤ ;
0; if

R �1 y D ; ; (3.41)

for all y 2 A C.Œa; b�IRn/. In words, OR is the extension of the operator
R

.

The next theorem is a consequence of Theorem 2.6.

Theorem 3.11. If F 2 F .L1.Œa; b�IRn//,
h OR F

i

˛
DR

ŒF�˛

D˚R
f W f 2 ŒF�˛ 
 L1.Œa; b�IRn/

�
;

(3.42)

for all ˛ 2 Œ0; 1�.

Proof. Since the integral is a continuous operator, the result follows directly from
Theorem 2.6.

We next define a linear structure in F .L1.Œa; b�IRn//. Given two fuzzy bunches
of functions F and G and � 2 R,

�FCG.h/ D sup
f CgDh

minf�F.f /; �G.g/g; (3.43)

��F.f / D
�

�F.h=�/ if � ¤ 0

�0.f / if � D 0
: (3.44)
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Since these operations are extensions of addition and multiplication by scalar, which
are continuous, Theorem 2.6 assures that given F; G 2 FK .L1.Œa; b�IRn// and
� 2 R,

F C G 2 FK .L1.Œa; b�IRn// and ŒF C G�˛ D ŒF�˛ C ŒG�˛ (3.45)

and

�F 2 FK .L1.Œa; b�IRn// and Œ�F�˛ D �ŒF�˛ (3.46)

for all ˛ 2 Œ0; 1�.

Theorem 3.12. Let F; G 2 FK .L1.Œa; b�IRn//, then

(i) OR .F C G/ D OR F C ORG;

(ii) OR �F D � OR F, for any � 2 R.

Proof. From Theorem 2.6 and the linearity of the integral operator,

Œ OR .F C G/�˛ D R
ŒF C G�˛

D R fh W h D f C g; f 2 ŒF�˛; g 2 ŒG�˛g
D fR .f C g/; f 2 ŒF�˛; g 2 ŒG�˛g
D fR f C R

g; f 2 ŒF�˛; g 2 ŒG�˛g
D fR f ; f 2 ŒF�˛g C fR g; g 2 ŒG�˛g
D R

ŒF�˛ C R
ŒG�˛

D Œ OR F�˛ C Œ ORG�˛

(3.47)

and

Œ OR �F�˛ D R
Œ�F�˛

D fR �f W f 2 ŒF�˛g
D f� R f W f 2 ŒF�˛g
D �fR f W f 2 ŒF�˛g
D �

R
ŒF�˛

D �Œ OR F�˛

(3.48)

for all ˛ 2 Œ0; 1�.

Example 3.5. Let A be the symmetrical triangular fuzzy number with support
Œ�a; a�, a > 0. The fuzzy function F.�/ 2 F .L1.Œ0; T�IR// such that

ŒF.�/�˛ D ff .�/ W f .t/ D � t; � 2 ŒA�˛g (3.49)



52 3 Fuzzy Calculus

where f .�/ W Œ0; T� ! R, for each ˛ 2 Œ0; 1�, has attainable sets

F.t/ D At: (3.50)

To determine the integral of F using Definition 3.10, one needs to explicit the
membership function of A and F:

�A.�/ D

8
ˆ̂
<

ˆ̂
:

�

a
C 1; if � a � � < 0

��

a
C 1; if 0 � � < a

0; otherwise

(3.51)

and

�F.f / D

8
ˆ̂
<

ˆ̂
:

�

a
C 1; if f .t/ D � t with � a � � < 0

��

a
C 1; if f .t/ D � t with 0 � � < a

0; otherwise

(3.52)

Formula (3.41) states that � OR F
.y/ ¤ 0 only if there exists f such that

R
f D y

and �F.f / ¤ 0. In this example, it happens only if f .t/ D � t with � 2 ŒA�˛ , that is,
y D � t2=2.

� OR F
.� t2=2/ D supR f D� t2=2 �F.f /

D supR .� t/D� t2=2 �F.� t/

D �F.� t/

D
8
<

:

�

a C 1; if � a � � < 0

� �

a C 1; if 0 � � < a
0; otherwise

D �A.�/:

(3.53)

Hence

� OR F
.f / D

8
ˆ̂
<

ˆ̂
:

�

a
C 1; if f .t/ D � t2=2 with � a � � < 0

��

a
C 1; if f .t/ D � t2=2 with 0 � � < a

0; otherwise

(3.54)

or

ŒF.�/�˛ D ff .�/ W f .t/ D � t2=2; � 2 ŒA�˛g: (3.55)
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For each ˛ 2 Œ0; 1�, its attainable sets are

F.t/ D At2=2: (3.56)

The Aumann integral of (3.50) can be calculated levelwise and we obtain the

same attainable sets as obtained with OR :

Œ
R

F.t/�˛ D Œ
R

f �̨;
R

f �̨�

D Œ�at2=2; at2=2�

D ŒA�˛t2=2:

(3.57)

The next section introduces the derivative operator for fuzzy bunches of func-
tions. It is defined for more restricted spaces than the integral since they are
extensions of the classical case. Also, different from the integral case, we explore
the derivative on different spaces (Example 3.9) due to the fact that it is not a
continuous operator (in general). We are more interested, though, in differentiating
fuzzy bunches of the space of absolutely continuous functions (see Appendix), since
we can differentiate more elements in this space than in the space of differentiable
functions. Furthermore, it is used and has been explored in the differential inclusions
theory, which, as already mentioned, has important connections with the theory we
propose to develop.

3.2.2 Derivative

The derivative operator in the sense of distributions (see [1]) will be represented by
D, that is,

D W A C.Œa; b�IRn/ ! L1.Œa; b�IRn/

f 7! Df
(3.58)

Thus, there exists Df .t/ a:e:, in Œa; b�:

Definition 3.11. Let F 2 F .A C.Œa; b�IRn//. The derivative of F is given by ODF,
whose membership function is

� ODF.y/ D
�

supf 2D�1y �F.f /; if D�1y ¤ ;
0; if D�1y D ; : (3.59)

for all y 2 L1.Œa; b�IRn/. In words, OD is the extension of operator D.

Example 3.6. Let F.�/ be the same fuzzy bunch as in Example 3.5. We note that
F.�/ 2 F .A C.Œa; b�IR//.
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Following the same reasoning as Example 3.5,

� ODF.�/ D supDf D� �F.f /

D supD.� t/D� �F.� t/
D �F.� t/

D
8
<

:

�

a C 1; if � a � � < 0

� �

a C 1; if 0 � � < a
0; otherwise

D �A.�/:

(3.60)

It means that the support of ODF.�/ is composed of constant functions such that,
at each instant t, the derivative of F.�/ is always the fuzzy number A.

Lemma 3.1. For D defined as above, the preimage D�1g is a closed nonempty
subset in the space of functions A C.Œa; b�IRn/ with respect to the uniform norm
for each g 2 L1.Œa; b�IRn/.

Proof. D�1g is a finite dimensional subspace of A C.Œa; b�IRn/ since D�1g D ff C
k W k 2 R

ng for f 2 A C.Œa; b�IRn/ such that f D R x
a g. Hence D�1g is closed.

Theorem 3.13 ([4]). Let F 2 FK .A C.Œa; b�IRn//. Then

Œ ODF�˛ D DŒF�˛: (3.61)

Proof. This proof will make use of the result: ŒF�0 \ D�1.g/ is compact. It is true
since the subset D�1.g/ is nonempty and it is closed (from Lemma 3.1). Also, ŒF�0 \
D�1.g/ is a closed subset of the compact set ŒF�0, hence it is compact.

We show inclusion Œ OD.F/�˛ 
 D.ŒF�˛/ considering two cases: ˛ 2 .0; 1� and
later ˛ D 0.

(i) For ˛ 2 .0; 1�, let g 2 Œ OD.F/�˛; then

˛ � OD.F/.g/ D sup
h2D�1.g/

F.h/ D sup
h2ŒF�0\D�1.g/

F.h/ D F.f /

for some f , since F is an upper semicontinuous function (that is, the membership
of F is usc) and ŒF�0 \ D�1.g/ is compact. So, F.f / � ˛. That is, f 2 ŒF�˛ \
D�1.g/. Hence g 2 D.ŒF�˛/:

(ii) For ˛ D 0,

[˛2.0;1�Œ OD.F/�˛ 
 [˛2.0;1�D.ŒF�˛/ � D.ŒF�0/:

Consequently,

Œ OD.F/�0 D [˛2.0;1�Œ OD.F/�˛ 
 [˛2.0;1�D.ŒF�˛/ � D.ŒF�0/ D D.ŒF�0/:
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The last equality holds because D is a closed operator.

Now we prove the inclusion D.ŒF�˛/ 
 Œ OD.F/�˛ . If g 2 D.ŒF�˛/, there exists
f 2 ŒF�˛ such that D.f / D g. Thus,

OD.F/.g/ D sup
h2D�1.g/

F.h/ � F.f / � ˛ ) g 2 Œ OD.F/�˛

for all ˛ 2 Œ0; 1�:

We have proved that Œ OD.F/�˛ 
 D.ŒF�˛/ and D.ŒF�˛/ 
 Œ OD.F/�˛ , for all ˛ 2
Œ0; 1�, then (3.61) holds.

Example 3.7. Consider g W Œa; b� ! R a differentiable and positive function, A D
.cI dI e/ a triangular fuzzy number and the fuzzy-number-valued function

F.x/ D Ag.x/: (3.62)

We have

ŒF.x/�˛ D Œf �̨.x/; f C̨.x/� (3.63)

with

f �̨.x/ D Œa C ˛.b � a/�g.x/ and f C̨.x/ D Œe � ˛.e � d/�g.x/ (3.64)

differentiable with respect to x and continuous with respect to ˛.
The continuity in ˛ means that F.x/ 2 F 0

C.R/. It will be proved in Theorem 3.17
that the representative bunch of first kind of this function has compact ˛-cuts in
A C.Œa; b�IR/, since it satisfies the hypotheses of the theorem.

The derivative of the representative bunch of first kind has ˛-cuts

Œ OD QF�˛ D
[

ˇ�˛

[

0���1

.f �
ˇ /0

D .1 � �/Œa C ˛.b � a/�g0 C �Œe � ˛.e � d/�g0
D fa � g0; a 2 ŒA�˛g

(3.65)

for all ˛ 2 Œ0; 1�, that is,

OD QF D Ag0: (3.66)

It is a similar result as in Example 3.2 for GH-derivative, in terms of attainable
sets.

Example 3.8. Let

f .x/ D Becx (3.67)
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be a fuzzy-set-valued function where c is a real constant and B is a fuzzy subset in
R such that B.1/ D 1, B.0:5/ D 0:5 and B.x/ D 0 everywhere else. Hence f .x/

is not differentiable using Hukuhara or any generalized derivatives since it is not
a fuzzy-number-valued function. On the other hand, the fuzzy bunch of functions
with ˛-levels

ŒQf .�/�˛ D
� fy1.�/; y2.�/g; if 0 � ˛ � 0:5

fy1.�/g; if 0:5 < ˛ � 1
;

where y1.x/ D ecx and y2.x/ D 0:5ecx, has (3.67) as attainable fuzzy sets and is OD-
differentiable. Since this ˛-levels are compact subsets of A C.Œa; b�IR/, we apply
Theorem 3.13 and obtain

Œ ODf .�/�˛ D
� fz1.�/; z2.�/g; if 0 � ˛ � 0:5

fz1.�/g; if 0:5 < ˛ � 1
;

where z1.x/ D cecx and z2.x/ D 0:5cecx. Its attainable sets are

ODf .x/ D cBecx: (3.68)

Remark 3.2. The Hukuhara or the generalized derivatives cannot be used to dif-
ferentiate fuzzy-set-valued functions whose images are not fuzzy numbers, as the
function in Example 3.8. On the other hand, one can use the OD on correspondent
fuzzy bunches of functions and regard its attainable fuzzy sets as derivative.

Example 3.9 ([4]). The operator OD W FK .C1.Œa; b�IRn// ! FK .C.Œa; b�IRn// is
well defined and for each F 2 FK .C1.Œa; b�IRn// we have

Œ ODF�˛ D DŒF�˛ (3.69)

for all ˛ 2 Œ0; 1�, if C1.Œa; b�IRn/ is endowed with the norm k x k1D
sup0�t�Tfjx.t/j C jx0.t/jg and C.Œa; b�IRn/ is endowed with the usual supremum
norm. The result follows from Theorem 2.6 since D is a continuous function for
these spaces.

Another possibility of D being a continuous operator is as follows:

Theorem 3.14 ([4]). Consider the subset in A C.Œ0; T�IRn/:

ZT.Rn/ D fx.�/ 2 C.Œ0; T�IRn/ W 9 x0.�/ 2 L1.Œ0; T�IRn/g; (3.70)

with ZT.Rn/ having the uniform norm topology and L1.Œ0; T�IRn/ with the weak*-
topology. Thus,

OD W FK .ZT.Rn// ! FK .L1.Œ0; T�IRn//; (3.71)
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where OD is the extension of the derivative D, is well defined, that is, for each
F 2 FK .ZT.Rn//, the ˛-level Œ ODF�˛ is a compact subset in L1.Œ0; T�I R

n/ and
Œ ODF�˛ D DŒF�˛ .

Proof. The result follows from the Theorem 2.6 because

D W ZT.Rn/ ! L1.Œ0; T�IRn/ (3.72)

is a continuous linear operator (see [1, p. 104]).

Theorem 3.15. Let F; G 2 FK .A C.Œa; b�IRn//, then

(i) OD.F C G/ D ODF C ODG;
(ii) OD�F D � ODF, for any � 2 R.

Proof. This proof is completely analogous to the one of Theorem 3.15, due to the
linearity of the derivative operator.

3.2.3 Fundamental Theorem of Calculus

A result connects the concepts of derivative and integral for fuzzy bunches of
functions as in the classical case and in the fuzzy-set-valued function case.

Theorem 3.16. Let F 2 FK .L1.Œa; b�IRn//. Hence

OD

 OR F

�
D F; (3.73)

that is,

h OD

 OR F

�i˛ D ŒF�˛: (3.74)

for all ˛ 2 Œ0; 1�.

Proof. Since Theorem 3.11 holds,

Œ OR F�˛ D R
ŒF�˛

D fR f W f 2 ŒF�˛g (3.75)

for all ˛ 2 Œ0; 1� and OR F 2 FK .A C.Œ0; T�IRn//. Then Theorem 3.13 holds and,

Œ OD OR F�˛ D DŒ OR F�˛
D fD

R
f W f 2 ŒF�˛g

D ŒF�˛

(3.76)

for all ˛ 2 Œ0; 1� .
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3.3 Comparison

Different fuzzy bunches of functions may present the same attainable fuzzy sets, that
is, more than one fuzzy bunch of functions may correspond to one single fuzzy-set-
valued function. Choosing the suitable fuzzy bunch may lead to equivalence of OD
with derivatives for fuzzy-set-valued functions and equivalence of OR with integrals
for fuzzy-set-valued functions (in terms of attainable sets). This section discloses
similarities of the proposed theory with other approaches.

The motivation for this comparison and the definition of the two different fuzzy
bunches of functions of Definition 2.16 is what happens to the fuzzy-number-valued
functions of Examples 3.3 and 3.4. In the former the gH-derivative does not exist
whereas the g-derivative does and in the latter both do not exist. We calculate the
OD-derivative of the corresponding fuzzy bunches of the fuzzy-valued functions in
Examples 3.3 and 3.4 next. The fuzzy-number-valued functions do not meet the
conditions of the theorems to be stated, revealing the importance of the hypotheses
of these theorems.

