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Abstract

The interaction of droplets and bubbles with ultrasound has been studied 
extensively in the last 25 years. Microbubbles are broadly used in diagnos-
tic and therapeutic medical applications, for instance, as ultrasound con-
trast agents. They have a similar size as red blood cells, and thus are able 
to circulate within blood vessels. Perfluorocarbon liquid droplets can be a 
potential new generation of microbubble agents as ultrasound can trigger 
their conversion into gas bubbles. Prior to activation, they are at least five 
times smaller in diameter than the resulting bubbles. Together with the 
violent nature of the phase-transition, the droplets can be used for local 
drug delivery, embolotherapy, HIFU enhancement and tumor imaging. 
Here we explain the basics of bubble dynamics, described by the Rayleigh-
Plesset equation, bubble resonance frequency, damping and quality factor. 
We show the elegant calculation of the above characteristics for the case 
of small amplitude oscillations by linearizing the equations. The effect 
and importance of a bubble coating and effective surface tension are also 
discussed. We give the main characteristics of the power spectrum of bub-
ble oscillations. Preceding bubble dynamics, ultrasound propagation is 
introduced. We explain the speed of sound, nonlinearity and attenuation 
terms. We examine bubble ultrasound scattering and how it depends on 
the wave-shape of the incident wave. Finally, we introduce droplet 
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interaction with ultrasound. We elucidate the ultrasound-focusing concept 
within a droplets sphere, droplet shaking due to media compressibility and 
droplet phase-conversion dynamics.
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9.1	 �Introduction

Medical ultrasound is widely used for imaging 
purposes (Szabo 2004). It is an effective, mobile, 
inexpensive method and has the ability to pro-
vide high-resolution real-time images of tissue 
(Shung 2006). Ultrasound imaging is performed 
by propagating waves through tissue and evaluat-
ing the echo that is returned. Due to the differ-
ent scattering properties of the different tissues, 
the ultrasound receiver can evaluate the echo and 
construct an acoustic image.

The ultrasound wave is transmitted by an ultra-
sound transducer. It consists of piezoelectric crys-
tals, which have the property of changing their 
volume when a voltage is applied. Applying an 
alternating current across piezoelectric crystals 
causes them to volumetrically oscillate at frequen-
cies (∼MHz) that cause mechanical stress on the 
surrounding medium, thereby converting electric 
energy into a mechanical wave, which is then trans-
mitted into the body. Analogously, upon receiving 
the echo the transducer turns the mechanical sound 
waves back into electrical energy, which can be 
measured and displayed. The transmit signal con-
sists of a short ultrasound burst. After each burst, 
the electronics measure the return signal within a 
small window of time corresponding to the time it 
takes for the energy to pass through the tissue.

Blood is a poor ultrasound scatterer and indi-
vidual blood vessels are almost invisible to ultra-
sound. To increase the contrast of the blood pool, 
microbubbles can be injected into the blood-
stream. The microbubbles scatter ultrasound 
much more efficiently, allowing very good con-
trast on the echo image. The contrast ability was 
discovered accidentally more than 40 years ago 
during an intravenous injection of a saline solu-
tion (Gramiak and Shah 1968). Saline, when 

injected intravenously, generates tiny microbub-
bles within the patient’s blood vessels, thus creat-
ing an echo on the acoustic image. Since then, the 
second and third generations of ultrasound con-
trast agents were developed. Nowadays, com-
mercially available microbubbles are small 
spheres (typically 1–5 μm in diameter) of gas 
encapsulated in a biocompatible shell. This size 
is similar to that of red blood cells, allowing them 
to circulate inside the bloodstream. The reso-
nance frequency is directly related to the size of 
the bubbles (1–10 μm diameter) and coincides 
with the optimum imaging frequencies used in 
medical ultrasound imaging, 1–10 MHz.

Microbubbles are also widely used for therapy. 
They can enhance high intensity focused ultra-
sound (HIFU) therapy (Unger et al. 2004). The 
bubbles increase heat uptake by the tissue and can 
reduce the time necessary for an ultrasound thera-
peutic procedure. They are sufficiently stable for 
time periods of approximately 15 min following 
injection (Klibanov 2006). Bubble oscillations and 
disruptions close to cells create reversible pores 
within the cell membrane that can enhance drug 
uptake (Karshafian et al. 2009). Microbubbles 
may also be used as potential carriers for selective 
drug delivery (Unger et al. 2009) and for non-inva-
sive molecular imaging (Lindner 2004; Klibanov
2006). They can be covered with targeting ligands, 
such as antibodies, which bind specifically to tar-
get cells at the blood vessel wall.

A novel approach is the use of liquid-based 
agents rather than gas bubbles. Ultrasound can 
be used to phase-transition these liquid droplets 
into gas bubbles; a process known as acoustic 
droplet vaporization (ADV). Droplets are com-
posed of a volatile perfluorocarbon (PFC), such
as perfluoropentane (PFP, 29 °C boiling point).
A PFP emulsion does not spontaneously vaporize 
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when injected in-vivo at 37 °C. However, upon
exposure to ultrasound above certain acoustic 
pressure amplitudes, the PFP within the emul-
sion is vaporized. This opens up possibilities in a 
wide variety of diagnostic and therapeutic appli-
cations, such as embolotherapy (Zhang et al.
2010), aberration correction (Carneal et al. 2011) 
and drug delivery (Fabiilli et al. 2010a, b). Single 
and double emulsions of PFC-in-water and oil-
in-PFC-in-water can be prepared, for instance, to 
encapsulate oil soluble drugs (Fig. 9.1).

