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Abstract. This paper studies the problem of Non-symmetric Joint
Diagonalization (NsJD) of matrices, namely, jointly diagonalizing a set
of complex matrices by one matrix multiplication from the left and one
multiplication with possibly another matrix from the right. In order to
avoid ambiguities in the solutions, these two matrices are restricted to
lie in the complex oblique manifold. We derive a necessary and sufficient
condition for the uniqueness of solutions, and characterize the Hessian of
global minimizers of the off-norm cost function, which is typically used to
measure joint diagonality. By exploiting existing results on Jacobi algo-
rithms, we develop a block-Jacobi method that guarantees local conver-
gence to a pair of joint diagonalizers at a quadratic rate. The performance
of the proposed algorithm is investigated by numerical experiments.

Keywords: Non-symmetric joint diagonalization of matrices · Complex
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1 Introduction

Joint Diagonalization (JD) of a set of matrices has attracted considerable atten-
tions in the areas of statistical signal processing and multivariate statistics. Its
applications include linear blind source separation (BSS), beamforming, and
direction of arrival (DoA) estimation, cf. [1]. Classic literature focuses on the
problem of symmetric joint diagonalization (SJD) of matrices. Namely, a set of
matrices are to be diagonalized via matrix congruence transforms, i.e. multipli-
cation from the left and the right with a matrix and its (Hermitian) transposed,
respectively.

In this work, we consider the problem of Non-symmetric Joint Diagonaliza-
tion (NsJD) of matrices, where the two matrices multiplied from the left and
the right are different. Such a general form has been studied in the scheme of
multiple-access multiple-input multiple-output (MIMO) wireless transmission,
cf. [2]. In the work of [3], NsJD approaches have demonstrated its application
in solving the problem of independent vector analysis. Moreover, the problem of
NsJD is closely related to the problem of the canonical polyadic decomposition
of tensors. We refer to [4,5] for further discussions on the latter subject.
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One contribution of this work is the development of a block Jacobi method
for solving the problem of NsJD at a super-linear rate of convergence. Jacobi-
type methods have a long history in solving problems of matrix joint diagonal-
ization. Early work in [6] employs a Jacobi algorithm for solving the unitary
joint diagonalization problem based on the common off-norm cost function. In
the non-unitary setting, Jacobi-type methods have been developed for both the
log-likelihood formulation, cf. [7], and the common off-norm case, cf. [8,9]. The
current work provides an extension of [10], which only considers the problem in
the real symmetric setting.

2 Uniqueness of Non-symmetric JD

In this work, we denote by (·)� the matrix transpose, (·)H the Hermitian trans-
pose, (·) the complex conjugate of entries of a matrix, and by Gl(m) the set of
all m × m invertible complex matrices. Let {Ci}n

i=1 be a set of m×m complex
matrices, constructed by

Ci = ALΩiA
H
R, i = 1, . . . n, (1)

where AL, AR ∈ Gl(m) and Ωi = diag
(
ωi1, . . . , ωim

) ∈ C
m×m with Ωi �= 0. It is

worth noticing that there is no relation between the matrices AL and AR. The
task of NsJD is to find a pair of matrices XL,XR ∈ Gl(m) such that the set of
matrices {

XH
LCiXR

∣
∣ i = 1, . . . , n

}
(2)

are jointly diagonalized. In order to investigate properties of any algorithm that
aims at finding such a joint diagonalizer, it is fundamental to understand under
what conditions there exists a unique solution. In the remainder of this section,
we therefore elaborate the uniqueness properties of the non-symmetric joint diag-
onalization problem (2).

As it is known from the SJD case, there is also an inherent permutation and
scaling ambiguity here. Let DL,DR ∈ Gl(m) be diagonal and P ∈ Gl(m) be a
permutation matrix. If X∗

L ∈ Gl(m) and X∗
R ∈ Gl(m) are the joint diagonalizers

of problem (2), then so is the pair of (X∗
LDLP,X∗

RDRP ). In other words, the
joint diagonalizers can only be identified up to individual scaling and a joint
permutation. We define the set of two jointly column-wise permuted diagonal
(m × m)-matrices by

G(m) :=
{
(D1P,D2P )

∣
∣D1,D2 ∈ Gl(m) are diagonal and

P ∈ Gl(m) is a permutation matrix
}
. (3)

As the set G(m) admits a group structure, we can define an equivalence class on
Gl(m) × Gl(m) as follows.

