
 123

LN
CS

 9
23

7

12th International Conference, LVA/ICA 2015
Liberec, Czech Republic, August 25–28, 2015
Proceedings

Latent Variable Analysis
and Signal Separation

Emmanuel Vincent
Arie Yeredor
Zbynek Koldovský
Petr Tichavský (Eds.)



Lecture Notes in Computer Science 9237

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Emmanuel Vincent • Arie Yeredor
Zbyněk Koldovský • Petr Tichavský (Eds.)

Latent Variable Analysis
and Signal Separation
12th International Conference, LVA/ICA 2015
Liberec, Czech Republic, August 25–28, 2015
Proceedings

123



Editors
Emmanuel Vincent
Inria
Villers-les-Nancy
France

Arie Yeredor
Tel Aviv University
Tel-Aviv
Israel

Zbyněk Koldovský
Technical University of Liberec
Liberec
Czech Republic

Petr Tichavský
The Czech Academy of Sciences
Prague
Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22481-7 ISBN 978-3-319-22482-4 (eBook)
DOI 10.1007/978-3-319-22482-4

Library of Congress Control Number: 2015945320

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

This volume collects the papers presented at the 12th International Conference on
Latent Variable Analysis and Signal Separation, LVA/ICA 2015. The conference was
held during August 25–28, 2015, and was hosted by the Technical University of
Liberec, Czech Republic, on the occasion of the 20th anniversary of the Faculty of
Mechatronics, Informatics, and Interdisciplinary Studies.

Since its debut in 1999 under the banner of Independent Component Analysis and
Blind Source Separation (ICA), the LVA conference series has attracted hundreds of
researchers and practitioners and it has continuously broadened its horizons. Today it
encompasses a host of additional forms and models of general mixtures of latent variables.
Theories and tools borrowing from the fields of signal processing, applied statistics,
machine learning, linear and multilinear algebra, numerical analysis and optimization, and
numerous application fields offer exciting interdisciplinary interactions.

From 81 submitted papers, 61 were accepted as oral (29 papers) and poster (32
papers) presentations. The conference program put forward five special topics:
tensor-based methods for blind signal separation; deep neural networks for supervised
speech separation/enhancement; joint analysis of multiple datasets, data fusion, and
related topics; advances in nonlinear blind source separation; and sparse and low-rank
modeling for acoustic signal processing. Regular topics included theory (dictionary and
manifold learning, optimization algorithms, performance analsysis, etc.); audio applica-
tions; and biomedical and other applications. A prize (sponsored by Conexant Systems)
was awarded to the best student paper in the field of audio signal processing, and the
contributions of the student nominees reflected the liveliness of this research topic.

The Organizing Committee was pleased to invite leading experts in these fields for
keynote lectures: Tülay Adali (University of Maryland, Baltimore County, USA), Rémi
Gribonval (Inria, France), and DeLiang Wang (Ohio State University, USA). Aware
of the growing interest in emerging, as well as in classic LVA-related topics among
novice and veteran researchers alike, the Organizing Committee decided to precede the
conference by a two-day Summer School on Latent Variable Analysis and Signal
Separation, with lectures given by Vicente Zarzoso (University of Nice Sophia An-
tipolis, France), Arie Yeredor (Tel Aviv University, Israel), Martin Haardt (Ilmenau
University of Technology, Germany), Ali Taylan Cemgil (Boğaziçi University, Tur-
key), Emmanuel Vincent (Inria, France), Emanuël Habets (International Audio Labo-
ratories, Germany), Mikkel N. Schmidt (Technical University of Denmark), and
Antoine Deleforge (University of Erlangen, Germany).

This year’s conference also provided a forum for the 5th Signal Separation Eval-
uation Campaign (SiSEC 2015). SiSEC 2015 successfully continued the series of
evaluation campaigns initiated at ICA 2007, in London. Compared with previous
campaigns, it featured two new datasets: full-length professionally produced music
recordings and asynchronous recordings of speech mixtures.



The success of LVA/ICA 2015 was the result of the hard work of many people,
whom we warmly thank here. First, we wish to thank the authors and the members
of the Program Committee, without whom this high-quality volume would not exist.
We also express our gratitude to the members of the International LVA Steering
Committee for their continued support to the conference, as well as to the SiSEC 2015
organizers and to the local organization committee.

June 2015 Emmanuel Vincent
Arie Yeredor

Zbyněk Koldovský
Petr Tichavský
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Abstract. Given an instantaneous mixture of some source signals, the
blind signal separation (BSS) problem consists of the identification of
both the mixing matrix and the original sources. By itself, it is a
non-unique matrix factorization problem, while unique solutions can be
obtained by imposing additional assumptions such as statistical inde-
pendence. By mapping the matrix data to a tensor and by using tensor
decompositions afterwards, uniqueness is ensured under certain condi-
tions. Tensor decompositions have been studied thoroughly in literature.
We discuss the matrix to tensor step and present tensorization as an
important concept on itself, illustrated by a number of stochastic and
deterministic tensorization techniques.

Keywords: Blind source separation · Independent component analysis ·
Tensorization · Canonical polyadic decomposition · Block term decom-
position · Higher-order tensor · Multilinear algebra

1 Blind Signal Separation and Matrix Data

The separation of sources from observed data is a well-known problem in signal
processing, known as blind signal separation (BSS). The linear BSS problem
consists of the decomposition of an observed data matrix X ∈ K

K×N as

X = MS =
R∑

r=1

mr · str , (1)

in which M ∈ K
K×R is the mixing matrix and S ∈ K

R×N is the observed source
matrix. The vector mr is the rth column of M and str is the rth row of S.
For each signal N samples are available. The set K stands for either R or C.
Furthermore, additive noise can be represented by a matrix N ∈ K

K×N .
Equation (1) is a decomposition of the data matrix X in rank-1 terms, where

each term corresponds to the contribution of one particular source. Except in
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-22482-4 1
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the case of a single source with R = 1, it is well-known that such a decompo-
sition is not unique. Uniqueness appears by imposing additional constraints on
the matrices. Acclaimed matrix decompositions with well-understood unique-
ness conditions are the singular value decomposition (imposing column-wise
orthogonality) and the QR and RQ factorizations (imposing triangularity and
column-wise orthonormality). However, in the light of BSS, the constraints from
these well-known decompositions are both too restrictive and unnatural. For
instance, it is uncommon that the mixing matrix is known to be triangular, as it
is uncommon that both mixing vectors and source vectors are mutually orthog-
onal. We are facing here what is called the factor indeterminacy problem in
Factor Analysis (FA) [31]. One needs to resort to other assumptions and matrix
decompositions, specifically tailored to the BSS problem.

One of the more realistic constraints for BSS is nonnegativity: nonnegative
matrix factorization (NMF) is a decomposition in which the entries of the factor
matrices are nonnegative [9,29,38,41]. Nonnegativity is natural for concentra-
tions, number of occurrences, pixel intensities, frequencies, etc. Sparse compo-
nent analysis (SCA) is also gaining in popularity [6,47]. In SCA, the source
matrix S is assumed to be sparse. Note that nonnegativity in itself does not
ensure uniqueness; often, one uses additional sparsity [23,25,28,32]. For dense
data sets, SCA is mostly applied after a sparsifying transformation such as the
wavelet transformation [17].

2 Blind Signal Separation and Tensor Data

A tensor is a higher-order generalization of vectors (boldface lowercase letters)
and matrices (boldface uppercase letters). It is denoted by a calligraphic letter,
e.g., X , and is a multiway array of numerical values xi1i2···iN = X (i1, i2, . . . , iN ) =
(X )i1,i2,...,iN where X ∈ K

I1×I2×···×IN . By fixing all but a single index, one obtains
a mode-n vector, e.g., a = X (i1, . . . , in−1, :, in+1, . . . , iN ) ∈ K

In . A diagonal ten-
sor only has nonzeros on the entries of which all the indices are equal.

The third-order counterpart of Eq. (1) is a decomposition of a tensor X ∈
K

I×J×K in R rank-1 terms with A ∈ K
I×R, B ∈ K

J×R and C ∈ K
K×R:

X =
∑R

r=1
ar ⊗ br ⊗ cr = I ·1 A ·2 B ·3 C, (2)

in which ⊗ denotes the tensor (outer) product, ·i denotes the tensor-matrix
product in the ith mode and I ∈ K

R×R×R denotes a diagonal tensor with
ones on the diagonal and zeros elsewhere. For all index values, we have that
xijk =

∑R
r=1 airbjrckr. Equation (2) gives a polyadic decomposition (PD) of X .

If R is minimal, it is defined as the rank of X and the decomposition is called
a canonical polyadic decomposition (CPD). It has been proven that the CPD
is unique under relatively mild conditions, typically expressing that the rank-1
terms are “sufficiently different” while not necessitating additional constraints
such as nonnegativity [21,22,37].

Recently, the block term decomposition (BTD) has been introduced [13,16].
Instead of decomposing a tensor in rank-1 terms, it is written as a linear combi-
nation of tensors with low multilinear rank. The multilinear rank of a tensor X is
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an N -tuple (R1, R2, . . . , RN ) with Rn the mode-n rank, defined as the dimension
of the subspace spanned by the mode-n vectors of X . A special instance of the
BTD is the decomposition of a tensor X ∈ K

I×J×K in rank-(Lr, Lr, 1) terms for
which uniqueness under mild conditions has been proven [13,14]. We then have

X =
∑R

r=1
Er ⊗ cr =

∑R

r=1
(ArBt

r) ⊗ cr, (3)

with matrices Er = ArBt
r ∈ K

I×J of rank Lr. The matrices Ar ∈ K
I×Lr and

Br ∈ K
J×Lr have full column rank, and we have nonzero cr ∈ K

K for all r.
Tensor methods for BSS receive their success from the uniqueness of tensor

decompositions such as the CPD and the BTD. These are becoming standard
tools for BSS and have been applied in many domains such as telecommunication,
array processing and chemometrics [8,15,35,36,45].

3 Tensorization of Matrix Data

Tensor techniques require the availability of tensor data. Matrix data obviously
remain more common than tensor data. Nevertheless, the techniques may still
be used for BSS after the data matrix is mapped to a tensor. The mapping
to the tensor domain translates the assumptions made for BSS, with the subse-
quent tensor decompositions having the possibility of ensuring uniqueness. While
the uniqueness and algorithms of tensor decompositions have received a lot of
attention lately, we discuss different tensorization techniques. A clear overview
is necessary to benefit from the advantages of tensor techniques for matrix data.

What is essential about the mappings, is that linear transformations are
used that map the sources to matrices or tensors that (approximately) have
low (multilinear) rank under a certain working hypothesis. The (multi)linearity
of the transformation is necessary to retain a linear mixture of the sources and
avoid the introduction of inseparable terms, while the low-rank structure enables
us to apply the tensor decompositions of the previous section.

In a first subsection, we discuss a stochastic tensorization technique using
higher-order statistics. The second subsection describes the use of parameter
variation for tensorization, illustrated with second-order statistics. Three dif-
ferent deterministic techniques relying on Hankelization, Löwnerization and
segmentation are discussed in Sects. 3.3, 3.4 and 3.5, respectively. Note that
the uses of higher-order statistics and second-order statistics for BSS are well
known, both applying tensorization in a different way. Other tensorization
techniques are known too but not described here, see e.g. [1,33]. For each ten-
sorization technique described, the multilinearity, working hypothesis, applied
tensor decomposition and higher-order representation of each source are
reported. Uniqueness results, which we omit because of brevity, can be found
in more detailed literature.

3.1 Higher-Order Statistics

Higher-order statistics (HOS) are fundamental for independent component
analysis (ICA), in which one separates the observations in mutually statistically
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independent sources. This technique for BSS is highly renowned and has been
applied in a diversity of domains [7,10,11,39,40]. Within the different types
of higher-order statistics, especially cumulants are compelling. They are able to
separate non-Gaussian, mutually independent sources. For simplicity, we assume
stationary, identically distributed signals. Consider a zero-mean stochastic signal
vector u(t) ∈ K

K . We give the explicit definition of the fourth-order cumulant:
(
C(4)
u

)

i1i2i3i4
� E

{
ui1u

∗
i2u

∗
i3ui4

} − E
{
ui1u

∗
i2

}
E

{
u∗
i3ui4

}

− E
{
ui1u

∗
i3

}
E

{
u∗
i2ui4

} − E {ui1ui4} E
{
u∗
i2u

∗
i3

}
, (4)

with C(4)
u ∈ K

K×K×K×K . Cumulants have very interesting properties, enabling
the use of tensor decompositions for BSS [40]. First of all, the expression in
Eq. (4) satisfies multilinearity (it gives a quadrilinear mapping) as requested
from the introduction of the section: if x(t) = Ms(t) + n(t) then in the fourth-
order case we have:

C(4)
x = C(4)

s ·1 M ·2 M∗ ·3 M∗ ·4 M + C(4)
n . (5)

Second, higher-order cumulants of a Gaussian variable are zero. Under the
assumption of Gaussian noise, C(4)

n from Eq. (5) becomes a zero tensor.
The working hypothesis in ICA with HOS is that the sources are non-

Gaussian and mutually statistically independent. Then, the higher-order source
cumulant C(4)

s from Eq. (5) is a diagonal tensor, with kurtoses κsr as diagonal
entries for 1 ≤ r ≤ R. Hence, under the working hypothesis, Eq. (5) admits a
CPD with a rank R:

C(4)
x =

∑R

r=1
κsr mr ⊗ m∗

r
⊗ m∗

r
⊗ mr + C(4)

n , (6)

with M satisfying the uniqueness conditions. The separation of the source vectors
and mixing vectors in Eq. (1) has been translated to the identification of rank-1
terms in Eq. (6) as each source contributes a rank-1 term to the CPD.

A variant of applying a CPD in (6) is to use a maximal diagonalization
technique [10] or the joint approximate diagonalization of eigenmatrices method
(JADE) [7]. They are used in conjunction with a prewhitening step using the
second-order covariance matrix.

3.2 Parameter Variation

Given some matrix data, one can perform a (multilinear) transformation depend-
ing upon a parameter to generate a set of matrices. After stacking them, a
third-order tensor is obtained which can be decomposed to identify the under-
lying unknown components. It is used in the decoupling of multivariate polyno-
mials [24] but also in BSS with the second-order blind identification (SOBI)
algorithm [3] and variants. In SOBI, the set of matrices consists of lagged
covariance matrices. Let us define Cu(τ) = E

{
u(t)u(t + τ)h

} ∈ K
K×K as



Stochastic and Deterministic Tensorization 7

the covariance matrix with a lag τ of a stochastic signal vector u(t) ∈ K
K .

Observe that this gives a bilinear transformation: if x(t) = Ms(t) + n(t), then
Cx(τ) = MCs(τ)Mh + Cn(τ). For multiple lags τ1, . . . , τL we then have:

⎧
⎪⎨

⎪⎩

Cx(τ1) = MCs(τ1)Mh + Cn(τ1),
...

Cx(τL) = MCs(τL)Mh + Cn(τL).
(7)

The working hypothesis made by SOBI is that the source signals are mutu-
ally uncorrelated but individually correlated for the different lags τ1, . . . , τL.1

Then, the corresponding lagged covariance matrices of the sources are diagonal
matrices. Hence, the matrices M and M∗ simultaneously diagonalize the lagged
covariance matrices of x(t) in (7) [12]. Let us define σ2

sr(τl) as the autocovariance
of source sr(t) for the given lag τl. We collect them for each source in a vector
σ2

sr ∈ K
L for all τl, 1 ≤ l ≤ L. By stacking Cx(τl) in the third dimension of a

tensor Cx and assuming the noise level is low, a CPD emerges:

Cx =
R∑

r=1

mr ⊗ m∗
r

⊗ σ2
sr + Cn = I ·1 M ·2 M∗ ·3 Σ + Cn, (8)

in which Σ ∈ K
L×R contains the columns σ2

sr for 1 ≤ r ≤ R. Note that each
source contributes a rank-1 term to Cx. In [12], the connection between simulta-
neous matrix diagonalization and CPD is discussed.

A variant for nonstationary sources of the SOBI tensorization method is the
stacking of a set of covariance matrices computed for different time frames [42].

3.3 Hankelization

Consider an exponential signal f(k) = azk arranged in a Hankel matrix H. The
matrix appears to have rank one:

H =

⎡
⎢⎢⎢⎣

f(0) f(1) f(2) · · ·
f(1) f(2) f(3) · · ·
f(2) f(3) f(4) · · ·

...
...

...

⎤
⎥⎥⎥⎦ = a

⎡
⎢⎢⎢⎣

1
z
z2

...

⎤
⎥⎥⎥⎦
[
1 z z2 · · ·] . (9)

These simple exponential functions can be generalized to exponential polyno-
mials, which are functions that can be written as sums and/or products of
exponentials, sinusoids and/or polynomials. They have a broad relevance: for
(multidimensional) harmonic retrieval, direction-of-arrival estimation, sinusoidal
carriers in telecommunication, etc. [26,33,34,43,44]. Furthermore, they can be
used to model various signal shapes. The idea is analogous to the approximation
of functions with the well-known Taylor series expansion. Figures 1 and 2 show
approximations of a sigmoid and Gaussian function through Hankelization.
1 Note that the autocorrelation is not required for each source for each of the lags.
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It has been shown that for an exponential polynomial signal of degree δ, the
corresponding Hankel matrix will have rank δ [46]. The Hankel tensorization
technique exists in mapping each row of the observed data matrix X from (1) to
a Hankel matrix which is being stacked in a third-order tensor HX. With Hsr

the Hankel matrix of the rth source sr, we have because of linearity that

HX =
R∑

r=1

Hsr
⊗ mr =

R∑

r=1

(ArBt
r) ⊗ mr. (10)

The latter transition is based on the working hypothesis that the rth source can
be approximated by an exponential polynomial of (low) degree Lr. Each matrix
Hsr has (low) rank Lr then, and we have full column rank matrices Ar ∈ K

I×Lr

and Br ∈ K
J×Lr . Hence, after the Hankel-tensorization (or Hankelization), a

decomposition in rank-(Lr, Lr, 1) terms like in Eq. (10) can be applied. Each
source contributes a tensor with low multilinear rank (Lr, Lr, 1).

3.4 Löwnerization

Another class of functions suitable for BSS is the set of rational functions, able
to take on a very wide range of shapes. An illustration is given in Figs. 1 and 2
by approximating a sigmoid and Gaussian function. Rational functions have the
same connection with Löwner matrices as exponential polynomials have with
Hankel matrices [2,27]. Given a function f(t) sampled on N = I+J points which
are divided in two distinct point sets X = {x1, . . . , xI} and Y = {y1, . . . , yJ},
we define the entries of the Löwner matrix L ∈ K

I×J as follows:

∀i, j : li,j =
f(xi) − f(yj)

xi − yj
. (11)

It has been shown in [18,19] that an equivalent formulation as in Eq. (10) can
be made: because of the linearity of the Löwner transformation, the tensor LX,
obtained by mapping every row of the observed data matrix X to a Löwner
matrix and stacking these matrices, can be written as a linear combination of the
Löwner matrices of the sources. Under the working hypothesis that the rth source
can be modeled as a rational function of (low) degree Lr, the corresponding
Löwner matrix will have (low) rank Lr. Like in the Hankel case, a BTD is
obtained where the rth source contributes a rank-(Lr, Lr, 1) term to LX.

3.5 Segmentation

Segmentation is a general term used to denote the reshaping of a vector into
a matrix, i.e., extracting small segments and stacking them after each other.
Consider the following exponential vector:

[
1 z z2 z3 z4 z5

]
. If it is reshaped to

a matrix, the latter has rank one:

[
1 z z2 z3 z4 z5

] →
[

1 z z2

z3 z4 z5

]
=

[
1
z3

] [
1 z z2

]
. (12)
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Fig. 1. Approximation of a sigmoid function f(t) = 1
1+e−10t . It is sampled uniformly

100 times in [−1, 1] ( ). To the left, an approximation with exponential polynomials
is used by Hankelizing the samples. In the middle, Löwnerization is applied. To the
right, segmentation with I = J = 10 is used. The tensorized matrix is approximated
by a low-rank matrix through truncation of the singular value decomposition, after
which the underlying signal is calculated from this low-rank matrix. Approximations
for ranks R = 1 ( ), R = 2 ( ) and R = 3 ( ) are shown.

Focusing on BSS, let us now reshape the kth row of the observed data matrix
X ∈ K

K×N to a matrix Exk
∈ K

I×J with N = I ×J for k = 1, . . . , K, and stack
these matrices in a tensor X ∈ K

I×J×K . The transformation is clearly linear.
Let us start from the assumption that the segmented matrix of each source has
rank one, as in Eq. (12). One obtains the following CPD:

X =
R∑

r=1

Esr
⊗ mr =

R∑

r=1

ar ⊗ br ⊗ mr. (13)

with rank-1 matrices Esr = ar ⊗ br and vectors ar ∈ K
I and br ∈ K

J . This is
equivalent to stating that the rth source signal can be written as a Kronecker
product at

r ⊗ bt
r for r = 1, . . . , R, with the Kronecker product for row vectors

u ∈ K
1×I , v ∈ K

1×J defined as u ⊗ v =
[
u1v u2v · · · uIv

]
.

Although the hypothesis is fulfilled when the sources are, for instance, expo-
nential functions, it is quite restrictive. By increasing the assumed rank Lr ≥ 1
of the reshaped matrices Esr , we obtain a BTD in rank-(Lr, Lr, 1) terms:

X =
R∑

r=1

Esr
⊗ mr =

R∑

r=1

(ArBt
r) ⊗ mr, (14)

with matrices Ar ∈ K
I×Lr and Br ∈ K

J×Lr . Adding a subscript l to denote
the lth column of the matrices Ar and Br, the working hypothesis now becomes
that the source signals can be modeled as, or approximated by, sums of Kro-
necker products: sr =

∑Lr

l=1 at
r,l⊗bt

r,l. An example of a source exactly displaying
this structure is a sine wave, which can be written as a sum of two Kronecker
products. Other functions can be approximated too, e.g. sigmoid and Gaussian
functions, illustrated in Figs. 1 and 2. While each source contributed a rank-1
term to X for the first hypothesis, it now contributes a term with low multilinear
rank (Lr, Lr, 1).

Note that because of the segmentation and the structure of the low-rank
decompositions, a nonnegligible compression is obtained in the number of
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Fig. 2. Approximation of a Gaussian function f(t) = e−
1
2 (5t)2 , sampled uniformly 100

times in [−1, 1] ( ). An equal procedure as in Figure 1 is used, with Hankelization
(left), Löwnerization (middle) and segmentation (right) for ranks R = 1 ( ), R = 2
( ) and R = 3 ( ). As in Fig. 1, the exponential method is not very suitable for
signals with horizontal asymptotes.

underlying variables. This is especially useful for big data systems, with many
observed samples or signals. The technique has been described in [4,5] for large-
scale BSS problems, including a generalization for higher-order segmentation.
Segmentation of signal vectors to matrices or tensors has been successfully
applied in various domains before, such as biomedical signal processing [20] and
scientific computing for large-scale models with high dimensions and a very high
number of numerical values [30].

4 Discussion and Conclusion

In many techniques for blind signal separation (BSS), multilinear algebra is
used to recover the mixing vectors and the original source signals. Given only an
observed data matrix, a transformation is made to higher-order structures called
tensors. This paper introduces the tensorization step as an important concept
by itself, as many results concerning tensorization have appeared in the litera-
ture in a disparate manner and have not been discussed as such. Higher-order
statistics and second-order statistics, for example, are well-known to solve BSS,
but apply tensorization in a significantly different way. Many links to multilin-
ear algebra from other existing BSS techniques have not yet been established.
Because of space limitations, the presentation of the idea has been restricted to
instantaneous mixtures of one-dimensional sources. A following paper will dis-
cuss generalizations such as multidimensional sources or convolutive mixtures.
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Abstract. We present a tensor-based method to decompose a given set
of multivariate functions into linear combinations of a set of multivari-
ate functions of linear forms of the input variables. The method pro-
ceeds by forming a three-way array (tensor) by stacking Jacobian matrix
evaluations of the function behind each other. It is shown that a block-
term decomposition of this tensor provides the necessary information
to block-decouple the given function into a set of functions with small
input-output dimensionality. The method is validated on a numerical
example.

Keywords: Multivariate polynomials · Multilinear algebra · Tensor
decomposition · Block-term decomposition · Waring decomposition

1 Introduction

1.1 Problem Statement

The problem we study in the current paper is how to decompose a given mul-
tivariate vector-valued function f(u) into a (parametric) representation of the
form

f(u) =
[
W1 · · · WR

]
⎡

⎢⎣
g1(VT

1u)
...

gR(VT

Ru)

⎤

⎥⎦ , (1)

where gi(xi) : R
mi → R

ni map from mi inputs to ni outputs, Wi ∈ R
N×ni

and Vi ∈ R
M×mi , with i = 1, . . . , R. Figure 1 is a schematical representation of

the proposed structure. The case in which all gi(xi) are univariate functions is
related to the Waring decomposition [1,9] and is discussed in [5]. The current
paper considers the case of block-decoupling with the internal functions gi(xi)
being multivariate vector-valued functions. It is assumed that the decomposi-
tion (1) exists (in the exact sense).

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 14–21, 2015.
DOI: 10.1007/978-3-319-22482-4 2
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Fig. 1. The block-decoupling problem statement. From the polynomial mapping y =
f(u) we wish to find V = [Vi] and W = [Wi] and the mappings gi(xi) such that
f(x) =

∑R
i=1 Wigi(V

T
i u).

1.2 When and Why is a Block-Decoupling Favorable?

A block-decoupling (1) is a natural representation of a nonlinear mapping when
inherent coupling among some internal variables exists, for instance due to under-
lying physics. Rather than unraveling the function into univariate branches,
solely to be able to decouple the variables, it may be desirable to keep sets
of variables together (see Example 1). Moreover, the introduction of (possibly
many) internal branches may increase the parametric complexity of the function
representation, which is undesirable. Therefore, block-decoupling (1) may also
contribute to reducing parametric complexity.

Let us look at a simple case where we derive ‘manually’ from a coupled func-
tion its fully decoupled representation. We will see that full decoupling requires
the introduction of several branches gi(xi). This example serves as a justification
to prefer a block-decoupling over full decoupling.

Example 1. To fully decouple the function f(u1, u2) = u2
1u2, one needs to intro-

duce three univariate branches. Indeed, it is easy to see that we have

u2
1u2 =

1
6

(
(u1 + u2)

3 − (u1 − u2)
3
)

− 1
3
u3
2,

from which we conclude that f(u1, u2) = u2
1u2 can be fully decoupled as the sum

of three univariate functions g1(x1) = 1/6x3
1, with x1 = u1+u2, g2(x2) = −1/6x3

2

with x2 = u1 − u2 and g3(x3) = −1/3x3
3 with x3 = u2. In more complicated

cases, full decoupling may require the introduction of more univariate functions
gi(xi) than block-decoupled vector-valued functions gi(xi). ♦

2 Method

2.1 Block-Diagonalization of Jacobian Matrices

We assume that f(u) can be written as in (1). Although we will describe the
method for the case that f(u) is polynomial, the method can easily be generalized
to the non-polynomial case, and is applicable as long as the derivatives of f(u)
can be obtained.
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The task at hand is to decompose f(u) into blocks of multivariate functions
as in (1). The method generalizes the result of [5] and proceeds by collecting first-
order information of f(u) in a set of sampling points u(k). The first-order infor-
mation is obtained from the Jacobian of f(u), denoted by Jf (u) and defined as

Jf (u) =

⎡

⎢⎣

∂f1
∂u1

(u) . . . ∂f1
∂uM

(u)
...

. . .
...

∂fN

∂u1
(u) . . . ∂fN

∂uM
(u)

⎤

⎥⎦ . (2)

Applying the chain rule of differentiation to f(u) =
∑R

i=1 Wigi(VT
i u) leads to

Jf (u) =
[
W1 . . . WR

]
⎡

⎢⎣
Jg1(V

T
1u)

. . .
JgR

(VT

Ru)

⎤

⎥⎦

⎡

⎢⎣
VT

1
...

VT

R

⎤

⎥⎦ , (3)

where the Jgi
(xi) are defined similar to (2).

2.2 Computing Wi, Vi and Hi

From (3) it follows that finding from the Jacobian evaluations Jf (u(k)) the matri-
ces Wi, Vi and the functions gi(xi), amounts to solving a simultaneous matrix
block-diagonalization problem. By evaluating the Jacobian of f(u) in a set of
K sampling points u(k) we obtain a collection of Jacobian matrices Jf (u(k)),
k = 1, . . . ,K, which are stacked behind each other into the N × M × K tensor
J =

{
Jf (u(1)), . . . ,Jf (u(K))

}
. The recent years have seen an increased research

interest in tensor decompositions [2,8], which can be seen as higher-order exten-
sions of well-known matrix decompositions such as the singular value decompo-
sition [6]. The tensor decomposition that will be of interest for the current task
is the block-term decomposition (BTD) in rank(ni,mi, ·)-terms [3,4,10,12], as it
can be used to compute the simultaneous block-diagonalization of the Jacobian
tensor J . The BTD of J in rank(ni,mi, ·)-terms is the decomposition of J into

J =
R∑

i=1

Hi •1 Wi •2 Vi, (4)

where •i denotes the mode-i tensor product, and Wi and Vi are defined as above.
The ni × mi × K core tensors Hi contain in the slices the Jacobians Jgi

(x(k)),
with x(k)

i = VT
i u(k). Figure 2 gives a graphical overview of the method.

2.3 Uniqueness

A lack of global uniqueness of the BTD can be expected because one can intro-
duce nonsingular transformations Si and Ti in the R terms of (4) to obtain the
(equivalent) decomposition J =

∑R
i=1

(Hi •1 T−1
i •2 S−1

i

) •1 (WiTi) •2 (ViSi).
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Fig. 2. Visual representation of the decomposition method. From the first-order infor-
mation of f(u) a tensor consisting of Jacobian matrices is constructed. The block-term
decomposition of this tensor results in the factors Vi, Wi and the core tensors Hi

from which the decoupling of f(u) can be found.

The uniqueness properties of BTD are discussed in [3,4], however, the case
rank(ni,mi, ·) is not included. It is expected that uniqueness conditions along
the lines of [4] can be obtained for the rank(ni,mi, ·) case, but this is beyond the
scope of the current paper. During numerical experiments (using Tensorlab [11])
we have not encountered uniqueness issues—it seems safe to claim that cases
with relatively small R are not problematic. In terms of decomposition (1), the
effects of rotational ambiguities due to Si and Ti are easy to understand as
well. Let us consider the R = 1 case f(u) = Wg(VTu), in which we insert ST

and T and their inverses as f(u) = WTT−1g(S−TSTVTu) = W̃g̃(ṼTu), where
W̃ = WT, ṼT = STVT and g̃(x) = T−1g(S−Tx). Both representations are
equivalent, and the factors V and W can only be obtained up to linear trans-
formations. The internal function g(x) has undergone both a change of input
variables due to S−T as well as a linear transformation at the output due to
T−1, but the identified g̃ is still polynomial of the same degree as the true g.

2.4 Recovering the Coefficients of gi(xi)

A parameterization of the internal functions gi(x) can be obtained using inter-
polation. Since the internal functions gi(x) are polynomial, the coefficients of
gi(x) can be obtained from solving a system of linear equations. We will illus-
trate the main idea by means of a simple example, from which a general method
can easily be derived.
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Example 2. Consider a function f(u) = Wg(VTu) with R = 2, m1 = 2, m2 = 1,
n1 = n2 = 1 that maps from M inputs to N outputs. Furthermore assume that
g11(x11, x12), g12(x11, x12) and g2(x2) are polynomial of (total) degree two. Then
f(u) can then be parameterized as

f(u)=W

⎡

⎣
1 x11 x12 x2

11 x11x12 x2
12

1 x11 x12 x2
11 x11x12 x2

12

1 x2 x2
2 x3

2

⎤

⎦

︸ ︷︷ ︸
G(VTu)

⎡

⎣
c11
c12
c2

⎤

⎦,

illustrating how the coefficients c11, c12 and c2 appear linearly in the expression.
For each of the operating points u(k) the above expression can be obtained. We
stack them on top of each other into an overdetermined (assuming K � 1)
system of linear equations in the coefficients c11, c12 and c2 as

⎡

⎢⎣
f(u(1))

...
f(u(K))

⎤

⎥⎦ =

⎡

⎢⎣
W

. . .
W

⎤

⎥⎦

⎡

⎢⎣
G(VTu(1))

...
G(VTu(K))

⎤

⎥⎦

⎡

⎣
c11
c12
c2

⎤

⎦ .

♦

2.5 Algorithm Summary

The complete block-decoupling procedure is summarized as follows.

1. Evaluate the Jacobian matrix Jf (u) in a set of K sampling points u(k), k =
1, . . . ,K (Sects. 2.1 and 2.2).

2. Stack the Jacobian matrices into an N × M × K tensor J (Sect. 2.2).
3. Compute the rank(ni,mi, ·) block-term decomposition of J , resulting in the

factors Wi, Vi and the core tensors Hi (Sect. 2.2).
4. Recover the coefficients of the internal functions gi(xi) by solving a linear

system (Sect. 2.4).

3 Numerical Example

We will now illustrate the method by means of a numerical example.

Example 3. We assume that a multivariate vector-valued function f(s) is given
that has an underlying representation of the form (1)

f(u) = Wg(V
T

u) = w1g1(V
T

1u) + w2g2(v
T

2u), (5)

with V =
[
V1 v2

]
and W =

[
w1 w2

]
as

V =

⎡

⎢⎢⎣

1 0 1
−2 1 −2

3 −1 0
−1 1 3

⎤

⎥⎥⎦ , W =

⎡

⎢⎢⎣

0 1
1 3

−1 2
3 0

⎤

⎥⎥⎦ , (6)
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Fig. 3. Jacobians of g1(x11, x12) and g2(x2), obtained from the core tensors H1 and
H2, which were computed using the BTD (with xi = VT

i u).
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and
g1(x11, x12) = x3

11x12 − 2x3
11 − x2

11x12 + 4x2
12,

g2(x2) = x4
2 − 2x3

2 + 3x2
2,

(7)

in which the ‘true’ representation is denoted by barred symbols.
The sampling points u(k) are generated by combining for each of the four

inputs u1, . . . , u4 seven equidistant points in the interval [−2, 2], such that K =
74. We sample the Jacobian Jf (u) in the K = 2401 sampling points and stack
the Jacobian matrices Jf (u(k)), k = 1, . . . ,K into the tensor J .

Tensorlab [11] is used to compute the BTD with core tensor dimensions
1 × 2 × K and 1 × 1 × K, from which we obtain the factors V =

[
V1 v2

]
and

W =
[
w1 w2

]
as

V =

⎡

⎢⎢⎣

7.5051 −5.2297 −3.1489
−8.2850 14.7523 6.2978
15.7901 −19.9820 0.0000
−0.7799 9.5226 −9.4467

⎤

⎥⎥⎦ , W =

⎡

⎢⎢⎣

0.0000 1.4249
−9.8728 4.2748

9.8728 2.8499
−29.6183 0.0000

⎤

⎥⎥⎦ . (8)

Notice that the factors V and W do not exactly correspond to the underlying
factors V and W, but they are equal up to a similarity transformation. For the
vectors v2, w1 and w2 this means that they are equal to the underlying ones
up to scaling. The core tensors H1 and H2 contain in their frontal slices the
Jacobians of g1(x11, x12) and g2(x2), for each of the K operating points, i.e.,
x(k)

i = VT
i u(k). Figure 3 is a graphical representation obtained by plotting the

entries in the fibers of Hi versus x(k)
i = VT

i u(k).
We then compute the coefficients of the recovered g1(x11, x12) and g2(x2)

from the solution of a Vandermonde-like linear system as in Sect. 2.4 (resulting
in a norm-wise error on the residual of 2.1207 × 10−7). From the recovered V1,
v2, w1 and w2, and the internal functions g1(x11, x12) and g2(x2) we reconstruct
the function f(u) = w1g1(VT

1u) + w2g2(vT
2u) with a relative norm-wise error

on the coefficients of 2.7562 × 10−10 comparing to f(u). ♦

4 Conclusions and Perspectives

We have presented a method to decouple a given set of multivariate polynomials
into linear combinations of multivariate polynomials with smaller dimensional-
ity, acting on linear forms of the input variables. By considering the first-order
information of the given function in a set of sampling points, we have shown
that the problem reduces to the simultaneous block-diagonalization of a set of
Jacobian matrices. The block-term tensor decomposition is used to compute the
decomposition. The method is illustrated on a numerical example.

Ongoing work is concerned with applying the block-decoupling method to
nonlinear block-oriented system identification, where we investigate how to
unravel from a black-box nonlinear state-space model the nature of the static
nonlinearities [7]. Other open questions include how the decoupling method can
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be used to simplify or approximate a given multivariate vector-valued function,
and how uncertainty on the function f(u) can be taken into account.
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Abstract. We consider two models: simultaneous CP decomposition of
several symmetric tensors of different orders and decoupled representa-
tions of multivariate polynomial maps. We show that the two problems
are related and propose a unified framework to study the rank properties
of these models.
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1 Introduction

Tensor decompositions became an important tool in engineering sciences and
data analysis. Several models require tensor decompositions with additional con-
straints (coupled decompositions or structured tensors), but the properties of
these constrained decompositions are not so well understood.

In this paper, we consider two models of this kind: (i) simultaneous CP
decomposition of symmetric tensors of different orders (motivated by blind
source separ ation) and (ii) decoupling of multivariate polynomials (motivated by
problems of identification of nonlinear dynamical systems). We show that these
two models are strongly related, and that the notion of rank in these models
enjoys many properties similar to tensor rank.

First we define a source separation model in Sect. 1.1, and next the polyno-
mial decomposition model in Sect. 1.2. Finally, the organization and contribu-
tions of the paper are described in Sect. 1.3.

1.1 Blind Source Separation and Independent Component Analysis

Consider a linear mixing model [6] in source separation

x = As,
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where A is an (unknown) mixing matrix

A =
(
a1 · · · ar

) ∈ K
n×r,

K = R or C, and s =
(
s1 · · · sr

)� is the vector of independent (real or complex)
random variables. Then the cumulants of x up to order d can be expanded as

C(1)
x = c1,1a1 + · · · + c1,rar,

C(2)
x = c2,1a1 ⊗ a1 + · · · + c2,rar ⊗ ar,

...
C(d)
x = cd,1a1 ⊗ · · · ⊗ a1 + · · · + cd,rar ⊗ · · · ⊗ ar,

(1)

where cj,k is the j-th cumulant of the random variable sk [9].
In algebraic algorithms for blind source separation, typically a relaxed ver-

sion of the decomposition problem (1) is considered. For example, in some
approaches, a single cumulant (e.g., fourth order) is considered; in others the
problem is reduced to decomposition of a partially symmetric tensor, see [6,9]
for an overview. In most methods the structure of the joint decomposition (1) is
lost, which we aim to avoid in this paper.

We should note that there exist few algorithms for blind source separation
which use simultaneous diagonalization of symmetric tensors. In [8] a special
case of d = 4, n = 2 is considered, and fourth- and third-order cumulants are
simultaneously diagonalized by finding a common kernel of two matrices. In [7],
a similar idea is used for combining cumulants of higher orders. (In [7] the case
of n > 2 sensors is also considered, but is treated suboptimally.) A theoretical
framework for joint decomposition of cumulant tensors is also addressed in [4],
but without proposing numerical algorithms.

1.2 Block-Structured Models of Nonlinear Systems

A common problem in nonlinear system identification is to decompose a multi-
variate nonlinear mapping F : Rn → R

m in a block-structured form as a linear
map followed by univariate nonlinear transformations, the outputs of which are
linearly mixed again, see Fig. 1. This problem appears in identification of non-
linear state-space models [18] and parallel Wiener-Hammerstein systems [16].

z1

...

zn

F (z1, . . . , zn)

y1

...

ym

z1

...

zn

A

g1(t1)
t1

...

gr(tr)
tr

B

g1

gr

y1

...

ym

Fig. 1. Decomposition of a multivariate function in a block-structured form.
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If the multivariate function is represented as a polynomial, and the scalar non-
linear functions are also polynomials, then the decomposition in Fig. 1 becomes
a polynomial decomposition problem, which we describe formally below.

Let K be R or C. By Kd[z] we denote the space of homogeneous polynomials of
degree d, and by K≤d[z] the space of polynomials of degree ≤ d. Consider a mul-
tivariate polynomial map F : Kn → K

m, i.e., a vector F (z) =
(
f1(z) · · · fm(z)

)�

of multivariate polynomials (fi ∈ K≤d[z]) in variables z =
(
z1 · · · zn

)�. We say
that F has a decoupled representation, if it can be expressed as

F (z) = B · g(A�z), (2)

where
A =

(
a1 · · · ar

) ∈ K
n×r, B =

(
b1 · · · br

) ∈ K
m×r,

are transformation matrices, and g : Kr → K
r is defined as

g(t1, . . . , tr) =
(
g1(t1) · · · gr(tr)

)�

where gk are nonhomogeneous univariate polynomials of degree ≤ d.
The decomposition (2) is exactly the one depicted in Fig. 1, and can be also

equivalently represented as

F (z) = b1g1(a�
1 z) + · · · + brgr(a�

r z). (3)

Recently, two different, but related methods were proposed for solving the
decoupling problem in the case m > 1, see [11,18]. Both methods are based on
CP decomposition of a non-symmetric tensor constructed from the coefficients
of the polynomial mapping. We also should note that there exist other tensor-
based methods for identifying block-structured systems [13], which operate with
structured tensors.

1.3 Contributions of this Paper

The first aim of this paper is to show that the joint CP decomposition described
in Sect. 1.1 is a special case of the polynomial decomposition from Sect. 1.2. Next,
we show that both models can be viewed as a special case of X-rank decom-
position: a powerful concept proposed recently in [2]. This concept provides a
unified framework for studying properties of rank of the models (minimal r in
(1) or (3)), and reformulate these questions in the language of algebraic geom-
etry. Finally, we prove that underlying algebraic varieties are irreducible. As a
consequence, the following results (proved in [2]) hold true.

1. For K = C, a generic (i.e., drawn with probability 1) collection of tensors (a
generic polynomial), has the same rank, called complex generic rank rgen,C.

2. For K = R, the rank of a generic collection of tensors (or a generic polynomial)
is at least rgen,C.

3. For the both real and complex fields, the maximal rank is at most twice the
generic complex rank, i.e., rmax,R, rmax,C ≤ 2rgen,C.
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2 Polynomial Decompositions

2.1 Symmetric Tensors and Polynomials

There is a one-to-one correspondence between symmetric
s︷ ︸︸ ︷

n × · · · × n tensors and
homogeneous polynomials of degree s [5]:

T (z) = C ×1 z · · · ×s z ∈ Ks[z]. (4)

Now assume that the tensor C admits a CP decomposition

C = c1a1 ⊗ · · · ⊗ a1 + · · · + crar ⊗ · · · ⊗ ar. (5)

Then, by (4), decomposition (5) is equivalent to the decomposition

T (z) = c1�
d
1(z) + · · · + cr�

d
r(z), (6)

where �k(z) := a�
k z is a linear form. The decomposition (6) is called Waring

decomposition [5].

2.2 Decomposition of Polynomials

By equivalence between (5) and (6), the system (1) can be rewritten as

T (1)(z) = c1,1�1(z) + · · · + c1,r�r(z),
T (2)(z) = c2,1�

2
1(z) + · · · + c2,r�

2
r(z),

...
T (d)(z) = cd,1�

d
1(z) + · · · + cd,r�

d
r(z).

(7)

Now define the non-homogeneous polynomial F ∈ K≤d[z] as

F (z) = T (1)(z) + · · · + T (d)(z), (8)

Then from (7) it is easy to see that simultaneous Waring decomposition (7)
(hence, the simultaneous symmetric CP decomposition (1)) is equivalent to the
following problem: Given a multivariate polynomial F ∈ K≤d[z], find minimal
r, gk ∈ K≤d[t] (univariate polynomials) and ak ∈ K

n such that

F (z) =
r∑

k=1

gk(�k(z)), (9)

where �k = a�
k z and gk(t) = c0,k + c1,kt + · · · + cd,kt

d.

Note 1. Evidently, decomposition (9) is a special case of (3) with m = 1. Vice
versa, any decomposition of the form (3) with m = 1 can be reduced to (9).
Indeed, we can always assume that the linear transformation B is equal to B =(
1 · · · 1

)
, without loss of generality.

The authors are aware of only one work [1] which studies the theoretical prop-
erties of (9), and more precisely the maximal rank. Also, a practical algorithm
for computation of the decomposition (9) was proposed recently in [17].
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3 X-rank Decompositions

Here we recall a general definition of X-rank [2]. We will try to show how the
decompositions in Sects. 1.1 and 1.2 may fit in the X-rank framework.

Let W be a vector space over K, and PW be the corresponding projective
space. Let X ⊂ PW be a nondegenerate projective variety and X̂ be an affine
cone over X. Then for any v in W \ {0} we can define the X-rank

rankX(v) = min r : v = x̂1 + · · · + x̂r, x̂k ∈ X̂. (10)

The variety X (and its affine cone X̂) represents the set of rank-one terms.
Let us fix the variety X. The maximal X-rank is defined as

rmax := max
v∈W

rankX(v).

The typical ranks rtyp,k,

rtyp,0 < . . . < rtyp,ntyp
≤ rmax,

are all the numbers such that the sets {v ∈ W | rankX(v) = rtyp,k} have non-
empty interior in Euclidean topology (see also [2]). Informally speaking, the
typical ranks are the X-ranks that appear with non-zero probability if we draw
randomly the vector v from a continuous probability distribution on W .

For X-ranks, the following basic results are known [2].

Theorem 1 ([2], Theorems 1, 3). If rtyp,0 is the smallest typical (real or com-
plex) rank, then rmax ≤ 2rtyp,0.

Theorem 2 ([2], page 1). If K = C and X is an irreducible variety, then there
exists a unique typical rank (called generic rank, and denoted by rCgen).

Theorem 3 ([2], Theorem2). If K = R and X is an irreducible variety, and
XC is its complexification, then the smallest typical real rank equals the generic
rank, i.e., rRtyp,0 = rCgen.

It is easy to show that decompositions (3) and (9) can be viewed as special
cases of (10), as pointed out below.

1. Rank-One Polynomials (9): take W = K≤d[z] and

X̂ := {f(z) ∈ W | f(z) = g(a�z), g(t) =
d∑

j=0

cjt
j , a ∈ K

n}. (11)

2. Rank-One Polynomial Maps (3): take W = (K≤d[z])m and

X̂ := {F (z) ∈ W |F (z) = bg(a�z), g(t) =
d∑

j=0

cjt
j ,a ∈ K

n,b ∈ K
m}. (12)

Although we expressed the rank-one sets in (11) and (12), it is not immediate
that we can use Theorems 1–3. We still need to prove that these sets are algebraic
varieties and are irreducible. This is exactly the goal of the following section.
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4 Irreducibility and Generic Rank

4.1 Algebraic Description

Here we provide an alternative (algebraic) description of the sets (11) and (12).
For a finite-dimensional vector space V over K we denote by SdV the space of
symmetric multilinear forms. (In particular, if V is isomorphic to K

n, then SdV
is isomorphic to Kd[z1, . . . , zn]).

Rank-One Polynomials. Consider the following map.

ψ1 : V × K
d →

W1:=︷ ︸︸ ︷
V ⊕ S2V ⊕ · · · ⊕ SdV

(a, (c1, · · · , cd)) �→ (c1a, c2a2, . . . , cdad).
(13)

Next, we define X̂1 as the image of ψ1:

X̂1 := ψ1(V × K
d). (14)

It is easy to see that (14) corresponds to (11) (with the constant part of the
polynomials removed).

Rank-One Polynomial Maps. Now consider the following map.

ψm : Km × V × K
d → (

Wm:=︷ ︸︸ ︷
V ⊕ S2V ⊕ · · · ⊕ SdV )m

(b,a, (c1, · · · , cd)) �→
(b1c1a, b1c2a2, · · · b1cdad,

...
...

bmc1a, bmc2a2, · · · bmcdad).

Next, we define X̂m as the image of ψm:

X̂m := ψm(Km × V × K
d) = K

m ⊗ X̂1, (15)

where X̂1 is defined in (14). It is easy to see that (15) corresponds to (12) (with
the constant parts of the polynomial maps removed).

Note 2. Since X̂1 = ψ1(V × K
d) ⊂ W1 is the affine cone of a projective variety

X1 ⊂ PW1, then X̂m is the affine cone of the image of the Segre embedding f :
P
m−1 ×X1 → P(Km ⊗W1) defined by f([b], [x]) = [b⊗x], where x ∈ X̂m ⊂ Wm.

4.2 Bundle Description and Irreducibility of X

Proposition 1. The set X̂1 defined in (14) is an irreducible affine algebraic
variety. Consequently, it is an affine cone over a projective variety.



28 P. Comon et al.

Proof. Let PV be a complex projective space of dimension n − 1. Define φ :
PV → PV × · · · × PSdV by φ([v]) = ([v], . . . , [vd]), then φ is an embedding (i.e.,
PV is isomorphic to φ(PV )). Denote the image of φ by M .

Let TW be the tautological line bundle (called canonical line bundle in [15,
Sect. 2]) on a projective space PW , i.e., TW = {([w], w) ∈ PW × W |w ∈ W},
where PW × W is a trivial vector bundle over PW .

Next, let pi : PV × · · · × PSdV → PSiV be the i-th natural projection, then

D =
d⊕

i=1

p∗
i TSiV is a vector bundle of rank d over PV × · · · × PSdV , where p∗

i is

the pull-back map induced by pi [15]. Let E denote the restriction of D on M ,
thus E is a closed sub-variety of D.

Finally, define ψ̃1 : E → V ⊕ · · · ⊕ SdV by

ψ̃1([v], . . . , [vd], c1v, . . . , cdv
d) = (c1v, . . . , cdv

d).

It is easy to see that X̂1 = ψ̃1(E).
Since each PSiV is complete ([14, Definition 7.1]) by [14, Theorem 7.22], PV ×

· · · × PSdV is complete by [14, Sect. 7.5], then

d⊕
i=1

p∗
i (PSiV × SiV ) → V ⊕ · · · ⊕ SdV

(([α1], . . . , [αd]), β1, . . . , βd) �→ (β1, . . . , βd)
(16)

is proper by [14, Sect. 7.16a], where αi, βi ∈ SiV . Thus by [14, Sect. 7.17], the
restriction to D → V ⊕ · · · ⊕ SdV is proper, and then ψ̃1 : E → V ⊕ · · · ⊕
SdV is proper. By definition of properness, ψ̃1 is universally closed, so X̂1 =
ψ̃1(E) is closed, i.e., X̂1 is an affine variety. Because E is irreducible, X̂1 is also
irreducible. �

By Note 2 from Sect. 4.1 we have the following corollary.

Corollary 1. X̂m defined in (15) is also irreducible, and is an affine cone over
a projective variety.

Finally, from Proposition 1 and Corollary 1, we have that Theorems 1–3 can be
applied for decompositions (9) and (3). In particular, for these decompositions
there exists a complex generic rank (equal to the minimal real typical rank).

4.3 Generic Rank for Bivariate Polynomials

Finally, in the case n = 2 and m = 1, the variety X1 (corresponding to the affine
cone X̂1 defined in (14)) is a special case of the rational normal scroll [10,12].
Using the results [3] on dimension of the r-th secant variety σr(X) of a rational
normal scroll X, we can explicitly find the complex generic rank for this case.

Proposition 2. The generic rank for bivariate polynomials is equal to

rgen :=
⌈

2d + 7
2

−
√

8d + 17
2

⌉
− 1.
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Proof. By [3, p. 359], the dimension of σr(X1) ⊂ P
N is min{N,N −

(d−r+1)(d−r+2)
2 +r} (note that there is an incorrect sign in the original paper [3]).

Thus the generic rank rgen is the maximal r ∈ {1, . . . , d} such that

N − (d − r + 2)(d − r + 3)
2

+ r − 1 < N

which is equivalent to r < 2d+7
2 −

√
8d+17
2 , i.e., rgen =

⌈
2d+7

2 −
√
8d+17
2

⌉
− 1. �
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Abstract. CANDECOMP/PARAFAC (CP) approximates multiway
data by a sum of rank-1 tensors. Our recent study has presented a method
to rank-1 tensor deflation, i.e. sequential extraction of rank-1 tensor com-
ponents. In this paper, we extend the method to block deflation prob-
lem. When at least two factor matrices have full column rank, one can
extract two rank-1 tensors simultaneously, and rank of the data tensor is
reduced by 2. For decomposition of order-3 tensors of size R×R×R and
rank-R, the block deflation has a complexity of O(R3) per iteration which
is lower than the cost O(R4) of the ALS algorithm for the overall CP
decomposition.

Keywords: Canonical polyadic decomposition · PARAFAC · Tensor
deflation

1 Introduction

An important property in matrix factorisations like eigenvalue decomposition,
is that rank-1 matrix components can be sequentially estimated via a deflation
method, such as the power iteration method. The matrix deflation procedure
is possible because subtracting the best rank-1 term from a matrix reduces the
matrix rank. Unfortunately, this sequential extraction procedure in general is
not applicable to decompose a rank-R tensor [1].

In our recent study [2,3], we have introduced a tensor decomposition which
is able to extract a rank-1 tensor from a high rank tensor. The method is based
on the rank-1 plus multilinear-(R − 1, R − 1, R − 1) block tensor decomposition,
but with a smaller number of parameters, basically two vectors per modes. This
paper extends the rank-1 tensor extraction to block tensor deflation or rank
splitting which splits a high rank-R tensor into two tensors of smaller ranks.
In particular, we develop an alternating subspace update (ASU) algorithm to
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extract a multilinear rank-(2,2,2) tensor from a rank-R tensor. Since decompo-
sition of a 2×2×2 tensor can be found in closed-form, we can straightforwardly
obtain the desired rank-1 components. The proposed algorithm estimates only
4 vectors and two scalars per dimension with a computational complexity of
O(R3). Moreover, it also requires a lower space cost than algorithms for the
ordinary CANDECOMP/PARAFAC (CPD).

The paper is organised as follows. A tensor decomposition for the block tensor
deflation or rank splitting is presented in Sect. 2. The proposed algorithm is
presented in Sect. 3. Simulations in Sect. 4 will verify validity and performance
of the proposed algorithm. Section 5 concludes the paper.

2 Preliminaries

Throughout the paper, we shall denote tensors by bold calligraphic letters, e.g.,
A ∈ R

I1×I2×···×IN , matrices by bold capital letters, e.g., A =[a1,a2, . . . ,aR] ∈
R

I×R, and vectors by bold italic letters, e.g., aj . The Kronecker product
is denoted by ⊗. Inner product of two tensors is denoted by 〈X,Y〉 =
vec(X)T vec(Y). Contraction between two tensors along modes-m, where m =
[m1, . . . , mK ], is denoted by 〈X,Y〉m, whereas 〈X,Y〉−n represents contraction
along all modes but mode-n [4].

The mode-n matricization of tensor Y is denoted by Y(n). The mode-n mul-
tiplication of a tensor Y ∈ R

I1×I2×···×IN by a matrix U ∈ R
In×R is denoted

by Z = Y ×n U ∈ R
I1×···×In−1×R×In+1×···×IN . Products of a tensor Y

with a set of N matrices {U(n)} =
{
U(1),U(2), . . . , U(N)

}
are denoted by

Y× {U(n)} �
= Y×1 U(1) ×2 U(2) · · · ×N U(N).

A tensor X ∈ R
I1×I2×···×IN is said in Kruskal form if X =

R∑
r=1

λr a
(1)
r ◦ a

(2)
r ◦ · · · ◦ a

(N)
r , where “◦” denotes the outer product, A(n) =

[a(n)
1 ,a

(n)
2 , . . . ,a

(n)
R ] ∈ R

In×R are factor matrices, a
(n)T
r a

(n)
r = 1, for r = 1, . . . , R

and n = 1, . . . , N , and λ1 ≥ λ2 ≥ · · · ≥ λR > 0.
A tensor X ∈ R

I1×I2×···×IN has multilinear rank-(R1, R2, . . . , RN ) if
rank(X(n)) = Rn ≤ In for n = 1, . . . , N , and can be expressed in the Tucker
form as

X =
R1∑

r1=1

R2∑

r2=1

· · ·
RN∑

rn=1

gr1r2...rN
a(1)

r1
◦ a(2)

r2
◦ · · · ◦ a(N)

rN
, (1)

where G = [gr1r2...rN
], and A(n) are of full column rank. For compact expression,

[[λ; {A(n)}]] denotes a Kruskal tensor, where [[G; {A(n)}]] represents a Tucker
tensor.

The main focus of this paper is a block deflation which splits a rank-R CPD
into two sub rank-K and rank-(R − K) CPDs. This tensor decomposition is a
particular case of the block tensor decomposition [5] but with only two blocks
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Fig. 1. Rank splitting for the CP decomposition of a rank-R tensor into two multilinear
rank-(K, . . . , K) and rank-(R − K, . . . , R − K) tensors G and H.

of multilinear rank-(K,K,K) and rank-(R − K,R − K,R − K) as illustrated in
Fig. 1. That is

Y ≈ [[G;U(1),U(2), . . . ,U(N)]] + [[H;V(1),V(2), . . . ,V(N)]] + E (2)

where U(n) and V(n) are matrices of size In × K and In × (R − K), respec-
tively. Following this tensor decomposition, decomposition of a rank-R tensor
can proceed simultaneously through decompositions of sub-tensors with smaller
ranks.

For this kind of tensor decomposition and block tensor deflation, we can
use the ALS algorithm [5] or the non-linear least squares (NLS) algorithm [6]
developed for the multilinear rank-(Lr,Mr, Nr) block tensor decomposition with
two blocks. However, these existing algorithms are expensive due to a large
number of parameters of the two core tensors G and H. The proposed algorithm
will estimate only four vectors of length R per dimension whereas the core tensors
G and H need not be estimated.

We will first introduce an orthogonal normalisation for the block tensor defla-
tion, then state the correctness of the proposed deflation scheme.

Lemma 1 (OrthogonalNormalization forRankSplitting).Givenadecom-
position of Y asY ≈ [[G;U(1),U(2), . . . ,U(N)]]+[[H;V(1),V(2), . . . ,V(N)]], where
U(n) ∈ R

In×(K) andV(n) ∈ R
In×(R−K), K ≤ R − K, one can construct an equiv-

alent decomposition, denoted by tildas, which has the same approximation error,
such that

– [[G; {U(n)}]] = [[
∼
G; {∼U(n)}]], [[H; {V(n)}]] = [[

∼
H; {∼V(n)}]]

–
∼
U

(n)
and

∼
V

(n)
are orthogonal, i.e., (

∼
U

(n)
)T ∼

U
(n)

= IK and (
∼
V

(n)
)T ∼

V
(n)

=
IR−K .

– and obey conditions (
∼
U

(n)
)T ∼

V
(n)

= [diag{σn},0R−2K ] where σn =
[σn,1, . . . , σn,K ] ∈ R

K and 0 ≤ σn,r < 1.
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Theorem 1 (Rank Splitting). A rank-R tensor Y = [[β; {B(n)}]] has an exact
decomposition Y = [[G;U(1), . . . ,U(N)]] + [[H;V(1), . . . ,V(N)]] as in (2) where
U(n) ∈ R

In×K and V(n) ∈ R
In×(R−K), K ≤ R − K and

– at least two factor matrices B(n) ∈ R
In×R are of full column rank,

– G has multilinear rank-(K, . . . , K).

Then G is a tensor of rank-K and H of rank (R − K).

Proofs of Lemma 1 and Theorem 1 are provided in the full version of this
paper [7].

3 Alternating Subspace Update Algorithm

In this section, we consider order-3 tensors of size R×R×R. Tensors of larger and
unequal sizes should be compressed to this size using the Tucker decomposition
[8–10]. We will develop an algorithm for the block tensor deflation which reduces
the rank by K = 2. For this particular case, the core tensor G is size of 2×2×2,
and the core tensor H of size (R − 2) × (R − 2 × (R − 2). The factor matrices
U(n) and V(n) are of size R × 2 and R × (R − 2), respectively. The rank-2 block
deflation has an advantage over the rank-1 tensor deflation when factor matrices
have two nearly collinear components.

We denote matrices V̄(n) = [v(n)
1 ,v

(n)
2 ] which comprise the first two columns

of V(n), and perform reparameterization of U(n) as

U(n) = W(n) diag(ξn) + V̄(n) diag(σn), (3)

where ξn = [ξn1, ξn2]T , ξnr =
√

1 − σ2
nr, and W(n) = [w(n)

1 ,w
(n)
2 ] of

size R × 2. [W(n),V(n)] are orthonormal matrices of size R × R, i.e.,
[W(n),V(n)]T [W(n),V(n)] = IR.

Consider the following criterion to be minimized,

D =
1
2
‖Y − G × {U(n)} − H × {V(n)}‖2F . (4)

We will later simplify the objective function in (4) by replacing the core tensors
by their closed-form expressions and applying the above reparameterization. The
objective function will finally depend only on W(n), V̄(n) and σn for n = 1, 2, 3.

3.1 Closed-Form Expressions for the Core Tensors

From the model (2) and the cost function D in (4), we can derive closed-form
expressions for H and G as

H = Y × {V(n)T } − G ×
{[

diag(σn)
0(R−2)×2

]}
, (5)

G =
(
Y × {U(n)T } −

(
Y × {V̄(n)T }

)
� S

)
� (1 − S � S) , (6)
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where S = σ1 ◦ σ2 ◦ σ3 is a rank-1 tensor of size 2 × 2 × 2, � and � represent
the Hadamard (element-wise) product and division, respectively.

