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Abstract. Identification and extraction of singing voice from within musical
mixtures is a key challenge in source separation and machine audition. Recently,
deep neural networks (DNN) have been used to estimate ‘ideal’ binary masks
for carefully controlled cocktail party speech separation problems. However, it
is not yet known whether these methods are capable of generalizing to the
discrimination of voice and non-voice in the context of musical mixtures. Here,
we trained a convolutional DNN (of around a billion parameters) to provide
probabilistic estimates of the ideal binary mask for separation of vocal sounds
from real-world musical mixtures. We contrast our DNN results with more
traditional linear methods. Our approach may be useful for automatic removal of
vocal sounds from musical mixtures for ‘karaoke’ type applications.
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1 Introduction

Much work in audio source separation has been inspired by the ability of human
listeners to maintain separate auditory neural and perceptual representations of com-
peting speech in ‘cocktail party’ listening scenarios [1–3]. A common engineering
approach is to decompose a mixed audio signal, comprising two or more competing
speech signals, into a spectrogram in order to assign each time-frequency element to the
respective sources [4–7]. Hence, this form of source separation may be interpreted as a
classification problem.

A benchmark for this approach is known as the ‘ideal binary mask’ and represents a
performance ceiling on the approach by providing a fully-informed separation based on
the spectrograms for each of the component source signals. Using the source spec-
trograms, each time-frequency element of the mixture spectrogram may be attributed to
the source with the largest magnitude in the respective source spectrogram. This ideal
binary mask may then be used to establish reference separation performance. In a
recent approach to binary-mask based separation, the ideal binary mask was used to
train a deep neural network (DNN) to directly estimate binary masks for new mixtures
[7]. However, this approach was limited to a single context of two known speakers and
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a sample rate of only 4 kHz. Therefore, it is not yet known whether the approach is
capable of generalizing to less well controlled scenarios featuring unknown voices and
unknown background sounds. In particular, it is not known whether such a DNN
architecture is capable of generalizing to the more demanding task of extracting
unknown vocal sounds from within unknown music [8–10].

In this paper, we employed a diverse collection of real-world musical multi-track
data produced and labelled (on a song-by-song basis) by music producers. We used 63
typical ‘pop’ songs in total, each featuring vocals of various kinds. For each multi-track
song/mix, comprising a set of component ‘stems’ (vocals, bass, guitars, drums, etc.),
we pooled audio labeled as ‘vocal’ separately to all other audio (i.e., the accompanying
instruments). We then obtained arbitrary mixtures for each song, simulating the process
of mixing to produce ‘mixes’ for each song. Using the first 50 songs as training data,
we trained a convolutional DNN to predict the ideal binary masks for separating the
respective vocal and non-vocal signals for each song. For reference, we also trained an
equivalent linear method (convolutional non-negative matrix factorization - NMF) of
similar scale. We then tested the respective models on mixes of new songs featuring
different musical arrangements, different singing and different production. From both
models we obtained probabilistic estimates of the ideal binary mask and analyzed the
resulting separation quality using objective source separation quality metrics. These
results demonstrate that a convolutional DNN approach is capable of generalizing
voice separation, learned in a musical context, to new musical contexts. We also
illustrate the capability of the probabilistic convolutional approach [7] to be optimized
for different priorities of separation quality according to the statistical interpretation
employed. In particular, we highlight the differences in performance for the two
respective architectures in the context of the trade-off between artefacts and separation.

2 Method

We consider a typical simulated ensemble musical performance scenario featuring a
variety of musical contexts and a variety of vocal performances. In each context, which
we refer to as ‘a song’, there are a multitude of musical accompaniment signals and at
least one (often more) vocal signals. The various signals are mixed together (arbitrarily)
and the resulting mixture is refered to as ‘a mix’. The engineering problem is to auto-
matically separate all vocal signals from the concurrent accompaniment signals. We used
63 fully produced songs, taken from the MedleyDB database [11]. The average duration
of the songs was 3.7 min (standard deviation (STD): ±2.7 min). The average number of
accompanying sources (stems) was 7.2 (STD: ±6.6 sources) and the average number of
vocal sources was 1.8 (STD: ±0.8 sources).

For each song, the source signals were classified as either vocal or non-vocal
(according to the labels assigned by the music producers). Vocal sounds included both
male and female singing voice and spoken voice (‘rap’). Non-vocal sounds included
accompanying instruments (drums, bass, guitars, piano, etc.). Source sounds were
studio recorded and featured relatively little interference from other sources. All source
sounds were then peak normalized before being linearly summed into either a vocal
mixture or a non-vocal mixture respectively. The two separate (vocal/non-vocal)
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mixtures were then peak normalized and linearly summed to provide a complete
mixture (i.e., a ‘final production mix’). This provided for a mixture that resembled a
mix that might be produced by a human mixing engineer [12]. All sources and mixtures
were monaural (i.e., we did not employ any stereo processing).