PFC liquids are known for their use in medi-
cine due to their biocompatibility and inertness 
(Biro et al. 1987). PFC nanodroplet emulsions 
can be utilized for selective extravasation in 
tumor regions (Long et al. 1978). Due to their 
biocompatibility and suggested ability to pas-
sively target regions of cancer growth, PFC 
droplets represent an attractive tool for cancer 
diagnosis. PFC droplets may also extravasate 
and be retained in the extravascular space due to 
the enhanced permeability and retention effect in 

tumors (Rapoport et al. 2007; Zhang and Porter
2010). Extravasated droplets may be acousti-
cally converted into gas bubbles allowing for 
ultrasound tumor imaging. At the same time PFC 
droplets are rich in fluorine, which makes them 
potential candidates as a contrast agent for MRI 
imaging. The availability of both intravascular 
contrast agents (microbubbles), and tumor-spe-
cific extravascular contrast agents (nanodrop-
lets), would significantly increase diagnostic and 
therapeutic capabilities. Moreover, the droplets 
may be used to deliver chemotherapeutic agents 
to tumor regions, and locally release them upon 
exposure to triggered ultrasound (Rapoport 
et al. 2009).

9.2	 �Nonlinear Propagation

The amplitude of the acoustic pressure that is 
required to nucleate droplets in ADV turns out to
be very high (Kripfgans et al. 2000). To obtain a 

Fig. 9.1  PFC-in-water, PFC-in-oil-in-water and oil-in-PFC-in-water emulsions under the microscope
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sufficiently high pressure, a focused ultrasound 
transducer is applied and the droplet is placed in 
the focal area of the emitted beam. Moreover, the 
frequency of the emitted ultrasound wave is sev-
eral MHz. In a typical ADV experiment, the
ultrasound wave travels a few centimeters 
(Kripfgans et al. 2000; Reznik et al. 2013; Shpak 
et  al. 2013a, b; Giesecke and Hynynen 2003; 
Schad and Hynynen 2010; Williams et al. 2013) 
before impinging on the droplet. The high pres-
sure, high frequency, applied focusing and long 
propagation distances are all factors that 
strengthen the nonlinear behavior of the ultra-
sound wave (Blackstock 1964; Bacon 1984). As 
a result, the wave that impinges on the droplet 
will be a highly deformed version of the one that 
is emitted by the transducer (Fig. 9.2). This has 
important consequences for the focusing inside 
the droplet, as will be demonstrated in 
Sect. 9.4.2.2.

9.2.1	 �Basic Equations 
for the Nonlinear 
Ultrasound Beam

Similar to most cases involving nonlinear medical 
ultrasound, the description of the beam that hits the 
droplet can be based on the Westervelt equation 
(Westervelt 1963; Hamilton and Morfey 2008):
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where ∇ = + +2 2 2 2 2 2 2∂ ∂ ∂ ∂ ∂ ∂/ / /x y z  is the 
Laplace operator and p p x y z t= ( ), , ,  denotes 
the acoustic pressure. The medium in which the 
ultrasound wave propagates is characterized by 
the ambient speed of sound c0 , the ambient den-
sity of mass r0 , the diffusivity of sound d  and 
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Fig. 9.2  Schematics of nonlinear propagation of an ultra-
sound wave. T and f are the period of oscillation and fre-
quency of an ultrasound wave, respectively. Two upper 

plots are the transmitted and propagated wave, and two 
lower plots are their frequency domains. –fft– stands for
the Fast Fourier Transform
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the coefficient of nonlinearity b . Unfortunately, 
closed-form analytical solutions of this equation 
do not exist and its numerical solution generally 
requires considerable computational effort. 
However, in the present case of a narrow, focused 
beam and a homogeneous medium, some simpli-
fying assumptions can be made. Firstly, it may be 
assumed that the predominant direction of propa-
gation is along the transducer axis, which is taken 
in the z -direction. In this case, we can replace the 
ordinary time coordinate t  by the retarded time 

coordinate t = −( )− −( )t t z z c0 0 0/ , which 

keeps the same value when traveling along with 
the wave. Here, t0  is the time at which the trans-
ducer emits the pressure wave, and z0  is the axial 
position of the transducer. The equivalent of 
Eq. 9.1 in the co-moving time frame is:
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with p p x y z= ( ), , ,t  denoting the acoustic pres-
sure in the co-moving time frame. Secondly, it 
may be assumed that in the retarded time frame the 
axial derivative ∂ ∂2 2p z/  is much smaller than the 
lateral derivatives ∂ ∂2 2p x/  and ∂ ∂2 2p y/ . This 
motivates the use of the parabolic approximation 
∇ ≈ ∇⊥

2 2p p , where ∇ = ∂ ∂ + ∂ ∂⊥
2 2 2 2 2/ /x y  is 

the Laplace operator in the lateral plane. This
approximation is valid for waves propagating 
under at most 20° of the transducer axis (Lee and
Pierce 1995). Applying the parabolic approxima-
tion to Eq. 9.2 and rearranging terms results in the 
Khokhlov-Zabolotskaya-Kuznetsov (KZK) equa-
tion (Zabolotskaya and Khokhlov 1969; Kuznetsov
1971):
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Dedicated coordinate transformations may be 
applied to improve the numerical solution in the 
far field (Hamilton et al. 1985; Hart and Hamilton 
1988) or to adapt to specific forms of focused 
beams (Kamakura et al. 2000), but these will not 
be discussed here.