We replace H in the cost function (4) by its closed-form in (5), and rewrite
D as

D =
1
2
‖Y − Y ×

{
V(n)V(n)T

}
− G × {U(n)} + G × {V̄(n) diag(σn)}‖2F

=
1
2

(
‖Y‖2F − ‖Y ×

{
V(n)V(n)T

}
‖2F − 〈G � (1 − S � S),G〉

)
. (7)

For an index n ∈ {1, 2, 3}, define n1 and n2 with n1 < n2 as its complement
in {1, 2, 3}, i.e., {n, n1, n2} = {1, 2, 3}. Put t

(n)
r,s = Y ×n1 u

(n1)T
r ×n2 u

(n2)T
s ,

z
(n)
r,s = Y×n1 v

(n1)T
r ×n2 v

(n2)T
s , and d(n)

r,s = t
(n)
r,s −z

(n)
r,s σn1,r σn2,s. The objective

function in (7) can be expressed as

D =
1

2

⎛
⎝‖Y‖2

F − ‖Y ×
{
V

(n)
V

(n)T
}

‖2
F −

2∑
r1,r2,r3=1

(ξ1,r1w
(1)T
r1 t

(1)
r2,r3 + σ1,r1v

(1)T
r1 d

(1)
r2,r3 )2

1 − σ2
1,r1

σ2
2,r2

σ2
3,r3

⎞
⎠ . (8)

3.2 Estimation of σn

We begin with deriving update rules for σ1 = [σ1,1, σ1,2]. As shown in the
cost function in (8), the parameters σ1 involve only the third term. In order
to estimate σ1, we keep other parameters fixed. Then minimization of the cost
function (8) leads to maximization of the following function of σ1

max
σ1,1,σ1,2

2∑

r1=1

2∑

r2=1

2∑

r3=1

(ξ1,r1w
(1)T
r1 t

(1)
r2,r3 + σ1,r1v

(1)T
r1 d(1)

r2,r3
)2

1 − σ2
1,r1

σ2
2,r2

σ2
3,r3

. (9)

Each σ1,r1 is found as σ1,r1 = 1/
√

1 + x2
r1

where xr1 is solution to the problem

xr1 = arg max
x

2∑

r2=1

2∑

r3=1

(αr2,r3 x + βr2,r3)
2

x2 + 1 − σ2
2,r2

σ2
3,r3

(10)

αr2,r3 = w
(1)T
r1 t

(1)
r2,r3 and βr2,r3 = v

(1)T
r1 d(1)

r2,r3
. The optimal xr1 is a root of a

polynomial of degree-8. The others σn,r can be estimated similarly.

3.3 Estimation of Orthogonal Components W(n) and V(n)

This section presents update rules which preserve orthogonality constrains on
W(n) and V(n). Indeed we only need to update W(n) and the first two column
vectors V̄(n) = [v(n)

1 ,v
(n)
2 ], whereas the last (R−4) columns [v(n)

3 , . . . ,v
(n)
R−2] are

chosen as arbitrary orthogonal complement to [W(n), V̄(n)].
Since V(n)V(n)T = IR − W(n)W(n)T , we have

‖Y ×
{
V(n)V(n)T

}
‖2F = tr(Φn) − tr(W(n)T ΦnW(n)) (11)
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where Φn = Y(n)

(⊗k �=n V(n)V(k)T
)
YT

(n) are matrices of size R ×R. The cost
function in (8) is rewritten as

D =
1

2

(
‖Y‖2

F − tr(Φn) +
2∑

r=1

w
(n)T
r Qn,r w

(n)
r − v

(n)T
r Fn,r v

(n)
r − 2w

(n)T
r Kn,r v

(n)
r

)
(12)

where

Qn,r = Φn − ξ2n,r

∑

k,l

t
(n)
k,l t

(n)
k,l

T

1− σ2
n,rσ2

n1,kσ2
n2,l

, Fn,r = σ2
n,r

∑

k,l

d
(n)
k,l d

(n)
k,l

T

1− σ2
n,rσ2

n1,kσ2
n2,l

, (13)

Kn,r = ξn,rσn,r

∑

k,l

t
(n)
k,l d

(n)
k,l

T

1− σ2
n,rσ2

n1,kσ2
n2,l

. (14)

It follows that W(n) and V̄(n) are solutions to the following quadratic optimi-
sation

min f(W
(n)

, V̄
(n)

) =
1

2

(
2∑

r=1

w
(n)T
r Qn,r w

(n)
r − v

(n)T
r Fn,r v

(n)
r − 2w

(n)T
r Kn,r v

(n)
r

)
(15)

subject to [W
(n)

V̄
(n)

]
T
[W

(n)
V̄

(n)
] = I4.

Following the Crank-Nicholson-like scheme [11], we can update the orthogonal
matrices Xn = [W(n), V̄(n)] with XT

nXn = I4 using the following rules

Xn ← Xn − 2τ [Gf ,Xn]
(
I8 + τ

[
XT

nGf I4
−GT

f Gf −GT
f Xn

])−1 [
I4

−GT
f Xn

]
, (16)

where Gf = [g
f,w

(n)
1

, g
f,w

(n)
2

, g
f,v

(n)
1

, g
f,w

(n)
2

] of size R × 4 are the first order

derivatives of the function f(W(n), V̄(n)) with respect to [W(n), V̄(n)]

g
f,w

(n)
r

=
∂f

∂w
(n)
r

= Qn,r w
(n)
r − Kn,r v

(n)
r , g

f,v
(n)
r

=
∂f

∂v
(n)
r

= −Fn,r v
(n)
r − K

T
n,r w

(n)
r , (17)

and Γ n = XT
nGf and τ > 0 is a step size chosen using the Barzilai-Borwein

method [12].
The most expensive step in the ASU algorithm is computation of the matrices

Φn = Y(n)

(⊗k �=n V(n)V(k)T
)
YT

(n). A naive computation method might cost

O(R4). We present a more efficient computation which requires a cost of order
O(R3)

Φn = Y(n)

(
(I − W

(n2)
W

(n2)T
) ⊗ (I − W

(n1)
W

(n1)T
)
)
Y

T
(n)

= Y(n) Y
T
(n) − 〈Y ×n1 W

(n1)
,Y ×n1 W

(n1)〉n1,n2 − 〈Y ×n2 W
(n2)

,Y ×n2 W
(n2)〉n1,n2

−〈Y ×n1 W
(n1) ×n2 W

(n2)
,Y ×n1 W

(n1) ×n2 W
(n2)〉n1,n2 , (18)

where {n1 < n2} = {1, 2, 3} \ {n}.
The proposed Alternating Subspace Update (ASU) algorithm is summarized

in Algorithm 1.
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Algorithm 1. Alternating Subspace Update (ASU)

Input: Data tensor Y: (R × R × R) of rank R
Output: A rank-(2,2,2) tensor [[G; {U(n)}]] and rank-(R − 2, R − 2, R − 2)

tensor [[H; {V(n)}]]
begin

1 Initialise components U(n) and V(n)

2 Orthogonal normalization to U(n) and V(n) and compute σn = [σn,1, σn,2]
T

and W(n)

repeat
for n = 1, 2, 3 do

3 for r = 1, 2 do Update σn,r = 1√
1+x2

where x is solved as in (10)

4 Compute Gf as in (17), Γ n = XT
nGf where Xn = [W(n), V̄(n)]

5 Update Xn = [W(n), V̄(n)] as in (16)

6 U(n) ← W(n) diag(ξn) + V̄(n) diag(σn)

until a stopping criterion is met

7 for n = 1, . . . , N do Select V
(n)
3:R−2 as an orthogonal complement of

[W(n), V̄(n)]
8 Compute output G and H as in (6) and (5)

4 Simulations

Example 1 [Decomposition of Small Tensors Admitting the CP Model]. In this
first example, we illustrate the block deflation of tensor of size R×R×R and of
rank R where R = 10, 20, 30. The weight coefficients λr were set to 1, whereas
collinearity degrees between components a

(n)
r and a

(n)
s for all r = s were set to

c in the range [0, .9], a
(n)T
r a

(n)
s = c and a

(n)T
r a

(n)
r = 1 for all n. We compare the

ASU algorithm with the ALS algorithm [5] for the multilinear rank-(Lr,Mr, Nr)
block tensor decomposition with two blocks. For this problem, one can use the
non-linear least squares (NLS) algorithm [6]. However, as similar to the ALS
algorithm [5], the NLS algorithm needs to estimate two core tensors and full
factor matrices. Hence this algorithm is much more expensive than the ASU
algorithm. Simulations were run on a Macbook-air laptop having 4 GB memory
and a 1.8 GHz core i7. Due to space and time consuming, the ALS [5] was only
ran in simulations for R = 10.

The algorithms were initialised by the same values generated using the
Direct Trilinear Decomposition (DTLD) [13]. The algorithms ran until differ-
ences between consecutive approximation errors were small enough, |εk−εk+1| ≤
10−6 εk where ε = ‖Y − Ŷ‖2F , or when the number of iterations exceeded 1000.
Performances were assessed through the squared angular error SAE in estima-

tion of components a(n) SAE = arccos
(

aT â
‖a‖2‖â‖2

)2

. There were 100 independent
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Fig. 2. Comparison of median SAEs and execution times of the ASU and ALS algo-
rithms [5] in decomposition of tensors of size R × R × R and rank R where R = 10, 20
and 30 for Example 1.

Table 1. Comparison of execution times of the ASU algorithm to extract two compo-
nents from high rank-R tensors, and those of the CP-FastALS algorithm for Example 2.

Execution time (second)

c = 0.1 0.2 0.3 0.4 0.5 0.6

R = 300

ASU 3.81 3.66 3.76 3.82 3.89 3.77

CP-FastALS 530.6 543.5 537.6 537.6 541.9 539.2

R = 500

ASU 38.4 16.7 16.5 16.9 16.8 17.1

CP-FastALS 3658 3672 3679 3693 3678 3669

runs for each rank R = 10, 20 and 30. The Gaussian noise was added into the
tensor with signal-noise-ratio SNR = 30 dB.

Figure 2 shows median SAE (MedSAE) in dB (−10 log10 SAE) obtained by
ASU and ALS [5] compared with the Cramér-Rao Induced bound (CRIB) [14]
on the squared angular error. The algorithms succeeded in most cases, but failed
only when c = 0.9. For such difficult scenarios, CRIB on SAE was about 17.8 dB,
indicating an angular error of 7.4 degrees between the original and estimated
components. We note that in practice, it is hard to estimate a component with
CRIB less than 20 dB, i.e., angular error of 5.7 degrees [15].

In Fig. 2, we compare execution times (in second) of algorithms for different
ranks. Since the decomposition became more difficult when c was close to 1,
running times of algorithms increased as shown in Fig. 2 (right). The ASU
algorithm was on average 8 times faster than ALS [5] when R = 10.

The results confirmed high speed and accuracy of the proposed ASU
algorithm.
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Example 2 [Decomposition of Large-Scale Tensors with High Rank]. This
example illustrates an advantage of ASU over existing algorithms for the ordi-
nary CPD in decomposition of large-scale tensors with relatively high rank R =
300 and 500. We generated rank-R synthetic tensors of size R × R × R as in the
previous example. Components a

(n)
r and a

(n)
s for r = s have identical collinear-

ity degrees, i.e., a
(n)T
r a

(n)
s = c where c = 0.1, 0.2, . . . , 0.6. The Gaussian noise

was at SNR = 30 dB. Simulations were run on a computer consisted of Intel
Xeon 2 processors clocked at 3.33 GHz, 64 GB of main memory. Comparison of
execution times of ASU and FastALS [16] is given in Table 1.

5 Conclusions

We have introduced a rank-splitting scheme for CPD, and developed an ASU
algorithm for rank-2 block deflation. The algorithm needs to estimate only 4
vectors and two scalars per dimension, and has a computational cost of O(R3)
for a tensor of size R×R×R. Further detail and applications of the block tensor
deflation are described in the full paper [7]. The algorithm can be extended to
higher order tensors, and decomposition with additional constraints. Algorithms
for the block tensor deflation are implemented in the Matlab package TEN-
SORBOX which is available online at: http://www.bsp.brain.riken.jp/∼phan/
tensorbox.php.
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Abstract. In this paper we study the identifiability of the Paralind
model with sparse interaction matrices (i.e. S-Paralind). We provide
some theoretical results on how to obtain the sparsest interaction matri-
ces in some particular configurations and when these matrices are unique.
These results could be use for the design and analysis of �0-based decom-
position algorithms.

1 Introduction

The Parafac [8,14] decomposition of an X (I ×J ×K) 3-way array (or tensor)
into sum of R rank-1 tensors is given by X =

∑R
r=1 ar ◦ br ◦ cr, where ar,

br and cr are vectors of dimensions I, J and K, respectively, and “◦” denotes
the outer vector product. For simplicity, the noise/error term in the model is
ignored at this point of the presentation. By regrouping the vectors of the three
dimensions (or “modes”) of X into three component matrices A = [a1 . . . aR],
B = [b1 . . .bR] and C = [c1 . . . cR], an alternative notation for the Parafac
decomposition of X is obtained:

X = [[A,B,C]]. (1)

In some applications, prior knowledge on the existence of linear dependencies
between the columns of the component matrices is available. This information
can be explicitly taken into account by introducing some constraint (or interac-
tion) matrices Ψ(R1 × R), Φ(R2 × R), Ω(R3 × R), containing the linear depen-
dency patterns between the columns of A, B, C, respectively. Thus, instead of
[[A,B,C]] the decomposition is given by

X = [[ÃΨ , B̃Φ, C̃Ω]], (2)

with Ã(I × R1), B̃(J × R2) and C̃(K × R3) full column rank matrices. This
type of decomposition was introduced in [6] and previous versions, and named
Paralind1. A slightly different version, Confac2, with the constraint matrices

1 PARAllel profiles with LINear Dependencies.
2 CONstrained FACtor decomposition.

c© Springer International Publishing Switzerland 2015
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having canonical vectors as columns, was proposed in [2,3]. A less general frame-
work (involving structured types of linear dependencies), but often highly inter-
pretable, called Block Component Model (BCM) was introduced in [10]. These
decompositions proved their usefulness in various domains such as telecommu-
nications [3,17,19,20], spectroscopy [4,5,9] or direction finding [16,21].

In general, the algorithms for fitting the Paralind model assumes that the
constraint matrices are a priori known. However, this is not always the case in
practice. Moreover, in some real life applications it may be of practical interest
to estimate these constraint matrices, as they provide important information on
the interactions between the physical mechanisms generating the data. A blind
alternating least squares (ALS) estimator for the Paralind model, referred
to as ALS-Paralind, was proposed in [6]. However, for identifiability reasons
(as explained in the next section), the interaction matrices estimated by this
approach are highly dependent on the algorithm initialization, which limits their
practical utility. To regularize this ill-posed inverse problem, we proposed in [7]
to impose sparsity constraints on the interaction matrices, leading to sparse
Paralind (S-Paralind). These constraints are physically meaningful as they
aim at explaining the interactions between the mechanisms generating the data
in the simplest way possible. However, no results were given in [7] regarding the
identifiability of the S-Paralind model; the objective of this paper is to shed
some light on this aspect.

2 Identifiability of S-Paralind Model

2.1 Preliminaries

A model is said identifiable if all its parameters can be uniquely estimated from
the data, up to some trivial indeterminacies. Thus, in this paper, identifiability
can be understood as a uniqueness problem. For example, the Parafac model
given by (1) is identifiable if the matrices A,B,C can be uniquely estimated from
X up to simultaneous column permutation and column-wise rescaling. The most
well-known Parafac identifiability condition is due to Kruskal [15] and is based
on the Kruskal-rank3 of the component matrices A,B,C. Following [6], identi-
fiability of the Paralind model is essentially the same as that of the Parafac
model. If the interaction matrices are fixed and known, identifiability conditions
specific to Paralind can be found in [18]. If these interaction matrices are not
known, the identifiability problem can be much more complicated. In particu-
lar, it may happen that only some components of the three matrices, or only
one matrix (among the three) are identifiable, resulting in the so-called par-
tial uniqueness or uni-mode uniqueness results. The interested reader is referred
to [13] for details.

Let us now assume that the uniqueness of matrix A is fulfilled and that
we aim at estimating the constraint matrix Ψ together with the full column

3 The Kruskal-rank of a matrix A (denoted kA) is the maximum number � such that
every � columns of A are linearly independent.
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rank matrix Ã. The identifiability of Ψ and Ã comes down to the uniqueness
of the bilinear decomposition A = ÃΨ . Without any further constraints, such a
decomposition is not unique since an alternative decomposition can be obtained
as A = ÃΨ = (ÃT−1)(TΨ) = Ã′Ψ ′, for any non-singular matrix T. By impos-
ing sparsity on the constraint matrix Ψ (which should have a minimum number
of non-zero entries), we try to explain the rank deficiency of matrix A by con-
sidering the simplest dependency pattern between its columns. This problem
has close connection with the problem of dictionary identification using sparse
matrix factorization and sparse component analysis, which has been studied in
different papers such as [1,11,12]. Basically, in [1,11], the problem is addressed
as a �2 − �0 optimization problem. Using a geometrical point of view, identifi-
ability conditions are obtained requiring that the size of the training set grows
exponentially with the number of atoms. In contrast, the work of [12] addresses
the problem as a �2 − �1 (non combinatorial) optimization problem. It is shown
that the size of training set only needs to grow quadratically with the number
of atoms.

All these works consider the problem of overcomplete dictionary recovery.
We to stress up the fact that this is one of the main differences with the problem
addressed in this paper where only full column rank dictionaries are considered.

The rest of the section aims at giving some answers to the following questions:
– When is the matrix Ã, yielding the sparsest Ψ , a submatrix of A?
– When is the decomposition A = ÃΨ unique?

Before addressing analytically these problems, let us consider some examples
to illustrate the purpose. Let A be given by

A = [a1 a2 a3 a1 + a2] = [a1 a2 a3]

⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 0

⎤

⎦ (3)

= [a1 + a2 a1 + a3 a2 + a3]

⎡

⎣
1/2 1/2 −1/2 1
1/2 −1/2 1/2 0

−1/2 1/2 1/2 0

⎤

⎦ (4)

As illustrated by (3) and (4), it appears that the sparsest matrix Ψ is obtained
by selecting R1 independent columns of A to form Ã. It is worth noting that
imposing sparsity of Ψ does not ensure the uniqueness of the bilinear decompo-
sition. For example, another possible decomposition of A is

A = [a1 a3 a1 + a2]

⎡

⎣
1 −1 0 0
0 0 1 0
0 1 0 1

⎤

⎦ . (5)

One can see that Ψ matrix in (5) has the same sparsity degree as the one in (3).

2.2 Choosing a Basis of the Column Space of a that Yields
the Sparsest Ψ

Now we are ready to provide some results on what is the “best” basis, that is the
“best” matrix Ã, for having the sparsest Ψ matrix. However, it is first necessary
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to introduce some notations. Let A be a matrix of dimension (M × N),M ≥ N
and let rA = rank(A) ≤ N . We aim at finding a factorization of the matrix
A = ÃΨ where Ã is a (M × rA) (tall) matrix and Ψ is (rA × N) (fat) matrix.
The considered factorization problem is known to be subject to permutation and
scale ambiguities. To remove scale ambiguities we impose to have the maximum
value of each column of Ψ equal to 1.

Let us denote the set of admissible bases of the column space of A by
A = {Ã of size (M × rA)/span(Ã) = span(A)}. The problem of finding the
factorization of A having the sparsest Ψ can then be formulated as follows:

min
(Ã,Ψ), Ã∈A, A=ÃΨ

‖Ψ‖0 (6)

where ‖Ψ‖0 stands for the �0 pseudo-norm of matrix Ψ , that is the number of
non-zero entries of Ψ .

Proposition 1. Let A = Ã1Ψ1 = Ã2Ψ2 where both Ã1 and Ã2 are full column-
rank matrices in A such that Ã1 is composed of rA ≤ N independent columns
of A and Ã2 is composed of rA ≤ N independent linear combination of the
columns of A1 which are not proportional to the columns of A. If rA satisfies
r2A − (N + 1)rA + 2N ≥ 0, then ‖Ψ1‖0 ≤ ‖Ψ2‖0.

Proof. Let A = Ã1Ψ1 = Ã2Ψ2 where both Ã1 and Ã2 are full column-rank
matrices in A. The matrix Ψ1 can be written as Ψ1 = [ψ1(1) · · · ψ1(N)] and Ψ2 =
[ψ2(1) · · · ψ2(N)]. Now we assume that Ã1 is composed of rA ≤ N independent
columns of A, which, without loss of generality, are assumed to be the first rA
columns: ψ1(1), · · · ,ψ1(rA). Thus, the number of non-zero elements of Ψ1 is
given by:

‖Ψ1‖0 =
N∑

i=1

‖ψ1(i)‖0 =
rA∑

i=1

‖ψ1(i)‖0 +
N∑

i=rA+1

‖ψ1(i)‖0 = rA +
N∑

i=rA+1

‖ψ1(i)‖0

As ∀i = rA + 1, · · · , N, kA ≤ ‖ψ1(i)‖0 ≤ rA , ‖Ψ1‖0 is bounded by: rA +
(N − rA)kA ≤ ‖Ψ1‖0 ≤ rA + (N − rA)rA. Let us now consider the matrix
A2. Since Ã2 is composed of rA ≤ N independent linear combination of the
columns of A1 which are not proportional to the columns of A, we have ∀i =
1, · · · , N, ‖ψ2(i)‖0 ≥ 2 and ‖Ψ2‖0 ≥ 2N . Thus, ‖Ψ1‖0 ≤ ‖Ψ2‖0 if rA + (N −
rA)rA ≤ 2N , that is: r2A − (N + 1)rA + 2N ≥ 0.

Remark 1. It can be noticed that r2A − (N + 1)rA + 2N ≥ 0 is satisfied for all
rA ≤ N ≤ 6. This is no longer true when N > 6.

Remark 2. The result of Proposition 1 is based on the worst case scenario since
it corresponds to the least favorable case ‖ψ1(i)‖0 ≤ rA. This condition can be
relaxed by imposing a more favorable situation such as: ‖ψ1(i)‖0 ≤ rA−k which
results in rA+(N −rA)(rA−k) ≤ 2N , that is r2A−(N +k+1)rA+(2+k)N ≥ 0.
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Remark 3. In Proposition 1, it is assumed that Ã2 does not include any column
of A. Let us now examine what happens if Ã2 does include a number of l ≤ rA
columns of A. In such a case, the sufficient condition for having ‖Ψ1‖0 ≤ ‖Ψ2‖0
is r2A − (N + k + 1)rA + (2 + k)N ≥ l.

The results corresponding to Proposition 1 and Remark 2 are shown in Fig. 1 for
different values of N . The bottom curve corresponds to the case of Proposition 1
(k = 0). The other curves are obtained for increasing values of k. For all the
cases corresponding to the values of the plotted curves greater that the threshold
(set to 0), the solutions obtained by considering independent columns of A are
sparser than those obtained by considering linear combinations of columns of
A which are not proportional to the columns of A. As mentioned in Remark 1,
Proposition 1 is always true for N ≤ 6. The case N = 6 is depicted on the left-
hand side of Fig. 1. The case of Remark 3, which corresponds to having l columns
of A in Ã2, is simply obtained by shifting the threshold to a value equal to l.

To further illustrate these results, we provide next an example in which the
condition of Proposition 1 is not fulfilled and for which it is possible to find a
sparser decomposition with a basis not consisting of columns of A. Let A be the
following matrix:

A = [a1 a2 a3 a4 a1 − a2 − a4 a1 + 2a2 − a3 + a4 a1 − a2 + a3 a2 − a3 − a4]

= [a1 a2 a3 a4]

⎡
⎢⎢⎣

1 0 0 0 1 1 1 0

0 1 0 0 −1 2 −1 1

0 0 1 0 0 −1 1 −1

0 0 0 1 −1 1 0 −1

⎤
⎥⎥⎦ (7)

= [(a1 + a4)/2 (a1 − a4)/2 a2 − (a1 − a4)/2 a3 − a2 + (a1 − a4)/2]⎡
⎢⎢⎣

1 0 0 1 0 0 1 1

1 1 0 −1 1 0 0 0

0 1 1 0 −1 −1 0 0

0 0 1 0 0 1 1 −1

⎤
⎥⎥⎦ . (8)

The number of non-zero elements of the matrix Ψ corresponding to the first
decomposition equals 17 while that of the second is 16. Indeed, in that case N = 8
and rA = 4. Thus r2A − (N + 1)rA + 2N < 0, and the sparsest decomposition
cannot be guaranteed to correspond to a matrix Ã including only columns of A.
For example, the second decomposition (8) is sparser than the decomposition (7).

Finally, to conclude this part, we can consider a special case where the depen-
dencies take only the form of collinear loadings. This corresponds to having
k = rA − 1 in r2A − (N + k + 1)rA + (2 + k)N ≥ 0, yielding rA ≥ 0 which is
always satisfied. In other words, in the case of collinear loading only, the matrix
Ã yielding the sparsest solution consists (obviously) in a selection of rA inde-
pendent columns of A.

2.3 Uniqueness of the Sparsest Decomposition

In this part we aim at studying the uniqueness of the sparsest decomposition
A = ÃΨ . For all the uniqueness results presented in this part we assume that
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Fig. 1. Illustration of the sparsity properties: the bottom curve corresponds to the case
of Proposition 1. The others correspond to the case of Remark 2 for different values of
k. As k is increasing, there are much more situations in which the condition ‖Ψ1‖0 ≤
‖Ψ2‖0 is fulfilled.

the full column rank matrix Ã yielding the sparsest solution is a submatrix
of A. The uniqueness properties of the case where Ã is not a sub matrix of
A are much more difficult to analyze. Thus, the matrix A can be written as:
A = [Ã Ă] = [ã1, · · · , ãrA , ărA+1, · · · , ăN ]. Defining the matrix Ai = [Ã ăi],
its Kruskal-rank satisfies kA ≤ kAi ≤ rA and each ăi can be expressed as a
linear combination of exactly kAi columns of Ã. In other words : ăi = Ãψ(i) and
‖ψ(i)‖0 = kAi . We define the set Ã = {Ã/Ã is a submatrix of A, span(Ã) =
span(A)} ⊂ A.

Proposition 2. Let Ã1 �= Ã2 two matrices of Ã and Ψ1 and Ψ2 the two
matrices satisfying A = Ã1Ψ1 = Ã2Ψ2. Then ‖Ψ1‖0 ≤ ‖Ψ2‖0 if and only if∑N

rA+1 kAi
1

≤ ∑N
rA+1 kAi

2
.

Proof. After a proper column permutation, the matrix A can be written as
A = [Ã1 Ă1], thus we have: A = Ã1Ψ1 = [IrA ,ψ(rA + 1) · · · ψ(rN )] where IrA
is the identity matrix of dimension rA. The number of non-zero elements of Ψ1 is
given by ‖Ψ1‖0 = rA+

∑N
rA+1 ‖ψ1(i)‖0, which, as shown earlier, is equivalent to

‖Ψ1‖0 = rA +
∑N

rA+1 kAi
1
. Similarly we can write ‖Ψ2‖0 = rA +

∑N
rA+1 kAi

2
. It

follows immediately that ‖Ψ1‖0 ≤ ‖Ψ2‖0 if and only if
∑N

rA+1 kAi
1

≤ ∑N
rA+1 kAi

2
.

A straightforward extension of Proposition 2 is given by the following propo-
sition which gives the condition for having the sparsest and possibly unique
decomposition of A:

Proposition 3. If ∃ Ã0 ∈ Ã suchas∀Ã ∈ Ã, Ã �= Ã0,
∑N

rA+1 kAi
0

≤ ∑N
rA+1 kAi

then the decomposition A = Ã0Ψ0 is the sparsest decomposition. If the inequality
is strict (<), the sparsest decomposition is unique.

It should be noted that Proposition 3 does not provide any effective means
to find the sparsest decomposition of A. Indeed, finding it would require to
find all the possible basis consisting in rA columns of A which is actually an
NP-complete combinatorial problem.

The result of Proposition 3 can be specialized into the following cases:
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– The linear dependencies between the columns of A are only colinearities. In
that case Ã only includes a single element since any selection of rA indepen-
dent columns of A will result in the same basis up to scale and permutation.
Thus the decomposition is unique.

– A has a Kruskal-rank equal to its rank i.e. kA = rA. In that case, any selection
of rA columns of A is a basis and ∀Ã ∈ Ã, kAi = kA,∀i = rA + 1, · · · , N .
Thus ∀Ã ∈ Ã, ‖Ψ‖0 = (N − rA + 1)rA.

In practice, having a unique sparsest matrix Ψ is not crucial. Indeed, from a
Paralind point of view, having a number of decompositions yielding the same
degree of sparsity simply means that all these decompositions are equivalent.

3 Conclusion

In this paper we provided some rank-based results for the identifiability of the
Paralind model with sparse interaction matrices (S-Paralind). More pre-
cisely, we prove a condition that indicates in which cases, choosing the Paralind
loadings between the loadings of the associated Parafac decomposition yields
the sparsest interaction matrix. These results could be helpful for the design and
the analysis of �0-based algorithms for the decomposition of bilinear/multilinear
arrays.

References

1. Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictio-
naries, and a practical way to retrieve them. Linear Algebra Appl. 416, 48–67
(2006)

2. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: A constrained factor decomposition
with application to MIMO antenna systems. IEEE Trans. Signal Process. 56(6),
2429–2442 (2008)

3. de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Constrained tensor modeling app-
roach to blind multiple-antenna CDMA schemes. IEEE Trans. Signal Process.
56(6), 2417–2428 (2008)

4. Bahram, M., Bro, R.: A novel strategy for solving matrix effect in three-way data
using parallel profiles with linear dependencies. Anal. Chim. Acta 584(2), 397–402
(2007)

5. Brie, D., Klotz, R., Miron, S., Moussaoui, S., Mustin, C., Ph, B., Grandemange, S.:
Joint analysis of flow cytometry data and fluorescence spectra as a non-negative
array factorization problem. Chemometr. Intell. Lab. 137(1), 21–32 (2014)

6. Bro, R., Harshman, R.A., Sidiropoulos, N.D., Lundy, M.E.: Modeling multi-way
data with linearly dependent loadings. J. Chemometr. 23(7–8), 324–340 (2009).
special Issue: In Honor of Professor Richard A. Harshman

7. Caland, F., Miron, S., Brie, D., Mustin, C.: A blind sparse approach for estimat-
ing constraint matrices in paralind data models. In: Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th European, pp. 839–843. Bucharest,
Romania (2012)



48 S. Miron and D. Brie

8. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition. Psychome-
trika 35(3), 283–319 (1970)

9. Chen, H., Zheng, B., Song, Y.: Comparison of PARAFAC and PARALIND in
modeling three-way fluorescence data array with special linear dependences in three
modes: a case study in 2-naphthol. Chemometr. Intell. Lab. 25(1), 20–27 (2011)

10. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms - Part II:
Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

11. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source
separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–
996 (2005)

12. Gribonval, R., Schnass, K.: Dictionary identification - sparse matrix-factorisation
via �1-minimisation. IEEE Trans. Inf. Theory 56(7), 3523–3539 (2010)

13. Guo, X., Miron, S., Brie, D., Stegeman, A.: Uni-mode and partial uniqueness con-
ditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent
loadings. SIAM J. Matrix Anal. Appl. 33(1), 111–129 (2012)

14. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions
for an ‘explanatory’ multimodal factor analysis. UCLA Working Papers Phonetics
16, 1–84 (1970)

15. Kruskal, J.B.: Three-way arrays: Rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear Algebra Appl.
18(2), 95–138 (1977)

16. Liu, X., Guang, L., Yang, L., Zhu, H.: PARALIND-based blind joint angle and
delay estimation for multipath signals with uniform linear array. EURASIP J.
Appl. Signal Process. 2012(1), 1–13 (2012)

17. Nion, D., De Lathauwer, L.: A block component model-based blind DS-CDMA
receiver. IEEE Trans. Signal Process. 56(11), 5567–5579 (2008)

18. Stegeman, A., de Almeida, A.L.F.: Uniqueness conditions for constrained three-
way factor decompositions with linearly dependent loadings. SIAM J. Matrix Anal.
Appl. 31(3), 1469–1499 (2009)

19. Xiaofei, Z., Fei, W., Dazhuan, X.: Blind signal detection algorithm for MIMO-
OFDM systems over multipath channel using PARALIND model. IET Commun.
5(5), 606–611 (2011)

20. Zhang, X., Gao, X., Wang, Z.: Blind paralind multiuser detection for smart antenna
CDMA system over multipath fading channel. Prog. Electromagnet. Res. 89, 23–38
(2009)

21. Zhang, X., Zhou, M., Li, J.: A PARALIND decomposition-based coherent two-
dimensional direction of arrival estimation algorithm for acoustic vector-sensor
arrays. Sensors 13(4), 5302–5316 (2013)



Tensors and Latent Variable Models

Mariya Ishteva(B)

Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
mariya.ishteva@vub.ac.be

http://homepages.vub.ac.be/~mishteva

Abstract. In this paper we discuss existing and new connections between
latent variable models from machine learning and tensors (multi-way
arrays) from multilinear algebra. A few ideas have been developed inde-
pendently in the two communities. However, there are still many useful
but unexplored links and ideas that could be borrowed from one of the
communities and used in the other. We will start our discussion from sim-
ple concepts such as independent variables and rank-1 matrices and grad-
ually increase the difficulty. The final goal is to connect discrete latent tree
graphical models to state of the art tensor decompositions in order to find
tractable representations of probability tables of many variables.

Keywords: Latent variable models · Tensor · Low rank

1 Introduction

The goal of this paper is to draw a parallel between some classical concepts and
models in probability theory and statistics, and on the other hand notions and
decompositions from (multi)linear algebra. Some related analogies can be found
in [2,16,20]. Here we put more emphasis on the linear algebra aspects.

We consider discrete random variables, which are variables that take values
from a set of possible values, each with an associated probability. We denote
these random variables as Xi, i = 1, 2, . . . , d. For simplicity, let us assume that
their set of possible values is {1, 2, . . . , n}. We denote the probability of a variable
Xi taking value j by Pi(j) = P (Xi = j) ∈ R.1 The marginal distribution of Xi

is then the vector Pi =
[
Pi(1) · · · Pi(n)

]�
, i = 1, 2, . . . , d.

We first discuss the special cases of two and three random variables, in Sects. 2
and 3, respectively. In Sect. 4, we deal with larger numbers of random variables,
aiming at tractable representations of their joint probability tables. In the last
part of the paper we provide a discussion and the conclusions.

2 Two Random Variables

The joint probability table of two variables X1 and X2 can be represented as a
matrix P (X1,X2) ∈ R

n×n, denoted here simply by P12. We have P12(x1, x2) =
1 The values of Pi(j) are actually in the interval [0, 1] but for the purposes of this

paper it is easier to think of them as real numbers.

c© Springer International Publishing Switzerland 2015
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P (X1 = x1,X2 = x2). For example, P12(2, 3) is then the probability that X1

and X2 take values 2 and 3, respectively.
In the special case when the variables are independent, i.e., X1 ⊥ X2, we

have
P12(x1, x2) = P1(x1)P2(x2).

In this case, we can represent their joint probability table P12 as the outer
product of the marginal distributions, i.e.,

P12 = P1P
�
2 .

In linear algebra terms, this means that the rank of the matrix P12 is 1.

X1,X2; P (X1, X2)

X1 ⊥ X2

P12(x1, x2) = P1(x1)P2(x2)

P12 ∈ R
n×n

rank-1 matrix

=

Rank-1 matrices play an important role in linear algebra, as do independent
variables in statistics. However, more interesting cases occur when we encounter
rank-k matrices. These matrices are generalizations of rank-1 matrices and as
such they carry more information. On the other hand, compared to full rank
matrices, they can also be more informative since they imply a simplification or
structure in some sense.

A rank-k matrix of size n × n, with k < n, can be represented as a product
of three matrices of dimensions n × k, k × k, and k × n, respectively. One such
representation can be obtained from the singular value decomposition (SVD),
but there are many other possibilities. For example, in case of probability tables,
we can use conditional probability tables (CPT) as factors, as follows

P12 = P (X1|H) diag(P (H))P (X2|H)�,

where H is a new hidden (latent) variable with k states and diag(P (H)) is a
diagonal matrix, whose diagonal equals to the vector P (H). Element-wise we
have

P12(x1, x2) =
∑

h

P (x1|h)P (x2|h)P (h).

X1,X2; P (X1, X2)

H

X1 X2

P12(x1, x2) =
h

P (x1|h)P (x2|h)P (h)

P12 ∈ R
n×n

low-rank matrix
rank-k matrix, k < n

=
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3 Three Random Variables

In case of three independent random variables, we have

P123(x1, x2, x3) = P1(x1)P2(x2)P3(x3).

In (multi)linear algebra terms, the joint probability table P123 is then a rank-1
tensor, as it can be represented as the outer product of three vectors, namely
the marginal distributions P1, P2, and P3, i.e.,

P123 = P1 ◦ P2 ◦ P3,

where ◦ denotes outer product.

X1,X2, X3; P (X1, X2, X3)

X1,X2, X3 independent

P123(x1, x2, x3) = P1(x1)P2(x2)P3(x3)

P123 ∈ R
n×n×n

rank-1 tensor

=

As in the matrix case, low-rank tensors are more general than rank-1 tensors,
while being more informative than “full rank” tensors. A low-rank probability
table represents the fact that the three observed variables depend on a latent
variable with fewer (k) states.

X1, X2, X3; P (X1, X2, X3)

H

X1 X2 X3

P123(x1, x2, x3)

=
h

P1(x1|h)P2(x2|h)P3(x3|h)P (h)

P123 ∈ R
n×n×n

rank-k tensor, k < n

=

= · · ·

As before, the factors of the tensor decomposition can be related to the
conditional probability tables P (X1|H), P (X2|H), and P (X3|H) and a diagonal
tensor with P (H) on its diagonal. This decomposition is equivalent to the so-
called canonical polyadic decomposition [1,10], which is a decomposition of a
tensor in rank-1 terms. Element-wise we have

P123(x1, x2, x3) =
∑

h

P1(x1|h)P2(x2|h)P3(x3|h)P (h).
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4 Tractable Representations for a Larger Number
of Random Variables

We could continue further by adding more random variables and making an
analogy between higher-order low-rank tensor decompositions and expressions
for the probability table based on conditional probability tables. However, in
order to build more realistic models, it could be more useful to consider adding
more latent variables as well.

The challenges are to

– Choose an appropriate model,
– Learn the correct structure,
– Estimate the parameters.

The focus of the current paper is mainly on the representation (choice of a
model). Some pointers to the remaining two problems are mentioned in Sect. 5.

The following links can be made between some widely used graphical models
and state-of-the art tensor decompositions. We elaborate on them below.

H

X1 X2 Xn· · ·
Canonical Polyadic decomposition

H1 H2 H3 Hn

X1 X2 X3 Xn

· · ·

Hidden Markov model Tensor Train

H

X1 X1 X

X1 X1 X1

Latent tree model Hierarchical Tucker

Consider, for example, 10 variables, each having 10 states. Their joint prob-
ability table has 1010 entries and is intractable. Latent variable models assume
that the observed random variables are linked through hidden (latent) variables.
Latent tree models further assume that the conditional independence structures
are trees and usually that the observed variables depend on the latent ones, the
latter having a smaller number of states. Assuming a tree structure leads to a
reduction of the number of parameters from exponential to polynomial, while
still capturing rich probabilistic dependencies among random variables.
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In (multi)linear algebra, analogous decompositions have also been stud-
ied. These are the so-called hierarchical decompositions, which are applicable
for high-order tensors. The two most popular decompositions are the tensor
train [15] and the hierarchical Tucker decomposition [7]. These decompositions
allow for a high-order tensor to be decomposed as a product of third-order ten-
sors and second-order tensors (matrices). In this way, a table with 1010 elements
is decomposed or approximated by less than 10 × 103 parameters. The fact that
the latent variables usually have less states than the observed ones translates to
having low-rank factors in the hierarchical tensor decompositions, which reduces
the number of meaningful parameters further.

The tensor train and hierarchical Tucker decompositions can directly be
applied to decompose the given joint probability table if no information about
connections between the observed variables is given. On the other hand, if addi-
tional information is provided, the hierarchical decompositions can be modified
to account for this information. Moreover, latent (tree) variable models can also
be used as an inspiration to design more meaningful hierarchical tensor decom-
positions, by performing the decompositions in accordance with the data, rather
than choosing to compute a sequence of factors in the fastest possible way.

5 Further Reading and Discussion

Tensor decompositions are becoming increasingly popular in various research ares.
For further information on tensor decompositions and their applications, we refer
to the overview papers [3,5,8,12,13], books [4,9,14,17] and the references therein.

The canonical polyadic decomposition avoids the curse of dimensionality and
is unique under mild conditions [6], which can be useful for practical applications.
However, it is possible that the best approximation of certain (low) rank may not
exist. The hierarchical tensor decompositions avoid the curse of dimensionality
and have relatively small number of parameters. These decompositions always
exist and can be computed using multiple singular value decompositions. For a
recent tutorial on breaking the curse of dimensionality, see [19].

In the current paper we concentrated on equivalences in representations
between tensors and latent tree graphical models. Some of these links have been
used for learning tree structures [11] and estimating (alternative) parameters
[18]. Note that due to some rotational invariances of the hierarchical Tucker
decomposition, alternative parameters are learned and the low-rank factors in
the hierarchical decomposition do not have an interpretation of conditional prob-
ability tables. However, the obtained parameters still allow to represent the mar-
ginal probability table of the observed variables in a compact and robust way.
Imposing constraints, such as nonnegativity, could potentially improve the inter-
pretability of the factors.

6 Conclusions

Real data are often multi-way and modeling them as tensors not only provides a
higher-level view, but also has a number of additional advantages. Some tensor
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decompositions such as (hierarchical) Tucker and tensor train are flexible enough
to allow different ranks in different modes. Other decompositions, such as the
canonical polyadic decomposition are unique under mild conditions, which can
be useful for practical applications. Last but not least, the canonical polyadic
decomposition as well as the hierarchical decompositions avoid the curse of
dimensionality, allowing for tractable representations of the probability tables
of large number of variables.

To simplify the presentation, we assumed that all random variables had the
same number of states. The analogies are valid also if this assumptions does not
hold true. It is also possible to extend the presented ideas from the discrete to the
continuous case. Finally, the fact that the probabilities are always non-negative
and smaller than one should also be taken into account.
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Abstract. Communication signals such as multiple constellation
signals have complex waveforms and may have multipath source reflec-
tion and noncircularity problems. Tensor based source separation tech-
niques have become increasingly popular for various applications as they
exploit different inherent diversities of the sources. In this paper, a ten-
sor based convolutive source separation algorithm is developed based on
PARAFAC2. The optimisation technique is based on the direct model
fitting of PARAFAC and augmented statistics. The proposed method
is evaluated using simulated data with multiple pathways and various
noncircularity levels. Simulation results confirm the superiority of the
proposed method over the existing popular techniques.

Keywords: Augmented statistics · Complex valued signals · Convolu-
tive mixtures · Noncircularity level · Phase shift keying · Tensor factori-
sation

1 Introduction

In a number of applications such as communication signal processing, com-
plex valued signals are recorded at the receiver. Phase shift keying (PSK) and
quadrature amplitude modulation (QAM) can be considered as some examples
where the multiple constellation signals are represented in complex domain. The
recorded complex valued signals usually suffer from multipath including time
delay and noise that confirms the necessity of having source separation for com-
plex valued signals.

Among several approaches, complex fastICA as an extension of traditional
fastICA has been proposed recently [1]. This method is based on a fixed-point
algorithm with local stability considering circular sources. FastICA is an orthog-
onal separation method that limits the fastICA applications to the instantaneous
linear systems.

In the case of complex signals, circularity is a common assumption. It means
that the correlation between real and imaginary parts of the complex values
is ignored. Therefore, the complex valued mixture has a rotationally invariant
probability distribution in the complex plane. This assumption ignores the full
statistical information that results in stability problem when the sources are
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 56–63, 2015.
DOI: 10.1007/978-3-319-22482-4 7
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noncircular (there is some correlation between real and imaginary parts) as in
the complex fastICA approach [6]. To solve this problem, augmented statistics
that exploit the complete second-order information by involving the effect of
pseudo covariance can improve the separation performance [4,14]. For example,
noncircular complex ICA (NCICA) is one of ICA extensions that considers the
statistical dependency between the real and imaginary parts [17].

On the other hand, having signals of various amplitude-phase constellations
may further complicate the whole process. This problem addressed as convo-
lutive blind source separation (CBSS) is tackled in this article. Similar to the
instantaneous case, CBSS aims at receiving the sources from the observed con-
volutive mixtures. However, CBSS problems are more challenging due to the
numbers of channel parameters that should be estimated.

The proposed CBSS techniques are usually classified to frequency and time
domain methods [20]. Frequency based methods transfer time domain signal to
the frequency domain where the CBSS problem is changed to instantaneous case
for each frequency bin. The advantage of such techniques is having multiple inde-
pendent estimations with fewer parameters at each frequency bin. Parra and
Spence [19] suggested a method based on a multiple decorrelation approach. It is
quite similar to the other techniques by Kawamoto [11] and Murata et al. [15] for
the frequency domain and Wee and Principe [21]method in time domain.The main
shortcoming of frequencybased techniques is the arbitrary permutation ambiguity.

On the other hand, the shortcoming of time domain techniques is their need
for estimation of a larger set of parameters. However, they usually have good
performance compared with that of frequency domain methods.

The proposed method based on tensor factorisation which is suitable for sep-
aration of convolutive complex signals exploits augmented statistics. We call the
method complex augmented tensor factorisation (CATF). Tensor factorisation
has become popular in many applications such as chemometrics [2], biomed-
ical [16], antenna array and signal processing [5,13]. A tensor is a multi-way
data representation and using it the true underlying structure of the data can be
extracted. Tensor factorisation is applicable to both nonstationary and under-
determined cases. The signal that in general changes in time, frequency, and
space can be tracked using tensor factorisation. The proposed CATF method
is an extension of parallel factor analysis (PARAFAC) or more specifically
PARAFAC2 [8,12] algorithm for which the convolutive model is considered. The
CATF is tested for various conditions and compared with those of NCICA and
Parra’s method.

The remainder of the paper is structured as follows: first, our CATF method
and the decomposition technique used here are explained. Then, the results of
applying the CATF to synthetic data are shown and discussed.

2 PARAFAC and PARAFAC2

PARAFAC [3,8] decomposes a multi-way array into a sum of some rank-one
tensors. For instance, each third-way tensor X can be written in matrix form as:

Xk = BDkAT , k = 1, 2, ...,K (1)
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where (.)T stands for transpose and Xk is the transposed version of kth frontal
slice of X. The tensor factors in the first and second modes are respectively A
and B. Dk is a diagonal matrix with diagonal elements equal to the kth row of
the third matrix C. In addition, Ek is the kth frontal tensor slice error term.

PARAFAC2 is one of PARAFAC extensions and is a common method for
source separation as it provides a certain freedom in the shape of each slab.
Matrix notation for PARAFAC2 is:

Xk = BkDkAT , k = 1, 2, ...,K subject to BH
k Bk = Φ (2)

where Bk corresponds to the kth frontal tensor slice and (.)H stands for her-
mitian or conjugate transpose. Here, the component in the second mode can
be different across slices. Φ is invariant for all slices to maintain the unique-
ness of the solution. Moreover, Bk can be written Bk = PkF where Pk is an
orthonormal and F is an arbitrary matrix:

Xk = PkFDkAT (3)

A direct fitting model suggested by Kiers [12] has been used in this work as
follows.

3 Problem Formulation

The following system can be considered as a general formulation for CBSS.

xq(t) =
Ns∑

i=1

M−1∑

τ=0

si(t − τ)aqi(τ) + eq(t), q = 1, 2, ..., Nx (4)

where xq(t) shows the recorded mixture at the time t and qth channel, Nx and
Ns indicate respectively the number of sensors and sources, M is the number
of time lags, aqi(τ) indicates the qith element of mixing matrix at a time lag τ ,
and eq(t) is the additive noise for qth mixture. The matrix form of Eq. (4) can
be shown as:

X =
M−1∑

τ=0

θτ (S)AT
τ + E, θτ (S) = ΞτS (5)

where θτ (S) is a shift operator that is done by multiplication of a shift matrix
Ξτ by the source matrix [9], S, E, and X are the source, noise, and recorded
matrices respectively, and Aτ shows the mixing matrix at time lag τ . The matri-
ces of observed signals, source signals, and noise are all considered as complex
valued. In this work, a tensor is built up from our measurements using tempo-
ral segmentation with a segment size greater than the expected number of lags.
Equation (5) for each data segment can be written as:

Xk =

M−1∑
τ=0

ΞτSkA
T
τ + Ek for k = 0, 1, ...,K (6)
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where K is the number of segments. Here, Eq. (6) can be changed by putting
Sk = PkFDk where Pk is an orthonormal matrix, Dk is a diagonal matrix, and
F is an arbitrary matrix:

Xk =
M−1∑

τ=0

ΞτPkFDkAT
τ + Ek, given that PH

k Pk = INs×Ns
(7)

where INs×Ns
indicates an identity matrix. Obviously, Eq. (7) is a PARAFAC2

extension (it is a PARAFAC2 model if M = 1). Hence, the following cost function
for CBSS is used in this work.

J = ||Xk −
M−1∑
τ=0

ΞτPkFDkA
T
τ ||2F (8)

where ||.||F stands for the Frobenius norm of a matrix.
To exploit the power difference or the correlation between the data chan-

nels, widely linear modelling of the systems has been recently introduced [10].
For this purpose, “augmented” statistics have been established to incorporate
the complementary covariance matrices and exploit the complete second-order
information [4,14]. In complex domain, the augmented basis matrix is defined
as Xa = [X,X∗]T ∈ C. Thus, in order to exploit the second-order information,
we change the optimisation technique to the following optimisation equation:

J = ||Xk −
M−1∑

τ=0

Ξτ (SkÂT
1τ + S∗

kÂ
T
2τ )||2F = ||Xk −

M−1∑

τ=0

ΞτSa
kA

T
τ ||2F (9)

where Sa
k = [Sk,S∗

k]T and Aτ = [ÂT
1τ , ÂT

2τ ]T . Alternating least squares (ALS)
optimisation is used here to estimate each model parameter by fixing the rest.
After estimating the augmented source and mixing matrices, the original source
is obtained using the first part of Sa

k. The detailed parameter optimisation pro-
cedure is explained in the following subsection. Based on the above assumption,
Pk, F, and Da

k are changed to augmented matrices Pa
k, Fa, and Da

k.

3.1 Estimation of Pa
k

By assuming that all the parameters except for Pa
k are all known and fixed, the

objective function in Eq. (8) can be rewritten as:

JPa
k

= tr(XH
k Xk) +

M−1∑

τ=0

tr(A∗
τD

aH
k FaHFaDa

kA
T
τ )

−
M−1∑

τ=0

tr(2A∗
τD

aH
k FaHPaH

k ΞH
τ Xk) (10)

where tr(.) and (.)∗ indicate respectively the matrix trace and conjugate. In
Eq. (10) only the last term depends on Pa

k and the remaining terms are positive
semi-definite matrices. Therefore, to estimate Pa

k, we can maximise the following:
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JPk = tr(

M−1∑
τ=0

FaDa
kA

T
τ XH

k ΞτP
a
k) (11)

By defining a new variable Zk and calculating its SVD, Pa
ks is estimated [7]:

Zk =
M−1∑

τ=0

FaDa
kA

T
τ = UkΣkVH

k (12)

where Σk is a diagonal matrix with nonnegative diagonal elements and Uk and
Vk are two orthonormal matrices. Then, Pks can be obtained as follows:

Pa
k = VkUH

k , PaH
k Pa

k = I2Ns×2Ns
(13)

3.2 Estimation of Aτ

To estimate Aτ ,
∑M−1

τ=0 (.) is expanded into matrix products as:

Xk = GkA,

Gk = (Ξ0Pa
kF

aDa
k,Ξ1Pa

kF
aDa

k, ...,ΞM−1Pa
kF

aDa
k), A =

⎛

⎜⎜⎝

AT
0

AT
1

· · ·
AT

M−1

⎞

⎟⎟⎠ (14)

Therefore, by stacking Xk and Gk, a set of linear equations can be obtained:

X̂ =

⎛

⎜⎝

X1

X2

· · ·
XK−1

⎞

⎟⎠ , Ĝ =

⎛

⎜⎝

G1

G2

· · ·
GK−1

⎞

⎟⎠ , X̂ = ĜA (15)

Then, A can be calculated as:
A = Ĝ†X̂ (16)

where (.)† shows Moore-Penrose pseudo-inverse (pinv) of a complex matrix that
can be computed using Gram-Schmidt or SVD factorisation techniques. As a
result, Aτ is updated using the A estimation.

3.3 Estimation of Da
k and Fa

The following equation can be considered for arbitrary matrices Y, L, and W.

vec(YLW) = (WT ⊗ Y)vec(L) (17)

where ⊗ is Kronecker product and vec is obtained by vectorising the input
matrix. Regarding this relation and Eq. (7), we define Yτ = Ξτ , Lk =
Pa

kF
aDa

k, Wτ = AT
τ . Consequently, vec(Lk) can be calculated as follows:

vec(Lk) = (

M−1∑
τ=0

(Aτ ⊗ Ξτ ))†vec(Xk) (18)
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Having Lk, we can consider PARAFAC2 factorisation for it, Lk =
Pa

kF
aDa

kA
T with A here approximated as identity matrix. This assumption

is not necessarily accurate and for applications to real signals some a priori
information about the source locations can be utilised instead. Thus, the normal
PARAFAC optimisation technique can be used to estimate Da

k and Fa given
that Pa

k is known:

J = ||PaT
k Lk − FaDa

kA
T ||2F , X̃k = PaT

k Lk, A = I

Fa =
K∑

k=1

X̃T
k I∗Da∗

k (G†)T ,G = (IHI) ◦ (CaHCa)

Ca =

⎛

⎜⎜⎝

diag(IHX̃1Fa∗)T

diag(IHX̃2Fa∗)T

· · ·
diag(IHX̃KFa∗)T

⎞

⎟⎟⎠ (O†)T ,O = (IHI) ◦ (FaHFa) (19)

where ◦ stands for the element-wise Hadamard product and diag(.) returns a
column vector of its input diagonal elements. As explained before, Dk is achieved
from C. Finally, the augmented source matrix can be obtained and the desired
source matrix is obtained from the augmented one using the first part of Sa.

4 Experimental Results

To evaluate the performance of the CATF and compare it with the other available
methods, a number of experiments were performed using simulated complex
data. The simulated scenario consists of a finite number of taps with tunable
delays. Each tap signal is modulated in phase or amplitude using a baseband
tap-gain function. Then, the transmitted signal or final mixture can be expressed
as x(t) =

∑M−1
τ=0 s(t−τ)A(τ)T +e(t) where x(t) is the complex mixture at a time

instant t, s(t) is the complex input, A(τ) is the mixing matrix, e(t) is additive
normalised white Gaussian noise (WGN), and M is the number of time lags. The
mixing matrices are selected randomly. Therefore, the sources are convolved with
different mixing matrices and summed to form the multichannel mixtures.

We compare the performance of the proposed method with two other
benchmark methods; NCICA and Parra’s algorithm. Here, the separation of
8PSK sources has been performed for convolutive mixtures and also noncircu-
lar sources. Then, the intersymbol interference (ISI) has been estimated as the
performance measure (less ISI indicates a better performance).

Different Numbers of Delay Paths: In this part, the performance is obtained
from the CATF, NCICA, and Parra’s for signals with different numbers of time
lags M . M in the proposed method and the number of delay paths that we used
to generate the data is considered the same. The results are brought in Fig. 1 for
8PSK which shows the average obtained over 100 runs for each point. Moreover,
all the methods are tested using noiseless mixtures.
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Fig. 1. The effect of having multiple delayed paths on the CATF, NCICA, and Parra’s.
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Fig. 2. The effect of noncircularity level on the CATF, NCICA, and Parra’s; (a) M = 1
and (b) M = 3.

As can be seen, when there is no time delays or in instantaneous situation,
NCICA performs well and sometimes better than the proposed method. However,
as the number of time lags increases, the CATF and Parra’s perform better. The
main reason is that both the CATF and Parra’s methods consider the multipath
effect in their formulation. Moreover, in general the performance of the proposed
method is better than Parra’s.

The Effect of Noncircularity Level: The procedure suggested in [18] is used
to generate noncircular sources with different correlation levels. Using this algo-
rithm, the exact correlation or noncircularity level can be set where 0 refers to
no correlation and 1 to a perfect correlation. The average results of applying the
CATF and NCICA are brought in Fig. 2. The results show that the CATF is
more robust against the changes in noncircularity level. Moreover, NCICA works
better for M = 1 compared with M > 1.

5 Conclusions

A convolutive tensor factorisation method based on PARAFAC2 was proposed
here for complex valued signals. To improve the performance in the case of
noncircular sources, augmented statistics were used. The convolutive model was
considered and the parameters were obtained for different time lags. To evaluate
the performance of the proposed method, some simulated data with multiple
pathways and various noncircularity levels were generated. Moreover, the results
were compared with NCICA and Parra’s. The simulation results confirm the
superiority of the proposed method over the existing benchmarks.
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Abstract. In this paper we study tensor based semi-blind estima-
tion algorithms for one-way amplify-and-forward relaying systems. By
exploiting the tensor structure of the equivalent channel, a bilinear alter-
nating least squares (ALS) algorithm is proposed to jointly estimate the
data and the channels at the destination. Sufficient conditions for the
unique estimation are derived. The simulation results show that the pro-
posed algorithms outperforms the state of the art algorithms.

1 Introduction

Multiple-input and multiple-output (MIMO) techniques can enhance the perfor-
mance of relaying networks, e.g., [1]. To fully exploit the MIMO gain, channel
knowledge is required at the transmitter and the receiver. Traditionally matrix
based solutions are used to estimate MIMO channels, e.g., [5]. Recently, research
results in [8,9] have shown that a tensor-based channel estimation method for
relaying networks can provide a better estimation accuracy and requires less
training overhead compared to the matrix based solution. Due to the use of train-
ing sequences, training based estimation methods provide accurate estimation
results [8]. But they sacrifice physical resources which can be used for data trans-
mission. Hence, blind or semi-blind estimation techniques, which do not need
the transmission of training sequences, become more attractive, e.g., [10,12].
More specifically, in [12] a semi-blind estimation algorithm, which jointly esti-
mates the data and the channels based on the PARAFAC-PARATUCK tensor
decomposition of the received signal, is proposed for a two-hop one-way amplify-
and-forward (AF) relaying assisted MIMO system. It is shown in [12] that the
received signal via the source-to-destination (SD) link satisfies a PARAFAC ten-
sor model, and the received signal via the source-to-relay-to-destination (SRD)
link satisfies the PARATUCK2 tensor model [2]. The general PARATUCK2
decomposition requires a diagonal relay amplification matrix and is computed
using an alternating least squares (ALS) method. More precisely, a trilinear ALS
is proposed in [12]. Moreover, Kruskal’s identifiability condition [4] must be sat-
isfied for uniqueness. These stringent conditions have restricted the applicability
of the proposed tensor based algorithms in [12].

c© Springer International Publishing Switzerland 2015
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In this paper we introduce enhanced tensor based semi-blind algorithms for a
joint data and channel estimation in the two-hop AF relaying system. In contrast
to [12], our design is applicable even if a full relay amplification matrix is used.
Our contribution can be summarized as: (1) A demodulation step is introduced
during the estimation of the data symbols to provide well-conditioned data esti-
mates, which can accelerate the converge of the ALS algorithm as compared to
[12]. (2) In contrast to the trilinear ALS, bilinear ALS algorithms for jointly esti-
mating the source-to-relay (SR) channel, the relay-to-destination (RD) channel,
and the data are proposed. In each iteration, algebraic solutions for computing
the SR channel and the RD channel are introduced based on the PARAFAC ten-
sor model. Sufficient conditions for a unique estimation up to scaling ambiguities
are derived. The derived conditions are more relaxed compared to Kruskal’s con-
dition in [12]. Numerical results show that significant improvements are achieved
in terms of channel estimation accuracy and system BER performance using only
a few number of iterations.

2 System Model

We consider an AF relaying scenario where one source node communicates with
one destination node via a relay assisted network as in [12]. The source, the relay,
and the destination have MS, MR, and MD antennas, respectively. We assume
that the channel is i.i.d. frequency flat and quasi-static block fading. The matri-
ces H(SD) ∈ C

MD×MS , H(SR) ∈ C
MR×MS , and H(RD) ∈ C

MD×MR denote the SD
channel, the SR channel, and the RD channel, respectively. All the nodes operate
in half-duplex modes and thus a complete transmission takes two phases. In the
first phase, the source transmits to the relay and the destination. In the second
phase, the source is silent and the relay transmits to the destination. To perform
a blind estimation, the source transmits data using the Khatri-Rao space-time
(KRST) coding scheme proposed in [10]. Assume that N blocks of KRST coded
symbols are transmitted and during the n-th block (n ∈ {1, · · · , N}) the trans-
mitted signal is denoted as Xn = Dn{S}CT ∈ C

MS×K , where S ∈ C
N×MS

denotes the overall data to be transmitted in N blocks, and C ∈ C
K×MS is the

known KRST coding matrix, which maps MS symbols to K time slots, i.e., the
spatial code rate is MS/K [10]. The operation Dn{A} creates a diagonal matrix
by aligning the elements of the n-th row of A onto its diagonal. Therefore, the
n-th block of the received signal via the SD link is given by [12]

Y (SD)
n = H(SD)Dn{S}CT + V (SD)

n ∈ C
MD×K , (1)

where V
(SD)
n ∈ C

MD×K denotes the zero-mean circularly symmetric complex
Gaussian (ZMCSCG) noise and each element has a variance of σ2

d. The received
signal after N blocks can be expressed as a three-way tensor with the n-th frontal
slice denoted by (1). The resulting PARAFAC model is given by

Y(SD) = I3,MS ×1 H
(SD) ×2 C ×3 S + V(SD) ∈ C

MD×K×N (2)
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where I3,MS is the identity tensor and ×i denotes the i-mode product [3]. Sim-
ilarly, the n-th block of the received signal via the SRD link is expressed as [12]

Y (SRD)
n = H(RD)GnH

(SR)Dn{S}CT + V̄ (SRD)
n ∈ C

MD×K (3)

where V̄
(SRD)
n = H(RD)GnH

(SR)V
(R)
n + V

(SRD)
n denotes the effective noise,

where V
(R)
n and V

(SRD)
n are the ZMCSCG noise at the relay and the destination

with a variance of σ2
r per element of V (R)

n , and Gn ∈ C
MR×MR is the n-th relay

amplification matrix.
Our objective is to develop tensor based semi-blind estimation schemes such

that the channels H(SD), H(SR), H(RD), and the data matrix S can be uniquely
identified.