Example 3.10. Recall Examples 2.13 and 3.3 where the representative bunch of first
kind are given by the ˛-cuts

Œ QF1.�/�˛ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0

@
[

ˇ�0:5

[

0���1

f �
ˇ

1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

g�
ˇ

1

A; if 0 � ˛ � 0:5

[

ˇ�˛

[

0���1

f �
ˇ ; if 0:5 < ˛ � 1

(3.77)

where
(

f �
ˇ .�/ W f �

ˇ .x/ D .1 � �/.x2 � 3 C ˇ/ C �..2ˇ � 1/x2 � 6ˇ C 4/;

g�
ˇ.�/ W g�

ˇ.x/ D .1 � �/.x2 � 3 C ˇ/ C �..1 � 2ˇ/x2 � 2ˇ C 2/;
(3.78)

for all � 2 Œ0; 1�. Since
(

.f �
ˇ /0.�/ W f �

ˇ .x/ D .1 � 2� C 2ˇ�/2x;

.g�
ˇ/0.�/ W g�

ˇ.x/ D .1 � 2ˇ�/2x;
(3.79)

using Theorem 3.13 to calculate Œ OD QF1.�/�˛ we obtain

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0

@
[

ˇ�0:5

[

0���1

.f �
ˇ /0
1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

.g�
ˇ/0
1

A; if 0 � ˛ � 0:5

[

ˇ�˛

[

0���1

.f �
ˇ /0; if 0:5 < ˛ � 1:

(3.80)
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At x 2 Œ0; 0:8�

Œ OD QF1.x/�˛ D Œm; M� (3.81)

with m as

min

8
<

:

0

@
[

ˇ�0:5

[

0���1

.f �
ˇ /0.x/

1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

.g�
ˇ/0.x/

1

A

9
=

;
D 0 (3.82)

if 0 � ˛ � 0:5 and

min

8
<

:

[

ˇ�˛

[

0���1

.f �
ˇ /0.x/

9
=

;
D .2˛ � 1/2x (3.83)

if 0:5 < ˛ � 1. And M equals

max

8
<

:

0

@
[

ˇ�0:5

[

0���1

.f �
ˇ /0.x/

1

A
[

0

@
[

˛�ˇ�0:5

[

0���1

.g�
ˇ/0.x/

1

A

9
=

;
D 2x (3.84)

if 0 � ˛ � 0:5 and

max

8
<

:

[

ˇ�˛

[

0���1

.f �
ˇ /0.x/

9
=

;
D 2x (3.85)

if 0:5 < ˛ � 1.
Hence the attainable sets of the OD-derivative are

Œ OD QF1.x/�˛ D
�

Œ0; 2x� ; if 0 � ˛ � 0:5

Œ.2˛ � 1/2x; 2x� ; if 0:5 < ˛ � 1
(3.86)

that is, the same as the g-derivative of the fuzzy-number-valued function F.

Example 3.11. Recall Examples 2.12 and 3.4 where the representative bunch of first
kind is given by the ˛-cuts

ŒF.x/�˛ D
� 


10x2 � 12; 10x2 C 2
�

; if 0 � ˛ � 0:5

Œ�1; 1� ; if 0:5 < ˛ � 1
: (3.87)
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and the representative bunch of second kind is defined by

Œ QF1.�/�˛ D

8
ˆ̂
<̂

ˆ̂
:̂

2[

iD1

[

0���1

y�
i .�/; if 0 � ˛ � 0:5

[

0���1

y�
1 .�/; if 0:5 < ˛ � 1

(3.88)

where

8
ˆ̂
<

ˆ̂
:

y�
1.�/ W y�

1.x/ D .1 � �/.10x2 � 12/ C �.10x2 C 2/;

y�
2.�/ W y�

2.x/ D .1 � �/.�1/ C �;

y�
3.�/ W y�

3.x/ D .1 � �/.�1/ C �.10x2 C 2/;

y�
4.�/ W y�

4.x/ D .1 � �/.10x2 � 12/ C �;

(3.89)

for all � 2 Œ0; 1�.
The derivatives of the representative bunch of first kind is given by the ˛-cuts

Œ OD QF1.�/�˛ D

8
ˆ̂
<̂

ˆ̂
:̂

2[

iD1

[

0���1

.y�
i /0.�/; if 0 � ˛ � 0:5

[

0���1

y�
1 .�/; if 0:5 < ˛ � 1

(3.90)

and the representative bunch of second kind is defined by

Œ OD QF2.�/�˛ D

8
ˆ̂
<̂

ˆ̂
:̂

4[

iD1

[

0���1

.y�
i /0.�/; if 0 � ˛ � 0:5

f.y1/0.�/g
[

0���1

y�
1.�/; if 0:5 < ˛ � 1

(3.91)

where

8
ˆ̂
<

ˆ̂
:

.y1/0.�/ W .y1/0.x/ D 20x;

.y2/0.�/ W .y2/0.x/ D 0;

.y3/0.�/ W .y3/0.x/ D �20x;

.y4/0.�/ W .y4/0.x/ D .1 � �/20x;

(3.92)

for all � 2 Œ0; 1�.
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In terms of attainable sets, the derivative of the representative bunch of first kind
has attainable sets

Œ OD QF1.x/�˛ D
� f0gSf20xg; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
: (3.93)

The derivative of the representative bunch of second kind for x 2 Œ0; 1� has
attainable sets

Œ OD QF2.x/�˛ D
�

Œ0; 20x�; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
(3.94)

and for x 2 Œ�1; 0�,

Œ OD QF1.x/�˛ D
�

Œ20x; 0�; if 0 � ˛ � 0:5

f20xg; if 0:5 < ˛ � 1
: (3.95)

Hence the derivative of the representative bunch of first kind at each x 2 Œ�1; 1�

does not define fuzzy numbers while the derivative of the representative bunch of
second kind does.

Example 3.10 illustrates that the OD-derivative of the fuzzy bunch of first kind
of the given fuzzy-number-valued function F exists but its attainable sets are
not fuzzy numbers (while the gH-derivative of the fuzzy-number-valued function
does not exist). The result that we state next regards the necessary conditions for
equivalence between the gH-derivative of a fuzzy-number-valued function and the
OD-derivative of the corresponding fuzzy bunch of first kind. The result we state later
is connected with Example 3.11, that is, it is necessary that the g-derivative exist
for the equivalence with the derivative of the representative bunch of second kind.
The OD derivative in this last case provided a fuzzy-number-valued function, which
no derivative for fuzzy-number-valued functions that we presented can do.

Theorem 3.17. Let F W Œa; b� ! F 0
C .R/ be such that the functions f �̨.x/ and f C̨.x/

are real-valued functions, differentiable with respect to x, uniformly in ˛ 2 Œ0; 1�.
Suppose also that one of the following two cases holds:

(a)
�
f �̨�0 .x/ is increasing,

�
f C̨�0 .x/ is decreasing as functions of ˛; and

�
f �
1

�0
.x/ � �

f C
1

�0
.x/; (3.96)

or
(b)

�
f �̨�0 .x/ is decreasing,

�
f C̨�0 .x/ is increasing as functions of ˛; and

�
f C
1

�0
.x/ � �

f �
1

�0
.x/: (3.97)
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Then F generates a representative bunch of first kind QF.�/ with compact ˛-levels
and whose OD-derivative has attainable sets

h OD QF.x/
i

˛
D Œminf�f �̨�0 .x/;

�
f C̨�0 .x/g; maxf�f �̨�0 .x/;

�
f C̨�0 .x/g�: (3.98)

In words, the OD-derivative coincides with the gH-derivative at each x.

Proof. We prove that the sets A˛ in Definition 2.16 are ˛-cuts of a fuzzy set in
A C.Œa; b�IR/ using the same arguments as in Example 2.11. The only differ-
ence is to demonstrate compactness, which we do next. Note that any sequence
.f �i

˛i
/ in

S

ˇ�˛

S

0���1

f �
ˇ .�/ has a convergent subsequence whose limit belongs to

S

ˇ�˛

S

0���1

f �
ˇ .�/, due to the continuity of f �

ˇ .�/ as function of the real parameters �

and ˇ defined on closed intervals (compact subsets) Œ0; 1� and Œ˛; 1�, respectively.
And since f ˙̌ are differentiable, so are f �

ˇ . According to [14], the differentiability
with respect to x, uniformly in ˛ 2 Œ0; 1�, assures that if a sequence of functions
converges to a function f , the sequence of its derivatives converges to f 0. Since f is
differentiable, it belongs to A C.Œa; b�IR/. As a result,

S

ˇ�˛

S

0���1

f �
ˇ is compact in

A C.Œa; b�IR/ and it is equal to its closure and hence to A˛ .
We next make use of Theorem 3.13 since QF 2 FK .A C.Œa; b�IR//:

Œ OD QF�˛ D DŒ QF�˛

D
[

ˇ�˛

[

0���1

.f �
ˇ /0 (3.99)

for all ˛ 2 Œ0; 1�. And we observe that for case (a)

[

0���1

.f �
ˇ /0.x/ D Œ.f �̌/0.x/; .f C

ˇ /0.x/� (3.100)

and

.f �̨/0.x/ � .f �̌/0.x/ � .f �
1 /0.x/ � .f C

1 /0.x/ � .f C
ˇ /0.x/ � .f C̨/0.x/ (3.101)

for 0 � ˛ � ˇ � 1,

Œ.f �̌/0.x/; .f C
ˇ /0.x/� � Œ.f �̨/0.x/; .f C̨/0.x/�: (3.102)

Hence

Œ OD QF.x/�˛ D
[

ˇ�˛

Œ.f �̌/0.x/; .f C
ˇ /0.x/�

D Œ.f �̨/0.x/; .f C̨/0.x/�

(3.103)

for all ˛ 2 Œ0; 1�.
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Similarly, case (b) leads to

Œ OD QF.x/�˛ D Œ.f C̨/0.x/; .f �̨/0.x/�: (3.104)

As a result we obtain the desired expression,

h OD QF.x/
i

˛
D 


minf.f �̨/0.x/; .f C̨/0.x/g; maxf.f �̨/0.x/; .f C̨/0.x/g� ; (3.105)

for all ˛ 2 Œ0; 1�, which the same as stated in Theorem 3.6 for the gH-derivative.

A similar result for connecting OD-derivative and g-derivative is presented in what
follows.

Theorem 3.18. Let F 2 Œa; b� ! F 0
C.R/ be a function such that f �̨.x/ and f C̨.x/

are differentiable real-valued functions with respect to x, uniformly with respect
to ˛ 2 Œ0; 1�. Then F generates a representative bunch of second kind QF.�/ with
compact ˛-levels and whose OD-derivative has attainable sets with levels Œ OD QF.x/�˛
given by

"

inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

; sup
ˇ�˛

max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

:

#

(3.106)

It means that the values of the g-derivative of F.x/ and the attainable sets of the
OD-derivative of QF.�/ coincide in every x 2 Œa; b�, whenever the g-derivative exists.

Proof. Using the same argument of the previous proof, it follows that the resultant
B˛ in Definition 2.16 are compact sets in A C.Œa; b�IR/ and are the ˛-cuts of the
representative bunch of second kind of F, QF. We use Theorem 3.13 and obtain

Œ OD QF�˛ D DŒ QF�˛

D
[

ˇ;��˛

[

0���1

.f �
ˇ;� /0 (3.107)

We will prove that L D infˇ;��˛

n
.f �

ˇ;� /0.x/
o

is attained, that is, that there exists

a triple .�; ˇ; �/ such that .f �

ˇ;�
/0.x/ D L with ˇ; � 2 Œ˛; 1�, � 2 Œ0; 1�. From the

definition of infimum, y � L if y 2 S

ˇ;��˛

S

0���1

.f �
ˇ;� /0.x/ and there exists a sequence

.yn/, yn D .f �n
ˇn;�n

/0.x/ such that

.f �n
ˇn;�n

/0.x/ ! L; L � .f �n
ˇn;�n

/0.x/: (3.108)

To the sequence .yn/ in R there corresponds a sequence .gn.�// of functions such
that gn.�/ D .f �n

ˇn;�n
/0.�/. This sequence of functions has a convergent subsequence,
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since the set is sequentially compact (where we use the same result in [14] as
previously used). This subsequence of functions defines a subsequence in .yn/,
ynk D gnk .x/. The subsequence .ynk / also converges to L. The limit of gnk .�/ is
attained for some triple .�; ˇ; �/ and its value in x is

.f �

ˇ;�
/0.x/ D lim gnk .x/ D lim ynk D L: (3.109)

Similarly we prove that the supremum M is also attained. Now we prove that

L D inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

: (3.110)

For any .f �
ˇ;� /0.x/, we have

.f �̌/0 � .f �
ˇ;� /0.x/ � .f C

� /0 or .f C
� /0 � .f �

ˇ;� /0.x/ � .f C
ˇ /0: (3.111)

Hence

inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

� inf
ˇ;��˛

n
.f �

ˇ;� /0.x/
o

: (3.112)

Since

[

ˇ�˛

n
.f �̌/0.x/; .f C

ˇ /0.x/
o



[

ˇ;��˛

n
.f �

ˇ;� /0.x/
o

(3.113)

the equality of the infimum holds.

Hence the value L D infˇ�˛ min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

is attained by

.f �̌/0.x/ or .f C
ˇ /0.x/, for some ˇ � ˛. The same happens to M D

supˇ�˛ max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o
. As a consequence, there are four possible cases:

(1) L D .f �̌
1
/0.x/ and M D .f C

ˇ2
/0.x/ and any value between L and M is attained

by .f �
ˇ1;ˇ2

/0.x/ for some � 2 Œ0; 1�;

(2) L D .f C
ˇ1

/0.x/ and M D .f �̌
2
/0.x/ and any value between L and M is attained

by .f �
ˇ2;ˇ1

/0.x/ for some � 2 Œ0; 1�;
(3) L D .f �̌

1
/0.x/ and M D .f �̌

2
/0.x/ and any value between L and M is attained by

.f �
ˇ1;ˇ1

/0.x/ or .f �
ˇ2;ˇ1

/0.x/ for some � 2 Œ0; 1�.

(4) L D .f C
ˇ1

/0.x/ and M D .f C
ˇ2

/0.x/ and any value between L and M is attained by

.f �
ˇ1;ˇ1

/0.x/ or .f �
ˇ1;ˇ2

/0.x/ for some � 2 Œ0; 1�.
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It proves that all values in

"

inf
ˇ�˛

min
n
.f �̌/0.x/; .f C

ˇ /0.x/
o

; sup
ˇ�˛

max
n
.f �̌/0.x/; .f C

ˇ /0.x/
o
#

(3.114)

are attained.
Then the same expression as in Theorem 3.7 for g-differentiable functions is

found and the desired result is proved.

The attainable sets of the OR -integral of certain bunches of functions also coincide
with integrals for fuzzy-set-valued functions, as it will be stated in Theorem 3.19.

Theorem 3.19. Let F W Œa; b� ! F 0
C .R/ be continuous. Then the OR -integral of the

representative bunch of first kind has attainable fuzzy sets

" OZ x

a

QF
#

˛

D
�Z x

a
f �̨;

Z x

a
f C̨
�

(3.115)

for all ˛ 2 Œ0; 1�.

In words, the OR -integral coincides with the integrals for fuzzy-set-valued func-
tions at each x.

