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Abstract. We evaluate the convolutive nonnegative matrix factoriza-
tion in the context of automatic music transcription of polyphonic piano
recordings and the associated problem of note isolation. Our intention is
to find out whether the temporal continuity of piano notes is truthfully
captured by the convolutional kernels and how the performance scales
with complexity. Systematic studies of this kind are lacking in existing
literature. We make use of established measures of accuracy and sim-
ilarity. NMF dictionaries covering the piano’s pitch range are learned
from a given sample bank of isolated notes. The kernel alias patch size
is varied. By using a measure of performance advantage, we show up
that the improvements due to convolved bases do not justify the extra
computational effort as compared to the standard NMF. In particular,
this is true for the more realistic case, in which the dictionary does not
fully correspond to the mixture signal. Further pertinent conclusions are
drawn as well.

Keywords: Nonnegative matrix factorization · Convolution · Super-
vised learning · Polyphony · Automatic music transcription · Note
separation

1 Introduction

Nonnegative matrix factorization (NMF) [1] meanwhile is an established tool
in music processing, and music transcription has emerged as its main area of
application, see [2,3]. Since a complete transcription would also include a note’s
velocity, this information, together with the learned bases, can be used to iso-
late notes from the mixture by Wiener filtering. This can be done either in a
supervised or in an unsupervised task.

In this study, we seek to compare the performance of the convolutional NMF
[4,5] with the standard NMF in regard to supervised learning, i.e. where the bases
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are held fixed and their activations are updated until the modeled spectrogram
is in the shortest distance from the observed spectrogram. In our evaluation, we
resort to more frequently used measures, such as the root-mean-square deviation
(RMSD). We also provide perception-related ratings. Above, we are interested in
seeing how the superior modeling accuracy that convolutional bases are expected
to bring about relates to the extra computational effort. As the convolutional
NMF was designed for capturing the temporal evolution of sound patterns, we
expect it to track the temporal decay of notes more faithfully than the standard
NMF. For the transcription of polyphonic recordings and the related task of note
isolation, temporal continuity of notes is a crucial factor. Thus, the convolutional
NMF looks promising and seems to be a reasonable alternative to other variants
that favor temporal continuity through additional penalty terms in the cost
function. More generally speaking, our interest is in evaluating the aptitude of
the convolutional NMF for musical applications.

2 Convolutional NMF

The basic idea behind the convolutional or convolutive NMF is to treat sequences
of single-column bases, or multi-column bases, in the exact same manner that
single-column bases are treated by the standard NMF. This is meant to bet-
ter capture the temporal evolution of repeating patterns of the dominant or
principal components in the mixture as compared with the standard, i.e. non-
convolutional, NMF. In our case, we mean sequences of magnitude and/or power
spectra when speaking of patterns and the principal components are piano notes.
We will further refer to the length of such a sequence of spectra as the “patch
size”. The rank of the factorization is given by the number of distinct piano
notes.

Now consider a Bregman distance DX
F formally given in the form of the

Kullback–Leibler (KL) divergence with X of size K × N , xkn ∈ R
+
0 , being

approximated as

X ≈ Y =
M−1∑

m=0

S(m) · A rshift m, (1)

where A is the activations matrix, rshift is the zero-fill right-shift operator
applied to the rows of A, S is the bases matrix or the spectral imprint, m
is the patch index and M the patch size, respectively. To show that (1) is indeed
a convolution in n, we need to consider the following term which is applied to
every element of Y,

ykn =
R∑

r=1

M−1∑

m=0

skr(m) · ar,n−m =
R∑

r=1

skr(n) ∗ arn, (2)

where ∗ denotes convolution and R is the rank of Y, R � min (K,N). The
generalized KL divergence w.r.t. X,

DX
KL(Y,X) =

∑

k,n

ykn log
ykn

xkn
−

∑

k,n

ykn +
∑

k,n

xkn, (3)
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is generated from the convex function

F (X) =
∑

k,n

xkn log xkn −
∑

k,n

xkn. (4)

Alternatively, the KL divergence from (3) can be replaced by [2]

DX
KL′(Y,X) = ‖Y � log (Y � X) − Y + X‖F, (5)

where ‖·‖F is the Frobenius norm, � stands for element-wise division and � for
element-wise multiplication, respectively. Note that for M = 1, (1) turns into the
standard NMF. So, in supervised learning, the problem at hand can be stated
as follows. Given X and S, skr ∈ R

+
0 , R � min (K,N), M ∈ N, find

Aopt = arg min
A

DX
KL′(Y,X) s.t. arn ∈ R

+
0 . (6)

2.1 Multiplicative Update Rule

Aopt in (6) can be found using the convolutional update rule given in [5], which is

A ← A � [
ST(m) · (X � Y) lshift m

] � [
ST(m) · 1]

, (7)

where 1 is a K × N all-ones matrix and lshift stands for the row-wise zero-fill
left-shift operator. In [5], it is further suggested that for each S(m) a different
Am should be learned and that the final A should be computed as A = 〈Am〉,
where 〈·〉 denotes the time average operator,