3 Enhanced Design in the Direct Link

An estimate of S and H(SD) in the direct link can be obtained via the Khatri-
Rao factorization as described in [12]. To this end, the 2-mode unfolding of the
tensor Y(SD) is expressed as

[
Y(SD)

]

(2)
≈ C(H(SD) � S)T, (4)

where ≈ implies that the noise is ignored and � is the Khatri-Rao product. If
the coding matrix C has a full column rank, i.e., K ≥ MS, by pre-multiplying
C+ on both sides of (4) an estimate of the Khatri-Rao product is obtained as

Ŷ (SD) =
(
C+

[
Y(SD)

]

(2)

)T

≈ H(SD) �S, where + is the Moore-Penrose pseudo

inverse. The resulting problem is a Khatri-Rao factorization problem, for which
a LS solution can be obtained using the singular value decomposition (SVD)
[5,6,8,12] and a detailed implementation is also found in [8]. The drawback of this
method is that the Khatri-Rao factorization has inherent scaling ambiguities, i.e.,
one scaling ambiguity per column. A typical way to resolve these ambiguities is
to assume that one row of S is known [9,12]. The described estimation procedure
so far follows [12] exactly.

The estimates in the SD link and especially the estimated signal matrix Ŝ will
be used to initialize the trilinear ALS based PARATUCK2 decomposition in the
SRD link [12]. It is known that the ALS algorithm is sensitive to ill-conditioned
matrices due to the inverse operation. We observe that this happens quite often
when the algorithms in [12] are applied. To deal with this phenomenon, we
propose to demodulate the entries of the data matrix Ŝ. For this purpose, an
element-wise hard-decision demodulation technique [7] is used and the output
of the demodulation step is denoted as Ŝdemod. Numerical results show that the
matrix Ŝdemod is in general well-conditioned. Hence, this demodulation step is
applied in both the SD link and the SRD link. Furthermore, we apply a LS based
refinement of the channel estimate Ĥ(SD). This is simply computed by using the
1-mode unfolding of Y(SD), i.e., Ĥ(SD)

enh ≈
[
Y(SD)

]

(1)
((Ŝdemod � C)T)+.



Enhanced Tensor Based Semi-blind Estimation Algorithm 67

4 Bilinear ALS Algorithm for the SRD Link

Let us briefly review the trilinear ALS algorithm proposed in [12]. If the relay
amplification matrix Gn in (3) is a diagonal matirx, i.e., Gn = Dn{G} and
G ∈ C

N×MR , the obtained MD-by-K-by-N tensor by stacking N received blocks
satisfies a PARATUCK2 model [2], where (3) is the n-th frontal slice of the cor-
responding tensor. In our case, the matrices G and C can be designed and
we need to estimate S, H(SR), and H(RD) from (3). When two out of three
parameters are fixed, (3) can be rewritten as a linear function of the third
parameter. Therefore, a trilinear ALS algorithm can be applied and an exact
PARATUCK2 decomposition can be achieved. According to Kruskal’s condition
[4], to ensure the uniqueness of the PARATUCK2 decomposition, i.e., up to
scaling ambiguities, it is required that K ≥ MS and min(MS,MD) ≥ MR [12].
To resolve the scaling ambiguities, one row of HRD or one column of HSR

needs to be known. Moreover, since S is involved in both the SD link, i.e.,
(1), and the SRD link, i.e., (3), a better estimation of S and H(SD) might be
obtained if (1) and (3) are combined. Depending on whether (1) and (3) are
jointly exploited for estimating S or not, the proposed algorithms in [12] are
divided into the combined PARAFAC/PARATUCK2 (CPP) method and the
sequential PARAFAC/PARATUCK2 (SPP), respectively. In the following, we
discuss our proposed approaches based on the CPP method. But the extension
to the SPP method is straightforward.

4.1 Bilinear ALS Based Design

If we do not restrict ourselves to the PARATUCK2 model in [2], more flexibilities
are obtained, e.g., the use of a full relay amplification matrix. To see this, define
H

(SRD)
n = H(RD)GnH

(SR), where Gn can be a full matrix in contrast to [12].
Assume that an ALS algorithm is used. Using equation (3), a LS estimate of the
effective SRD channel H(SRD)

n at the n-th block in the i-th step is calculated as

Ĥ
(SRD)
n,i ≈ Y (SRD)

n (Dn{Ŝi−1}CT)+ ∈ C
MD×MS , (5)

∀n, where Ŝi−1 denotes the estimate of S in the (i − 1)-th step. To obtain
Ĥ

(SRD)
n,i uniquely, it is sufficient that C has full column rank, i.e., K ≥ MS,

because in this case Dn{Ŝi−1} is invertible. This coincides with the require-
ment in the SD link. Afterwards, the channels Ĥ

(RD)
i and Ĥ

(SR)
i are esti-

mated algebraically from the tensor representation of the equivalent channel
H̄(SRD)

i =
[
Ĥ

(SRD)
1,i 3Ĥ

(SRD)
2,i · · · 3Ĥ

(SRD)
N,i

]
∈ C

MD×MS×N , where 3 denotes
the concatenation of matrices along the third dimension [8]. The proposed esti-
mation methods will be introduced in the sequel. After that, the estimated
equivalent channel is reconstructed as H̃

(SRD)
n,i = Ĥ

(RD)
i GnĤ

(SR)
i . Then by
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combining (1) and (3), i.e., the CPP concept in [12] is used, a LS estimate of
the n-th row of S in the i-th step is determined as

ŝn,i ≈
[
C � Ĥ(SD)

C � H̃
(SRD)
n,i

]+ [
y
(SD)
n

y
(SRD)
n

]
, (6)

∀n, where y
(SD)
n = vec{Y (SD)

n } and y
(SRD)
n = vec{Y (SRD)

n }. The conclusion in
[12, Theorem 1] can be still applied to (6). That is, the condition K ≥ MS is
sufficient to guarantee that a unique pseudo inversion is obtained in (6). Since in
the i-th iteration step only two parameters, i.e., Ĥ(SRD)

n,i and ŝn,i, are computed
using the ALS algorithm, ∀n, we name this algorithm the bilinear ALS method.
Due to the nature of an ALS method, the uniqueness is guaranteed up to a
diagonal scaling matrix. However, since one row of S is assumed to be known in
Sect. 3, the scaling ambiguity is resolved.

In the following we introduce algebraic methods for obtaining Ĥ
(RD)
i and

Ĥ
(SR)
i in the i-th iteration. The index i will be dropped for notational simplicity.

Moreover, let us define G = [G1 3G2 · · · 3GN ] ∈ C
MR×MR×N .

4.2 Khatri-Rao Factorization (KRF) Based Approach

The tensor H̄(SRD) ≈ G ×1 H
(RD) ×2 H

(SR)T satisfies a Tucker2 tensor model.
Let rG be the rank of the tensor G [8]. Then the PARAFAC decomposition of G
is computed as G = IrG ×1F1 ×2F2 ×3F3, where F1 ∈ C

MR×rG , F2 ∈ C
MR×rG ,

and F3 ∈ C
N×rG are the corresponding factor matrices. Inserting this PARAFAC

decomposition of G into the Tucker2 model, we get

H̄(SRD) ≈ I3,rG ×1 (H(RD)F1) ×2 (H(SR)TF2) ×3 F3. (7)

Equation (7) is also a PARAFAC decomposition. Note that we can construct F1,
F2, and F3 such that H(RD) and H(SR) can be uniquely estimated. By applying
the 3-mode unfolding of (7), we obtain

[
H̄(SRD)

]

(3)
≈ F3 · ((H(RD)F1) � (H(SR)TF2))T. (8)

It is straightforward to see that (8) yields a similar Khatri-Rao structure as (4).
To estimate H(RD) and H(SR), we first isolate the Khatri-Rao product from (8).
For this purpose, it is sufficient that F3 has a full column rank, i.e., N ≥ rG .
Then the remaining problem is a Khatri-Rao factorization problem, which can
be solved up to a diagonal scaling matrix Λf ∈ C

rG×rG . That is, the obtained
two factor matrices B1 and B2 of the Khatri-Rao factorization can be written as
B1 = H(RD)F1Λf and B2 = H(SR)TF2Λ−1

f . To resolve this scaling ambiguity,
we still assume that one column of H(RD) or H(SR) is known, e.g., it could be
obtained via a training based initial estimate between the relay and the destina-
tion [12]. After the scaling ambiguity is resolved, i.e., Λf is estimated, the follow-
ing relationships are valid, i.e., B1Λ

(−1)
f = H(RD)F1 and B2Λf = H(SR)TF2.
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To obtain H(RD) and H(SR) uniquely, we require that F1 and F2 have full row
rank, i.e., rG ≥ MR. Also, to render the pseudo inversions numerically stable,
F1 and F2 should have orthogonal rows. Overall, the Khatri-Rao factorization
(KRF) based approach can be applied if N ≥ rG ≥ MR. To reduce the channel
estimation overhead, rG should be as small as possible. Therefore, we choose
rG = MR. The advantage of this KRF approach is that an algebraic solution is
obtained. The disadvantage of it is that the resulting scaling ambiguity is the
same as in [12].

Finally, the proposed bilinear algorithm is described in Algorithm 1 and the
corresponding sufficient conditions to estimate the channels H(RD), H(SR), and
the symbol matrix S in the SRD link without ambiguities are summarized as
follows: the identifiablity is guaranteed if C and F3 have full column rank, and
F1 and F2 have full row rank, i.e., K ≥ MS and N ≥ MR. Note that in contrast
to [12] the proposed bilinear ALS algorithm does not impose any restrictions on
the number of antennas at the source, the relay, or the destination.

Remark. When Gn is a diagonal matrix, i.e., Gn = Dn{G}, it is a special case
of the PARAFAC based design, i.e., F1 and F2 are identity matrices. In such
a case the equivalent channel is expressed as H

(SRD)
n ≈ H(RD)Dn{G}H(SR).

It has the same structure as (1) and thus an equivalent PARAFAC model is
obtained as H̄(SRD) ≈ I3,MS ×1 H

(RD) ×2 H
(SR)T ×3 G. The channels H(RD)

and H(RD) can then be obtained by using its 3-mode unfolding
[
H̄(SRD)

]

(3)
≈

G(H(RD) � H(SR)T)T and the LS Khatri-Rao factorization.

Algorithm 1. A bilinear ALS algorithm for estimating H(RD), H(SR), and S
in the SRD link using the CPP method
1: Initialize: set initial value of Ŝ0 using the estimate from the SD link, Ĥ (SD) =

Ĥ
(SD)
enh , i = 1, and the threshold value ε.

2: Main step:
3: repeat
4: Calculate Ĥ

(SRD)
n,i using (5).

5: Estimate Ĥ
(RD)
i and Ĥ

(SR)
i using the KRF approach and obtain H̃

(SRD)
n,i =

Ĥ
(RD)
i GnĤ

(SR)
i .

6: Compute ŝn,i using (6) and then demodulate ŝn,i using the hard-decision demod-
ulation method [7].

7: until
∑N

n=1 ‖Y (SRD)
n − Ĥ

(RD)
i GnĤ

(SR)
i Dn{Ŝi}CT‖ ≤ ε

8: Output: H (RD), H (SR), S, and Ĥ (SD).

5 Simulation Results and Concluding Remarks

The proposed bilinear ALS algorithms are evaluated using Monte Carlo sim-
ulations. The simulated channels H(SD), H(SR) and H(RD) are uncorrelated
Rayleigh fading channels. The transmit power at the source and the relay are
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Fig. 1. Comparison of different algorithms. MS = MD = MR = K = 2, N = 4,
Nf = 40, and QPSK modulation.

set to unity. The noise power at the relay and the destination are identical,
i.e., σ2

d = σ2
r = σ2

n. The SNR of the relay-assisted link and the direct link are
denoted by SNRSRD and SNRSD, respectively. We have SNRSRD = SNRSD + α
[dB] and α ≥ 0, which is a realistic assumption [12]. The coding matrix C is

chosen as a Vandermonde matrix, i.e., Ck,m = e
j2π(k−1)(m−1)

MS , k ∈ {1, · · · K}, and
m ∈ {1, · · · MS}.

The channel estimation accuracy is measured by using the normalized mean
squared error (NMSE) criterion. Let H(X) and Ĥ(X) denote the true channel
and the estimated channel, where X ∈ {SD,SRD}. It implies that for the SRD
link, the equivalent channel is evaluated [12]. For each simulation, the NMSE is
defined as

e(H(X), Ĥ(X)) =
‖H(X) − Ĥ(X)‖2F

‖H(X)‖2F
. (9)

The sphere decoder described in [11] is used to decode the modulated signal at
the end. The BER performance is determined by transmitting a total number
of Nf blocks of KRST coded symbols, where the first N blocks are also used for
blind channel estimation. Since the proposed algorithms in [12] outperform the
training based solutions in [5,9], we only compare our proposed algorithms to
the algorithms in [12], which are denoted as “XFAS14”. Note that the XFAS14
algorithms are applicable only if a diagonal relay amplification matrix is used.
Moreover, “full” and “diag” stand for whether a full relay amplification matrix
or a diagonal relay amplification matrix is used. All the simulation results are
averaged over 2000 channel realizations.

Figure 1a and 1b demonstrate the performance of the bilinear ALS algorithms
in terms of the NMSE and the BER performance when a CPP or a SPP method
is used. When a full relay amplification matrix, F1 and F2 are set to MR-by-
MR DFT matrices while F3 is a Vandermonde matrix. When a diagonal relay
amplification matrix is used as explained in Remark 1, the matrix G ∈ C

MR×MR
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is set to a Vandermonde matrix. As depicted in Fig. 1a, the KRF approach
always provides the best channel estimates compared to the XFAS14 algorithms
regardless whether a CPP or a SPP procedure is applied. It also provides a
better BER performance especially when the SPP method is applied. When the
CPP based method is used, the performance gain over the XFAS14 algorithm
is not significant due to the fact that the estimate of S from the direct link
dominates the performance. Moreover, all the proposed algorithms require only
a few iterations compared to the XFAS14 algorithm as shown in Table 1. Finally,
we conclude that the proposed bilinear ALS algorithms are computationally
more efficient and can provide a better performance compared to the state of
the art algorithms in [12]. Moreover, although a full relay amplification matrix
contains more free parameters than a diagonal one, to fully exploit this freedom
an appropriate design of the relay amplification matrix is desired.

Table 1. Comparison of the average number of required iterations when the SPP
method is used, MS = MD = MR = K = 2, N = 4, and α = 10 dB under different
values of SNRSRD.

Algorithm SNRSRD = 0 dB SNRSRD = 15 dB SNRSRD = 30 dB

XFAS14 107.2 99.2 55.1

KRF (full) 3.8 2.6 2.0

KRF (diag) 3.8 2.7 2.0
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Abstract. We propose a joint framework combining speech enhance-
ment (SE) and voice activity detection (VAD) to increase the speech
intelligibility in low signal-noise-ratio (SNR) environments. Deep Neural
Networks (DNN) have recently been successfully adopted as a regression
model in SE. Nonetheless, the performance in harsh environments is not
always satisfactory because the noise energy is often dominating in cer-
tain speech segments causing speech distortion. Based on the analysis
of SNR information at the frame level in the training set, our approach
consists of two steps, namely: (1) a DNN-based VAD model is trained to
generate frame-level speech/non-speech probabilities; and (2) the final
enhanced speech features are obtained by a weighted sum of the esti-
mated clean speech features processed by incorporating VAD informa-
tion. Experimental results demonstrate that the proposed SE approach
effectively improves short-time objective intelligibility (STOI) by 0.161
and perceptual evaluation of speech quality (PESQ) by 0.333 over the
already-good SE baseline systems at −5dB SNR of babble noise.

Keywords: Speech enhancement · Low SNR · Deep neural networks ·
Voice activity detection · Speech intelligibility

1 Introduction

Speech enhancement (SE) has been an open research problem for the past several
decades. Many approaches are developed to solve this problem, and they can be
classified into two categories, namely unsupervised and supervised methods. As
for the unsupervised approaches, there are, spectral subtraction [1], MMSE-
based log-spectral amplitude estimator [2] and optimally modified log-MMSE

This work was supported by the National Natural Science Foundation of China under
Grants No. 61305002. We would like to thank iFLYTEK Research for providing the
training data and DNN training platform.
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estimator [3], etc. However, many assumptions were made during the derivation
process of these solutions, and the resulting enhanced speech often suffers from
an annoying artifact called musical noise.

Various supervised methods have also been developed in recent years, which
have been demonstrated to generate enhanced speech with better quality. Non-
negative matrix factorization (NMF) based SE [4] was one of the notable meth-
ods. Speech and noise basis were learned from the speech data and noise data,
respectively. Then the clean speech could be decomposed given the noisy speech.
In [5,6], masking techniques were used to train DNNs for speech separation and
recognition. More recently, our proposed DNN-based SE where the DNN was
regarded as a regression model to predict the clean log-power spectra (LPS) [7]
from the noisy LPS has been successfully applied to noisy speech enhancement
[8,9], separation [10] and recognition [11,12].

Figure 1 shows noisy speech mixed with babble noise from the NOISEX-92
[13] corpus at SNR = 0dB along with the corresponding clean speech and frame-
level SNR sequence. Speech segment covered by high-energy noises, such as the
noted part in Fig. 1, remains difficult to handle. When noise is removed from
those segments by conventional DNN approaches, the quality of speech is also
severely degraded as it is not easy for a DNN to distinguish in those segments
between speech and noise. The noisy speech segments with very weak speech
energy are very similar to those pure noise segments in terms of frame-level
SNR, which is a challenge for the data-driven approaches using a single DNN. In
the frame-level DNN-based SE, local SNR distribution is more meaningful than
global (e.g. utterance-level) for learning convergence. From the Fig. 1, we observe
that the frame-level SNR values have a high fluctuation from the global SNR at
0dB. This indicates that the training set with a fixed, global SNR is multifarious

Fig. 1. Illustration of an utterance example in the babble noise environment at SNR
= 0dB along with the corresponding clean speech and frame-level SNR sequence.
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at frame level especially in low SNR conditions, and it will undoubtedly increase
the difficulty of model learning.

In this paper, we propose a combined VAD+SE framework using DNNs in
low SNR environments. The main contributions of this paper are summarized
as follows: (i) We employ a system with dual outputs of speech features for
both target and interference sources in the output layer as our baseline. (ii) We
use the speech segments of the multi-condition training set using VAD [14–16]
annotations from the corresponding clean speech to train a conservative speech
enhancement (denoted as CSE) DNN model to well preserve the weak-energy
speech segments in low SNR environments and conservatively remove the pure
noise segments. (iii) A DNN-based VAD model is trained for system fusion.
Empirical results demonstrate that the proposed framework can significantly
improve the performance in low SNR environments.

Fig. 2. The proposed system.

2 System Overview

The overall flowchart of the proposed SE system is illustrated in Fig. 2. First,
the acoustic features of both clean speech and synthesized noisy speech training
data are extracted. Then three DNNs, namely VAD DNN, baseline DNN and
CSE DNN, are trained. In the enhancement stage, after feature extraction of the
noisy utterance, frame-level soft decision is first given by the DNN-based VAD.
To achieve better VAD performance, a long-term smoothing of the multiple DNN
outputs with a half-window size τ can be applied. The classification DNN with
smoothing is quite similar to the boosted DNN proposed in [17]. Then both the
noisy features and speech/non-speech probabilities are presented to CSE and
baseline system simultaneously. A fusion is performed with VAD classification
probability to obtain the final enhanced speech signals as shown in Fig. 2. α is
the probability of speech class, and (1 − α) belong to the non-speech class. X̂,
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X̂1 and X̂2 are the vectors of final enhanced speech, enhanced speech processed
by CSE and by baseline system, respectively. This fusion can smooth the final
enhanced speech and improve system performance. The details of both regression
and classification DNNs are elaborated in Sect. 3.

3 DNN-based VAD and Speech Enhancement

3.1 DNN-based VAD

DNN for VAD is designed as a classification model where the output refers to
the probabilities of two classes. The input to DNN is the noisy LPS features
with neighboring frames. The training of this DNN consists of unsupervised
pre-training and supervised fine-tuning. The former treats each consecutive pair
of layers as a restricted Boltzmann machine (RBM) while the parameters of
RBM are trained layer by layer with the approximate contrastive divergence
algorithm [18]. After pre-training for initializing the weights of the first several
layers, supervised fine-tuning of the parameters in the whole network is per-
formed via a frame-level cross-entropy criterion. The main difference from other
DNN approaches, e.g. [17], is the training data. In [17], only three noise types are
used for training with a small amount of utterances and the noise types of the
test set are the same as those of the training set. In this work, a large training
set is formed by synthesizing the noisy speech data with a wide range of additive
noises at different SNRs.

3.2 DNN-based Speech Enhancement

In [9], DNN was adopted as a regression model to predict the clean LPS features
given the input noisy LPS features with acoustic context. This work improves
the framework to predict the clean LPS and noise LPS features simultaneously
in the output layer [10]. We believe the estimation of noise LPS will act as a
regularization to the clean part. As for the DNN training, we first perform pre-
training of a deep generative model with the LPS features of noisy speech by a
stacking of multiple RBMs. Then the back-propagation with the MMSE-based
objective function between the LPS features of the estimated and the reference
(clean speech and noise) is adopted to train the DNN. Another two techniques,
namely dropout training and noise-aware training (NAT) can be found in [19]. A
stochastic gradient descent algorithm is performed in minibatches with multiple
epochs to improve learning convergence as follows,

Er =
1
N

N∑

n=1

(β‖X̂clean

n − Xclean
n ‖22 + (1 − β)‖X̂noise

n − Xnoise
n ‖22) (1)

where X̂
clean

n and Xclean
n are the nth D-dimensional vectors of estimated and

reference clean features, respectively. In the same way, X̂
noise

n and Xnoise
n are

the vectors of estimated and reference noise features. β is used to tune the
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contribution from the speech part and the noise part. As the noise variance
is large and not stable, we mainly focus on the speech part. The second term
of Eq. (1) can be considered as a regularization term, which leads to a better
generalization capacity for estimating the clean speech. Another benefit from
the dual outputs DNN is the estimation of noise can be used in the following
ideal ratio mask (IRM) based post-processing module:

̂IRMn(d) =

√√√√ exp(X̂
clean

n (d))

exp(X̂
clean

n (d)) + exp(X̂
noise

n (d))
(2)

Different from [6] where the IRM is directly predicted by a well trained IRM-
DNN, the IRM here is estimated by the DNN output for each dimension d, which
is used for post-processing as follows

X̂n(d) =

⎧
⎪⎪⎨

⎪⎪⎩

Y n(d) ̂IRMn(d) > γ

X̂
clean

n (d) ̂IRMn(d) < λ

(X̂
clean

n (d) + Y n(d))/2 otherwise

(3)

where, X̂n and Y n are the vectors of final enhanced speech and noisy speech,
respectively. γ and λ are the thresholds to improve the overall performance.

4 Experimental Results and Analysis

4.1 Experimental Setup

In [9], 104 noise types were used as the noise signals for synthesizing the noisy
speech training samples. In this study, we add another home-made 200 h real-
world noises1 to handle a wide range of additive noise in the real-world sit-
uations. 100 h clean Mandarin data collected by iFlytek were added with the
above-mentioned background noises and 5 levels of SNR, at 20dB, 15dB, 10dB,
5dB and 0dB, to build a multi-condition stereo training set. The whole 100-hour
training data was used for baseline system and VAD model training. As for VAD
training, the frame-level reference labels of each noisy utterance were generated
by conventional VAD tool on the corresponding clean utterance. Then, we use
the speech segments of the multi-condition training set (about 60 h) for CSE
model training. The training method is same with the baseline enhancement
subsystem. The final joint DNN based SE system designed for low SNR envi-
ronments was obtained under the framework illustrated in Fig. 2, denoted as
JDNN-SE. Another 200 clean utterances covering 20 males and 17 females were
used to construct the test set for each combination of noise types (NOISEX-
92 corpus: babble and factory, real-recorded: mess hall and Karaoke Television
(KTV)) and SNR levels (−5dB, 0dB, 5dB). All the noises, speakers and texts in
test set are different from those in the training set.
1 The noise types are vehicle: bus, train, plane and car; exhibition hall; meeting room;

office; emporium; family living room; factory; bus station; mess hall; KTV; musical
instruments.
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Fig. 3. Four spectrograms of an utterance corrupted by babble noise at 0dB SNR:
JDNN-SE system (upper left, PESQ = 2.115), DNN baseline (upper right, PESQ =
1.585), noisy (bottom left, PESQ = 1.602) and clean speech (bottom right, PESQ =
4.5).

For both the regression DNN and classification DNN, sigmoid activation
function was used and the number of units in each hidden layer was set to 2048
by default. The mini-batch size N was set to 128. The regularization weighting
coefficient β in Eq. (1) was 0.8. γ and λ in Eq. (3) were set to 0.75 and 0.1,
respectively. The other tuning parameters of DNN were set according to [19,
20]. The half-window size τ for VAD smoothing was 5. The performance was
evaluated using two measures, namely short-time objective intelligibility (STOI)
[21] and perceptual evaluation of speech quality (PESQ) [22] measures.

4.2 Results and Analysis

Table 1 gives a performance comparison of different DNN-based SE systems for
the four unseen noise environments with different SNRs averaged on the test
set. Noisy means the original noisy speech without any processing. The differ-
ence between Oracle and JDNN-SE is whether they use clean reference VAD
annotations in the enhancement stage. Compared with the noisy speech results,
baseline system showed that the speech quality is very poor at SNR = −5dB,
and the performance was not satisfactory at SNR = 0dB. Our proposed JDNN-
SE system overwhelmed baseline at all SNRs, especially at low SNRs, e.g., 0.333
PESQ improvement and 0.161 STOI improvement at SNR = −5dB in babble
noise environment. Finally, the gap between JDNN-SE and Oracle was small
compared with that between Baseline and JDNN-SE. This implied that our
DNN-based VAD was effective and robust to noise types. Figure 3 presented
spectrograms of an utterance. The improved DNN could enhance the speech
with less speech distortion, especially at the noisy speech segments which are
similar to noise. More results can be found at the demo website2.

2 http://home.ustc.edu.cn/∼gtian09/demos/LowSNR-SEDNN.html.

http://home.ustc.edu.cn/~gtian09/demos/LowSNR-SEDNN.html
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Table 1. PESQ and STOI comparisons of four DNN-based SE systems averaged on
the test sets for the four unseen noise conditions at different SNRs.

Noise type SNR PESQ STOI

Noisy Baseline JDNN-SE Oracle Noisy Baseline JDNN-SE Oracle

Babble 5dB 1.709 2.043 2.248 2.279 0.778 0.795 0.840 0.856

0dB 1.341 1.307 1.732 1.802 0.678 0.603 0.717 0.758

−5dB 1.057 0.793 1.126 1.174 0.567 0.396 0.557 0.606

Factory 5dB 1.594 1.990 2.300 2.353 0.778 0.761 0.839 0.861

0dB 1.233 1.500 1.905 1.951 0.679 0.606 0.745 0.772

−5dB 0.950 1.030 1.332 1.332 0.571 0.463 0.601 0.627

Mess hall 5dB 1.655 2.048 2.286 2.280 0.787 0.809 0.854 0.863

0dB 1.311 1.506 1.895 1.894 0.689 0.664 0.761 0.778

−5dB 1.057 0.927 1.272 1.291 0.579 0.478 0.609 0.633

KTV 5dB 1.885 2.347 2.416 2.403 0.829 0.874 0.885 0.891

0dB 1.526 1.939 2.077 2.066 0.754 0.796 0.824 0.835

−5dB 1.198 1.394 1.595 1.619 0.665 0.672 0.726 0.741

5 Conclusion

We have proposed an improved speech enhancement framework to increase
speech intelligibility in low SNR environments. In this method, speech and
non-speech frames are presented to specific subsystem separately. With frame-
level VAD prediction and corresponding soft decision fusion, we obtain the final
enhanced speech. The proposed joint DNN based SE system can yield a sig-
nificant improvement when compared with our baseline, especially in low SNR
conditions. As for future work, we will focus on designing multiple DNNs with
even more detailed resolution at various frame-level SNRs.
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Abstract. Speech separation can be treated as a mask estimation
problem where interference-dominant portions are masked in a time-
frequency representation of noisy speech. In supervised speech separa-
tion, a classifier is typically trained on a mixture set of speech and
noise. Improving the generalization of a classifier is challenging, espe-
cially when interfering noise is strong and nonstationary. Expansion of
a noise through proper perturbation during training exposes the classi-
fier to more noise variations, and hence may improve separation perfor-
mance. In this study, we examine the effects of three noise perturbations
at low signal-to-noise ratios (SNRs). We evaluate speech separation per-
formance in terms of hit minus false-alarm rate and short-time objective
intelligibility (STOI). The experimental results show that frequency per-
turbation performs the best among the three perturbations. In particular,
we find that frequency perturbation reduces the error of misclassifying a
noise pattern as a speech pattern.

Keywords: Speech separation · Supervised learning · Noise perturba-
tion

1 Introduction

Speech separation is a task of separating target speech from noise interference.
Monaural speech separation is proven to be very challenging as it only uses
single-microphone recordings, especially in low SNR conditions. One way of
dealing with this problem is to apply speech enhancement [6] on a noisy signal,
where certain assumptions are made regarding general statistics of the back-
ground noise. The speech enhancement approach is usually limited to relatively
stationary noises. Looking at the problem from another perspective, computa-
tional auditory scene analysis (CASA) exploits perceptual principles to speech
separation. In CASA, interference can be reduced by applying masking on a
time-frequency (T-F) representation of noisy speech. An ideal mask suppresses
noise-dominant T-F units and keeps the speech-dominant T-F units. Therefore,
speech separation can be treated as a mask estimation problem where supervised
learning is employed to construct the mapping from acoustic features to a mask.

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 83–90, 2015.
DOI: 10.1007/978-3-319-22482-4 10
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A binary decision on each T-F unit leads to an estimate of the ideal binary mask
(IBM), which is defined as follows.

IBM(t, f) =
{

1, if SNR(t, f) > LC
0, otherwise (1)

where t denotes time and f frequency. The IBM assigns the value 1 to a T-F
unit if its SNR exceeds a local criterion (LC), and 0 otherwise. Therefore, speech
separation is translated into a binary classification problem. IBM separation has
been shown to improve speech intelligibility in noise for both normal-hearing
and hearing-impaired listeners [9,13]. Alternatively, a soft decision on each T-F
unit leads to an estimate of the ideal ratio mask (IRM). The IRM is defined
below [10].

IRM(t, f) = (
10(SNR(t,f)/10)

10(SNR(t,f)/10) + 1
)β (2)

where β is a tunable parameter. A recent study has shown that β = 0.5 is a
good choice for the IRM [15]. In this case, mask estimation becomes a regression
problem where the target is the IRM. Ratio masking is shown to lead to slightly
better objective intelligibility results than binary masking [15]. In this study, we
use the IRM with β = 0.5 as the learning target.

In supervised speech separation, a training set is typically created by mixing
clean speech and noise. When we train and test on a nonstationary noise such
as a cafeteria noise, there can be considerable mismatch between training noise
segments and test noise segments, especially when the noise resource used for
training is restricted. In this study, we aim at expanding the noise resource using
noise perturbation to improve the generalization of supervised speech separation.
We treat noise expansion as a way to prevent a mask estimator from overfitting
the training data. A recent study has shown that speech perturbation improves
ASR [7]. However, our study perturbs noise instead of speech since we focus on
separating target speech from highly nonstationary noises where the mismatch
among noise segments is the major problem.

2 System Overview

To evaluate the effects of noise perturbation, we use a fixed system for mask
estimation and compare the quality of estimated masks as well as the resyn-
thesized speech that are derived from the masked T-F representations of noisy
speech. As mentioned in Sect. 1, we use the IRM as the learning target. The
IRM is computed from the 64-channel cochleagrams of premixed clean speech
and noise. A cochleagram is a T-F representation of a signal. We use a 20 ms
window and a 10 ms window shift to compute a cochleagram.

We perform IRM estimation using a deep neural network (DNN) and a set
of acoustic features. Recent studies have shown that DNN is a strong classifier
for ASR [1] and speech separation [16]. As shown in Fig. 1, acoustic features are
extracted from a mixture sampled at 16 kHz, and then sent to a DNN for mask
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Fig. 1. Diagram of the proposed system.

prediction. To incorporate temporal context and obtain smooth mask estima-
tion, we use 5 frames of features to estimate 5 frames of the IRM [15]. Therefore
the output layer of the DNN has 64 × 5 units. Since each frame of the mask
is estimated 5 times, we take the average of the 5 estimates. The acoustic fea-
tures we extract from mixtures are a 59-D complementary feature set (AMS +
RASTAPLP + MFCC) [14] combined with 64-D gammatone filterbank (GFB)
features. To derive GFB features, an input signal is passed to a 64-channel gam-
matone filterbank, the response signals are decimated to 100 Hz to form 64-D
GFB features.

We use hit minus false-alarm (HIT−FA) rate and short-time objective intel-
ligibility (STOI) score [11] as two criteria for measuring the quality of the esti-
mated IRM and the separated speech respectively. Since HIT−FA is defined for
binary masks, we calculate it by binarizing a ratio mask to a binary one, follow-
ing Eqs. 1 and 2. During the mask conversion, the LC is set to be 5 dB lower
than the SNR of a given mixture. Both HIT−FA and STOI are well correlated
with human speech intelligibity [8,11].

3 Noise Perturbation

The goal of noise perturbation is to expand noise segments to cover unseen
scenarios so that the overfitting problem is mitigated in supervised speech sep-
aration. A recent study has found that three perturbations on speech samples
improve ASR performance [7]. These perturbations were used to expand the
speech samples by spectral perturbation. The three perturbations are introduced
below. Unlike this study, we perturb noise samples instead of perturbing speech
samples, as we are dealing with highly nonstationary noises.

3.1 Noise Rate (NR) Perturbation

Speech rate perturbation, a way of speeding up or slowing down speech, is used to
expand training utterances during the training of an ASR system. In our study,
we extend the method to vary the rate of nonstationary noises. We increase or
decrease noise rate by factor γ. When a noise rate is being perturbed, the value
of γ is randomly selected from an interval [γmin, 2 − γmin]. The effect of NR
perturbation on a spectrogram is shown in Fig. 2a.

3.2 Vocal Tract Length (VTL) Perturbation

VTL perturbation has been used in ASR to cover the variation of vocal tract
length among speakers. A recent study suggests that VTL perturbation improves
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Fig. 2. (a) Illustration of noise rate perturbation. (b) Illustration of vocal tract length
perturbation. (c) Illustration of frequency perturbation.

ASR performance [5]. VTL perturbation essentially compresses or stretches the
medium and low frequency components of an input signal. We use VTL pertur-
bation as a method of perturbing a noise segment. Specifically, we follow the
algorithm in [5] to perturb noise signals:

f ′ =

⎧
⎨

⎩
fα, if f ≤ Fhi

min(α,1)
α

S
2 − S

2 −Fhimin(α,1)
S
2 −Fhi

min(α,1)
α

(S
2 − f), otherwise

(3)

where f is the original frequency, f ′ is the mapped frequency, α is the wrapping
factor, S is the sampling rate, and Fhi controls the cutoff frequency. The effect
of VTL perturbation is visualized in Fig. 2b.

3.3 Frequency Perturbation

When frequency perturbation is applied, frequency bands of a spectrogram are
randomly shifted upward or downward. We use the method described in [7] to
randomly perturb noise samples. Frequency perturbation takes three steps. First,
we randomly assign a value to each T-F unit, which is drawn from a uniform
distribution.

r(f, t) ∼ U(−1, 1) (4)

Then we derive the perturbation factor δ(f, t) by averaging the assigned val-
ues of neighboring T-F units. This averaging step avoids large oscillations in
spectrogram.

δ(f, t) =
λ

(2p + 1)(2q + 1)

f+p∑

f ′=f−p

t+q∑

t′=t−q

r(f ′, t′) (5)

where p and q control the smoothness of the perturbation, and λ controls the
magnitude of the perturbation. These tunable parameters are decided experi-
mentally. Finally the spectrogram is perturbed as follows.

S̃(f, t) = S(f + δ(f, t), t) (6)

where S(f, t) represents the original spectrogram and S̃(f, t) is the perturbed
spectrogram. Interpolation between neighboring frequencies is used when δ(f, t)
is not an integer. The effect of frequency perturbation is visualized in Fig. 2c.
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4 Experimental Results

4.1 Experimental Setup

We use the IEEE corpus recorded by a male speaker [4] and six nonstation-
ary noises from the DEMAND corpus [12] to create mixtures. All signals are
sampled at 16 KHz. Note that all recordings of the DEMAND corpus are made
with a 16-channel microphone array, we use only one channel of the recordings
since this study is on monaural speech separation. We choose six nonstationary
noises (each is five-minute long) from the DEMAND corpus, each representing
distinct environment: SCAFE noise (recorded in the terrace of a cafe at a pub-
lic square), DLIVING noise (recorded inside a living room), OMEETING noise
(recorded in a meeting room), PCAFETER noise (recorded in a busy office cafe-
teria), NPARK noise (recorded in a well visited city park) and TMETRO noise
(recorded in a subway).

To create a mixture, we mix one IEEE sentence and one noise type at −5 dB
SNR. This low SNR is selected with the goal of improving speech intelligibility
in mind where there is not much to improve at higher SNRs [3]. The training
set uses 600 IEEE sentences and randomly selected segments from the first two
minutes of a noise, while the test set uses another 120 IEEE sentences and ran-
domly selected segments from the second two minutes of a noises. Therefore, the
test set has different sentences and different noise segments from the training set.
We create 50 mixtures for each training sentence by mixing it with 50 randomly
selected segments from a given noise, which results in a training set containing
600 × 50 mixtures. The test set includes 120 mixtures. We train and test using
the same noise type and SNR condition.

To perturb a noise segment, we first apply short-time Fourier transform
(STFT) to derive noise spectrogram, where a frame length of 20 ms and a frame
shift of 10 ms are used. Then we perturb the spectrogram and derive a new noise
segment. The parameters of perturbations are selected by using a development
set. To evaluate the three noise perturbations, we create five different training
sets, each consists of 600 × 50 mixtures. We train a mask estimator for each
training set and evaluate on a fixed test set (i.e. the 120 mixtures created from
the original noises). The five training sets are described as follows.

1. Original Noise: All mixtures are created using original noises.
2. NR Perturbation: Half of the mixtures are created from NR perturbed noises,

and the other half are from original noises.
3. VTL Perturbation: Half of the mixtures are created from VTL perturbed

noises, and the other half are from original noises.
4. Frequency Perturbation: Half of the mixtures are created from frequency

perturbed noises, and the other half are from original noises.
5. Combined: Half of the mixtures are created from applying three perturbations

altogether, and the other half are from original noises.

As already mentioned, we extract a set of four complementary features (AMS +
RASTAPLP + MFCC + GFB) from mixtures. Delta features are appended to
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Table 1. HIT−FA rate (in %) for six noises at −5 dB, where FA is shown in paren-
theses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 55 (37) 70 (23) 65 (28) 50 (40) 69 (22) 63 (32) 62 (30)

NR perturbation 64 (24) 77 (15) 72 (18) 60 (26) 77 (12) 72 (21) 70 (19)

VTL Perturbation 64 (24) 76 (16) 71 (19) 60 (27) 78 (10) 72 (21) 70 (20)

Frequency Perturbation 69 (17) 77 (14) 74 (15) 63 (21) 79 (9) 74 (18) 73 (16)

Combined 67 (21) 77 (15) 73 (16) 61 (25) 78 (10) 74 (18) 72 (18)

Table 2. STOI (in %) of separated speech for six noises at −5 dB, where STOI of
unprocessed mixtures is shown in parentheses.

Perturbation

Noise

SCAFE DLIVING OMEETING PCAFETER NPARK TMETRO Average

Original Noise 73.7 (64.1) 87.5 (79.3) 80.0 (67.8) 71.4 (62.5) 80.2 (67.7) 85.9 (77.5) 79.8 (69.8)

NR perturbation 76.5 (64.1) 89.2 (79.3) 82.5 (67.8) 74.1 (62.5) 83.2 (67.7) 87.4 (77.5) 82.1 (69.8)

VTL Perturbation 76.1 (64.1) 88.7 (79.3) 82.2 (67.8) 74.0 (62.5) 83.6 (67.7) 87.2 (77.5) 82.0 (69.8)

Frequency Perturbation 78.2 (64.1) 89.1 (79.3) 83.3 (67.8) 75.1 (62.5) 84.1 (67.7) 87.8 (77.5) 82.9 (69.8)

Combined 77.0 (64.1) 88.6 (79.3) 82.7 (67.8) 74.7 (62.5) 83.8 (67.7) 87.6 (77.5) 82.4 (69.8)

the feature set. A four-hidden-layer DNN is employed to learn the mapping from
acoustic features to the IRM. Each hidden layer of the DNN has 1024 rectified
linear units [1]. Dropout [1] and adaptive stochastic gradient descent [2] are used
to train the DNN.

4.2 Evaluation Results and Comparisons

We evaluate the three perturbations with the five large training sets described
in Sect. 4.1. The effects of noise perturbations on speech separation are shown
in Tables 1 and 2, in terms of HIT−FA rate and STOI score respectively. The
results indicate that all three perturbations lead to better speech separation
than the baseline where only the original noises are used. Frequency perturba-
tion performs better than the other two perturbations. Compared to only using
the original noises, the frequency perturbed training set on average increases
HIT−FA rate and STOI score by 11 % and 3 %, respectively. This indicates
that noise perturbation is an effective technique for improving speech separa-
tion results. Combining three perturbations, however, does not lead to further
improvement over frequency perturbation.

A closer look at Table 1 reveals that the contribution of frequency perturba-
tion lies mainly in the large reduction in FA rate. This means that the problem of
misclassifying noise-dominant T-F units as speech-dominant is mitigated. This
effect can be illustrated by visualizing the masks estimated from the different
training sets and the ground truth mask in Fig. 3a (e.g. around frame 150). When
the mask estimator is trained with the original noises, it mistakenly retains the
regions where target speech is not present, which can be seen by comparing
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Fig. 3. (a) Mask comparison, the top shows a mask estimate using original noise,
the middle shows a mask esimate using perturbed noise, the bottom shows the IRM.
(b) The effect of frequency perturbation, the average STOI scores (in %) for six noises
are shown for unprocessed speech, separated speech using original noise, and separated
speech using frequency perturbed noise.

the top and bottom plots of Fig. 3a. Applying frequency perturbation to noises
essentially exposes the mask estimator to more noise patterns and results in a
more accurate mask estimator, which is shown in the middle plot of Fig. 3a.
While HIT−FA rate evaluate the estimated binary masks, STOI directly com-
pares clean speech and the resynthesized speech. As shown in Table 2, frequency
perturbation yields higher average STOI scores than using original noises with
no perturbation and NR and VTL perturbations.

Finally, to evaluate the effectiveness of frequency perturbation at a higher
SNR, we carry out additional experiments at 0 dB input SNRs, where we use
the same parameter values as for −5 dB SNR. Figure 3b shows frequency per-
turbation improves speech separation in terms of STOI in each SNR condition.
Also, we find that frequency perturbation remains the most effective among the
three perturbations at 0 dB SNR.

5 Concluding Remarks

In this study, we have explored the effects of noise perturbation on supervised
monaural speech separation at low SNR levels. Noise perturbation is used to
expand training noise to improve generalization of a classifier. We have evalu-
ated three noise perturbations with six nonstationary noises recorded from daily
life for speech separation. The three are noise rate, VTL, and frequency per-
turbations. With perturbed noises, the quality of the estimated ratio mask is
improved as the classifier has been exposed to more scenarios of noise interfer-
ence. In contrast, a mask estimator learned from a training set that only uses
original noises tends to make more false alarm errors (i.e. higher FA rate). The
experimental results show that frequency perturbation, which randomly perturbs
the noise spectrogram along frequency, almost uniformly gives the best speech
separation results among the three perturbations examined in terms of HIT−FA
rate and STOI score.
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Abstract. We evaluate some recent developments in recurrent neural
network (RNN) based speech enhancement in the light of noise-robust
automatic speech recognition (ASR). The proposed framework is based
on Long Short-Term Memory (LSTM) RNNs which are discriminatively
trained according to an optimal speech reconstruction objective. We
demonstrate that LSTM speech enhancement, even when used ‘näıvely’
as front-end processing, delivers competitive results on the CHiME-2
speech recognition task. Furthermore, simple, feature-level fusion based
extensions to the framework are proposed to improve the integration
with the ASR back-end. These yield a best result of 13.76% average
word error rate, which is, to our knowledge, the best score to date.

1 Introduction

Supervised training of speech enhancement schemes is becoming increasingly
popular especially in the context of single-channel speech enhancement in non-
stationary noise [8,16]. There, the source separation problem is formulated as
a regression task: determine a time-frequency mask for separating the wanted
source, based on acoustic features such as the magnitude spectrogram. Due to
their ability to capture the temporal dynamics of speech, RNNs have deliv-
ered particularly promising results in the context of regression-based speech
enhancement [2,16]. In contrast, the performance of RNN-based speech recog-
nition in noisy conditions is still limited when compared to feedforward deep
neural network (DNN) based systems [3,15]. Building on these results, the con-
tributions of this paper are threefold: First, we demonstrate that gains from
recent RNN-based speech enhancement methods translate to significant WER
improvements. Second, we show a simple, yet very effective method to integrate
speech enhancement and recognition by early feature-level fusion in a discrimina-
tively trained DNN acoustic model. Third, we provide a systematic comparison
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 91–99, 2015.
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of single-channel and two-channel methods, showing that RNN-based single-
channel enhancement can yield a recognition performance that is on par with
the previous best two-channel system, and at the same time is complementary
to two-channel pre-processing.

2 Speech Enhancement Methods

In this work, we consider speech enhancement based on the prediction of time-
frequency masks from the magnitude spectrum of a noisy signal. Given an esti-
mated mask m̂t for the time frame t, an estimate of the speech magnitudes |ŝt|
is determined as |ŝt| = m̂t ⊗ |xt|, where xt is the short-term spectrum of the
noisy speech and ⊗ denotes elementwise multiplication.

In this work, speech separation generally uses the following signal approx-
imation objective, whose minimization maximizes the SNR for the magnitude
spectra in each time-frequency bin, and hence directly optimizes for source recon-
struction:

ESA(m̂) =
∑

f,t

(|ŝf,t| − |sf,t|)2 =
∑

f,t

(m̂f,t|xf,t| − |sf,t|)2 . (1)

Discriminatively Trained LSTM-DRNN. The above function can be
applied to optimize any mask estimation scheme. Here, we consider deep recur-
rent neural networks (DRNNs), as proposed in [16]. The mask m̂t is esti-
mated by the DRNN forward pass, which is defined as follows, for hidden layers
k = 1, . . . , K − 1 and time steps t = 1, . . . , T :

h1,...,K−1
0 = 0, (2)

h0
t = |xt|, (3)

hk
t = L(Wk[hk−1

t ;hk
t−1; 1]), (4)

m̂t = σ(WK [hK−1
t ; 1]). (5)

Here L is the LSTM activation function [4], hk
t denotes the hidden activations of

layer k units at time step t, and σ is the logistic function. The weight matrices
Wk, k = 1, . . . , K are optimized according to (1) by backpropagation through
time. There, only the gradient ∂ESA/∂m̂ of the objective function with respect
to the network output is specific to source separation, whereas the rest of the
algorithm is unchanged. Using L instead of conventional sigmoid or half-wave
activation functions helps reducing the vanishing temporal gradient problem of
RNNs [5], allowing them to outperform DNNs with static context windows in
speech enhancement [16].

Phase-Sensitive Discriminative Training. In [2], it was shown that using
a phase-sensitive spectrum approximation (PSA) objective function instead of a
magnitude-domain signal approximation (SA) improved source separation per-
formance. The error in the complex short-time spectrum is related to the SNR
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in the time domain, hence if the network learns to reduce the complex domain
error, this would clearly improve the reconstruction SNR. The PSA objective
function is given below:

EPSA(m̂) =
∑

f,t

|m̂f,txf,t − sf,t|2 (6)

Note that the network does not predict the phase, but still predicts a masking
function. The goal of the complex domain phase-sensitive objective function is
to make the network learn to shrink the mask estimates when the noise is high.
The exact shrinking amount is the cosine of the angle between the phases of
the noisy and clean signals which is known during training but unknown during
testing.

Integration of ASR Information. It can be conjectured that adding lin-
guistic information, including word lexica and language models, to the spectro-
temporal acoustic information used so far, can help neural network based speech
separation. As in [2], we provided such information to the speech separat-
ing neural network in the form of additional ‘alignment information’ vectors
appended to each frame’s input features. The alignment information we use is
derived from the alignment of the one-best decoded transcript at the HMM
state-level. Given an active HMM state at a frame, the appended feature is the
average of feature vectors that align to that state in the training data. Hence,
the additional input has the same dimension as the noisy signal feature. In the
results, we denote the neural networks using the additional alignment features
as speech state aware (SSA).

Multi-channel Extension. In this work, we always use single-channel input
to the neural networks. In case that a multi-channel signal is available, we first
perform multi-channel pre-processing (here, delay-and-sum beamforming) prior
to single-channel speech separation and recognition. The rationale is that train-
ing neural networks on multi-channel input is likely to overfit to the specific
microphone placement seen in training, while traditional multi-channel signal
processing methods allow for specifying this directly. As a model-based baseline
for two-channel source separation, we use multi-channel non-negative matrix
factorization (NMF) [9].

3 Experiments and Results

Our methods are evaluated on the corpus of the 2nd CHiME Speech Separa-
tion and Recognition Challenge (Track 2: medium vocabulary) [13]. The task
is to estimate speech embedded in noisy and reverberant mixtures. Training,
development, and test sets of two-channel noisy mixtures along with noise-free
reference signals are created from the Wall Street Journal (WSJ-0) corpus of
read speech and a corpus of noise recordings. The noise was recorded in a home
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environment with mostly non-stationary noise sources such as children, house-
hold appliances, television, radio, etc. The dry speech recordings are convolved
with a time-varying sequence of room impulse responses from the same envi-
ronment where the noise corpus is recorded. The training set consists of 7 138
utterances at six SNRs from −6 to 9 dB, in steps of 3 dB. The development and
test sets consist of 410 and 330 utterances at each of these SNRs, for a total of
2 460 and 1 980 utterances. By construction of the WSJ-0 corpus, our evaluation
is speaker-independent. Furthermore, the background noise in the development
and test sets is disjoint from the noise in the training set, and a different room
impulse response is used to convolve the dry utterances. In the CHiME-2 track
2 setup, the speaker is positioned at an approximate azimuth angle of 0 degrees,
i.e., facing the microphone. This means that delay-and-sum beam-forming (BF)
corresponds to simply adding the left and right channels. We will consider both
BF as well as the left channel as front-ends.

The targets for supervised training according to (1) are derived from the
parallel noise-free and multi-condition training sets of the CHiME data. The
D(R)NN topology and training parameters were set as in [2,16]. For the NMF-
SA baseline, the discriminative objective (1) is optimized as in [17].

Table 1. Speech enhancement results on CHiME-2 database using average of two
channels by SDR.

[dB] SDR (dev) SDR (eval)

Avg Input SNR [dB] Avg

Enhancement −6 −3 0 3 6 9

BF 0.90 −2.55 −1.12 1.11 2.77 4.47 5.78 1.74

2ch-NMF 4.98 2.75 4.64 5.47 6.53 7.45 8.10 5.82

BF-LSTM-SA 13.19 10.46 11.85 13.40 14.86 16.34 18.07 14.17

BF-LSTM-PSA 13.50 10.97 12.28 13.76 15.13 16.57 18.26 14.49

BF-BLSTM-PSA 13.93 11.30 12.74 14.18 15.46 16.96 18.67 14.88

BF+SSA-BLSTM-PSA 14.11 11.57 12.92 14.33 15.62 17.13 18.81 15.07

3.1 Source Separation Evaluation

Our evaluation measure for speech separation is signal-to-distortion ratio (SDR)
[14]. Since results for single-channel systems have already been reported previ-
ously [2,16,17], we restrict our evaluation to two-channel systems. In Table 1, we
present the results of the same systems when using the channel average as front-
end (‘beam-forming’, BF). Since the reference here is the channel average of the
noise-free speech, the noisy baseline is lower than in the single-channel case [16].
We observe that the RNN-based systems outperform the noisy baseline, as well
as two-channel NMF by a large margin, and that the gain over the noisy baseline
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is significantly higher (13.3 dB vs. 12.4 dB) in the two-channel case than in the
single-channel case.

Table 2. WER on CHiME-2 database with DNN-HMM acoustic models using stereo
training (predicting clean HMM states from noisy data) and sequence discriminative
training, using enhanced speech features as input.

Enhancement WER (dev) WER (eval)

Avg Input SNR [dB] Avg

−6 −3 0 3 6 9

Single-channel systems

None 29.39 40.31 30.00 23.37 17.88 15.02 13.86 23.41

NMF-SA [17] 28.38 37.57 28.88 22.23 16.25 14.55 12.63 22.02

LSTM-SA 23.99 30.92 23.26 18.72 14.35 12.85 11.68 18.63

LSTM-PSA 23.72 30.90 22.34 18.77 14.12 12.40 11.34 18.31

BLSTM-PSA 22.87 29.20 23.11 17.11 13.99 11.75 11.26 17.74

SSA-BLSTM-PSA 21.54 28.04 20.03 16.05 13.04 11.38 10.97 16.58

Two-channel systems

BF 25.64 35.55 26.88 21.60 16.61 13.90 12.16 21.12

2ch-NMF 25.13 32.19 23.05 20.04 15.54 13.19 12.72 19.46

BF-LSTM-SA 19.03 24.86 17.65 15.11 11.41 10.20 9.68 14.82

BF-BLSTM-SA 18.35 23.76 17.92 14.48 11.58 9.86 9.19 14.47

BF+SSA-BLSTM-SA 18.41 24.38 16.74 14.80 11.06 9.23 9.32 14.25

BF+SSA-BLSTM-PSA 18.19 23.97 16.81 14.42 11.19 9.64 9.40 14.24

3.2 ASR Evaluation

In addition to the source separation measure, we also evaluate the speech sepa-
ration techniques in terms of word error rate (WER). We use a state-of-the-art
ASR setup with discriminatively trained DNN acoustic models. The number of
tied HMM states, which are used as DNN targets, is 2,004, and the input fea-
ture of the DNN uses 5 left and right context frames of mel filterbank outputs
(40 × 11 = 440 dimensions) extracted from noisy and enhanced speech signals.
In additional experiments, we also concatenate the noisy and enhanced speech
features (i.e., 440× 2 = 880 dimensions) inspired by deep stacking [1] and noise-
aware training methods [8,11]. The DNN acoustic models have seven hidden
layers, and each layer has 2,048 neurons. Acoustic models are trained with the
following steps:
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1. Restricted Boltzmann machine based layer-by-layer pretraining.
2. Cross entropy training with reference state alignments. Note that the state

alignments are obtained from the Viterbi algorithm of clean signals (the orig-
inal WSJ0 utterances) so that we can provide correct targets for the DNN
[15].

3. Sequence discriminative training. We use the state-level minimum Bayes risk
(sMBR) criterion [6] with 5 training iterations, where the lattices were re-
computed after the first sMBR iteration [12].

All the experiments use a 5 k closed-vocabulary 3-gram language model.
Table 2 provides the WERs of the development and evaluation sets for each

enhancement method. The LSTM methods clearly show an improvement from
the baseline (None) and NMF (NMF-SA). Phase-sensitive (LSTM-PSA), bidi-
rectional (BLSTM-PSA), and speech state aware (SSA-BLSTM-PSA) extensions
of the LSTM achieve further gains from the standard LSTM (LSTM-SA) by
2.45 % (dev) and 2.05 % (eval) absolute. Similar results are obtained when we use
the two-channel systems, and SSA-BLSTM-PSA with the beam-forming inputs
(BF+SSA-BLSTM-PSA) finally achieved 18.19 % (dev) and 14.24 % (eval).

Table 3 shows the result of ‘deep stacking’ (concatenation of the noisy and
enhanced features) for the best single/two channel systems in previous results,
yielding additional improvements for each system. The final results of 17.87 %
(dev) and 13.76 % (eval) are the best reported on this task so far.1

Table 3. WER on CHiME-2 database with DNN-HMM acoustic models using stereo
training (predicting clean HMM states from noisy data) and sequence discriminative
training, using enhanced and noisy speech features as input (‘deep stacking’).

Enhancement WER (dev) WER (eval)

Avg Input SNR [dB] Avg

−6 −3 0 3 6 9

Single-channel systems

SSA-BLSTM-PSA 19.63 26.34 18.08 14.87 11.43 9.77 9.15 14.94

Two-channel systems

BF+SSA-BLSTM-PSA 17.87 23.48 17.02 13.71 10.72 8.95 8.67 13.76

3.3 Relation Between Speech Recognition and Source Separation
Performance

Figure 1 shows the relation of SDR and WER improvements over the single-
and two-channel noisy baselines on the test set. Each point corresponds to a
1 The 2nd CHiME challenge regulation forbids the use of parallel data, hence our
results are out of competition.
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measurement of SDR and WER for the utterances at a single SNR, with a single
system shown in Tables 1, 2 and 3, and single-channel results taken from [2,16,
17]. It can be seen that overall, SDR and WER improvements are significantly
correlated (Spearman’s rho = .84, p � .001). It seems that 2ch-NMF (lower
left corner) is an outlier, yet we believe this can be explained by the fact that
it is not discriminatively trained (unlike the single-channel version used here).
Within the single-channel systems, we obtain an even stronger correlation of
SDR and WER (Spearman’s rho = .92).

Fig. 1. Relation between improvements in source separation performance (SDR) and
word error rate (WER).

4 Conclusions

We have shown that speech separation by recurrent neural networks can be
used directly as a front-end for improving the noise robustness of state-of-the-
art acoustic models for ASR. A competitive WER result of 14.47 % WER was
achieved on the CHiME-2 speech recognition benchmark without deeper inte-
gration of source separation and acoustic modeling. This is interesting from a
practical point of view, since it allows for a modular design of a noise-robust ASR
system, where the same back-end can be used with or without front-end enhance-
ment. Compared to a similar system that uses BF and DNN-based masking as a
front-end for a DNN acoustic model [8], we obtain a 20 % relative improvement
(from 18.0 %).

Furthermore, by pursuing deeper integration of front-end and back-end by
means of two-pass enhancement and decoding, as well as a simple implementa-
tion of noise-aware training related to deep stacking, we were able to achieve
best results on the CHiME-2 task. Compared to a system using joint training of
DNN source separation and acoustic models (DNN-JAT) [8], which achieves a
previous best result of 15.4 % WER, we obtain an 11 % relative WER reduction.
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Furthermore, our best single-channel system is slightly better (3 % relative) than
this previous best two-channel system.

In our results, we observe that back-end WER and front-end SDR are signif-
icantly correlated. This is interesting since it stands in contrast to earlier studies
which found that SNR and word accuracy gains need not be strongly correlated
[7]. However, these studies were carried out on different data and used a differ-
ent source separation method. It will be highly interesting if, building on these
results, one can find sufficient conditions for a good correlation of SNR and WER.
Another notable finding is that stacking LSTM networks for source separation
with DNNs for acoustic modeling is more promising than using LSTM networks
directly for acoustic modeling: In [3], no WER gains by using LSTM acoustic
models instead of DNN ones were reported on the CHiME-2 data. In future
work, we will further investigate into combining our discriminative source sepa-
ration objective with discriminative (sMBR) training of LSTM acoustic models
as in [10].
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Abstract. This work aims at a test-time fine-tune scheme to
further improve the performance of an already-trained Denoising
AutoEncoder (DAE) in the context of semi-supervised audio source
separation. Although the state-of-the-art deep learning-based DAEs
show sensible denoising performance when the nature of artifacts is
known in advance, the scalability of an already-trained network to an
unseen signal with an unknown characteristic of deformation is not well
studied. To handle this problem, we propose an adaptive fine-tuning
scheme where we define a test-time target variables so that a DAE can
learn from the newly available sources and the mixing environments
in the test mixtures. In the proposed network topology, we stack an
AutoEncoder (AE) trained from clean source spectra of interest on top
of a DAE trained from a variety of available mixture spectra. Hence, the
bottom DAE outputs are used as the input to the top AE, which is to
check the purity of the once denoised DAE output. Then, the top AE
error is used to fine-tune the bottom DAE during the test phase. Exper-
imental results on audio source separation tasks demonstrate that the
proposed fine-tuning technique can further improve the sound quality of
a DAE during the test procedure.

Keywords: Deep learning · Deep neural networks · Autoencoders ·
Speech enhancement · Semi-supervised separation

1 Introduction

Recent advances in the deep learning research greatly improved the single-
channel audio source separation performance as well. Most of the time, the Deep
Neural Networks (DNN) commonly take a set of frequency coefficients of a short
time period of the mixed signal, but there are three different choices for the
output. First, the network can produce Ideal Binary Masks (IBM) [11], which
are binary labels that tell us whether each frequency coefficient (T-F unit in

c© Springer International Publishing Switzerland 2015
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the cochleagram usually) belongs to the interesting source (e.g. speech) or not
(e.g. noise). Second, a DNN can generate all the spectra of unmixed sources
simultaneously [3]. This kind of models is more difficult to learn due to the
higher dimension of the output layer, but they tend to produce even reconstruc-
tion qualities for all the sources. Third, a Denoising AutoEncoder (DAE) can
take a noisy spectrum, and then outputs its cleaned-up version [5,13]. DAEs are
common in deep learning as a feature learning technique, where the inputs are
perturbed with some stationary noise [7,10]. In the source separation applica-
tions however, a DAE is trained with more realistic acoustic noise types.