Proof. It is not hard to prove the compacity of A˛ (Definition 2.16) in L1.Œa; b�IR/.
This is assured by the arguments previously used in proving compacity in
A C.Œa; b�IR/. Following the reasoning of the previous results one demonstrate
that A˛ are the ˛-cuts of a fuzzy subset in L1.Œa; b�IR/.

We observe that
R x

a f �
ˇ is well defined and that

Z x

a
f �̨ �

Z x

a
f �
ˇ and

Z x

a
f �
ˇ �

Z x

a
f C̨ (3.116)

for all � 2 Œ0; 1� and 0 � ˛ � ˇ � 1. Hence we obtain, for all ˛ 2 Œ0; 1�,

Œ OR QF�˛ D
[

ˇ�˛

[

�2Œ0;1�

Z x

a
f �
ˇ

D Œ
R

f �̨;
R

f C̨�

(3.117)

where the last identity holds due to the continuity of
R x

a f �
ˇ .x/ on �, ˇ, and x.

Thus, we have proved that the attainable sets of the OR -integral of QF have the same
expression of the integrals for fuzzy-set-valued functions at each x.
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Summary of the comparison of derivatives and integrals:

• Equivalence between gH- and OD-derivatives. The gH-derivative of a cer-
tain class of fuzzy-number-valued functions coincides with the attainable
sets of the OD-derivative (using the representative bunch of first kind).

• Equivalence between g- and OD-derivatives. The g-derivative of a certain
class of fuzzy-number-valued functions coincides with the attainable sets
of the OD-derivative (using the representative bunch of second kind).

• Equivalence among integrals. The Aumann, Riemann, and Henstock
integrals of a certain class of fuzzy-number-valued functions coincide with

the attainable sets of the OR -integral (using the representative bunch of first
kind).

3.4 Summary

This chapter reviewed fuzzy calculus for fuzzy-set-valued functions and presented
the new fuzzy calculus using fuzzy bunches of functions. The concepts and results
here displayed are essential for the development of the various approaches of FDEs,
to be presented in the next chapter. They are summarized next:

• The Hukuhara derivative is defined for a class of fuzzy-set-valued functions
and uses the concept of Hukuhara difference. The strongly generalized
Hukuhara derivative, weakly generalized Hukuhara derivative, generalized
Hukuhara derivative, and the fuzzy generalized derivative generalize the
Hukuhara derivative and are defined for wider classes of fuzzy-number-valued
functions.

• The Aumann, Riemann, and Henstock integrals are defined for fuzzy-set-valued
functions.

• The derivative and the integral via extension of the derivative and integral

operators, denoted by OD and OR , are defined for fuzzy bunches of functions.
• The OD-derivative of a class of fuzzy bunches of functions coincides with the

generalized derivatives in terms of attainable sets.

• The OR -integral of a class of fuzzy bunches of functions coincides with the
integrals for fuzzy-number-valued functions in terms of attainable sets.
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Chapter 4
Fuzzy Differential Equations

We review some approaches of FDEs in this chapter and propose and explore a new
theory of FDEs using the OD-derivative introduced in Sect. 3.2.2. Two theorems of
existence of solutions to fuzzy initial value problems (FIVPs) are proved and we
compare the theory with other approaches, exemplifying with biological models.

4.1 Approaches of FIVPs

FDEs have been extensively studied after [22] first used this expression in 1980.
However, the treated problems were not FDEs, strictly, since they did not explicitly
use fuzzy sets. Only after the definition of Hukuhara derivative in 1983 did [19]
develop a theory for FDEs proposing an existence and uniqueness theorem for
solutions to FIVPs. Simultaneously, [28] built up a similar theory for fuzzy-number-
valued functions. The proposal of this chapter is to find x satisfying

�
X0.t/D F.t; X.t//
X.0/D X0

(4.1)

where F is a function that indicates the rate of change of the state variable X at a
given instant t.

The function F is real-valued in the IVP as well as the initial condition and
the solution. This can be interpreted as a crisp alternative (unique, given some
conditions) for the direction to the state variable to follow, at each instant t.

The fuzzy function F indicates a fuzzy direction to be followed in the FIVP.
In this case, there are two interpretations. One can fill this trajectory with different
crisp solutions, attaching a membership degree to each of them, or one can fill
this trajectory with a function that assigns to each instant t a fuzzy subset (that
is, the state variable is fuzzy). In the first approach the solution is a fuzzy bunch
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of functions while in the second one obtains a fuzzy-set-valued function. The use
of fuzzy functions as solution to FIVPs is justified by the condition of continuity
over the function. Having a fuzzy initial value, a continuous fuzzy function does
not change abruptly to nonfuzzy states. On the other hand, if the initial value is not
fuzzy, only its parameters, then the FDE means that the solution has fuzzy derivative
and it is possible only if it is a fuzzy function.

The theories of FDEs in [19, 28] were developed for fuzzy-set-valued functions.
The existence theorem for these fuzzy-valued functions is found in Sect. 4.3 is for
this kind of functions. The theory for FDEs using fuzzy bunches is what is original
research and is presented in Sect. 4.6.

Other approaches that are not strictly FDEs are the extension of the solution and
FDIs. The latter makes use of fuzzy bunches of functions and both are based on
solving differential equations. Though they do not explicitly use equality of fuzzy
sets, they are explored in this chapter since they have similarities with the approach
in Sect. 4.6.

It is important to make it clear what “solution” means in each method. Solutions
of different approaches may lie in distinct spaces of fuzzy functions, which makes
them incomparable, a priori. In this case, we will compare the respective attainable
sets. In what follows it will briefly be explained in order to make the comparisons
clearer and will be further explored in the next sections. The various approaches of
FIVPs that we treat are displayed in Fig. 4.1, where we stress the use of derivatives
by three of them.

4.1.1 Fuzzy Differential Equations with Fuzzy Derivatives

Consider the FIVP

�
X0.t/ D F.t; X.t//
X.0/ D X0

; (4.2)

where F W Œ0; T� � FC .Rn/ ! FC .Rn/ and X0 2 FC .Rn/. A solution, if the
derivative is Hukuhara derivative, is a continuous fuzzy-set-valued function X W
Œ0; T� ! FC .Rn/ that satisfies X0.t/ D F.t; X.t//, for all t 2 Œ0; T�, and the initial
condition X.0/ D X0. In case the derivative is the strongly generalized derivative,
the FIVP is defined only for case n D 1 and the solution is a continuous fuzzy-
number-valued function X W Œ0; T� ! FC .R/ that satisfies X0.t/ D F.t; X.t//, for
all t 2 Œ0; T�, and the initial condition X.0/ D X0. If the derivative is OD-derivative,
the solution is a fuzzy bunch of functions X.�/ 2 FK .A C.Œ0; T�IRn// that satisfies
ODX.t/ D F.t; X.t// a.e. in Œ0; T� and the initial condition. That is, given a solution
X.�/, its derivative ODX.�/ calculated in t (attainable set in t) must be equal to
F.t; X.t//, a.e. in Œ0; T�. Moreover, the attainable set at t D 0, X.0/ must satisfy
the initial condition.
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Fig. 4.1 Approaches of FIVPs

4.1.2 Fuzzy Differential Inclusions

FDIs are defined levelwise

x0.t/ 2 ŒF.t; x.t//�˛
x.0/ 2 ŒX0�˛

(4.3)

for all ˛ 2 Œ0; 1�, where ŒF�˛ W Œ0; T� � R
n ! K n

C and ŒX0�˛ 2 K n
C . The solution

to (4.3) is a fuzzy bunch of functions X.�/ 2 FK .A C.Œ0; T�IRn// whose elements
(functions) of its ˛-cuts satisfy the differential inclusions (4.3) a.e. in Œ0; T�.

Note that there is no fuzzy derivative. We use the derivative for real-valued
functions and there is no equality between fuzzy sets, hence we do not have a fuzzy
differential equation.
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4.1.3 Extension of the Solution

Consider the classical IVP

�
x0.t/ D f .t; x.t/; w/

x.0/ D x0

; (4.4)

where f W Œ0; T��R
nCp ! R

n, with w a parameter in R
p, is continuous and x0 2 R

n.
If the parameter w and/or the initial condition x0 are now fuzzy subsets (W and X0),
the solution via extension of the solution is a fuzzy-set-valued function X W Œ0; T� !
F .Rn/ obtained from the use of the extension on the solution of (4.4) at each t 2
Œ0; T�, x.t; x0; w/, that depends on x0 and w. In other words, X is a solution to the
FIVP if

X.t/ D Ox.t; X0; W/: (4.5)

As in the previous case, since there is no fuzzy derivative, it is not a fuzzy differential
equation.

Note that in each case, the right-hand-side term of the differential equation
belongs to a different space or is defined over a different space. However, to compare
all the approaches we need to analyze equivalent FIVPs, in some sense.

First, given the function of the right-hand-side term of the differential equation
of one approach, we want to be able to find the corresponding function for the other
approaches. Second, we want to compare the five different kinds of FIVPs when
they are modeling the same phenomenon. For instance, consider � 2 R, x 2 R and

f .x/ D �x: (4.6)

It is intuitive to compare IVP (4.4) with this f to FIVP (4.2) having

F.X/ D �X; (4.7)

X 2 F .R/, since the idea of both is that the rate of change of the variable x (or X)
is proportional do the variable itself. In this case, the FDI (4.3) is also well defined
when H.x/ D �x.

An option is to consider the extension of f . But, given f , one cannot always
find explicitly the expression of F. If f D x.1 � x/, the extension of f is not
F.X/ D X.1 � X/, unless the definition of arithmetic via extension principle is
not given by Mizumoto and Tanaka [24] and the multiplication carries some kind of
interactivity (see Sects. 2.3.2 and 2.3.3). But the Hukuhara and strongly generalized
differentiability approaches use other arithmetic to define the derivatives, hence
the use of different arithmetics in each side of the equation could be criticized
for not being the same. Furthermore, given F, it is not always possible to find a
corresponding expression for f [12], as, for example, in the case ŒF.X/�˛ D Œx�

0 ; xC̨�

for ŒX�˛ D Œx�̨; xC̨�.
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In conclusion, “equivalent FIVPs” does not have a clear meaning. In this text we
will first take into consideration the interpretation of the FIVP. We will compare the
different approaches trying to model the same biological phenomenon.

The solution may belong to different spaces as well. To compare the solutions
to the different approaches we do the same as when comparing the derivatives in
Sect. 3.3. That is, in case the solution is a fuzzy bunch of functions (via OD-derivative
and FDIs), we compare the approaches to the fuzzy attainable sets defined in
Sect. 2.5.

This comparison will be carried out for the exponential decay and the logistic
models. The classical models are the following IVPs

x0.t/ D ��x.t/; x.0/ D x0 (exponential decay) (4.8)

and

x0.t/ D ax.t/.k � x.t//; x.0/ D x0 (logistic equation) (4.9)

with �; a; k; x0 > 0.
We are interested in these models for mathematical and biological reasons.

Mathematically, these models are interesting for their equilibrium points: x D 0

in (4.8) and x D 0 and x D k in (4.9). Moreover, x D 0 in (4.8) and x D k
in (4.9) are asymptotically stable, which means that, given an initial condition in a
certain neighborhood, the solution will tend to these equilibrium points. Indeed,
any positive initial condition will lead to this behavior. The biological meaning
of this is that a population that is represented by (4.8) tends to disappear. This is
consistent with the model, since the mathematical equation means that the rate of
change is negative and proportional to the existing population. A population which
is modeled by (4.9) will tend to the constant k, called carrying capacity (the amount
of the population that the environment can support), since if x < k the rate of change
is positive and if x > k it is negative.

It is interesting to examine the fuzzy case of these two models because the
first one has the extension given by ��X, as has already been mentioned. Hence
the formula is similar to the classical case. And, as it has been discussed earlier,
the extension principle is a good criteria to decide which FIVPs to compare. The
expression of the extension of the logistic model, on the other hand, does not
have the same representation with the standard arithmetic for fuzzy numbers. But
this does not mean that the fuzzy logistic model cannot be written as X0.t/ D
AX.t/.K �X.t//, where all the involved terms are fuzzy. The examples involving the
logistic case will use parameters based on the research of Gause (1969), presented as
an example by Edelstein-Keshet [15]. Gause carried out an experiment of cultivation
of the yeast Scrhizosaccharomyces kephir and found out that, beginning with the
amount of x0 D 0:45 the population of this yeast clearly satisfied the logistic
equation with parameters k D 5:8 and a D 0:01 for a total time of 160 h.
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4.2 Hukuhara Derivative

The authors of [19, 28] independently stated conditions for existence of solution
to differential equations in which the involved functions were fuzzy-set-valued
functions and the derivative was also fuzzy. Both proposed a theorem for existence
and uniqueness of solutions to FIVPs, that is, a Picard–Lindelöf type theorem, one
using the Hukuhara derivative and the other, the Seikkala derivative. The Peano
Theorem was proven not to hold for FDEs because the metric space .FC .Rn/; d1/

generally is not locally compact [20]. Adding a new condition (boundedness) solved
it [25]. Solution means a fuzzy-set-valued function X W Œ0; T� ! FC .Rn/ that
satisfies the differential equation for each t 2 Œ0; T� and the initial condition in (1.2).

Consider (1.2) with the Hukuhara derivative:

�
X0

H.t/ D F.t; X.t//
X.0/ D X0

; (4.10)

where F W Œ0; T� � FC .R/ ! FC .R/ is continuous and X0 2 FC .Rn/. The
following lemma is stated in [19].

Lemma 4.1 ([19]). A fuzzy-set-valued function x W Œ0; T� ! FC .Rn/ is a solution
to FIVP (4.10) if and only if it is continuous and satisfies

X.t/ D X0 C
Z t

0

F.s; X.s//ds (4.11)

for all t 2 Œ0; T�.

It is not possible to extend Lemma 4.1 for t < 0 due to the property of
nondecreasing diameter of the ˛-levels.

Theorem 4.1 ([25]). Consider F W Œ0; T� � FC .Rn/ ! FC .Rn/ continuous and
bounded. Then there is at least one solution to FIVP (1.2) on Œ0; T�.

The following result is close to Picard–Lindelöf type theorem, since it establishes
continuity and the Lipschitz condition as sufficient for existence and uniqueness of
solution.

Theorem 4.2 ([19]). Consider a continuous function F W Œ0; T� � FC .Rn/ !
FC .Rn/ satisfying the Lipschitz condition in the second argument, that is, there
exists k > 0 such that

d1.F.t; X/; F.t; Y// � kd1.X; Y/ (4.12)

for all t 2 Œ0; T�; X; Y 2 FC .Rn/. Then there is a unique solution to FIVP (1.2) on
Œ0; T�.
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A characterization theorem, stated in [6] simplifies the calculations. The result
assures that it suffices to solve system of ODEs.