9.2.2	 �Numerical Solution 
for the Nonlinear 
Ultrasound Beam

We will follow a well-known numerical solution 
strategy (Lee and Hamilton 1995; Cleveland 
et al. 1996) that is based on the time integrated 
version of Eq. 9.3:
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(9.4)
The first term at the right-hand side of this 

equation accounts for the diffraction of the beam, 
the second term for its attenuation, and the third 
term for its nonlinear distortion. Further, the 
solution strategy is based on the split-step 
approach. This means that the field p  is stepped 
forward over a succession of parallel planes with 
mutual distance ∆z , where the field p x y z, , ,0 τ( )  
in the transducer plane acts as the starting plane. 
The stepsize ∆z  is taken sufficiently small, 
allowing that each of the above phenomena may 
be accounted for in separate sub steps (Varslot
and Taraldsen 2005). Therefore, the total step 
z z z→ +∆  involves the numerical solution of 
the separate equations:
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over the same interval, where the result of solv-
ing one equation is used as the input for solving 
the next one. A numerical implementation of the 
above process is used to step the acoustic pressure 
from the transducer to the focus of the beam, i.e. 
the location of the droplet. For convenience, it is 
now assumed that the droplet is located at the ori-
gin of the coordinate system and that the source 
emits the pressure wave at t z c0 0 0= / . This  
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makes τ = t  at the position of the droplet. For 
ease of notation, the bar and the coordinates of 
the droplet will be suppressed, and the pressure at 
the droplet position, as obtained from the numeri-
cal solution of the KZK-equation, will simply be
indicated by p tKZK ( ) .

9.2.3	 �Nonlinear Pressure Field at 
the Focus of the Beam

The nonlinear pressure field at the focus of the 
beam can be expanded in a Fourier series:
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where an  and fn  are the amplitudes and the 
phases of the n th−  harmonic component of the 
ultrasound wave. For convenience, all the subse-
quent derivations will be given in the complex 
representation, so we will omit taking the real 
part and simply write:
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Given that nonlinear deformation of the wave-
form builds up over distance and the droplet is 
four orders of magnitude smaller in size than the 
distance to the transducer, the additional nonlin-
ear distortion inside the droplet is neglected. This 
implies that wave propagation inside the droplet 
is considered linear, so the superposition theorem 
holds, and the focusing of each harmonic compo-
nent in the droplet may be analyzed on an indi-
vidual basis, as will be done in Sect. 9.4.2.2.

9.3	 �Bubble Dynamics

9.3.1	 �Dynamics of a Gas Bubble

Bubble radial oscillations are governed by the 
Rayleigh-Plesset equation:
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where R , R , and R  are the radius, the velocity 
and the acceleration of the bubble wall, respec-
tively, and ρ  is the density of the liquid. 

∆P P R PL= ( ) − ∞  is the pressure difference 
between the liquid at the bubble wall P RL ( )  and 
the external pressure infinitely far from the bub-
ble p∞ . Equation  9.10 was first described by 
Lord Rayleigh (1917) for the case ∆P = 0  and 
was later refined (Plesset 1949; Noltingk and 
Neppiras 1950; Neppiras and Noltingk 1951; 
Poritsky 1952). It is derived for a spherically 
symmetric bubble, and follows from the 
Bernoulli’s equation and the continuity equation 
(Leighton 1994). Equation 9.10 assumes spheri-
cal symmetry of the bubble, and the motion of the 
liquid around the bubbles is considered to be 
spherically symmetric. The liquid is 
incompressible.

The bubble is assumed to be much smaller 
than the acoustic wavelength, such that acoustic 
pressure is considered to be uniform. Thus, the 
pressure at infinity is the sum of the acoustic 
forcing P t( )  and the ambient pressure P0 :

	
p P t P∞ = ( ) + 0 	

(9.11)

The interfacial pressure acting on the liquid at 
the bubble wall consists of the Laplace pressure
2 0σ / R , viscous pressure 4µ R R/  and the gas 
pressure Pg . Neglecting the vapor pressure of the 
liquid, the gas pressure inside the bubble as a 
function of the bubble radius R  can be described 
by the ideal gas relation PV constg

γ = , where g  
is the polytropic constant and V R∝ 3  is the bub-
ble volume. For this derivation we first neglect 
the gas diffusion. Thus, the total number of gas 
molecules inside the bubble is constant. In equi-
librium, the pressure inside the bubble Peq  is 
equal to the sum of the ambient pressure P0  and 
the Laplace pressure:

	
P P
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0

2σ
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where s  and R0  are the surface tension and the 
equilibrium radius, respectively. In combination 
with the ideal gas law, the dependence of the gas 
pressure as a function of the bubble radius can be 
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written as P P
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hand side of Eq. 9.10 can then be written as:
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which gives the final form of the bubble dynamic 
equation:
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The microbubbles in the ultrasound contrast 
agents can be encapsulated with a phospholipid, 
protein or polymer coating, thus preventing 
bubbles from dissolution. For more details 
please see (Marmottant et al. 2005; de Jong 
et  al. 2007; Church 1995). The viscoelastic 
coating also contributes to an increased stiffness 
and to additional viscous damping (Overvelde
et al. 2010).

9.3.2	 �Linearization

The acoustic pressure typically has the form of 
a sinusoidal oscillation P t P tA( ) = ( )sin ω , 
with PA  being the driving pressure amplitude, 
and w  the driving pressure angular frequency. 
With relatively small oscillation amplitudes 
Eq.  9.10 can be linearized. To rewrite 
Eq. 9.10 in linear terms we express the bubble 
radius  R  as:

	
R R x= +( )0 1

	
(9.15)

with R0  the equilibrium radius, as before, and 
x1 a small dimensionless perturbation to the 
radius. Substituting Eq.  9.15 into Eq.  9.10 and 
retaining only first-order terms, x , x  and x  
gives:
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the eigenfrequency of bubble oscillations, and:
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the damping due to viscosity. The damping has 
the dimensions of the reversed time s− 

1  and 
represents how fast the amplitude of oscillations 
is decaying in time due to the energy loss.

The solution to the equation Eq. 9.16 is:
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with the f1  being the phase shift between the two 
terms:
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The first term of Eq. 9.19 is the transient solu-
tion. Its amplitude dampens out in time as X et

t−b , 
where Xt  is the amplitude of transient oscillations 
at time t0 0= . Not only the viscosity of water 
can contribute to the damping, but also the acous-
tic reradiation and the viscosity of the coating 
shell and thermal damping. For more details 
please see (Overvelde et al. 2010). The frequency 
of the transient solution is equal to w w b1 0

2 2= −
. The amplitude of the transient solution Xt  
depends strongly on the initial conditions.