There is no good ways for those DNNs for source separation to adapt to an
unseen signal, while adapting a half-trained model during the test time has been
a common idea in the source separation research in the name of semi-supervised
separation [1]. It has a merit especially when an established separation model
cannot efficiently represent a test signal with some unknown sources in it. To
handle this problem, the semi-supervised separation systems build a part of the
model for the desired source in advance, and then train the rest of the model
from the residual of the test signal.

In this work we propose to vertically stack a pair of a DAE and an
AutoEncoder (AE) as a source separation system that adapts to the unknown
characteristics of the test signals. First, we train a DAE with an available set of
noisy spectra and their corresponding clean spectra as the input and the out-
put, respectively. However, we also consider the fact that the noisy spectra for
training might not be diverse enough to cover all the variation of deformation
that can happen in the real world, such as different types and levels of additive
noise. As in the semi-supervised separation scenario, we improve this imperfectly
trained DAE by fine-tuning it to minimize the test-time error we newly define.
To this end, we set up another AE that is dedicated to produce a clean spectrum
if its input is the clean spectra of a target source as well, which we also call a
purity checker. It gives us a lower error if its input is clean and higher otherwise.
During the separation phase, we first denoise the input using the bottom DAE.
Then, we check on the purity of the DAE output by feeding it as an input to
the top AE. In this way, instead of a single path feedforward for the denoising
job, we measure the quality of the once denoised spectrum and backpropagate
the error of the top AE to fine-tune the bottom DAE.

We show that the proposed method can sensibly improve Signal-to-
Interference Ratio (SIR), while sacrificing Signal-to-Artifact Ratio (SAR) a little.
Therefore, there is a point where we get better Signal-to-Distortion Ratio (SDR).

2 Related Work

This section introduces semi-supervised NMF models and two-stage approaches,
which are conceptually and structurally similar to our work, respectively.

2.1 Semi-supervised Source Separation

In the semi-supervised source separation methods, Nonnegative Matrix Factor-
ization [4], or Probabilistic Latent Component Analysis (PLCA) [6] as an audio
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Fig. 1. (a) Supervised separation (b) Semi-supervised separation.

analogy of topic modeling, is a popular tool to discover latent structures of a
mixed signal1. Figure 1 compares the two different strategies. In (a) we assume
that a set of magnitudes of Fourier spectra, e.g. X(1)

dic from clean speech, is avail-
able for the NMF algorithm to train the source specific bases, or a dictionary,
W(1)

dic and their temporal activations, H(1)
dic. As a fully supervised case, we also

learn the second source’s dictionary W(2)
dic (e.g. “babble” noise). For the sepa-

ration, we fix the two dictionaries during the final NMF learning, while both
sets of their activations H(1)

test and H(2)
test are learned to best describe the unseen

test input Xtest. Finally, we recover the source by multiplying its corresponding
dictionary matrix and activations, e.g. W(1)

dicH
(1)
test for the first source.

In the semi-supervised scenario on the other hand, we assume that only a
part of the sources is known (the first source is known in Fig. 1(b), while the
other sources are not). However, by fixing only the first part of the dictionary
matrix with the trained one W(1)

dic, and learning the other part W(2)
dic along with

the activations from the test spectra, we can still recover the test mixture in a
semi-supervised fashion. This approach is particularly useful if we are not sure
about the quality of the second source’s training set, or if it does not exist at all.

2.2 Two-Stage Approaches

In the two-stage approaches [12], an additional NMF approximation helps
improve the masking-based DNN results. First, a two-stage system uses its usual
DNN-based T-F masking module as a front-end to denois the noisy speech sig-
nal. In the second stage of the system, NMF is employed to further improve the
estimated speech signal to discover a lower-rank approximation of the denoised
speech. The NMF part of the system works, because its job is to re-synthesize
the speech estimate with a fixed set of clean NMF bases.
1 In this section we use terminologies from NMF-based models without the loss of

generality in the other latent variable models.
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Fig. 2. The proposed system and DNNs as its building blocks.

If we consider NMF as an AE with a single hidden layer, we can expand the
two-stage approaches by replacing the NMF module with a deeper AE trained
from the clean source. However, the series of runs of DNN and NMF do not
guarantee the adaptation we seek in this work, since the second stage merely
works as a post-processor, and there is no chance to fine-tune the main DNN-
based separation module.

3 The Proposed Adaptive Denoising Autoencoders

We propose the adaptive source separation system in this section. First, we
will present the network structure and the test-time error function we define in
Sect. 3.1. Then, we provide the details about the network settings in Sect. 3.2.
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3.1 The Proposed Network Structure

There are two DNNs in the proposed adaptive DAE system. First, the bottom
DAE is trained to take a mixture input magnitude spectrum |X(:, t)| and produce
an output spectrum Y(:, t), which we express in the matrix notation as follows2:

Y = g(WL+1
DAE · · · g(W2

DAE · g(W1
DAE · X))), (1)

where Wl
DAE is the weight matrix between l-th hidden layer units and their

input. Bias terms are absolved into X as an additional row of 1’s. g(·) denotes a
nonlinearity function. We also use the MATLAB R© notation for a column vector
in a matrix, e.g. X(:, t). Since the input vectors X are the mixtures of multiple
source spectra, i.e. X = S(1) + S(2), this network can be a DAE if we set up an
error function with respect to the desired source, e.g. S(1), as the target,

EDAE =
1
2

∑

f,t

(
Y(f, t) − S(1)(f, t)

)2
. (2)

Figure 2(c) depicts this procedure. In the usual DAE-based separation sce-
nario, the separation is done by a single forward pass on this trained network.

We additionally define the top AE that encodes the identity mapping between
the input and the output for the desired source. It basically has the same struc-
ture with the bottom DAE (See Fig. 2(a)) except that it takes the spectra of the
desired source S(1) as input, and tries to minimize the error between its output
U and the input S(1) as its target:

U = g(WL+1
AE · · · g(W2

AE · g(W1
AE · S(1)))), (3)

EAE =
1
2

∑

f,t

(
U(f, t) − S(1)(f, t)

)2
. (4)

Having this additional AE as a purity checker, we feed Y to it as an input.
It will give us a smaller AE error EAE if its input Y has produced a smaller
DAE error EDAE than bigger. It means the bottom DAE did its job well. On the
other hand, we should expect a bigger EAE value if Y was significantly different
from S(1). Using this concept, we can judge the quality of Y by checking on EAE

during the test-time without any help from the ground truth. Moreover, we can
fine-tune the bottom DAE so that it can further reduce the error between its
output Y and the top AE output U,

EAE =
1
2

∑

f,t

(
U(f, t) − Y(f, t)

)2
, (5)

which is nothing but the AE error. At every epoch, we backpropagate this error
to update the bottom DAE to better separate the unseen mixture probably
2 We drop the absolute function | · | from now on for brevity, but the readers should

be aware that mixing in the time domain does not hold in the magnitude Fourier
domain.
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with unfamiliar sources and mixing environment. Finally, we construct a stacked
adaptive DAE as in Fig. 2(b), whose bottom and top parts are the DAE to be
fine-tuned and the AE as a purity checker, respectively.

3.2 The Proposed Network Setting

For both AEs, we train dropout networks [9] with dropout rates 0 % for the
input and 20 % for the other hidden units. We use momentum with parameter
0.95. The main optimization is done by Stochastic Gradient Descent (SGD) with
initial step size set to be 10−6. Weights are bound to be between −1 to 1. Once
we train both AEs, we first feedforward the new test mixture in the bottom
DAE. With its output Y, we do another feedforward in the top AE to get U.
Then, we calculate the AE error as in (5) to fine-tune the bottom DAE. We
found that the same optimization setting works well for this fine-tuning job,
too. The activation is a modified maxout function as suggested in [5],

g(x) =
{

x if x ≥ ε
−ε

x−1−ε if x < ε.
(6)

4 Numerical Experiments

4.1 Speech and Noise

We train the bottom DAE with 10 random female speakers from TIMIT training
data, each of which has 10 utterances. Thy are mixed with four different noise
types used in [5], i.e. “Babble”, “Airport”, “Train” and “Subway.” Eventually,
there are 400 noisy utterances for training, which amount to 80,864 frames after
short-time Fourier transform with 1024 pt of the frame size and a 75 % overlap.
A square-root of Hann window is used for both analysis and synthesis. With the
same setting, we also train an AE, but on the clean speech spectra as its input
and target. Both networks have two hidden layers with 2048 hidden units per
each layer. As for the test signals, we randomly choose 5 female speakers from
the TIMIT test part, and add them up with eight different noise types: “Piano”,
“Drill”, “Bus”, “Birds”, “Computer keyboard”, “Frogs”, “Machinegun”, and
“Street” (400 noisy utterances). We try two input Signal-to-Noise Ratio (SNR)
choices: 0 and –5dB. Note that since the networks are trained on 0dB mixtures
only, the –5dB test mixtures are more difficult for them to separate. Finally, we
either use the spectrum as it is or after concatenating five consecutive frames to
test the network with inputs with temporal structures.

The bottom DAE is not perfect, because we deliberately chose different kinds
of test noise. Fine-tuning the bottom DAE is to reduce the top AE error in (5).
By doing so, we get better DAE outputs Y, in the sense of reducing the level of
interfering sources, but in the meantime the recovered speech can also lose some
of its energy. Figure 3 shows that the average SIR values increase as we keep fine-
tuning, where 0-th epoch means no fine-tuning has been done. Since the SAR
decreases more slowly, there is a better SDR value after several epochs inall cases.
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Fig. 3. The separation performance of speech enhancement experiments with different
settings (a) Frame-by-frame; input SNR 0dB (b) 5 frames; input SNR 0dB (c) Frame-
by-frame; input SNR –5dB (d) 5 frames; input SNR –5dB. (e) The performance on
singing voice separation task.

In (d), where the test mixture was –5dB and the input is the vectorized 5 frames,
both SIR and SDR improvements are most significant.

4.2 Singing Voice Separation

MIR-1K is a dataset with a thousand karaoke clips played by 19 amateur singers
[2]. We followed the basic setting in [8] where only 175 clips from two singers are
allowed to be used as the training set, while there are 825 test clips available. We
consider the voice part as our desired source, and train the networks with three
hidden layers and 2048 units per a layer. Three frames are vectorized to form
an input. This lack of training data makes the top AE less reliable. However, we
can still see in Fig. 3(e) that the proposed fine-tuning scheme can improve the
average SIR values for the test samples.

5 Conclusion

We developed an adaptive source separation system, which consists of a bottom
DAE and a top AE for the main separation module and a purity checker for the
fine-tuning job, respectively. Although a good target variables are not usually
available for the use during the test-time separation, we found that this addi-
tional well-trained AE on the clean spectra of the desired source can provide the
main separation module with some alternative quality measurements.
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Abstract. In this paper, we present a quasi-Newton (QN) algorithm for
joint independent subspace analysis (JISA). JISA is a recently proposed
generalization of independent vector analysis (IVA). JISA extends clas-
sical blind source separation (BSS) to jointly resolve several BSS prob-
lems by exploiting statistical dependence between latent sources across
mixtures, as well as relaxing the assumption of statistical independence
within each mixture. Algebraically, JISA based on second-order statistics
amounts to coupled block diagonalization of a set of covariance and cross-
covariance matrices, as well as block diagonalization of a single permuted
covariance matrix. The proposed QN algorithm achieves asymptotically
the minimal mean square error (MMSE) in the separation of multidi-
mensional Gaussian components. Numerical experiments demonstrate
convergence and source separation properties of the proposed algorithm.

Keywords: Blind source separation · Independent vector analysis ·
Independent subspace analysis · Joint block diagonalization

1 Introduction

In this paper, we present a new algorithm for joint independent subspace analy-
sis (JISA) [1]. JISA is a blind source separation (BSS) framework inspired by
two recently-proposed extensions to BSS that until recently have been dealt
with only separately: (1) relaxing the constraint that latent sources within a set
of measurements must be statistically independent, sometimes termed indepen-
dent subspace analysis (ISA) [2–4], and (2) solving several classical BSS prob-
lems simultaneously by exploiting statistical dependencies between latent sources
across sets of measurements, a model often known as independent vector analy-
sis (IVA) [5]. JISA provides a new flexible way to exploit links between different
datasets, and thus has the potential to be useful to data fusion. The JISA model,
and a relative gradient (RG) algorithm that achieves optimal separation in terms
of minimal mean square error (MMSE) in the presence of noiseless Gaussian
data, were first presented in [1]. A gradient algorithm that performs JISA based

This work is supported by the project CHESS, 2012-ERC-AdG-320684. GIPSA-Lab
is a partner of the LabEx PERSYVAL-Lab (ANR–11-LABX-0025).
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on the multivariate Laplace distribution has recently been proposed [6]. The
main contribution of this paper is a Newton-based algorithm that achieves opti-
mal separation for Gaussian noise-free data and converges in a much smaller
number of iterations than its RG counterpart [1].

Consider T observations of K vectors x[k](t), modelled as

x[k](t) = A[k]s[k](t) 1 ≤ t ≤ T , 1 ≤ k ≤ K, (1)

where A[k] are M × M invertible matrices that may be different ∀k, and x[k](t)
and s[k](t) are M ×1 vectors. Given the partition s[k](t) = [s[k]ᵀ1 (t), . . . , s[k]ᵀN (t)]ᵀ,
where s[k]i (t) are mi × 1 vectors, mi ≥ 1,

∑N
i=1 mi = M , N ≤ M , ·ᵀ denotes

transpose, and the probability density function (pdf) of each random process
s[k]i (t) irreducible in the sense that it cannot be factorized into a product of
non-trivial pdfs, then each mixture (1) represents a single ISA [2–4] problem.
The model that we define as JISA corresponds to linking several such standalone
ISA problems via the assumption that the elements of the ni × 1 vector si(t) =
[s[1]ᵀi (t), . . . , s[K]ᵀ

i (t)]ᵀ, where ni = Kmi, are statistically dependent, whereas the
pairs (si(t), sj(t)) are statistically independent ∀i �= j ∈ {1, . . . , N}. JISA can be
regarded as generalizing IVA since in IVA, mi = 1 ∀i (which implies N = M).

In the rest of this paper, we focus on JISA using second-order statistics
(SOS). In this case, further insights can be obtained by rewriting (1) as

x(t) = As(t) (2)

where s(t) = [s[1]ᵀ(t), . . . , s[K]ᵀ(t)]ᵀ and x(t) = [x[1]ᵀ(t), . . . ,x[K]ᵀ(t)]ᵀ are L × 1
vectors, L = KM , A = ⊕K

k=1A
[k] ∈ Bk is a matrix direct sum, k = M1K

the block-pattern of A, and Bb denotes the subspace of all invertible block-
diagonal matrices with block-pattern b. With these notations, s̃(t) = Φs(t),
where s̃(t) = [sᵀ

1(t), . . . , sᵀ
N (t)]ᵀ and Φ is the corresponding L × L permutation

matrix. Assuming sample independence ∀t �= t′, the model assumptions imply

that S̃ � E{s̃(t)s̃ᵀ(t)} =
[

S11 0 0

0
. . . 0

0 SNN

]
= ⊕N

i=1Sii ∈ Bn , where S̃ is an L × L

block-diagonal matrix with block-pattern n = [n1, . . . , nN ]ᵀ and S̃ = ΦSΦᵀ ∈
Bn. The linear model (2) implies that X = ASAᵀ where S = E{s(t)sᵀ(t)} and
X = E{x(t)xᵀ(t)}. In the sequel, we assume that all Sii are invertible and do
not contain values fixed to zero. Typical structures of some of these matrices are
depicted in Fig. 1.

Figure of Merit: The above partition of s[k](t) induces a corresponding partition
in the mixing matrices: A[k] = [A[k]

1 | · · · |A[k]
N ] with A[k]

i the ith M × mi column-
block of A[k]. The multiplicative model (1) may now be rewritten as a sum of N ≤
M multidimensional components: x[k](t) =

∑N
i=1 x[k]

i (t) where the ith M×1 com-
ponent x[k]

i (t) is defined as x[k]
i (t) = A[k]

i s[k]i (t). In a blind context, the component
vector x[k]

i (t) is better defined than the source vector s[k]i (t). Indeed, for any invert-
ible mi × mi matrix Z[k]

ii , it is impossible to discriminate between the representa-
tion of a component x[k]

i (t) by the pair (A[k]
i , s[k]i (t)) and (A[k]

i Z−[k]
ii ,Z[k]

ii s[k]i (t)),
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where Z−[k]
ii denotes (Z[k]

ii )−1. This means that only the column space of A[k]
i ,

span(A[k]
i ), can be blindly identified. Therefore, JISA is in fact a (joint) subspace

estimation problem. Given m = [m1, . . . , mN ] and the set of observations X =
{x[k](t)}K, T

k=1,t=1, the problem that we define as JISA can thus be stated as esti-
mating A = {A[k]}Kk=1 such that the components x1(t), . . . ,xN (t), where xi(t) =
[x[1]ᵀ

i (t), . . . ,x[K]ᵀ
i (t)]ᵀ, are as independent as possible. In the sequel, we set up

a simple statistical model that, via its likelihood function, yields a quantitative
measure of independence. Accordingly, we define the figure of merit as the mean
square error (MSE) in the estimation of xi(t),

̂MSEi =
1
σ2
i

1
T

T∑

t=1

‖x̂i(t) − xi(t)‖2, (3)

where σ2
i = E{‖xi(t)‖2}. For Gaussian data, estimates of xi(t) obtained from

matrices that are maximum likelihood (ML) estimates of A achieve asymptoti-
cally (i.e., T → ∞) the MMSE [7].

Likelihood and Contrast Function: In the following, we consider a Gaussian
model in which si(t) ∼ N (0ni×1,Sii) are mutually independent samples ∀t �= t′.
The log-likelihood for the model just described is [1] log p(X ;A,S) =
−TD(ΦA−1XA−ᵀΦᵀ, S̃)−κ, where A = {A[k]}Kk=1, and X = 1

T

∑T
t=1 x(t)xᵀ(t)

is the empirical counterpart of X. The term κ = T
2 (log det(2πX)+L) is irrelevant

to the maximization of the likelihood since it depends only on the data and not on
the parameters. The scalar D(R1,R2) = 1

2 (tr{R1R−1
2 }− log det(R1R−1

2 )−M),
defined for any two M × M symmetric positive-definite matrices R1 and R2,
is the Kullback-Leibler divergence (KLD) between the distributions N (0,R1)
and N (0,R2) [8]. Given the block-diagonal structure of S̃, its ML estimate

is [1] ̂̃SML = bdiagn{ΦA−1XA−ᵀΦᵀ}. We can now write maxS log p(X ;A,S) =
−TC(A) + κ, where in the latter we have defined the contrast function

C(A) = D(ΦA−1XA−ᵀΦᵀ,bdiagn{ΦA−1XA−ᵀΦᵀ}). (4)

It holds that D(R,bdiagb{R}) ≥ 0 with equality if and only if (iff) R ∈ Bb.
Hence, for any positive-definite matrix R, D(R,bdiagb{R}) is a measure of the
block-diagonality of R. Therefore, minimizing1 the contrast function (4) amounts
to (approximate) block diagonalization of X by a permuted block-diagonal matrix
ΦA−1. The RG of (4), ∇C(A) = bdiagk{Φᵀ bdiag−1

n {ΦA−1XA−ᵀΦᵀ}ΦA−1X
A−ᵀ}−I, where bdiag−1

m {·} stands for (bdiagm{·})−1, was derived in [1]. Matri-
ces that satisfy ∇C(A) = 0 are ML estimates of A. This is the basis for the RG
algorithm [1].

2 Derivation of the Approximate Hessian

The derivation of the Hessian is based on a relative perturbation of each A[k] by
Â[k] = A[k](IM +E [k])−1Λ[k], where the M ×M matrix E [k] reflects the relative
1 We assume that an optimum exists.
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change in A[k], up to a scale ambiguity that is represented by the arbitrary invert-
ible matrix Λ[k] ∈ Bm. It can be shown [7] that the MSE (3) is invariant to Λ[k].
The first-order expansion of the equations that satisfy ∇C(A) = 0 can be rewrit-
ten [7], for each pair i �= j, as e = −H−1g+Ω( 1

T ), where e and g are 2Kmimj×1
vectors, e = [eᵀ

ij eᵀ
ji]

ᵀ, eij = [vecᵀ{E [1]
ij } · · · vecᵀ{E [K]

ij }]ᵀ, g = [gᵀ
ij gᵀ

ji]
ᵀ,

gij = [vecᵀ{[S−1
ii Sij ]11} · · · vecᵀ{[S−1

ii Sij ]KK}]ᵀ, H =
[

Sjj�S−1
ii IK⊗T mj,mi

IK⊗T mi,mj
Sii�S−1

jj

]

is a 2Kmimj × 2Kmimj matrix that we assume invertible, ⊗ is the Kronecker

product, and Sjj � S−1
ii =

⎡

⎣
S

[1,1]
jj ⊗[S−1

ii ]11 ··· S
[1,K]
jj ⊗[S−1

ii ]11

...
...

S
[K,1]
jj ⊗[S−1

ii ]K1 ··· S
[K,K]
jj ⊗[S−1

ii ]KK

⎤

⎦ is a Kmimj ×

Kmimj matrix whose (k, l)th block according to the partition mimj1K is S[k,l]
jj ⊗

[S−1
ii ]kl. The commutation matrix TP,Q ∈ R

PQ×PQ is such that vec{Mᵀ} =
TP,Qvec{M} for any M ∈ R

P×Q. Ω(f) stands for zero-mean stochastic terms
whose standard deviation is proportional to f , or to higher powers thereof.

3 Algorithm

The approximation of the Hessian gives rise to a quasi-Newton (QN) algorithm,
which is given in pseudocode in Algorithm 1. In line 5 of Algorithm 1 we
introduce the operator vecbdα×β{X} �

[
vecᵀ{X11} . . . vecᵀ{XKK}]ᵀ, where

vecbdα×β{X} is a vector that consists only of the (vectorized) entries of the main-
diagonal blocks of matrix X. Matrices Xkk are the blocks on the main diagonal of
X where the rows of X are partitioned according to α and the columns by β. The
difference from the RG algorithm is in lines 5–8, see [1, Algorithm 2].

4 Numerical Validation

In this section, we explore some numerical properties of the QN algorithm and
validate its proper functioning. In all the following numerical experiments, the
real positive definite matrices Sii are generated as Sii = diag− 1

2 {UΛUᵀ}UΛUᵀ

diag− 1
2 {UΛUᵀ}, where UΛVᵀ is the singular value decomposition (SVD) of a

Kmi×Kmi matrix whose independent and identically distributed (i.i.d.) entries
∼ N (0, 1). The corresponding samples are created by right-multiplying the trans-
pose of the Cholesky factorization of S̃ii with Kmi ×T i.i.d. ∼ N (0, 1) numbers.
A[k] is arbitrary and thus, for simplicity, fixed to I. In order to allow varying
degrees of initialization, A[k]

init = pΥ + (1 − p)I, 0 ≤ p ≤ 1, where p = 1 implies
fully random initialization. The entries of Υ are ∼ N (0, 1) i.i.d. and drawn anew
for each new A[k]

init. The stopping threshold is set to 10−6, and T = 104. In order
to emphasize the difference between JISA and IVA, at each Monte Carlo (MC)
trial, the algorithm is run twice on the same data, in two modes: in the first
mode, the input parameter m (Algorithm 1 line 1) reflects the true data prop-
erties. In the second mode, the input m is set to 1M×1. The latter amounts to
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Algorithm 1. An iterative Newton-based algorithm for JISA
1: function JISA(X, Φ, Ainit, m, threshold, K)
2: A ← Ainit, R ← X � initialization
3: while ‖∇C‖ > threshold do
4: for i=2:N, j=1:i−1 do � Sweep on (i, j �= i)

5: g ←
[
vecbdmi1K×mj1K{R−1

ii Rij}
vecbdmj1K×mi1K{R−1

jj Rji}
]

6: H ←
[

Rjj � R−1
ii IK ⊗ T mj ,mi

IK ⊗ T mi,mj Rii � R−1
jj

]

7: Evaluate E [k]
ij ,E [k]

ji , k=1,. . . ,K

8: Set {E [k]
ij ,E [k]

ji }K
k=1 in E = ⊕K

k=1E [k]

9: T ← I + E � E [k]
ii = 0

10: R ← T−1RT−ᵀ

11: A ← AT � For output only
12: end for
13: ∇C ← bdiagk{Φᵀ bdiag−1

n {ΦA−1RA−ᵀΦᵀ}ΦA−1RA−ᵀΦᵀΦ} − I
14: end while
15: return A
16: end function

assuming that each Kmi × Kmi (irreducible, by definition) block on the diag-
onal of S̃ can be further reduced into mi smaller blocks of dimension K × K,
i.e., ignoring the true subspace structure of the data. We denote this approach
“mismodeling” [9].

4.1 Sensitivity to Initizalization and Number of Iterations

In order to focus here on the initialization, we avoid finite sample size errors by
using data that can be exactly block-diagonalized. Figure 1 depicts typical such
data, as well as outputs of QN, in mismodeling and correct model scenarios,
for two types of initialization: mild (p = 0.2, Fig. 1(d)–(e)), and fully random
(p = 1, Fig. 1(f)–(i)). A key observation is that JISA is sensitive to initialization:
compare Fig. 1(e) with (g). In the latter, a fully random initialization results in an
inability to recover the block structure. On the other hand, due to the convexity
of the mismodeled algorithm (see [10]), it minimizes properly the mismodeled
contrast function ∀p. However, minimizing the mismodeled contrast function
does not imply separation: there is still need to cluster the blocks, as shows
Fig. 1(h). In Fig. 1(i), we cluster by simple enumeration on all M ! possibilities.
This is definitely not a viable approach. Further discussion of this topic is beyond
the scope of this paper.

We now compare the QN and RG algorithms in terms of number of iterations.
Both RG and QN minimize the same contrast function (4) and thus achieve the
same MSE, up to numerical precision. In the experiments that follow, only Ainit

varies at each of the 100 MC trials, while A, S and S (the empirical counterpart
of S) remain fixed. In this example, m = [1, 2, 4]ᵀ, K = 4. Figure 2 validates that



116 D. Lahat and C. Jutten

(a) Φ (b) X = ASA
= S @A = I

(c) X = ΦXΦ (d) Ainit @p = 0.2 (e) S = ΦSΦ

∼= Smis @p = 0.2

(f) Ainit @p = 1 (g) S = ΦSΦ
@p = 1

(h) Smis @p = 1 (i) Smis
@p=1 after

clustering

Fig. 1. Typical matrices and output of the QN algorithm, on error-free data (X is input
to the algorithm). A = I, m = [1, 2, 3]ᵀ , K = 4. In (d)–(e), p = 0.2. In (f)–(i), p = 1. In
(e), the blocks are reconstructed properly both for JISA and mismodeling. Figure (g) is
a typical case where a fully random initialization prohibits the proper reconstruction of
the blocks in JISA. Figure (h)–(i) reflect the output in a mismodeling scenario before
and after correcting the global permutation, respectively. False colours: in (b,c,e–i) we
depict log 10| · | in order to enhance small numerical features. White=zero.

indeed, the QN algorithm improves over RG in terms of number of iterations.
In addition, these results reflect the fact that in mismodeling, the algorithm is
trying to block-diagonalize S̃ into smaller blocks than is actually possible and
thus doing unnecessary work. These results conform with previous ones [1,11].
In this scenario, we set p = 0.15. This value guaranteed proper convergence
to the correct minimum of the contrast function in all trials. For larger values
of p, the number of iterations in the RG becomes prohibitive. Hence, in this
respect, the advantage of the QN approach over RG is clear.

4.2 Component Separation

The component separation quality of the QN algorithm, quantified by its MSE,
is illustrated in Fig. 3. In the following experiment, we run mutliple trials for
fixed S, A, and Ainit. Only S varies. For each trial we evaluate the normalized
empirical MSE (3). As in the previous experiments, we compare JISA with its
mismodeling counterpart. We set m = [6, 5, 1]ᵀ, K = 5. Here, M = 12 which
is prohibitive for enumeration (recall Fig. 1(h)–(i)) and thus we use p = 0.2 in
order to have a good chance that the output is automatically clustered properly
into the correct N blocks, before evaluating the MSE (3). In fact, the convex-
ity of the “mismodeled” variant, mentioned in Sect. 4.1, no longer holds as mi

largely diverges from 1. In order to overcome this for the error-analysis valida-
tion purpose only, we choose a more strict initialization strategy in which in the
first attempt Ainit is taken from the output of the JISA run, and if the empirical
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Fig. 2. Histogram of number of iterations in QN and RG, on the same data. Init with
mild perturbation (p = 0.15): all runs converged properly. Logarithmic X-axis.

MSE indicates large errors, new Ainit are generated according to the original pro-
cedure until no permutation issues are detected. Figure 3 illustrates our results.
Subplot i corresponds to component i. The mean and standard deviation (std)
of ̂MSEi are written above the corresponding sublot, together with the theo-
retically predicted MSE for the JISA scenario [7]. The histograms represent 200
MC trials. The averaged MSE and its theoretical prediction for JISA are marked
on the histograms. Figure 3 shows good fit between the predicted and empirical
values. It also shows improved MSE from using the correct multidimensional
model, including for the component with mi = 1, as expected.

Fig. 3. Component separation. Histogram of the normalized empirical MSE for correct
and mismodeling scenarios. Subplots correspond to components with dimensions 6, 5
and 1, respectively. K = 5, 200 trials.

Concluding Remarks: In this paper, we introduced a new Newton-based algo-
rithm for JISA that achieves asymptotically optimal performance for Gaussian
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noise-free data. Many other issues remain to be explored, such as its numerical
complexity, dependence of MSE on model parameters, efficient implementation,
and behaviour in the presence of real-life data. We mention that generalizing [12],
JISA can be regarded as a coupled block diagonalization problem, since X[k,l] =
A[k]S[k,l]A[l]ᵀ ∀k, l, where X[k,l] = E{x[k](t)x[l]ᵀ(t)} and S[k,l] ∈ Bm. Conse-
quently, JISA falls within the framework of structured data fusion (SDF) [13]
and thus can be solved, using a straightforward model-fit approach and a Euclid-
ean norm, using Tensorlab [14]. Comparison with the QN algorithm is left for
future work.
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Abstract. A Bayesian framework is proposed to define flexible coupling
models for joint decompositions of data sets. Under this framework, a
solution to the joint decomposition can be cast in terms of a maximum
a posteriori estimator. Examples of joint posterior distributions are pro-
vided, including general Gaussian priors and non Gaussian coupling pri-
ors. Then simulations are reported and show the effectiveness of this
approach to fuse information from data sets, which are inherently of dif-
ferent size due to different time resolution of the measurement devices.

Keywords: Tensor decompositions · Coupled decompositions · Data
fusion · Multimodal data · Heterogeneous data

1 Introduction

In domains such as brain imaging, metabolomics and link prediction, various
data gathering devices are used to collect information on some underlying phe-
nomena. Since no device has a complete view of the phenomena, data fusion
can be used to blend the different views provided by each device, thus allowing
a broader understanding. It is then not surprising that multimodal data fusion
has become an important topic in these domains [2,8,18].

One way of defining a framework for heterogeneous data fusion is to state
it as a problem of latent variable analysis. Variations of the hidden variables
are supposed to explain most of the variations in the data sets. Since the latter
are considered to be different views of the same phenomena, part of the hidden
variables are related to each other. We can say that the latent models are cou-
pled through subsets of their variables. By exploiting this coupling in the joint
estimation of the latent models, we expect that the information from one data
set will help in the estimation of the latent variables related to the other.

Although the framework described above dates back to the coupled (or
linked) tensor model described in [9], it was repopularized recently in [15], where
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the problem of joint matrix factorization was considered under the constraint
that one of the factors is shared by all matrices. In both cases the coupling occurs
through equality constraints on latent factors. Following the work in [15], the
framework of coupled tensor decompositions was revisited in [5,12]. Variations
on this framework, such as tensor-matrix factorizations [1,3] and more general
latent models [16] have also been proposed. Uniqueness and algorithm issues for
the exact coupled tensor decomposition are addressed in [17], while algorithms
are developed in [8,19] for general cost functions.

A more flexible model of coupling has been proposed in [2]. Instead of con-
sidering equality constraints for the entire factors of a tensor model, only a few
components are constrained. In [14], the problem of coupled nonnegative matrix
factorization is considered and a flexible coupling is proposed by assuming that
the shared components are similar in L1 or L2 sense, and not equal. In this
paper, we propose a generalization of flexible models for joint decompositions
using a Bayesian approach. We subsequently give some examples of non trivial
couplings, namely coupled factors that do not have the same size due to different
sampling rates. Techniques of [2] or [14] cannot deal with this type of coupling.

The following notation will be used: scalars and vectors are denoted by lower
case x and bold lower case x letters respectively. Matrices are denoted by upper
case bold letters X, while tensors by calligraphic letters X . Elements of a given
array are indicated by subscripts Xijk. Vectorization of parameters is indicated
by vec(·). The Kronecker product of two matrices X and Y is denoted by X�Y ,
while the Khatri-Rao product (column-wise Kronecker product) by X �Y . Left
and right pseudo-inverses are denoted with superscript (†) on the left and on the
right respectively.

2 Coupled Decompositions: A Bayesian Approach

Consider two arrays of measurements, Y and Y ′, which can be tensors of possibly
different orders and dimensions. Arrays Y and Y ′ are related to two parametric
models characterized by parameter vectors θ and θ′, respectively.

For instance, if Y is a matrix (a second order tensor) to be diagonalized,
the model can be the SVD Y = UΣV H , so that θ = vec(U ,Σ,V ). If
Y ′ is a third order tensor, its Canonical Polyadic (CP) decomposition [7,11]
writes Y ′ =

(
A′,B′,C ′), meaning that Y ′

ijk =
∑R

r=1 A′
irB

′
jrC

′
kr, and θ′ =

vec([A′�, B′�, C ′�]�).
In the case where θ and θ′ are not coupled, they can be obtained (non

uniquely in the matrix case) by processing the data arrays separately. On the
other hand, if they are coupled, then the data needs to be processed jointly (and
parameters are then uniquely estimated). We can consider that the coupling
between θ and θ′ is flexible, for example, we could have V ≈ B, or even V ≈
WB for a transformation matrix W that is known only approximately. To
formalize this we assume that the pair θ, θ′ is random and that we have at our
disposal a joint probability distribution p(θ,θ′).
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Maximum a posteriori (MAP) estimator: the approximation setting under
the MAP criterion becomes1

arg max
θ,θ′

p(θ,θ′|Y ,Y ′) = arg max
θ,θ′

p(θ,θ′,Y ,Y ′) = arg min
θ,θ′

Υ (θ,θ′), (1)

where Υ (θ,θ′) = − log p(θ,θ′,Y ,Y ′). Conditioning on the parameters leads to
a cost function that can be decomposed in a joint data likelihood term plus a
term involving the coupling:

Υ (θ,θ′) = − log p(Y ,Y ′|θ,θ′) − log p(θ,θ′). (2)

We assume conditional independence, that is p(Y |Y ′,θ,θ′) = p(Y |θ) and
p(Y ′|Y ,θ,θ′) = p(Y ′|θ′). In addition, we assume that the likelihoods p(Y |θ)
and p(Y ′|θ′) and the joint prior, e.g. p(V ,B) or one of its conditional distribu-
tions, e.g. p(V |B) or p(B|V ), are known. Then, we get the simplified cost:

Υ (θ,θ′) = − log p(Y |θ) − log p(Y ′|θ′) − log p(θ,θ′). (3)

where the first two terms are data related, and the last term is a penalization
given by the coupling prior.

3 Examples

In what follows we consider that the parametric models underlying the data
arrays are two CP models (A,B,C) and

(
A′,B′,C ′) with dimensions I, J , K

and I ′, J ′, K ′ and rank (i.e number of matrix columns) R and R′ respectively.
We consider that the coupling occurs between matrices C and C′, and exploit
this framework with two different illustrating examples in Sects. 3.1 and 3.2.

3.1 Joint Gaussian Modeling

A general joint Gaussian model comprising coupled and uncoupled variables is
given by the following expression:

M
[
θ�θ′�

]�
= Σu + μ, (4)

where M is a matrix defining the structural relations between variables, u is a
white Gaussian vector with zero mean and unit variances, Σ is a diagonal matrix
of standard deviations and μ is a constant vector. Observe that a condition for
the pair (θ,θ′) to define a joint Gaussian vector is the left invertibility of M .
Under this condition we have [θ�θ′�]� ∼ N{†Mμ,Γ }, where Γ = †M�Σ2 †M
is the covariance matrix of the joint vector. The MAP objective function is

Υ
(
θ, θ′) = − log p(Y |θ) − log p(Y ′|θ′) + {[θ�θ′�] − μ� †M �}Γ −1{[θ�θ′�]� − †Mμ}

(5)

1 We could also consider a minimum mean squared error setting but then we would
need to evaluate p(Y ,Y ′), which is normally cumbersome.



122 R.C. Farias et al.

Sampling a Continuous Function: an important problem in multimodal data
fusion is related to sampling. Different measurement devices have different sam-
pling frequencies or even different non uniform sampling grids. In some situa-
tions, the continuous functions being measured can be approximated by a com-
mon function c(t). For two sampled vectors c and c′, their relation with the
continuous function can be obtained with an interpolation kernel (see the gen-
eral description in [4])

c(t) ≈
K∑

k=1

ckh(t, tk) ≈
K′∑

k′=1

c′
kh′(t, t′k), (6)

for some kernels h(·, ·) and h′(·, ·) and for sampling times {tk, k ∈ 1, · · · , K} and
{tk′ , k′ ∈ 1, · · · , K ′}. Therefore, we can impose a new common sampling grid of
size L where both interpolations should match. This leads to the linear relations
Hc ≈ H ′c′, where H lk = h(tl, tk), H ′

lk′ = h(tl, tk′) and {tl, l ∈ 1, · · · , L}.
As a consequence, in the coupled CP models, when C and C ′ have different
dimensions due to different samplings, the coupling can be rewritten in the joint
Gaussian setting as

[
0 diag(H) −diag(H ′) 0

] [ · · · vec(C)� vec(C ′)� · · · ]� = Σu, (7)

where diag(H) is a block diagonal matrix with repetitions of H on the diagonal.

3.2 Non Gaussian Conditional Coupling

Non trivial couplings between the factors C and C ′ can be considered by
assuming that the coupling is given by a non Gaussian conditional distribution
p

(
C|C ′). When Cij > 0 and C ′

ij > 0, an additive Gaussian random coupling
may not be the best option, since to ensure positiveness the support of the addi-
tive term has to depend on the values of C ′, which is not realistic. Therefore,
other alternatives naturally ensuring positiveness can be considered, for example
a Tweedie’s conditional distribution [10]. Special cases of this distribution are
the Poisson, Gamma and inverse-Gaussian distributions (the Gaussian distrib-
ution is a limit special case). In general, the PDF of the Tweedie’s distribution
has no analytical form, thus we cannot directly use it to write down a coupling
term in the MAP objective function. However, if we consider that the coupling
between Cij > 0 and C ′ > 0 is strong (dispersion δ is small), then a saddle
point approximation can be used [10]

p(Cij |C ′
ij) ≈ (2πδ2Cβ

ij)
−1/2 exp[−dβ(Ci,j |C ′

i,j)/δ2], (8)

where β is a shape parameter (β = 1, 2, 3 for the Poisson, Gamma and inverse-
Gaussian distributions respectively) and dβ is the beta divergence [20]

dβ(C i,j |C ′
i,j) = C ′1−β

i,j /[(1−β)(2−β)]
[
C2−β

i,j C ′β−1
i,j − C ij(2 − β) + C ′

ij(1 − β)
]
. (9)

Under this conditional distribution the coupling term in the MAP objective
becomes

∑
ij

[
(β/2) log (Cij) + (1/δ)dβ(Ci,j |C ′

i,j)
]
.
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4 Gaussian Problem with Flat Priors and Alternating
Least Squares (ALS)

From now on we will focus on the specific case of joint Gaussian modeling. Note
that the joint decomposition can be found by minimizing (5). This can be done,
for example, using an all-at-once minimization procedure such as a gradient
algorithm.

If we consider that the priors are flat and that the coupling is of the form
Gvec(C)−G′vec(C ′) = (I/σ2

c )u, where G and G′ are two coupling matrices, I
is the identity matrix, σc is a standard deviation related to the coupling intensity
and u is a white Gaussian vector. Then the coupling term becomes a quadratic
term on vec(C) and vec(C ′). Moreover, if we suppose that the two tensors Y
and Y ′ are measured each with i.i.d. Gaussian noise with respective standard
deviations σn and σ′

n. Then the objective function to be minimized is

Υ =
1

σ2
n

‖Y − (A, B, C)‖2
F +

1

σ′2
n

‖Y ′ − (A′, B′, C ′)‖2
F +

1

σ2
c

‖Gvec(C) − G′vec(C ′)‖2
F

(10)
To minimize this function we can use an easy to implement algorithm, such
as the alternating least squares (ALS) algorithm. Observe that the alternating
updates for the uncoupled factors are simply the standard ALS steps for CP
approximation, while for the coupled factors the updates are the solution of a
joint least squares problem with a coupling term. The ALS procedure is the
following, at iteration k:

Âk = Y (1)(Ĉk−1 � B̂k−1)† Â′
k = Y ′

(1)(Ĉ
′
k−1 � B̂′

k−1)
†,

B̂k = Y (2)(Ĉk−1 � Âk)† B̂′
k = Y ′

(2)(Ĉ
′
k−1 � Â′

k)†,
(11)

[
vec(Ĉk)
vec(Ĉ′

k)

]
=

†⎡

⎣
(F �F )�I

σ2
n

+ G�G
σ2
c

−G�G′
σ2
c

−G′�G
σ2
c

(F ′�F ′)�I

σ′2
n

+ G′�G′
σ2
c

⎤

⎦
[

(F � I)vec
(
Y (1)

)

(F ′ � I)vec
(
Y (2)

)
]

where F = B̂k � Âk, F ′ = B̂′
k � Â′

k.

5 Simulations

To show the effects of the flexible coupling of two CP models on approximation
performance, we apply the ALS algorithm presented in Sect. 4 to the problem of
coupling two CP models with different sizes through interpolation. We consider
I = I ′ = J = J ′ = 10 and different sizes on the third mode of the CP models
K = 37 and K ′ = 53. We suppose that the components of C and C ′ are sampled
versions of the same underlying continuous functions, however, the sampling
periods to obtain the factors are different so that the elements in the factors
cannot be similar, at least, in most of the points. Since the factors are not similar,
we cannot apply the direct coupling model and we must use an interpolation
approach as explained at the end of Sect. 3.
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In this example we consider functions which are band limited and periodic.
For an odd number of samples, the interpolation kernel is given by the Dirichlet
kernel [13]

H lk =
sin{Kπ[(l − 1)Ti − (k − 1)T ]/[(L − 1)Ti]}
K sin{π[(l − 1)Ti − (k − 1)T ]/[(L − 1)Ti]} , (12)

where T is the original sampling period and Ti is the sampling period of the
interpolation. As a consequence we have G = I � H and G′ = I � H ′.

We simulate two random CP models with R = R′ = 3. The components of
the C factors are generated by sampling cr(t) =

∑3
i=1 γir sin(2πfit) where γir

are generated randomly and f1 = 2, f2 = 2.5, f3 = 3.5. The sampling periods
are T = 1/9 and T ′ = 1/13. An example of continuous-time component with its
sampled points on different grids is shown in Fig. 1.

Fig. 1. Underlying continuous function c1(t) for the first components of the C factors
and their corresponding sampled versions c1 and c′

1 on different sampling grids.

We fix σ′
n = 0.1, while σn varies from 0.001 to 0.1, so that the ratio σ′

n/σn

varies in the interval [0.1, 10]. Since the signals are band limited and since we
observe them over a finite duration, interpolation can only approximate the con-
tinuous signal and it is necessary to set a nonzero σc even if the continuous
signals are the same for both data sets. We set L = 100, σc = 0.01. The two
CP models are first approximated separately (disregarding the coupling); in this
case an all-at-once conjugate gradient algorithm is used. After convergence of the
algorithm, the columns of the resulting factors are permuted so that the compo-
nents in the coupling match. The permuted factors are then used to initialize the
ALS procedure described in Sect. 4. We simulate 50 times this procedure with
different noise realizations and we evaluate the total mean squared error (MSE)
on the coupled factors. The results are shown in Fig. 2. When the noise ratio
increases, the total MSE for the uncoupled approach increases sharply, while
the coupled approach has a smooth increase. This shows that even though the
coupled factors are not similar, information can still be exchanged between them
though the interpolation.

We also investigated the case when the number of interpolation points for
the coupling L is varied from 5 to 70. Both data arrays are noisy σn = σ′

n = 0.1
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Fig. 2. Total MSE for the estimation of
the C factors for different noise levels
ratios σn/σ′

n. The CP models are coupled
through interpolation.
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Fig. 3. Total MSE for the estimation of
the C factors as a function of the number
of interpolation samples.

we set σc = 0.001 in the ALS algorithm. The total MSE is shown in Fig. 3.
Note that only the sampling time points t = {0, 1, 2, 3, 4} coincide in the original
factors. Thus in a standard coupling approach only these points can be coupled
and the total MSE that we obtain is the first point in the curve. By increasing
the number of interpolation points the information exchanged within the model
is larger and MSE decreases almost linearly. Above L = 53, only a small quantity
of information can be exchanged because this is the maximum resolution present
in the data and the total MSE curve becomes flat.

6 Conclusions

Since the expression of a phenomenon can be different in different data sets, it
is clear that the link between factorizations of the data sets must be somehow
flexible. To give a meaning to this flexibility we have proposed a Bayesian setting
for factor couplings. Under this setting, we can model not only trivial flexible
links between factors, but also joint Gaussian models and nonnegative similarity
models. As an example of application of this framework to multimodal data
fusion, we have presented the problem of fusing two data sets in which one
dimension is different due to different sampling rates. Although the factors are
almost completely different, the underlying hypothesis that they come from the
same continuous-time function allows to exchange information between the data
sets in an interpolated domain. A deeper analysis of the influence of noise will
be reported in a longer paper [6].

In the simulation example, we have focused on a joint Gaussian modeling for
the couplings; in future works we shall concentrate on non Gaussian couplings
such as the Tweedie’s coupling for nonnegative variables presented only briefly
here. Moreover, since the CP approximation problem is an estimation problem,
we can evaluate the Cramér-Rao bounds (CRB) for the coupled problem so
that we can assess approximately the estimation performance without resorting
to extensive simulation. In the hard coupling case a constrained CRB can be
considered, while in the fully Bayesian and Bayesian with flat priors cases, the
Bayesian and hybrid CRB can be considered.
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4. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-
invariant spaces. SIAM Rev. 43(4), 585–620 (2001)

5. Banerjee, A., Basu, S., Merugu, S.: Multi-way clustering on relation graphs. In:
SDM, vol. 7, pp. 225–334. SIAM (2007)

6. Cabral Farias, R., Cohen, J.E., Comon, P.: Exploring multimodal data
fusion through joint decompositions with flexible couplings. arXiv preprint
arXiv:1505.07717 (2015)

7. Comon, P., Luciani, X., De Almeida, A.L.F.: Tensor decompositions, alternating
least squares and other tales. J. Chemometr. 23(7–8), 393–405 (2009)
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Abstract. In this study we consider learning a reduced dimensionality
representation from datasets obtained under multiple views. Such mul-
tiple views of datasets can be obtained, for example, when the same
underlying process is observed using several different modalities, or mea-
sured with different instrumentation. Our goal is to effectively exploit
the availability of such multiple views for various purposes, such as non-
linear embedding, manifold learning, spectral clustering, anomaly detec-
tion and non-linear system identification. Our proposed method exploits
the intrinsic relation within each view, as well as the mutual relations
between views. We do this by defining a cross-view model, in which
an implied Random Walk process between objects is restrained to hop
between the different views. Our method is robust to scaling of each
dataset, and is insensitive to small structural changes in the data. Within
this framework, we define new diffusion distances and analyze the spectra
of the implied kernels.

Keywords: Dimensionality reduction · Manifold learning · Diffusion
maps · Multiview

1 Introduction

High dimensional big datasets are difficult to analyze as is. The challenge is to
identify the essential features. Unsupervised dimensionality reduction methods,
aim to find a lower dimensional representation based on the geometry of the ana-
lyzed dataset. A dimensionality reduction methodology reduces the complexity
of processing while preserving the coherence of the original data such that clus-
tering, classification, manifold learning and many other data analysis tasks can
be applied effectively in the reduced space.

The problem of learning from two views has been studied in the field of spec-
tral clustering. Some approaches addressing this problem are Bilinear Models [1],
Partial Least Squares [2] and Canonical Correlation Analysis [3]. These meth-
ods are powerful for learning the relation between the different views but do
not provide insights separately or together into the low dimensional geometry or
structure of each view. Recently, a few kernel based methods (e.g. [4]) proposed
a model of co-regularizing kernels in both views in a way which resembles joint
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diagonalization, by searching for an orthogonal transformation which maximizes
the diagonal terms of the kernel matrices obtained from all views. A mixture of
Markov chains is proposed in [5] to model the multiple views in order to apply
spectral clustering. A way to incorporate multiple given metrics for the same data
using a cross diffusion process is presented in [6–9], however the applicability of
the suggested approach is limited to clustering tasks only. An iterative algorithm
for spectral clustering is proposed in [10]. The idea is to iteratively modify each
view using the representation of the other view. The derivation of two mani-
folds from the same dataset (i.e. two views) is described in [11]. This approach
is similar to Canonical Correlation Analysis [3] that seeks a linear transforma-
tion which maximizes the correlation among the views. A similar approach is
proposed in [12,13]. It suggests data modeling that uses a bipartite graph and
then, based on the ‘minimum-disagreement’ algorithm, partitions the dataset.
This approach attempts to minimize the clusters’ disagreement between multiple
views. In [14] joint diagonalization is used to extend the diffusion framework for
multiple modalities.

In this work we present a framework based on De Sa’s construction [12], and
show that the approach is a special case of a more general diffusion based process.
We build and analyze a new framework which generalizes the random walk model
while using multiple views. Our proposed method utilizes the intrinsic relation
within each view, as well as the mutual relations between views. The multiview
is achieved by defining a cross diffusion process in which a specially structured
Random Walk is imposed between the various views. The multiview method is
robust to scalings of each dataset and it is insensitive to small structural changes
in the datasets. Within this framework, we define new diffusion distances and
study the spectral decomposition of the new kernel. The framework provides
coupled low dimensional embbedings for coupled views.

2 Multiview Diffusion Maps

Problem Formulation: Consider two sets of observations X = {x1,x2,x3, ...,
xM} ∈ R

D1 and Y = {y1,y2,y3, ...,yM} ∈ R

D2 , which are views with bijective
correspondence, sampled from the same physical process. The goal is to find a
lower dimensional representation for each view that preserves the interactions of
data points (in some sense) within and between the views X and Y .

2.1 Multiview Dimensionality Reduction

We begin by generalizing the Diffusion Maps [15] framework for handling a multi-
view scenario. Our goal is to impose a random walk model using the local connec-
tivities of data points within both views. Our way to incorporate the conectivities
is by restraining the random walker to “hop” between views in each step. The first
step in this construction is to choose symmetrical, positive-semi-definite kernel
functions, one for each view: Kx : X × X −→ R and Ky : Y × Y −→ R. A com-
mon choice is a Gaussian kernel. These kernels should capture the local intrinsic
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geometry of each view and neglect the global geometry. By using Kx and Ky, we
form a large row-stochastic matrix of size 2M ×2M , as follows; First we compute
a matrix product Kz = KxKy between the kernels Kx and Ky, such that (for
Gaussian kernels)

Kz
i,j =

∑

m

Kx
i,mKy

m,j =
∑

m

e
− ||xi−xm||2

2σ2
x e

− ||ym−yj ||2
2σ2

y (1)

(where σx and σy are the “scaling” parameters of the two kernels), then, the
multiview generalized kernel is formed by constructing the following matrix

K̂ =
[
0M×M Kz

(Kz)T 0M×M

]
. (2)

Finally, by using the diagonal matrix D̂, D̂i,i =
∑
j

K̂i,j , we compute the nor-

malized row-stochastic matrix

P̂ = D̂
−1

K̂, P̂i,j =
K̂i,j

Dii
, (3)

that describes the probability matrix of a specially constrained Markov random
walk between the data points of X and Y . The block anti diagonal form of K̂ is
symmetric, and the normalized version P̂ provides a probabilistic interpretation
to the construction (explained in 2.3).

2.2 Alternative Multiview Approaches

We briefly mention two alternative methods for incorporating views, which we
shall only use as references for comparisons in the experimental evaluations.

Kernel Product (KP): Multiplying the probability matrix element wise K◦ �
=

Kx ◦Ky, K◦
ij

�
= Kx

ij ·Ky
ij and then normalizing by the sum of the rows, resulting

in a row stochastic matrix. This kernel corresponds to the approach in [15].

Kernel Sum (KS): Defining the sum kernel K+ �
= Kx + Ky. Normalizing the

sum kernel by the sum of rows, to compute P+. This random walk sums the
step probabilities from each view. This approach is proposed in [5].

2.3 Probabilistic Interpretation of P̂

Under our proposed construction, the elements [P̂
t
]i,j = p̂t(xi,xj) denote (for

each i, j ∈ [1,M ]) the transition probability from node xi to node xj in t time
steps “hopping” between the views X and Y in each step. Note that due to the
block-anti-diagonal structure of K̂ (and P̂ ), for odd values of t, this probability
is zero. However, for even values of t, this probability is nonzero and describes an
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even time transition from view X through view Y and back to X. In the same
way, [P̂

t
]i+M,j+M = p̂t(yi,yj) denotes the transition probability from node yi

to node yj (i, j ∈ [1,M ]) in t time steps. Likewise, [P̂ t]i,j+M = p̂t(xi,yj) denotes
the transition probability from node xi to node yj (i, j ∈ [1,M ]) in t time steps.
Note that this probability is nonzero only for odd values of t. This probability
takes into consideration all the various possibilities of crossing from node xi to
node yj by propagating in view 1 and then in view 2.

2.4 Spectral Decomposition

Thematrix P̂ is algebraically similar to a symmetricmatrix P̂ s = D̂
1/2

P̂ D̂
−1/2

=

D̂
−1/2

K̂D̂
−1/2

. Therefore, both P̂ and P̂ s share the same set of eigenval-
ues {λm}. Due to the symmetry of the matrix P̂ s, it has a set of 2M real
eigenvalues {λi}2M−1

i=0 ∈ R and corresponding real orthonormal eigenvectors

{πm}2M−1
m=0 ∈ R

2M , thus, P̂ s = ΠΛΠT . By denoting Ψ
�
= ̂

D−1/2Π and

Φ
�
= ̂

D1/2Π, we conclude that the set {ψm,φm}2M−1
m=0 ∈ R

2M denotes the right
and left eigenvectors of P̂ = ΨΛΦT , respectively, satisfying the bi-orthogonality
property ψi

T φj = δij . In the sequel, we use the matrix P̂ s to simplify the
analysis.

Although we have formed a large matrix of size 2M ×2M , no computational
complexity is added by using our construction relative to using the construction
of a single DM-based view for each view. The spectral decomposition of P̂ s

can be computed using a Singular Value Decomposition (SVD) of the M × M

matrix K̄
z = Drows−1/2KzDcols−1/2

, where Drows
i,i =

∑M
j=1 Kz

i,j and Dcols
j,j =

∑M
i=1 Kz

i,j are diagonal matrices. Theorem 1 enables us to form the eigenvectors
of P̂ as a concatenation of the singular vectors of K̄

z:

Theorem 1. By using the left and right singular vectors of K̄
z = V ΣUT , the

eigenvectors and the eigenvalues of P̂ s are given explicitly by

Π =
1√
2

[
V V
U −U

]
, Λ =

[
Σ 0M×M

0M×M −Σ

]
. (4)

A similar theorem and proof is given in [16,17].

2.5 Multiview Diffusion Distance

Tasks such as classification, clustering or system identification require a measure
for the intrinsic connectivity between data points. This type of measure is only
satisfied locally by the Euclidian distance in the high dimensional ambient space.
The multiview diffusion kernel (defined in Sect. 2.1) provides indication about
all the small local connections between data points. The row stochastic matrix
P̂

t
incorporates all possibilities for transition in t time steps between data points
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while hopping between both views. For a fixed value of t > 0, two data points
are intrinsically similar if the conditional distributions p̂t(xi, :) = [P̂

t
]i,: and

p̂t(xj , :) = [P̂
t
]j,: are similar. This type of similarity measure indicates that the

points xi and xj are similarly connected to several mutual points. Thus, they
are connected by a geometrical path.

Based on this observation, by expanding the single view construction given
by [15], we define the weighted inner view diffusion distances to be

Dt
2(xi,xj) =

2M∑

k=1

([P̂
t
]i,k − [P̂

t
]j,k)2

φo(k)
= ||(ei − ej)T P̂

t||2
D̂

−1 (5)

where ei is the i-th column of an 2M × 2M identity matrix, φ0 is the first left
eigenvector of P̂ , its k-th element is φ0(k) = D̂k,k. ‖ · ‖2W denotes the weighted
norm, which for a vector ξ and a positive-definite weight matrix W is defined
as ‖ξ‖2W = ξT Wξ. Similarly,

Dt
2(yi,yj) =

2M∑

k=1

([P̂
t
]M+i,k − [P̂

t
]M+j,k)2

φo(k)
. (6)

The main advantage of these distances ((5) and (6)) is that they can be expressed
in terms of eigenvalues and eigenvectors of the matrix P̂ . This insight allows us
to use a representation (defined in Sect. 2.6) in which the induced Euclidean
distance is proportional to the diffusion distances (defined in (5) and (6)).

Theorem 2. The inner view diffusion distances ((5) and (6)) are equal to:

Dt
2(xi,xj) = 2 ·

M−1∑

�=1

λ2t
� (ψ�(i) − ψ�(j))2, (7)

Dt
2(yi,yj) = 2 ·

M−1∑

�=1

λ2t
� (ψ�(M + i) − ψ�(M + j))2. (8)

Proof. We prove for one view (with proper adjustments, the proof applies to the
second view as well).

Note first that we can express P̂
t
D̂

−1
(P̂

t
)T as P̂

t
D̂

−1
(P̂

t
)T = ΨΛtΦT D̂

−1

ΦΛtΨT = ΨΛ2tΨT (since ΦT D̂
−1

Φ = ΠT Π = I), and therefore Dt
2(xi,xj) =

||(ei−ej)T P̂
t||2

D̂
−1 = (ei−ej)T P̂

t
D̂

−1
(P̂

t
)T (ei−ej) = (ei−ej)T ΨΛ2tΨT (ei−

ej) =
∑2M−1

�=0 λ2t
� (ψ�(i) − ψ�(j))2 = 2

∑M−1
�=1 λ2t

� (ψ�(i) − ψ�(j))2.

The last equality is due to the repetitive form of D̂, Π (therefore of Ψ) and
Λ, as described in (4); 
 = 0 is excluded from the sum due to the property of
ψ0 = 1 (an all-ones vector), which holds for all stochastic matrices.
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2.6 Multiview Data Parametrization

Tasks such as classification, clustering or regression in a sampled high-dimensional
feature space are considered to be computationally expensive. In addition, the
performance of these tasks is highly dependent on the distance measure. As
explained above, distance measures in the original ambient space could be mean-
ingless in many real life situations. Interpreting Theorem2 in terms of the Euclid-
ean distance, enables us to define two mappings for X and Y by using the right
eigenvectors weighted by λt

i. A representation for X is

Ψ t(xi) : xi �−→ [
λt
1ψ1(i), ..., λt

M−1ψM−1(i)
]T ∈ R

M−1 (9)

and a representation for Y is

Ψ t(yi) : yi �−→ [
λt
1ψ1(M + i), ..., λt

M−1ψM−1(M + i)
]T ∈ R

M−1. (10)

Thesemappings capture the intrinsic geometry of bothviews aswell as amutual
relation between the views. Our framework is based on the decaying properties of
the Gaussian kernel, as studied in [15]. These properties enable us to approximate
(7) and (8) by neglecting all the eigenvalues that are smaller than some (small) δ.
Therefore we can compute a low-dimensional mapping such that

Ψ̂
r

t (xi) : xi �−→ [
λt
1ψ1(i), ..., λt

r−1ψr−1(i)
]T ∈ R

r−1. (11)

This mapping of dimension r−1 provides a low dimensional space in which tasks
such as clustering or classification are more computationally efficient and more
precise than when the computation takes place in the original ambient space.

3 Experimental Results

3.1 Coupled Manifold Learning

In this section, we examine the embedding extracted using our method and
compare it to the KP approach (Sect. 2.2). We generate two manifolds with a
common underlying open circular structure. The manifolds were generated by
applying a 3 dimensional function to 1000 data points spread linearly within the
following lines ai → [0, 2π], bi = ai + 0.5π mod 2π, where i = 1, 2, 3, ..., 1000.
We use the following functions to generate the datasets for View-I and View-II:

X =

⎡

⎣
4 cos(0.9ai) + 0.3 cos(20ai)
4 sin(0.9ai) + 0.3 sin(20ai)

0.1(6.3a2
i − a3

i )

⎤

⎦ ,Y =

⎡

⎣
4 cos(0.9bi) + 0.3 cos(20bi)
4 sin(0.9bi) + 0.3 sin(20bi)

0.1(6.3bi − b2i )

⎤

⎦ (12)

The 3-dimensional manifolds are presented in Fig. 1.
The standard diffusion mapping (KP)- separates the manifold to a horseshoe

and a point as shown in Fig. 2-bottom. This structure does not represent any of
the original structures, nor does it reveal the underlying parameters (ai, bi). On
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by the angle, colored by the points index.
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Fig. 2. Top- the mappings computed using our proposed parametrization (9 and 10).
Bottom- a standard two dimensional diffusion mapping, computed using the concate-
nation vector from both views (corresponding to kernel K◦).

the other hand, our embedding captures the two structures, one for each view.
As shown in Fig. 2-top, one structure represents the angle of ai (with the gap at
the “end”, due to the multiplication by 0.9 in (12)) while the other represents
the angle of bi (with the inflicted gap in the “middle”). The Euclidean distance
in the new spaces preserves the mutual relations between points based on the
geometrical relation in both views. Moreover both manifolds are in the same
coordinate system, and this is a strong advantage as it enables to compare the
manifolds in the lower dimensional space.