Theorem 4.3 ([6, 7]). Consider a continuous function F W R0 ! FC .R/, R0 D
Œ0; T� � B.X0; q/, q > 0, X0 2 FC .R/, such that

ŒF.t; x/�˛ D Œf �̨.t; x�̨; xC̨/; f C̨.t; x�̨; xC̨/�; ˛ 2 Œ0; 1� (4.13)

with f �̨.t; x�̨; xC̨/ and f C̨.t; x�̨; xC̨/ equicontinuous and uniformly Lipschitz in the
second and third arguments, that is, there exists L > 0 such that

ˇ
ˇf �̨.t; x�̨; xC̨/ � f C̨.t; x�̨; xC̨/

ˇ
ˇ � L.jx�̨ � y�̨/j C jxC̨ � yC̨/j/; (4.14)

for any .t; x/; .t; y/ 2 R0 and for any ˛ 2 Œ0; 1�. Then the FIVP (1.2) has a unique
solution in an interval Œ0; k�, for some k > 0, characterized levelwise by the system
of ODEs

8
ˆ̂
<

ˆ̂
:

.x�̨/0.t/ D f �̨.t; x�̨.t/; xC̨.t//

.xC̨/0.t/ D f C̨.t; x�̨.t/; xC̨.t//
x�̨.0/ D .x�

0 /˛

xC̨.0/ D .xC
0 /˛

; (4.15)

˛ 2 Œ0; 1�.

Some examples with biological interpretation will illustrate the use of Hukuhara
derivative in FIVPs.

Example 4.1. Consider the decay model

�
X0

H.t/ D ��X.t/
X.0/ D X0

; (4.16)

where � 2 R
C and X0 2 FC .R/, supp.X0/ 
 R

C. From now on denote ŒX0�˛ D
Œ.x0/�̨; .x0/C̨�.

The crisp case associated with system (4.16) is frequently used to model
population growth (or decay, depending on the sign of �) or nuclear decay. It is
a simple model, yet a reasonable approximation for a short period of observation
of the phenomenon. The interpretation of FIVP (4.16) is the decay model with
nonfuzzy coefficient and fuzzy initial condition. One explanation is that X0 can be a
label such as “high” or “small” and each real number in R has a membership degree
to this subset. Another interpretation is that there is a partial knowledge of the initial
condition, and the most likely values have membership degrees close to one.
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Levelwise, solving (4.16) is equivalent to solving

� 

X0

H.t/
�

˛
D Œ��X.t/�˛

ŒX.0/�˛ D ŒX0�˛
(4.17)

for all ˛ 2 Œ0; 1�.
Hence,

� 

x�̨.t/; xC̨.t/

� D Œ��xC̨.t/; ��x�̨.t/�

x�̨.0/; xC̨.0/

� D Œx�
0˛; xC

0˛�
; (4.18)

that is,
8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D ��xC̨.t/

.xC̨.t//0 D ��x�̨.t/
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

: (4.19)

The solution one obtains is:
(

x�̨.t/ D c.1/
˛ e�t C c.2/

˛ e��t

xC̨.t/ D �c.1/
˛ e�t C c.2/

˛ e��t
(4.20)

with

c�̨ D x�
0˛ � xC

0˛

2
and cC̨ D x�

0˛ C xC
0˛

2
: (4.21)

for all ˛ 2 Œ0; 1�.
Since it models population or nuclear particles, there is no meaning in the

solution when it assumes negative values. This is why it is omitted in Figs. 4.2
and 4.3. The result of nonzero membership degree to negative values is a defect
resulting of the Hukuhara derivative. Hence, from t � 40 on, the solution has no
biological meaning anymore, since in the calculations negative values for the state
variable are used. Furthermore, in a population that is decreasing proportionally
to its quantity it is expected that it tends towards zero, no matter its initial value,
uncertainty or its membership to a determined subset (“large,” “medium,” or
“small,” for instance). It is expected, actually, that the fuzziness goes to zero. Hence
the increasing fuzziness (or diameter) is not considered a good modeling of the
decay phenomenon.

Example 4.2. Consider the coefficient of X also fuzzy in the decay model:

�
X0

H.t/ D ��X.t/
X.0/ D X0

; (4.22)
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Fig. 4.2 The 0-level
(continuous line) and the core
(dashed-dotted line) of
solution to the decay model
via Hukuhara derivative in
Example 4.1. Initial condition
.0:35I 0:45I 0:55/ and
parameter � D 0:02

Fig. 4.3 Attainable fuzzy
sets of solution to the decay
model via Hukuhara
derivative in Example 4.1.
Initial condition
.0:35I 0:45I 0:55/ and
parameter � D 0:02

where � 2 FC .R/, supp.�/ 
 R
C, X0 2 FC .R/ and supp.X0/ 
 R

C. From now
on assume Œ��˛ D Œ��̨; �C̨�.

The biological meaning of this model is the same as the previous one. The sole
difference is in the parameter �, which is fuzzy in the present example.

Since Œ��X.t/�˛ D Œ��C̨xC̨.t/; ���̨x�̨.t/�, the FDE in levels is equivalent to
the following system of differential equations

8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D ��C̨xC̨.t/

.xC̨.t//0 D ���̨x�̨.t/
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

(4.23)

The solution is

8
<

:

x�̨.t/ D c.1/
˛ e

q
��

˛ �
C

˛ t C c.2/
˛ e�

q
��

˛ �
C

˛ t

xC̨.t/ D �
q

��

˛

�
C

˛

c.1/
˛ e

q
��

˛ �
C

˛ t C
q

��

˛

�
C

˛

c.2/
˛ e�

q
��

˛ �
C

˛ t
(4.24)
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Fig. 4.4 The 0-level
(continuous line) and the core
(dashed-dotted line) of
solution to the decay model
via Hukuhara derivative in
Example 4.2. Initial condition
.0:35I 0:45I 0:55/ and
parameter
� D .0:016I 0:020I 0:024/

Fig. 4.5 Attainable fuzzy
sets of solution to the decay
model via Hukuhara
derivative in Example 4.2.
Initial condition
.0:35I 0:45I 0:55/ and
parameter
� D .0:016I 0:020I 0:024/

with

c.1/
˛ D x�

0˛ �p
�C̨=��̨ xC

0˛

2
and c.2/

˛ D x�
0˛ Cp

�C̨=��̨ xC
0˛

2
: (4.25)

for all ˛ 2 Œ0; 1�.
As in the previous case, no matter the fuzziness of the initial condition or the

parameter, it is not expected to increase the diameter of the solution, though it
always happens when employing the Hukuhara derivative (Figs. 4.4 and 4.5).

Example 4.3. Another well-known biological model is the logistic growth

�
X0

H.t/ D aX.t/.k � X.t//
X.0/ D X0

: (4.26)

Here fuzziness is present only in the initial condition, that is, X0 2 FC .R/ and
supp.X0/ 
 R

C. The other parameters are nonfuzzy, a 2 R
C and k 2 R

C.
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The model takes into account that the environment has a limited number of
individuals it can support, in a given population. This is characterized by the
parameter k, called carrying capacity, here considered constant. Parameter a has to
do with reproduction. The term akX.t/ corresponds to the growth rate, controlled by
the term �aX.t/2, which corresponds to intraspecific competition. If the population
is modeled by a crisp variable, note that if X.t/ � 0, X0

H.t/ � akX.t/, that is,
there is no obstruction for the population to grow. The change rate is positive while
X.t/ < k, but it tends towards zero while X.t/ tends to k. For X.t/ > k, that is, above
the carrying capacity, the change of rate is negative.

The Hukuhara difference is not defined for k �H X.t/ if X.t/ is fuzzy. Therefore
consider the difference based on SIA (or gH-difference, which gives us the same
result for this case). Condition 0 < u < v implies

minfau.k � u/; au.k � v/; av.k � u/; av.k � v/g D au.k � v/ (4.27)

and

maxfau.k � u/; au.k � v/; av.k � u/; av.k � v/g D av.k � u/: (4.28)

Hence

ŒaX.t/.k � X.t//�˛ D Œax�̨.t/.k � xC̨.t//; axC̨.t/.k � x�̨.t//� (4.29)

since 0 < x�̨.t/ < xC̨.t/.
The system of equations

8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D ax�̨.t/.k � xC̨.t//

.xC̨.t//0 D axC̨.t/.k � x�̨.t//
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

(4.30)

is solved numerically, by applying first-order Euler method. This method approx-
imates x�̨.t/, xC̨.t/, x�̨.t C h/ and xC̨.t C h/ by u.i/

˛ , v
.i/
˛ , u.iC1/

˛ and v
.iC1/
˛ such

that

u.iC1/
˛ D u.i/

˛ C h � a u.i/
˛ .k � v.i/

˛ / (4.31)

and

v.iC1/
˛ D v.i/

˛ C h � a v.i/
˛ .k � u.i/

˛ /; (4.32)

where i D 1; 2; : : : ; n, n is the number of divisions of Œ0; T� and h D T=.n � 1/ is
the size of each subinterval of Œ0; T�.
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Fig. 4.6 The 0-level
(continuous line) and the core
(dashed-dotted line) of
solution to the logistic model
via Hukuhara derivative in
Example 4.3. Initial condition
.0:35I 0:45I 0:55/ below
carrying support k D 5:8 and
growth parameter a D 0:01

Fig. 4.7 Attainable fuzzy
sets of solution to the decay
model via Hukuhara
derivative in Example 4.3.
Initial condition
.0:35I 0:45I 0:55/ below
carrying support k D 5:8 and
growth parameter a D 0:01

Fig. 4.8 The 0-level
(continuous line) and the core
(dashed-dotted line) of
solution to the logistic model
via Hukuhara derivative in
Example 4.3. Initial condition
.8:5I 9:0I 9:5/ above carrying
support k D 5:8 and growth
parameter a D 0:01

The results are illustrated in Figs. 4.6, 4.7, 4.8, and 4.9. As expected, the solution
has increasing diameter. Since the core of the initial condition is just one point, the
core of the solution is the same as the solution of the crisp case, with initial condition
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Fig. 4.9 Attainable fuzzy
sets of solution to the decay
model via Hukuhara
derivative in Example 4.3.
Initial condition
.8:5I 9:0I 9:5/ above carrying
support k D 5:8 and growth
parameter a D 0:01

x�
01 D xC

01. But as in the decay model, it is expected, no matter the initial condition,
from“very small” to “very large,” that the population goes to a determined value
(k, in this case) as t increases.

As mentioned at the beginning of this section, other arithmetics can be used.
Though interactivity is not used in the definition of the Hukuhara derivative, let us
see what happens if we admit the CIA to calculate the differential field aX.k � X/:

ŒaX.k � X/�˛ D Œ min
x2ŒX�˛

fax.k � x/g; max
x2ŒX�˛

fax.k � x/g�: (4.33)

The Euler method is used again, calculating at each step the minimum and the
maximum in the last equation and solving

Œ.x�̨/0.t/; .xC̨/0.t/� D
�

min
x2ŒX.t/�˛

fax.t/.k � x.t//g; max
x2ŒX.t/�˛

fax.t/.k � x.t//g
�

:

(4.34)

Since f .x/ D ax.k � x/ is a parabola with maximum value at x D k=2, it is not
hard to determine the minimum and the maximum at each step:

• If x�̨.t/ < k=2 < xC̨.t/, the maximum of f .x/ is attained by x D k=2. And
the minimum is attained at minfax�̨.k � x�̨/; axC̨.k � xC̨/g.

• If xC̨.t/ < k=2, f .x/ is increasing with respect to x 2 Œx�̨; xC̨�, hence the
minimum is f .x�̨/ and the maximum is f .xC̨/.

• If xC̨.t/ < k=2, f .x/ is decreasing with respect to x 2 Œx�̨; xC̨�, hence the
minimum is f .xC̨/ and the maximum is f .x�̨/.

The results are displayed in Fig. 4.10. It is different from the result employing
noninteractive arithmetic, especially when the 0-level starts to assume negative
values. It is mathematically interesting, though biologically it is meaningless from
t � 125, since negative values are used to calculate the upper 0-level set function
and negative values do not make sense as number of individuals.
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Fig. 4.10 The 0-level
(continuous line) and the core
(dashed-dotted line) of
solution to the logistic model
with CIA and Hukuhara
derivative in Example 4.3.
Initial condition
.0:35I 0:45I 0:55/ below
carrying support k D 5:8 and
growth parameter a D 0:01

Nevertheless, as mentioned before, it seems incoherent to use different arith-
metics to define the derivative and to operate with the right-hand-side function. One
would expect thence to define the derivative via CIA.

The FIVPs of the examples in this section satisfy the hypotheses of Theorem 4.3,
that is, each ˛-cut of the function F can be written as function of x�̨ and xC̨.
However, this is not always true and solving the system may become more
complicated if this condition is dropped. The reader can refer to [12] for further
information about this subject. To briefly illustrate this case, consider the next
example.

Example 4.4. Consider FIVP (4.10) with F such that

ŒF.t; X.t//�˛ D Œx�
0 .t/; xC̨.t/� (4.35)

which is equivalent to

�
.x�̨/0.t/ D x�

0 .t/; x�̨.0/ D .x�
0 /˛

.xC̨/0.t/ D xC̨.t/; xC̨.0/ D .xC
0 /˛

: (4.36)

The second equation can be solved directly: xC̨.t/ D .xC
0 /˛et. The first one needs

two steps and we begin with ˛ D 0:

.x�
0 /0.t/ D x�

0 .t/; x�
0 .0/ D .x�

0 /0 (4.37)

which leads to x�
0 .t/ D .x�

0 /0et and

.x�̨/0.t/ D .x�
0 /0et; x�̨.0/ D .x�

0 /˛ (4.38)



4.3 Strongly Generalized Derivative 83

The result is

�
x�̨.t/ D .x�

0 /0et C .x�
0 /˛ � .x�

0 /0

xC̨.t/ D .xC
0 /˛et : (4.39)

Example 4.4 illustrated the fact that the function F in FIVP (4.10) may not be
written directly as function of x�̨ and xC̨ (in this example, F is function of x�

0

and xC̨). The process of solving may become more difficult but since F satisfies
the existence Theorem 4.2, there is a solution (and we managed to find it).

4.3 Strongly Generalized Derivative

Section 3.1.2 has shown that the strongly generalized derivative (see Definition 3.6)
“fixes” the defect of nondecreasing length of the support of a H-differentiable fuzzy
function. In this section we present the existence and uniqueness of two solution
theorem, first stated by Bede and Gal [8]. As in the Hukuhara case, the solution
to an FIVP is given by integral equations, in such manner that, provided some
conditions, there is always a solution with increasing diameter (strongly generalized
differentiability of type (i)) and other with decreasing diameter (strongly generalized
differentiability of type (ii)) [8]. The possibility of change of type of differentiability
(i)–(iv) characterizes interesting phenomena called switch points.

Consider (1.2) with the strongly generalized derivative:

�
X0

G.t/ D F.t; X.t//
X.0/ D X0

; (4.40)

where F W R � FC .R/ ! FC .R/ is continuous and X0 2 FC .R/. As in Hukuhara
derivative case, there is a result connecting FDEs with fuzzy integral equations.

Theorem 4.4 ([8]). The FIVP (4.40) is equivalent to the integral equation

X.t/ D X0 C
Z t

0

F.s; X.s//ds; (4.41)

if the derivative considered is type (i), or to the integral equation

X0 D X.t/ C .�1/

Z t

0

F.s; X.s//ds; (4.42)

if the derivative considered is type (ii), on some interval Œt1; t2� 
 Œ0; T�.

Based on the next lemma, Bede [7] proves the existence and uniqueness of two
solutions (Theorem 4.5).
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Lemma 4.2 ([7]). Let X 2 FC .R/ be such that ŒX�˛ D Œx�̨; xC̨�, ˛ 2 Œ0; 1�, x�̨
and xC̨ differentiable, with x� strictly increasing on Œ0; 1�, such that there exist the
constants c1 > 0, c2 < 0 satisfying .x�̨/0 � c1 and .xC̨/0 � c2 for all ˛ 2 Œ0; 1�.