Definition 1 (Essential Equivalence). Let (XL,XR) ∈ Gl(m)×Gl(m), then
(XL,XR) is said to be essentially equivalent to (YL, YR) ∈ Gl(m) × Gl(m), and
vice versa, if there exists (EL, ER) ∈ G(m) such that

XL = YLEL and XR = YRER. (4)
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Moreover, we say that the solution of problem (2) is essentially unique, if it
admits a unique solution on the set of equivalence classes.

Due to the fact that

XH
LCiXR = (XH

LAL)Ωi(AH
RXR), (5)

we assume without loss of generality that the Ci = Ωi, i = 1, . . . , n, are already
diagonal. In other words, we investigate the question of under what conditions
the set G(m) admits the only solutions to the joint diagonalization problem (2),
when the Ci’s are already diagonal.

In order to characterize the uniqueness conditions, we need to define a mea-
sure of collinearity for diagonal matrices. Recall Ωi = diag(ωi1, . . . , ωim) ∈
C

m×m for i = 1, . . . , n. For a fixed diagonal position k, we denote by zk :=
[ω1k, . . . , ωnk]� ∈ C

n the vector consisting of the k-th diagonal element of
each matrix, respectively. Then, the collinearity measure for the set of Ωi’s is
defined by

ρ(Ω1, . . . , Ωn) := max
1≤k<l≤n

|c(zk, zl)|, (6)

where c(zk, zl) is the cosine of the complex angle between two vectors v, w ∈ C
n,

computed as

c(v, w) :=

{
vHw

‖v‖‖w‖ if v �= 0 ∧ w �= 0,

1 otherwise.
(7)

Here, ‖v‖ denotes the Euclidean norm of a vector v. Note, that 0 ≤ ρ ≤ 1 and
that ρ = 1 if and only if there exists a complex scalar ω ∈ C and a pair zk, zl,
k �= l so that zk = ωzl. In other words, ρ = 1 if and only if there exist two
positions (k, k) and (l, l) such that the corresponding entries in the matrices Ωi

only differ by multiplication with a complex scalar ω. We adopt the methods for
uniqueness analysis of symmetric joint diagonalization cases, developed in [11],
to the NsJD setting.

Lemma 1. Let Ωi ∈ C
m×m, for i = 1, . . . , n, be diagonal, and let XL,XR ∈

Gl(m) so that XH
LΩiXR is diagonal as well. Then the pair (XL,XR) is essentially

unique if and only if ρ(Ω1, . . . , Ωn) < 1.

Proof. First, consider the case m = 2 and let

XL =
[
l1 l2
l3 l4

]
∈ Gl(2), and XR =

[
r1 r2
r3 r4

]
∈ Gl(2). (8)

Then XH
LΩiXR is diagonal for i = 1, . . . , n, if and only if

{
ωi1l1r2 + ωi2l3r4 = 0
ωi1l2r1 + ωi2l4r3 = 0

(9)

for i = 1, . . . , n. The corresponding system of linear equations reads as
[
ω11 ω21 . . . ωn1

ω12 ω22 . . . ωn2

]H [
l1r2 l2r1
l3r4 l4r3

]
= 0, (10)
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which only has a unique trivial solution if and only if the coefficient matrix in
ω’s has rank 2, which in turn is equivalent to ρ(Ω1, . . . , Ωn) < 1. Specifically,
the trivial solution, i.e.

l1r2 = l2r1 = l3r4 = l4r3 = 0, (11)

together with the invertibility of XL and XR yields that either

l1 = r1 = l4 = r4 = 0, or l2 = r2 = l3 = r3 = 0. (12)

Therefore, one can conclude that (XL,XR) ∈ G(2). For the case m > 2, if ρ = 1
then there exists a pair (k, l) such that |c(zk, zl)| = 1 and the same argument as
above shows that ρ = 1 implies the non-uniqueness of the joint diagonalizer.

For the reverse direction of the statement, we assume that the joint diagonal-
izer is not in G(m). We further assume that one of the Ωi’s, say Ω1, is invertible.
Then

XH
LΩiXR(XH

LΩ1XR)−1 = XH
LΩiΩ

−1
1 (XH

L)−1, (13)

for i = 1, . . . , n, gives the simultaneous eigendecomposition of the diagonal matri-
ces ΩiΩ

−1
1 . Since we assume (XL,XR) /∈ G(m), this eigendecomposition is not

unique and thus each matrix ΩiΩ
−1
1 must have at least two identical eigenvalues

and these eigenvalues must be located at the same positions (k, k) and (l, l) for
all the matrices ΩiΩ