The second term of Eq. 9.19 is the steady-state 
solution. The amplitude of the steady-state 
response depends on the driving frequency as:
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The resonance frequency wres  of the system, 
by definition, corresponds to the maximal ampli-
tude of the steady-state solution. Xs  is at maxi-
mum, when the denominator in the Eq. 9.21 is at 
minimum. Thus, the resonance frequency relates 
to the eigenfrequency w0  as:

	
w w bres = −0

2 22
	

(9.22)
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The smaller the damping b ,  the closer the 
resonance frequency to the eigenfrequency of the 
bubble oscillations. Additionally, for large bub-
bles, when the Laplace pressure is small com-
pared to the ambient pressure Eq. 9.17 simplifies 
to:

	

w p g
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0
2
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with fM  the Minnaert eigenfrequency, resonance 
frequency of the bubble (Minnaert 1933). 
Relation Eq. 9.23 tells us that the resonance fre-
quency can be estimated directly from the bubble 
radius R0 . For a bubble in water at standard pres-
sure (P0

3100 1000= =kPa kg m, /r ), the equa-
tion becomes f RM 0 3 26≈ . .mmMHz . The smaller  
the bubble radius, the higher the resonance fre-
quency becomes.

It is insightful to make the analogy to the clas-
sical mass-spring system. The dynamics of the 
classical mass spring system is governed by the 
equation:
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where w′ =0 k m/  is the eigenfrequency, ¢b  is 
the damping constant, k  is the spring stiffness, 
F0  is the driving force and m  is the mass. 
Equation  9.24 has the same form as Eq.  9.16. 
Thus, a gas inside the bubble, represented by the 
polytropic constant g , acts as the restoring force, 
the liquid around the bubble acts as a mass 
4 0

3p rR( ) , and ultrasound is acting as a driving 
force 12 0 0pg R P( ) .

9.3.3	 �Pressure Emitted by 
the Bubble

Far from the bubble wall, at a distance r , the 
velocity of the liquid vr  can be calculated from 
the continuity equation (Prosperetti 2011):

	 4 42 2p pr v R Rr = 

	 (9.25)
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The liquid is incompressible and the bubble 
wall and the liquid motion around the bubble are 
spherically symmetric. R  is the velocity of the 
bubble wall in the radial direction, as before.

The pressure field, generated by the radial 
bubble wall oscillations, can be calculated from 
the Euler equation (Prosperetti 2011):
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where p  is the pressure emitted by the bubble. In 
Eq.  9.27 we omit the nonlinear convective term. 
Substituting the expression of the velocity field 
(Eq. 9.26) into Eq. 9.27 gives the pressure gradient:

	

∂
∂

= − ( )p

r r

d

dt
R R

r
2

2


	
(9.28)

and the pressure emitted by the bubble:
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9.3.4	 �Secondary Bjerknes Force

Let us now consider two interacting gas bubbles,
separated by a distance l . The distance between the 
bubbles 1 and 2 is much larger that their radii R t1 ( )  
and R t2 ( ) . Thus, we can consider the motion of the 
liquid around the bubbles to be spherically symmet-

ric. Bubble 2 with volume V R2 2
34

3
= p  experiences 

a force F12  as a result of the pressure emitted by 
bubble 1, p1 (Leighton 1994):

	 F V p12 2 1= − ∇ 	 (9.30)

The force is directed along the line, which 
connects the centers of the two interacting bub-
bles. Substitution of Eq. 9.28 (expression for the
pressure gradient generated by the first bubble) 
into Eq. 9.30 yields the force of the first bubble 
on the second one at a distance l :

O. Shpak et al.



165

	

F V
p

r
V

l

d

dt
R R

l
V

d V

dt

r l
12 2

1
2 2 1

2
1

2 2

2
1

24

= − = ( )

=

=

∂
∂

π

r

r



	 (9.31)

where V R1 1
34

3
= p  the volume of bubble 1.

The net radiation force acting on a neighbor-
ing bubble is called the secondary Bjerknes force
FB after Bjerknes (Bjerknes 1906). The time 
averaged equation F12  is obtained by integrat-
ing Eq. 9.31 over the period of volume oscilla-
tions by partial integration:

	
F F

d
VVB = = −12 2 1 24

r
p

 

	
(9.32)

A positive value of  VV1 2  corresponds to 
attraction of the bubbles, and a negative value to 
repulsion. This means that the bubbles that oscil-
late with the same phase will attract each other. 
Note also the symmetry of Eq. 9.32. To calculate 
the force of the second bubble on the first one 
F21 , one just needs to exchange indexes 1 ↔ 2. 
F21  has the same magnitude, but an opposite 

direction as F12 .

9.4	 �Droplet Dynamics

9.4.1	 �Oscillatory Translations

The typical pressure amplitudes, which are used 
to activate perfluorocarbon droplets, are two 
orders of magnitude higher that those used to 
drive ultrasound contrast agents. Water itself 
always experiences periodic compression as a 
result of ultrasound forcing (Leighton 1994). Let
us express such oscillations as:

	
 = −( )0 sin wt kx

	
(9.33)

where   is the fluid particle displacement. The 
acoustic impedance, by definition, is the ratio of 
the driving pressure to the fluid particle velocity 
(Leighton 1994):

	 Z PA= / 0 	 (9.34)

where 0  is the particle displacement velocity 
amplitude, and PA  is the acoustic pressure ampli-
tude. The 0  particle velocity amplitude relates to 
the particle displacement amplitude 0  as 
 0 0=w , which follows from Eq. 9.33 by taking 

its time derivative. The dP  pressure change with 
respect to the equilibrium value is related to a 
dV  volume change by the bulk modulus B,  
defined by (Leighton 1994):

	
dP B

dV

V
= −

	
(9.35)