Let F W Œa; b� ! FC .R/ be continuous with respect to t, having the level sets

ŒF.t/�˛ D Œf �̨.t/; f C̨.t/� with bounded partial derivatives @f �

˛ .t/
@˛

and @f C

˛ .t/
@˛

, for all
t 2 Œa; b�.

If one of the following two cases occurs

(a) x�
1 < xC

1 or
(b) x�

1 D xC
1 and the core ŒF.s/�1 consists of exactly one element for any s 2 Œa; b�,

then there exists h > a such that the H-difference

X �
Z t

a
F.s/ds (4.43)

exists for any t 2 Œa; h�.

Theorem 4.5 ([7]). Let R0 D Œ0; T��B.X0; q/; q > 0; X0 2 FC .R/ and F W R0 !
FC .R/ be continuous such that the following assumptions hold:

(i) There exists a constant L > 0 such that

d1.F.t; X/; F.t; Y// � Ld1.X; Y/ (4.44)

for all .t; X/; .t; Y/ 2 R0.
(ii) Let ŒF.t; X/�˛ D Œf �̨.t; X/; f C̨.t; X/� be the level set representation of F, then

f �̨; f C̨ W R0 ! R have bounded partial derivatives with respect to ˛ 2 Œ0; 1�,
the bounds being independent of .t; X/ 2 R0 and ˛ 2 Œ0; 1�.

(iii) The functions x�
0 and xC

0 are differentiable (as functions of ˛), existing c1 > 0

with
�
x�

0

�0
˛

� c1, and c2 < 0 with
�
xC

0

�0
˛

� c2, for all ˛ 2 Œ0; 1�, and we have
the following possibilities

(a) .x0/�
1 < .x0/C

1

or
(b) if .x0/�

1 D .x0/C
1 , then the core ŒF.t; X/�1 consists in exactly one element

for any .t; X/ 2 R0; whenever ŒX�1 consists in exactly one element.

Then the FIVP (1.2) has exactly two solutions on some interval Œ0; k�; k > 0.

The solution of FIVPs using strongly generalized differentiability, as in
Hukuhara case, can also be obtained by solving systems of ODEs to find the
level set functions of the solution.

Theorem 4.6 ([7]). Let R0 D Œ0; T�� B.X0; q/; q > 0; X0 2 FC .R/ and F W R0 !
FC .R/ be such that

ŒF.t; X/�˛ D Œf �̨.t; x�̨; xC̨/; f C̨.t; x�̨; xC̨/�; 8˛ 2 Œ0; 1� (4.45)
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and the following assumptions hold:

(i) f ˙̨.t; x�̨; xC̨/ are equicontinuous, uniformly Lipschitz in their second and third
arguments, that is, there exists a constant L > 0 such that

jf ˙̨.t; x�̨; xC̨/ � f ˙̨.t; y�̨; yC̨/j � L.jx�̨ � y�̨j C jxC̨ � yC̨j/; (4.46)

8.t; X/; .t; Y/ 2 R0; ˛ 2 Œ0; 1�:

(ii) f �̨; f C̨ W R0 ! R have bounded partial derivatives with respect to ˛ 2 Œ0; 1�,
the bounds being independent of .t; X/ 2 R0 and ˛ 2 Œ0; 1�.

(iii) The functions x�
0 and xC

0 are differentiable, existing c1 > 0 with
�
x�

0

�0
˛

� c1,

and c2 < 0 with
�
xC

0

�0
˛

� c2, for all ˛ 2 Œ0; 1�, and we have the following
possibilities

(a) .x0/�
1 < .x0/C

1

or
(b) if .x0/�

1 D .x0/C
1 then the core ŒF.t; X/�1 consists in exactly one element

for any .t; X/ 2 R0; whenever ŒX�1 consists in exactly one element.

Then the FIVP (1.2) is equivalent on some interval Œt0; t0 C k� with the union of
the following two ODEs:

8
<

:

�
x�̨�0 .t/ D f �̨.t; x�̨.t/; xC̨.t//�
xC̨�0 .t/ D f C̨.t; x�̨.t/; xC̨.t//

x�̨.t0/ D .x0/�
˛ ; xC̨.t0/ D .x0/C

˛

; ˛ 2 Œ0; 1� (4.47)

8
<

:

�
x�̨�0 .t/ D f C̨.t; x�̨.t/; xC̨.t//�
xC̨�0 .t/ D f �̨.t; x�̨.t/; xC̨.t//

x�̨.t0/ D .x0/�
˛ ; xC̨.t0/ D .x0/C

˛

; ˛ 2 Œ0; 1�: (4.48)

Example 4.5. Consider the decay model

�
X0

G.t/ D ��X.t/
X.0/ D X0

; (4.49)

where � 2 R
C, X0 2 FC .R/ and supp.X0/ 
 R

C.
The (i)-differentiable solution is Hukuhara differentiable solution, the same as in

Example 4.1. The other solution is the one obtained solving

8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D ��x�̨.t/

.xC̨.t//0 D ��xC̨.t/
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

: (4.50)



86 4 Fuzzy Differential Equations

The solution is

�
x�̨.t/ D x�

0˛e��t

xC̨.t/ D xC
0˛e��t (4.51)

for all ˛ 2 Œ0; 1�.

The (ii)-differentiable solution is a good alternative to the Hukuhara differen-
tiable solution, since it “fixes” the defect of increasing diameter of the solution
of the decay model. It is biologically more meaningful in Example 4.5 since it is
expected that the uncertainty vanishes as the population gets close to zero (Figs.
4.11 and 4.12).

Example 4.6. As in Example 4.2, consider the coefficient of X also fuzzy in the
decay model:

Fig. 4.11 Solutions to the
decay model via strongly
generalized derivative in
Example 4.5: the 0-level
(continuous line) of the
(i)-differentiable solution (in
the strongly generalized
sense), the 0-level (dashed
line) of the (ii)-differentiable
solution and the core
(dashed-dotted line) of both.
Initial condition
.0:35I 0:45I 0:55/ and
parameter � D 0:02

Fig. 4.12 Attainable fuzzy
sets of the (ii)-differentiable
solution to the decay model
via strongly generalized
derivative in Example 4.5.
Initial condition
.0:35I 0:45I 0:55/ and
parameter � D 0:02
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�
X0

G.t/ D ��X.t/
X.0/ D X0

; (4.52)

where � 2 FC .R/, supp.�/ 
 R
C, X0 2 FC .R/ and supp.X0/ 
 R

C.
The (i)-differentiable solution is Hukuhara differentiable solution, the same as in

Example 4.2. The other solution is obtained by solving

8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D ���̨x�̨.t/

.xC̨.t//0 D ��C̨xC̨.t/
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

: (4.53)

The solution is
(

x�̨.t/ D x�
0˛e���

˛ t

xC̨.t/ D xC
0˛e��

C

˛ t
: (4.54)

This solution is defined while x�̨.t/ < xC̨.t/, that is, for

t < Tm D 1

�C̨ � ��̨ ln

 
xC

0˛

x�
0˛

!

: (4.55)

The solution also has to satisfy x�̨.t/ � x�̌.t/ and xC̨.t/ � xC
ˇ .t/ for 0 � ˛ �

ˇ � 1. For the same values as Example 4.2, that is, X0 D .0:35I 0:45I 0:55/ and
� D .0:016I 0:020I 0:024/, numerically we find Tm � 48. The solution is displayed
in Figs. 4.13 and 4.14. It is clear that the solution does not exist from Tm � 44 on.

The condition x�̨.t/ < xC̨.t/ restricts the domain for which the solution is
defined. This is a particular problem of the solution with decreasing diameter, that
is, the Hukuhara differentiable solution does not degenerate and hence its domain
is bigger. On the other hand, since this particular problem is an application in
population modeling, it does not make sense (biologically) that x�̨.t/ < 0, what
limits the Hukuhara solution as well.

Note also that if the initial condition is nonfuzzy with x�̨.t/ D xC̨.t/, then

ln

�
xC

0˛

x�

0˛

	

D 0 and hence there is no domain for the solution. Since the crisp

condition violates a hypothesis of Theorem 4.5, it cannot assure existence of a
solution.

Example 4.7. The FIVP

�
X0.t/ D aX.t/.k � X.t//
X.0/ D X0

: (4.56)
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Fig. 4.13 Solutions to the decay model via strongly generalized derivative in Example 4.6: the
0-level (continuous line) of the (i)-differentiable solution (in the strongly generalized sense),
the 0-level (dashed line) of the (ii)-differentiable solution, defined for t < Tm, Tm � 48, and
the core (dashed-dotted line) of both (for the (ii)-differentiable solution, it is defined for t < Tm).
Initial condition .0:35I 0:45I 0:55/ and parameter � D .0:016I 0:020I 0:024/

Fig. 4.14 Attainable fuzzy sets of the (ii)-differentiable solution to the decay model via strongly
generalized derivative in Example 4.6, which is defined for t < Tm, Tm � 48. Initial condition
.0:35I 0:45I 0:55/ and parameter � D .0:016I 0:020I 0:024/

where X0 2 FC .R/ and supp.X0/ 
 R
C, a 2 R

C and k 2 R
C was evaluated

numerically in Example 4.3 using the Hukuhara derivative (which is equal to (i)-
differentiability).

The (ii)-differentiable solution is obtained considering

8
ˆ̂
<

ˆ̂
:

.x�̨.t//0 D axC̨.t/.k � x�̨.t//

.xC̨.t//0 D ax�̨.t/.k � xC̨.t//
x�̨.0/ D x�

0˛

xC̨.0/ D xC
0˛

: (4.57)
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Fig. 4.15 Solutions to the logistic model via strongly generalized derivative in Example 4.7: the
0-level (continuous line) of the (i)-differentiable solution (in the strongly generalized sense), the
0-level (dashed line) of the (ii)-differentiable solution and the core (dashed-dotted line) of both.
Initial condition .0:35I 0:45I 0:55/ below carrying support k D 5:8 and growth parameter a D 0:01

In order to solve it numerically, we approximate x�̨.t/, xC̨.t/, x�̨.t C h/ and
xC̨.t C h/ by u.i/

˛ , v
.i/
˛ , u.iC1/

˛ and v
.iC1/
˛ such that

u.iC1/
˛ D u.i/

˛ C ha v.i/
˛ .k � u.i/

˛ / (4.58)

and

v.iC1/
˛ D v.i/

˛ C ha u.i/
˛ .k � v.i/

˛ /; (4.59)

where i D 1; 2; : : : ; n, n is the number of divisions of Œ0; T� and h D T=.n � 1/ is
the size of each subinterval of Œ0; T�.

The diameter of the solution in the previous example decreases and the function
tends to k (see Fig. 4.15). As it was earlier observed, no matter the positive initial
condition, the trajectory of the classical case always tends towards k, and that is
what is expected from (4.56), considering the phenomenon that originated it. Hence
it does not matter the initial fuzziness as well, it is certain that, after a certain time,
the state variable will be very close to the carrying capacity. With this point of view
the (ii)-differentiable solution is more appropriate.



90 4 Fuzzy Differential Equations

Example 4.8 ([7, 9]). This example is similar to the one presented in [7, 9].
The authors propose to numerically solve

�
X0

H.t/ D AX.t/.K �gH X.t//
X.0/ D x0

; (4.60)

where x0 2 R
0, K 2 FC .R/, supp.K/ 
 R

C, A 2 FC .R/ and supp.A/ 
 R
C.

The values of the parameters are different from [7, 9]. We set ŒK�˛ D Œk�̨; kC̨� and
ŒA�˛ D Œa�̨; aC̨�

The crisp initial value does not meet condition (iii) of Theorem 4.5, that guar-
antees two solutions. In fact, only the Hukuhara differentiable (or (i)-differentiable)
solution is admitted, since the initial condition is not fuzzy.

We obtain it by solving

8
<

:

�
x�̨�0 .t/ D f �̨.t; x�̨.t/; xC̨.t//�
xC̨�0 .t/ D f C̨.t; x�̨.t/; xC̨.t//

x�̨.t0/ D .x0/�
˛ ; xC̨.t0/ D .x0/C

˛

; ˛ 2 Œ0; 1� (4.61)

To obtain the expression of f �̨ and f C̨, note that the supports of A and X are positive,
in order to preserve the biological meaning. Hence

ŒAX�˛ D ŒA�˛ŒX�˛ D Œa�̨x�̨; aC̨xC̨�: (4.62)

Also,

ŒK �gH X�˛ D Œminfk�̨ � x�̨; kC̨ � xC̨g; maxfk�̨ � x�̨; kC̨ � xC̨g�; (4.63)

provided K �gH X defines a fuzzy number. As a result,

�
f �̨.t; x�̨; xC̨/ D mins;p2f�;Cgfas

˛xs
˛.kp

˛ � xp
˛/g

f C̨.t; x�̨; xC̨/ D maxs;p2f�;Cgfas
˛xs

˛.kp
˛ � xp

˛/g ; ˛ 2 Œ0; 1�: (4.64)

We solve it using the Euler method, calculating at each step the minimum and
maximum needed to determine f �̨ and f C̨. If at some point .x�̨/0.t/ D .xC̨/0.t/,
that is, f �̨ D f C̨, then the solution would be (iv)-differentiable, according to
Definition 3.6. Hence, considering this point as new initial condition, from this
point on it would have decreasing diameter or increasing diameter, that is, be
(i)-differentiable or (ii)-differentiable. The new problem would meet all conditions
of Theorem 4.5 and we would be able to find these two solutions.

This point at which there are two options of solutions, each one with a different
differentiability, is called switch point. With the parameters used in this example,
there is no such point. Hence, there exists only the Hukuhara differentiable solution
(Fig. 4.16).
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Fig. 4.16 The 0-level (continuous line) and the core (dashed-dotted line) of the (i)-differentiable
solution to the logistic model via strongly generalized derivative in Example 4.8. Initial condition
0:45 below carrying support K D .5:3I 5:8I 6:3/ and growth parameter A D .0:005I 0:010I 0:015/

4.4 Fuzzy Differential Inclusions

The theory of differential inclusions was developed to deal with some kinds of
uncertainties not described by classical dynamical systems. These uncertainties
are due, for instance, to partial knowledge arisen from the impossibility of total
understanding of a phenomenon or to the ignorance of laws related to the control
of the system. Control can be direction, acceleration, fuel, temperature, weight or
other variables that may affect the system.

The mathematical model involves a family of differential equations

x0.t/ D f .x.t/; u.t//; u.t/ 2 U..x.t//; (4.65)

where x 2 R
n is the state variable, u 2 R

m is the control, and U is the subset of
admissible controls. Together with x, u defines the velocity of the system.

Defining the set-valued map H W Rn ! P.Rn/ as H.x/ D f .x; U.x// D ff .x; u/ W
u 2 U.x/g, the equation in (4.65) can be rewritten as

x0.t/ 2 H.x.t/; u.t//: (4.66)

Finding a solution x means finding an everywhere differentiable function that
satisfies (4.65) and a given initial condition. This problem is said to be parameteriz-
able, that is, there exists a single-valued function f of two variables x; u such that, for
every x, H.x/ D f .x; U/. The initial condition can also assume values in a given set
in R

n. Being parameterizable is an important property, since f continuous implies
that, for every fixed u0 2 U, x 7! f .x; u0/ is a continuous selection. The existence
of a continuous selection guarantees at least one solution to the Problem (4.66),
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that is, an everywhere differentiable function that satisfies the inclusion, obtained
by solving the (4.65) (and given an initial condition x.0/ D x0).