4 Conclusions

In this paper, we presented a framework for MultiView dimensionality reduction.
The method enables to extract simultaneous embeddings from coupled views.
The framework is useful for various real life machine learning tasks.

A few open issues arise from this work, such as reduction of the sensitivity
to the density of points, or computing the spectral properties of the proposed
kernel.
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Abstract. We focus on the problem of analyzing corpora composed of
irregularly sampled (multi-rate) heterogeneous temporal data. We pro-
pose a novel convolutive multi-rate factorization model for extracting
multi-modal patterns from such multi-rate data. Our model builds up
on previously proposed multi-view (coupled) nonnegative matrix factor-
ization techniques, and extends them by accounting for heterogeneous
sample rates and enabling the patterns to have a duration. We illustrate
the proposed methodology on the joint study of audiovisual data for
speech analysis.

Keywords: Coupled factorization · Multi-rate data analysis

1 Introduction

The last decade has witnessed a rapid growth in the size of available data. Thanks
to the current technological infrastructure, massive amounts of data are contin-
uously produced and the cost of storing this massive data gets cheaper everyday.
This growth in the size of the data has brought new scientific challenges.

One major challenge is handling the data-heterogeneity. Data are often col-
lected in different modalities (e.g., audio, video, text, etc.) at different time
instances. Combining different but related data can improve estimation and pre-
diction performance drastically, provided the different modes of the data contain
sufficiently rich information and a proper model is established for jointly mod-
eling these modes.

Various research fields have focused on the data-heterogeneity problem, such as
transfer learning [9], multiple-kernel learning [3], and coupled factorizations [14].
Each of these fields has different application-specific objectives (such as increas-
ing classification acuracy or separation performance) and therefore approach the
problem from slightly different perspectives. A common theme in these works is
modeling a collection of observed matrices {Vn}N

n=1 by using a factorization model:

Vn(l, t) ≈ V̂n(l, t) =
∑

k

Wn(l, k)H(k, t). (1)

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 135–142, 2015.
DOI: 10.1007/978-3-319-22482-4 16
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ΛNΛ1
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Fig. 1. Illustration of the proposed model (MULTICONV). The blocks represent the
matrices and the tensors that appear in the model. The shaded blocks are observed,
whereas the other ones are latent. The arrows visualize the dependency structure.

Here, Vn denotes the different modes of data, where each Vn is modeled as the
product of a dictionary matrix Wn and an activation matrix H. In this mod-
eling strategy, each mode n has its own dictionary Wn but their corresponding
activations are shared among all modes, making the overall model coupled.

When different modes of the data contain temporal information, alternative
factorization models can be proposed [2,12]. In this study, we will consider the
non-negative matrix factor deconvolution (NMFD) model [12], where the tem-
poral information is incorporated through convolution:

Vn(l, t) ≈ V̂n(l, t) =
∑

k,p

Wn(l, k, p)H(k, p − t). (2)

Here, the dictionary tensors Wn have temporal axis (p) that enables the dictio-
naries to encapsulate temporal information.

This modeling strategy has yielded many practical applications, when there
is only one observed matrix (i.e., N = 1). However, when there are multiple
observed matrices, this model requires all modalities Vn to be synchronized tem-
porally. However, in practice, different modes of the data are often collected with
different technologies. Therefore, they are usually sampled at different sampling
rates, which we call ‘multi-rate’ data. In this study, we propose a novel convo-
lutive factorization model that is able to model multi-rate multi-modal data. In
the sequel, we will describe the model in detail and present a practical inference
algorithm to estimate the parameters of the model. We illustrate the proposed
method on the joint decomposition of audiovisual data for speech analysis.

2 The MULTICONV Model

In this section, we describe our model in detail. We assume that we observe N
matrices {Vn}N

n=1 with nonnegative entries, each one of them being of size
Ln ×Tn, where Ln and Tn are the dimensions of each sample and the number of
samples for modality n, respectively. For instance, V1 can be the magnitude or
power spectrogram of audio data, where each column might contain the spectrum
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of a single audio frame, and V2 can be video data where each column contains the
vectorized version of an image. Our objective is to jointly model different modal-
ities {Vn}n when their sampling rates are different, yielding possibly different
number of samples Tn. Without loss of generality, let us assume that the modal-
ities are sorted by decreasing number of samples, so that T1 ≥ · · · ≥ TN . Finally,
let T0 ≥ T1 be an arbitrary integer, corresponding to the number of samples in
some absolute time reference, where sampling is regular and achieved at a high
precision. For concision, a sample index t of modality n will be written t ∈ Tn.
Note that, even though we assume all the observed data to be matrices, it is
straightforward to extend the model where any Vn can be a tensor.

We will model each Vn by using an NMFD model. In order to accurately
model patterns with a temporal structure, they will be taken as lasting Pn

samples in modality n. A typical choice for Pn in the case of constant sampling
rates is to enforce patterns to have the same absolute duration through different
modalities, picking an arbitrary P0 as the absolute duration of the patterns, and
then choosing:

∀n, Pn =
⌈

P0Tn

T0

⌉
, (3)

where �·� is the ceiling function.
The first important issue we face is to establish a temporal correspondence

between the samples observed through the different modalities. The difficulty on
this point is that not only the different sampling rates may be different, they may
also be varying over time or even be irregular. In full generality, we introduce a
link tensor Λn for each modality, of dimension Tn × Pn × T0 × T0. In essence,
Λn (t, p, τ, τ ′) is high whenever time instants t and t−p in Tn correspond to refer-
ence samples τ and τ − τ ′ in T0. For instance, assume that all sampling frequen-
cies are constant and equal. Then, we can pick Λn (t, p, τ, τ ′) = δ (t, τ) δ (p, τ ′)
with δ (t, t′) = 1 iff t = t′ and 0 otherwise. If sampling frequencies fn are constant
but unequal, we can for instance pick:

Λn (t, p, τ, τ ′) ∝ δ (	f1t� , 	fnτ�) δ (	f1p� , 	fnτ ′�) , ∀n (4)

where 	·� is the rounding function and ∝ denotes equality up to a normalizing
constant. Indeed, we assume in the sequel that Λn is normalized so that:

∀t, p ∈ Tn,
∑

τ,τ ′∈T0

Λn (t, p, τ, τ ′) = 1, ∀n (5)

With the link tensors Λn in hand, we can describe the actual model that
decomposes the observations as the sum of only a few multi-modal patterns.
For this purpose, we introduce a latent activation matrix H (k, t), with fixed
dimension K × T0, i.e. with the resolution of the reference time line T0. Finally,
observation Vn is modeled as the superposition of the K patterns, activated over
time through convolution, given as follows:
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Vn (l, t) ≈ V̂n (l, t) =
K−1∑

k=0

Pn−1∑

p=0

Wn (l, k, p)
∑

τ,τ ′∈T0

Λn (t, p, τ, τ ′) H (k, τ − τ ′)

︸ ︷︷ ︸
Hn(k,t−p)

.

(6)

where Hn is the temporally adjusted activations for each modality Vn. Figure 1
illustrates the model.

3 Inference

Once we observe {Vn}n, our aim is to estimate the parameters Θ = {{Wn}n ,H}
and thus to find the multi-modal patterns as well as the way they are activated
over time that best permits to account for the observed data {Vn}n. For this
purpose, we choose the parameters that minimize a cost function C (Θ), which
is taken as the sum of a data-fit JV (Θ) and a regularization term ΨH (Θ) for
the activations H:

Θ̂ = argmin
Θ

C (Θ) = JV (Θ) + ΨH (Θ). (7)

In our setup, the data-fit criterion in (7) is taken as the sum over all the data
of a scalar (element-wise) cost-function:

JV (Θ) =
∑

n

λn

⎡

⎣
Ln,Tn∑

l,t

dn

(
Vn (l, t) ‖V̂n (l, t)

)
⎤

⎦,

where dn (v‖v̂) is the particular cost function used for modality n and λn > 0
is a scalar indicating the global importance of a good fit for modality n. It
assesses the similarity between one of the elements v from the observation and
the corresponding element v̂ from the model (6).

We allow for the cost-function to differ from one modality to another, mainly
because observation noise may have strongly different physical origins depending
on the modality. In this work, we will assume that dn belongs to the family of
β-divergences, that is defined as follows:

dβ(v||v̂) =
vβ

β(β − 1)
− vv̂β−1

β − 1
+

v̂β

β
(8)

This divergence is the squared Euclidean distance for β = 2, and it can be
extended by continuity at β = 1 and β = 0 to coincide with the Kullback-Leibler
and Itakura-Saito divergences, respectively.

The term ΨH (Θ) in (7) permits to enforce some additional constraints con-
cerning the activations H. In our context, sparsity is relevant and means that
we expect most activations to be close to 0, and only occasionally to bear a sig-
nificant magnitude. Sparse regularization for NMF has been the topic of many
studies [4,7,11] and here, we pick the 	1 norm over H as a sparsity-enforcing
criterion [5].



Extraction of Temporal Patterns in Multi-rate and Multi-modal Datasets 139

3.1 Multiplicative Updates

To update the parameters Θ so as to minimize a given cost function C (Θ),
such as C = JV + ΨH , we adopt a Majoration-Equalization approach, through
Multiplicative Updates (MU) that was first presented in [6] and whose proofs
for convergence were recently given in [1] for the β-divergence JV with β ∈
[0, 2]. The MU methodology may be described as follows. First, we compute
the derivative of C (Θ) with respect to any one Θi of the parameters and then
express it as the difference of two nonnegative terms:

∂C

∂Θi
(θ) = Gi

+ (θ)
︸ ︷︷ ︸

≥0

−Gi
− (θ)

︸ ︷︷ ︸
≥0

. (9)

In our case, this is easily done for the data fit and regularization functions JV

and ΨH chosen here. Then, instead of adopting a classical gradient descent for Θi,
we update it multiplicatively through:

Θi ← Θi
Gi

− (Θi)
Gi

+ (Θi)
. (10)

When applied to C = JV +ΨH , (10) leads to the following multiplicative updates
for the parameter Θi:

Θi ← Θi

∑
n,l,t λnV̂n (l, t)βn−2

Vn (l, t) ∂V̂n(l,t)
∂Θi

+ ∇−
Θi

ΨH (Θ)
∑

n,l,t λnV̂n (l, t)βn−1 ∂V̂n(l,t)
∂Θi

+ ∇+
Θi

ΨH (Θ)
. (11)

These update rules are applied iteratively until convergence.

4 Experiments

4.1 Dataset and Experimental Setup

In this paper, we apply the MULTICONV model to the extraction of multi-
modal patterns in the MRI-TIMIT database [8]. This corpus features real time
Magnetic Resonance Imaging (rtMRI) data along with the corresponding audio,
for 10 different speakers, 5 males and 5 females, each one of them recorded while
uttering 460 sentences from the MOCHA-TIMIT database [13].

This corpus hence consists of synchronized rtMRI and audio recordings. The
rtMRI (video) has an image resolution of 68 × 68, with a sampling rate of 23
frames per second. Each image corresponds to a mid-sagittal slice of a speaker.
The corresponding audio is sampled at 20 kHz. For analysis, the audio was split
into frames of 128 samples (6.5 ms), with an overlap of 50% between adjacent
frames. The resulting Short-Term Fourier Transform frame rate312 frames per
second. One of the excerpt of the database is depicted on Fig. 2.

Our objective here is to extract meaningful articulatory audio-visual pat-
terns, or primitives, from the MRI-TIMIT database by using the MULTICONV
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Fig. 2. Excerpt of the MRI-TIMIT database. Speaker F3, “It was easy for us”. Audio
is sampled at 20 kHz, rtMRI at 23 frames per second.

model. In this respect, the current study goes further in the direction undertaken
by the pioneering work presented in [10], that focused on the same objective,
but exploited the rtMRI modality only. Furthermore, while [10] also integrated
sparsity constraints in the activations, these constraints were slightly different
than those considered here and do not lead to straightforward multiplicative
updates.

4.2 Results

The MULTICONV model was fitted on the MRI-TIMIT data for speaker F1
(sentences 1–25), using the Kullback-Leibler divergence both for the audio and
rtMRI data. We chose to estimate K = 25 patterns having a duration of about
380 ms. After two hundred iterations, we recover both the patterns and their
underlying activation vectors. For the audio modality, the template is a spec-
trogram, while it is a short video for the rtMRI modality. Nine patterns are
displayed in Fig. 3, where the average of the rtMRI modality is represented, for
conciseness.

Interestingly, the joint convolutive modeling clearly isolates some parts of the
rtMRI data, thus automatically locating the main places of articulation. In Fig. 3
for instance, we clearly see that the lips are identified as moving together, thus
being important parts of the same pattern. However, the main interest of the
MULTICONV model is to also automatically relate these places of articulation
with a corresponding audio spectrogram, even if the sampling frequencies of
these modalities are very different.

Notwithstanding the interest of performing such an unsupervised analysis of
multi-modal data, the qualitative use of these results by professional linguists is
made difficult by the lack of phonological information. Indeed, it seems natural
to associate each pattern to a phoneme, and learning the MULTICONV model
would then amount to estimating the best rtMRI and associated spectrogram for
each phoneme. To achieve this, we simply need to make use of a transcription
and adapt the model so that the activation of each pattern-phoneme is zero
except at the beginning of all occurrences of the phoneme. We leave this for
future work.



Extraction of Temporal Patterns in Multi-rate and Multi-modal Datasets 141

Fig. 3. Nine multi-modal patterns learned with the MULTICONV model on the MRI-
TIMIT dataset.

5 Conclusion

Multi-view data analysis is concerned with corpora composed of heterogeneous
items from different modalities, such as audio, video, images or text. In most
studies, either all modalities are assumed perfectly synchronized or the phe-
nomenon under study is intrinsically non-temporal, such as images or textual
documents. In those cases, a joint analysis in effect often boils down to data con-
catenation. In this paper, we have proposed the MULTICONV model, to extract
multi-modal patterns from the joint analysis of data-streams that exhibit dif-
ferent or even non-constant frame-rates, and that capture different aspects of
the same phenomenon. This model builds on previously proposed multi-view
Nonnegative Matrix Factorization techniques (NMF), but significantly extends
them by both accounting for heterogeneous sample rates and by enabling pat-
terns to have a duration, which proves fundamental in the study of datasets that
are relative to temporal phenomena. In practice, we propose a convolutive multi-
rate NMF model, where temporal patterns are activated simultaneously over the
different modalities through a shared underlying activation stream. The multi-
rate problem is addressed by the incorporation of a reference time scale, which
subsumes many different sampling scenarios and permits to bind the modalities
together. We illustrated the proposed methodology with a preliminary analysis
of an audio-visual corpus of speech data.
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Abstract. Speaker diarization is an important component of multi-
party dialog systems in order to assign speech-signal segments among
participants. Diarization may well be viewed as the problem of detect-
ing and tracking speech turns. It is proposed to address this problem
by modeling the spatial coincidence of visual and auditory observations
and by combining this coincidence model with a dynamic Bayesian for-
mulation that tracks the identity of the active speaker. Speech-turn
tracking is formulated as a latent-variable temporal graphical model
and an exact inference algorithm is proposed. We describe in detail
an audio-visual discriminative observation model as well as a state-
transition model. We also describe an implementation of a full system
composed of multi-person visual tracking, sound-source localization and
the proposed online diarization technique. Finally we show that the pro-
posed method yields promising results with two challenging scenarios
that were carefully recorded and annotated.

Keywords: Speaker diarization · Audio-visual fusion · Sound-source
localization · Multi-person tracking · Temporal graphical models

1 Introduction

In human-computer interaction (HCI) and human-robot interaction (HRI) it is
often necessary to solve the multi-party dialog problem. For example, if two
or more persons are engaged in a discussion, one important task to be solved,
prior to automatic speech recognition (ASR) and natural language processing
(NLP), is to correctly assign speech segments among the participants. In the
speech and language processing literatures, this problem is often referred to as
speaker diarization and a number of methods has been recently proposed to solve
this problem, e.g., [1]. When only auditory data are available, the task is very
difficult because of the inherent ambiguity of mixed acoustic signals captured
by the microphones. An interesting alternative consists in fusing auditory and
visual data. The two modalities provide complementary information and hence
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audio-visual approaches to speaker diarization are likely to be more robust than
audio-only approaches.

An audio-visual diarization method was recently proposed [7] where the hidden
(latent) discrete variables represent the speaker identity and the speaker visibility
at time t. The main limitation of [7] as well as of other audio-visual approaches
reviewed in [1] is that these methods require the recognition of frontal faces and
characterization of lip motions. Indeed, audio-visual association is often solved
using the temporal correlation between facial features and audio features [8].

More generally, audio-visual association for speaker diarization can be achieved
on the premise that a speech signal coincides with a person that is visible and
that emits a sound. This coincidence must occur both in space and time. In
formal dialogs, diarization is facilitated by the fact that the participants talk
sequentially, that there is a short silence between speech turns, and that the
participants face the cameras and are static or remain seated. In these cases,
audio-visual association based on temporal coincidence seems to provide satis-
factory results, e.g., [5]. In informal settings, which are very common particularly
in HRI, the situation is much more complex. The perceived audio signals are cor-
rupted by environmental noise, reverberations, and several people may occasion-
ally speak simultaneously. People wander around, turn their heads away from
the sensors, and come in and out of the fields of view of the cameras.

These problems were addressed by several authors in different ways. For
example, [4] proposes a multi-speaker tracker using approximate inference imple-
mented with a Markov chain Monte Carlo particle filter (MCMC-PF). [6] uses
a 3D visual tracker, based on MCMC-PF as well, to estimate the positions and
velocities of the participants which are then passed to a blind source separa-
tion method. This provides a proof of concept benchmark for moving speakers.
MCMC-PF tracking cannot easily handle a varying number of speakers. More-
over, the reported experiments in both [4,6] are carried out with a microphone
array and several cameras to guarantee that frontal views of the speakers are
permanently visible. They do not specifically address speaker diarization which
is a difficult problem in its own right.

In this paper it is proposed to enforce spatial coincidence into diarization.
We consider a setup consisting of participants that are engaged in a multi-party
dialog while they are allowed to move and to turn their attention away from
the cameras. We propose to combine an online multi-person visual tracker [2],
with a voice activity detector [9], and a sound-source localizer [3]. Assuming that
the image and audio sequences are synchronized, we propose to group auditory
features and visual features on the premise that they share a common location if
they are generated by the same speaker. We define a speech-turn latent variable
and we devise an online tracker such that at each frame t the identity of the
active-speaker is estimated. We propose a discriminative observation model that
evaluates the posterior probability of speech turns, conditioned by the outputs
of a multi-person visual tracker, a sound-source localizer, and a voice activity
detector. We also propose a dynamic model that allows to estimate the transition
probabilities, from t − 1 to t, of the speech-turn variable. The proposed online
speech-turn tracking method uses an efficient exact inference algorithm.
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The remainder of this paper is organized as follows. Section 2 formally descr-
ibes the proposed exact inference method; Sect. 2.1 describes the audio-visual
discriminative observation model, Sect. 2.2 describes the proposed transition
probabilities model. Section 3 describes implementation details and experiments.
Finally, Sect. 4 draws some conclusions.

2 A Graphical Model for Tracking Speech Turns

We start by introducing some notations and definitions. Upper-case letters denote
random variables while lower-case letters denote realizations of random variables.
We consider an image sequence that is synchronized with an audio sequence and
let t denote the temporal index of both visual and audio frames. There are at
most N visual observations at frame t, Xt = (Xt1, . . . ,Xtn, . . . ,XtN ) ∈ R

2×N ,
where the random variable Xtn corresponds to the location of person n in
image t. Then, a multi-person tracker, e.g., [2] (Sect. 3) provides a time series of
N image locations, namely X1:t = {X1, . . . ,Xt} and associated visual-presence
binary masks V1:t, namely variable Vtn associated with Xtn such that Vtn = 1 if
person n is present in image t and 0 otherwise. Hence Nt =

∑
n Vtn denotes the

number of persons that are present (observed) at t. We also consider an audio-
source localizer that provides the azimuth and elevation of the dominant sound
source at each audio frame t, e.g., [3] (Sect. 3). The sound-source location can
then be mapped onto the image plane, such that an azimuth-elevation pair of
observations is transformed into an image location modeled by a random variable
Y t ∈ R

2. Sound-source localization (SSL) together with voice activity detection
(VAD) provide a time series of sound locations Y1:t = {Y 1, . . . ,Y t} and associ-
ated speech-activity binary masks A1:t = {A1, . . . , At}, such that At = 1 if there
is an active audio source at frame t and 0 otherwise.

The objective is to track the active speaker which amounts to associate over
time the audio activity (if any) with one of the tracked persons. This is also
referred to as audio-visual speaker diarization, e.g., [7] which is addressed below
in the framework of temporal graphical models; A time-series of discrete latent
variables is introduced, S1:t = {S1, . . . , St} such that St = n, n ∈ {1, 2, . . . , N}
if person n is both observed and speaks at frame t, and St = 0 if none of the
visible persons speaks at frame t. Notice that St = 0 encompasses two cases:
first, there is an active sound-source at t (At = 1) but its location cannot be
associated with one of the visible persons and second, there is no active sound-
source at t (At = 0). The active-speaker or, equivalently, speech-turn tracker can
be formulated as a maximum a posteriori (MAP) estimation problem:

ŝt = argmax
st

P (St = st|x1:t,v1:t,y1:t,a1:t). (1)

The posterior probability (1) can be written as:

P (St = st|u1:t) =
P (ut|St = st,u1:t−1)P (St = st|u1:t−1)

P (ut|u1:t−1)
, (2)

where we used the notation ut = (xt,vt,yt, at). This can be further developed as:
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P (St = st|u1:t) =
P (ut|St = st)

N∑
i=0

P (St = st|St−1 = i)P (St−1 = i|u1:t−1)

N∑
j=0

(P (ut|St = j)(
N∑
i=0

P (St = j|St−1 = i)P (St−1 = i|u1:t−1)))

(3)
The evaluation of this recursive relationship requires the observed likelihood
P (ut|St = st) and the transition probabilities P (St = j|St−1 = i). Because
the number of persons that are simultaneously present is small (3–5 persons),
the exact evaluation of (3) is tractable and hence the MAP estimator (1) is
straightforward.

2.1 Audio-Visual Observation Model

One crucial feature of the proposed model is its ability to robustly associate the
acoustic activity at time t with a person. The generative model that is proposed
below assigns the audio activity, if any, to a person, or to nobody. In this context,
the state variable St plays the role of an assignment variable in a mixture model.
If a sound-source is active at time t, (At = 1) its location yt is assumed to be
drawn from the following Gaussian/uniform mixture:

P (yt|xt,vt, At = 1;θt) =
N∑

n=1

πtnvtnN (yt|xtn,Σtn) + πt0U(βt), (4)

where θt = ({πtn}Nn=0, {Σtn}Nn=1, βt) denotes the set of model parameters, namely
the priors πtn = P (St = n), πt0+

∑N
n=1 vtnπtn = 1, the 2×2 covariance matrices

Σtn, and a parameter βt that characterizes the outlier component of the mixture,
namely a uniform distribution. The posterior probability of a sound-source to
be associated with the n-th visible person writes:

P (St = n|yt,xt,vt, At = 1;θt) =
πtnvtnN (yt|xtn,Σtn)

∑N
k=1 πtkvtkN (yt|xtk,Σtk) + πt0U(βt)

. (5)

We can also write the posterior probability that a sound source is not associated
with a visible person, either because it corresponds to a sound emitted by a non
visible person or emitted by another type of source, i.e., the posterior of the
uniform component of the mixture:

P (St = 0|yt,xt,vt, At = 1;θt) =
πt0U(βt)∑N

k=1 πtkvtkN (yt|xtk,Σtk) + πt0U(βt)
. (6)

If there is no audio activity at time t (At = 0), the posterior can be evaluated
with the following formula, where r is a small positive scalar, e.g., r = 0.2:

P (St = 0|yt,xt,vt, At = 0; r) =
{

r/Nt if 1 ≤ n ≤ N
1 − r if n = 0.

(7)
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Finally, by assuming a uniform distribution over the priors of visible person n
(vtn = 1), i.e., πt0 = πtn = 1/(Nt + 1), and by remarking that the observed-
data likelihood P (yt,xt,vt, at) does not depend on St, we obtain the following
observation model:

P (yt,xt,vt, at|St = n) ∝ P (St = n|yt,xt,vt, at). (8)

2.2 State Transition Model

The state transition probabilities, p(St = j|St−1 = i), provide a temporal model
for tracking speech turns. Several cases need be considered based on the pres-
ence/absence of persons and on their speaking status (for convenience and with-
out loss of generality we set vt0 = 1):

p(St = j|St−1 = i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ps if i = j and vt−1i = vti = 1
(1 − ps)/Nt if i �= j and vt−1i = vtj = 1
0 if vt−1i = vt−1j = 1 and vtj = 0
1/Nt if vt−1i = 1, vti = 0 and vtj = 1
1/N if vt−1i = 0 and vti = 0.

(9)

The first case of (9) defines the self-transition probability, ps, e.g., ps = 0.8, of
person i present at both t−1 and t. The second case defines the transition prob-
ability from person i present at t− 1 to another person j present at t. The third
case simply forbids transitions from person i present at t−1 to person j present
at t − 1 but not present at t. The fourth case defines the transition probability
from person i present at t − 1 but not present at t, to a person j present at t.
The fifth case defines the transition probability from person i not present at
t − 1 to person j that is not present at t. These five cases can be grouped in a
compact way to yield the state transition probability matrix (δij = 1 if i = j
and 0 otherwise):

p(St = j|St−1 = i) = vt−1ivtj

(
psδij +

(1 − ps)(1 − δij)
Nt

+
1 − vti

Nt

)
+

1 − vt−1i

N
.

(10)
One may easily verify that

∑N
j=1 p(St = j|St−1 = i) = 1.

3 Implementation and Experiments

As already outlined, the speech-turn tracking method that we propose in this
paper may well be viewed as a speaker diarization process – track several persons
in parallel, estimate their auditory status, and assign a speech segment to the
dominant speaker. Unlike existing audio-visual diarization approaches, which
only consider the temporal coincidence of the two modalities and which assume
that the participants are always visible by the cameras, the proposed method
enforces spatial coincidence such that it can deal with participants that are tem-
porarily occluded, or who come in and out of the field of view of the cameras.
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Unfortunately there are no publicly available datasets that would allow us to test
the robustness of our method in the presence of moving/occluding participants
and to compare it with other methods. The only datasets currently available
correspond to formal meetings where the participants are seated and are perma-
nently facing the cameras. Benchmarking against existing approaches was not
possible because other methods do not cope with the audio-visual alignment
issue.

Therefore we recorded our own data, gathered with two microphones and
one camera [3]. The two modalities are synchronized such that video frames are
temporally aligned with audio frames. Hence the frame index t is shared by the
two modalities. We gathered two scenarios, the counting scenario (Fig. 1) and the
chat scenario (Fig. 2). The videos are recorded at 25 FPS while the audio signals
are sampled at 48000 Hz. Hence a video frame is 40 ms long. To ensure temporal
synchronization between the two modalities, we define 40 ms audio frames in
the following way. An audio frame is composed of several 64 ms windows shifted
by 8 ms. Hence, a 40 ms audio frame is composed of 5 consecutive windows that
partially overlap. The counting sequence has 500 frames (20 s) while the chat
sequence has 850 frames (34 s).

We briefly describe the multi-person tracking and sound-source localization
techniques used to gather values for the observed auditory and visual variables,
i.e., Sect. 2.1. Among the visual tracking methods that are currently available,
we chose the multi-person tracker of [2]. This method has several advantages,
namely (i) it robustly handles fragmented tracks, which are due to occlusions
or to unreliable detections, and (ii) it performs online discriminative learning

Fig. 1. The counting sequence involves two moving persons that occasionally occlude
each other (top). Diarization results (middle) are also illustrated with a color diagram.
Ground-truth diarization (bottom); notice that there is a systematic overlap between
the two speech signals (Color figure online).
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to handle similar appearances of different persons. The multi-person tracker
provides values of the visual observation variables X1:t and associated visual-
presence binary masks V1:t, as explained in detail in Sect. 2.

Sound localization consists in finding the direction of arrival (DOA) of an
acoustic signal from multi-microphone recordings. We adopted the method of [3]
that estimates the DOA of a sound with two degrees of freedom (azimuth and
elevation) using a binaural acoustic dummy head. A prominent advantage of this
method over other DOA methods is that it provides a built-in mechanism for
directly mapping a binaural feature vector associated with an audio frame, onto
an image location. Hence a DOA associated with a sound source in expressed
in pixel coordinates. In practice, the STFT is applied to 64 ms windows of
the left and right microphone signals and a complex-valued binaural feature
vector is built for each window using the ILD (interaural level difference) and
IPD (interaural phase difference). Then we apply the method of [3] to a short
spectrogram, composed of five consecutive windows (roughly corresponding to
a frame), to estimate a DOA for each audio frame. In combination with a voice
activity detector (VAD), this provides a time series of realizations of both the
sound location variables Y1:t and the associated speech-activity binary masks
A1:t, as detailed in Sect. 2.

These auditory and visual observations are used to evaluate the likelihoods
(8) and transition probabilities (9) which in turn are plugged into (3) to estimate

Fig. 2. The chat sequence involves two then three moving persons that take speech
turns and that occasionally occlude each other (top). Diarization results (middle) and
ground-truth (bottom); notice that in this case there is no speech overlap.
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the posteriors of the speech-status variable given the observations, P (St =
st|u1:t). In all our experiments we used the following numerical values for the
model’s free parameters: r = 0.2, ps = 0.8,Σ = Diag [60, 120], β = 300000. The
proposed value of ps achieves a good compromise between either assigning speech
to the current speaker or jumping to another person. The parameters Σ and β
are expressed in pixels. The value of β corresponds to a uniform distribution
over an image of 640×480 pixels. The method yields 75 % correct results for the
counting sequence and 64 % correct results for the chat sequence.

4 Conclusions

The paper addressed the problem of speaker diarization using auditory and visual
data gathered with two microphones and one camera. Recent work in audio-
visual diarization has capitalized on temporal coincidence of the two modalities,
e.g., [1,7]. In contrast, we propose a speech-turn detection and tracking method
that enforces spatial coincidence, namely it materializes that a sound-source and
associated visual-object should have the same spatial location. Consequently, it
is possible to perform speaker localization by detecting persons in an image,
localizing a sound source, mapping the sound-source location onto the image
and associating the source location with one of the persons that are present in
the image. Moreover, this process can be plugged into a latent-variable tem-
poral graphical model that robustly tracks the identity of the active speaker.
We described in detail the proposed method and illustrated its effectiveness
with two challenging scenarios involving moving people, visual occlusions, and
a reverberant room. In the future we plan to incorporate a more robust voice
activity detector/tracker that is robust with respect to non-stationary acoustic
event and to mixed speech signals.
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Abstract. Whereas most blind source separation (BSS) and blind mix-
ture identification (BMI) investigations concern linear mixtures (instan-
taneous or not), various recent works extended BSS and BMI to nonlinear
mixing models. They especially focused on two types of models, namely
linear-quadratic ones (including their bilinear and quadratic versions,
and some polynomial extensions) and post-nonlinear ones. These works
are particularly motivated by the associated application fields, which
include remote sensing, processing of scanned images (show-through
effect) and design of smart chemical and gas sensor arrays. In this paper,
we provide an overview of the above two types of mixing models and of
the associated BSS and/or BMI methods and applications.
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1 Introduction

Blind source separation (BSS) methods aim at estimating a set of source sig-
nals from a set of observed signals which are mixtures of these source signals
[17]. It has been shown that, if the mixing function applied to the source signals
is completely unknown, the BSS problem (or its ICA solution) leads to unac-
ceptable indeterminacies. Therefore, in most investigations the mixing function
is requested to belong to a known class and only the values of its parameters
are to be estimated. Many of these works are restricted to the simplest class of
mixtures, namely linear ones (instantaneous or not) [17]. However, various more
advanced studies dealing with nonlinear mixtures have also been reported. Two
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nonlinear mixing models have especially been considered. The first one con-
sists of linear-quadratic (LQ) mixtures (and, to some extent, polynomial ones).
It forms a natural extension of linear mixtures, by also including second-order
(and possibly higher-order) terms. It may thus first be seen as a generic model,
to be used as an approximation (truncated polynomial series) of various, possi-
bly unknown, models faced in practical applications. Moreover, LQ mixing has
been shown to actually occur in some applications. It has thus mainly been used
for unmixing of remote sensing data [32,40,46–49], processing of scanned images
involving the show-through effect [5,27,45,50] and analysis of gas sensor array
data [10]. The other main nonlinear mixing model is the post-nonlinear (PNL)
one. In this case, the mixing process comprises an initial linear mixing stage fol-
lowed by a set of component-wise nonlinear functions. Therefore, such a model
is useful in applications where the first stage of the mixing process is of linear
nature but the sensors then exhibit a nonlinear response, due to saturation or
more complex nonlinear transducer phenomena. The main field of application
for PNL models is the design of smart chemical sensor arrays [11,12,25]. PNL
models were also applied in the context of remote sensing data [6].

In this paper, we provide an overview of the two above-defined nonlinear
mixing models and associated BSS and/or blind mixture identification (BMI)
methods reported so far. We first define both mixing models in Sect. 2. We then
present BSS/BMI methods for LQ mixtures in Sect. 3, and methods for PNL
mixtures in Sect. 4. To conclude, related topics are briefly discussed in Sect. 5.

2 Considered Nonlinear Mixing Models

Considering continuous-valued signals which depend on a discrete variable n,
the scalar form of the LQ (memoryless, or instantaneous) mixing model reads

xi(n) =
M∑

j=1

aijsj(n) +
M∑

j=1

M∑

k=j

bijksj(n)sk(n) ∀ i ∈ {1, . . . , P} (1)

where xi(n) are the values of the P observed mixed signals for the sample index
n and sj(n) are the values of the M unknown source signals which yield these
observations, whereas aij and bijk are respectively the linear and quadratic mix-
ing coefficients (with unknown values in the blind case) which define the consid-
ered source-to-observation transform. The specific version of this model which
contains no second-order auto-terms (i.e. bijk = 0 when k = j) is called the
bilinear mixing model. It corresponds to replacing the second sum in (1) by∑M−1

j=1

∑M
k=j+1 (additional constant terms are considered in [5]). Similarly, the

quadratic version of this model is obtained when all coefficients aij are zero.
A first matrix form of that model (1) reads

x(n) = As(n) + Bp(n) (2)

where the source and observation vectors are

s(n) = [s1(n), . . . , sM (n)]T , x(n) = [x1(n), . . . , xP (n)]T , (3)
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where T stands for transpose and matrix A consists of the mixing coefficients
aij . The column vector p(n) is composed of all source products sj(n)sk(n) of
(1), i.e. with 1 ≤ j ≤ k ≤ M , arranged in a fixed, arbitrarily selected, order
(see e.g. [49] for the natural order). The matrix B is composed of all entries bijk
arranged so that i is the row index of B and the columns of B are indexed by
(j, k) and arranged in the same order as the source products sj(n)sk(n) in p(n).

An even more compact model may be derived by stacking row-wise the vec-
tors s(n) and p(n) of sources and source products in an extended vector

s̃(n) =
[
s(n)
p(n)

]
(4)

whereas the corresponding matrices A and B are stacked column-wise in an
extended matrix

Ã = [A B] . (5)

The LQ mixing model (2) then yields

x(n) = Ãs̃(n). (6)

A third matrix-form model may eventually be derived by stacking column-
wise all available signal samples, with n ranging from 1 to N , in the matrices

S̃ = [s̃(1), . . . , s̃(N)], X = [x(1), . . . , x(N)]. (7)

The single-sample model (6) thus yields its overall matrix version

X = ÃS̃. (8)

Some LQ BSS methods are based on the “original sources” s1(n), . . . , sM (n)
contained in s(n), whereas other methods are based on the signals contained in
s̃(n), which are called the “extended sources” hereafter.

We also consider a second class of nonlinear mixing models known as post-
nonlinear (PNL) models, in which each observed mixture corresponds to a uni-
variate nonlinear function of a linear mixture of the sources. In its scalar form,
the PNL model is given by

xi(n) = fi

⎛

⎝
M∑

j=1

aijsj(n)

⎞

⎠ ∀ i ∈ {1, · · · , P} (9)

where aij and fi(·) denote the linear mixing coefficients and the univariate non-
linear functions, respectively. In the blind case, both aij and fi(·) are unknown.
However, one often assumes that fi(·) are strictly monotonic functions and, thus,
admit inverse functions.
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3 BSS/BMI Methods For Linear-Quadratic Mixtures

3.1 Independent Component Analysis (ICA) and Statistical
Methods

(A) Methods for i.i.d Sources: Various LQ BSS methods were developed for
i.i.d and mutually statistically independent sources, by exploiting the mutual
independence of the outputs of a separating system. A first class of such
methods is intended for the version of the LQ model which is determined with
respect to the original sources, i.e. such that P = M . Their separating systems
are nonlinear recurrent networks, which were described e.g. in [20,36] (and then
extended e.g. in [14,20,50], including to much broader classes of nonlinear mix-
tures than LQ ones). The first of these LQ BSS methods [36] may be seen as an
LQ extension of the linear Hérault-Jutten method, since it adapts the parameters
of the above nonlinear recurrent networks so as to achieve an approximation of
output independence, more precisely so as to cancel the (3,1) and (2,1) centered
output cross-moments. The second reported method [51] is the LQ extension of
Comon’s linear approach, since it adapts the above parameters so as to minimize
the mutual information of the network outputs, thus completely ensuring output
independence.

The above recurrent separating systems are attractive because they only
require one to know the analytical expression of the mixing model. On the
contrary, direct structures require one to know the analytical expression of
the inverse of the mixing model, which cannot be derived for nonlinear mix-
ing models, except in simple situations such as bilinear models with 2 original
sources [5,36]. However, nonlinear recurrent structures may yield some limita-
tions: (i) they may be unstable at equilibrium points of interest or they may even
lead to chaotic behavior [20] (see also [19–21] for extended networks which solve
such problems; such networks have therefore also been used in [7] as original
tools for solving nonlinear equations), (ii) they may have spurious equilibrium
points and (iii) they require one to iteratively compute each output vector.

The situation becomes simpler when the number of observations can be
increased up to the number of extended sources in s̃(n). The mixing model is
then determined and linear with respect to these extended sources, as shown by
(6) or (8). Especially, performing M linear combinations of all these observa-
tions, with adequate coefficient values, then makes it possible to restore all M
original sources. These coefficients may be adapted so as to enforce the statisti-
cal independence of the restored signals. In [26], this is achieved by a two-stage
procedure based on minimizing the mutual information of these restored signals.

Still for mutually statistically independent and i.i.d sources, other reported
LQ BSS and extended methods are based on estimating the mixing model
(thus firstly achieving BMI). The first approach is based on maximizing the
likelihood of the observations [15,37,38,50]. These investigations deal with deter-
mined mixtures of original sources and use the above-defined recurrent separat-
ing networks. The link between BSS methods based on likelihood maximization
and mutual information minimization was established in [22] for nonlinear mix-
tures, including LQ ones.
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The second reported approach for estimating the mixing model consists in
starting from the relationships which define the observed signals with respect
to the source signals and mixing coefficients, and deriving resulting expressions
of some cumulants or moments of the observed signals with respect to those
of the source signals and to the mixing coefficients. Solving these equations for
known (estimated) values of the observation cumulants or moments then espe-
cially yields the values of the mixing coefficients (up to some indeterminacies).
This approach was applied to quadratic mixtures in [16]. Also using cumulants,
a quite different BMI method was proposed in [42] for complex-valued sources.

Finally, other LQ BSS methods for i.i.d sources jointly estimate the
sources and mixing model, whereas the above-defined methods put more
emphasis on one of these two types of unknowns of the BSS/BMI problem.
This joint approach especially includes LQ Bayesian methods [24,27]. Unlike
above-described approaches, Bayesian methods do not explicitly use a separat-
ing system and thus avoid the associated potential issues, mainly for determined
mixtures of original sources. However, the development of the use of Bayesian
methods is limited by the complexity of their implementation and their high
computational cost, as compared with the most popular ICA-related methods.

(B) Methods for Non-i.i.d Sources: Other LQ BSS methods have been
developed by considering non-i.i.d random source signals and exploiting their
autocorrelation (when each source is not independently distributed for different
samples n) and/or their non-stationarity (when each source is not identically
distributed for different samples). Both properties were used in the extension
of the above likelihood-based method proposed in [39]. Similarly, the above-
mentioned Bayesian approach [24,27] has been applied to autocorrelated sources.
A BMI method for LQ mixtures of autocorrelated and mutually independent
source signals was also proposed in [1], using a joint diagonalization of a set of
observation correlation matrices. Using similar tools, a method for extracting
source products was also presented in [33] for uncorrelated sources with distinct
autocorrelations.

3.2 Extensions of Nonnegative Matrix Factorization (NMF)

Although the considered observations (1) are nonlinear mixtures of the original
sources, the reformulated mixing model (8) shows that they are linear mixtures
of the associated extended sources and that, from the point of view of the lat-
ter sources, they follow the matrix-form mixing model encountered in linear
NMF. When Ã and S̃ (and thus X) are nonnegative, this allows one to develop
LQ BSS/BMI methods for jointly estimating them by extending linear NMF
methods, especially by adapting (estimates of) Ã and the linear part of S̃ so as
to minimize the Frobenius norm ||X − ÃS̃||F . Resulting gradient-based and/or
Hessian-based algorithms have more complex forms than for linear mixtures,
because they also involve derivatives of the second-order terms of S̃ with respect
to the original sources. Several such methods are detailed in [47] (which also
addresses polynomial mixtures) and [49] (the application of a standard NMF
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algorithm to the extended sources is also considered in [46,47]). A similar app-
roach, dedicated to the case when both the sources and mixing coefficients follow
bilinear models, is described in [32]. Besides, [45] deals with a very specific con-
figuration involving 2 mixtures of 2 original sources, with the same quadratic
contribution in both mixtures.

3.3 Sparse Component Analysis (SCA)

For linear mixtures, two major principles used in the literature for performing
SCA may be briefly defined as follows. The first one consists in minimizing a
sparsity-based cost function, such as the L0 norm of an “error term”. The second
one consists in taking advantage of zones (i.e. adjacent samples) in the sources
where only one source is active, i.e. non-zero. These two principles have been
extended to LQ mixtures, respectively in [28] and [18]. Besides, [40] describes an
approach which also takes advantage of small parts of the observed data where
only one “contribution” is non-zero, more precisely pixels which correspond to
only one pure material (i.e. pure pixels) in the considered application to unmixing
of remote sensing spectra. However, the proposed criterion is only guaranteed to
yield a necessary condition for detecting pure pixels.

4 BSS Methods for Post-nonlinear Mixtures

There are basically two approaches to develop BSS methods for the mixing model
expressed in (9). In the first one, which will be referred to as the joint approach,
the nonlinear functions fi(·) and the mixing matrix are jointly counterbalanced
by means of a single criterion. Alternatively, in the two-stage approach, an initial
stage aims at estimating the nonlinear functions fi(·) or their inverses. Once
these functions are estimated, the second stage simply becomes a linear BSS
problem. In the sequel, we shall review methods for the joint and the two-stage
approaches.

4.1 Joint Approaches

As in linear BSS, most of the works in PNL separation consider the determined
case (P = M) and an adaptation framework based on ICA. An important reason
for that comes from the theoretical results ensuring ICA-separability in PNL
models. Indeed, the seminal work of Taleb and Jutten [59] showed that, by
considering the following mirrored version of (9) as separating system

yi(n) =
P∑

j=1

wijgj(xj(n)) ∀ i ∈ {1, · · · , P}, (10)

where wij and gj(·) denote, respectively, the separating coefficients and the
inverting functions, the recovery of independent components y1(n), · · · , yP (n)
leads to source separation under conditions very close to those established for
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the linear case. Eventually, other works [3,8,61] extended [59] by providing more
rigorous and less restrictive proofs.

By relying on the ICA-separability of PNL models, several works, starting
from [59], proposed strategies to jointly adapt wij and gj(·) by minimizing mea-
sures of statistical dependence. Most of these works considered a gradient-based
framework for minimizing the mutual information [4,9,59] in the case of i.i.d
sources. However, in [43], a joint method based on mutual information was set
up to deal with non-i.i.d sources. It is also worth mentioning that alternative
criteria of statistical dependence can be considered, as, for instance, in [2].

In the mutual information approach, a first issue is the estimation of the score
functions of yi(n), which was addressed by several works of Pham (see [53], for
instance) — these works dealt with general BSS models but were fundamen-
tal to many PNL algorithms. A second issue is the risk of local convergence
to non-separating minima. In order to overcome this problem, several works
proposed learning algorithms based on meta-heuristics [23,56]. Finally, another
issue that must be handled in joint PNL ICA algorithms is the parametriza-
tion of the inverting functions gj(·). Indeed, since the ICA-separability results
for (10) require bijective pairs fj(·) and gj(·), one aims at defining parametric
functions gj(·) that are bijective but flexible enough to compensate fj(·). Possi-
ble solutions considered monotonic polynomials [23], splines [57], functions based
on quantiles [54] and monotonic neural networks [31].

As in linear and LQ mixtures, an important class of joint PNL methods are
obtained by formulating BSS as a Bayesian estimation problem. A Bayesian app-
roach provides a natural framework to take into account prior information that
can be expressed through a probabilistic modeling. On the other hand, the chal-
lenging aspect here is related to the practical resolution of the resulting inference
problem. In [35], the authors introduced a variational learning scheme in order to
perform inference. Alternatively, in [25], a Markov chain Monte Carlo (MCMC)
strategy was set up to deal with a special class of PNL models that arises in
chemical sensing applications. Such an approach has allowed the incorporation of
non-negative priors for the sources and the mixing coefficients [25]. More recently,
an MCMC-based Bayesian method was also proposed, but now for a special class
of PNL models related to hyperspectral imagery [6]. A Bayesian approach was
also considered for dealing with the underdetermined case (P < M) [63].

4.2 Two-Stage Approaches

The first two-stage PNL approach [8] addressed the separation of two bounded
sources under geometrical arguments. Indeed, since the scatter plot of bounded
PNL mixtures presents nonlinear borders, [8] proposed to identify gj(·) by recov-
ering signals g1(x1), g2(x2) that provide linear borders in the scatter plot. A
similar geometrical approach was proposed in [52] and was able to deal with the
case of more than two sources.

Another idea to identify gj(·) is to exploit prior information related to the
sparsity of the sources. This idea is similar to the geometrical approach—indeed,
when the sources are sparse, it becomes easier to identify the borders associated
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with the scatter plot of the mixtures. For instance, in [55], the authors proposed
a SCA-based scheme to identify gj(·) by assuming that there are, for each source
si(n), a temporal (or spatial) zone in which only si(n) is active — such an idea is
similar to that previously described for LQ mixtures. Similar SCA schemes were
also developed for dealing with the case of underdetermined PNL mixtures [60,
62] — here, of course, the resulting linear BSS problem is more challenging than
the determined linear BSS problem.

The underlying criteria for inverting gj(·) in the two-stage methods presented
so far are based on a joint processing of the mixtures. Alternatively, there are two-
stage methods that process each mixture in a separate fashion — this approach
will be referred to as independent two-stage methods. In this case, the resulting
method thus comprises P independent executions of an algorithm that blindly
compensates each fi(·) followed by the application of a linear BSS method.

The first independent PNL two-stage methods make use of a well-known
property involving probability distributions and nonlinear functions: it is possible
to blindly estimate a univariate random variable that underwent a nonlinear
distortion by setting up a nonlinear compensating function that provides a new
random variable having the same probability distribution as that of the original
random variable. This idea of matching the probability distributions of the input
and its estimated version was firstly applied in signal processing by White [64].

In the context of PNL methods, it is possible to adapt the strategy pro-
posed in [64] by observing that, after the linear mixing stage, the signals tend
to Gaussian variables — this is a consequence of the central limit theorem.
Moreover, due to the action of fj(·), the observations xj(n) have non-Gaussian
distributions. Therefore, a natural idea to counterbalance fj(·) is to adapt gj(·)
so that its output becomes again Gaussian. Implementations of this strategy
can be found in [58,66,67]. Interestingly, these Gaussianization-based methods
provide better results as the number of sources increases, since the hypothesis
of Gaussian linear mixtures is more realistic as P grows. However, even for a
small number of sources they can provide at least an initial approximation of
gj(·) [58].

Alternative independent two-stage methods were proposed by taking into
account other prior information than the gaussianity of the linear mixtures. For
instance, [29] introduced a novel method that is tailored to the case of bandlim-
ited sources. More recently, by considering the assumption that the sources admit
a sparse representation in a known domain, [30] extended [29] and introduced
a method for blind compensation of nonlinear functions that can be directly
applied to PNL separation problems. Note that, differently from the above-
discussed PNL methods based on sparsity priors, the introduced method in [30]
operates in an independent fashion.

5 Conclusion

In this overview, we especially focused on practical BSS/BMI methods intended
for two major types of nonlinear mixtures. Due to space limitations, we hereafter
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first only briefly mention closely related topics, i.e. the case of finite-alphabet
sources [13], the invertibility of the considered mixing models (see e.g. [36]) the
extension of LQ mixtures to polynomial ones (see e.g. [13,47,65]), the sepa-
rability of these models with given separation principles, such as ICA (see [5]
for bounded sources), the approaches based on non-blind and semi-blind BSS
methods (see e.g. [20,34]). There are also interesting works that deal with PNL
models and were not discussed in this overview paper. For instance, some effort
has been put on the case of convolutive PNL mixtures [9,41] and on the prob-
lem of blind source extraction in PNL mixtures [44]. Finally, let us stress that
other types of nonlinear mixing models have also recently been considered in the
literature. All this shows that nonlinear BSS is currently a quite active research
field, that we plan to present in more detail in a future publication.
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Abstract. Many scenarios occurring in genomics and proteomics involve small
number of labeled data and large number of variables. To create prediction
models robust to overfitting variable selection is necessary. We propose variable
selection method using nonlinear sparse component analysis with a reference
representing either negative (healthy) or positive (cancer) class. Thereby,
component comprised of cancer related variables is automatically inferred from
the geometry of nonlinear mixture model with a reference. Proposed method is
compared with 3 supervised and 2 unsupervised variable selection methods on
two-class problems using 2 genomic and 2 proteomic datasets. Obtained results,
which include analysis of biological relevance of selected genes, are comparable
with those achieved by supervised methods. Thus, proposed method can pos-
sibly perform better on unseen data of the same cancer type.

Keywords: Variable selection � Nonlinear mixture model � Empirical kernel
maps � Sparse component analysis

1 Introduction

Data acquired by microarray gene expression profiling technology [1, 2] or mass
spectrometry [3, 4], present “large p, small n” problem: large number of variables
(genes or mass-to-charge, m/z, ratios) and small number of labeled (diagnosed) gene or
protein expressions. They correspond with the mixtures in blind source separation
(BSS) vocabulary while variables correspond with samples in BSS vocabulary. In
described scenario learned prediction models adapt to training data (overfitt) and not
generalize well on unseen data of the same cancer type [5, 6]. Improvement of predictor
performance is enabled by variable selection [6, 7]. This implies selection of small
number of variables that discriminate well between cancer and healthy subjects. Here
we propose unsupervised variable selection method that performs blind sparseness
constrained decomposition of each mixture independently according to implicit,
empirical kernel map (EKM)-based [8], nonlinear mixture model. The model is com-
prised of a test mixture and a reference mixture representing positive (cancer) class.
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Proposed method takes into account biological diversity of mixtures as well as
nonlinear nature of the interaction among variables (genes) within the components
present in mixtures [9]. Reference mixture enables automatic selection of component
within test mixture that is comprised of cancer related variables. Since no label
information is used selected cancer related components can be used both for biomarker
identification studies as well as for training prediction models. As opposed to that,
variable selection based on standard BSS methods, [10–14], use whole dataset for
decomposition. Afterwards, one component composed of cancer related variables is
selected by using label information. That enables selected component to be used for
biomarker identification studies but prevents it to be used for training predictive models
(otherwise label information would be used twice). The method proposed herein is
nonlinear generalization of the mixture dependent linear model with a reference [15]
as well as generalization of mixture dependent nonlinear model with a reference that is
based on approximate explicit feature maps (EFM) [16]. Implicit nonlinear mapping is
performed variable-wise yielding nonlinear mixture model with the same number of
variables and “increased” number of mixtures. Sparse component analysis (SCA) is
performed on nonlinearly mapped mixture. Afterwards, variables in cancer related
components are ranked by their mixture-wise variance. That yields index set used to
access variables in the original input space. They are used to learn two-class support
vector machine (SVM) predictive model [17]. We compare proposed method with 3
supervised variable selection methods [18, 19] and 2 unsupervised methods [15, 16].
The methods were compared on 2 well-known cancer types in genomics: colon cancer
[1] and prostate cancer [2], as well as on 2 well-known cancer types in proteomics:
ovarian cancer [3] and prostate cancer [4]. Furthermore, analysis of biological rele-
vance of selected genes in colon cancer experiment is also provided. We describe
proposed method in Sect. 2. Results of comparative performance analysis are described
in Sect. 3. Conclusions are proposed in Sect. 4.

2 Method

Let us assume that N mixtures are stored in rows of data matrix X 2 R
N�K , whereas

each mixtures is further comprised of K variables. We also assume that N mixtures
have diagnoses (label): xn 2 R

1�K ; yn 2 1;�1f g, n = 1,…, N, where 1 stands for
positive (cancer) and -1 stands for negative (healthy) mixture. Within this paper we
assume that mixtures are normalized such that: �1� xnk � 1 8n ¼ 1; . . .;N
k ¼ 1; . . .;K. Matrix factorization methods such as principal component analysis,
independent component analysis, SCA and/or nonnegative matrix factorization assume
linear mixture model: X ¼ AS, where A 2 R

N�M
0þ , S 2 R

M�K and M stands for an
unknown number of components imprinted in mixtures. Each component is represented
by a row vector of matrix S, that is: sm 2 R

1�K , m = 1,…,M. Column vectors of matrix
A: am 2 R

N�1, m = 1,…, M, represent concentration profiles of the corresponding
components. To infer component comprised of disease relevant variables label infor-
mation is used by methods such as [10, 11]. That prevents usage of selected component
for training prediction models. This limitation has been addressed in [15] by
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formulating mixture dependent linear model with a reference. Herein, as in [16], we
assume nonlinear model of a mixture:

xref ;k
xnk

� �
¼ fn sk;n

� �
n ¼ 1; . . .;N ; k ¼ 1; . . .;K ð1Þ

where fn : RMn ! R
2 is an unknown mixture dependent nonlinear function that maps

Mn-dimensional vector of variables sk;n 2 R
Mn�1 to 2-dimensional observation vector.

Thereby, first element of the observation vector belongs to the reference mixture and
second element to the test mixture. Herein, we assume that reference mixture represents
positive (cancer) class. It can be selected by an expert or, as it was the case herein, can
be obtained by averaging all the mixtures belonging to positive class. We propose
EKM for implicit (kernel-based) mapping of (1). We repeat definition 2.15 from [8]:

Definition 1. For a given set of patterns vd 2 R
N�1

� gDd¼1 � X, D 2 N, we call

w : RN ! R
D, where w : xnk 7! j v1; xnkð Þ;½ . . .; j vD; xnkð Þ�T , 8k ¼ 1; . . .;K, the EKM

with respect to basis V :¼ vdf gDd¼1.

Thereby, xnk ¼ xref ;k xnk
� �T

is defined in (1). The basis V has to satisfy:

span vdf gDd¼1� span xnkf gKk¼1 ð2Þ

To estimate V we have used k-means algorithm to cluster empirical set of patterns
(samples) xnkf gKk¼1 in predefined number of D cluster centroids (basis vectors). If
V satisfies (2) then obviously V[ 1 0½ �T satisfies (2) as well. Hence, EKM w xnkð Þ is
obtained by projecting EFM / xnkð Þ associated with kernel j 	; xnkð Þ on a (D + 1)-

dimensional subspace in mapping induced space spanned by / vdð Þ 2 R
�D

n oDþ1

d¼1
:

w xnkð Þ ¼ / v1ð Þ . . . / vDð Þ/ vDþ1ð Þ½ �T/ xnkð Þ
¼ j xnk; v1ð Þ . . . j xnk; vDð Þ j xnk; vDþ1ð Þ½ �T 8k ¼ 1; . . .;K

ð3Þ

where vDþ1 2 R
2�1
0þ ¼ 1 0½ �T . We now define mixture dependent linear model in

EKM-induced space:

w
xref ;k
xnk

	 

� �An�sk;n k ¼ 1; . . .;K ð4Þ

where �An 2 R
Dþ1�Mn
0þ , �sk;n 2 R

Mn�1 and Mn stands for mixture dependent number of
components. The key observation regarding nonlinear model (3)/(4) is that, for suitably
chosen kernel, j xnk; vDþ1ð Þ it becomes a function of the reference mixture xref,k only. As
an example, for j xnk; vDþ1ð Þ ¼ exp xnk; vDþ1h ij j�r2� � ¼ exp xref ;k

�
r2

� �
. For Gaussian

kernel it applies: j xnk; vDþ1ð Þ ¼ expð�x2nk
�
r2Þ expð�r2Þ exp 2xref ;k � x2ref ;k

� .
r2

� 
.
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Under assumption �1� xnk � 1 and r2 [ x2nk the first part is approximately 1 and the
last part exp ð2xref ;k � 1Þ�r2� �

. Thus, j xnk; vDþ1ð Þ � exp 2xref ;k � 1
� ��

r2
� �

. Hence, we

can express w xnkð Þ in standard Euclidean basis edf gDþ1
d¼1 :

w
xref ;k
xnk

	 

¼ j xnk; v1ð Þe1 þ . . .þ j xnk; vDð ÞeD þ f xref ;k

� �
eDþ1 ð5Þ

Representation (5) enables automatic selection of component �sm
, m*2{1,.., Mn}
comprised of cancer relevant variables. �sm
 is associated with the mixing vector that
closes the smallest angle with the axis eD+1 that represents cancer class. Cosine of the
angle between mixing vector �am;n and eD+1 s obtained as:

cos\ �am;n; eDþ1
� � ¼ �am;n; eDþ1

� ��
�am;n
�� �� ð6Þ

Thus index of component composed of cancer relevant variables is obtained as:

m
 ¼ argmax
m

cos\ �am;n; eDþ1
� � ð7Þ

When each mixture is decomposed according to (4), components comprised of
cancer relevant variables are stored row-wise in a matrix �Scancer 2 R

N�K . Variables
(columns of �Scancer) are then ranked by their variance across the mixture dimension

yielding �Srankedcancer 2 R
N�K . Let us denote by I a corresponding index set. Variables

ranked in the original mixture space are obtained by indexing each mixture by I, that is:
xrankedn ¼ xn(I), n = 1,…, N. Mixtures with ranked variables form rows of the matrix
Xranked 2 R

N�K . That, when paired with the vector of labels y, is used to learn SVM
prediction model.

Decomposition of the linear mixture model (4) is performed enforcing sparseness
of the components �sm;n, m = 1, …, Mn. That is because sparse components are com-
prised of few dominantly expressed variables and that can be good indicator of a
disease. Method used to solve, in principle, underdetermined BSS problem (4) esti-
mates mixing matrix �An first by using the separable NMF algorithm [20] with a
MATAB code available at: https://sites.google.com/site/nicolasgillis/publications. The
important characteristic of the method [20] is that there are no free parameters to be
tuned or defined a priori. The unknown number of components Mn is also estimated
automatically and is limited above by D + 1. Thus, by cross-validating D we implicitly
cross-validate Mn as well. After �An is estimated, �Sn is estimated by solving sparseness
constrained optimization problem:

�̂Sn ¼ min
�Sn

1
2

�̂An
�Sn � w

xref
xn

 !�����
�����
2

F

þ k �Sn
�� ��

1

8<
:

9=
; ð8Þ

where the hat sign denotes an estimate of the true (but unknown) quantity, λ is reg-
ularization parameter and �Sn

�� ��
1 denotes ‘1-norm of �Sn. To solve (8), we have used the
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iterative shrinkage thresholding (IST) method [21] with a MATLAB code at: http://ie.
technion.ac.il/Home/Users/becka.html. Sparsity of the solution is controlled by the
parameter λ. There is a maximal value of λ (denoted by λmax here) above which the
solution of the problem (8) is equal to zero. Thus, in the experiments reported below
the value of λ has been selected by cross-validation with respect to λmax.

3 Experiments

Proposed approach is compared with supervised variable selection methods: maximum
mutual information minimal redundancy (MIMR) method [18] and HITTON_PC and
HITTON_MB [19] methods. We also report results for linear [15] and EFM-based
nonlinear [16] counterparts of proposed method. Gene Expression Model Selector
(GEMS) software system [22], has been used for 10-fold cross-validation based
learning of SVM-based diagnostic models with polynomial and Gaussian kernels. The
system is available at: http://www.gems-system.org/. HITON_PC and HITON_MB
algorithms are implemented in GEMS software system while implementation of the
MIMR algorithm is available at MATLAB File Exchange. Order D of the EKM in
(3) has been cross-validated in the range: D 2 {5, 10, 15, 20, 25, 30}. Regularization
constant λ in (8) has been cross-validated in the range: λ 2 {0.05, 0.1, 0.2, 0.3, 0.4, 0.
5} × λmax. Methods were compared on 2 cancer types in genomics: colon cancer [1]
and prostate cancer [2], as well as on 2 cancer types in proteomics: ovarian cancer [3]
and prostate cancer [4]. The number of cancer vs. normal mixtures is for 4 datasets
given in respective order as: 40/22, 52/50, 100/100 and 69/63. The number of variables
in each dataset is in respective order given as: 2000, 10509, 15152 and 15154. For each
dataset we report in Table 1 result achieved by: proposed method, the best result
achieved by one of 3 supervised methods and results achieved by [15, 16]. Due to the

Table 1. Classification accuracy and number of selected variables.