Equation 9.35 can be used to calculate the acous-
tic pressure P  at any given spatial point x0  as 

P x B
x x x

0

0

( ) = − ∂
∂ =

 . Applying this relation to 

Eq.  9.33 gives P BkA = 0 , or P B
k

A =
w
0 . The 

acoustic impedance Eq. 9.34 can then be written 
as:

	
Z B

k=
w 	

(9.36)

or by using the equation for the wave speed 
c k B= =w r/ / :

	 Z c= r 	 (9.37)

With the relations given above, one can  
now estimate the oscillatory translational 
amplitude. For the case of f = 3 5. MHz,  
PA = 8MPa  and cw =1522m/s,  the speed of 
sound in water at 37 °C, the amplitude is
0 2 210= =P fcA / .pr w nm

The acoustic impedance Z c= r  has the anal-
ogy with a refractive index n  in optics. The 
ultrasound wave at the interface of two sub-
stances with different acoustic impedances Z1  
and Z2  will experience a reflection and a refrac-
tion, similarly as light would experience at the 
interface with two different refractive indexes n1  
and n1.

Let us now denote q I , qR , and qT  the inci-
dent, the translated and the reflected angles, 
respectively (Fig. 9.3). One can derive the rela-
tion between these angles by considering conti-
nuity of the normal displacement at the interface. 
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This gives Snell’s reflection law sin sinq qI R( ) =  
and c cI T2 1sin sinq q= , where c1  and c2  are the 
speed of sound of the first and the second 
medium, respectively (Leighton 1994).

9.4.2	 �Focusing inside a Spherical 
Droplet

When an interface between two acoustic media 
has a finite curvature R,  as in the case of a spher-
ical droplet, acoustic focusing is observed. This 
is a similar effect as the focusing of light by an 
optical lens. First, the case of large droplets is 
considered, i.e. when the acoustic wavelength l  
is much smaller than the droplet radius R.  Next, 
the case where l  is of the order of R,  or even 
larger, is considered.

9.4.2.1	 �Case 1: Droplets much Larger 
in Size than the Wavelength

When l  R,  the refraction formulas provided 
by the theory of geometrical scattering apply. 
When a parallel beam of light travels in a medium 
with refractive index n1  and encounters a spheri-
cal interface between this medium and a second 
medium with refractive index n2 , either the 
transmitted or the reflected wave focuses in a 
point at a distance:

	
f R

n

n n
=

−
2

2 1 	
(9.38)

This distance is measured from the intersec-
tion point of the interface and the beam axis, 
which crosses the center of the curvature 
(Fig. 9.4).

In analogy with the optical focus, an acoustic 
focus can be calculated for the case l  R  by 
simply replacing n n1 2/  with c c1 2/  in the equa-
tion above. This gives:

	
f R

c

c c
=

−
1

1 2 	
(9.39)

For instance, when a large spherical perfluoro-
pentane droplet with c2 406= m / s  is immersed 
in water with c1 1522= m / s (at 37 °C), the
acoustic focus is at f R=1 36. . This means that 
the acoustic wave focuses on a distal side, 0 36. R  
away from the geometrical droplet center.

9.4.2.2	 �Case 2: Droplets Similar or 
Smaller in Size than 
the Wavelength

The situation complicates when the radius of 
the droplet is of the same order of magnitude 
as the wavelength, or even smaller, i.e. when 
l l~ Ror R . Experimental data obtained 
with small droplets shows that the ultrasound 
beam focuses on the proximal side of the drop-
let, which is not in agreement with the predic-
tion above. Obviously, in this case geometrical 
considerations can no longer be applied, and a 
full wave theory must be applied. Figure  9.5 
shows the configuration of the acoustic 

θI

θTθR

ZI Z2

Fig. 9.3  Schematics of 
reflection and transmission of 
a wave of displacement
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diffraction problem that will be solved here. 
Throughout the derivations, the parameters of 
the surrounding medium are labeled with a 
subscript 1, and the parameters of the  
medium inside the droplet are labeled with a  
subscript 2.

At the location of the droplet, the incident 
ultrasound wave is considered to be planar. In 
view of Eq. 9.9, it is written as:

	
p x y z t a ei

n
n

i n t nk z n, , ,( ) =
=

∞
− +( )∑

0

1w f

	
(9.40)

where k c1 1=w /  is the wave number outside the 
droplet. To keep the derivations simple, the 

diffraction problem will first be solved for one 
spectral component:

	
p x y z t aei

i t k z, , ,( ) = − +( )w f1

	
(9.41)

In view of the spherical symmetry of the con-
figuration, it is convenient to apply a coordinate 
transformation from cartesian coordinates 
x y z, ,( )  to spherical coordinates r, ,q f( ) , where 
f  is the azimuthal angle measured with respect 
to the positive z-axis, and f  is the elevation 
angle in the xy-plane. Due to the waves having 
rotational symmetry with respect to the z-axis, 
there will be no dependence on f,  and this coor-
dinate will be omitted. In spherical coordinates, 

C2

0 R f

θI

θT

C1

Fig. 9.4  Schematics of the 
focusing of an acoustic wave 
on the droplet sphere when 
the acoustic wavelength is 
much larger than the droplet 
radius
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Fig. 9.5  Configuration of the 
droplet and the incident, 
transmitted, reflected 
ultrasound waves
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the incident pressure wave can be written as a 
summation of spherical harmonics:

	
p r t ae j k r Pi

i t

m
m m m, , cosq g qw f( ) = ( ) ( )+( )

=

∞

∑
0

1

	
(9.42)

Here, g m

m
m i= +( ) −( )2 1 , jm  is the spherical 

Bessel function of the first kind and order m , and 
Pm  is the m − th order Legendre polynomial. The
spherical Bessel function jm  is related to the 
ordinary Bessel function Jm  according to 

j x x J xm m( ) = ( ) ( )+p / /2 1 2 .
When the incident wave encounters the drop-

let, it gives rise to a transmitted wave inside the 
droplet:

	
p r t ae j k r Pt

i t
m m m, , cosq a qw f( ) = ( ) ( )+( )