−1
1 . In other words, there exists a pair (k, l) with k �= l such

that
ωik

ω1k
=

ωil

ω1l
, (14)

which is equivalent to |c(zk, zl)| = 1 and hence ρ(Ω1, . . . , Ωn) = 1. If all the Ωi’s
are singular, we distinguish between two cases. Firstly, assume that there is a
position on the diagonals, say k, where all ωik = 0. Then |c(zk, zl)| = 1 holds true
for any k �= l and thus ρ = 1. Secondly, if there is no common position where
all the Ωi’s have a zero entry, there exists an invertible linear combination,
say Ω0, which can also be diagonalized via the same transformations. Then by
considering a new set {Ωi}n

i=0, the same argument as from (13) to (14) for the
invertible case applies by replacing Ω1 with Ω0. �

3 Analysis of the Joint Diagonality Measure

To deal with the scaling ambiguity, we restrict the search space for the diago-
nalizing matrices to the quotient space

Op(m) = Gl(m)/{D ∈ Gl(m) | D is diagonal.}, (15)

cf. [12] for further details. As representatives for one equivalent class, we choose
elements from the set of complex oblique matrices, i.e.

OB(m) :=
{
X ∈ C

m×m|ddiag(XHX) = Im, rk X = m
}
, (16)
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where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and Im is the m×m identity matrix. As a measure for the joint diagonality,
we choose

f : Op(m) × Op(m) → R, (XL,XR) �→ 1
4

n∑

i=1

∥
∥
∥ off(XH

LCiXR)
∥
∥
∥
2

F
, (17)

where off(Z) = Z − ddiag(Z) and ‖ · ‖F is the Frobenius norm of matrices.
The convergence rate of the Jacobi method depends on a non-degenerated

Hessian form of the cost function at the optimal solution. In what follows, we
therefore characterize the critical points of (17) and specify their Hessian form.
Let us denote the set of all m×m matrices with zero diagonal entries by

off(m) =
{
Z ∈ C

m×m|zii = 0, for i = 1, . . . ,m
}
. (18)

Then, for any X ∈ Op(m), the following map

μX : off(m)→Op(m), Z �→ X(Im +Z) diag
{

1
‖X(e1+z1)‖ , . . . , 1

‖X(em+zm)‖
}

, (19)

where Z = [z1, . . . , zm] ∈ off(m) and ei is the i-th standard basis vector, is a
local and smooth parameterization around X. Let X := (XL,XR) ∈ Op2(m) :=
Op(m) × Op(m) and denote by H := (HL,HR) ∈ TX Op2(m) the tangent vector
at X . The first derivative of f evaluated at X in tangent direction H yields

Df(X )(H)=
n∑

i=1

tr
(

off
(
XH

LCiXR

)
XH

RCH
i HL + off

(
HH

LCiXR

)
XH

RCH
i XL+

off
(
XH

LCiXR

)
HH

RCH
i XL + off

(
XH

LCiHR

)
XH

RCH
i XL

)
.

(20)

Since any joint diagonalizer X ∗ is a global minimum, it satisfies D f(X ∗)H = 0.
We use μX := (μXL

, μXR
) as the local parameterization of Op2(m) and compute

the Hessian form Hf (X ∗) : TX ∗Op2(m) × TX ∗Op2(m) → R. Let X ∗ = (X∗
L,X∗

R)
be a pair of joint diagonalizers. Without loss of generality assume that X∗H

L AL is
diagonal and denoted by ΛL := diag(λL1, . . . , λLm). Similarly, we denote ΛR :=
diag(λR1, . . . , λRm) = AH

RX∗
R. A tedious but direct calculation leads to

Hf (X ∗)(H,H)= d2

d t2 (f ◦μX ∗)(tΘ, tΞ)
∣
∣
∣
t=0

=
m∑

j �=k

[
θjk

ξkj

]�
⎡

⎣

n∑

i=1
|δij |2

n∑

i=1
δijδik

n∑

i=1
δijδik

n∑

i=1
|δik|2

⎤

⎦

︸ ︷︷ ︸
=:Bjk

[
θjk

ξkj

]
, (21)

where δij is the j-th diagonal entry of the diagonal matrix Δi := X∗
LCiX

∗
R =

ΛLΩiΛR.
Clearly, the Hessian of f at X ∗ is at least positive semi-definite, and diagonal

in terms of 2 × 2 blocks, with respect to the standard basis of the parameter
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space off(m) × off(m). Then, the definiteness of the Hessian simply depends on
the determinant of Bjk’s, which is computed by

det(Bjk) =
( n∑

i=1

|δij |2
)( n∑

i=1

|δik|2
)

−
∣
∣
∣
∣

n∑

i=1

δijδik

∣
∣
∣
∣

2

= |λLj |2 |λRj |2 |λLk|2 |λRk|2
(( n∑

i=1

|ωij |2
)( n∑

i=1

|ωik|2
)

−
∣
∣
∣
∣

n∑

i=1

ωijωik

∣
∣
∣
∣

2
)

. (22)

By the Cauchy-Schwarz inequality, det(Bjk) is non-negative, and is equal to zero
if and only if there is a pair of positions (j, k), so that zj ∈ R

n and zk are linearly
dependent, i.e. ρ(Ω1, . . . , Ωn) = 1. Thus, we conclude.

