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    Abstract     Intracranial pressure (ICP) is a major neurological 
parameter in animals and humans. ICP is a function of the 
relationship between the contents of the cranium (brain 
parenchyma, cerebrospinal fl uid, and blood) and the volume 
of the skull. Increased ICP can cause serious physiological 
effects or even death in patients who do not quickly receive 
proper care, which includes ICP monitoring. Epilepsies are a 
set of central nervous system disorders resulting from abnor-
mal and excessive neuronal discharges, usually associated 
with hypersynchronism and/or hyperexcitability. Temporal 
lobe epilepsy (TLE) is one of the most common forms of 
epilepsy and is also refractory to medication. ICP character-
istics of subjects with epilepsy have not been elucidated 
because there are few studies associating these two impor-
tant neurological factors. In this work, an invasive (ICPi) and 
the new minimally invasive (ICPmi) methods were used to 
evaluate ICP features in rats with chronic epilepsy, induced 
by the experimental model of pilocarpine, capable of gener-
ating the main features of human TLE in these animals.  
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      Introduction 

 Intracranial pressure (ICP) is the pressure inside the skull. 
It is derived from cerebral blood and cerebrospinal fl uid 
circulatory dynamics and can be affected during the course 
of many diseases of the central nervous system (CNS) [ 6 ]. 
The vascular component (cerebral blood) is diffi cult to 
express quantitatively, and it is probably derived from the 
pulsation of the cerebral blood volume detected and 
adjusted by nonlinear mechanisms of cerebral blood vol-
ume regulation. 

 In most organs of the human body, the environmental 
pressure for blood perfusion is either low or coupled to atmo-
spheric pressure. The environmental pressure for CNS dif-
fers in this respect as the brain is surrounded and protected 
by a rigid skull. An increase in intracranial pressure may 
impede blood fl ow and result in ischemia [ 6 ]. 

 More generally, multiple variables such as arterial pres-
sure, autoregulation, and cerebral venous outfl ow all con-
tribute to the vascular component. Any factor that disturbs 
this circulation under physiological or pathological condi-
tions may provoke an increase in ICP [ 6 ]. ICP monitoring 
is relevant in the treatment of many diseases, from neopla-
sias and traumas to infections, and its study is very impor-
tant because variations in this pressure can lead to 
irreversible clinical pictures, such as dementia and cogni-
tive derangements. 

 One of the neurological diseases that can affect ICP is 
epilepsy. This is characterized by spontaneous recurrent sei-
zures caused by focal or generalized paroxysmal changes in 
neurological functions triggered by abnormal electrical 
activity in the cortex [ 8 ]. Because it involves hyperexcitable 
neurons, a basic assumption links the pathogenesis of epi-
lepsy and the generation of synchronized neuronal activity 
with an imbalance between inhibitory (γ-aminobutyric acid 
[GABA]–mediated) and excitatory (glutamate-mediated) 
neurotransmission, in favor of the latter [ 7 ]. 
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 Seizures and epilepsy are usually divided into two 
groups: partial and generalized. Partial or focal seizures 
have clinical or electroencephalographic (EEG) evidence of 
local onset and may spread to other parts of the brain during 
a seizure, whereas generalized seizures begin simultane-
ously in both cerebral hemispheres [ 9 ]. Temporal lobe epi-
lepsy (TLE) is the most common form of partial epilepsy in 
adulthood [ 12 ,  20 ], possibly affecting at least 20 % of all 
patients with epilepsy [ 2 ]. 

 The main features of TLE are:
    1.    The localization of seizure foci in the limbic system, par-

ticularly in the hippocampus, entorhinal cortex and amyg-
dala [ 3 ]   

   2.    The frequent fi nding of an initial precipitating injury that 
precedes the appearance of TLE [ 14 ]   

   3.    A seizure-free time period following the precipitating 
injury known as the latent period   

   4.    A high incidence of mesial or cornu ammonis (CA) scle-
rosis, i.e., a unilateral hippocampal lesion leading to atro-
phy, typically caused by neuronal loss and gliosis in 
Sommer’s sector (the subiculum–CA1 transition zone) 
and the endfolium (dentate hilus) [ 15 ].     
 Most of these characteristics can be reproduced in chronic 

animal models of TLE, particularly the pilocarpine model of 
epilepsy. This model appears to be highly isomorphic with 
the human disease; thus, it has been used in many laborato-
ries since its fi rst description three decades ago [ 18 ,  19 ]. 