2 	
(9.43)

and a reflected wave outside the droplet:

	
p r t ae h k r Pr

i t
m m m, , cosq b qw f( ) = ( ) ( )+( ) ( )2

1 	
(9.44)

In these equations, k c2 2=w /  is the wave 
number inside the droplet, and hm

2( )  is the 

spherical Hankel function of the second kind and 
order m . The spherical Hankel function hm

2( )  is 
related to the ordinary Hankel function Hm

2( )  fol-
lowing h x x H xm m

2
1 2

22( )
+

( )( ) = ( ) ( )p / / . At the 
spherical interface between the outside and the 
inside of the droplet, the pressure and the radial 
particle velocity should be continuous. The latter 
requirement can be translated into a condition on 
the radial derivative of the pressure. In mathemat-
ical form, the boundary conditions at the inter-
face are:

	
lim , , , , lim , ,
r R

i r
r R

tp r t p r t p r t
↓ ↑

( ) + ( )  = ( )q q q
	

(9.45)
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(9.46)

which should hold for all q  and t . Substitution 
of Eqs. 9.42, 9.43, and 9.44 into these bound-
ary conditions results in a system of two equa-
tions for am  and bm . Solution of this system 
yields:

	

a gm m
m m m m

m m

Z j k R h k R Z h k R j k R

Z j k R h
=

( ) ( ) − ( ) ′ ( )
( )

( )′ ( )
2 1

2
1 2

2
1 1

2 2
2(( )′ ( )( ) − ( ) ′ ( )k R Z h k R j k Rm m1 1

2
1 2 	

(9.47)

	

b gm m
m m m m

m m

Z j k R j k R Z j k R j k R

Z j k R h k R
=

( ) ′ ( ) − ( ) ′ ( )
( ) ( )′

1 1 2 2 2 1

2 2
2

1(( ) − ( ) ′ ( )( )Z h k R j k Rm m1
2

1 2 	

(9.48)

where Z c1 1 1= r  and Z c2 2 2= r  are the acoustic 
impedances of the media outside and inside the 
droplet, respectively. The prime indicates the 
derivative of a function. The constant am  can be 
considered as the transmission coefficient of the 
droplet interface for spherical harmonics of order 
m , and the constant bm  can be considered as the 
corresponding reflection coefficient. At this 

stage, the problem of finding the wave inside the 
droplet due to a single sinusoidal component of 
the incident wave is solved.

To find the wave that is formed inside the 
droplet by the nonlinear incident wave, all the 
transmitted waves caused by the individual 
components of the incident wave must be added. 
The result is:

	
p r t p r t a e j nk rinside t

n m
n

i n t
n m m

n, , , , ,q q aw f( ) = ( ) = (
=

∞

=

∞
+( )∑∑

0 0
1 )) ( )Pm cosq

	
(9.49)

where am n,  follows from Eq. 9.47 by replacing 
k1  by nk1  and k2  by nk2 . This equation can be 

used to calculate the pressure in any position 
r, ,q j( )  at any time t . Numerical implementation 
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requires that both summations involve a finite 
number of terms. This forms no significant limita-
tion, because in practice only a limited number of 
N  harmonics will give a significant contribution 
to the ultrasound field inside the droplet, and only 
a limited number of M  spherical harmonics is 
required to accurately represent this field. 
However, another numerical issue arises when the 
radius of the droplet is much smaller than the 
wavelength. In this case, the numerical results for 
the spherical Bessel and Hankel functions may 
contain large errors. This problem may be elimi-
nated by first approximating these functions by 
their series expansion around zero. With the full 
pressure field determined both in space and time 
we can now find the local maximum of pressure - 
the focus.

The pressure amplification factor in the focus-
ing spot, as well as its location, depend on the 
input parameter values, i.e. the pressure ampli-
tude, the frequency and the transducer geometry 
and size, which prescribe the focusing strength 
and the propagation distance to the focal point. 
For instance, in case of a R =10mm  perfluoro-
pentane droplet immersed in water and insonified 
with an incoming ultrasound wave with a peak 
negative pressure Pi

− = −4 5. MPa  and frequency 
f = 3 5. MHz ( l m= 430 m in water at 37 °C)

coming from a transducer with a 3.81 cm focal 
distance, a focused peak negative pressure of 
Pinside MPa− = −26  is achieved within the droplet 
(Fig. 9.6). Thus, a near six-fold increase in the 
peak negative pressure amplitude is observed in a 
concentrated region on the proximal side around 
z = −0.4R.

From Eq.  9.47 it follows that the pressure 
inside the droplet, due to a single incident wave 
component, depends on the dimensionless 
product wR . When for two droplets with dif-
ferent radii R1  and R2  the relation w w1 1 2 2R R=  
holds, an incident wave with frequency f1  
encountering a droplet with radius R1  is 
focused at the same relative position within the 
droplet as an incident wave with frequency f2  
that hits a droplet with radius R2 .  This implies 
that when larger droplets turn out to vaporize 
more easily than smaller droplets at the same 
frequency, it also follows that for the same 
radius droplets are easier to evaporate at high 

frequencies than at low frequencies, and 
vice-versa.

However, nonlinear propagation makes this 
picture more complex. First, the higher the acous-
tic pressure amplitude, the more nonlinear the 
wave becomes as the amplitudes of the higher 
harmonics build up roughly as Psurface

n( ) −1
, where 

Psurface  is the pressure amplitude at the transducer 
surface and n  is the number of the particular har-
monic. Second, the nonlinear propagation 
depends on the frequency. Additionally, of 
course, the nonlinear beam is focused differently 
from the linear one, with different pressure 
amplification factors and focusing positions for 
each harmonic. Finally, the shape of the 
nonlinearly distorted wave is strongly dependent 
on the parameters of the propagating media. For 
human tissue the Goldberg ratio is lower than for 
water (Szabo et al. 1999). This indicates that non-
linear distortion is easier to achieve in water com-
pared to tissue. Therefore the experiments 
performed in-vivo are expected to have different 
nucleation patterns, with a higher nucleation 
threshold compared to the in-vitro experiments.