The differential inclusion can take a more general form:

�
x0.t/ 2 F.t; x.t//
x.0/ 2 �

(4.67)

where F W R � R
n ! P.Rn/ and � 
 R

n. In this case, which we call the time-
dependent case, the selections of F that are measurable with respect to the time
variable are considered, and hence the concept of solution is also more general. It is
an absolutely continuous (see Appendix) function that satisfies the inclusion a.e.
in (4.67), obtained by solving the differential equation x0.t/ D f .t; x.t//; x.0/ D
x0 2 � , where f is a selection of F.

The absolutely continuous functions are the weakest acceptable solutions,
according to [3], since they are continuous and, moreover, they are differentiable
except on a set of measure zero. This allows solutions with discontinuities in its
derivatives at some points and at the same time avoids some bizarre cases (such as
a function that has derivative zero a.e. but is strictly monotonic).

An FDI is a generalization of a differential inclusion and was first proposed by
Aubin [2] and Baidosov [4]. It is symbolically written as

�
x0.t/ 2 F.t; x.t//
x.0/ 2 X0

(4.68)

and, as [18] proposed, is interpreted levelwise as the family of differential inclusions

�
x0.t/ 2 ŒF.t; x.t//�˛
x.0/ 2 ŒX0�˛

(4.69)

for all ˛ 2 Œ0; 1�, where ŒF�˛ W Œ0; T� � R
n ! K n

C and ŒX0�˛ 2 K n
C .

A solution to Problem (4.69) is an absolutely continuous function x W Œ0; T� ! R
n

that satisfies the inclusion a.e. in Œ0; T� and x.0/ D x0 2 ŒX0�˛ . The set of all
solutions of (4.69) is denoted by ˙˛.x0; T/ and the attainable set at t 2 Œ0; T�

by A˛.x0; t/. Diamond [14] proved that the sets ˙˛.x0; T/ are the ˛-cuts of the
fuzzy solution ˙.x0; T/ of (4.68), a fuzzy subset in ZT.Rn/ (see Appendix), that is,
˙.x0; T/ 2 F .ZT.Rn//.

In the FDIs some trajectories may have more “preference” than the others which
is characterized by the value of its membership degree. This discrimination does not
exist in the traditional differential inclusions.

The following assumption assures that all the absolutely continuous solutions to
Problem (4.69) are defined on the same interval of existence.

Let ˝ be an open subset in R � R
n such that .0; x0/ 2 ˝ and H a mapping from

˝ into the compact and convex subsets of Rn. If there exist b; T; M > 0 such that:
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• the set Q D Œ0; T� � .x0 C .b C MT/Bn/ 
 ˝, where Bn is the unit ball of Rn;
• H maps Q into the ball of radius M

then it is said that the boundedness assumption holds (see [3, 14]).
The existence of solutions to FDIs for the time-dependent case is assured by

Theorem 4.7, stated and proved in [14]. It does not require continuity of the
differential field, but needs upper semicontinuity and boundedness assumption.

Theorem 4.7 ([14]). Suppose that X0 2 FC .Rn/, let ˝ be an open set in R � R
n

containing f0g � supp.X0/ and let F W ˝ � FC .Rn/ ! FC .Rn/ be usc. Suppose
that the boundedness assumption holds for all x0 2 supp.X0/ and

x0 2 ŒF.t; x/�0; x.0/ 2 supp.X0/: (4.70)

The families ˙˛.X0; T/ of all solutions to (4.69) are compact subsets in ZT.Rn/

for all ˛ 2 Œ0; 1�. Moreover, these subsets are ˛-cuts of a fuzzy subset in ZT.Rn/,
˙.X0; T/ 2 FK .ZT.Rn//, which is the solution to (4.68). The attainable sets
A˛.X0; t/ of ˙˛.X0; T/ define the fuzzy subset A .X0; t/ 2 FK .Rn/.

The selection method is considered in order to search for solutions. It consists
in finding a selection f .t; x/ of the set-valued function ŒF.t; x/�˛ and solving the
classical IVP

�
x0.t/ D f .t; x.t//
x.0/ D x0

; (4.71)

where x0 2 ŒX0�˛ . If f is continuous and bounded, for instance, there will be a
solution to (4.71) and hence a solution to the differential inclusion.

Example 4.9. Let us solve the FDI associated with the family of problems

�
x0.t/ 2 Œ��x.t/�˛
x.0/ D x0 2 ŒX0�˛

; (4.72)

where �; x0 2 R
C, X0 2 FC .R/ and supp.X0/ 
 R

C. The function Œ��x.t/�˛ is a
singleton, therefore (4.72) is equivalent to

�
x0.t/ D ��x.t/
x.0/ D x0 2 ŒX0�˛

; (4.73)

The set of all solutions is

˙˛.X0; T/ D fx W x.t/ D x0e��t; x0 2 ŒX0�˛g: (4.74)
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These are the ˛-cuts of the fuzzy bunch of functions that is the solution to the FDI.
Its attainable sets are

A .X0; t/ D e��tX0: (4.75)

Note that the FDI (4.72) is comparable with the decay model with initial
condition in Example 4.5, since F.t; X/ D �X is the extension of f .t; x/ D �x.
Indeed, the attainable sets A .X0; t/ are the same as the solution at t via (ii)-
differentiability, the one that presents decreasing diameter. And it is obviously
different from the H-differentiable solution, that has increasing diameter (Figs. 4.17
and 4.18).

Fig. 4.17 Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the decay model via FDIs in Example 4.9. Initial condition .0:35I 0:45I 0:55/ and
parameter � D 0:02

Fig. 4.18 Solution to the decay model via FDIs in Example 4.9, that is, a fuzzy bunch of functions
whose membership of each function to the solution is represented by the scale of gray: the darker
the color the higher the membership degree. Initial condition .0:35I 0:45I 0:55/ and parameter
� D 0:02
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Example 4.10. Now we also consider the parameter as a fuzzy number:

�
x0.t/ 2 Œ��x.t/�˛
x.0/ D x0 2 ŒX0�˛

; (4.76)

where � 22 FC .R/, supp.�/ 
 R
C, x0 2 R

C, X0 2 FC .R/ and supp.X0/ 
 R
C.

All solutions to (4.76) are confined between two values, for each t:

�
x�.t/ D minfx.t/ W x0.t/ D �.t/x.t/; �.t/ 2 Œ���˛; x.0/ 2 ŒX0�˛g
xC.t/D maxfx.t/ W x0.t/ D �.t/x.t/; �.t/ 2 Œ���˛; x.0/ 2 ŒX0�˛g : (4.77)

That is,

(
x�.t/ D x�

0˛e��
C

˛ t

xC.t/D xC
0˛e���

˛ t
: (4.78)

The set of all solutions has the attainable sets

A˛.X0; t/ D Œx�
0˛e��

C

˛ t; xC
0˛e���

˛ t�: (4.79)

The FDI that has been just solved is also comparable to one FDE in the previous
section, namely System (4.52). The present solution has decreasing diameter,
hence it is clearly different from H-differentiable solution. It also has different
attainable sets from the (ii)-differentiable solution. Example 4.6 showed that the (ii)-
differentiable solution collapses at a certain value of t. The solution via differential
inclusions is defined for all t > 0, preserving the property of asymptotic solution of
the classical case (Fig. 4.19).

Fig. 4.19 Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the decay model via FDIs in Example 4.10. Initial condition .0:35I 0:45I 0:55/ and
parameter � D .0:016I 0:020I 0:024/
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Fig. 4.20 Attainable sets of the 0-level (continuous line) and the core (dashed-dotted line) of
solution to the logistic model via FDIs in Example 4.11. Initial condition .0:35I 0:45I 0:55/ and
parameters k D 5:8 and a D 0:01

Example 4.11. Let us solve the FDI associated with the family of problems

�
x0.t/ 2 Œa.k � x.t//�˛
x.0/ D x0 2 ŒX0�˛

; (4.80)

where a; k; x0 2 R
C, and X0 2 FC .R/ and supp.X0/ 
 R

C. As in Example 4.9, the
function Œa.k � x.t//�˛ is a singleton. The set of all solutions of (4.80) is obtained
by solving the classical case and varying the value of the initial condition (as in
Example 4.9):

˙˛.X0; T/ D
�

x W x.t/ D kx0eakt

k C x0.eakt � 1/
; x0 2 ŒX0�˛

�

: (4.81)

The fuzzy solution ˙.X0; T/ has ˛-cuts given by (4.81) (Figs. 4.20 and 4.21).

The functions that constitute the fuzzy solution in Example 4.11 are solutions of
the associated IVP just as in Example 4.9 and hence preserve the properties of the
classical case. In these two examples the method for finding solutions is the same as
the one that will be presented in the next section, hence the solutions are the same.

4.5 Extension of the Solution

The extension of the solution is a very intuitive method. It consists in solving an
ODE and extending the solution according to a fuzzy parameter, which can be the
initial condition or some other parameter of the FDE. It will be clear that, besides
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Fig. 4.21 Solution to the logistic model via FDIs in Example 4.11, that is, a fuzzy bunch of
functions whose membership of each function to the solution is represented by the scale of gray:
the darker the color the higher the membership degree. Initial condition .0:35I 0:45I 0:55/ and
parameters k D 5:8 and a D 0:01

intuitive, the fuzzy solution preserves properties from the crisp solution. Hence
the function may present decreasing length of its support, periodicity, and other
behaviors that may be inherent of the phenomenon being modeled.

The method of extension of the solution was presented in [10, 26] for solving
first-order FIVPs. Many other authors developed the same idea in the following
years (see, for instance, [11, 16, 23]), though the authors do not always use the
specific term extension of the solution.

It must be clear that this method does not solve an FDE and has no fuzzy deriva-
tives involved. Solutions are obtained by extending the operator that associates each
ODE and its parameter with a solution, in each value in the domain. The result of
this operation is a fuzzy subset in R

n. Buckley and Feuring [10] claims that it is
equivalent to the united extension of the operator that associates each ODE and its
parameter with a solution (obtaining a fuzzy subset in a space of functions) and
calculating its attainable sets. This is a connection to the approach via fuzzification
of the derivative operator (see Sect. 4.6).

We consider the IVP

�
x0.t/ D f .t; x.t/; w/

x.0/ D x0

; (4.82)

where x0 2 R
n, w 2 R

k and f W R � R
n ! R

n is continuous. A solution is a
continuous function that satisfies the initial condition and the differential equation
for all t. For each pair of parameter and initial condition there is a solution associated
with (4.82) that we denote by x.�; x0; w/.
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4.5.1 Autonomous FIVP with Fuzzy Initial Condition

Let us first consider that a phenomenon is modeled by system (4.82) and that only its
initial condition is a fuzzy subset. Each element x0 of this fuzzy subset X0 leads to a
different solution x.�; x0/. It is natural to consider that, given an initial value, there is
a solution and, given a set of initial values, there is a set of solutions. Each classical
solution evaluated at t is associated with the membership of the correspondent
initial value via extension principle. This fuzzy subset is the solution to the FIVP
at t. In other words, given x.�; x0/ a solution to (4.82), if the initial condition is the
fuzzy subset X0, the solution to the FIVP is based on the extension of x.t; x0/, that
is, Ox.t; X0/, X0 2 FC .Rn/.

The authors in [23] considered the autonomous system:

�
x0.t/ D f .x.t//
x.0/ D x0

; (4.83)

with fuzzy initial value. They have proved existence and uniqueness of the solution
via extension of the solution and also demonstrated the equivalence with the FDI

�
x0.t/ D f .x.t//
x.0/ 2 X0

; (4.84)

where X0 2 FC .Rn/.

Theorem 4.8 ([23]). Consider U an open set in R
n and suppose that the IVP (4.83)

admits only one solution x.�; x0/ for each x0 2 U, with f continuous. Suppose also
that x.t; �/ depends continuously on the initial condition. Given X0 2 FC .U/, the
extension Ox.t; X0/ of x.t; X0/, that is, the solution of the FIVP with fuzzy initial
condition correspondent to (4.83), is well defined. Moreover, the solution coincides
with the (attainable sets of the) solution of the FDI (4.84).

Remark 4.1. We can assure existence of the solution by using Lipschitz condition.
That is, if there exists a constant L > 0 such that

jjf .x/ � f .y/jj � Ljjx � yjj (4.85)

then there is only one solution x.�; x0/, for each x0 2 R
n, to IVP (4.83).

Remark 4.2. Theorem 4.8 establishes that, given some conditions, the attainable
sets of the solution via FDIs are the same as the solution calculated at each t 2 via
extension of the solution.

Example 4.12. The classical decay model

�
x0.t/ D ��x.t/
x.0/ D x0

; (4.86)



4.5 Extension of the Solution 99

where � 2 R
C and x0 2 R

C has

x.t/ D x0e��t (4.87)

as solution.
According to the method of the present section, if the initial condition x0 is

considered to be fuzzy, that is, x0 D X0 2 FC .R/, the solution to the new problem
is the extension of the solution x.t/ D x.t; x0/ with respect to the initial condition.
Levelwise we obtain

ŒX.t/�˛ D Ox.t; X0/ D fx0e��t; x0 2 ŒX0�˛g: (4.88)

Example 4.13. The logistic model

�
x0.t/ D ax.t/.k � x.t//
x.0/ D x0

; (4.89)

where a; k; x0 2 R
C is known to have the solution

x.t/ D kx0eakt

k C x0.eakt � 1/
: (4.90)

Considering the initial condition x0 a fuzzy number X0, the solution to the new
problem is the extension of the solution x.t/ D x.t; x0/:

ŒX.t/�˛ D Ox.t; X0/ D
�

kx0eakt

k C x0.eakt � 1/
; x0 2 ŒX0�˛

�

: (4.91)

4.5.2 FIVP with Fuzzy Initial Condition and Fuzzy Parameter

The general case, in which the FIVP is not autonomous and there are other fuzzy
parameters influencing the differential equation, is treated by Bede [7]. If the
parameter w is also fuzzy, the solution to the FIVP is the extension of x.t; x0; w/,
that is, Ox.t; X0; W/, X0 2 FC .Rn/, W 2 FC .Rk/. According to the result in
[27], Lipschitz condition on the second and third variables of f assures existence,
uniqueness, and continuity of the solution, with respect to the parameter w and
the initial condition. Bede [7] uses this result to state the existence and uniqueness
theorem for the FIVP.

Remark 4.3. Many authors write X0.t/ D OF.t; X.t/; W/; X.0/ D X0, which is just
a notation. As we said, this is not an FDE since there is no fuzzy derivative, hence
X0.t/ does not make sense.
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Theorem 4.9 ([7]). Let f W Œt0; t0 C p� � Œx0 � q; x0 C q� � B.w; r/ and assume that
F is Lipschitz in its second and third variables, that is, there exist constants L1 > 0

and L2 > 0 such that

jjf .t; x; w/ � f .t; y; w/jj � L1jjx � yjj (4.92)

and

jjf .t; x; w/ � f .t; x; z/jj � L2jjw � zjj (4.93)

Then the solution to (4.82) with fuzzy parameter, defined as the extension
Ox.t; X0; W/, where x.�; x0; w/ is solution to (4.82) in its classical form, is well defined,
unique, and continuous. Moreover, it can be defined levelwise:

ŒX.t/�˛ D ŒOx.t; X0; W/�˛ D x.t; ŒX0�˛; ŒW�˛/: (4.94)

Example 4.14. Now in the decay model we also consider the parameter � as a fuzzy
number. The solution is the extension of the solution x.t/ D x.t; x0; �/ with respect
to the x0 and �. Levelwise we obtain

ŒX.t/�˛ D Ox.t; X0; �/ D fx0e��t; x0 2 ŒX0�˛; � 2 Œ��˛g: (4.95)

Hence

ŒX.t/�˛ D Œx�
0˛e��

C

˛ t; xC
0˛e���

˛ t�: (4.96)

In this case, the solution is the same as via FDIs (see Example 4.10), but it does not
happen in general (see [1]).