All signals were sampled at a rate of 44.1 kHz. The respective source
(vocal/non-vocal) and mixture signals were transformed into spectrograms using the
short-time Fourier transform (STFT) with window size of 2048 samples, overlap
interval of 512 samples and a Hanning window. This provided spectrograms with 1025
frequency bins. The phase component of each spectrogram was removed and retained
for later use in inversion. From the source spectrograms a binary mask was computed
where each element of the mask was determined by comparing the magnitudes of the
corresponding elements of the source (vocal/non-vocal) spectrograms and assigning the
mask a ‘1’ when the vocal spectrogram had greater magnitude and ‘0’ otherwise.

The first 50 songs (taken in arbitrary order) were used as training data and the final
13 songs were used as test data. The magnitude-only mixture spectrograms computed
from the first 50 songs and the respective ideal binary masks were used as training data.
Note, phase was not used in training the model.

For the training data, the mixture spectrogram and the corresponding source
spectrograms were cut up into corresponding windows of 20 samples (in time). The
windows shifted at intervals of 60 samples (i.e., there was no overlap). Thus, for every
20-sample window, for training the models there was a mixture spectrogram matrix of
size 1025 × 20 (frequency bins x time) samples and an ideal binary mask matrix of the
same size. From the 50 songs designated as training data, this gave approximately
15,000 training examples. For the testing stage, the spectrograms for the remaining 13
songs were cut up with overlap intervals of 1 sample (which would ultimately be
applied in an overlapping convolutional output stage). Prior to windowing, all spec-
trogram data was normalized to unit scale.

Deep Neural Network. We used a feed-forward DNN of size 20500 ×
20500 × 20500 units (1025 × 20 = 20500). Each spectrogram window of size 1025 × 20
was unpacked into a vector of length 20500. The DNNwas configured such that the input
layer was the mixture spectrogram (20500 samples). The DNN was trained to synthesize
the ideal binary mask at its output layer. The DNN employed the biased-sigmoid acti-
vation function [13] throughout with zero bias for the output layer. The DNNwas trained
using 100 full iterations of stochastic gradient descent (SGD). Each iteration of SGD
featured a full sweep of the training data. Dropout was not used in training. After training,
the model was used as a feed-forward probabilistic device.

Probabilistic Binary Mask. In the testing stage, there was an overlap interval of 1
sample. This means that the test data described the mixture spectrogram in terms of a
sliding window and the output of the model described predictions of the ideal binary
mask in the same sliding window format. The output layer of the DNN was sigmoidal
and hence we may interpret these predictions in terms of the logistic function.
Therefore, because of the sliding window, this procedure resulted in a distribution (size
20) of predictions for each time-frequency element of the mixture spectrogram [7]. We
chose to summarize this distribution by taking the mean and we evaluate the result in
terms of an empirical confidence estimate, separately for each source, as follows:
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For each time-frequency element, of each source, we computed the mean prediction
and applied a confidence threshold (α);

MV
t;f ¼

1 for 1
T

PT
i¼0 Stþi;f [ a

0 for 1
T

PT
i¼0 Stþi;f � a

(

ð1Þ

where MV refers to the binary mask for the vocal source, T refers to the window size
(20), t is the time index, i is the window index and f is the frequency (bin) index into the
estimated mask (S). The corresponding (but independent) binary mask for the
non-vocal source (MNV) is computed as follows;

MNV
t;f ¼
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T
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Thus, by adjustment of α, masks at different levels of confidence could be con-
structed for both sources.

Non-negative Matrix Factorization. For comparison to the DNN approach, an equiv-
alent non-negative matrix factorization (NMF) based approach was implemented using
the same training and test data (as described above). We used the same unpacking
strategy, which has been tested before for NMF-based separation of speech and music
[14]. The spectrograms of the training data were sampled and unpacked analogously to
the DNN approach, resulting in a large (220500 × 15000) matrix that was then
decomposed using the traditional multiplicative updates algorithm with KL divergence
[15]. This means that for this training matrix V, V = WH, where we set the number of
basis vectors (columns of W) and the respective activations (rows of H) to 1500. We
performed this training stage for both vocal and non-vocal mixtures, and kept the two
basis vectors matrices Wv and Wnv. For the testing stage, we concatenated both matrices
and initialized a corresponding Hu matrix randomly, so that for each unpacked spec-
trogram, Vu, of the set of test songs, Vu = [Wv Wnv] Hu. We then ran the same
multiplicative updates algorithm but keeping the composite Wu matrix fixed [14], and
updating Hu. The test spectrogram was then re-composed for either vocal (Vv = WvHv)
or non-vocal (Vnv = WnvHnv) vectors, and used to define a soft mask via the
element-wise division Sv = Vv/(Vv + Vnv). The matrix was then packed back to the
original spectrogram size by averaging the consecutive frames of the soft mask. This
allowed us to define an equivalent α parameter (as used in the DNN approach) so that
the binary mask Bv = 1 when Sv > α, 0 when Sv <= α and analogously for Bnv and Snv.