Knowledge of the physics of acoustic focus-
ing in small droplets is important for the opti-
mization of acoustic droplet vaporization for 
therapeutic applications. This is particularly the 
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Fig. 9.6  Schematics of the superharmonic focusing effect 
within a perfluoropentane spherical droplet. The black 
line represents the acoustic pressure waveform on the axis 
of symmetry (θ = 0) as a function of the z-coordinate in the 
absence of a droplet. The red solid line is the focused pres-
sure in presence of the droplet. The snapshot represents 
the moment of minimum focused pressure both in time 
and space. The blue shaded region depicts the position of 
the droplet
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case for attaining activation at low acoustic 
pressures, thereby minimizing the negative bio-
effects associated with the use of high-intensity 
ultrasound. Moreover, it helps in the design of 
droplets: by mixing liquids with different phys-
ical properties, the acoustic impedance may be 
tuned through a change of the density of mass 
and/or the speed of sound. Using dedicated 
waveforms, the amplitudes and phases of the 
nonlinear wave at the focus of the beam can be 
optimized to obtain maximal constructive inter-
ference within the droplets and obtain maximal 
focusing strength at any particular acoustic 
input pressure. Moreover, the knowledge of 
consecutive droplet vaporization dynamics is 
important because it affects the surrounding tis-
sue and may cause damage. It is not only the 
acoustic impedance mismatch between the 
droplet and the surrounding media that deter-
mines the interior pressure, but also the exterior 
of the droplet. Here we have only considered 
single droplets, but clouds of droplets may 
cause complicated pressure scattering patterns 
and may lead to different focusing spots. One 
can also think of periodic arrangements of 
monodisperse droplets to observe similar dif-
fraction relations as we have with light passing 
through crystals.

9.4.3	 �Radial Vapor Bubble 
Expansion

There are three main physical mechanisms that 
govern the vapor bubble growth process: phase-
change, heat transfer and inertia. There are also 
two phenomena, which can limit vapor bubble 
growth. Firstly, the vapor bubble pushes the sur-
rounding liquid as it grows. The force by which 
the liquid is pushed is determined by the pressure 
which acts on the bubble wall. The surrounding 
liquid has inertia, and the vapor bubble growth 
rate will be limited by this inertia. Secondly, the 
phase-change from liquid to vapor is an endo-
thermic process, requiring heat absorption. The 
required heat for vaporization is transferred from 

the liquid around the bubble by cooling the 
surroundings. The rate of this process is limited 
by heat transfer.

Let us now first have a closer look at inertial
growth limitation. Here we assume that the heat 
transfer is high enough to supply the required 
energy for the endothermic phase-transition. In 
this case the Rayleigh-Plesset equation can be 
written as:

	

 RR R
P Pv+ =

− ∞3

2
2

r 	
(9.50)

where Pv  is the vapor pressure and P∞  is the 
pressure far away from the bubble wall. We 
disregard the surface tension, the sound rera-
diation and the viscosity. The boiling tempera-
ture of the liquid is Tb  and the ambient 
temperature is T∞ . The liquid is superheated 
(T∞  > Tb ) so that Pv  > P∞ . The vapor pressure 
P
v  is a function of the temperature and 

assumed to be constant during vapor bubble 
growth. Initially the velocity of the bubble wall 
R  is small, and the first term on the left hand 

side of Eq.  9.50 is dominant. After approxi-
mately a few nanoseconds at Pv  = 1 4. ,P∞  the 
bubble wall velocity reaches its terminal value 
and the second term on the right hand side of 
Eq. 9.50 becomes dominant.

Terminal velocity is reached at the condition 
R  → 0. Substituting this into Eq. 9.50 and inte-

grating with the initial condition R t =( ) =0 0  
gives the radius-time dependency of the inertially 
limited vapor bubble growth:

	

R t
P P

tv( ) = −( )







∞2

3

1 2

r

/

	

(9.51)

Equation 9.51 is linear with time and is faster for 
higher vapor pressures Pv , thus at higher ambient 
temperatures T∞ .

Let us now have a look at the second case,
where we focus on heat transfer and where iner-
tial limitations are neglected. Contrary to the 
solution of the inertial problem, the heat transfer 
is complicated by the temperature distribution 
outside the vapor bubble (Fig. 9.7).
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The temperature distribution changes with 
time due to thermal diffusion. In addition, it is 
also affected by the expansion of the bubble, as 
described by the continuity equation. The effec-
tive thermal boundary layer around the vapor 
bubble is determined by (Prosperetti 2011):

	 deff = Dt 	 (9.52)

where D  is the thermal diffusivity of the liquid. 
This estimation follows from the thermal diffu-
sion equation and shows that the thermal bound-
ary layer diffuses with time as √t. On the vapor 
side of the thermal boundary layer the tempera-
ture is Tb , and on the liquid side of the thermal 
boundary layer the temperature is T∞ . The effec-
tive temperature gradient over the thermal bound-
ary layer is ∆T eff/ d , where ∆T T Tb= −∞  is the 

temperature difference. The heat flow W1  inside 
the vapor bubble from the surrounding liquid 
caused by the temperature mismatch can be esti-
mated as follows:

	
W R k

T

Dt
1

24= ∆p
	

(9.53)

where k  is the heat transfer coefficient and 
4 2pR  is the interfacial area.