Example 4.15. Now consider the parameter k and a in the logistic model as fuzzy
numbers K and A with supp.K/ 
 R

C and supp.A/ 
 R
C and set Z D A � K.

The solution is the extension of the solution x.t/ D x.t; x0; z/ with respect to x0 and
z D k � a. Levelwise we obtain

ŒX.t/�˛ D Ox.t; X0; Z/ D
�

kx0eakt

k C x0.eakt � 1/
; x0 2 ŒX0�˛; a 2 ŒA�˛; k 2 ŒK�˛

�

:

(4.97)

To obtain the expression of the level set functions we need to find the minimum and
the maximum of the expression above. We calculate numerically the 0-levels and
cores of the solution at each t 2 Œ0; T� and display it in Fig. 4.22.

The extension of the solution is an intuitive method. However, calculating the
solution at each t in the domain is not obvious. It demands minimization and
maximization for each t and each ˛-cut and, most of the times, it cannot be done
analytically. The previous approaches present the same difficulty. The next approach
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Fig. 4.22 The 0-level (continuous line) and the core (dashed-dotted line) of solution to the logistic
model via extension of the solution in Example 4.15. Initial condition .0:35I 0:45I 0:55/ below
carrying support K D .5:3I 5:8I 6:3/ and growth parameter A D .0:005I 0:010I 0:015/

does not solve this problem, since operating with fuzzy subsets is complex, which
also makes the theory more challenging. On the contrary, the next approach unifies
all the others presented so far.

4.6 Extension of the Derivative Operator

The OD-derivative operates on fuzzy subsets of functions, but the equality in the FDE
is evaluated for each t, that is, on the attainable sets.

FIVP (1.2) becomes
� ODX.t/ D F.t; X.t//

X.0/ D X0

; (4.98)

where X0 2 F .Rn/ and ODX.t/ 2 F .Rn/ is the attainable set of the OD-derivative
(see Sect. 3.2.2) of the fuzzy bunch of functions X.�/ at t.

This approach is not equivalent to any other considered, but has many similarities
with them. Some points should be highlighted:

• OD is a fuzzy derivative and so are Hukuhara and strongly generalized
derivatives. FDIs and the extension of the solution do not use fuzzy
derivatives.

(continued)
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• OD-derivative does not differentiate fuzzy-set-valued functions (differently
from Hukuhara and strongly generalized Hukuhara derivatives). It operates
on fuzzy bunches of functions (fuzzy subsets in spaces of functions).

• Provided some conditions, OD-derivative operates by differentiating classi-
cal functions (as FDIs and extension of the solution).

• The FIVP demands equality between the fuzzy subset of the left-hand-side
and the fuzzy subset of the right-hand-side, as with Hukuhara and strongly
generalized Hukuhara derivatives.

In what follows we will prove that

1. Provided some hypotheses hold, the solution of the FIVP via FDIs is one solution
via extension of the derivative operator.

2. Provided some hypotheses hold, the solution of the FIVP via extension of the
solution is one solution via extension of the derivative operator (in the sense of
attainable sets).

3. Provided some conditions hold, the solutions of the FIVP via strongly general-
ized Hukuhara derivative (and particularly, via Hukuhara derivative) are solutions
via extension of the derivative operator (in the sense of attainable sets).

Items 1 and 2 will be briefly illustrated in the next example.

Example 4.16. The decay model with nonfuzzy coefficient was solved using other
methods. Now consider

� ODX.t/ D ��X.t/
X.0/ D X0

; (4.99)

where � 2 R
C, X0 2 FC .R and supp.X0/ 
 R

C.
The solution via FDIs,

˙˛.X0; T/ D fx W x.t/ D x0e��t; x0 2 ŒX0�˛g: (4.100)

is solution to (4.99), since X.�/ D ˙.X0; T/ satisfies the hypothesis of Theorem 3.13
and hence

Œ ODX.�/�˛ D DŒX.�/�˛
D fDx.�/ W x.t/ D x0e��t; x0 2 ŒX0�˛g
D f�x.�/ W x.t/ D x0e��t; x0 2 ŒX0�˛g
D Œ�X.�/�˛

(4.101)

for all ˛ 2 Œ0; 1�.
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Since it has already been shown that the attainable sets of the cited solution is
solution via extension of the solution, the FIVP via extension of the solution and
FDIs have the same solution, which is one solution via OD-derivative.

The fact that the solutions via FDIs and via OD-derivative are the same is not
a mere coincidence. In what follows we make this connection between these two
theories. Let us first recall the FIVP modeled by FDIs:

�
x0.t/ 2 F.t; x.t//
x.0/ 2 X0

(4.102)

Levelwise it is equivalent to

�
x0̨ .t/ 2 ŒF.t; x˛.t//�˛
x˛.0/ 2 ŒX0�˛

: (4.103)

Taking the union of all functions x˛.�/
� S

x0̨ .t/ � S
ŒF.t; x˛.t//�˛S

x˛.0/ � ŒX0�˛
: (4.104)

The union of all solutions x˛.�/ of the differential inclusion (4.103) defines the
˛-cut of the solution X.�/ of problem (4.102). We can rewrite last system as

�
D ŒX.t/�˛ � S

ŒF.t; x˛.t//�˛
ŒX.0/�˛ � ŒX0�˛

; (4.105)

where ŒX.�/�˛ D fx˛.�/ W x˛.�/ is solution to (4.103)g.
We have ŒX.0/�˛ D ŒX0�˛ by the construction of the solution. We are interested

in finding conditions for

h ODX.t/
i

˛
D ŒF.t; X.t//�˛ (4.106)

to hold, that is,

h ODX.t/
i

˛
� ŒF.t; X.t//�˛ (4.107)

and
h ODX.t/

i

˛
� ŒF.t; X.t//�˛ : (4.108)
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If D ŒX.t/�˛ D
h ODX.t/

i

˛
, the condition

ŒF.t; X.t//�˛ D
[

ŒF.t; x˛.t//�˛ (4.109)

guarantees (4.107) Since X.�/ is a solution via FDIs, it has compact ˛-cuts in ZT.R/

and hence Theorem 3.13 can be used.
Hence the solution via FDIs is a good candidate for being a solution to (4.98),

provided condition (4.109) holds. We need only to prove (4.108).

Example 4.17. The function F.t; X.t// D �X.t/, where � 2 R, satisfies condi-
tion (4.109), that is,

[x˛2ŒX�˛ Œ�x˛.t/�˛ D Œ�X.t//�˛: (4.110)

If the parameter � is fuzzy, we also have that:

[x˛2ŒX�˛ Œ�x˛.t/�˛ D Œ�X.t//�˛: (4.111)

Note that �X is the extension of �x with respect to x according to Definition 2.5.
And according to Definition 2.6, �X is the extension of �x. On the other hand,
.1 � X/X is not the extension of .1 � x/x and

[x˛2ŒX�˛ Œ.1 � x˛.t//x˛.t/�˛ 
 Œ.1 � X.t//X.t/�˛: (4.112)

The next result is important to prove the existence Theorem 4.11.

Theorem 4.10 (Michael’s Selection Theorem, See e.g. [3]). Let X be a metric
space, Y a Banach space, and G a map from X to convex and closed subsets of Y. If
G is lower semicontinuous, then there exists a continuous selection f W X ! Y of G.

The following statement is a result of Michael’s Selection Theorem according to
[3], p. 83: if X is a paracompact space (Rn is paracompact), for any y0 2 G.x0/ the
set-valued map G0 defined by

G0.x0/ D fy0g; G0.x/ D G.x/ 8x ¤ x0 (4.113)

is also lsc with convex values and hence there exists a continuous selection g0 of G0.
In other words, for every y0 in G.x0/ there passes a continuous selection of G.

The proof of the existence Theorem 4.11 (published in [5]) is reproduced next.

Theorem 4.11 ([5]). Let X0 2 FC.Rn/ and ˝ be an open set in R�R
n containing

f0g � suppX0 and F W R � FK .Rn/ ! FK .Rn/ a fuzzy-set-valued function such
that F.t; x/ D Fj˝ is continuous with ŒF.t; x/�˛ compact, convex, and ŒF.t; X/�˛ DS

x2ŒX�˛ ŒF.t; x/�˛ . Also, suppose that the boundedness assumption holds. Then, there
exists a solution X.�/ 2 FK .ZT.Rn// for problem (4.98). Moreover, ŒX.t/�˛ are
compact and connected in R

n, for all ˛ 2 Œ0; 1�.
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Proof. The stated hypotheses are stronger than those in Theorem 4.7, including
condition (4.109). Hence the solution X.�/ to (4.102), whose existence is guaranteed,
satisfies (4.107). In what follows we prove that X.�/ also satisfies (4.108).

We want to prove that given z 2 ŒF.s; x/�˛ there exists x.�/ 2 ŒX.�/�˛ such that
x0.s/ D z, or z 2 DŒX�˛ . Note that, given z 2 ŒF.s; x/�˛ , there exists y.�/ 2 ŒX.�/�˛
such that y.s/ D x, hence z 2 ŒF.s; y.s//�˛ . Michael’s Selection Theorem applied to
ŒF.t; y.t//�˛ guarantees that there exists a continuous selection z.�/ such that z.t/ 2
ŒF.t; y.t//�˛ , for all t 2 Œ0; T�.

We use this selection z.�/ to define

x.t/ D x0 C
Z t

0

z.
/d
 (4.114)

for some x0 2 ŒX0�˛ .
This function x.�/ belongs to ŒX.�/�˛ , since x0.t/ D z.t/ for all t 2 Œ0; T�. Hence

we have proved (4.108).

Remark 4.4. Theorem 4.11 establishes that, provided some conditions hold, the
solution via FDIs is the same as via OD-derivative, that is, the fuzzy bunches of
functions that satisfy the respective FIVPs are the same. Consequently, the attainable
sets obtained from the two methods are the same.

FIVPs using extension of real-valued functions has a rich literature (see [11, 13,
21, 23]). The generalized case, though, is not much mentioned. In what follows we
use the second case, that is, f W Rn ! F .Rn/, which has a wider application.

Corollary 4.1. Let X0 2 FC.R/, ˝ be an open set in R � R
n containing f0g �

suppX0, f W R � R ! FC .R/ be d1-continuous and Of W R � FC .R/ ! FC .R/ be
the extension of f . Also, let the boundedness assumption hold. Then the FIVP (4.98),
with right-hand-side function Of , has a solution.

Proof. From Theorem 2.9 Of is d1-continuous and ŒOf .t; X/�˛ D S
x2ŒX�˛ Œf .t; x/�˛ .

Thus the conditions of Theorem 4.11 are satisfied and therefore the FIVP (4.98) has
a solution.

Example 4.18. The FIVP

� ODX.t/ D ��X.t/
X.0/ D X0

; (4.115)

where � 2 FC .R/, supp.�/ 
 R
C, X0 2 FC .R/ and supp.X0/ 
 R

C, has right-
hand-side function given by the extension principle, according to Definition 2.6.
Indeed, F.X/ D ��X is the extension of G.x/ D �x.

We apply Theorem 4.11 and the solution via FDIs of Example 4.10 is solution
to (4.115). Hence the attainable sets of the solution are

X.t/ D Œx�
0˛e��

C

˛ t; xC
0˛e���

˛ t�: (4.116)
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Reference [23] has proved that the solution of an IVP with fuzzy initial condition
via extension of the solution is the same as the solution of the associated FDI
(in terms of attainable sets), provided the function f is continuous and the IVP
has a unique solution. As a result of Theorem 4.11 and Corollary 4.1, if the right-
hand-side function F is the extension of a continuous function f W R � R ! R,
the solution of the FDI is a solution to the associated FIVP with the derivative via
extension principle. Hence, if the associated IVP has a unique solution for each
initial condition, we have the same attainable sets of the fuzzy solutions for the
three mentioned approaches.

We next prove the following autonomous case: if the differential field F is the
extension of f W Rn ! R

n, the solutions via FDI, the extension of the solution to

�
x0.t/ D f .x.t//
x.0/ D x0

; (4.117)

and OD-derivative are the same (in terms of attainable sets).

Theorem 4.12. Consider the FIVP

� ODX.t/ D Of .X.t//
X.0/ D X0

; (4.118)

where X0 2 FC.Rn/, Of is the extension of a continuous function f W R
n ! R

n

such that (4.117) has only one solution. Then the solution of (4.118) is given by the
extension of the solution of (4.117), X.�/ D Ox.�; x0/.

Proof. The extension of the solution was previously (Sect. 4.5) defined at each
t 2 Œ0; T�. However, it is also possible to define it as a fuzzy bunch of functions,
considering the solution not at each t, but as the whole function. References [10, 17]
claim that both approaches are equivalent in terms of attainable sets. The approach
we adopt here is the one that deals with fuzzy bunch of functions.

Consider x˛.�; x0/ an element of the ˛-cut of the extension X.�/ D Ox.�; x0/ of the
solution x.�; x0/ to (4.117).

Dx˛.�/ D f .x˛.�//S
x˛2ŒX.�/�˛ Dx˛.�/ D S

x˛2ŒX.�/�˛ f .x˛.�//
D
S

x˛2ŒX.�/�˛ x˛.�/ D f .
S

x˛2ŒX.�/�˛ x˛.�//
DŒX.�/�˛ D f .ŒX.�/�˛/

(4.119)

Since X.�/ is also solution (fuzzy bunch of functions) via FDIs, we have X.�/ 2
FK .ZT.Rn// and Theorem 3.13 is valid. Also, since f is continuous, Theorem 2.5
holds. Hence

h ODX.�/
i

˛
D DŒX.�/�˛ D f .ŒX.�/�˛/ D ŒOf .X.�//�˛ (4.120)
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for all ˛ 2 Œ0; 1�. Thus

ODX.�/ D Of .X.�// (4.121)

and, in particular,

ODX.t/ D Of .X.t// (4.122)

for all t 2 Œ0; T�.

Remark 4.5. Theorem 4.12 establishes that, under some conditions, the fuzzy
bunches of functions of the solution via extension of the solution is the same as
via OD-derivative. Consequently, the attainable sets obtained from the two methods
are the same.

Example 4.19. The solution of the logistic model

� ODX.t/ D Of .t; X.t///
X.0/ D X0

; (4.123)

where f .t; x/ D ax.k � x/, a; k 2 R
C, X0 2 FC .R and supp.X0/ 
 R

C is based
on the solution of Example 4.13, that is, the same problem solved via extension of
the solution. In that example, we solved the classical differential equation. Instead
of extending the solution at each t of the domain, here we extend the solutions as
elements in the space of functions. Hence we consider the solution x.�/ such that

x.t/ D kx0eakt

k C x0.eakt � 1/
: (4.124)

Applying Theorem 4.123, a solution to (4.123) is the extension of x.�/ D x.�; x0/,

X.�/ D Ox.�; X0/: (4.125)

As in Example 4.16, it can be verified that the solution satisfies (4.123) by applying
Theorem 3.13:

Œ ODX�˛ D DŒX�˛

D
�

Dx.�/ W x.t/ D kx0eakt

k C x0.eakt � 1/
; x0 2 ŒX0�˛

�

D
�

ax.�/.k � x.�// W x.t/ D kx0eakt

k C x0.eakt � 1/
; x0 2 ŒX0�˛

�

D ŒOf .t; X.t//�˛:

(4.126)

See Fig. 4.23 for illustration.