Dataset Proposed method Supervised
method

[16] [15]

1. Prostate
cancer

91.18 % / 12 genes
(D = 20, λ = 0.3,
Gauss kernel).

MIMR:
98.08 % /
10 genes

91.27 % /
38 genes

94.27 % /
477 genes.

2. Colon
cancer

93.57 % / 20 genes
(D = 20, λ = 0.3,
Gauss kernel).

HITON_MB:
93.33 % /
4 genes

91.91 % /
24 genes

90.48 % /
30 genes,
λ = 0.05.

3. Ovarian
cancer

94.5 % / 47 m/z lines
(D = 20, λ = 0.35,
Exp. kernel).

HITON_PC:
99.5 % /
7 m/z lines

93 % / 7 m/z
lines

82 % /
25 m/z
lines,
λ = 0.2.

4. Prostate
cancer

94.61 % / 27 m/z lines
(D = 20, λ = 0.35,
Exp. kernel).

MIMR:
100 % /
9 m/z lines

94.06 % /
14 m/z lines

94.01 % /
85 m/z
lines,
λ = 0.2.
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lack of space we do not report details on parameters of the SVM classifiers. For each of
4 datasets, proposed method achieves result that is worse than but comparable with the
result of supervised algorithm and better than its linear and EFM-based nonlinear
unsupervised counterparts [15, 16]. Since reported results are achieved with small
number of variables the probability of overfitting is reduced. Thus, it is reasonable to
expect that performance on unseen data of the same cancer type by proposed unsu-
pervised method will be better than the one achieved with supervised algorithms.

Colon cancer data are available at: http://genomic-pubs.princeton.edu/oncology/
affydata/index.html. Prostate cancer genomic data are available at: http://www.gems-
system.org/. Ovarian and prostate cancer proteomic data are available at: http://home.
ccr.cancer.gov/ncifdaproteomics/ppatterns.asp. To comply with principle of reproduc-
ible research software which implements proposed algorithm, datasets used and results
presented in Table 1 are available at: http://www.lair.irb.hr/ikopriva/Data/HRZZ/data/
LVA_2015.zip.

We also provide brief biological interpretation of genes selected by proposed
method in the colon cancer experiment [1]. The majority of genes selected by the
proposed algorithm have been previously associated with tumorgenesis. For instance,
expression of genes encoding ribosomal proteins (RPS9, RPS18, RPS29, RPS24,
RPLP1, RPL30) has been known to increase in tumors as a result of uncontrolled cell
proliferation which is one of the key hallmarks of cancer. In addition, several previous
microarray studies have reported an increase in mRNA expression of ribosomal genes
in solid tumors including colorectal cancer [23]. Several genes which were found to be
differentially expressed by our algorithm like IGHG3, FTL, GAPDH and UBC encode
proteins involved in cellular metabolism and bioenergetics and have previously been
associated with cancer [24, 25]. This is not surprising since changes in metabolic
processes are often observed in tumor cells. For instance altered GAPDH expression
has been reported in breast, gastric, liver, lung as well as colorectal cancer [26].
Laminin receptor 1 (RPSA) and actin (ACTB), two other genes detected by our
algorithm, are involved in wide spectrum of cellular functions including the mainte-
nance of cellular structure as well as adhesion and motility [26]. When specifically
colorectal cancer is considered, S100A6 has previously been associated with this type
of cancer [27]. In addition, the role of Thymosin beta-4 in cell proliferation, growth and
migration has been previously established and its overexpression has been reported
during the different stages of colorectal carcinogenesis [28].

4 Conclusion

Since it requires little prior knowledge unsupervised decomposition of a set of mixtures
into additive combination of components is of particular importance in addressing
overfitting problem. Herein, we have proposed an unsupervised approach for variable
selection by decomposing each mixture individually into sparse components according
to nonlinear kernel-based model of a mixture, whereas decomposition is performed
with respect to a reference mixture that represents positive (cancer) class. That enables
selection of cancer related components automatically and, afterwards, their use for
either biomarker identification studies or learning diagnostic models. It is conjectured
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that outlined properties of proposed method enabled competitive diagnostic accuracy
with small number of variables on cancer related human gene and protein expression
datasets. While proposed method is developed for binary (two-class) problems its
extension for multi-category classification problems is aimed for the future work.
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Abstract. In this work, we investigate the use of monotonic neural net-
works as compensating functions in the context of source separation of
post-nonlinear (PNL) mixtures. We first provide a numerical example
that illustrates the importance of having bijective nonlinear compensat-
ing functions in PNL models. Then, we propose a separation framework
in which a monotonic neural network is considered in the first stage of the
PNL separating system. Finally, numerical experiments are performed to
assess the proposed framework.

Keywords: Source separation · Nonlinear mixtures · Post-nonlinear
mixtures · Monotonic networks

1 Introduction

Blind source separation (BSS) in nonlinear models is still a challenging
topic [1–3]. Differently from the linear case, it is difficult to develop a general
separation framework — comprising a separation structure and a separation cri-
terion — for nonlinear models. Therefore, research in this area has been focusing
on particular classes of nonlinear mixing models that are relevant in practical
applications and also interesting from a theoretical point of view.

Among the classes of nonlinear models studied so far, post-nonlinear (PNL)
models have been receiving considerable attention since the work of Taleb and
Jutten [4]. A PNL mixing model is composed of two stages. In the first one, the
sources are submitted to a standard linear mixing process. Then, in the second
stage, each linear mixture undergoes a memoryless nonlinear (and bijective)
distortion and the outputs of this process correspond to the observed mixtures.
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The usual PNL separating system has also two stages but they are disposed in
a reverse order with respect to the mixing system.

A first interesting feature in PNL models is related to their practical rele-
vance. Indeed, PNL models suit well applications in which the mixing process is
linear but the sensing or transducer mechanism is nonlinear. For instance, such a
situation is typical in audio signal processing, due to the existence of amplifying
stages that may operate in nonlinear regions [4]. Another example of application
can be found in electrochemical sensor arrays for measuring ionic activities [5].
In this case, the nonlinear character of the mixtures can be explained by the
Nernst equation [6].

Besides their practical relevance, PNL models present a key feature for BSS:
they are separable in the sense of independent component analysis (ICA) [4,7].
In other words, assuming that the sources can be modeled as statistically inde-
pendent random variables, it is possible to blindly recover the original sources
by setting a PNL separating system that provides independent signals. This
property has opened the way for the development of BSS algorithms based, for
instance, on the mutual information minimization principle [4].

The necessary conditions for ICA-separability in PNL models are similar to
those of established for linear mixtures (non-Gaussian sources and invertible
mixing matrix) [8]. However, there is an additional requirement: the nonlinear
compensating functions placed at the first stage of the separating system must
also be bijective — otherwise, one may recover independent components that
are still mixed versions of the sources. From this requirement, there arises an
important aspect related to finding nonlinear compensating functions that are
bijective and yet flexible enough to deal with the nonlinear distortions. So far
in the literature, this problem has been mainly tackled by defining constrained
polynomial functions [9] and spline-based approximations [10].

In the present work, we shall investigate the application of artificial neural
networks that are monotonic by construction as compensating functions of a PNL
separating system. Our motivation comes from the existence of monotonic net-
works that exhibit the universal approximation property [11] for bijective func-
tions — in particular, our analysis will focus on the network proposed in [12].
The rest of the paper is organized as follows. In Sect. 2 we provide a mathe-
matical description of the PNL model and a numerical example to illustrate
the importance of having bijective compensating functions. Then, in Sect. 3, we
introduce a PNL/BSS paradigm based on a monotonic network and on an ICA
criterion. In Sect. 4, numerical experiments are performed. Finally, we present
our conclusions in Sect. 5.

2 Post-nonlinear Models

In order to define the BSS problem in the context of PNL mixtures, let us denote
the N sources to be recovered by the vector s(n) = [s1(n) s2(n) . . . sN (n)]T . In
this work, only the determined case (equal number of sources and mixtures) is
considered. In a PNL mixing model, the N mixtures, denoted by x(n) = [x1(n)
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x2(n) . . . xN (n)]T , are given by

x(n) = f (z(n)) = f (As(n)), (1)

where A is the N × N mixing matrix and f(·) = [f1(·) f2(·) . . . fN (·)]T denotes
the set of nonlinear component-wise functions, which are bijective.

In the usual PNL separating system, the estimated sources, denoted by
y(n) = [y1(n) y2(n) . . . yN (n)]T , are given by

y(n) = We(n) = Wg (x(n)), (2)

where W is the separating matrix and g(·) = [g1(·) g2(·) . . . gN (·)]T represents
the compensating functions. The adjustment of W and g(·) by means of ICA
can be formulated as the following optimization problem

min
W,g(·)

J(y(n)), (3)

where J(y(n)) is a cost function that attains its minimum value if, and only if,
the signals comprised in y(n) are statistically independent. Very often, J(y(n))
is defined as the mutual information [13].

The ICA framework presented in (3) is meaningful in BSS when the ICA-
separability property holds, that is, when the minimization of (3) leads to a
solution in which gi ◦ fi (for every i) is linear and W = PDA−1, where P
and D denote a permutation and a diagonal matrix, respectively. In short, ICA-
separability in PNL models requires three conditions: (1) There exists at most
one Gaussian source; (2) A is invertible; and (3) all functions gi(·) must be
bijective. In the sequel, we shall illustrate by means of a numerical example the
risks when the third condition is violated.

2.1 The Requirement of Monotonicity in PNL Models: A Numerical
Example

Let us consider a PNL source separation problem in which N = 2 and both
distortions are given by xi(n) = fi(zi(n)) = 3

√
zi(n). Both sources follow a

uniform distribution between [−1, 1], as shown in Fig. 1(a). BSS is performed
via mutual information minimization, as described in (3). Moreover, we consider
two different configurations of compensating functions gi(·). In the first one, the
following polynomial of degree 4 was defined as compensating function for both
mixtures:

ei(n) = wi1xi(n) + wi2x
2
i (n) + wi3x

3
i (n) + wi4x

4
i (n), (4)

where wij denotes the parametrization of gi(·). In the second configuration, we
adopt the following polynomial compensating functions

ei(n) = wi1xi(n) + wi3x
3
i (n) + wi5x

5
i (n), (5)
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Fig. 1. PNL source separating using polynomial compensating functions.

where wij ≥ 0. Therefore, in the second configuration, the compensating function
is invertible. Note that, in both configurations, the polynomial function can
perfectly compensate fi(·) when wi3 �= 0 and the other parameters are null.

In order to carry out (3), we applied the solution proposed in [9]. The scat-
ter plots of the retrieved sources for both configurations are shown in Fig. 1.
It is worth noticing that when the first configuration (given by (4)) is consid-
ered, the estimated sources do not correspond to the actual ones although their
mutual information is very close to zero. In other words, independent components
are retrieved but they are still mixed versions of the sources. Conversely, when
the bijectivity condition is imposed (second configuration), source separation is
achieved.

3 A PNL Separation Method Based on a Monotonic
Neural Network as Compensating Function

In view of the importance of having bijective compensating functions, we here
propose a PNL separation framework based on a univariate version of the
monotonic neural network introduced in [12]. This neural network is built upon
on minimum and maximum operators. More precisely, given an input xi(n) this
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monotonic network with Ng groups provides an output that is given by the
minimum value among these groups, as follows

ei(n) = min
k

rk(lik(n)), k = 1, . . . , Ng, (6)

where rk(lik(n)) and lik(n) denote the output and the input of the k-th group,
respectively1. The group inputs lik(n) are obtained by a set of Nh linear func-
tions, as follows

lik(n) = max
j

(θk,jxi(n) − βk,j) , j = 1, . . . , Nh. (7)

Therefore, this network is parametrized by θk,j and βk,j and the total number of
parameters is given by 2NgNh. In order to ensure increasing monotonicity, the
following restriction is taken into account: θk,j > 0.

An interesting feature of the adopted network is that it is straightforward to
calculate the input-output derivative. Indeed, for a given input xi(n), the output
is given by

ei(n) = θk̂,ĵxi(n) − βk̂,ĵ , (8)

where k̂ and ĵ denote the indexes that minimizes (6) and maximizes (7), respec-
tively. Therefore, it asserts that

∂ei(n)
∂xi(n)

= θk̂,ĵ . (9)

It is worth noticing that such a network can be seen as a practical way to imple-
ment a piecewise linear function. Moreover, the presence of the maximum and
minimum operators allows one to approximate nonlinear functions that present
both convex and concave regions [12].

3.1 Separation Criterion

Having defined the monotonic network that will be used as compensating func-
tion gi(·), we can now define an ICA separation criterion. As in [4,9], the adjust-
ment of the separating system parameters will be conducted so as to minimize
the mutual information between the retrieved sources, which is given by:

I(y(n)) =
N∑

i=1

H(yi(n)) − H(y(n)), (10)

where H(·) denotes Shannon’s differential entropy [13]. In view of (2), Eq. (10)
can be written as

I(y(n)) =
N∑

i=1

H(yi(n))−H(x(n))−log |detW|−E

{
N∑

i=1

log |g′
i(xi(n))|

}
. (11)

1 We here keep the index i, which is related to the mixtures, and also the sample
index n.
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Given that the entropy term H(x(n)) is constant with respect to the sepa-
rating system and that I(y(n)) ≥ 0, with equality achieved if, and only if, y(n)
are mutually independent, a natural ICA separation framework is given by:

min
W,θk,j ,βk,j

N∑

i=1

H(yi(n)) − log |detW| − E

{
N∑

i=1

log |g′
i(xi(n))|

}
. (12)

In this work, the marginal entropy terms H(yi(n)) are calculated by means of
the estimator based on order statistics presented in [9]. The last term of (12)
can be directly calculated from Eq. (9).

3.2 Optimization Method

In order to minimize (12), we consider the algorithm opt-aiNet [3]. This method
performs a population-based search and is particularly useful to deal with cost
functions that present local optima and/or are not continuous. More information
on the opt-aiNet algorithm and its application to BSS of PNL mixtures can be
found in [9].

4 Numerical Experiments

In order to assess the proposed framework, we conduct a set of numerical
experiments in two distinct scenarios. In both cases, there are N = 2 uni-
formly distributed sources (between −0.5 and 0.5), the mixing matrix is given
by A = [1 0.5; 0.5 1] and the number of samples is 1000. In the first sce-
nario, the nonlinear distortions are given by fi(xi(n)) = tanh(3xi(n)) and,
in the second one, they correspond to the inverse hyperbolic tangent function
fi(xi(n)) = arctan(1.3xi(n)). The adopted monotonic neural network has Ng = 8
groups and Nh = 8 linear functions per group. We also compare the proposed
framework with the PNL method based on monotonic polynomial compensation
functions [9] — we have chosen polynomial functions of degree 7.

In Fig. 2(a) and (d), we show the scatter plots of the retrieved sources (first
scenario) by the proposed method and by the strategy based on monotonic
polynomials. Moreover, we also provide in Fig. 2(b) and (c) the mappings g ◦ f
obtained by the proposed method, whereas Fig. 2(e) and (f) show the mappings
g ◦ f obtained by the polynomial-based solution. The obtained results indicate
that both approaches were able to achieve fair estimations of the sources (the
polynomial-based method performed better in this case).

When the distortions are modeled as inverse hyperbolic tangent functions
(second scenario), the solution based on polynomial compensating does not pro-
vide a good result. This can be seen in Fig. 2(j), which depicts the scatter plot
of the retrieved sources, and in Fig. 2(k) and (l) (mappings gi ◦ fi). Conversely,
the proposed framework achieved again a fair solution (see Fig. 2(g), (h) and
(i)). The bad performance of the polynomial-based PNL method in this scenario
can be attributed to the structural difficulty in inverting an inverse hyperbolic
tangent function through a polynomial function.
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(b) First scenario: g1 ◦ f1
(monotonic network).
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(c) First scenario: g2 ◦ f2
(monotonic network).
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(e) First scenario: g1 ◦ f1
(monotonic polynomial).
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(f) First scenario: g2 ◦ f2
(monotonic polynomial).
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scatter plot of the
retrieved sources (mono-
tonic network).
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(h) Second scenario: g1 ◦
f1 (monotonic network).
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(i) Second scenario: g2 ◦
f2 (monotonic network).
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(k) Second scenario: g1 ◦
f1 (monotonic polyno-
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Fig. 2. Numerical experiments for the two scenarios.
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5 Conclusions

In this work, we introduced a PNL source separation method based on a
monotonic neural network. Our main motivation was to develop a PNL separat-
ing system that was flexible enough to deal with a large class of nonlinear distor-
tions yet respecting the requirement of bijectivity needed for ICA-separability.
Numerical experiments showed that the adopted neural network could indeed
deal with two distinct nonlinear functions. Future works include the derivation
of alternative optimization methods to tackle (12).
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Abstract. We here extend the field of blind (i.e. unsupervised) quan-
tum computation into two directions. On the one hand, we introduce a
new class of blind quantum source separation (BQSS) methods, which
perform quantum/classical data conversion by means of spin component
measurements, followed by classical processing. They differ from our pre-
vious class of classical-processing BQSS methods by using extended types
of measurements (three directions, possibly different for the considered
two spins), which yield a more complete nonlinear mixing model. This
allows us (i) to develop a new disentanglement-based separation proce-
dure, which requires a much lower number of source values for adapta-
tion and (ii) to restore a larger set of sources. On the other hand, these
extended measurements motivate us to introduce a new research field,
namely Blind Quantum Process Tomography, which may be seen both as
the blind extension of its existing non-blind version and as the quantum
extension of classical blind identification of mixing systems.

Keywords: Blind quantum system identification and inversion · Non-
linear mixture · Disentanglement-based separation principle · Unsuper-
vised unmixing · Multidirectional measurements of spin components

1 Prior Work and Problem Statement

Source Separation (SS), also called signal separation, is a generic Information
Processing (IP) problem, where the inverting block of a separating system even-
tually receives signals, which are mixtures of source signals that it does not
know, and aims at recovering these source signals only from their known mix-
tures [2]. In the ideal case, the separating system initially completely knows the
mixing function. On the contrary, in many applications, this system initially
knows which class the mixing function belongs to, but does not know its para-
meter values. This system therefore contains an adapting block which is initially
used to tune the parameter values of the inverting block so that the latter block
achieves the inverse of the mixing function (possiby up to some indeterminacies).
This adapting block thus typically aims at estimating the parameter values of
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 184–192, 2015.
DOI: 10.1007/978-3-319-22482-4 21
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the mixing function. The SS problem is thus closely linked to the Mixture Iden-
tification (MI) problem (see e.g. [1], and [2] pp. 65–66), which may be seen as a
multiple-input multiple-output system identification problem.

The above initial adaptation/identification may be performed in two modes.
In the less demanding, i.e. non-blind, mode, the adapting block receives both a
set of known source values and the associated values of the mixed signals. The
more challenging mode corresponds to the Blind (or unsupervised) Source Sep-
aration (BSS) [2] and associated Blind Mixture Identification (BMI) problems.
In this blind mode, the adapting block only receives values of the mixed signals.
The sources have unknown values, but they are requested to possess some known
properties (e.g. they are mutually statistically independent for ICA methods).

Until recently, all (B)SS and BMI investigations were performed in a “classi-
cal”, i.e. non-quantum, framework. Independently from them, another growing
field within the overall IP domain is Quantum Information Processing (QIP) [7].
QIP is closely related to Quantum Physics (QP). It uses abstract representations
of systems whose behavior is requested to obey the laws of QP. This already made
it possible to develop new and powerful IP methods, which manipulate the states
of so-called quantum bits, or qubits.

In 2007, we bridged the gap between classical (B)SS and QIP/QP, by intro-
ducing a new field, namely Quantum Source (or Signal) Separation (QSS) [3].
The QSS problem consists in restoring the information contained in individual
quantum source signals, eventually only using the mixtures (in SS terms [4]) of
states of these qubits which result from their undesired coupling. We especially
developed two main classes of Blind (i.e. unsupervised) QSS (BQSS) methods
for qubits implemented as spins 1/2. Briefly, in the first class (see e.g. [3–5]), we
first perform a quantum/classical conversion by using monodirectional spin com-
ponent measurements and then process the resulting data with classical means.
In the second class (see e.g. [6]), we only use quantum processing means in the
inverting block, whereas the adapting block preferably performs bidirectional
spin component measurements and then classical processing.

In this paper, we first introduce a new mixing model (Sect. 2), defined by our
already used spin coupling model and an extended set of spin component mea-
surements (along three directions, that may moreover be different for the two
spins). We then present major extensions of the above quantum-source process-
ing methods, into two directions. On the one hand, we introduce a new class of
BQSS methods (Sects. 3 and 4), which use classical processing after the quan-
tum/classical conversion performed by the above measurements, as in our first
class of methods, but which take advantage of this new set of measurements to
achieve additional capabilities. On the other hand, these capabilities motivate us
to explicitly introduce a new research field in Sect. 5, namely Blind (or unsuper-
vised) Quantum Process Tomography (BQPT). This field may be seen both as
the quantum counterpart of classical BMI when applied to separately initialized
qubits as in this paper, and as the blind extension of the field of (non-blind)
QPT, previously developed in the framework of QIP [7]. Conclusions are drawn
from this investigation in Sect. 6.
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2 New Mixing Model

2.1 Heisenberg Quantum Coupling

As stated above, qubits are used instead of classical bits for performing compu-
tations in the field of QIP [7]. In our previous papers (e.g. [3,4]), we first detailed
the required concepts for a single qubit and then presented the type of coupling
between two qubits that is involved in the “mixing model”, in (B)SS terms, of
our investigation. We hereafter summarize the major aspects of that discussion,
which are required in the current paper.

A qubit with index i considered at a given time t0 has a quantum state. If this
state is pure, it belongs to a two-dimensional space Ei and may be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that we hereafter denote
|+ 〉 and |−〉, whereas αi and βi are two complex-valued coefficients constrained
to meet the condition

|αi|2 + |βi|2 = 1 (2)

which expresses that the state |ψi(t0)〉 is normalized.
In the QSS configuration studied in this paper, we first consider a system

composed of two qubits, called “qubit 1” and “qubit 2” hereafter, at a given
time t0. This system has a quantum state. If this state is pure, it belongs to
the four-dimensional space E defined as the tensor product (denoted ⊗) of the
spaces E1 and E2 respectively associated with qubits 1 and 2, i.e. E = E1 ⊗ E2.
The considered basis of E is composed of the four orthonormal vectors |++〉, |+
−〉, | − +〉, | − −〉, where e.g. | + −〉 is an abbreviation for |+〉 ⊗ |−〉, with |+〉
corresponding to qubit 1 and |−〉 corresponding to qubit 2. Any pure state of
the above two-qubit system may then be expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉 + c3(t0)| − +〉 + c4(t0)| − −〉 (3)

and has unit norm. In particular, we study the case when the two qubits are
separately initialized, with states defined by (1) respectively with i = 1 and
i = 2. Then

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (4)
= α1α2| + +〉 + α1β2| + −〉 + β1α2| − +〉 + β1β2| − −〉. (5)

Moreover, we consider the case when the two qubits correspond to two elec-
tron or nuclear spins 1/2, called “spin 1” and “spin 2”, which have undesired
coupling after they have been initialized according to (4). The considered cou-
pling is based on the Heisenberg model with a cylindrical-symmetry axis collinear
to Oz, the direction common to the applied magnetic field and to our first chosen
quantization axis [4]. Due to that coupling, and for negligible coupling with the
environment, the state of the above system at any time t > t0 reads [4]

|ψ(t)〉 = c1(t)| + +〉 + c2(t)| + −〉 + c3(t)| − +〉 + c4(t)| − −〉, (6)
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with

c1(t) = α1α2e
−iω1,1(t−t0) (7)

c2(t) =
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) + (α1β2 − β1α2)e−iω0,0(t−t0)

]
(8)

c3(t) =
1
2

[
(α1β2 + β1α2)e−iω1,0(t−t0) − (α1β2 − β1α2)e−iω0,0(t−t0)

]
(9)

c4(t) = β1β2e
−iω1,−1(t−t0). (10)

where all four (angular) frequencies ωk,l are unknown in practical, i.e. non-ideal,
configurations (see also Sect. 5 for more details about this physical model).

2.2 Extended Quantum/Classical Conversion

Classical-form data may be derived from the above coupled state |ψ(t)〉 by mea-
suring the components of the considered two spins along given directions. In
our first class of QSS methods [3–5], we only used measurements along Oz for
both spins. We explained that this couple of measured spin components has four
possible values only, namely (+1

2 ,+ 1
2 ), (+1

2 ,− 1
2 ), (− 1

2 ,+ 1
2 ) and (− 1

2 ,− 1
2 ) (in

normalized units), with respective probabilities

p1zz = |c1(t)|2, p2zz = |c2(t)|2, p3zz = |c3(t)|2, p4zz = |c4(t)|2. (11)

These probabilities may be estimated by the sample frequencies of the associated
measured values, using the Repeated Write Read (RWR) procedure that we
proposed. This allowed us to derive a nonlinear mixing model, where the mixed
signals are three of these (estimated) probabilities and the sources are the two
moduli |α1| and |α2| and a single combination of the four phases of αi and βi.

In this paper, we extend this nonlinear mixing model by also performing other
types of measurements for |ψ(t)〉 (for additional initializations of the qubits).
More precisely, we first consider the case when one again measures the Oz com-
ponent of spin 1, but now the Ox component of spin 2. QP then tells us that
such measurements again yield the same four possible values as above and that,
in particular, the probabilities of (+1

2 ,+ 1
2 ), and (− 1

2 ,+ 1
2 ) respectively read

p1zx =
1
2
|c1(t) + c2(t)|2 and p3zx =

1
2
|c3(t) + c4(t)|2. (12)

Similarly, the probabilities of the above two values when measuring the Oz and
Oy components respectively of spins 1 and 2 read

p1zy =
1
2
|c1(t) − ic2(t)|2 and p3zy =

1
2
|c3(t) − ic4(t)|2, (13)

and the probabilities for getting the value (+1
2 ,+ 1

2 ), for the two couples of
directions (Ox,Oz) and (Oy,Oz) for spins 1 and 2, are respectively

p1xz =
1
2
|c1(t) + c3(t)|2 and p1yz =

1
2
|c1(t) − ic3(t)|2. (14)
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The output of the mixing stage of the considered QSS configuration consists of
all probabilities in (11)–(14) (more precisely of their estimates derived from our
RWR procedure). It is sent to the input of the inverting block of the separating
system defined in the next section.

3 Inverting Block of Separating System

We hereafter present the five steps of the operation of the classical-processing
inverting block of the proposed separating system, respectively calling “Case 1”
and “Case 2” the ideal and blind (Q)SS configurations defined in Sect. 1.

In both Cases, Step 1 consists in restoring (estimates of: this is not stated
everywhere below) the coefficients cj(t), with j ∈ {1, . . . , 4}, from the (estimates
of) probabilities derived in Sect. 2.2. To this end, we use the polar representation
cj(t) = ρje

iξj of these coefficients. All their moduli ρj are directly derived from
(11). Using (11), (12) and cj(t) = ρje

iξj , it may then be shown that

cos(ξ1 − ξ2) =
2p1zx − p1zz − p2zz

2
√

p1zzp2zz
, cos(ξ3 − ξ4) =

2p3zx − p3zz − p4zz

2
√

p3zzp4zz
. (15)

The sines of the above phase differences may then similarly be derived by using
(13) instead of (12). Finally, using (14) instead, one obtains the cosine and sine
of (ξ1 − ξ3). All differences between the four phases ξj are thus known (modulo
2π). Moreover, a quantum state (here (6)) is only defined up to a phase factor.
One may therefore arbitrarily fix one of the above phases ξj ( e.g. to 0). As an
overall result, we thus know all phases ξj and moduli ρj , i.e. all coefficients cj(t).

Keeping in mind that these restored versions of c1(t) to c4(t) here meet (7)–
(10), we then process them so as to derive successive transformed versions of
this set of four coefficients, which progressively bring us back to the original, or
source, data defined by (1) and (4). The four transformed coefficients obtained
at the output of each processing step n with n = 2 to 4 are denoted as cjn, with
j ∈ {1, . . . , 4}. Step 2 then consists in reducing its input coefficients cj(t) to
expressions which only depend on a single frequency ωk,l. To this end, both in
Cases 1 and 2, we keep c12 = c1(t) and c42 = c4(t), while respectively setting c22
and c32 to the sum and difference of c2(t) and c3(t), moreover rescaled so that
the coefficients cj2 form a unit-norm vector, as in (3) and (6). This yields

c22 =
1√
2
[c2(t) + c3(t)] =

1√
2
(α1β2 + β1α2)e−iω1,0(t−t0) (16)

c32 =
1√
2
[c2(t) − c3(t)] =

1√
2
(α1β2 − β1α2)e−iω0,0(t−t0). (17)

Step 3 then aims at compensating for the phase factors e−iωk,l(t−t0) in the above
cj2. This is achieved by setting cj3 = cj2×eiγj , with j ∈ {1, . . . , 4}, which yields

c13 = α1α2e
iδ1 , c23 =

1√
2
(α1β2 + β1α2)eiδ2 (18)

c33 =
1√
2
(α1β2 − β1α2)eiδ3 , c43 = β1β2e

iδ4 (19)
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with
δj = γj − ωk,l(t − t0). (20)

In Case 2, all parameters γj are adapted as explained in Sect. 4, because all ωk,l

are unknown. In Case 1, all parameters γj are set to the known values ωk,l(t−t0).
All phase factors eiδj thus disappear in (18)–(19). In Step 4, we reduce the above
coefficients to a single product of αi and/or βj parameters in Case 1. To this
end, we use the same approach as in Step 2, i.e. in both Cases we keep c14 = c13,
c44 = c43 and we set

c24 =
1√
2
[c23 + c33], c34 =

1√
2
[c23 − c33]. (21)

In Case 1, this yields

c14 = α1α2, c24 = α1β2, c34 = β1α2, c44 = β1β2. (22)

Step 5 then aims at deriving all source parameters αi and βi (i.e. a larger
set of sources than in our previous classical-processing BQSS methods) from all
coefficients cj4. This is relevant only if these coefficients correspond to a non-
entangled quantum state, i.e. a tensor product such as (4), e.g. as in Case 1.
In the latter case, one computes the moduli of the outputs of this step e.g.
as

√|c14|2 + |c24|2 because (22) and (2) show that this yields |α1| in Case 1.
Moreover, one of the four phases of the parameters αi and βi, say arg(α1), may
be arbitrarily selected. Then combining (22) with the polar expressions of cj4,
αi and βi e.g. yields arg(β1) = arg(α1) + arg(c34) − arg(c14) (modulo 2π). The
calculations for the other source parameters are similar and therefore skipped.

4 Interpretation and Adaptation of the Separating
system

The inverting block of the separating system that we developed in our QSS
method proposed in [6] only uses quantum states and quantum processing means.
It is thus quite different from the inverting block depicted in Sect. 3, which
receives classical-form data (which have quantum properties, however) and
processes them with classical means. Yet, it may be shown that (i) the classical-
form coefficients cj(t) here restored in Step 1 are those of the quantum state
at the input of the inverting block of [6], again up to estimation errors, and
(ii) the quantum processing achieved in that block of [6] is governed by the same
equations as in Steps 2 to 4 above, although they are expressed in a quite differ-
ent way in [6]. Processing Steps 2 to 4 of the block of Sect. 3 may therefore be
considered as a new classical-processing counterpart of the quantum-processing
block of [6] (but they here receive an approximate version of coefficients cj(t)).

To blindly adapt the parameters γj of the inverting block of Sect. 3, we then
propose a procedure which is partly related to the one introduced in [6]. We
here take advantage of the availability of the complex-valued coefficients cj4

in classical form. On the contrary, in [6] their counterpart is only available in
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quantum form, which required us to develop an adaptation criterion based on
related real-valued probabilities. The new adaptation procedure proposed here
consists in tuning all γj so as to enforce the quantum disentanglement condition

c14c44 = c24c34 (23)

for (at least) two (non-redundant [6]) source states (5). QP calculations skipped
here show that condition (23) above implies the probability-based separation
conditions (17) and (24) of [6]. As shown in [6], the latter conditions themselves
entail

δ3 − δ2 = mπ, δ1 + δ4 = 2δ2 + 2kπ, (24)

where m and k are arbitrary integers, and these conditions ensure separability,
so that they here force the coefficients cj4 to become equal to those in (5), up to
some permutation and phase indeterminacies. This approach thus yields a new
classical-processing BQSS method, which only requires a very limited number
of source states for adaptation, by using the disentanglement condition (23). On
the contrary, our previous, statistical, methods related to ICA [5] need hundreds
to thousands of (also repeatedly prepared) source states.

5 Blind Quantum Process Tomography

The considered cylindrical-symmetry Heisenberg quantum coupling model was
initially defined by the corresponding Hamiltonian (see e.g. [4]). We showed that
this yields the coupled state expression in (6)–(10), moreover with

ω1,1 =
1
�

[
GB − Jz

2

]
, ω1,0 =

1
�

[
−Jxy +

Jz

2

]
(25)

ω0,0 =
1
�

[
Jxy +

Jz

2

]
, ω1,−1 =

1
�

[
−GB − Jz

2

]
. (26)

In these expressions, � is the reduced Planck constant and G = gμe, where g
is the principal value of the considered isotropic g tensor and the constant μe

is the Bohr magneton [4]. The value of g may be experimentally determined.
B is the magnitude of the applied magnetic field, which can be known thanks
to measurements. Jxy and Jz are the principal values of the exchange tensor,
which are unknown in practice. The frequencies ωk,l are thus unknown.

QPT, mentioned in Sect. 1, is a generic, therefore complex, procedure for
identifying the behavior of a quantum system by applying known input states
(thus in the non-blind mode) to this system and measuring its corresponding
outputs. We here aim at developing an extension of QPT tailored to the Heisen-
berg Hamiltonian and operating in the blind mode, i.e. with unknown input
states. To this end, we analyze the BMI capabilities of the adaptation procedure
proposed in Sect. 4. Eqs. (24), (20) and (25)–(26) then yield

Jxy =
�

2(t − t0)
(γ3 −γ2 −mπ), Jz =

�

2(t − t0)
(γ2 +γ3 −γ1 −γ4 +2kπ −mπ).

(27)
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The only unknown values of the considered Hamiltonian, namely Jxy and Jz,
may therefore be derived from the values γj provided by the proposed adaptation
procedure for given but unknown source states (5). For BQPT, k and m only
yield sign indeterminacies in the exponentials of the process (6)–(10). Moreover,
they can be set to zero if all other terms of (27) are known to be small enough.

This yields our first reported method for performing complete BQPT (with
the above indeterminacies) with classical processing means. Related BQPT capa-
bilities could however be derived from our previous BQSS methods. First, our
method in [6] here also yields (27), but that BQSS method requires quantum
processing means and it is much more difficult to implement them than classi-
cal ones. Second, our previous classical-processing BQSS methods only estimate
the single parameter of their mixing model, which is different from here because
they only use measurements along one direction. This parameter only yields Jxy.
These BQSS methods then achieve complete BQPT for the isotropic Heisenberg
model (Jxy = Jz) of [3], but only partial BQPT for the general cylindrical-
symmetry Heisenberg model (arbitrary Jxy and Jz) used in [4,5].

6 Conclusion

Our contributions in this paper are twofold. We first proposed a new class of
BQSS methods, by introducing an extended set of spin component measure-
ments, which allowed us to restore an estimate of the entangled state |ψ(t)〉
and to develop corresponding classical-processing inverting and adapting blocks
of the separating system. We then explicitly introduced a new research field,
namely Blind Quantum Process Tomography (BQPT), as the extension of its
existing non-blind version. Although not detailed in our previous papers, BQPT
could be obtained as a spin-off of our corresponding BQSS methods, but with
limitations (only partial identification or need for quantum processing means),
which are here avoided. We plan to further develop this new class of BQSS and
BQPT methods and to test their performance with simulated data.
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Abstract. While Blind Source Separation (BSS) for linear mixtures has
been well studied, the problem for nonlinear mixtures is still thought not
to have a general solution. Each of the techniques proposed for solving
BSS in nonlinear mixtures works mainly on specific models and cannot
be generalized for many other realistic applications. Our approach in
this paper is quite different and targets the general form of the problem.
In this advance, we transform the nonlinear problem to a time-variant
linear mixtures of the source derivatives.

The proposed algorithm is based on separating the derivatives of the
sources by a modified novel technique that has been developed and spe-
cialized for the problem, which is followed by an integral operator for
reconstructing the sources. Our simulations show that this method sepa-
rates the nonlinearly mixed sources with outstanding performance; how-
ever, there are still a few more steps to be taken to get to a comprehensive
solution which are mentioned in the discussion.

Keywords: Blind Source Separation · Nonlinear mixtures · Indepen-
dent Component Analysis

1 Introduction

Blind Source Separation (BSS) is the problem of extracting the source signals
that have been mixed together in a number of observations without any informa-
tion about the mixture model or the sources [7]. In the simplest form of the prob-
lem, the number of sources and the observations are the same, and the sources
are assumed to be statistically independent. The problem is formulated as

x(t) = f(s(t)), (1)

where x(t) = [x1(t), ..., xn(t)]T and s(t) = [s1(t), ..., sn(t)]T are the observa-
tion and source vectors, respectively (and n is the number of sources which is
considered to be equal to the number of observations). The problem has been
intensively studied since 1985. The first idea for performing the separation was
trying to make independent signals combining the observations; hence named
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 193–200, 2015.
DOI: 10.1007/978-3-319-22482-4 22
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Independent Component Analysis (ICA) [6,10]. It leaded to many noticeable
achievements when the mixing model is linear, and several algorithms have been
proposed such as INFOMAX, [2], JADE [5], Normalized EASI. [4], SOBI. [3],
and FastICA [16].

Many practical applications for BSS have been considered by now, which is
still being diversified. Separating the signals in a Multiple Input Multiple Output
(MIMO) situation, separating EEG signals from different parts of the brain,
discovering the hidden parameters affecting economical indexes, discriminating
different layers of the earth from the reflections of the emitted electromagnetic
wave, etc. are a few samples of the applications of BSS in real world [12].

However, extending theses accomplishments to the nonlinear case is not
straightforward. As indicated in [11], ICA (i.e. source independence) is not suf-
ficient for separating sources which are nonlinearly mixed.

But there are many realistic applications for which the linear BSS model
could not be applied; e.g. smart chemical sensor arrays [8], hyperspectral imaging
[9], and removing show-through in scanned documents [17]. Therefore, studies on
this issue were focused on specific applications with restricted mixing models.
Post Nonlinear composition (PNL) [18], Convolutive Post Nonlinear mixture
[1], Bi-Linear model [17], conformal mappings [15], and mappings that can be
transformed to linear mixtures via a nonlinear function [13] are some of the
objectives that have been attained in this regard. Moreover, the problem has
been addressed in [14] using the velocity state-space of the observations for
continuous-time sources more recently.

Our approach to this problem is quite distinct. In this work, we add a few
assumptions that should be met in addition to the conventional ones which are
discussed in the following section. However, the conditions are not restrictive in
practical applications and, so, the approach is more general.

2 The Main Idea

Our approach in this paper is based on the assumption that if the mixed sources
meet a few conditions, they can be blindly separated utilizing signal derivatives.
The assumptions consist of:

1. The derivatives of the sources need to meet the separability conditions of the
conventional BSS problem for linear mixtures. Especially, they are statisti-
cally independent.

2. The sources are supposed to be colored; they need to have temporal correla-
tion.

3. The nonlinear mixing model is required to be an invertible mapping.
4. The nonlinear mixing model is time-invariant.

Apparently, these conditions are met when the sources are not originally identi-
cal. In other words, if the sources are mutually independent in terms of stochastic
processes, their derivatives are mutually independent as well (which guarantees
meeting the required conditions).



Blind Source Separation in Nonlinear Mixture for Colored Sources 195

The proposed method is based on the fact that the derivatives of the sources
are mixed linearly even though the mixture model is nonlinear in general. Let
s1(t) to sn(t) and x1(t) to xn(t) represent the source signals and the observations
respectively. The above assumption can be written as

x(t) = f(s(t)) ⇒ ∂x
∂t

= J(s(t))
∂s
∂t

(2)

where f and J correspond the nonlinear mixing function and its Jacobian matrix
respectively. The key point here is that, as the above equation shows, although
the signals are mixed nonlinearly, their derivatives are mixed linearly. Accord-
ingly, the main steps of the separating approach are summarized below:

Algorithm 1: Adaptive Algorithm for Time-Variant mixtures (AATV)

1. Compute the derivatives of the observations;
2. Consider them as the inputs for a linear BSS algorithm for linear mixtures;
3. Separate the derivatives of the observations to get the derivatives of the

sources;
4. The sources are supposed to be the integral of the results.

However, except the sensitivity of the proposed method to the noise due to the
derivative computation which is not addressed in the current work, there are two
main challenges that highly affect the performance of the mentioned algorithm.
The first one is that the mixing matrix (Jacobian) is time-variant and changes
over the time. Therefore the existing methods for BSS in linear mixtures, which
usually assume that the mixing matrix is constant, must be modified before
being used for this problem. It is worth noting that the alterations of the mixing
matrix depend on both the nonlinear mixing model, and the dynamics of the
sources. However if the nonlinear mixing function changes slowly with respect
to the sources (at the state of saturation, as an extreme example), the variations
of the sources may lead to relatively small changes in the mixing matrix.

The second issue is the cumulative error in the integral of the separated
signals because of the slow convergence of the BSS procedure. It should be noted
that because the mixing matrix is time variant, it is not possible to run a batch
algorithm for separating the derivatives that would prevent the convergence error
in the signals: an adaptive (and fast) algorithm is mandatory.

To overcome the first challenge, we use an adaptive and iterative algorithm,
which tracks the separating matrix in each iteration. In this context, the tra-
ditional convergence never happens, since the mixing model may vary over the
time even though the output signals become completely separated at a moment.

Utilizing an adaptive algorithm causes the slow convergence and hence the
error accumulation (the second mentioned concern). As it is stated before, even
converging to the exact separating matrix at a point does not mean that it will
properly work for the remained samples of the signals; for the reason that the
mixing matrix (Jacobian) may alter rapidly, which should be followed by the
adaptive algorithm again.
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But the Jacobian matrix is not inherently time-variant. Actually, due to
the assumption of mixing system to be time-invariant, its Jacobian is a time-
invariant function of the source as well. In fact, considering the linear BSS model
resulted by derivative computation, it is seen a time-variant mixing matrix;
because the Jacobian matrix is calculated at different points (of the varying
sources). Thus, trying to find the nonlinear nature of the separating matrix in
the BSS procedure, we face a time-invariant problem, which may be solved by a
batch algorithm.

ẋ = J(s)ṡ ←→ ∂x
∂t

= J(s(t))
∂s
∂t

(3)

In other words, we propose to estimate the nonlinear mixing model which
exists behind the linear time-variant matrix. This idea is similar to the one used
in batch algorithms for linear mixtures, where the estimated mixing model is
adjusted after data convergence, and is then applied to the whole data. The
only difference here is that the system is nonlinear and, so, nonlinear modeling
is used for the function to be extracted.

As a consequence, the BSS procedure is split into two phases. At the first
phase, an adaptive algorithm is run on the observation derivatives and the sep-
arated signals are constructed. Then we extract the nonlinear time-invariant
model from the result. To do this, the data after convergence (of the algorithm)
is used for nonlinear modeling of the mapping. The obtained model is then
applied to the data as the second run to compensate the slow convergence error.

Finally, the separating algorithm for the blind separation of nonlinearly
mixed sources can be summarized as follows:

Algorithm 2: Adaptive Algorithm and Nonlinear Estimation (AANE)

1. Compute the derivatives of the observations;
2. Consider them as the inputs for an adaptive and iterative linear BSS algo-

rithm;
3. Estimate (e.g. by spline interpolation) the time-invariant nonlinear model

(nonlinear modeling) of the time-variant linear separating system derived
from the previous step (by utilizing only the data after convergence);

4. Apply the obtained model to the whole data (observations) again in order to
separate the signals correctly and get the derivatives of the sources;

5. The sources are the integral of the results.

3 Simulation Results

Simulating the proposed method, we have chosen a simple two-input two-output
system with the integrals of a saw-tooth (named s1(t)) and a sinusoid (named
s2(t)) signal as the input. The mixing model (4) is the same as the counter
example [1], which was thought not to be separable at all.

[
x1

x2

]
=

[
cos α − sin α
sin α cos α

] [
s1
s2

]
where α = 0.1 ×

√
s21 + s22. (4)
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Fig. 1. Nonlinear mapping graph

Figure 1 shows the nonlinear mapping of the mixing model (it can be shown
that the model is invertible).

From the given model, calculating the Jacobian matrix is straightforward.

J =

[
∂x1
∂s1

∂x1
∂s2

∂x2
∂s1

∂x2
∂s2

]
=

[
cos α − sin α
sin α cos α

] [
1 − s2

∂α
∂s1

−s2
∂α
∂s2

s1
∂α
∂s1

1 + s1
∂α
∂s2

]
(5)

In our simulation, Normalized-EASI [4] has been used as the linear BSS algo-
rithm. This method is adaptive, iterative, and hence, suitable for the conditions
of the problem. In addition, its equivariancy causes that its performance remains
the same with respect to how much the sources are mixed together.

Performing the nonlinear modeling of the time-variant mixing model, we
have used the down-sampled version (for increasing the speed of calculations)
of the second half of the result (to make sure that we are using the outputs
after convergence) after running Normalized-EASI on the data, to be modeled
through a smoothing spline manner.

Obviously, it is not necessary to find the nonlinear mixing system for per-
forming the proposed algorithm; it is sufficient to model the separating func-
tion instead. The models for the two outputs of the considered simulation are
depicted in Fig. 2. In this figure, the blue circles are the converged samples of
the elements of the separating matrix (which are resulted from the Normalized-
EASI algorithm), and the plotted surfaces are the nonlinear model fitted to the
data using smoothing spline. It should be also noted that we may directly model
the nonlinear mapping of the two output signals as a function of the inputs (the
derivatives of the observations) as well.

Finally, the obtained model is then applied to the whole data to adjust
the result and is plotted for both sources in Fig. 3. This figure compares the
original sources with the reconstructed ones by performing both the algorithm
1: AATV (signal named “AATV Result”) and the algorithm 2: AANE (sig-
nal named “AANE Result”). In addition, Table 1 shows the normalized mean
squared error for both results of the both algorithms.

It is also shown in Fig. 3 that Normalized-EASI is a fast adaptive algorithm
and overcomes the first challenge (the mixing matrix changes over the time)
pointed out in the previous section. Nevertheless, the second issue (slow conver-
gence and the cumulative error) dramatically damages the result if not amended
by the nonlinear modeling.
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Fig. 2. Nonlinear modeling result of the elements of the separating matrix

Table 1. NMSE for AATV and AANE

AATV AANE

NMSE for the Source 1 1.6083 0.0032

NMSE for the Source 2 0.4875 0.0244

4 Discussion

In this paper, a new method is proposed for BSS in nonlinear mixtures based on
separating the derivatives of the signals. Our simulations show that the proposed
algorithm works well and can be considered as a simple approach to a new class
of techniques in this field.

This approach targets a more general class of practical BSS problems in
nonlinear mixtures than the existing ones and is not limited to a specific mixing
model. However, there are a few concerns that should be thought about in this
regard.

Firstly, the sources are supposed to be colored in the BSS problem (see the
assumptions of the algorithm). This supposition is to make the derivatives suited
for being separated by the adaptive BSS method for linear mixtures. It should
be such that the adaptive algorithm can follow the variations. Solving the BSS
for nonlinear mixtures through the proposed framework, we need that the BSS
for the time-varying linear mixtures works properly.
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Fig. 3. Final extracted signals in comparison with the sources

Secondly, we have not considered the noise in the proposed algorithm. As we
know, taking the derivatives amplifies the noise, and hence, makes the method
more sensitive to the noise. At last, we should note that there exist the traditional
ambiguities of BSS in linear mixtures (scaling and permutation) in the proposed
method as well. However, these ambiguities do not differ for different samples
of the signals (because in the proposed method, the unique extracted nonlinear
model is applied on the whole data).
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Abstract. The construction of a meaningful metric between acoustic
responses which respects the source locations, is addressed. By com-
paring three alternative distance measures, we verify the existence of
the acoustic manifold and give an insight into its nonlinear structure.
From such a geometric view point, we demonstrate the limitations of
linear approaches to infer physical adjacencies. Instead, we introduce
the diffusion framework, which combines local and global processing in
order to find an intrinsic nonlinear embedding of the data on a low-
dimensional manifold. We present the diffusion distance which is related
to the geodesic distance on the manifold. In particular, simulation results
demonstrate the ability of the diffusion distance to organize the samples
according to the source direction of arrival (DOA).

1 Introduction

Speech processing in reverberant environments facilitates a very complex relation
between the emitted speech and the signal received by the microphones. Many
algorithms, such as beamformers and localizers, try to distinguish between sig-
nals based on their propagation vector. In some scenarios, e.g. meeting rooms or
cars, it can be assumed that the source position is confined to a predefined area.
It can be reasonable to assume that representative samples from the region of the
interest can be measured in advance. Due to reverberation, common practice is to
represent the acoustic responses using a large number of variables, correspond-
ing to the vast amount of reflections from the different surfaces characterizing
the enclosure. In fact, the acoustic responses are only influenced by a small set of
parameters related to the physical characteristics of the environment, such as: the
enclosure dimensions and shape, the surfaces’ materials and the positions of the
microphones and the source. As a result, the high-dimensional acoustic responses
are not uniformly scattered in their original space, but are rather concentrated on
a manifold of much lower dimension. We therefore investigate the manifold of the
acoustic responses and examine the proper distance between them.

In the context of multi-channel echo cancellation, Fozunbal et al. [6] presented
a system identification algorithm by learning a low dimensional linear model of
the room. Talmon and Gannot [10] proposed a different approach for supervised
system identification, utilized for generalized sidelobe canceller (GSC) beam-
former, based on the diffusion maps concept [2]. A similar approach is discussed
in this paper.
c© Springer International Publishing Switzerland 2015
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The manifold perspective was also examined in light of the source localization
problem. The existence of a binaural manifold was discussed by Deleforge et al.
in [3–5] and a localization algorithm was presented. Another approach for super-
vised source localization based on the diffusion framework was introduced in [8].

In the current study, we show how to construct an informative metric between
acoustic responses which respects the position of the source in the enclosure. For
simplicity, the demonstration will focus only on the DOA of the source. We are
interested in a static configuration, in which the properties of the enclosure and
the position of the microphones remain fixed. In such an acoustic environment,
the only varying degree of freedom is the source location. This is the latent vari-
able which distinguishes between different acoustic responses. Accordingly, we
will embed the acoustic responses in an intrinsic low-dimensional space repre-
senting the manifold and show that this embedding corresponds with the position
of the source.

2 Problem Formulation

We consider a single source generating an unknown speech signal s(n), which is
received by a pair of microphones. Both the speaker and the microphones are
located in an enclosure, e.g., a conference room or a car interior, with mod-
erate reverberation time. The received signals, denoted by x(n) and y(n), are
contaminated by additive stationary noise sources and are given by:

x(n) = a1(n) ∗ s(n) + u1(n)
y(n) = a2(n) ∗ s(n) + u2(n) (1)

where n is the time index, ai(n), i = {1, 2} are the corresponding acoustic
impulse response (AIRs) relating the source and each of the microphones, and
ui(n), i = {1, 2} are uncorrelated white Gaussian noise (WGN) signals. Each
of the AIRs is composed of the direct path between the source and the micro-
phone, as well as reflections from the surfaces characterizing the enclosure. Con-
sequently, even in moderate reverberation, the AIR is typically modelled as a
long finite impulse response (FIR) filter.

Common practice is to define an appropriate feature vector that faithfully
represents the characteristics of the acoustic path and is invariant to the other
factors, i.e., the stationary noise and the varying speech signals. An equivalent
representation of (1) is given by:

y(n) = h(n) ∗ x(n) + v(n)
v(n) = u2(n) − h(n) ∗ u1(n) (2)

where h(n) is the relative impulse response between the microphones with respect
to the source, satisfying a2(n) = h(n)∗a1(n). In (2), the relative impulse response
represents the system relating the measured signal x(n) as an input and the
measured signal y(n) as an output.
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For convenience, we represent (2) in the frequency domain. Assuming high
signal to noise ratio (SNR) conditions, the Fourier transform of the relative
impulse response, termed the relative transfer function (RTF), is obtained by:

H(k) =
Syx(k)
Sxx(k)

=
Sss(k)A2(k)A∗

1(k)
Sss(k)|A1(k)|2 =

A2(k)
A1(k)

k = 0, . . . , D − 1 (3)

where H(k) is the RTF, Syx(k) is the cross power spectral density (CPSD)
between y(n) and x(n), Sxx(k) is the power spectral density (PSD) of x(n) and
Sss(k) is the PSD of the source. A1(k) and A2(k) are the acoustic transfer func-
tions (ATFs) of the respective AIRs, and k denotes a discrete frequency index.
Since A1(k) and A2(k) are unavailable, we use the estimated RTF Ĥ(k) ≡ Ŝyx(k)

Ŝxx(k)
,

based on the estimated PSD and CPSD. The choice of the value of D should bal-
ance the tradeoff between correspondence to the relative impulse response length
(large value) and latency considerations (small value). Accordingly, we define the
feature vector h = [Ĥ(0), . . . , Ĥ(D−1)]T as the concatenation of estimated RTF
values in all frequency bins. In practice, we discard high frequencies in which the
ratio in (3) is meaningless due to the lack of speech components. When noise
influence cannot be neglected, we use, instead, an RTF estimator based on the
non-stationarity of the speech signal [7].

3 Manifold-Based Distance Measures

Three alternative distance measures for quantifying the affinity between differ-
ent RTFs, are addressed. We start with linear distance measures, namely, the
Euclidean distance and the distance derived by principal component analysis
(PCA) mapping. Next, we describe the concept of diffusion maps and present
the diffusion distance [2]. For deriving the PCA-based distance and the diffusion
distance, we assume the availability of a considerable amount of representative
RTFs from various locations in the region of interest in the enclosure. The geo-
metric interpretation of each of the distance measures is examined, and their
hidden assumptions are highlighted and discussed.

3.1 Linear Distance Measures

The Euclidean distance between RTFs is denoted by:

DEuc(hi,hj) = ‖hi − hj‖. (4)

The Euclidean distance does not assume an existence of a manifold and compares
two RTFs in their original space. In particular, the Euclidean distance is equal to
the geodesic distance when the manifold is flat, thus, inexplicitly, the Euclidean
distance respects flat manifolds. Therefore, it is a good affinity measure only
when the RTFs are uniformly scattered all over the space, or when they lie on a
flat manifold.
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The second distance we consider is based on PCA, which is the most common
method to date for linear dimensionality reduction. First, the empirical mean
and covariance matrix of the data are computed by:

μ =
1
N

N∑

i=1

hi, R =
1
N

N∑

i=1

(hi − μ)(hi − μ)T (5)

where N is the number of available representative RTFs in the region of inter-
est. Then, by applying eigenvalue decomposition to the covariance matrix R, we
obtain a set of D eigenvectors and eigenvalues, denoted by {vi, λi}D−1

i=0 . The d
eigenvectors, corresponding to the d largest eigenvalues, are viewed as the princi-
pal components of the data and form a new low-dimensional coordinate system.
Finally, the RTFs are linearly projected onto the new coordinates/principal com-
ponents:

ν (hi) = [v1, . . .vd]T (hi − μ) . (6)

The corresponding distance is given by the Euclidean distance between the pro-
jections:

DPCA(hi,hj) = ‖ν(hi) − ν(hj)‖. (7)

PCA is essentially a global approach; the principal directions of the entire set
of RTFs are extracted from the covariance matrix. Then, the RTFs are linearly
projected onto these directions, assuming that the manifold is linear/flat. As
a result, the algorithm filters undesired samples’ perturbations with respect to
the manifold, which are caused by artifacts, such as: noise, estimation error and
non-uniform sampling. Assuming that the manifold is indeed flat, PCA performs
better than the Euclidean distance, due to this element of filtering.

3.2 Diffusion Distance

The concept of diffusion maps was introduced by Coifman and Lafon [2] as a
general method for data-driven nonlinear dimensionality reduction. The diffusion
framework consists of the following steps [9].

First, the affinity between RTFs is measured based on a pairwise weight func-
tion k(·, ·). Typically, the affinity is defined by a Gaussian function:

k(hi,hj) = exp
{

−‖hi − hj‖2

ε

}
. (8)

Such an affinity preserves locality since it defines local neighbourhoods according
to the value of the scale parameter ε: for ‖hi − hj‖ � ε, k(hi,hj) → 1, and for
‖hi − hj‖ � ε, k(hi,hj) → 0.

Second, {hi} are interpreted as nodes in a Graph. A Markov process can be
defined on the graph via a construction of the transition matrix P = D−1W,
where W is the Gram matrix defined by Wij = k(hi,hj), and D is a diagonal
matrix whose elements are the row sums of W. Accordingly, p(hi,hj) ≡ Pij
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represents the probability of transition in a single Markov step from node hi to
node hj .

In the next step, a nonlinear mapping of the RTFs into a new low-dimensional
Euclidean space is built according to:

Φd : hi �→
[
ϕ

(i)
1 , . . . ,ϕ

(i)
d

]T
(9)

where {ϕj}dj=1 are the d-principal right-singular vectors of the transition matrix

P, and ϕ
(i)
k denotes the ith entry of the vector ϕk. Note that ϕ0 is ignored since

it is an all-ones column vector.
The diffusion distance, which describes the relationships between pairs of sam-

ples in terms of their graph connectivity, is defined by:

DDiff(hi,hj) = ‖p (hi, ·) − p (hj , ·) ‖φ0
=

N∑

r=1

(p (hi,hr) − p (hj ,hr))
2
/φ

(r)
0

(10)

where φ0 is the most dominant left-singular vector of P. The diffusion distance
reflects the flow between two RTFs on the manifold, which is related to the
geodesic distance on the manifold. It can be shown that the diffusion distance
is equal to the Euclidean distance in the diffusion maps space when using all
N eigenvectors, and can be well approximated by only the first few d eigenvec-
tors [2], i.e.,

DDiff(hi,hj) ∼= ‖Φd(hi) − Φd(hj)‖. (11)

Though both diffusion maps and PCA construct a low-dimensional represen-
tation of the data, the two algorithms differ by the following fundamental dis-
tinctions. First, in PCA the data is globally viewed as of one piece drawn from
some probability distribution and only the second order statistics is regarded. In
contrast, diffusion maps combines local connections via the kernel construction
and global processing via the spectral decomposition. Second, in PCA the hidden
assumption is that the manifold is flat, thus linear projections are appropriate.
On the other hand, diffusion maps is nonlinear and the data is embedded in new
coordinates rather than linearly projected.

4 Analysis of the Manifold

In this section we examine the ability of each of the distance measurements,
discussed in this paper, to organize the RTFs according to the corresponding
DOA. For this purpose, we used the following setup. A source located in a
6 × 6.2 × 3 m room, is picked up by two microphones located in (3, 3, 1) m and
(3.2, 3, 1) m, respectively. The position of the source is confined to an arc of
10◦ ÷ 60◦ at 2 m distance with respect to the first microphone. The manifold
analysis is carried out using a set of N = 400 samples, generated uniformly in the
specified range. For each location, we simulate a unique 3 s speech signal, sampled
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at 16 kHz. The received signals are obtained by convolving the clean speech
signal with the corresponding AIR, simulated based on the image method [1],
and contaminated by a WGN with 20 dB SNR. For each source location, the
CPSD and the PSD are estimated with Welch’s method with 0.128 s windows
and 75% overlap and are utilized for estimating the RTF in (3) for D = 2048
frequency bins.

Both PCA and the diffusion map procedures were applied to the data. For
computing the PCA-based distance, we used the projections on the d = 10
eigenvectors associated with the 10 largest eigenvalues (d was chosen empirically
to obtain maximal range of monotonic behaviour). For the diffusion distance,
only the first element in the mapping (d = 1) was considered. This choice will be
justified in the sequel. All the distance measures were averaged over 50 rotations
of the constellation described above with respect to the first microphone.

Figure 1(a) depicts the average Euclidean distance between each of the RTFs
and a reference RTF corresponding to 10◦, as a function of the angle, for three dif-
ferent reverberation times: 150 ms, 300 ms and 500 ms. We observe a monotonic
behavior of the Euclidean distance with respect to the angle, which is confined
to a certain region that becomes smaller as the reverberation time increases.
Consequently, we conclude that the Euclidean distance is meaningful for small
arcs, whose size is determined by the amount of reverberation. This implies that,
in general, the Euclidean distance is not a good distance measure between RTFs,
however, it can be utilized in the Gaussian kernel for diffusion maps, which takes
into account only nearby RTFs through ε.

Figure 1(b) depicts the same illustration as Fig. 1(a) for the PCA-based dis-
tance. We observe similar trends with respect to the reverberation time compared
to that inspected by the Euclidean distance. Here as well, the monotonicity of
the distance with respect to the angle is maintained only in a limited region.
However, this region is larger than the one exhibited by the Euclidean distance.

It follows that both the Euclidean distance and the PCA-based distance are
not appropriate for measuring angles’ proximity. The reason is that they both

Fig. 1. Averages of the Euclidean distance (a), the PCA-based distance (b) and the
diffusion distance (ε ≈ 50) (c) between each of the RTFs and the RTF corresponding
to 10◦, as functions of the angle.
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rely on the assumption that the manifold is flat. However, monotonicity is pre-
served only for local environments indicating that the manifold is only locally
linear, capturing its tangent plane, but generally, has a nonlinear structure.
From the fact that locality is preserved for smaller regions when reverberation
increases, we conclude that the complexity and nonlinearity of the manifold goes
hand in hand with the amount of reverberation.

We now turn to the diffusion distance. The kernel scale ε should be adjusted
to the distance at which monotonicity is maintained by the Euclidean distance,
and should ignore longer distances. In Fig. 1(c) we examine the diffusion dis-
tance. It can be seen that for almost the entire range, the diffusion distance
is monotonic with respect to the angle, indicating that it is an appropriate dis-
tance measure in terms of the source DOA. Moreover, by comparing the distance
measures in Fig. 1(a)–(c), we observe that the diffusion distance is almost invari-
ant with respect to the reverberation time, whereas the other distance measures
significantly vary with the amount of reverberation.