The latent heat energy per unit time W2  
required to supply the vapor bubble growth is:

	
W R L

dR

dtv2
24= p r

	
(9.54)

with L  the latent heat, and 4
2p rR

dR

dtv  the deriv-
ative of the mass, with rv  the density of the 
vapor. Equalizing Eqs. 9.53 and 9.54, and inte-
grating with the initial condition R t =( ) =0 0,  
gives the radial dynamics of the heat transfer lim-
ited vapor bubble growth:

	

R t
k T

L D
t

v

( ) = ∆
2

r 	

(9.55)

It is dependent on time t  following a square root 
behavior, and eventually will become slower than 
the inertia limited vapor bubble growth expressed 
by the linear dependence by Eq. 9.51. Thus, ini-
tially the vapor bubble growth is limited by the 
inertia, and then the vapor bubble growth 
becomes limited by the heat transfer. One can 
estimate the radius and the time when the transi-
tion of the two regimes occurs by calculating the 
intersection of the two curves expressed by the 
Eqs.  9.51 and 9.55. For typical parameters of 
acoustic perfluorocarbon droplet vaporization, 
the vapor bubble growth is heat transfer limited 
for a typical timescale longer than 1 microsecond 
(Fig. 9.8).

When the bubble growth is accompanied by 
bubble oscillations due to the ultrasound forcing, 
one can observe a phenomenon called rectified 
heat transfer. Rectified heat transfer is the net 
effect of the decrease of the heat transfer during 
the ultrasound half cycle when the vapor bubble 
surface contracts, and which is lower than the 
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Fig. 9.7  Schematics of temperature distribution during 
the vaporization of a superheated perfluorocarbon droplet 
immersed in water. Tb is boiling temperature of perfluoro-
carbon, T∞ is ambient temperature and δeff is effective 
thermal boundary layer around the vapor bubble of the 
radius R

9  Droplets, Bubbles and Ultrasound Interactions



172

increase of the heat transfer during the second 
half cycle when the surface expands. Here, two 
effects come into play; the increment of the bub-
ble wall area during the expansion cycle, and the 
increment of the temperature gradient. The incre-
ment of the temperature gradient can be under-
stood in the following way. Let us consider that
the radius of the vapor bubble changes from R0  
to R . The change of the thin thermal boundary 
layer from d0  to d  is then calculated from con-
tinuity: 4 42

0
2

0p d p dR R= . This gives (Prosperetti
2011):

	
d d= 0

0
2

2

R

R 	
(9.56)

and from the reciprocal relation for the tempera-
ture gradient:

	

∆ = ∆T T R

Rd d0

2

0
2

	
(9.57)

it can be seen that the temperature gradient 
increases with the radius squared, R2 , i.e. with 
the bubble wall area 4 2pR . Thus, the bubble wall 
area and the temperature gradient will both 
decrease with R2  when the radius decreases. 
However, the net effect is typically positive, 
meaning that bubble wall oscillations due to the 
interaction with ultrasound will pump additional 
heat into the bubble, thereby promoting the 
phase-conversion process; the larger the bubble 
oscillation amplitude, the stronger the pumping 
of additional heat.

9.4.4	 �Activation Below Boiling 
Point

After the initiation of droplet vaporization by the 
focused ultrasound pulse, gas diffuses into the 
nucleus/vapor bubble during vapor bubble growth 
as perfluorocarbon droplets dissolve air by an 
order of magnitude more than water. As was 
shown before, vapor bubble growth strongly 
depends on temperature. From both Eq. 9.51 and 
Eq. 9.55 it follows that the vapor bubble growth 
is slower when the ambient temperature is lower, 
whereas the dependence of air diffusion on the 
temperature is much less pronounced. This means 
that at low ambient temperatures (T Tb∞ ≤ ), the 
air diffusion dynamics becomes comparable to 
the evaporation processes.

Here, for simplicity, we only show the bubble 
growth dynamics due to gas diffusion, disregard-
ing the evaporation processes and oscillations of 
the bubble due to ultrasound forcing. The partial 
pressure of gas Pg  which is in equilibrium with 
the saturated gas concentration cs  dissolved in 
the liquid is given by Henry’s law:

	
P Hcg s=

	
(9.58)

We assume that the liquid is at a uniform 
supersaturated concentration i . The mass flow of 
gas into the bubble per unit time is:

	

dm

dt
R

c

r r R

= ∂
∂ =

4 2p k
	

(9.59)
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Fig. 9.8  Radius time 
dynamics of the inertial and 
the heat transfer limited vapor 
bubble growth in superheated 
liquid. The curves are 
calculated for 
perfluoropentane liquid 
(Boiling point Tb =29 °C) at
35 °C ambient temperature
employing the Eqs. 9.51 and 
9.55. At t = 0.52 μs, the growth 
becomes limited by the heat 
transfer as it becomes slower 
than the growth limited by the 
inertia
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where k  is the coefficient of diffusivity of the 
gas in the liquid. If rg  is the density of the gas in 
the bubble, the mass flow can be written as 
follows:

	

dm

dt
R

dR

dt
= 4 2p r

	
(9.60)

One can use the reasonable physical approxi-
mation to calculate the gradient of the concentra-
tion for a bubble interface, which changes in time 
by diffusion (Epstein and Plesset 1950):

	

∂
∂

= −( ) +










=

c

r
c c

R tr R
i s

1 1

pk
	

(9.61)

Substitution of Eqs.  9.60 and 9.61 into 
Eq. 9.59 gives the radial time dynamics equation 
for the gas diffusion:

	

dR

dt

c c

R t
i s=
−( )

+










k
r pk

1 1

	
(9.62)

The gas bubble shrinks when c ci s< ,  and 
grows when c ci s> . Similar to the rectified heat 
transfer problem, gas diffusion into the bubble 
can be promoted due to interaction with ultra-
sound. This phenomenon is called rectified diffu-
sion and similar relations can be derived as was 
shown in the previous subsection.
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