〈Am〉 =
1
M

M−1∑

m=0

Am. (8)

2.2 Dictionary Learning and Normalization

To construct an instrument’s dictionary, one requires a dataset of separate note
recordings. A typical piano range, e.g., would consist of I = 88 notes, starting
with A0 and ending with C8, at a distance of a semitone. For every ith note, one
computes the spectrogram Xi and learns the corresponding patch of M bases
using [5]

Si(m) ← Si(m) �
[
(Xi � Yi) · (Ai rshift m)T

]
�

[
1 · (Ai rshift m)T

]
, (9)

while alternating with (7). In a final step, the M Ai matrices are discarded and
the convolutional bases Si(m) are kept. The overcomplete dictionary, which is
held stiff in (6), is obtained by stringing the note patches together to

S(m) =
[
S1(m) S2(m) · · · SI(m)

] ∈ R
K×MI . (10)
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After each update (9), it is very common to normalize the columns of Si(m)
by their lengths in the Euclidean space. A reason for doing this is numerical sta-
bility. Another way of normalizing is by patch, i.e. either by relating each matrix
element to the largest singular value of Si(m), by taking the Euclidean matrix
norm, or as an alternative by dividing each matrix element by the Frobenius
norm. In this wise, the temporal decay of the notes’ spectral envelopes can be
tracked.

2.3 Gaussian-Additive Mixture Model

Consider the short-timeFourier transform (STFT) domain. In reference to the cen-
tral limit theorem, the Fourier coefficients are approximately complex-normally
distributed. We further assume that they are circularly-symmetric, i.e. that they
have zero mean and zero covariance matrix. Now, if we stipulate that the note
components are mutually independent, the mixture’s PSD can be decomposed
into a sum of notes’ PSDs. In other words, the NMF can be performed on the
mixture’s PSD. Yet note that this model does not hold for the magnitude spectra,
as the square root of a sum of squares is not equal to the sum of magnitudes.

2.4 Note Separation

With the signal model from Sect. 2.3, Wiener filtering can be used to separate
the note components from the mixture. In a first step, one computes the learned
spectrograms

Ŷi =
M−1∑

m=0

Si(m) · Âi rshift m, (11)

i = 1, 2, . . . , I, and applies Wiener filtering to every element separately:

ẑikn =
ŷikn∑I

j=1 ŷjkn

· xknejφkn ∀ i, k, n, (12)

where φ is the phase of x in time-frequency (TF) point (n, k) and j is the
imaginary unit. The corresponding time-domain signal is obtained by the inverse
STFT on Ẑi.

3 Evaluation

For the purpose of evaluation, we design various dictionaries using the RWC
Music Database, while each dictionary is trained for Yamaha’s Pianoforte, nor-
mal playing style, and “mezzo” level of dynamics.1 For the STFT, we apply a
4-term Blackman–Harris window of the size of the transform and overlap suc-
ceeding blocks by 87.5 %.

1 https://staff.aist.go.jp/m.goto/RWC-MDB/.

https://staff.aist.go.jp/m.goto/RWC-MDB/
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As for the mixture signal, we generate it from a MIDI file taken from the
Saarland Music Data (SMD) using Kontakt 5 by Native Instruments.2 The 32-s
excerpt is part of Chopin’s Opus 10.3 We generate two mixtures: one synthetic
using the RWC samples and one realistic for the Berlin Concert Grand. We per-
form the NMF on the mixture using the NMFlib for a fixed number of 30 itera-
tions.45 The critical testing parameter is the patch size M which is increased from
1 onwards. Also, we evaluate the NMF performance for the transform lengths
of 2048 and 4096 points for two different nonnegative TF representations: the
magnitude spectrum and the power spectrum. Overall, we train 24 dictionaries,
one for each set of configuration parameters. We normalize the basis spectra by
patch using the Euclidean matrix norm.

3.1 Performance Measures

F -measure. In binary classification, the F -measure indicates the accuracy of a
system under test and it is defined as the harmonic mean of precision and recall:

F � 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
, (13)

where TP is the number of true positives, FP is the number of false positives
and FN is the number of false negatives. In the case of music transcription, true
positives denote those TF points that have significant contributions according
to (11) in the same spots as in the perfect transcription. False positives are
activations in the wrong spots and false negatives denote missing activations,
respectively. The F -score attains its best value at 1 and its worst value at 0.

Root-mean-square Deviation. The root-mean-quare deviation (RMSD) is a
frequently used measure of accuracy for comparing errors of different models for
a particular variable. With regard to notes:

RMSDi �

√√√√ 1
N

N∑

n=1

[ẑi(n) − si(n)]2, (14)

where N is the length (in samples) of the time-domain signal si(n) and ẑi(n) is
its estimate. Lower values are preferred.