Lemma 2. Let the NsJD problem (2) have a unique joint diagonalizer. Then
the Hessian of the off-norm function (17) at the joint diagonalizer is positive
definite.

4 Block-Jacobi for Non-symmetric Joint Diagonalization

In this section, we develop a block Jacobi algorithm to minimize the cost function
(17). Firstly, let us define the complex one dimensional subspace

Vij :=
{
Z = (zkl) ∈ C

m×m|zkl = 0 for (k, l) �= (i, j)
}
. (23)

It is clear that ⊕i�=j(Vij × Vji) = off(m) × off(m). We then define

Vij(X ) := { d
d t μX (t · Z)|t=0 |Z ∈ (Vij × Vji)}, (24)

yielding a vector space decomposition of the tangent space TX Op2(m).
The block Jacobi-type method iteratively employs the search along the sub-

spaces Vij(X) in a cyclic manner. More precisely, let (Θjk, Θkj) ∈ Vij × Vji and
denote θ = [θjk θkj ]� ∈ C

2. For any point X ∈ Op2(m), we construct a family
of maps

{
ν
(X )
jk

}m

j �=k
by

ν
(X )
jk : C2 → Op2(m), θ �→ μX (Θjk, Θkj). (25)

The algorithm is presented in Algorithm 1. It is readily seen with (21) that
the Vij are orthogonal with respect to Hf (X ∗). Therefore, the following result
guarantees the super linear convergence rate of the block Jacobi method to an
exact joint diagonalizer in case that this diagonalizer is essentially unique.

Theorem 1 ([13]). Let M be an n-dimensional manifold and let x∗ be a local
minimum of the smooth cost function f : M → R with nondegenerate Hessian
Hf (x∗). Let μx be a family of local parameterizations of M and let ⊕iVi be a
decomposition of Rn. If the subspaces Vi := T0μx∗(Vi) ⊂ Tx∗M are orthogonal
with respect to Hf (x∗), then the Block-Jacobi method is locally quadratic conver-
gent to x∗.
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Algorithm 1. Jacobi Algorithm for Non-Symmetric Joint Diagonalization

Step 1: Given an initial guess X (0) = (X
(0)
L , X

(0)
R ) ∈ Op2(m) and set s = 0.

Step 2: Set s = s + 1 and let Xs = Xs−1.

For 1 ≤ j < k ≤ m, update

Xs ← ν
(Xs)
jk

(
θ∗),

with θ∗ = −Hϕ(0)−1∇ϕ(0). Here, H and ∇ denote the usual Hessian and the
gradient of the function

ϕ : C2 → R, θ �→ f ◦ ν
(Xs)
jk (θ)

Step 3: If ‖Xs − Xs−1‖ is small enough, stop
Otherwise, go to Step 2.
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Fig. 1. Convergence properties of the proposed block Jacobi algorithm.

For an experimantal evaluation of this result, we consider the task of jointly
diagonalizing a set of non-symmetric matrices {C̃i}n

i=1, constructed by

C̃i = ALΛiA
H
R + εEi, i = 1, . . . , n, (26)

where A ∈ C
m×m is a randomly picked matrix in OB(m), the modulus of diago-

nal entries of Λi are drawn from a uniform distribution on the interval (9, 11),
Ei ∈ C

m×m represents the additive noise, whose entries are generated from a
uniform distribution on the unit interval (−0.5, 0.5), and ε ∈ R is the noise level.
We set m = 5, n = 20, and run six tests in accordance with increasing noise, by
using ε = d × 10−2 where d = 0, . . . , 5. Each experiment was initialized with the
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same point, which is randomly drawn within an appropriate neighbourhood of
the true joint diagonalizer.

The convergence of algorithms is measured by the distance of the accumu-
lation point X ∗ := (X∗

L,X∗
R) to the current iterate X (k) := (X(k)

L ,X
(k)
R ), i.e.,

by ‖X
(k)
L − X∗

L‖F + ‖X
(k)
R − X∗

R‖F . According to Fig. 1, our proposed algorithm
converges locally quadratically fast to a pair of joint diagonalizers under the
NsJD setting, i.e., when ε = 0, whereas with an increasing level of noise, the
convergence rate slows down accordingly with a tendency of more gradual slopes.
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