Fig. 2. (a) Single-element diffusion mapping Φ1(·) for T60 = 300 ms. (b) The three
distance measures (normalized to the same scale) between each of the RTFs and the
RTF at 10◦, as a function of the angle for T60 = 300 ms. The dashed lines show the
boundary angles until which monotonicity is preserved.

Further insight into the mapping itself is gained by plotting the single-element
mapping Φ1(·), as depicted in Fig. 2(a). We observe that the mapping corre-
sponds well with the angle up to a monotonic distortion. Thus, the diffusion
mapping successfully reveals the latent variable, namely, the position of the
source. The almost perfect matching between the first element of the mapping
and the corresponding position justifies the use of d = 1 for estimating the
diffusion distance.

In practice we will be interested in a single scenario rather than in the average
behaviour. Figure 2(b) compares between the range of monotonicity for each of
the distance measures, for a single arbitrary scenario with moderate reverbera-
tion time of 300 ms. We observe that the monotonic behaviour is approximately
maintained along Δ = 4◦ for the Euclidean distance, and along Δ = 6◦ for the
PCA-based distance. The diffusion distance is monotonic for almost the entire
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range of Δ = 50◦. This confirms our previous conjecture that the diffusion dis-
tance is advantageous in measuring the physical position of the source.

5 Conclusions

In this paper we strengthen the claim on the existence of a nonlinear acoustic
manifold, whose complexity is influenced by the amount of reverberation. We
demonstrate the shortcomings of both the Euclidean distance and the PCA-
based distance and their inability to measure the real physical distance. Instead,
we propose to use the diffusion distance derived under the diffusion framework,
which measures the distance between samples with respect to the manifold.
Simulation results show that the diffusion distance properly arranges the RTFs
according to the corresponding DOA.

This research lays the foundations for robust source localization algorithms
based on a data-driven manifold. Moreover, the existence of an acoustic manifold
paves the way for a better understanding of the acoustic environment, and will
hopefully lead to simplified and improved acoustic models.
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Abstract. Dictionary design is an important issue in sparse represen-
tations. As compared with pre-defined dictionaries, dictionaries learned
from training signals may provide a better fit to the signals of interest.
Existing dictionary learning algorithms have focussed overwhelmingly on
standard matrix (i.e. with scalar elements), and little attention has been
paid to polynomial matrix, despite its widespread use for describing con-
volutive signals and for modelling acoustic channels in both room and
underwater acoustics. In this paper, we present a method for polynomial
matrix based dictionary learning by extending the widely used K-SVD
algorithm to the polynomial matrix case. The atoms in the learned dic-
tionary form the basic building components for the impulse responses.
Through the control of the sparsity in the coding stage, the proposed
method can be used for denoising of acoustic impulse responses, as
demonstrated by simulations for both noiseless and noisy data.

Keywords: Dictionary learning · Polynomial matrix · Impulse
responses

1 Introduction

Sparse representation has drawn intensive research interest for more than a
decade. It aims to represent a signal with a linear combination of a small number
of atoms chosen from an overcomplete dictionary in which the total number of
atoms is greater than the dimension of the signal atoms [5]. The dictionary can be
pre-defined using a mathematical equation. Alternatively, it can also be adapted
from training data with a machine learning algorithm, leading to a category of
algorithms called dictionary learning.

Several algorithms have been proposed for dictionary learning, such as the
MOD, K-SVD and SimCO algorithms [1,3]. These algorithms have shown promis-
ing results in a number of tasks (e.g. denoising, super-resolution, and source sepa-
ration) for a variety of natural signals, including acoustic and image data. In some
practical applications, however, these algorithms cannot be directly applied since
the signals that need to be dealt with may contain time delays. For example, in
c© Springer International Publishing Switzerland 2015
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acoustic modelling, the propagation channels between sources and microphones
(or hydrophones) are often represented as acoustic impulse responses, which are
usually described by polynomial matrix (with time delays) rather than a stan-
dard matrix with scalar elements. Polynomial matrices have been widely used in
acoustic and communication channel modelling [7], e.g. for convolutive mixing
and unmixing. Each element in a polynomial matrix can be represented as a finite
impulse response (FIR) filter, e.g. for describing the input-output relationship [6].

In this paper, we develop a polynomial dictionary learning technique based
on K-SVD algorithm. More specifically, we extend the K-SVD algorithm [1] for
polynomial matrix based sparse representation model. Each atom in the learned
dictionary is a polynomial represented as a FIR filter. All the atoms in the dictio-
nary provides an overall description of the acoustic environment from which the
acoustic impulse responses are used to train the dictionary. Such a dictionary has
potential applications in denoising, dereverberation/deconvolution, and channel
shortening of acoustic impulse responses, as partly demonstrated by simulations.

The remainder of the paper is organized as follows: Sect. 2 gives a brief review
of the background of conventional dictionary learning and polynomial matrix
decomposition. Section 3 presents the proposed polynomial dictionary learning
method in detail. Section 4 shows the simulations and results. Section 5 concludes
this paper.

2 Background

2.1 Conventional Dictionary Learning

Given a signal y ∈ R
n, the sparse representation of y can be expressed as

y = Dx (1)

where D ∈ R
n×K (n � K) is an overcomplete dictionary containing K atoms,

{dj}K
j=1 ∈ R

n, and x ∈ R
K is the sparse coefficient vector for representing y.

Two problems are often studied, namely, sparse coding and dictionary learning.
Sparse coding aims to estimate x, given y and D, subject to the constraint that
x is sparse, i.e. the number of non-zero elements measured by l0 norm is below
a pre-defined threshold (or relaxed by the l1 norm of x). In dictionary learning,
the aim is to train a dictionary D based on a set of signals {yi}N

i=1 which form
a matrix Y ∈ R

n×N , subject to the constraint that sparse coding coefficient
matrix X is sparse. Here we focus on the dictionary learning problem.

2.2 Polynomial Matrix

A polynomial matrix is a matrix whose elements are polynomials. A p × q poly-
nomial matrix A(z ) can be expressed as

A(z) =
L−1∑

�=0

A(�)z−� =

⎡

⎢⎢⎢⎢⎣

a11(z) a12(z) · · · a1q(z)

a21(z)
. . .

...
...

. . .
...

ap1(z) · · · · · · apq(z)

⎤

⎥⎥⎥⎥⎦
(2)



A Polynomial Dictionary Learning Method 213

where A(�) ∈ C
p×q is the coefficient matrix of z−�, which denotes the impulse

response at lag �, and L is the length of impulse response. We use the coefficient
of the polynomial to express the magnitude of the impulse responses. The F -
norm of the polynomial matrix is defined as

‖A(z)‖F =

√√√√
p∑

i=1

q∑

j=1

L−1∑

�=0

|aij(�)|2 (3)

Polynomial matrices have been widely used for acoustic impulse response
modelling to describe the multi-path channel impulses propagating from the
sources to the sensors. There are other forms of polynomial matrix decompo-
sition techniques such as polynomial eigen-value or singular-value decomposi-
tions [4]. In this paper, we develop a polynomial dictionary learning algorithm
by extending the conventional dictionary learning algorithm to the polynomial
matrix case, as detailed next.

3 Polynomial Dictionary Learning

The conventional dictionary learning model (1) can be extended to the polyno-
mial case as

Y(z) = D(z)X (4)

where D(z) ∈ C
n×K is an overcomplete polynomial dictionary matrix which

contains polynomial atoms, Y(z) ∈ C
n×N is the “signals” to be represented,

which can be an impulse response matrix, and X ∈ R
K×N is the sparse matrix

which contains the representation coefficients of Y(z).
Suppose the length of the impulse response in Y(z) is L, according to Eq. (2),

model (4) can be represented as

L−1∑

�=0

Y(�)z−� =
L−1∑

�=0

D(�)z−�X (5)

where Y(�) ∈ R
n×N and D(�) ∈ R

n×K are the coefficient matrices of polynomial
matrix Y(z) and D(z) at lag �, respectively. As can be seen from Eq. (5), for any
� ∈ (0, L−1), Y(�) is represented as the linear combination of atoms in D(�), and
X is the representation coefficients. This means that each coefficient matrix of the
polynomial matrix Y(z) at different lags can also be represented by a coefficient
matrix of D(z) at the corresponding lag weighted by the same representation
matrix X. Therefore, the coefficient matrices of polynomial matrices Y(z) and
D(z) satisfy the form

Yi = DiX (6)

where Yi ∈ R
n×N and Di ∈ R

n×K are the coefficient matrices of Y(z) and D(z)
at lag i = 0, 1, ..., L − 1, respectively. Note that, for notational convenience, we
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have used Yi to denote the coefficient matrix Y(�). We then define the following
matrices by concatenating the coefficient matrices at all the time lags vertically

Y = [Y0;Y1;Y2; ...;YL−1] (7)

D = [D0;D1;D2; ...;DL−1] (8)

As a result, Eq. (4) can be rewritten as

Y = DX (9)

where Y ∈ R
nL×N and D ∈ R

nL×K . We can see from Eq. (9) that the polynomial
dictionary learning problem (4) is now converted to a conventional dictionary
learning model. Similarly, D is overcomplete, hence, nL should be much smaller
than K in Eq. (9).

The new dictionary D can now be learned with a conventional dictionary
learning algorithm such as the K-SVD algorithm [1], in which each atom and
its corresponding sparse coefficient are updated simultaneously one by one with
an iterative process. The learned D can be used to reconstruct Y, and the
reconstructed matrix is denoted as Ŷ. With a reverse operation to Eq. (7), we
can obtain the coefficient matrix of the polynomial matrix at each time lag, as
follows

Ŷ =
[
Ŷ0; Ŷ1; Ŷ2; ...; ŶL−1

]
(10)

where Ŷ is the restored matrix of Y, Ŷi is the coefficient matrix of polyno-
mial channel matrix Ŷ(z) at lag i, i = 0, 1, 2..., L − 1. With the coefficient
matrices obtained above we can then construct the polynomial matrix Ŷ(z) by
using Eq. (2).

4 Simulations and Results

In this section, we evaluate the performance of the proposed method for learning
a polynomial dictionary, and use it to recover a polynomial matrix. Two types
of polynomial matrices were used, with one (i.e. the elements of its coefficient
matrix) generated randomly, and the other as acoustic impulse responses (using
a room image model). In both cases, noise is added to evaluate the capability of
the proposed method for the recovery of noisy acoustic impulse responses.

4.1 Data Generation and Performance Measure

Polynomial Matrices Synthesis. The polynomial matrices were generated
synthetically as follows. First, we generated a random scalar matrix D with
uniformly distributed entries, which was then used as the coefficient matrix for
the polynomial matrix D(z ) where each column of D was normalized. Then, Y
was generated by the linear combination of different columns in D. At last, the
polynomial matrices Y(z ) and D(z ) were generated by splitting their coefficient
matrices according to Eqs. (7) and (8). The dimensions of the signals and dic-
tionaries are designed according to the different experiments described later in
this section.
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Acoustic Impulse Response Generation and Modeling. The acoustic
impulse responses were generated in a 20 × 20 × 3 m3 room (to simulate a large
hall) by the image model [2], where the reverberation time is 900 ms, sampling
frequency is 16 KHz. The number of sampling points is set to be 14400 which
means the number of time lags for each impulse response is 14400, and 1600
acoustic impulse responses were generated as the training set. We use a polyno-
mial matrix to model acoustic signals by splitting each acoustic impulse response
signal into 80 sections, where each section was modeled as a polynomial with
20 lags, so all these 1600 room acoustic impulse responses can be modeled as a
10 × 115200 polynomial matrix with 20 time lags for each element.

Performance Index. We define two performance indices to measure how
well our proposed method performs. The error rate of the recovered polynomial
matrix is defined as

Er =
‖Y(z) − Ŷ(z)‖2F

‖Y(z)‖2F
(11)

where Y(z) denotes the original polynomial matrix without noise, and Ŷ(z) is
the recovered polynomial matrix of Y(z). Er means how similar the recovered
Ŷ(z) to Y(z), the smaller the better. We also defined an error rate of noisy
signal

En =
‖Y(z) − Yn(z)‖2F

‖Y(z)‖2F
(12)

where Yn(z) is the noisy polynomial matrix obtained by adding noise to Y(z),
and En reflects the difference between Y(z) and Yn(z) (i.e. the relative noise
level).

Fig. 1. The error rate comparison
between En and Er for the test signals
at different SNR levels.

Fig. 2. The error rate comparison of
En and Er at different time lags for the
test signal with the same noise level.
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4.2 Experiments

We carry out several experiments on both synthetic data and simulated room
acoustic impulse responses. The proposed method is tested on different noise lev-
els, different impulse response lags, and the recovery of acoustic impulse response
from noisy data.

Experiments on Synthetic Impulse Response Data. We synthesized a
10 × 1500 polynomial matrix Y(z) with 3 lags as training data. The dictionary
D(z) was 10×50 polynomial matrix. The sparsity was set to be 3. In order to test
whether our method can recover a signal (i.e. polynomial matrix) corrupted by
noise of different levels, white Gaussian noise at different signal-to-noise (SNR)
ratios was added to the test signal. Note that noise was added to the coefficient
matrix of the polynomial matrix. Figure 1 shows how the error rate changes at
different noise levels. We can see that the error rate of the recovered signal is
smaller than that of the noisy signal at all tested noise levels. This means that
the recovered signal is much more similar to the clean signal as compared with
the noisy signal.

Fig. 3. (a) The clean impulse response signal. (b) The noisy impulse response signal
which was obtained by adding 5 dB noise to the clean impulse response signal. (c) The
impulse response recovered from the noisy version by the proposed method.

The impulse response at lag � can be expressed as the coefficient matrix
of A(�)z−�. As we use polynomial matrix to simulate impulse responses, we
carried out another experiment to evaluate the recovery accuracy of the proposed
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Fig. 4. (a) The clean acoustic impulse response signal. (b) The noisy acoustic impulse
signal which was obtained by adding 5 dB white Gaussian noise to clean acoustic
impulse signal. (c) The recovered acoustic impulse response signal.

method at different time lags with the same noise level, SNR = 5 dB. In this
experiment, the training data was constructed as a 5×10000 polynomial matrix.
As the polynomial dictionary has to be overcomplete, the dictionary was designed
to be a 5×200 polynomial matrix. The test data was a 5×100 polynomial matrix,
and the sparsity was set to be 3. Figure 2 shows the error rates at different time
lags of the simulated impulse response. By comparing the error rates En and Er,
it can be seen that the error rate of recovered signal is also smaller than that
of the noisy signal. Therefore, our proposed method can recover noisy signal at
different time lags.

An illustration of the impulse responses is provided in Fig. 3, which shows two
elements of the polynomial matrix (without noise), its corresponding noise added
matrix and recovered matrix, where the lags of these polynomial matrices are 20.
Compared with the clean signal, we can see from Fig. 3 that our proposed method
can reconstruct the polynomial matrix very well from the noisy samples. This
figure shows the denoising ability of the proposed method for the reconstruction
of the impulse responses from noisy measurements.

Experiments on Impulse Responses Generated by Image Room. We
conducted another experiment with a noisy impulse response signal generated
by a room image model [2]. The clean impulse responses generated by the room
image model were used as training data to train a polynomial dictionary. A
noisy test signal was generated by adding noise at SNR = 5 dB. The proposed
algorithm was used to recover the clean impulse responses. It can be seen from
Fig. 4 that the recovered acoustic impulse is very similar to the clean one.
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5 Conclusion

We have introduced a method for polynomial dictionary learning based on
K-SVD algorithm. This provides a way for learning a dictionary of impulse
responses for describing a room. Experiments on both synthetic and simulated
room impulse responses show that the proposed dictionary learning method can
be used for recovery of impulse responses corrupted by noise. The proposed
method has the potential for speech dereverberation which could be achieved by
controlling the sparsity of the representation coefficient matrix. In addition, the
current method is based on the coefficients of the polynomial matrix, one could
directly calculate the dictionary matrix based on the use of a polynomial SVD
method [4]. These constitute our future work.
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Abstract. We propose a model of Relative Transfer Functions between
two microphones which correspond to closed target positions within a
certain spatially constrained area. Each RTF is modeled as the product
of two transfer functions. One corresponds to a linear-phase filter and is
the common factor of all the RTFs. The second transfer function is an
individual factor that should be as sparse as possible in the time domain.
A learning algorithm to identify the decomposition given a set of RTFs is
proposed. The common factor is the main output, which we then apply
to reconstruct an unknown RTF corresponding to a position within the
assumed area, when only an incomplete measurement of it is available.

Keywords: Relative transfer function · Generalized sidelobe canceler ·
Convex programming · Sparse modeling

1 Introduction

A noisy stereo recording of a target signal can be, in the short-term Discrete
Fourier Transform (DFT) domain, described as

XL(k, �) = SL(k, �) + YL(k, �), (1)
XR(k, �) = H(k)SL(k, �) + YR(k, �),

where k and � denote, respectively, the frequency and the frame index; let the
DFT window length be M . Further let XL and XR denote signals observed by
microphones; SL is the response (image) of the target signal on the left micro-
phone; YL and YR are the remaining signals (noise and interferences) commonly
referred to as noise. H is the Relative Transfer Function (RTF) between the
microphones related to the target signal.

The RTF is an important component of multichannel audio signal processing
systems [1]. Using the RTF, a multichannel filter can be designed such that it
performs spatial null towards a target source, thereby yielding a noise signal
reference on its output [3]. Specifically, let Ĥ be an estimate of H and the
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multichannel filter with inputs XL and XR be such that its output is Z(k, �) =
Ĥ(k)XL(k, �) − XR(k, �). By (1), it holds that

Z(k, �) =
(
Ĥ(k) − H(k)

)
SL(k, �)

︸ ︷︷ ︸
target signal leakage

+ Ĥ(k)YL(k, �) − YR(k, �)︸ ︷︷ ︸
noise reference

. (2)

For Ĥ = H, the target signal leakage vanishes, and Z(k, �) = H(k)YL(k, �) −
YR(k, �) provides the key noise reference signal.

However, real-world RTFs have many coefficients that can change quickly
in a short period of time. The RTF estimation thus poses a difficult problem.
Several estimators have been proposed to estimate the RTF directly from noisy
recordings. A frequency-domain estimator assuming nonstationary target signal
and stationary noise was proposed in [4]. Methods based on Blind Source Sepa-
ration (BSS) and Independent Component Analysis (ICA) can cope with general
situations (e.g., with nonstationary directional interfering sources) [5]. However,
the accuracy of such estimation is limited.

During intervals where only the target source is active, conventional least-
square approaches can be used to obtain highly accurate RTF estimates. These
estimates can be used later when noise is active. However, the acoustic conditions
must remain the same: in particular, the position of the target source must be
preserved. The fact that the target source position is often limited to a confined
area can be used as a priori knowledge. For example, it is possible to collect a
bank of RTFs during noise-free intervals such that the area is covered by the
bank [2]. The problem of estimating the RTF can then be simplified to one of
choosing an appropriate RTF from the bank.

Recent methods aim to find suitable low-rank models for such banks of
acoustic transfer functions, which are instrumental in computing highly accurate
RTF estimates from noisy recordings; see, e.g., [6,7]. In this paper, we propose
a novel sparsity-based model, which is applied when reconstructing incomplete
RTF (iRTF), that is, an RTF estimate whose values are known only for certain
frequencies. In [8], the iRTF is completed through finding its sparsest represen-
tation in the time domain. This is justified by the fact that relative impulse
responses (ReIRs), i.e., the time-domain counterparts of RTFs, are compressible
(approximately sparse) sequences. However, since exact sparsity is invoked in
[8], there are performance limitations; see also [9]. The goal of our paper is to
exploit the proposed model in order to lower this performance loss.

Throughout the paper, upper-case letters will denote transfer functions (DFT
domain) while their time-domain counterparts will be denoted by lower-case let-
ters. Bold letters will denote vectors comprising coefficients of the corresponding
quantities. For example, (H)k = H(k). The time domain counterpart of H,
called the relative impulse response (ReIR), is h, and (h)k = h(k).

2 Model Proposal

Let Hp be the RTF for the pth position of the target source within a confined
area, and p = 1, . . . , P ; hp be the corresponding ReIR. The positions 1, . . . , P
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can form either a regular or an irregular grid [2,12]. Our goal is to model Hp as

Hp(k) ≈ B(k)Gp(k), k = 0, . . . , M − 1, p = 1, . . . , P, (3)

where gp is sparse. B is independent of the position index p, so it is a common
factor of H1, . . . , HP .

As a motivator, note that each hp can be approximated by a sparse gp such
that neither ‖hp − gp‖2 nor the energy of the target signal leakage in (2) for
Ĥ = Gp is higher than a chosen limit; see [10]. The conjecture behind the
proposed model is that the residual B = Hp/Gp might be independent of p since
the RTFs come from the same area. Assuming that B is known, an iRTF for a
target position within the area can be reconstructed as B · G by invoking the
sparsity of g.

Linear-Phase Unit-Norm Constraint. Definition (3) is not unique. The
scale of B can be arbitrarily changed, which can be compensated for by the
reciprocal scaling of all Gp, p = 1, . . . , P . To solve the scaling uncertainty, B
will be constrained to have a unit norm. Similarly, B can be arbitrarily delayed.
Therefore, we constrain B to have a constant group delay of �M/2�, hence, linear
phase. It means that b is constrained to be symmetric1 along its (�M/2� + 1)th
coefficient; we will assume, without loss on generality, that M is odd. The set of
the unit-norm symmetric filters (vectors) of length M will be denoted by AM .

A Method to Learn the Common Factor B. Let H1, . . . , HP be given.
Before learning the common factor B, the causality of the filters in (3) must
be ensured by delaying each hp by �M/2� + D samples. The delay by �M/2� is
due to the linear-phase constraint imposed on B. The value of D ≥ 0 must be
sufficiently high to ensure the causality of gps; we typically use D = 10.

To find B, we formulate an optimization problem with the above constraints
on B as

B = arg min
B,G1,...,GP

P∑

p=1

‖gp‖0 s.t.
P∑

p=1

‖Hp − diag(B)Gp‖22 ≤ ε, b ∈ AM .

(4)
where diag(·) denotes a diagonal matrix with the argument on its main diagonal;
‖·‖0 denotes the �0 pseudo-norm that is equal to the number of nonzero elements
of the argument; ε is a free positive constant. Note that B = Fb, Hp = Fhp,
and Gp = Fgp where F is the M × M unitary matrix of DFT.

However, the problem (4) is NP hard and not convex in general even if the �0
pseudo-norm is replaced by the �1 norm. Without a guarantee to find the global
minimum of (4), we propose an alternating algorithm that can be used to find
a satisfactory solution.
1 This constraint excludes the set of anti-symmetric linear-phase filters. However, b
tends to be close to the pure delay filter in practice, hence it is always symmetric.
In experiments with real-world RTFs, we did not observe any cases where b was
anti-symmetric.
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In the beginning, it is assumed that feasible B,G1, . . . , GP are given as an ini-
tial guess. This can be, for example, B(k) = e

i2π�M/2�k
M and Gp(k) = B(k)Hp(k),

∀p, k, where · denotes the complex conjugate. Then, one iteration of the algo-
rithm consists of two optimization steps. First, all Gp are fixed while B is com-
puted such that it minimizes the constraint in (4); that is, the solution of

min
B

P∑

p=1

‖Hp − diag(B)Gp‖22 s.t. b ∈ AM . (5)

This is a constrained least-squares problem that can be solved analytically. Let
c = [c1, . . . , c�M/2�]T denote the symmetric part of b, i.e., b = [c; b�M/2�+1; c]
where · denotes the upside down operator. For b being the solution of (5) it
holds that

[c; b�M/2�+1] ∝
(
AHdiag

( P∑

p=1

diag(Gp)Gp

)
A

)−1

AH

(
P∑

p=1

diag(Gp)Hp

)
,

(6)
where A is an M × (�M/2� + 1) matrix whose ith row is [Fi,1 + Fi,M ,Fi,2 +
Fi,M−1, . . . ,Fi,�M/2� +Fi,�M/2�+2,Fi,�M/2�+1]. After computing b using (6), the
vector is normalized to satisfy the constraint ‖b‖2 = 1, so finally b ∈ AM . Note
that B,G1, . . . , GP remain feasible for (4) after the first step.

The goal of the second step is to improve the sparsity of G1, . . . , GP while
preserving their feasibility. B is fixed while G1, . . . , GP are optimized to approach
the solution of (4). To this end, P independent convex programs are solved, one
for each Gp,

min
Gp

‖gp‖1 w.r.t. ‖Hp − diag(B)Gp‖22 ≤ ε/P. (7)

This optimization problem is well-known under the name of basis pursuit denois-
ing (BPDN) and can be efficiently solved using, e.g., SPGL12; see [11]. Using
the fact that F is a unitary matrix, (7) can be written in its equivalent form

min
gp

‖gp‖1 w.r.t. ‖hp − FHdiag(B)F · gp‖22 ≤ ε/P. (8)

Since b is real-valued, the matrix FHdiag(B)F as well as the whole program
(8) are real-valued. The proposed optimization algorithm is summarized in
Algorithm 1.

3 Application: Sparse Recovery of an Incomplete RTF

An iRTF is represented by an |S| × 1 vector Y whose kth element is

(Y)k = Ĥ(ik), k ∈ S, (9)
2 http://www.cs.ubc.ca/∼mpf/spgl1.

http://www.cs.ubc.ca/~mpf/spgl1
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Algorithm 1. Learning algorithm to find B.
Input: H1, . . . ,HP and ε
Output: B

Initialization: (B)k = e
i2π�M/2�k

M , (Gp)k = (B)k(Hp)k, Bold = 0M×1

while ‖Bold − B‖2 > tol do
Bold = B;
Compute b using (6);
b ← b/‖b‖2;
B = fft(b);

Q = FHdiag(B)F;
for p ∈ {1, . . . , P} do

gp = argming ‖g‖1 w.r.t. ‖hp − Qg‖2 ≤ ε/P ;
Gp = fft(gp);

end

end

where S = {i1, . . . , i|S|} ⊂ {1, . . . , M} is the set of indices of known values of Ĥ.
In [8], it is proposed to retrieve the complete RTF estimate from Y through

ĥ = arg min
h

‖h‖1 w.r.t. ‖Y − FSh‖2 ≤ ε, (10)

where the subscript (·)S denotes a vector/matrix with selected rows whose
indices are in S; ε is a free positive parameter3. This is the BPDN optimiza-
tion program, which, in other words, seeks for the sparsest representation of y
in the time domain. As mentioned in the Introduction, the performance of this
method is limited due to the fact that the original h is typically not exactly
sparse.

Now, assume that Ĥ is a noisy estimate of RTF for the current (unknown)
position of the target within an assumed area. Let Y be its incomplete version
where S is selected on the basis of a certain hypothesis (e.g., we select only those
elements of Ĥ that are not affected by the noise [8]). Next, assume that a bank
of RTFs H1, . . . , HP is given. These RTFs are valid for some positions within
the area but can be different from the current ones estimated by Ĥ. Using the
bank of RTFs, B from (3) can be identified using Algorithm 1 with some ε. The
goal is now to exploit B as a priori knowledge when retrieving H from Y.

We propose computing the complete RTF estimate as

Ĥ = diag(B)G (11)

where G = Fg, and

g = arg min
g

‖g‖1 w.r.t. ‖Y − diag(BS)(FSg)‖ ≤ ε. (12)

3 In fact, ĥ is in [8] sought through solving minh ‖FSh − Y‖2
2 + τ‖h‖1 where τ > 0.

This is, nevertheless, an equivalent problem to (10) in the sense that there exists τ
such that the solutions are the same.
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Discussion. In view of the Compressed Sensing theory, (10) as well as (12)
can be interpreted as sparse reconstructions of compressed measurements Y in
the time domain when the sensing matrix is, respectively, FS and diag(BS)FS .
In other words, the sensing domain is, respectively, the Fourier domain and the
Fourier domain transformed through diag(B). The principal difference depends
on the distance of B from the pure delay by �M/2� samples.

4 Experimental Verification

The first experiment was based on simulated data. An artificial RTF of length
M = 1025 was generated as H = B · G where (g)k = ake

−0.008(|k|−20), k =
1, . . . , M , with only q random nonzero ak from [−0.5; 0.5], and a20 = 1. Hence, g
is q-sparse and has an exponential decay with the highest peak at k = 20. B was
generated as (B)k = dke

i2πk�M/2�
M where dk were taken at random from [0.5; 1.5].

Such B has a linear phase and is close to the pure delay by �M/2� samples.
A 10 s female voice signal was taken to simulate a noise-free recording accord-

ing to (1). Then, H was estimated from each 1 s interval of the recording using
the least-squares estimator. Then only p percent of the most active frequencies
in the original signal were put in S, and the iRTF was created. This procedure
simulates situations when the signal by the target source does not excite the
full frequency range or when some frequency bins are contaminated by noise.
Therefore, only iRTF is available. The reconstructed estimates of H were com-
puted through (10) and (12) using known B, respectively, both with ε = 0.1; the
sampling frequency was 16 kHz.

The resulting RTFs were evaluated in terms of attenuation rate (ATR). The
ATR is defined as the ratio between the power of the original signal on the left
microphone and the power of the target signal leakage term in (2). The more
negative the ATR (in dB), the better the target signal blocking. The resulting
ATRs averaged over the respective intervals are shown in Fig. 1. The “model-
based solution” through (12) using known B achieves significantly better ATR
than the sparse solution by (10) for all levels of the incompleteness p. For p →
100, both solutions approach the ATR by the true RTF.

The second experiment was conducted with real-world recordings. In an office
room with T60 ≈ 300 ms, a 12 s sequence of audio signals (4 s white noise +
4 s male speech + 4 s female speech) played by a loudspeaker was recorded by
two microphones. The loudspeaker was placed in front of the microphones at a
distance of 1.5 m and rotated at nine different angles from −90 through 90◦ (0◦

is the direction towards the microphones). The microphone spacing was 5 cm.
The RTFs for the loudspeaker’s rotations were computed using the first sec-

ond of the recorded white noise and the least-square estimator (from this point
forward referred to as “true RTF”). Algorithm 1 was applied with ε = 0.01 and
tol = 10−3 to learn the common factor B of true RTFs corresponding to the
rotations by −30◦, 0◦, and 30◦. The method converged after 46 iterations.

The recordings were divided into twelve 1 s intervals. On each interval,
the least-square RTF estimate was computed and 10 percent of its values
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Fig. 1. Results of the first experiment for two levels of sparsity of the factor G in
H = B · G, namely, q = 51 and q = 512.

Fig. 2. Average ATR achieved by RTFs reconstructed using (10) and the model-based
solution (12). The ATR achieved by the true RTF is shown and corresponds to an
optimum achievable performance.

corresponding to the most active frequencies on the left microphone was selected
to build up the iRTF.

The relative ATRs averaged over 4-s intervals are shown in Fig. 2. These
results show that the knowledge of B helps to reconstruct the RTF with the
average relative improvement of ATR by up to 2 dB. It should be noted that
although B was derived only using known RTFs for rotations by −30◦, 0◦, and
30◦, no overlearning is observed in Fig. 2 for these rotations: The ATR improve-
ment is rather uniform over all rotations and mainly depends on the original
signal. Unlike white noise, the speech signals are easier to attenuate by the
reconstructed RTF as they do not span the whole frequency range.

5 Conclusions

Algorithm 1 was shown to be able to learn the common factor of RTFs that are
known for positions of a target source within a confined area. This factor can
be used when reconstructing an incomplete measurement of an RTF from the
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same area. An interpretation in terms of the Compressed Sensing theory is that
the proposed method learns a new sensing domain (or, equivalently, a sparsity
domain) of the RTFs through finding their common factor.
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Abstract. This paper addresses the estimation of Relative Transfer
Function (RTF) between microphones from noisy recordings. We uti-
lize an incomplete initial measurement of the RTF, which is known for
only several frequency bins. The measurement is completed by finding
its sparsest representation in the time domain. We propose to perform
this reconstruction by solving a Second-Order Cone Program (SOCP).
Free parameters of this formulation represent distance of the completed
RTF from the initial estimate. We select these parameters based on the
theoretical performance of the initial estimate. In experiments with real-
world data, this approach achieves a significant refinement of the RTF,
especially in scenarios with low signal-to-noise ratios.

Keywords: Audio signal processing · Relative transfer function · Com-
pressed sensing · Second-order cone programming · Incomplete measure-
ment

1 Introduction

A noisy recording of a target signal observed through two microphones can be,
in the short-term Discrete Fourier Transform (DFT) domain, described as

XL(k, �) = HL(k)S(k, �) + YL(k, �)
XR(k, �) = HR(k)S(k, �) + YR(k, �)

(1)

where k and � denote, respectively, the frequency and the frame index; let the
DFT length be M ; S denotes the target signal; XL and XR correspond, respec-
tively, to the signals observed on the left and right microphones; YL and YR are
the remaining signals (noise and interferences) commonly referred to as noise.
HL and HR denote the acoustic transfer functions between the microphones and
the target, which are assumed to be approximately constant (independent of �)
during short intervals.

This work was supported by The Czech Sciences Foundation through Project No.
14-11898S.
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Define the relative transfer function (RTF) as HRTF(k) = HR(k)HL(k)−1.
Then, (1) can be re-written as

XL(k, �) = SL(k, �) + YL(k, �)
XR(k, �) = HRTF(k)SL(k, �) + YR(k, �)

(2)

where SL(k, �) = HL(k)S(k, �). The time domain counterpart of HRTF, called
the relative impulse response (ReIR), will be denoted as hrel.

Knowing HRTF (or hrel) enables to design an efficient spatial filter with two
inputs XL and XR such that it cancels the target source and only pass through
the noise signals. The output of the spatial filter1 is Z(k, �) = H(k)XL(k, �) −
XR(k, �), which is determined by the transfer function H. By (2), it holds that

Z(k, �) =
(
H(k) − HRTF(k)

)
SL(k, �)

︸ ︷︷ ︸
target signal leakage

+H(k)YL(k, �) − YR(k, �)︸ ︷︷ ︸
noise reference

. (3)

ForH = HRTF the target signal leakage vanishes, andZ(k, �) = HRTF(k)YL(k, �)−
YR(k, �). Hence, Z(k, �) provides the key noise reference signal, which is important
for audio applications such as source separation or speech enhancement.

The signal-to-noise ratio (SNR) in Z(k, �) can be used as a practical evalu-
ator of H(k). We will therefore use attenuation ratio (ATR), which is the ratio
between the initial SNR in (1) and the SNR in Z(k, �).

The RTF estimation when noise is active is a challenging problem. During
noise-free intervals, conventional time-domain or frequency-domain estimators
can be used. The obtained RTF can be used later when noise is active, however,
the position of the target must remain the same. To estimate the RTF from
noisy data, Shalvi and Weinstein proposed a method assuming model where
nonstationary target signal is interfered by a stationary noise [2]. Methods based
on Blind Source Separation (BSS) can cope also with directional nonstationary
interfering sources [3]. There are also methods based on low-rank models of the
RTF that can be learned in noise-free conditions. This class embodies, e.g., an
approach utilizing bank of pre-learned RTFs [1] or a model based on diffusive
maps [4].

Recently, a possibility to estimate the RTF using its incomplete measurement
was studied in [5,6]. The incomplete RTF is an RTF estimate whose values are
known only for some frequencies. The estimate is completed (reconstructed)
through finding its sparsest representation in the time domain. The motivation
for the latter step is that typical ReIRs are fast decaying sequences, thus, appear
to be compressible (approximately sparse).

In [5], the reconstruction is done through solving a weighted LASSO opti-
mization problem. However, the optimum choice of weights is highly nontrivial,
so only a heuristic choice is proposed. In this paper, we propose to use a dif-
ferent formulation based on second-order cone programming. Parameters of this
1 The right channel XR as well as H are typically delayed by a few samples due to

possible acausality of HRTF. We omit this detail here for the sake of simplicity of
the notation.
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formulation have clear meaning: Each parameter limits the distance of the recon-
structed RTF value from its initial estimate.

2 Relative Transfer Function Estimators

Conventional Frequency-Domain Estimator. It follows from (2) that dur-
ing intervals where noise signals are not active (YL = YR = 0), it is possible to
estimate the RTF as

ĤFD(k) =
Φ̂XRXL(k)
Φ̂XLXL(k)

. (4)

Φ̂AB denotes the sample-based estimate of (cross-)power spectral density between
A and B. When signals are contaminated by noise, the estimator becomes biased
where the bias (as well as its variance) depends on noise characteristics. This esti-
mator will be abbreviated by FD (Frequency Domain estimator).

The authors of [2] considered the model where the target signal is wide-sense
stationary (WSS) during short intervals (subintervals) but nonstationary over
longer segments (piecewise stationary). The assumption about the noise is such
that V (k, �) = YR(k, �) − HRTF(k)YL(k, �) is WSS. Under this model, it was
derived that the bias2 of FD is

E[ĤFD(k)] − HRTF(k) =
ΦV XL(k)

〈Φp
XLXL

(k)〉 (5)

where E[·] stands for the expectation operator, and 〈·〉 denotes the average of
the argument over the subintervals indexed by the superscript p, p = 1, . . . , P .
Note that the model assumes that ΦV XL(k) is independent of p. To estimate the
bias, the cross-spectral densities on the right-hand side of (5) can be replaced
by their sample-based estimates; V (k, �) can be estimated as −Z(k, �) from (3).

Estimator Admitting Presence of Stationary Noise. An estimator that
is unbiased under the validity of the above model can be computed as the least-
square solution of the following overdetermined set of equations [2]

⎡

⎢⎣
Φ̂1
XRXL

(k)
...

Φ̂P
XRXL

(k)

⎤

⎥⎦ =

⎡

⎢⎣
Φ̂1
XLXL

(k) 1
...

Φ̂P
XLXL

(k) 1

⎤

⎥⎦
[
ĤNSFD(k)
Φ̂V XL(k)

]
. (6)

The variance of this estimator, from here referred to as NSFD (Non-Stationarity
based Frequency Domain estimator), is equal to

var[ĤNSFD(k)] =
1
N

ΦV V (k)〈1/Φp
XLXL

(k)〉
〈Φp

XLXL
(k)〉〈1/Φp

XLXL
(k)〉 − 1

. (7)

2 The variance of FD under the model is also derived in [2] and could be taken into
account. The bias, however, seems to have a larger influence on the entire accuracy
of FD; we therefore focus on the bias.



230 Z. Koldovský et al.

Note that 〈Φp
XLXL

(k)〉〈1/Φp
XLXL

(k)〉 is close to 1 when Φp
XLXL

(k) does not depend
much on p, which happens when the target signal is almost stationary (as well
as the noise). By contrast, 〈Φp

XLXL
(k)〉〈1/Φp

XLXL
(k)〉 � 1 when the signal is

sufficiently dynamical. Therefore, NSFD is suitable in situations when the target
signal is speech and the noise is (approximately) stationary.

It is worth to point here to a problem that is unintentionally hidden in the
analysis. Speech signals are sparse in the time-frequency domain. It thus often
happens that SL(k, �) = 0 for some k, which means that HRTF(k) vanishes
from the model (2). The behavior of NSFD then depends on the character of
the (stationary) noise source. If the noise is diffused, the variance (7) approaches
infinity, so we are aware of the inaccuracy of the estimate for the given frequency.
However, if the noise comes from a spatial source, NSFD yields an estimate of
the RTF which is related to the noise source, not to the target source.

It is important to avoid the latter case. Otherwise a large error is introduced
into the estimator although (7) need not signalize it. If this case is detected
through some additional hypothesis (e.g., by means of a voice-activity detec-
tor), the RTF estimate for the given k can be dropped and replaced using the
method proposed in this paper. In experiments, we will focus on the described
situation by considering speech as the target signal interfered by a directional
quasi-stationary noise.

There are many other RTF estimators that can be taken into account in the
following considerations; see, e.g., [7,8]. Nevertheless, we will constrain our focus
on the estimators FD a NSFD in this paper.

3 Sparse Reconstruction of Incomplete RTF

As already mentioned, an incomplete RTF is obtained by taking values of an
RTF estimate but only for those frequencies where the estimate appears to be
accurate enough. Let the set of the accepted frequencies {i1, . . . , i|S|} be denoted
by S; we can constrain |S| ≤ �M/2 + 1� due to the symmetry of the DFT and
due to the fact that the ReIR is real-valued.

The method in [5] aims to find the sparsest representation of the incomplete
RTF in the time domain using weighted LASSO. The reconstructed ReIR is
sought as the solution of

hWLASSO = arg min
h

‖FSh − f‖22 + ‖w 	 h‖1, (8)

where f is a |S|× 1 vector with elements fk = Ĥ(ik), ik ∈ S, k = 1, . . . , |S|; F is
the M ×M matrix of the DFT and FS denotes its submatrix comprised of rows
whose indices are in S; h denotes an M × 1 vector of coefficients of the estimate
of hrel; w is an M ×1 vector of nonnegative weights; 	 denotes the element-wise
product.

The weights control the sparsity level of the solution. They can incorporate
a priori knowledge, because elements of hWLASSO with higher weights tend to
be closer to or equal to zero and vice versa. A heuristic selection respecting the
expected shape of hrel was proposed in [5]; similar idea is used in [10].
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A drawback of (8) is that the influence of the weights on the quality of the
reconstructed RTF (ReIR) is not clear. In this paper, we therefore consider a
different formulation where the reconstructed ReIR is defined as the solution of

hSOCP = arg min
h

‖h‖1 w.r.t. |(FSh − f)ik | ≤ εik , ∀ik ∈ S, (9)

which is a second-order cone program (SOCP). In this formulation, the distance
of the ikth element of the reconstructed RTF from Ĥ(ik) is constrained to be
less or equal to εik (in absolute value). For example, it is reasonable to choose
εik proportional to a theoretical bias or variance of the estimate Ĥ(ik).

Practical Implementation. Assume a stereo noisy recording obeying (2) is
given. Let M be the length of DFT, which corresponds to the length of the
to be estimated ReIR; for simplicity, let M be even. The proposed estimation
procedure consists of four steps.

1. Compute the initial RTF estimate Ĥ(k), k = 0, . . . , M/2 + 1, using some
known method. In this paper, we will consider FD given by (4) and NSFD
computed through (6).

2. Compute a theoretical estimation error of Ĥ(k), k = 0, . . . , M −1, denoted as
δk. Here, we compute the theoretical bias (5) in case of FD and the theoretical
variance (7) in case of NSFD.

3. Select S. In this paper, we select p percents of frequency bins that yield the
highest SNR (oracle selection) or the highest normalized kurtosis (kurtosis-
based selection)3. The parameter p will be referred to as percentage.

4. Solve the SOCP given by (9) where εik = αδik , ik ∈ S, using the ECOS
package [9] to obtain the reconstructed ReIR; its DFT gives the reconstructed
RTF; α is a free positive constant (we select α = 1 in case of NSFD and
α = 0.2 in case of FD).

4 Experiments

In experiments, the above proposed procedures to estimate the RTF from noisy
recordings are verified on real-world audio signal mixtures. A female utterance
from SiSEC 20134 from the task “Two-channel mixtures of speech and real-world
background noise” is used as the target signal. The signal has 10 s in length; the
sampling frequency is 16 kHz.

The noise signal is a fan hum “FanRear.wav” by user Otakua taken from
the repository of free audio samples5. Note that this signal is approximately
3 The kurtosis-based selection appears to be efficient when the frequency components

of the target signal have non-Gaussian distribution while those of the noise are
Gaussian; see Sect. 5 in [5]. In real-world situations, this is often satisfied when the
target signal is speech and the noise is quasi-stationary.

4 http://sisec.wiki.irisa.fr/.
5 http://www.freesound.org/.

http://sisec.wiki.irisa.fr/
http://www.freesound.org/
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stationary (as assumed by NSFD) as well as directional (spatial source). The
densities of its spectral components are close to Gaussian, hence their kurtosis is
close to zero. By contrast, the kurtosis of active spectral components of speech
is often positive. This enables to utilize the kurtosis as a contrast to select S.

To simulate spatial sources, the target and noise signal are convolved with
room impulse responses from [11]6. The reverberation time T60 is 160 ms; the
distance of the microphones is 3 cm; the source-microphone distance is 2 m. The
target and noise source is located, respectively, in the direction of 0◦ and 75◦ on
the left-hand side.

The spatial images of the signals are mixed together at a specified input SNR
(averaged over both microphones). The mixed signal is divided into 1s-intervals
with 75 % overlap, and the RTF estimation is conducted independently on each
of total 37 intervals. The results are then given in the form of ATR averaged
over all intervals.

Results and Discussions. Figures 1 and 2 summarize results of the experi-
ments with NSFD and FD, respectively. The figures show the average ATR of
the estimated RTFs as functions of percentage p and of input SNR.

For both initial estimates, the RTFs reconstructed by SOCP yield ATR that
is comparable or higher to that obtained by weighted LASSO. This holds for
both the oracle and kurtosis-based selection of S. The improvements compared
to LASSO are achieved for low values of p (below 10−20%) and for scenarios with
the lower input SNR (see Figs. 1(a,c) and 2(a)). When input SNR is −10 dB, only
few frequency components of the initial RTF estimate are accurate “enough”,
so small p should be selected. Then, SOCP appears to be more robust than
LASSO. For higher values of p and higher input SNR, both approaches achieve
comparable ATRs (see Figs. 1(b,d) and 2(b)).

The overall ATRs with FD are significantly lower than those with NSFD;
cf. Figs. 1(a) and 2(a). This confirms the assumption that NSFD yields more
accurate RTF estimate, when target speech is interfered by a stationary noise.

Figures 1(c,d) and 2(b) show that the reconstructed RTFs from incomplete
measurements yield significant improvement in terms of ATR, especially, when
input SNR is low. When input SNR is sufficiently high, the ATR by the recon-
structed RTFs can be lower than that of the initial estimates, depending on p.
When p is too low, the loss of the ATR signalizes that too much information was
lost from the incomplete RTF (see Fig. 1(c) where input SNR> 0). By contrast,
when the RTF measurement is almost complete (p close to 100 %), the ATRs by
the reconstructed RTFs are getting closer to those of the initial estimators.

The oracle selection yields higher ATR compared to kurtosis-based selection
of Ĥ(k) for all values of p and all considered input SNR levels (by up to 3 dB).
This is due to the strong prior knowledge utilized by the oracle selection (the
true input SNR within the frequency bins).

6 http://www.eng.biu.ac.il/gannot/downloads/.

http://www.eng.biu.ac.il/gannot/downloads/
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Fig. 1. Attenuation of female speech in the presence of directional fan hum. The initial
estimate Ĥ(k) is NSFD (6). (a,b) Dependence on the percentage of frequency bins
included in S (input SNR = -10 dB or 0 dB, respectively), (c,d) dependence on input
SNR (p = 15 % or p = 65 %, respectively). The more negative the value (in dBs) of
ATR is, the better the target signal blocking.

Fig. 2. Attenuation of female speech in the presence of directional fan hum. The initial
estimate Ĥ(k) is FD (4). (a) Dependence on the percentage of frequency bins included
in S (input SNR = -10 dB), (b) the dependance on input SNR (p = 45 %).
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5 Conclusions

We observed that the solutions by LASSO and SOCP can be very close in
the sense that an appropriate choice of weights in LASSO enables to approach
the solution by SOCP. However, the correspondence between the parameters of
LASSO and SOCP is nontrivial. In contrast to the weighted LASSO, the inter-
pretation of the parameters in SOCP is straightforward and helpful in practice,
which was demonstrated by experiments in this paper.
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Abstract. System identification is a fast growing research area that
encompasses a broad range of problems and solution methods. It is desir-
able to have a unifying setting and a few common principles that are suf-
ficient to understand the currently existing identification methods. The
behavioral approach to system and control, put forward in the mid 80’s,
is such a unifying setting. Till recently, however, the behavioral approach
lacked supporting numerical solution methods. In the last 10 years, the
structured low-rank approximation setting was used to fulfill this gap. In
this paper, we summarize recent progress on methods for system iden-
tification in the behavioral setting and pose some open problems. First,
we show that errors-in-variables and output error system identification
problems are equivalent to Hankel structured low-rank approximation.
Then, we outline three generic solution approaches: (1) methods based
on local optimization, (2) methods based on convex relaxations, and
(3) subspace methods. A specific example of a subspace identification
method—data-driven impulse response computation—is presented in full
details. In order to achieve the desired unification, the classical ARMAX
identification problem should also be formulated as a structured low-rank
approximation problem. This is an outstanding open problem.

Keywords: System identification · Errors-in-variables modeling ·
Behavioral approach · Hankel matrix · Low-rank approximation ·
Impulse response estimation · ARMAX identification

1 Introduction

System identification aims at deriving a dynamical model B̂ (i.e., a mathemat-
ical description) from observed data D of a to-be-modeled physical plant. The
data is typically obtained by sampling and quantization in time-domain from
one or more independent measurement experiments. Each measurement point
is a real-valued vector of the observed variables from the system and the model
postulates a relation among the variables.

Prior knowledge and/or assumptions about the plant are incorporated in the
identification problem by restricting the model to belong to a set of models M ,
called the model class. Therefore, a system identification problem is a mapping:
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 235–242, 2015.
DOI: 10.1007/978-3-319-22482-4 27
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data
D

system

identification−−−−−−−−−−−→ model
B̂ ∈ M

(ID)

The mapping (ID) is defined implicitly as a solution to an optimization problem,
i.e., the model B̂ minimizes (among all feasible models) a specified cost function.
Different identification problems correspond to different choices of a model class
and the cost function.

Two contradictory objectives in system identification are:

1. “simple” model,
2. “good” fit of the data by the model.

Typically the model class is used to impose a hard bound on the model com-
plexity and the cost function is used to measure the model-data misfit (lack of
fit). It is possible, however, to minimize the model complexity subject to a hard
bound on the misfit or, more generally, consider the bi-objective minimization
of the complexity and the misfit.

In exact identification [11, Chap. 7], the model complexity is minimized sub-
ject to the constraint that the model fits the data exactly (zero misfit). If such a
model exists in the model class, it is called the most powerful unfalsified model
(of D in M ) [14]. Exact identification is a theoretical tool which is a general-
ization of the realization problem in system theory and appears in approximate
and stochastic identification problems [7].

The data collected in a real-life experiment is “inexact” due to disturbances
(unobserved variables), measurement noises, discretization, and quantization
errors. Methods for computing the most powerful unfalsified model, however,
lead through simple modifications to a class of practical identification methods
known as subspace methods.

In this paper, we consider the model class of linear time-invariant systems
of bounded complexity Lm,� — number of input variables at most m and lag at
most �. In the behavioral setting [15], no a priori separation of the variables into
inputs and outputs is made, however any model allows a nonunique input/output
partition. Although the choice of the input variables is in general not unique, the
number of inputs is a model invariant, i.e., it does not depend on the partitioning.

In Sect. 2, we define the model class Lm,� and the approximation crite-
rion, which specify the identification problem (ID). The misfit has the geomet-
ric interpretation of the Euclidean distance between the data and the model.
In the stochastic setting, misfit minimization corresponds to errors-invariables
system identification [13], i.e., (ID) is a maximum-likelihood estimator in the
errors-invariables setting. Section 3 related the identification problem (ID) to
the weighted Hankel structured low-rank approximation. Three generic classes of
solution methods are outlined: local optimization based methods, convex relax-
ation based methods, and subspace methods. As a specific example of a subspace
method, in Appendix A, we present a data-driven algorithm for impulse response
estimation. Section 4 draws conclusions and states some open problems. One of
them is integration of the classical ARMAX setting in the behavioral setting.
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2 Problem Formulation

A dynamical system B is a set of trajectories. In discrete-time, a trajectory is
a q-variable time-series w : Z → R

q. The class of finite dimensional linear time-
invariant systems with at most m inputs is denoted by Lm. This class admits a
representation

B = B(R) := { w | R0w + R1σw + · · · + R�σ
�w = 0 }, (DE)

where σ is the shift operator (σw)(t) = w(t+1). The smallest number �, for which
there is �th order representation B = B(R) is called the lag of the system. The
pair (m, �) specify the model complexity. The model class of bounded complexity
is denoted by Lm,�.

The model variables w can be partitioned into inputs u and outputs y, i.e.,
there is a permutation matrix Π, such that w = Π [ u

y ]. The system can then be
represented in the classical form

B = B(A,B,C,D,Π) := { w = Π [ u
y ] | there is x,

such that σx = Ax + Bu, y = Cx + Du }.
(I/S/O)

We will assume that Π can be chosen equal to I and the block P� ∈ R
p×p

of R� =
[
Q� −P�

]
in a difference equation representation is nonsingular.

Let the identification data D be an observed trajectory

wd =
(
wd(1), . . . , wd(T )

)
, wd(t) ∈ R

q

of the to-be-identified system. The approximation criterion, called data-model
misfit, is defined as follows:

M(D ,B) := min
ŵ∈B

‖wd − ŵ‖2,

where ŵ is the optimal approximation of wd by B. Note that ŵ is the projection
of wd on B.

The identification problem considered is misfit minimization over all system
B̂ in the model class Lm,�:

minimize over B ∈ Lm,� M(wd,B). (SYSID)

Generalizations of problem (SYSID) (see [8]) are weighted 2-norm approximation
criteria, specification of exact and missing variables, and data consisting on
multiple trajectories.

3 Hankel Low-Rank Approximation

In what follows, we will use the block-Hankel matrix

H�+1(w) :=

⎡

⎢⎢⎢⎣

w(1) w(2) · · · w(T − �)
w(2) w(3) · · · w(T − � + 1)

...
...

...
w(� + 1) w(� + 2) · · · w(T )

⎤

⎥⎥⎥⎦ .
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The fundamental link between the system identification problem (SYSID) and
structured low-rank approximation is the following equivalence

w ∈ B ∈ Lm,� ⇐⇒ rank
(
H�+1(w)

) ≤ (� + 1)m + p�. (*)

In words, w is an (exact) trajectory of the linear time-invariant system B if and
only if the Hankel structured matrix H�+1(wd) is rank deficient. Note that the
complexity of the model B (number of inputs m and lag �) is directly related to
the rank constraint of the Hankel matrix.

Using (*), we can rewrite the identification problem (SYSID) as an equivalent
Hankel low-rank approximation problem

minimize over ŵ ‖wd − ŵ‖2
subject to rank

(
H�+1(ŵ)

) ≤ r,
(SLRA)

where r := (� + 1)m + p�. The main issue in system identification is that Prob-
lem (SLRA) is nonconvex. Therefore, various heuristics, reviewed later, are used
for its solution.

3.1 Variable Projections Approach

One approach for dealing with the rank constraint in (SLRA) is to use the kernel
representation

rank
(
H�+1(ŵ)

) ≤ r ⇐⇒ RH�+1(ŵ) = 0

and R ∈ R
p×(�+1)q is full row rank. (KER)

Using (KER), (SLRA) becomes a classical parameter optimization problem,

minimize over ŵ and R ‖wd − ŵ‖2
subject to RH�+1(ŵ) = 0 and R is f.r.r.

(SLRAR)

(SLRAR) is furthermore equivalent to

minimize over f.r.r. R ∈ R
(m−r)×m M(R), (OUTER)

where

M(R) := min
ŵ

‖wd − ŵ‖2

subject to RH�+1(ŵ) = 0.
(INNER)

Note that (INNER) is a classical linear least squares problem.
The approach for solving (SLRAR) by minimizing (OUTER) is closely related

to the variable projection method in numerical linear algebra [4]. In [4], however,
an explicit function b̂ = A(θ)x, where x is unconstrained, is considered, while
in the context of the structured low-rank approximation problem, an implicit
relation RH�+1(ŵ) = 0 is considered, where the variable R is constrained to have
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full row rank. This fact requires new type of algorithms where the nonlinear least
squares problem is an optimization problem on a Grassmann manifold, see [1,2].

In (OUTER), the cost function M is minimized over the set of full row rank
matrices R. Indeed, M depends only on the space spanned by the rows of R. In
order to find a minimum of M , the search space in (OUTER) can be replaced
by the matrices satisfying the constraint

RR� = Ip.

A software package for Hankel structured low-rank approximation is pre-
sented in [9]. The Levenberg-Marquardt algorithm [12] implemented the GNU
Scientific Library [3], are used for the solution of the nonlinear least squares
problem. This structured low-rank approximation package is used in [8] for sys-
tem identification. The software as well as simulation examples demonstrating
its usage and comparing it with alternative methods are available from:

http://slra.github.io/software-ident.html.

3.2 Alternating Projections Approach

The second approach is based on the image representation of the rank constraint

rank
(
H�+1(ŵ)

) ≤ r ⇐⇒ H�+1(ŵ) = PL where

P ∈ R
•×r and L ∈ R

r×•

and a representation of a structured matrix by an linear equality constraint

Π(PL) − PL = 0,

where Π is a projection of a matrix to the nearest one with Hankel structure.

3.3 Nuclear Norm Heuristic

A convex relaxation of (SLRA) is obtained by replacing the rank constraint
with a constraint ‖H�+1(ŵ)‖∗ ≤ γ, where ‖ · ‖∗ is the nuclear norm, i.e., the
sum of the singular values. The parameter γ is selected in [6] by bisection aiming
to achieve the desired rank of the approximation H�+1(ŵ). Other authors, see,
e.g., [5] select a value of γ that does not necessarily lead to rank deficient matrix.
In this case, the nuclear norm minimization is used as a preprocessing operation.
The sequence ŵ completed by the nuclear norm minimization is then given as
an input to a subspace method, which does the rank reduction.

3.4 Subspace Methods

The subspace methods for approximate system identification originate from cor-
responding methods for exact system identification, by replacing exact oper-
ations such as rank revealing factorization and solution of a system of linear

http://slra.github.io/software-ident.html
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equations by approximate methods — unstructured low-rank approximation
(achieved via the singular value decomposition) and approximation solution of a
system of linear equations in the least squares sense. Since two or more steps of
the algorithm are adapted in this way, the result heuristic methods can be called
multi-stage methods. They are suboptimal, however, they are fast and effective
methods for approximate system identification. A detailed specific example of a
subspace method is shown in Appendix A.

4 Conclusions and Future Perspectives

In this paper, we described a unifying setting for system identification as a biob-
jective optimization problem. The identified model is defined in the behavioral
sense as a set of trajectories. The two objectives are (1) minimization of the
fitting error and (2) minimization of the model complexity. As a specific exam-
ple of a fitting error, we gave the misfit, i.e., the projection of the data on the
model. This error criterion corresponds to the class of the errors-in-variables
problems in the system identification literature. Another error criterion is the
latency, which corresponds to the class of the ARMAX identification problems.

The main computation tool in the behavioral setting is Hankel structured
low-rank approximation. The link to low-rank approximation follows from the
fact that a time series is a trajectory of a linear time invariant system if and only
if a Hankel structured matrix composed of the data is rank deficient. Once the
identification problem is re-formulated as a structured low-rank approximation
problem, it can be solved by various methods. The methods however are classified
into three groups: local optimization based methods, convex relaxations, and
subspace methods. In general, the subspace methods are faster but less efficient
than the optimization based methods.

The class of methods based on convex relaxations are currently actively devel-
oped. The main challenges in this area of research are finding theoretical bounds
for the distance to global optimality and development of efficient computational
methods.

Another research challenge is formulation of the latency minimization
(ARMAX system identification) as a structured low-rank approximation and solu-
tion of the resulting problem by existing methods for low-rank approximation.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant agreement number 258581 “Structured low-rank
approximation: Theory, algorithms, and applications”.

A Subspace Method for Impulse Response Estimation

Let B be a linear time-invariant system of order n with lag � and let w = (u, y)
be an input-output partitioning of the variables. In [16], it is shown that, under
the following conditions,
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– the data wd is exact, i.e., wd ∈ B,
– B is controllable,
– ud is persistently exciting, i.e., Hn+�+1(ud) is full rank,

the Hankel matrix Ht(wd) with t block-rows, composed from wd, spans the
space B|[1,t] of all t-samples long trajectories of the system B, i.e.,

image
(
Ht(wd)

)
= B|[1,t].

This implies that there exists a matrix G, such that

Ht(yd)G = H,

where H is the vector of the first t samples of the impulse response of B. The
problem of computing the impulse response H from the data wd reduces to the
one of finding a particular G.

Define Up, Uf , Yp, Yf as follows

H�+t(ud) =:
[
Up

Uf

]
, H�+t(yd) =:

[
Yp

Yf

]
,

where
row dim(Up) = row dim(Yp) = �

and
row dim(Uf) = row dim(Yf) = t.

Then if wd = (ud, yd) is a trajectory of a controllable linear time-invariant sys-
tem B of order n and lag � and if ud is persistently exciting of order t + � + n,
the system of equations

⎡

⎣
Up

Uf

Yp

⎤

⎦G =

⎡

⎢⎢⎣

0m ×m

Im
0m(t−1)×m

0p ×m

⎤

⎥⎥⎦ , (∗∗)

is solvable for G ∈ R
•×m, and for any particular solution G, the matrix YfG

contains the first t samples of the impulse response of B, i.e.,

YfG = H.

This gives Algorithm 1 for the computation of H.
Algorithm 1 computes the first t samples of the impulse response; however,

the persistency of excitation condition imposes a limitation on how big t can be.
This limitation can be avoided by a modification of the algorithm. L consecutive
samples, where L is a user specified parameter that is small enough to allow the
application of Algorithm 1, are computed iteratively. Then, provided the system
is stable, by monitoring the decay of H in the course of the computations, gives a
way to determine how many samples are needed to capture the transient behavior
of the system.
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Algorithm 1. Block computation of the impulse response from data.
Require: ud, yd, �, and t.
1: Solve the system of equations (**) and let G be the computed solution.
2: Compute H = YfG.
Ensure: H.

In case of noisy data, the system of Eq. (**) on step 1 in Algorithm 1 has no
exact solution. Using a least squares approximate solution instead, turns Algo-
rithm 1 in a heuristic for approximate system identification. The algorithm is
heuristic because the maximum likelihood estimator requires structured total
least squares solution of (**). The structured total least squares problem, how-
ever, is nonlinear optimization problem [10].
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Abstract. This work investigates the empirical performance of the
sparse synthesis versus sparse analysis regularization for the ill-posed
inverse problem of audio declipping. We develop a versatile non-convex
heuristics which can be readily used with both data models. Based on this
algorithm, we report that, in most cases, the two models perform almost
similarly in terms of signal enhancement. However, the analysis version is
shown to be amenable for real time audio processing, when certain analy-
sis operators are considered. Both versions outperform state-of-the-art
methods in the field, especially for the severely saturated signals.