2 http://www.mpi-inf.mpg.de/resources/SMD/SMD MIDI-Audio-Piano-Music.html.
3 The results shown are representative of what we experienced for different piano

recordings.
4 https://code.google.com/p/nmflib/.
5 The number was chosen empirically. Above it, no significant improvement was

observed.

http://www.mpi-inf.mpg.de/resources/SMD/SMD_MIDI-Audio-Piano-Music.html
https://code.google.com/p/nmflib/
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Perceptual Similarity Measure. “PEMO-Q” [6] is a method for the objective
assessment of the perceptual quality of audio. It uses the model of auditory
perception by Dau et al. to predict the audio quality of a test signal relative
to a reference signal. PEMO-Q aligns the levels of both signals and transforms
them into so-called “internal representations” of the auditory model. The cross-
correlation coefficient between the two representations serves as a measure of
the perceived similarity, PSM. And so, it can be used as a measure of the test
signal’s degradation.

Average Performance and Performance Advantage. The major goal of
this evaluation is to relate the performance of the convolutional NMF to its
computational complexity in a more formal manner. We state the average per-
formance as

Pavg � P

T
, (15)

where P can be expressed as any of the above measures and T shall denote the
execution time of the NMF. Moreover, we define the performance advantage of
the convolutional NMF as the logarithm of the ratio between the performances
of the convolutional and the standard NMF over time,

PA � log
PM/TM

P1/T1

≈ log
PM

M · P1
(16)

with TM ≈ M · T1, i.e. on the assumption that it takes M times longer to
compute the convolutional M -basis NMF as compared to the standard single-
basis NMF [5]. A PA that is above zero indicates an advantage, a disadvantage
if below zero, i.e. if it is negative, and a value of zero means equality.

3.2 Music Transcription and Note Isolation

In the first part of our evaluation, we compute the accuracy of the convolutional
NMF as a function of the patch size M for different configurations using the
F -measure. The perfect or reference transcription is computed from the score.
For each note, we obtain a waveform signal from the respective MIDI track
using the Kontakt 5 sampler. For all notes, we compute the time-pitch power
spectra. We compare the powers with a threshold of −60 dB, and so we obtain a
binary mask for the entire excerpt. The same thresholding procedure is applied
to each note signal estimated according to (12). The two binary masks are then
compared against each other in terms of (13). Errors are manifested in missing
or superfluous positives that represent a mismatch between the signal and the
model. Figure 1 summarizes the results.

In the second part, we evaluate the quality of separated notes. For this, we use
the RMSD and the PSM. All note signals are normalized to 0 dBFS RMS before
computing the RMSD. In Fig. 2, the average over all isolated notes is shown.
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3.3 Interpretation of Results and Observations

Looking at Fig. 1, one can observe a slight improvement that is due to a greater
patch size in the case of the synthetic mix. For the realistic mix, the improve-
ment is minor. The greater patch size seems rather counterproductive when the
power is used as the nonnegative representation together with a lower frequency
resolution. It looks like the magnitude spectra yield a better accuracy for both
the mixtures. It is also evident that a higher frequency resolution improves the
transcription. The fact that some curves are not monotonically increasing might
be due to random initializations in the NMFlib.

Figure 2 confirms once more that a significantly better result can be expected
if the dictionary fits the mixture. In regard to the RMSD, a gain of 3 dB can
be stated. Here again, a higher frequency resolution has a stronger impact on
the result than a larger patch. When listening to the note samples, we would
further observe that for low-pitched notes a 2048-point STFT is insufficient
to discriminate neighboring partials. For high-pitched notes, this issue is less
critical. For the synthetic mix, the perceptual similarity between notes is higher
in the case of magnitude spectra. Yet for the realistic mixture, the power spectral
representation gives comparable if not better results.

Even though a performance improvement with respect to the F -measure and
also the PSM is undeniable between 1 and 4 bases in particular, the PA-curves
indicate that it comes at the expense of an almost M times higher effort. For a
patch size greater than 4, the improvement looks negligible in most cases. Plus,
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(b) Realistic mixture
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Fig. 1. F -measure values versus performance advantage of the convolutional NMF for
music transcription
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(a) Synthetic mixture
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(b) Realistic mixture
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Fig. 2. RMSD and PSM values versus performance advantage of the convolutional
NMF for note isolation

irrespective of the chosen test case and measure, PA ≈ − log M , i.e. negative
(disadvantageous) for all M > 1. And what is more, the improvement is scarcely
audible. Another negative side effect of the convolution worth noting is that the
attacks of low-pitched notes are smoothed out.
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4 Conclusion

We conclude that because of the large pitch range of the piano, the STFT size
should be no smaller than 4096 at a sampling rate of 44.1 kHz to separate low-
pitched notes. As for the spectral representation, in most test cases the magni-
tude spectrum is more performant than the power spectrum. At this point, we
do not have an explanation for this enigma that questions the validity of the
Gaussian-additive mixture model. Finally, the study shows that is it senseful to
favor a single-basis NMF over a computationally intensive convolutional NMF
in musical applications, especially if the runtime plays an important role. No
significant sound quality loss was established in our experiments.
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