 The systemic administration of pilocarpine, a potent mus-
carinic agonist, in rats promotes sequential behavioral and 
electrographic changes that can be divided into three distinct 
periods:
    1.    An acute period that builds up progressively into a limbic 

status epilepticus (SE) and that lasts 24 h   
   2.    A silent (latent) period with progressive normalization of 

EEG and behavior that varies from 4 to 44 days   
   3.    A chronic period with spontaneous recurrent limbic sei-

zures (SRS), with increasing frequency and no remission 
[ 1 ,  4 ,  10 ]. The main features of the SRS observed during 
the long-term period resemble those of human complex 
partial seizures and recurs two to three times per week 
per animal [ 1 ,  4 ]. Another important feature of the pilocar-
pine model is the occurrence of widespread lesions, some 
of them localized in the same brain areas affected in TLE 
patients, and associated with neuronal network reorgani-
zation in hippocampal and parahippocampal regions [ 20 ].     
 Regarding ICP monitoring during epileptic seizures in 

humans, few studies were able to observe changes in this 
parameter in patients on continuous monitoring. A study 
reported an increase in ICP during epileptic seizures related 
to the type of seizures presented by the patient, and tonic–
clonic seizures were associated with a more noticeable 
increase in ICP [ 16 ]. Another study showed that a general-
ized tonic–clonic seizure caused a sudden and massive 

increase in ICP in a patient with no previous medical history 
of seizures [ 17 ]. With regard to animal experimentation, 
increased ICP during sustained epileptic seizures was 
observed in cats [ 11 ]. 

 In this context, ICP characteristics of individuals with 
epilepsy are not well elucidated, since there are few studies 
associating these two important neurological factors. In this 
work, an invasive (ICPi) and the new minimally invasive 
(ICPmi) [ 13 ] intracranial pressure monitoring methods were 
used to evaluate ICP features in rats with chronic epilepsy, 
induced by the experimental model of pilocarpine, which is 
capable of generating the main features of human TLE in 
these animals.  

    Materials and Methods 

 To evaluate ICP in animals with chronic epilepsy, the experi-
mental set was divided into two groups of adult male Wistar 
rats: pilocarpine ( n  = 6) and controls ( n  = 6). For the pilocar-
pine group, seizures were induced by injection of pilocarpine 
hydrochloride (320 mg/kg, i.p.), preceded by methylscopol-
amine bromide (1 mg/kg, i.p.). Approximately 30 min after 
the injection of pilocarpine, most animals developed SE. To 
reduce the high mortality rate associated with tonic seizures, 
an injection of thionembutal (25 mg/kg, i.p.) was adminis-
tered 90 min after the beginning of SE [ 5 ]. Regarding the 
control group, animals were treated with 0.9 % saline 
(0.1 mL/100 g, i.p.) and thionembutal (25 mg/kg, i.p.) to 
simulate the condition experienced by the pilocarpine group. 

 Three months after induction, when the pilocarpine group 
had already developed chronicity, presenting an average of 2–3 
SRS per week/animal, animals from both groups were anesthe-
tized with ketamine (95 mg/kg) and xylazine (12 mg/kg), and 
underwent a procedure for magnetic resonance imaging (MRI) 
acquisition to verify volumetric changes in the hippocampal 
regions. MRI sections were acquired using a 2-T Oxford 
Instruments® horizontal superconductor magnet, model 
65310HR, which operates with a Bruker® spectrometer. 

 After that, they underwent surgery for the ICPmi 
(Braincare) and ICPi (intraparenchymatous; Codman) sensor 
installations on opposite sides of the parietal bone of the 
skull. Then, their ICPs were monitored simultaneously for 1 
h, with a sampling rate of 200 Hz. 

 Analyses consisted of the frequency quantifi cation of 
spontaneous recurrent seizures for the pilocarpine group, vol-
ume determination of the hippocampal regions using MRI 
techniques, short-time Fourier transform (STFT) for ICPi, 
and spectral frequency determinations for ICPmi and ICPi for 
both groups. For SRS frequency quantifi cation, animals were 
monitored using video cameras 12 h per day, 5 days per week, 
during the light cycle (240 h monthly). This procedure began 
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15 days after SE onset and fi nished 3 months after this event. 
Concerning hippocampus volumetry, the perimeter of the 
regions of interest (ROI), i.e., the right and left hippocampus 
separately, were delimited in eight consecutive images, and 
their areas were multiplied by the slice thickness to obtain the 
volume. ROI selection and volume acquisition were per-
formed using the software MRIcro. Selection of the hippo-
campus for analysis covered its entire rostrocaudal length 
between 2.30 and 6.0 mm from the bregma. Volumes for each 
acquisition were calculated and statistically compared 
between groups. All results were analyzed using one-way 
ANOVA followed by post-hoc Bonferroni test, with statistical 
signifi cance set at  P  < 0.05. STFT is a Fourier-related trans-
form used to determine the sinusoidal frequency and phase 
content of local sections of a signal as it changes over time. In 
this case, STFT was used to defi ne a certain behavioral pat-
tern for ICPi frequencies in the epileptic group compared 
with the controls. With regard to ICPmi and ICPi spectral fre-
quency determinations, this analysis was applied to the moni-
toring data to verify whether both methods were able to 
acquire corresponding frequency ranges.  