108 4 Fuzzy Differential Equations

Fig. 4.23 Solution to the
logistic model via
OD-derivative in Example 4.19,
that is, a fuzzy bunch of
functions whose membership
of each function to the
solution is represented by the
scale of gray: the darker the
color the higher the
membership degree. Initial
condition .0:35I 0:45I 0:55/

and parameters k D 5:8 and
a D 0:01

Note that we do not have the expression for Of in terms of the standard arithmetic. As
it has been already mentioned, Of .t; X.t/// ª aX.t/.k � X.t//, hence

� ODX.t/ D aX.t/.k � X.t//
X.0/ D X0

; (4.127)

is a different problem, which will be solved using other method (see Theorem 4.13
and Example 4.20).

A connection between the generalized differentiabilities and the OD-derivative
was established in Sect. 3.3. Since they coincide for the representative bunches of
functions of a special class of fuzzy-number-valued numbers (see Theorems 3.17
and 3.18), it is natural to wonder if the solution to an FIVP also coincides in both
approaches. Indeed, provided some conditions hold, they do: the hypotheses of
the characterization Theorem 4.6 for strongly generalized differentiability assure
two solutions (fuzzy-number-valued functions) that generate two different fuzzy
bunches of functions that are solutions to the corresponding FIVP with OD-derivative.

Theorem 4.13. Assume the hypotheses of Theorem 4.6 hold true for F and X0

in FIVP (4.98) and that the solutions obtained from (4.47) and (4.48) belong to
F 0

C .R/. Then FIVP (4.98) has at least two solutions.

Proof. Theorem 4.6 assures two solutions via strongly generalized differentiability.
We will prove that if the solutions assume values in F 0

C .R/, they satisfy Theo-
rem 3.17 which provides us with two representative bunches of functions whose
derivative is the same as those via generalized Hukuhara differentiability.

Let X be the solution to the FIVP via strongly generalized differentiability
obtained by solving (4.47). It is obvious that X is continuous and x�̨ and xC̨ are
differentiable with respect to t. We will prove that this differentiability is uniform
with respect to ˛ 2 Œ0; 1�. Since X is strongly generalized differentiable, it is gH-
differentiable (the latter is more general than the former) and, by Theorem 3.6, it
satisfies (a) or (b) of Theorem 3.17.
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First we will show uniform differentiability, that is, given 	 > 0, there exists
ı > 0 such that

ˇ
ˇ
ˇ
ˇ
x˙̨.t C h/ � x˙̨.t/

h
� .x˙̨/0.t/

ˇ
ˇ
ˇ
ˇ < 	 (4.128)

if jhj < ı, for all ˛ 2 Œ0; 1�. In what follows we will use the fact that x�̨ and xC̨ are
solutions to (4.47) and thus satisfy

x˙̨.t C h/ D x˙̨.t/ C
Z tCh

t
f ˙̨.s; x�̨.s/; xC̨.s//ds: (4.129)

Therefore,

ˇ
ˇ
ˇ
ˇ
x˙̨.t C h/ � x˙̨.t/

h
� .x˙̨/0.t/

ˇ
ˇ
ˇ
ˇ D

D
ˇ
ˇ
ˇ
ˇ
x˙̨.t C h/ � x˙̨.t/

h
� f ˙̨.t; x�̨.t/; xC̨.t//

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
x˙̨.t C h/ � x˙̨.t/ � hf ˙̨.t; x�̨.t/; xC̨.t//

h

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

x˙̨.t/ C R tCh
t f ˙̨.s; x�̨.s/; xC̨.s//ds � x˙̨.t/ � R tCh

t f ˙̨.t; x�̨.t/; xC̨.t//ds

h

ˇ
ˇ
ˇ
ˇ
ˇ

�
R tCh

t

ˇ
ˇf ˙̨.s; x�̨.s/; xC̨.s// � f ˙̨.t; x�̨.t/; xC̨.t//

ˇ
ˇ ds

jhj

(4.130)

The hypothesis of equicontinuity ensures that there is a ı > 0 such that

ˇ
ˇf ˙̨.s; x�̨.s/; xC̨.s// � f ˙̨.t; x�̨.t/; xC̨.t//

ˇ
ˇ < 	 if js � tj < ı; (4.131)

that is,

Z tCh

t

ˇ
ˇf ˙̨.s; x�̨.s/; xC̨.s// � f ˙̨.t; x�̨.t/; xC̨.t//ds

ˇ
ˇ < 	jhj: (4.132)

This means that

ˇ
ˇ
ˇ
ˇ
x˙̨.t C h/ � x˙̨.t/

h
� .x˙̨/0.t/

ˇ
ˇ
ˇ
ˇ < 	: (4.133)

if jhj < ı, that is, x�̨ and xC̨ are differentiable real-valued functions with respect
to t, uniformly with respect to ˛.
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We have proved that the solution X obtained by solving (4.47) satisfies the
conditions of Theorem 3.17. Hence the representative bunch of first kind, QX.�/ has
OD-derivative equal to generalized Hukuhara derivative (in terms of attainable sets),
which is the same as strongly generalized differentiability, since both exist. Thus

F.t; x.t// D X0
G.t/ D X0

gH.t/ D OD QX.t/ (4.134)

and it is proved that QX is a solution to FIVP (4.98).
Following the same reasoning one obtains that the solution to (4.48) leads to

other representative bunch of first kind which is also solution to (4.98).

Example 4.20. All examples in Sect. 4.3, that is, Examples 4.5–4.8 have solutions
X with X.t/ 2 F 0

C .R/: Hence, the representative bunches of first kind are solutions
of the respective problems using the OD-derivative.

The last example of this section regards a system in which the state variable has
values in R

2. The solution belongs to FK.A C.Œ0; T�IR2//.

Example 4.21. Consider

� ODX.t/ D F.X.t///
X.0/ D X0

; (4.135)

where X0 2 F .R2/ and F W F .R2/ ! F .R2/ such that

�F.X/.z; y/ D �X.y; z/ (4.136)

We will try the solution obtained via extension of the following associated
problem:

�
y0.t/ D z.t/; y.0/ D y0

z0.t/ D y.t/; z.0/ D z0

; (4.137)

whose solution is

x.t; x0/ D
�

y.t/
z.t/

	

D y0

2

�
et C e�t

et � e�t

	

C z0

2

�
et � e�t

et C e�t

	

(4.138)

where x0 D
�

y0

z0

	

.

The function x.t; x0/ is continuous with respect to the initial condition. Hence the
extension of this solution can be defined levelwise

ŒOx.t; X0/�˛ D Ox.t; ŒX0�˛/ D fx.t; x0/; x0 2 ŒX0�˛g (4.139)
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Hence
h ODOx.�; X0/

i

˛
D Dfx.�/ W x.t/ D x.t; x0/; x0 2 ŒX0�˛g
D fx0.�/ W x.t/ D x.t; x0/; x0 2 ŒX0�˛g

(4.140)

where

x0.t; x0/ D
�

y0.t; y0; z0/

z0.t; y0; z0/

	

D y0

2

�
et � e�t

et C e�t

	

C z0

2

�
et C e�t

et � e�t

	

D
�

z.t; y0; z0/

y.t; y0; z0/

	 (4.141)

Thus,

h ODOx.t; X0/
i

˛
D f.z.t/; y.t// W x.t; x0/ D .y.t/; z.t//; x0 2 ŒX0�˛g
D ŒF.Ox.t; X0//�˛ :

(4.142)

The method that has been used to solve the last example is based on the extension
of the solution. We have also shown that other techniques to find solutions to FIVPs
involving OD-derivative are solving the FIVP via strongly generalized derivative and
taking the representative bunches as solutions via OD-derivative; and using FDIs.

4.7 Summary

The most known approaches for FDEs were reviewed and compared to the new
proposal developed in [5]. Some of the results are new in the literature and they
are summarized next, together with other important concepts and results already
known.

• The most known approaches for FDEs are via Hukuhara and strongly generalized
derivatives (the former being a particular case of the latter), FDIs and extension
of the solution.

• FDIs and the extension of the solution do not make use of fuzzy derivatives.
• FDEs via OD-derivative, introduced in [5] and herein further developed make use

of fuzzy derivatives on fuzzy bunches of functions. Although it is considered a
fuzzy derivative in this text, it differentiates classical functions as FDIs and the
extension of the solution do.

• Conditions assure existence of solutions to FIVPs for all mentioned approaches.
• The use of attainable sets is necessary to compare the different approaches, since

the solution of FIVPs via FDIs and OD-derivative are fuzzy bunches of functions,
not fuzzy-set-valued functions as in the other proposals.
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• The solutions of certain FIVPs via extension of the solution are the same as
via FDIs.

• The solutions of certain FIVPs via OD-derivative are the same as via FDIs.
• The solutions of certain FIVPs via OD-derivative are the same as via extension of

the solution.
• In terms of attainable sets the solutions of certain FIVPs via OD-derivative are the

same as via strongly generalized derivative, that is, all the mentioned approaches
can be reproduced via OD-derivative.
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Appendix A
Mathematical Background

Some readers may find it necessary to review some mathematical concepts, which
we intend to briefly cover in this appendix. For further understanding refer to [1–4].

A.1 Continuity and Semicontinuity

Definition A.1. A function f W X ! R is said to be upper semi-continuous at x0 if
for any 	 > 0 there exist a ı > 0 such that f .x/ < f .x0/ C 	 whenever jx � x0j < ı.

Definition A.2. A function f W X ! R is said to be lower semi-continuous at x0 if
for any 	 > 0 there exist a ı > 0 such that f .x/ > f .x0/ � 	 whenever jx � x0j < ı.

Definition A.3. A family of real-valued functions ff˛g˛ is equicontinuous if given
	 > 0 and x0 there exists ı > 0 such that

jf˛.x/ � f˛.x0/j < 	

whenever jx � x0j < ı, for all f˛ .

A.2 Spaces of Functions

Denote by L0.˝/ the space of all Lebesgue measurable functions on ˝ � R
n. The

Lp spaces, to be defined in what follows, are contained in L0.
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Definition A.4. Let ˝ be a measurable set, f 2 L0.˝/ and

jjf jjp D
( �R

˝
jf .t/jpdt

�1=p
; if 0 < p < 1

ess sup jf j; if p D 1 : (A.1)

The space Lp.˝/ is the collection of the equivalence classes of all Lebesgue
measurable functions such that

jjf jjp < 1

and equivalence means f 
 g iff f D g a.e.

The ess sup is the essential supremum,

ess sup f D inffc 2 R W �f! W f .!/ > cg D 0g

that is, the smallest value c such that f � c a.e. Hence jjf jj1 < 1 means that f is
bounded except on a set of measure zero.

If ˝ is a measurable set, we say that f is Lebesgue integrable if

Z

˝

jf .t/jdt < 1:

Definition A.5 (See, e.g., [2]). A function f W Œa; b� ! R is called absolutely
continuous if, given 	 > 0, there exists ı > 0 such that for every countable
collection of disjoint subintervals Œak; bk� of Œa; b� such that

X
.bk � ak/ < ı

we have

X
.f .bk/ � f .ak// < 	:

Equivalently, we can say that a function f W Œa; b� ! R is absolutely continuous
if it has a derivative almost everywhere (that is, except on a set of measure zero) and

f .x/ � f .a/ D
Z x

a
f 0.s/ ds:

This result is stated in the Lebesgue Theorem:

Theorem A.1 (See e.g. [3]).

(a) Let g 2 L1.Œa; b�/ and
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f .x/ D
Z x

a
g.t/dt; x 2 Œa; b�:

Then f is absolutely continuous and f 0 D g a.e.
(b) Let f W Œa; b� 2 R be an absolutely continuous function. Then f 0 is integrable in

Œa; b�, that is, f 0 2 L1.Œa; b�/, and

f .x/ � f .a/ D
Z x

a
f 0.t/ dt; x 2 Œa; b�:

The set of all absolutely continuous functions f W Œa; b� ! R
n is denoted

by A C.Œa; b�IRn/. The notation A C.Œa; b�;Rn/ and Lp.Œa; b�IRn/ stand for the
generalization of these spaces from codomain R to R

n. Derivative and integral are
calculated term-by-term on the n-dimensional vector. A subset in A C.Œa; b�;Rn/

that will be used is

Z.Œa; b�;Rn/ D fx.�/ 2 C.Œa; b�IRn/ W x0.�/ 2 L1.Œ0; T�IRn/g

and will be denoted ZT.Rn/ when Œa; b� D Œ0; T�.
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Symbols
˛-cuts, 12
OD-derivative or derivative via extension of the

classical operator, 53
OR -integral or integral via extension of the

classical operator, 50
F 0

C .R/, 15, 61, 108
dp distance, 26

A
attainable fuzzy sets, 28
Aumann integral, 42

B
boundedness assumption, 93, 104

C
characteristic function, 11
Characterization Theorem, 13
completely correlated fuzzy numbers, 22
constraint interval arithmetic, 22
core, 12
crisp subset, 11

E
Embedding Theorem, 27
endographic metric, 26
extension of the solution, 4, 72
extension principle, 17, 19

F
Fundamental Theorem of Calculus for fuzzy

bunches of functions, 57
Fundamental Theorem of Calculus for

fuzzy-set-valued functions, 49
fuzzy bunch of functions, 28
fuzzy convex, 12
fuzzy differential equation (FDE), 2, 70
fuzzy differential equations with fuzzy

derivatives, 70
fuzzy differential inclusion (FDI), 2, 4, 7, 71,

91
fuzzy generalized derivative or g-derivative,

47
fuzzy initial value problem (FIVP), 3, 69
fuzzy number, 13
fuzzy subset, 11
fuzzy-number-valued functions, 28

G
generalized difference or g-difference, 23
generalized Hukuhara derivative or gH-

derivative, 46
generalized Hukuhara difference or

gH-difference, 23

H
Hausdorff separation, 25
Henstock integral, 42
Hukuhara derivative or H-derivative, 43
Hukuhara difference or H-difference, 23
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I
interactive arithmetic, 21

J
joint membership function, 21

M
membership function, 11
Michael’s Selection Theorem, 104

N
normal fuzzy subset, 12

P
Pompeiu–Hausdorff metric, 26

R
representative affine fuzzy bunch of functions

of first kind, 32
representative affine fuzzy bunch of functions

of second kind, 32
Riemann integral, 42

S
Seikkala derivative, 44

semicontinuity of fuzzy-set-valued functions,
37

semicontinuity of set-valued functions, 36
space of absolutely continuous functions

A C.Œa; b�IR/, 28
Stacking Theorem, 13
standard interval arithmetic, 20
strongly generalized derivative or GH-

derivative, 45
support, 12

T
t-norm, 15
theorem of existence and uniqueness of two

solutions to FIVPs via GH-derivative,
84

theorem of existence of solution to FDIs, 93
theorem of existence of solution to FIVPs via

OD-derivative, 104
triangular fuzzy function, 28
triangular fuzzy number, 14

U
united extension, 16

W
weakly generalized derivative, 45
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