Finally, the respective masks were resolved by multiplication with the original
(complex) mixture spectrogram and the resulting masked spectrograms were inverted
with a standard overlap-and-add procedure. Separation quality (for the test data) was
measured using the BSS-EVAL toolbox [16] and is quantified in terms of
signal-to-distortion ratio (SDR), signal-to-artefact ratio (SAR) and signal-
to-interference ratio (SIR). Separation quality was assessed at different confidence
levels by setting different values of α.
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3 Results

Figure 1 plots spectrograms illustrating the stages of mixture and separation for a brief
excerpt (*1.5 s) from a randomly chosen test song separated using the DNN (at
α = 0.5). The spectrograms for the source vocal and non-vocal signals are shown at the
top. The middle panel plots the mixture spectrogram, illustrating the difficulty of the
problem (even for an ideal binary mask). At the bottom of Fig. 1 are plotted spec-
trograms representing the separated audio for the vocal and non-vocal signals
respectively (DNN, α = 0.5).

The various objective source separation quality metrics (SDR/SIR/SAR) were
computed for the separated sources, as estimated with each model, as a function of α.
The same measures were also computed for the ideal binary mask. Figure 2 plots a
summary of the respective measures. For each measure, and for each separation context
(DNN/ideal binary mask/NMF), Fig. 2a plots the mean across-song performance
computed by first averaging the measures across vocal/non-vocal sources. Figure 2b

Fig. 1. Separation of vocal sounds from musical mixtures using a probabilistic convolu-
tional deep neural network. Spectrograms for 1.5 s excerpt from test song; Upper: original
sources, middle: monaural mixture, lower: separated audio (DNN, α = 0.5). Note: frequency axis
represents the range 0–22 kHz on a logarithmic axis.
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plots the across-song average for the vocal sources only and Fig. 2c plots the same for
the non-vocal (accompaniment) sources only. Shaded areas and error bars represent
95 % confidence intervals. The results for the DNN and NMF (as a function of α)
feature similar functions illustrating the trade-off between the various parameters as
statistical confidence is adjusted. Both models provide similar intersection points and
there is some evidence of performance advantage for the DNN. However, the slopes
and shapes of the functions are qualitatively different. In particular, the DNN functions
for SAR and SIR more closely resemble ‘ideal’ sigmoid functions. In this context, SAR
and SIR may be interpreted as energetic equivalents of positive hit rate (SIR) and false
positive rate (SAR). Hence, if these slopes are interpreted as being analogous to
cumulative density functions (indexed using α), then the DNN results might be
interpreted as demonstrating a wider probability function that is closer to normally
distributed. However, although these plots provide insight into the mapping of prob-
ability to performance, they do not provide a very interpretable comparison of the
models. In particular, the plots do not allow us to interpret performance in like terms
with respect to the critical trade-off between artefacts and separation.

In order to provide a like-for-like comparison, Fig. 3a plots mean SAR as a function
of mean SIR for both models (taken from Fig. 2a) for the useable range of

Fig. 2. Separation quality as a function of α: DNN versus NMF versus ideal binary mask.
Left to right are plotted SIR, SDR and SAR for the DNN, ideal binary mask and NMF
respectively. (a) plots across-source, across-song mean, (b) plots across-song mean for the vocal
sources, (c) plots the same for the non-vocal sources only. Shaded areas and error bars represent
95 % confidence intervals.
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0.1 < α < 0.9. Figure 3b plots the same for the functions of Figs. 2b and 3c plots the
same for the functions of Fig. 2c. Overall (Fig. 3a), the DNN provides *3 dB better
SAR performance for a given SIR index. This advantage is mostly explained by
the *5 dB advantage for the vocal sources (Fig. 3b) and only a small advantage is
evident for the non-vocal signals (Fig. 3c).

4 Discussion and Conclusion

We have demonstrated that a convolutional deep neural network is capable of sepa-
rating vocal sounds from within typical musical mixtures. Our convolutional DNN is of
nearly a billion parameters and was trained with relatively little data (and relatively few
iterations of SGD). We have contrasted this performance with a like-for-like (suitably
scaled) NMF approach, in the context of a trade-off between artefact and separation
quality, indexed via confidence in the statistical predictions made.

The main advantage of the DNN appears to be in its general learning of what
‘vocal’ sounds are (Fig. 3b). Since the NMF approach is limited to linear factorization,
we may at least partly attribute the advantage of the (nonlinear) DNN to abstract
learning via demodulation [13]. The DNN appears to have biased it’s learning towards
making good predictions via correct positive identification of the vocal sounds.

Both methods feature the largest known parameterizations for this particular
problem and, to some extent, both methods may be considered ‘deep’ [7, 13, 17]; both
featured demodulated (magnitude) spectrograms produced using STFT and re-synthesis
via inverse STFT. We also note that the relatively small amount of data employed in
training the DNN may have been offset by the fact that the spectrograms were sampled
using a Hanning window, hence minimizing aliasing/distortion in the training data that
may otherwise have resulted in over-fitting [18] (and see [19]).
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at doi:10.15126/surreydata.00807909.

Fig. 3. Trade-off: interference versus artefacts. DNN versus NMF. mean SAR as a function
of mean SIR [0.1 < α < 0.9] (a) overall mean (Fig. 2a), (b) vocals (Fig. 2b), (c) non-vocals
(Fig. 2c).
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