    Results 

 Frequency of SRS (seizures/month) in the animals treated 
with pilocarpine was 7.66 ± 1.46 (mean ± standard error 
of the mean; Fig.  1 ). Seizure frequency differed among 

the  animals under study, and thus, when analyzing the 
group as a whole the standard deviation was 3.58 sei-
zures/month. Nevertheless, it should be noted that the 
animals were monitored only during the light phase of 
the light-dark cycle, and possible seizures that they might 
present during the night were not considered in the 
analysis.

   Concerning tissue volume measurements (mm 3 ) for ros-
tral, caudal, and total hippocampus, 3 months after SE, there 
were statistically signifi cant reductions in the rostral hippo-
campus ( P  < 0.05), the caudal hippocampus ( P  < 0.01), and 
the total hippocampus ( P  < 0.01) in the pilocarpine group 
compared with the control (Table  1 ).

   The spectral frequency analysis demonstrated correspon-
dence between ICPmi and ICPi in the frequency domain for 
both groups (Fig.  2 ), indicating that the methods were capa-
ble of acquiring corresponding ranges of ICP frequencies. 
For STFT analysis (Fig.  3 ), oscillations throughout time in 
the ICP frequency components (fundamental frequency and 
harmonics) were noticeable for the epileptic compared with 
the control animals.

        Discussion 

 The frequency quantifi cation of spontaneous recurrent sei-
zures for the animals with chronic epilepsy showed an 
increasing number of seizures from month 1 to month 3, 

  Fig. 1    Number of spontaneous recurrent seizures in each period. The whole period consists of 3 months of behavioral observations, 12 h/day 
(wake cycle). Observations began 15 days after status epilepticus (SE) onset       
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when the pilocarpine group presented an average of 2–3 SRS 
per week/animal, a result consistent with the existing litera-
ture [ 4 ]. 

 Results obtained using the technique of hippocampal 
volumetry by MRI indicated differences in the experimen-
tal group compared with the controls for all hippocampal 
volumes (rostral, caudal, and total); there were more 
marked differences in the caudal region. This hippocampal 

   Table 1    Volume measurements (mm 3 ; mean ± SEM) of rostral the hip-
pocampus (RH), the caudal hippocampus (CH), and the total hippo-
campus (TH) for the pilocarpine and control groups   

 Groups   n   RH  CH  TH 

 Pilocarpine  6  22.1 ± 1.8 a   51.7 ± 4.6 a   73.8 ± 6.2 a  

 Control  6  26.9 ± 0.6  68.7 ± 0.7  95.5 ± 0.9 

   a Indicates statistical signifi cance ( P  < 0.05 for RH;  P  < 0.01 for CH and 
TH) compared with the control group  
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  Fig. 2    Frequency spectrum analysis of minimally invasive intracranial pressure (ICPmi) and invasive intracranial pressure (ICPi) signals, demon-
strating that the two methods were equally capable of acquiring corresponding ranges of ICP frequencies       
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  Fig. 3    Short-time Fourier transform analysis of ICPi signals. It is possible to notice oscillations and dispersions in the ICP frequency components 
of the epileptic animal compared with the control, which may be associated with a decrease in brain compliance and failure of autoregulation       
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decrease in the animals treated with pilocarpine may be 
related to hippocampal sclerosis in this model. 

 The ICP behavior of the animals with chronic epilepsy pre-
sented a characteristic of dispersion in the frequency compo-
nents, which may be related to a decrease in brain compliance 
and failure of autoregulation. In addition, there are no reports in 
the literature regarding these results. Furthermore, MRI of the 
hippocampal region confi rmed the neurological damage caused 
by the pilocarpine model, which may have contributed to the 
appearance of such ICP behavior in the animals with epilepsy.     
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