Keywords: Clipping · Audio · Sparse · Cosparse · Non-convex · Real-
time

1 Introduction

Clipping, or magnitude saturation, is a well-known problem in signal processing,
from audio [1,13] to image processing [2,18] and digital communications [17].
The focus of this work is audio declipping, to restore clipped audio signals.
Audio signals become saturated usually during acquisition, reproduction or A/D
conversion. The perceptual manifestation of clipped audio depends on the level
of clipping degradation and the audio content. In case of mild to moderate
clipping, the listener may notice occasional “clicks and pops” during playback.
When clipping becomes severe, the audio content is usually perceived as if it
was contaminated with a high level of additive noise, which may be explained
by the introduction of a large number of harmonics caused by the discontinuities
in the degraded signal. In addition to audible artifacts, some recent studies have
shown that clipping has a negative impact on Automatic Speech Recognition
(ASR) performance [11,22].

In the following text, a sampled audio signal is represented by the vector
x ∈ R

n and its clipped version is denoted by y ∈ R
n. The latter can be easily
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deduced from x through the following nonlinear observation model, called hard
clipping :

yi =

{
xi for |xi| ≤ τ,

sign(xi)τ otherwise.
(1)

While idealized, this clipping model is a convenient approximation allowing to
clearly distinguish the clipped parts of a signal by identifying the samples having
the highest absolute magnitude. Indices corresponding to “reliable” samples of
y (not affected by clipping) are indexed by Ωr, while Ω+

c and Ω−
c index the

clipped samples with positive and negative magnitude, respectively.
Our goal is to estimate the original signal x from its clipped version y, i.e.

to “declip” the signal y. Ideally, the estimated signal x̂ should satisfy natural
magnitude constraints in order to be consistent with the clipped observations.
Thus, we seek an estimate x̂ which fulfills the following criteria:

M rx̂ = M ry M+
c x̂ ≥ M+

c y M−
c x̂ ≤ M−

c y, (2)

where the matrices M r, M−
c and M+

c are restriction operators. These are simply
row-reduced identity matrices used to extract the vector elements indexed by the
sets Ωr, Ω+

c and Ω−
c , respectively. We write the constraints (2) as x̂ ∈ Γ (y).

Obviously, consistency alone is not sufficient to ensure uniqueness of x̂, thus
one needs to further regularize the inverse problem. The declipping inverse prob-
lem is amenable to several regularization approaches proposed in the literature,
such as based on linear prediction [12], minimization of the energy of high order
derivatives [11], psychoacoustics [6], sparsity [1,6,15,21,23] and cosparsity [14]
(where we introduced a simplified version of the analysis-based algorithm pre-
sented in this paper). The last two priors, briefly explained in the next section,
enable some state-of-the-art methods in clipping restoration.

In this paper we empirically compare the performance of the two priors, by
means of a declipping algorithm which is easily adaptable to both cases. Our
findings are that the sparsity-based version of the algorithm marginally outper-
forms the cosparsity-based one, but this fact may be attributed to the choice of
the stopping criterion. On the other hand, for a class of analysis operators, the
cosparsity-based algorithm has very low complexity per iteration, which makes
it suitable for real-time audio processing.

2 The Sparse Synthesis and Sparse Analysis Data Models

It is well-known that the energy of audio signals is often concentrated either in
a small number of frequency components, or in short temporal bursts [20], i.e.
they are (approximately) time-frequency sparse. The traditional sparse synthesis
viewpoint [8,9] on this property is that audio signals are well approximated
by linearly combining few columns of a dictionary matrix D ∈ C

n×d, d ≥
n such as a Gabor dictionary, i.e. x ≈ Dz, where z ∈ C

d is sparse. A less
explored alternative is the cosparse analysis perspective [19] asserting that Ax
is approximately sparse, with A ∈ C

p×n, p ≥ n and analysis operator. The two
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data models are different [7,19], unless p = n and A = D−1. Finding the sparsest
(in the sense of synthesis or analysis) vector x satisfying constraints such as (2) is
in general intractable, but convex or greedy heuristics provide efficient algorithms
with certain performance guarantees [8,9,19].

3 Algorithms

Some empirical evidence [6,23] suggests that standard �1 convex relaxation does
not perform well for sparse synthesis regularization of the declipping inverse
problem. Therefore, we developed an algorithmic framework based on non-
convex heuristics, that can be straightforwardly parametrized for use in both
the synthesis and the analysis setting. To allow for possible real-time implemen-
tation, the algorithms operate on individual blocks (chunks) of audio data, which
is subsequently resynthesized by means of the overlap-add scheme.

The heuristics should approximate the solution of the following synthesis-
and analysis-regularized inverse problems1:

minimize
x,z

‖z‖0 + 1Γ (y)(x) + 1�2≤ε(x − Dz) (3)

minimize
x,z

‖z‖0 + 1Γ (y)(x) + 1�2≤ε(Ax − z). (4)

The indicator function 1Γ (y) of the constraint set Γ (y) forces the estimate x
to satisfy (2). The additional penalty 1�2≤ε is a coupling functional. Its role is
to enable the end-user to explicitly bound the distance between the estimate
and its sparse approximation. These are difficult optimization problems: besides
inherited NP-hardness, the two problems are also non-convex and non-smooth.

We can represent (3) and (4) in an equivalent form, using the indicator
function on the cardinality of z and an integer-valued unknown k:

minimize
x,z,k

1�0≤k(z) + 1Γ (y)(x) + Fc(x,z) (5)

where Fc(x,z) is the appropriate coupling functional. For a fixed k, problem (5)
can be seen as a variant of the regressor selection problem, which is (locally)
solvable by the Alternating Direction Method of Multipliers (ADMM) [3,5]:

Synthesis version

z̄(i+1) =Hk(ẑ
(i) + u(i))

ẑ(i+1) =arg min
z

‖z − z̄(i+1) + u(i)‖2
2

subject to Dz ∈ Γ (y)

u(i+1) =u(i) + ẑ(i+1) − z̄(i+1)

Analysis version

z̄(i+1) =Hk(Ax̂(i) + u(i))

x̂(i+1) =arg min
x

‖Ax − z̄(i+1) + u(i)‖2
2

subject to x ∈ Γ (y)

u(i+1) =u(i) + Ax̂(i+1) − z̄(i+1).

(6)

1 Observe that if D and A are unitary matrices, the two problems become identical.
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The operator Hk(v) performs hard thresholding, i.e. sets all but k highest
in magnitude components of v to zero. Unlike the standard regressor selection
algorithm, for which the ADMM multiplier [5] needs to be appropriately chosen
to avoid divergence, the above formulation is independent of its value.

In practice, it is difficult to guess the optimal value of k beforehand. An
adaptive estimation strategy is to periodically increase k (starting from some
small value), perform several runs of (6) for a given k and repeat the procedure
until the constraint embodied by Fc is satisfied. This corresponds to sparsity
relaxation: as k gets larger, the estimated z becomes less sparse.

The proposed algorithm, dubbed SParse Audio DEclipper (SPADE), comes
in two flavors. The pseudocodes for the synthesis version (“S-SPADE ”) and for
the analysis version (“A-SPADE ”) are given in Algorithms 1 and 2.

Algorithm 1. S-SPADE
Require: D ,y,M r,M+

c ,M−
c , s, r, ε

1: ẑ(0) = DHy,u(0) = 0, i = 1, k = s

2: z̄(i) = Hk

(
ẑ(i−1) + u(i−1)

)

3: ẑ(i) = arg minz‖z − z̄(i) + u(i−1)‖2
2

s.t. x = Dz ∈ Γ
4: if ‖ẑ(i) − z̄(i)‖2 ≤ ε then
5: terminate
6: else
7: u(i) = u(i−1) + ẑ(i) − z̄(i)

8: i ← i + 1
9: if i mod r = 0 then

10: k ← k + s
11: end if
12: go to 2
13: end if
14: return x̂ = D ẑ(i)

Algorithm 2. A-SPADE
Require: A,y,M r,M+

c ,M−
c , s, r, ε

1: x̂(0) = y,u(0) = 0, i = 1, k = s

2: z̄(i) = Hk

(
Ax̂(i−1) + u(i−1)

)

3: x̂(i) = arg minx‖Ax− z̄(i) +u(i−1)‖2
2

s.t. x ∈ Γ
4: if ‖Ax̂(i) − z̄(i)‖2 ≤ ε then
5: terminate
6: else
7: u(i) = u(i−1) +Ax̂(i) − z̄(i)

8: i ← i + 1
9: if i mod r = 0 then

10: k ← k + s
11: end if
12: go to 2
13: end if
14: return x̂ = x̂(i)

The relaxation rate and the relaxation stepsize are controlled by the integer-
valued parameters r > 0 and s > 0, while the parameter ε > 0 is the stopping
threshold.

Lemma 1. The SPADE algorithms terminate in no more than i = �dr/s + 1�
iterations.

Proof. Once k ≥ d, the hard thresholding operation Hk becomes an identity
mapping. Then, the minimizer of the constrained least squares step 3 is ẑ(i−1)

(respectively, x̂(i−1)) and the distance measure in the step 4 is equal to ‖u(i−1)‖2.
But, in the subsequent iteration, u(i−1) = 0 and the algorithm terminates.

This bound is quite pessimistic: in practice, we observed that the algorithm
terminates much sooner, which suggest that there might be a sharper upper
bound on the iteration count.
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4 Computational Aspects

The general form of the SPADE algorithms does not impose restrictions on the
choice of the dictionary nor the analysis operator. From a practical perspective,
however, it is important that the complexity per iteration is kept low. The domi-
nant cost of SPADE is in the evaluation of the linearly constrained least squares
minimizer step, whose computational complexity can be generally high. Fortu-
nately, for some choices of D and A this cost is dramatically reduced.

Namely, if the matrix AH forms a tight frame (AHA = ζI ), it is easy to show
that the step 3 of A-SPADE reduces to2:

x(i) = PΞ

(
1
ζ
AH(z̄(i) − u(i−1))

)
, where:

Ξ = {x |
[ −M+

c

M−
c

]
x ≤

[ −M+
c

M−
c

]
y and M rx = M ry}.

The projection PΞ(·) is straightforward and corresponds to component-wise map-
pings, thus the per iteration cost of the algorithm is reduced to the cost of
evaluating matrix-vector products.

On the other hand, for S-SPADE this simplification is not possible and the
constrained minimization in step 3 needs to be computed iteratively. However, by
exploiting the tight frame property of D = AH and the Woodbury matrix iden-
tity, one can build an efficient algorithm that solves this optimization problem
with low complexity.

Finally, the computational cost can be further reduced if the matrix-vector
products with D and A can be computed with less than quadratic cost. Some
transforms that support both tight frame property and fast product computation
are also favorable in our audio (co)sparse context. Such well-known transforms
are Discrete Fourier Transform, (Modified) Discrete Cosine Transform, (Modi-
fied) Discrete Sine Transform and Discrete Wavelet Transform, for instance.

5 Experiments

The experiments are aimed to highlight differences in signal enhancement perfor-
mance between S-SPADE and A-SPADE, and implicitly, the sparse and cosparse
data models. It is noteworthy that in the formally equivalent setting (A = D−1),
the two algorithms become identical. As a sanity-check, we include this setting
in the experiments. The relaxation parameters are set to r = 1 and s = 1, and
the stopping threshold is ε = 0.1.

In addition to SPADE algorithms, we also include Consistent IHT [15] and
social sparsity declipping algorithm [21] as representatives of state-of-the-art.
The latter two algorithms use the sparse synthesis data model for regularizing
the declipping inverse problem. Consistent IHT is a low-complexity algorithm
based on famous Iterative Hard Thresholding for Compressed Sensing [4], while
the social sparsity declipper is based on a structured sparsity prior [16].
2 Recall that the matrices M r, M+

c and M−
c are tight frames by design.
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As mentioned before, this work is not aimed towards investigating the appro-
priateness of various time-frequency transforms in the context of audio recovery,
which is why we choose traditional Short Time Fourier Transform (STFT) for
all experiments. We use sliding square-rooted Hamming window of size 1024
samples with 75% overlap. The redundancy level of the involved frames (corre-
sponding to per-chunk inverse DFT for the dictionary and forward DFT for the
analysis operator) is 1 (no redundancy), 2 and 4. The social sparsity declipper,
based on Gabor dictionary, requires batch processing of the whole signal. We
adjusted the temporal shift, the window and the number of frequency bins in
accordance with previously mentioned STFT settings3.

SNRy

1 3 5 7 10

SN
R

x̂
-

SN
R

y

0

1

2

3

4

5

6

7

8

9

10
Synthesis SPADE

Redundancy 1
Redundancy 2
Redundancy 4

SNRy

1 3 5 7 10

SN
R

x̂
-

SN
R

y

0

1

2

3

4

5

6

7

8

9

10
Analysis SPADE

Redundancy 1
Redundancy 2
Redundancy 4

SNRy

1 3 5 7 10

SN
R

x̂
-

SN
R

y

0

1

2

3

4

5

6

7

8

9

10
Consistent IHT

Redundancy 1
Redundancy 2
Redundancy 4

SNRy

1 3 5 7 10

SN
R

x̂
-

SN
R

y

0

1

2

3

4

5

6

7

8

9

10
Social sparsity

Redundancy 1
Redundancy 2
Redundancy 4

Fig. 1. Declipping performance in terms of the SDR improvement.

For a measure of performance, we use a simple difference between
signal-to-distortion ratios of clipped (SDRy) and processed (SDRx̂) signals:

SDRy = 20 log10

‖[ M+
c

M−
c

]
x‖2

‖[ M+
c

M−
c

]
x − [ M+

c

M−
c

]
y‖2

,SDRx̂ = 20 log10

‖[ M+
c

M−
c

]
x‖2

‖[ M+
c

M−
c

]
x − [ M+

c

M−
c

]
x̂‖2

3 We use the implementation kindly provided by the authors.
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Hence, only the samples corresponding to clipped indices are taken into
account. Concerning SPADE, this choice makes no difference, since the remain-
der of the estimate x̂ perfectly fits the observations y. However, it may favor the
other two algorithms that do not share this feature.

Audio examples consist of 10 music excerpts taken from RWC database [10],
which significantly differ in tonal and vocal content. The excerpts are of approxi-
mately similar duration (∼10 s), and are sampled at 16 kHz with 16bit encoding.
The inputs are generated by artificially clipping the audio excerpts at five levels,
ranging from severe (SDRy = 1dB) towards mild (SDRy = 10dB).

According to the results presented in Fig. 1, the SPADE algorithms yield
highest improvement in SDR among the four considered approaches. As assumed,
S-SPADE and A-SPADE achieve similar results in a non-redundant setting, but
when the overcomplete frames are considered, the synthesis version performs
somewhat better. Interestingly, the overall best results for the analysis version are
obtained for the twice-redundant frame, while the performance slightly drops for
the redundancy four. This is probably due to the absolute choice of the parameter
ε, and suggests that in the analysis setting, this value should be replaced by a
relative threshold instead. In the non-redundant case, declipping by A-SPADE
and Consistent IHT took (on the average) 3min and 7min, respectively, while
the other two algorithms were much slower4 (on the order of hours).

6 Conclusion

We presented a novel algorithm for non-convex regularization of the declipping
inverse problem. The algorithm is flexible in terms that it can easily accom-
modate sparse (S-SPADE) or cosparse (A-SPADE) prior, and as such has been
used to compare the recovery performance of the two data models. The empiri-
cal results are slightly in favor of the sparse synthesis data model. However, the
analysis version does not fall far behind, which makes it attractive for practical
applications. Indeed, due to the natural way of imposing clipping consistency
constraints, it can be implemented in an extremely efficient way, even allowing
for a real-time signal processing. Benchmark on real audio data demonstrates
that both versions outperform considered state-of-the-art algorithms in the field.

Future work will be dedicated to theoretical analysis of the algorithm, with
emphasis on convergence. A possible extension is envisioned by introducing struc-
tured (co)sparsity priors in the presented algorithmic framework.
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Abstract. Despite being two important problems in audio signal
processing that are interconnected in practice, audio inpainting and
audio source separation have not been considered jointly. It is not uncom-
mon in practice to have the mixtures to be separated which also suffer
from artifacts due to clipping or other losses. In present work, we consider
this problem of source separation using partially observed mixtures. We
introduce a flexible framework based on non-negative tensor factorisa-
tion (NTF) to attack this new task, and we apply it to source separation
with clipped mixtures. It allows us to perform declipping and source sep-
aration either in turn or jointly. We investigate experimentally these two
regimes and report large performance gains compared to source separa-
tion with clipping artefacts being ignored, which is the common approach
in practice.

1 Introduction

Audio inpainting and audio source separation are two important problems in
audio signal processing. The former is defined as the one of reconstructing the
missing parts in an audio signal [1]. It’s been coined “audio inpainting” to draw
an analogy with visual inpainting, a widely studied problem where the goal is to
reconstruct regions in images, for restoration or editing purposes [2]. We consider
here the problem of audio inpainting in which some temporal audio samples are
lost (as opposed to earlier works where losses are in time frequency domain),
such as with saturation of amplitude (clipping) or interfering high amplitude
impulsive noise (clicking), and need to be recovered (called declipping and de-
clicking for these two specific cases respectively).

The problem of audio source separation is the one of separating an audio
signal into meaningful, distinctive sources which add up to a known mixture, such
as separating a music signal into signals from different instruments. Even though
audio source separation and audio inpainting have been studied extensively, these
two problems have not yet been considered jointly. There are common situations,
however, where one task should benefit from the other and vice versa: many audio
signals to be de-clipped are in fact composed of multiple sources and, conversely,
the audio mixtures in various source separation tasks might be clipped due to the
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nature of recording equipment. Hence considering these two tasks simultaneously
could help improve the performance of both.

In this paper we propose a first approach toward this goal. To this end,
we extend our recent work on audio inpainting with application to declipping
[3]. This approach, based on non-negative matrix factorization (NMF) performs
as well or better than the state of the art group sparsity based methods such
as [10]. It builds on the recent successes of NMF [7] and non-negative tensor
factorization (NTF) in audio inpainting [3,9,11]1. Since, NMF/NTF framework
is also very powerful in source separation [5,8,13], it lends itself to addressing
the joint problem of audio inpainting and audio source separation.

Extending [3], we estimate individual sources using a low rank NTF model,
with the help of some temporal source activity information as in [8]. The pro-
posed algorithm not only can perform audio inpainting and source separation
sequentially (i.e., first inpaint the mixture, then separate the sources), but also
can perform these two tasks jointly (i.e., simultaneously inpaint the mixture and
separate the sources). It is shown that joint inpainting and separation benefits
both tasks greatly, especially when the loss due to clipping is significant. The
performance of both the sequential and the joint approaches are shown to be
much better than the performance of source separation when the degradation
due to clipping is ignored as it is usually the case in practice. Section 2 is devoted
to problem formulation and modeling description. The main algorithm is out-
lined in Sect. 3. The experiments are presented in Sect. 4, and some conclusions
are drawn in Sect. 5.

2 Signal Model and Problem Formulation

Let us consider the following single-channel2 mixing equation in time domain:

x′′
t =

J∑

j=1

s′′
jt + a′′

t , t ∈ [[1, T ]], j ∈ [[1, J ]] (1)

where t is the discrete time index, j is the source index, and x′′
t , s′′

jt, and a′′
t denote

respectively mixture, source and quantization noise samples.3 It is assumed that
the mixture is only observed on a subset of time indices Ξ ′′ ⊂ [[1, T ]] called
mixture observation support (MOS). For clipped signals this support indicates
the indices with signal magnitude smaller than the clipping threshold. For the
1 As opposed to [3], earlier works on audio inpainting with NMF/NTF models [9,11]

cannot optimally address arbitrary losses in time domain, since the missing data are
formulated in time frequency domain.

2 This work would be readily extended to the multi-channel case. For sake of simplicity,
we only consider the single-channel case here.

3 Throughout, letters with two primes, e.g., x′′, denote time domain signals, letters
with one prime, e.g., x′ denote framed and windowed-time domain signals and letters
with no primes, e.g., x, denote complex-valued short-time Fourier transform (STFT)
coefficients.
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rest of this paper, we assume for sake of simplicity that there is no mixture
quantization (a′′

t = 0).
The sources are unknown. We assume, however, that it is known which

sources are active at which time periods. For a multi-instrument music for
instance, this information corresponds to knowing which instruments are playing
at any instant. Furthermore it is also assumed that if the mixture is clipped, the
clipping threshold is known.

In order to compute the STFT coefficents, the mixture and the sources are
first converted to windowed-time domain with a window length M and a total
of N windows with resulting coefficients denoted by s′

jmn and x′
mn representing

the original sources and the mixture in windowed-time domain respectively for
m = [[1,M ]], n = [[1, N ]], j = [[1, J ]]. We also introduce the set Ξ ′ ⊂ [[1, N ]]×[[1,M ]]
that is the MOS within the framed representation corresponding to Ξ ′′ in time
domain, and its frame-level restriction Ξ ′

n = {m|(m,n) ∈ Ξ ′}. We will denote
the observed clipped mixture in windowed-time domain as x′

c = {x′
c,n}N

n=1 and
its restriction to un-clipped instants as x̄′ = {x̄′

n}N
n=1, where x̄′

n = [x′
mn]m∈Ξ′

n
.

The STFT coefficients of the sources, sjfn, and the mixture, xfn, are computed
via applying a unitary fourier transfrom, U ∈ C

F×M (F = M), to each window
of the windowed-time domain counterparts. For example, [x1n, · · · , xFn]T =
U[x′

1n, · · · , x′
Mn]T 4.

The sources are modelled in the STFT domain with a normal distribution
(sjfn ∼ Nc(0, vjfn)) where the variance tensor V = [vjfn]j,f,n has the low-
rank NTF structure (with a small K) [8] such that vjfn =

∑K
k=1 qjkwfkhnk

with qjk, wfk, hnk ∈ R+. This model is parametrized by θ = {Q,W,H}, with
Q = [qjk]j,k ∈ R

J×K
+ , W = [wfk]f,k ∈ R

F×K
+ and H = [hnk]n,k ∈ R

N×K
+ .

The assumed information on which sources are active at which time periods
is captured by constraining certain entries of Q and H to be zero as in [8]. Each
of the K components being assigned to a single source through Q(ΨQ) ≡ 0 for
some appropriate set ΨQ of indices, the components of each source are marked
as silent through H(ΨH) ≡ 0 with an appropriate set ΨH of indices.

3 Separation and Declipping

Similar to the algorithm introduced in [3], we propose to estimate model para-
meters using a generalized expectation-maximization (GEM) algorithm [4] and
to estimate the signals using the Wiener filtering [6]. The proposed algorithm is
briefly described in Algorithm 1, and its steps described below. Note that it can
be used not only for joint audio inpainting and source separation, but also for
audio inpainting only, setting the number of sources to 1, and for source sepa-
ration only, when the observed indices of the mixture cover the entire time axis.
4 xT and xH represent the non-conjugate transpose and the conjugate transpose of

the vector (or matrix) x respectively.
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Algorithm 1. GEM algorithm for NTF model estimation
1: procedure Joint-Inpainting-SSeparation-NTF(x′

c, Ξ
′, x̄′, ΨH , ΨQ)

2: Initialize non-negative Q,W,H randomly, set H(ΨH) and Q(ΨQ) to 0
3: repeat
4: Estimate ŝ (sources), given Q,W,H, x̄′, Ξ ′ � E-step, see Sect. 3.1
5: Estimate s̃ (sources obeying clipping constraint) and P̃ (posterior power

spectra), given ŝ, Q,W,H, x̄′, Ξ ′ and x′
c

� Applying clipping constraint, see Sect. 3.2
6: Update Q,W,H given P̃ � M-step, see Sect. 3.3
7: until convergence criteria met
8: end procedure

3.1 Estimation of Sources

All the underlying distributions are assumed to be Gaussian and all the relations
between the source signal and the observations are linear, except the clipping
constraint that will be addressed specifically in Sect. 3.2. Hence, Thus, without
taking into account the clipping constraint, the source can be estimated in the
minimum mean square error (MMSE) sense via Wiener filtering [6] given the
covariance tensor V defined in Sect. 2 by the model parameters Q,W,H.

We can write the posterior distribution of each source frame sjn given the
corresponding observed mixture frame x̄′

n and NTF model θ as sjn|x̄′
n;θ ∼

Nc(ŝjn, Σ̂sjnsjn) with ŝjn and Σ̂sjnsjn being, respectively, posterior mean and
posterior covariance tensor, each of which can be computed by Wiener filtering as

ŝjn = ΣH
x̄′
nsjn

Σ−1
x̄′
nx̄

′
n
x̄′

n, Σ̂sjnsjn = Σsjnsjn − ΣH
x̄′
nsjn

Σ−1
x̄′
nx̄

′
n
Σx̄′

nsjn , (2)

with the definitions Σsjnsjn = diag([vjfn]f ), Σx̄′
nsjn

= U(Ξ ′
n)Hdiag([vjfn]f )

and Σx̄′
nx̄

′
n

= U(Ξ ′
n)Hdiag([

∑
j vjfn]f )U(Ξ ′

n) where U(Ξ ′
n) is the M = F ×|Ξ ′

n|
matrix of columns from U with index in Ξ ′

n.
Note that when there is no noise in the mixture, the resulting estimates for

the sources with the wiener filtering will always add up exactly to the observed
mixture at the non-clipped support.

3.2 Clipping Constraint

For a declipping application, the estimated mixture must have amplitude larger
than clipping threshold outside OS in windowed time domain, that is:

U({m})H
∑

j

ŝjn × sign(x′
mn) ≥ |x′

mn|, ∀n, ∀m �∈ Ξ ′
n. (3)

In order to update the NTF model as described in the following section, the
posterior power spectra, P̃ =

[
p̃jfn = E

[ |sjfn|2∣∣ x̄′
n;θ

]]
j,f,n

, must be computed.
However under the clipping constraint (3), the distribution is no longer Gaussian
and the computation of posterior power spectra is no longer computationally
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simple. Instead we use the Covariance Projection method introduced in [3], in
which the samples not obeying the constraint (3) after the wiener filtering stage
are assumed to be known and equal to the clipping threshold and the wiener
filtering step is repeated with rest of the unknowns still assumed to be gaussian
distributed. As a result, final estimates of the sources s̃, which satisfy (3) and
the corresponding posterior covariance matrix, Σ̃sjnsjn , are obtained. Therefore
the posterior power spectra can be computed as

p̃jfn = E
[ |sjfn|2∣∣ x̄′

n;θ
] ∼= |s̃jfn|2 + Σ̃sjnsjn(f, f). (4)

3.3 Updating the Model

NTF model parameters can be re-estimated using the multiplicative update
(MU) rules minimizing the IS divergence [5] between the the 3-valence ten-
sor of estimated source power spectra P̃ and the 3-valence tensor of the NTF
model approximation V defined as DIS(P̃‖V) =

∑
j,f,n dIS(p̃jfn‖vjfn), where

dIS(x‖y) = x/y − log(x/y) − 1 is the IS divergence; p̃jfn is specified by (4) and
vjfn is as defined in Sect. 2. As a result, Q,W,H can be updated with the mul-
tiplicative update (MU) rules presented in [8]. These MU rules can be repeated
several times to improve the model estimate.

4 Experimental Results

In order to observe the performance of declipping and source separation using
the proposed algorithm, 5 different music mixtures5, each composed of 3 sources
(bass, drums and vocals), are considered under 3 different clipping conditions.
For each mixture with a maximum magnitude of 1 in time domain, 3 clipping
levels at the thresholds of 0.2 (heavy clipping), 0.5 (moderate clipping) and 0.8
(light clipping) are considered, resulting in a total of 15 mixtures with different
clipping levels. Each mixture is reconstructed by joint declipping and source sep-
aration, sequential declipping and source separation and only source separation
ignoring the clipping artefacts. The proposed algorithm has been used for all the
reconstructions6 with 15 components (K = 15 with 5 components assigned to
each source). The STFT is computed using a half-overlapping sine window of
1024 samples (64 ms) and the proposed GEM algorithm is run for 100 iterations.
The sources in the mixtures are artificially silenced during a percentage of the
total time. An example of the activation periods of the sources and corresponding
indices set to zero in Q and H during reconstruction are shown in Fig. 1.

The results of the optimizations can be seen in Table 1. Signal to noise ratio
on the clipped support (SNRm) for the declipped mixture is used to measure the
declipping performance and signal to distortion ratio (SDR) is used to measure
the source separation performance which are computed as described in [12].
5 The mixtures are taken from the professionally produced music recordings of SiSEC

2015 (https://sisec.inria.fr/).
6 For only declipping, the algorithm is used with a single source, and for only the

source separation, the algorithm is used with the observed support set as the entire
time axis.

https://sisec.inria.fr/
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Fig. 1. Typical experimental set-up: a mixture (purple time-domain signal) of 3 sources
(red, green, blue) is clipped at 0.2 (black). It will be un-clipped and separated using the
low-rank NTF model with each source assigned to 5 out of the K = 15 components, as
specified by Q(ΨQ) ≡ 0 (grey entries), and each source being silent at known instants
as specified at the component level by H(ΨH) ≡ 0 (grey entries) (Color figure online).

The results in Table 1 show that when the clipping is severe, joint optimiza-
tion is almost always preferable since it provides improvement on both the quality
of the mixture and the quality of the separated sources with respect to source
separation without declipping. This is as opposed to sequential approach which
provides comparable quality improvement in the mixture at the expense of the
performance in source separation. In fact, for heavy clipping the declipping in
sequential approach often reduced the performance of source separation notica-
bly with respect to separation without declipping. As the clipping gets lighter,
the performance of sequential method approaches to that of joint method, and
finally performs slightly better for light clipping. The joint optimization, how-
ever, still has few drawbacks which could be improved upon. The declipping in
the sequential approach is performed with 15 components without any restric-
tions whereas the joint optimization is performed with the additional limitation
that each source uses 5 components independently. Hence it is not possible that
two sources share a common component in the joint optimization. This can be
overcome by devising better methods to inject the prior information regarding
the sources. It should be also noted that the sequential optimization is approxi-
mately twice as fast as joint optimization due to handling much less complicated
problems in either phases of the sequential processing. The fact that the wiener
filtering stage is independent for each window and can be parallelized to provide
significant speed improvements, can be helpful to overcome this problem in the
future.

5 Conclusion

Leveraging low-rank NTF techniques, we have proposed a novel framework to
attack simultaneously audio inpainting and audio source separation. Focusing
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Table 1. Performance of joint declipping and source separation (“Joint”), of sequential
declipping and source separation (“Sequential”) and of source separation only using
clipped signal (“S. Separation”), on 5 mixtures of 3 sources and for three levels of
clipping from light to heavy. The energy loss percentage due to declipping is also
shown in the third column. The declipping performance is measured with SNRm while
the source separation performance is measured with SDR.

Clipping loss Energy loss Joint Sequential S. Separation

SNRm SDR SNRm SDR SNRm SDR

Mixture 1 Heavy (th. 0.2) 42.56 % 14.64 9.22 14.14 7.08 7.22 6.01

Mod. (th. 0.5) 2.60 % 18.78 8.09 19.30 8.10 15.84 8.13

Light (th. 0.8) 0.04 % 24.49 8.08 25.61 8.07 20.75 8.09

Mixture 2 Heavy (th. 0.2) 50.86 % 9.72 5.13 9.72 5.58 6.62 4.27

Mod. (th. 0.5) 4.43 % 17.97 6.98 18.57 6.57 14.53 7.11

Light (th. 0.8) 0.08 % 24.25 6.81 25.15 6.73 21.85 6.76

Mixture 3 Heavy (th. 0.2) 49.28 % 16.64 11.82 17.21 −0.03 7.31 7.79

Mod. (th. 0.5) 2.52 % 22.41 8.97 22.18 7.07 14.74 9.08

Light (th. 0.8) 0.09 % 25.45 7.15 24.69 9.12 20.78 9.25

Mixture 4 Heavy (th. 0.2) 50.78 % 7.89 6.11 6.25 4.84 7.44 5.86

Mod. (th. 0.5) 2.31 % 19.42 9.47 17.88 8.95 15.05 9.14

Light (th. 0.8) 0.02 % 27.67 9.80 29.45 10.10 19.12 10.14

Mixture 5 Heavy (th. 0.2) 37.11 % 13.60 6.61 13.34 2.76 8.26 5.15

Mod. (th. 0.5) 1.19 % 18.58 7.85 20.22 8.23 15.20 8.23

Light (th. 0.8) 0.04 % 17.82 8.10 17.97 8.65 17.73 8.54

Average Heavy (th. 0.2) 46.12 % 12.50 7.78 12.13 4.05 7.37 5.82

Mod. (th. 0.5) 2.61 % 19.43 8.27 19.63 7.78 15.07 8.34

Light (th. 0.8) 0.05 % 23.93 7.99 24.57 8.54 20.05 8.56

on the case where signal loss is due to clipping, we investigated audio declipping
and source separation, either jointly or sequentially, with comparison to source
separation ignoring the clipping. The results have shown that the clipping arte-
facts must not be ignored in order to have a good source separation performance,
especially in the case of severe clipping. We also showed that, the source sep-
aration also improves the performance of declipping and the joint optimization
provides better source separation performance in almost all the cases when there
is considerable clipping.

The proposed algorithm still has some limitations, such as the reduced flexi-
bility in utilizing the components in the low rank NTF structure. Hence improved
methods to provide prior information on the sources without such limitations is
future work. It is also observed that the joint algorithm is slower than the other
approaches, and increasing the speed of optimization through better parallel
processing is also a promising direction for future research.
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Abstract. Many monaural signal decomposition techniques proposed in
the literature operate on a feature space consisting of a time-frequency
representation of the input data. A challenge faced by these approaches
is to effectively exploit the temporal dependencies of the signals at scales
larger than the duration of a time-frame. In this work we propose to
tackle this problem by modeling the signals using a time-frequency rep-
resentation with multiple temporal resolutions. For this reason we use
a signal representation that consists of a pyramid of wavelet scattering
operators, which generalizes Constant Q Transforms (CQT) with extra
layers of convolution and complex modulus. We first show that learn-
ing standard models with this multi-resolution setting improves source
separation results over fixed-resolution methods. As study case, we use
Non-Negative Matrix Factorizations (NMF) that has been widely con-
sidered in many audio application. Then, we investigate the inclusion
of the proposed multi-resolution setting into a discriminative training
regime. We discuss several alternatives using different deep neural net-
work architectures, and our preliminary experiments suggest that in this
task, finite impulse, multi-resolution Convolutional Networks are a com-
petitive baseline compared to recurrent alternatives.

Keywords: Source separation · Scattering · Non-negative matrix fac-
torization · Deep learning

1 Introduction

Monaural Source Separation is a fundamental inverse problem in audio and
speech processing. In recent years, non-negative matrix factorization (NMF) [1]
has been widely used for solving this and other challenging tasks, see [2] for a
recent review. The basic idea is to decompose a time-frequency representation of
the signal in terms of elementary atoms of dictionaries representing the different
sources present in the mixture.
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More recently, several works have observed that the efficiency of these meth-
ods can be improved with discriminative training. Discriminatively trained dic-
tionary learning techniques [3–5] show the importance of adapting the modeling
task to become discriminative at the inverse problem at hand. Going further in
this direction, a number of works completely bypass the modeling aspect and
approach inverse problems as non-linear regression problems using Deep Neural
Networks (DNN) with differet levels of structure ranging from simple frame-
by-frame regressors to more sophisticated Recurrent Neural Networks (RNN).
These ideas have been applied to speech separation [6] and speech enhancement
[7,8].

Although NMF applied on spectral features is highly efficient, it fails to model
long range geometrical features that characterize speech signals. Increasing the
temporal window is not the solution, since it increases significantly the dimen-
sionality of the problem and reduces the discriminative power of the model. In
order to overcome this limitation, many works have proposed regularized exten-
sions of NMF to promote learned structure in the codes. Examples of these
approaches are, temporal smoothness of the activation coefficients [9], including
co-occurrence statistics of the basis functions [10], and learned temporal dynam-
ics with Kalman filtering like techniques [11–13] or integrating RNN into the
NMF framework [14].

Our main contribution is to show that using a stable and robust multi-
resolution representation of the data can benefit the source separation algo-
rithms in both discriminative and non-discriminative settings. Previous works
have shown that the choice of the input features plays a key role on source
separation [8,15] and speech recognition [16]. We take this observation a step
further to the multi-resolution setting. We consider a deep representation based
on the wavelet scattering pyramid, which produces information at different tem-
poral resolutions and defines a metric which is increasingly contracting and can
be thought of as a generalization of the CQT. Discriminative features having
longer temporal context can be constructed with the scattering transform [17]
and have been sucessfully applied to audio signals by [18]. While these features
have shown excellent performance in various classification tasks, in the context
of source separation we require a representation that not only captures long-
range temporal structures, but also preserves as much temporal discriminability
as possible.

As a non-discriminative setting, we extend the NMF framework to the pro-
posed pyramid representation. We model the signals using non-negative dictio-
naries at every level of the hierarchy. While NMF dictionaries at the first level
are very selective to temporally localized energy patterns, deeper layers pro-
vide additional modeling of the longer temporal dynamics [15]. Further, we also
consider the discriminative training regime using several neural architectures.
We evaluate both settings on a multi-speaker speech separation task, and we
observe that in both training regimes the multi-resolution setting leads to better
performance with respect to the baselines.
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2 Single-Channel Source Separation

We consider the setting in which we observe a temporal signal y(t) that is the
sum of two sources y(t) = x1(t) + x2(t), and we aim at finding estimates x̂i(t),
with i = 1, 2. We consider the supervised monoaural source separation problem,
in which we have representative training data for each of the sources.

Most recent techniques typically operate on a non-negative time-frequency
representation. Let us denote as Φ(y) ∈ R

m×n the transformed version of y(t),
comprising m frequency bins and n temporal frames. This transform can be
thought as a non-linear analysis operator and is typically defined as the mag-
nitude (or power) of a time-frequency representation such as the Short-Time
Fourier Transform (STFT). Other robust alternatives have also been explored
[6,8]. In all cases, the temporal resolution of the features is fixed and given by
the frame duration.

Performing the separation in the non-linear representation is key to the suc-
cess of these algorithms. The transformed domain is in general invariant to some
irrelevant variability of the signals (such as local shifts), thus relieving the algo-
rithms from learning it. This comes at the expense of inverting the unmixed
estimates in the feature space.

The most common choice is to use the magintude STFT as the feature space.
In this case, the phase recovery problem can be approximately solved using soft
masks to filter the mixture signal [19]. The strategy resembles Wiener filtering
and has demonstrated very good results in practice. Specifically, Φ(y) = |S{y}|,
where S{y} ∈ C

m×n denotes the STFT of y. The estimated signals are obtained
by filtering the mixture,

x̂i = S−1 {Mi ◦ S{y}} , with Mi =
̂Φ(xi)p

∑
l=1,2

̂Φ(xl)p
, (1)

where multiplication denoted ◦, division, and exponentials are element-wise oper-
ations. The parameter p defines the smoothness of the mask, we use p = 2 in
our experiments.

2.1 Non-negative Matrix Factorization

Source separation methods based on matrix factorization approaches have
received a lot of attention in the literature in recent years. NMF-based source
separation techniques attempt to find the non-negative activations Zi ∈ R

q×n,
i = 1, 2 best representing the different speech components in non-negative dic-
tionaries Di ∈ R

m×q. In practice, first a separation is obtained in the feature
spaces by solving a clasic NMF problem,

min
Zi≥0

D(Φ(x)|
∑

i=1,2

DiZi) + λ
∑

i=1,2

R(Zi), (2)
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where the first term in the optimization objective measures the dissimilarity
between the input data and the estimated channels in the feature space. Com-
mon choices of D are the squared Euclidean distance, the Kullback-Leibler diver-
gence, and the Itakura-Saito divergence. The second term in the minimization
objective is included to promote some desired structure of the activations. In
this work we use D reweighted squared Euclidean distance and the �1 norm as
the regularization function R, for which there exist standard optimization algo-
rithms, see for example [20]. Once the optimal activations are solved for, the
spectral envelopes of the speech are estimated as ̂Φ(xi) = DiZi, and the phase
recovery is solved using (1).

In this supervised setting, the dictionaries are obtained from training data.
The classic approach is to build a model for each source independently and later
use them together at testing time. Many works have observed that sparse coding
inference algorithms can be improved by directly optimizing the parameters of
the model on the evaluation cost function. Task-aware (or discriminative) sparse
modeling from [3] shows how to back-propagate through the Lasso. These ideas
have been used in the context of source separation and enhancement [4,5]. The
goal is to obtain dictionaries such that the solution of (2) also minimizes the
reconstruction given the ground truth separation. It is important to note that
the level of supervision is very mild, as in the training of autoencoders. We
are artificially generating the mixtures, and consequently obtaining the ground
truth.

2.2 Purely Discriminative Settings

With the mindset of the discriminative learning, one is tempted to simply replace
the inference step by a generic neural network architecture, having enough capac-
ity to perform non-linear regression. The systems are trained so as to optimize
the fit between the ground truth separation and the output, the mean squared
error (MSE) being the most common. Note that this can be performed in the
feature space or in the time domain [8] (when the phase recovery is simple).
Other alternatives studied in the literature consist of predicting the masks given
in (1) as described by [6].

3 Pyramid Wavelet Scattering

In this section we present briefly the proposed wavelet scattering pyramid, which
is conceptually similar to standard scattering networks introduced by [21], but
creates features at different temporal resolutions at every layer.

Wavelet Filter Bank: We consider a complex wavelet with a quadrature phase.
We assume that the center frequency of Fψ is 1 and that its bandwidth is of the
order of Q−1. Wavelet filters centered at the frequencies λ = 2j/Q are computed
by dilating ψ: ψλ(t) = λψ(λ t), and hence Fψλ(ω) = ψ̂(λ−1ω). We denote by
Λ the index set of λ = 2j/Q over the signal frequency support, with j ≤ J1.
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The resulting filter bank has a constant number Q of bands per octave and
J1 octaves. Let us define φ1(t) as a low-pass filter with bandwidth 2−J1 . The
wavelet transform of a signal x(t) is Wx = {x ∗ φ1(t), x ∗ ψλ(t)}λ∈Λ.

Pyramid Scattering Transform: Instead of using a fixed bandwidth smooth-
ing kernel that is applied at all layers, we sample at critical rate in order to pre-
serve temporal locality as much as possible. We start by removing the complex
phase of wavelet coefficients in Wx with a complex modulus nonlinearity. Then,
we arrange these first-layer coefficients as nodes in the first level of a tree. Each
node of this tree is down sampled at the critical sampling rate of the layer Δ1,
given by the reciprocal of the largest bandwidth present in the filter bank:

|W 1|x = {x1
i }i=1...1+|Λ| = {x ∗ φ1(Δ1n), |x ∗ ψλ(Δ1n)|}λ∈Λ.

These first-layer coefficients give localized information both in time and fre-
quency, with a trade-off dictated by the Q factor. They are however sensitive to
local time-frequency warps, which are often uninformative. In order to increase
the robustness of the representation, we transform each of the down sampled
signals with a new wavelet filter bank and take the complex modulus of the
oscillatory component. For simplicity, we assume a dyadic transformation, which
reduces the filter bank to a pair of conjugate mirror filters {φ2, ψ2} [22], carrying
respectively the low-frequencies and high-frequencies of the discrete signal from
above the tree:

|W 2|x = {x1
i ∗ φ2(2n), |x1

i ∗ ψ2(2n)|}i=1...|W 1|.

Every layer thus produces new feature maps at a lower temporal resolution. As
shown in [17], only coefficients having gone through m ≤ mmax non-linearities
are in practice computed, since their energy quickly decays. We fix mmax = 2 in
our experiments. We can reapply the same operator as many times k as desired
until reaching a temporal context T = 2kΔ1. If the wavelet filters are chosen
such that they define a non-expansive mapping [17], it results that every layer
defines a metric which is increasingly contracting. Every layer thus produces
new feature maps at a lower temporal resolution. In the end we obtain a tree of
different representations, Φj(x) = |W j |x, j = 1, . . . , k.

4 Source Separation Algorithms

This section shows how the pyramid scattering features could be used for per-
forming source separation. Let us suppose two different sources X1 and X2, and
let us consider for simplicity the features Φj(xi), j = 1, 2, i = 1, 2, xi ∈ Xi,
obtained by localizing the scattering features of two different resolutions at their
corresponding sampling rates. Therefore, Φ1 carries more discriminative and
localized information than Φ2.

Non-discriminative Training: In the non-discriminative training, we train
independent models for each source. Given training examples Xi from each
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source, we consider a NMF of each of the features:

min
Dj

i ,Zj
i ≥0

∑

xi ∈ Xi

1
2
‖Φj(xi) − Dj

i Z
j
i ‖2 + λj

i‖Zj
i ‖1,

where here the parameters λj
i control the sparsity-reconstruction trade-off in the

sparse coding at level j. In our experiments we used a fixed value for all of them
λj

i = λ. At test time, given y = x1 +x2, we estimate x̂1 and x̂2 as the solution of

min
x̂1+x̂2=y,Zj

i ≥0

∑

i=1,2

1
2
‖Φ1(x̂i)−D1

i Z1
i ‖22+λ1

i ‖Zi‖1+
1
2
‖Φ2(x̂i)−D2

i Z2
i ‖22+λ2

i ‖Z2
i ‖1.

This problem is a coupled phase recovery problem under linear constraints. It
can be solved using gradient descent as in [23], but in our setting we use a greedy
algorithm, which approximates the unknown complex phases using the phase of
W1y and W2|W1y| respectively. Similarly as in [8], we simplify the inference by
using a stronger version of the linear constraint y = x1 + x2.

Discriminative Training: The pyramid scattering features can also be used to
train end-to-end models. The most simple alternative is to train a DNN directly
from features having the same temporal context as second layer scattering fea-
tures. For simplicity, we replace the second layer of complex wavelets and modu-
lus with a simple Haar transform: Φ2(x) = {|x∗ψλ|∗hk(Δ1n)}λ∈Λ,k=0,...J2 , where
hk is the Haar wavelet at scale 2k, and we feed this feature into a DNN with
the same number of hidden units as before. Unlike the non-discriminative case,
we do not take the absolute value as in standard scattering to leave the chance
to the DNN to recombine coefficients before the first non-linearity. We report
results for J2 = 5 which corresponds to a temporal context of 130 ms. We will
refer to this alternative as DNN-multi. As a second example, we also consider a
multi-resolution Convolutional Neural Network (CNN), constructed by creating
contexts of three temporal frames at resolutions 2j , j = 0 . . . , J2 = 5. We will
refer to this alternative as CNN-multi. This setting has the same temporal con-
text as the DNN-multi but rather than imposing separable filters we leave extra
freedom. This architecture can access relatively large temporal context with a
small number of learnable parameters. Since the phase recovery problem cannot
be approximated with softmax as in (1), we use as the cost function the MSE of
the reconstructed feature at all resolutions and then solve a phase recovery.

5 Experiments

As a proof of concept, we evaluated the different alternatives in a multi-speaker
setting in which we aim at separating male and female speech. In each case,
we trained two gender-specific modeles. The training data consists of recordings
of a generic group of speakers per gender, none of which were included in the
test set. The experiments were carried out on the TIMIT corpus. We adopted
the standard test-train division, using all the training recordings (containing 462



Audio Source Separation with Discriminative Scattering Networks 265

Table 1. Source separation results on a multi-speaker settings. Average SDR, SIR and
SAR (in dB) for different methods. Standard deviation of each result shown between
brackets.

SDR SIR SAR

NMF 6.1 [2.9] 14.1 [3.8] 7.4 [2.1]

scatt-NMF1 6.2 [2.8] 13.5 [3.5] 7.8 [2.2]

scatt-NMF2 6.9 [2.7] 16.0 [3.5] 7.9 [2.2]

CQT-DNN 9.4 [3.0] 17.7 [4.2] 10.4 [2.6]

CQT-DNN-5 9.2 [2.8] 17.4 [4.0] 10.3 [2.4]

CQT-DNN-multi 9.7 [3.0] 19.6 [4.4] 10.4 [2.7]

CQT-CNN-multi 9.9 [3.1] 19.8 [4.2] 10.6 [2.8]

different speakers) for building the models and a subset of 12 different speakers
(6 males and 6 females) for testing. For each speaker we randomly chose two clips
and compared all female-male combinations (144 mixtures). All signals where
mixed at 0 dB and resampled to 16 kHz. We used the source-to-distortion ratio
(SDR), source-to-interference ratio (SIR), and source-to-artifact ratio (SAR)
from the BSS-EVAL metrics [24]. We report the average over the both speakers.

Non-discriminative Settings: As a baseline for the non-discriminative setting
we used standard NMF with STFT of frame lengths of 1024 samples and 50 %
overlap, leading to 513 feature vectors. The dictionaries were chosen with 200
and 400 atoms. We evaluated the proposed scattering features in combination
with NMF with one and two layers, referred as scatt-NMF1 and scatt-NMF2

respectively. We use complex Morlet wavelets with Q1 = 32 voices per octave
in the first level, and dyadic Morlet wavelets (Q2 = 1) for the second level, for
a review on Morlet wavelets refer to [22]. The resulting representation had 175
coefficients for the first level and around 2000 for the second layer. We used
400 atoms for scatt-NMF1 and 1000 atoms for scatt-NMF2. Features were
frame-wise normalized and we used λ = 0.1. All parameters were obtained using
cross-validation on a few clips separated from the training as a validation set.

Discriminative Settings: We use a single and multi-frame DNN s as a baseline
for this training setting. The network architectures consist of two hidden layers
using the outputs of the first layer of scattering, that is, the CQT coefficients
at a given temporal position. It uses rectified linear units (ReLU’s) as in the
rest of the architectures and the output is normalize so that it corresponds
to the spectral mask discussed in (1). The multi-frame version considers the
concatenation of 5 frames as inputs matching the temporal context of the tested
multi-resolution versions. We used 512 and 150 units for the single-frame DNN
(referred as CQT-DNN ) and 1024 and 512 for the multi-frame one (referred as
CQT-DNN-5 ), increasing the number of parameters did not improve the results.
We optimize the network to optimize the MSE to each of the sources. We also
include the architectures DNN-multi and CNN-multi described in Sect. 4. In
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all cases the weights are randomly initialized and training is performed using
stochastic gradient descent with momentum. We used the GPU-enabled package
Matconvnet [25].

Table 1 shows the results obtained for the speaker-specific and multi-speaker
settings. In all cases we observe that the one layer scattering transform out-
performs the STFT in terms of SDR. Furthermore, there is a tangible gain in
including a deeper representation; scatt-NMF2 performs always better than
scatt-NMF1. While the gain in the SDR and SAR are relatively small the SIR
is 3 dB higher. It is thus benefitial to consider a longer temporal context in
order to perform the separation sucessfully. On the other hand, as expected,
the discriminative training yields very significant improvements. The same rea-
sons that produced the improvements in the non-discriminative setting also have
an impact in the discriminative case. Adding enough temporal contexts to the
neural regressors improves their performance. The multi-temporal representa-
tion plays a key role as simply augmenting the number of frames does not lead
to better performance (at least using baseline DNNs).

Discussion: We have observed that the performance of baseline source separa-
tion algorithms can be improved by using a temporal multi-resolution represen-
tation. The representation is able to integrate information across longer temporal
contexts while removing uninformative variability with a relatively low parame-
ter budget. In line with recent findings in the literature, we have observed that
including discriminative criteria in the training leads to significant improvements
in the source separation performance. While this report presents some promising
initial results, several interesting comparisons need to be made and are subject of
current research. Recent studies have evaluate the use of deep RNN’s for solving
the source separation problem [6,8]. We are currently addressing the question of
comparing different neural network architectures that exploit temporal depen-
dancies and assessing whether the use of multi-resolution representation can play
a role as in this initial study.
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Abstract. In this paper, we address the problem of dictionary learning
for sparse representation. Considering the regularized form of the dictio-
nary learning problem, we propose a method based on a homotopy app-
roach, in which the regularization parameter is overall decreased along
iterations. We estimate the value of the regularization parameter adap-
tively at each iteration based on the current value of the dictionary and
the sparse coefficients, such that it preserves both sparse coefficients and
dictionary optimality conditions. This value is, then, gradually decreased
for the next iteration to follow a homotopy method. The results show
that our method has faster implementation compared to recent dictio-
nary learning methods, while overall it outperforms the other methods
in recovering the dictionaries.

Keywords: Dictionary learning · Sparse representation · Homotopy ·
Adaptive · Warm-start method

1 Introduction

In recent years, it has been shown that sparse representation leads to promising
results in many applications of signal processing [3]. Sparse representation deals
with approximating a signal as a linear combination of a few known signals,
called atoms, chosen from a signal collection, called dictionary. The performance
of sparse coding for a particular class of signals is highly related to a dictionary
having the ability to represent all signals in the class by linear combinations of a
few atoms. Learning sparsifying dictionaries has also been shown to outperform
known and predetermined dictionaries in some applications for classes of signals
such as images [4] and audio [6].

A common approach to obtain the dictionary is to use alternating minimiza-
tion in an iterative procedure [5,13]. In the sparse coding stage, sparse coefficients
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are obtained while the previously found dictionary is fixed, and in the dictio-
nary update stage, the dictionary is found based on the obtained coefficients.
In the sparse coding stage, Orthogonal Matching pursuit (OMP) [10] and Itera-
tive Shrinkage Thresholding (IST) algorithm [12] have been used in Method of
Optimal Directions (MOD) [5] and Majorization Method (MM) [13] dictionary
learning, respectively. Among some examples of dictionary update stages, the
MOD used the observation matrix multiplied by pseudo inverse of representa-
tion matrix, and a Maximum A Posteriori (MAP)-based dictionary learning in
[7] used a gradient descent method, both followed by normalization of dictionary
columns. However, all methods proposed so far have not considered the adap-
tivity of uncertain parameters of the cost function, such as the regularization
parameter, to the data.

In this paper, we propose a dictionary learning method for sparse represen-
tations, which benefits from a homotopy (continuation) method. Generally, the
homotopy is a heuristic that, first, computes the solution of an initial simpler
problem, in which the global minimum can be easily found, and then, gradu-
ally deforms the initial problem to the desired one. The homotopy has also been
used in solving nonlinear equations [8], and in the optimization relating to sparse
representation with fixed dictionary [2,12]. Inspired by a homotopy approach,
we propose a method which starts solving the dictionary learning cost function
from a higher value of the regularization parameter, and adaptively decreases
this parameter along iterations. Although our method uses an alternating mini-
mization approach, as we explain through this paper, being capable of changing
the value of the regularization parameter enables us to choose a regularization
parameter such that it keeps the sparse representation solutions near the optimal
after updating the dictionary. Our method can also be seen as a method that
uses a homotopy approach with an adaptive regularization parameter selection.

In the following sections, the dictionary learning problem is first discussed in
Sect. 2. Then, Sect. 3 is devoted to the description of our proposed method. In
Sect. 4, we evaluate the performance and speed of our method in comparison to
other dictionary learning algorithms.

2 The Dictionary Learning Problem

Let {yl ∈ R
p}L

l=1 be the set of training signals, and {xl ∈ R
q}L

l=1 be the set of
corresponding representation coefficients over the dictionary D ∈ R

p×q. Forming
a training data matrix by Y � [y1 . . .yL], and the representation matrix by
X � [x1 . . .xL], the dictionary learning problem for sparse representations, as
used in [13], can be mathematically modeled by the joint optimization problem
of the form

argmin
D∈D,X

{‖Y − DX‖2F + λd‖X‖1,1} (1)

where ‖.‖F indicates the Frobenius norm, and ‖X‖r,s �
∑

i (
∑

j |xi,j |r)s/r.
Although other matrix norms (generally 0 < r < 1 and 0 < s < 1), pro-
motes sparsity in the representations in (1). ‖X‖1,1 is used for this purpose due
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to its convexity and also its separability into the absolute sum of the individual
entries of the matrix i.e. ‖X‖1,1 =

∑
i

∑
j |xi,j |. In (1), λd is the desired value for

the regularization parameter, and is set to achieve a suitable tradeoff between
the accuracy of the representations and the sparsity level in X. The desired value
of the regularization parameter depends on the application in which the dictio-
nary learning is employed. As an example in [4], this value is set proportional
to the variance of Gaussian noise for an image denoising application. Since solv-
ing the optimization problem in (1) tends to increase the norms of the atoms,
which unfavorably affects some sparse representation algorithms, it is desirable
to constrain the norms of the dictionary atoms by defining the admissible set of

D = {D ∈ R
p×q s.t ∀j ||dj ||2 ≤ 1}. (2)

3 Our Proposed Method

Using a homotopy approach, we start to solve the optimization problem in (1)
with a high value of the regularization parameter, and then decrease it along the
iterations adaptively until reaching the desired value of λd. The starting value
for the regularization parameter and the procedure of choosing its values along
iterations is discussed in Sect. 3.3. So our proposed method at the nth iteration,
instead of a fixed value of λd, solves the optimization problem of the form

argmin
D∈D,X

{‖Y − DX‖2F + λ(n)‖X‖1,1} (3)

where as n grows, λ(n) decreases adaptively.
In order to solve the minimization problem in (3), our algorithm alternates

among the sparse coding stage, the dictionary update stage and the update of
λ(n). Our method also uses X(n) and D(n) found in the optimization problem
with λ(n) as a warm-start for solving the optimization problem with the nearby
value of λ(n+1). Using a warm-start strategy has been previously shown to be
effective in improving the speed of dictionary learning algorithms [11,13].

3.1 Sparse Coding Stage

In our method, a sparse coding algorithm which belongs to the class of IST
methods is used. These methods benefit from a proper initialization enabling
us to use the warm-start strategy. At the kth iteration of the sparse coding
algorithm in the nth dictionary learning iteration, the sparse coding solves

X(k+1) = argmin
X

{‖X − U(k)‖2F +
λ(n)

c
‖X‖1,1} (4)

in which c should satisfy c > ‖DTD‖ where ‖.‖ stands for the spectral norm,
and U(k) � X(k) + 1

c (DT (Y − DX(k))) [12]. The global optimum of the convex
and non-smooth problem in (4), is the point with zero subgradient i.e.

2c(X − U(k)) − λ(n)P ∈ 0 (5)
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where P = ∇‖X‖1,1 is a set of matrices whose entries satisfy
⎧
⎨

⎩

pi,j = 1 if xi,j > 0
pi,j ∈ [−1 1] if xi,j = 0
pi,j = −1 if xi,j < 0.

The point that satisfies the optimality condition (5), is obtained by X(k) =
Sλ(n)

2c

(ui,j) which is a soft thresholding operator on entries of U with the thresh-

old value of λ(n)

2c . Using the soft thresholding operator there is one single matrix
P(k) from the set P which makes the condition in (5) turn into

2c(X(k) − U(k)) − λ(n)P(k) = 0. (6)

3.2 Dictionary Update Stage

The dictionary update stage is to find the minimization problem in (1), while X
is fixed with the value found in the previous sparse coding stage. Similar to [7],
we use the gradient descent algorithm. So in the kth iteration of the gradient
descent of the nth iteration of dictionary learning algorithm, our method updates
the dictionary by

D(k+1) = D(k) + ρ(Y − D(k)X(n))X(n)T (7)

where ρ is an appropriate constant and is set to .001 in our implementations.
Using the gradient descent has a fast implementation, and due to using a proper
initialization, enables us to employ a warm-start strategy, similar to sparse cod-
ing algorithm in our method. Then, our algorithm normalizes the atoms whose
norms are more than one to the unit norm and keep the other atoms intact.

3.3 Determining the Regularization Parameter

In many homotopy methods, decreasing the regularization parameter is done
heuristically by a linear or exponential decay [9]. However in this section, we
propose a more sophisticated choice for this value.

One of the disadvantages of the alternating minimization between the two
stages of dictionary learning algorithms is that each stage may not preserve
the optimality of the other one. So the solutions in an alternating minimization
approach might oscillate around an optimal point. To understand this, assume
without loss of generality that dictionary update is performed after sparse coding
stage at each iteration. Updating the dictionary may not preserve the optimality
condition derived for the sparse coding in (5) or equivalently in (6), since this
condition is not considered in the dictionary update stage. So updating D might
lead to a deviation from the optimality condition of sparse coding at end of
each iteration of dictionary learning algorithm. Being capable of changing the
regularization parameter in our method, in order to alleviate this, after the
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dictionary update stage we choose the regularization parameter in such a way
that it best preserves the optimality condition in (6) for sparse coding. The
criterion for optimality of sparse coding stage could be the Frobenius norm of
the term that is set to zero in (6). After the alteration of D, the value of U
changes, and the mentioned term might not be equal to zero. So we find the
value of the regularization parameter which minimizes the Frobenius norm of
the term set to zero in (6), after updating the dictionary, based on the current
estimate of D and X i.e.

λopt = argmin
λ

‖R(n) − λP(n)‖2F

= argmin
λ

{Tr(R(n)TR(n)) + λ2Tr(P(n)TP(n)) − 2λTr(P(n)TR(n))} (8)

where R(n) = 2c(X(n) − U(n)). The global optimum of the above least square
minimization problem can be found by setting its derivative to zero which leads

λopt =
Tr(P(n)TR(n))

Tr(P(n)TP(n))
. (9)

Having found the optimal value for λ(n) based on the current estimation of
X and D, in order to follow a homotopy, we gradually decrease this value by
a constant factor which leads to λ(n+1) = (1 − ε)λopt where ε is a small con-
stant. However, implementing some iterations of our algorithm without applying
λ(n+1) = (1 − ε)λopt is desirable, since it leads to equilibrium for a joint point of
(X,D, λ) (Note that the value of λ here is higher than the desired value). The
value of regularization parameter is also forced to be bounded to the desired
value of λd which makes final iterations be implemented with this value of reg-
ularization parameter. It is worth mentioning that the procedure of finding the
optimal value for regularization parameter and decreasing it by a constant factor
has been used in a homotopy based sparse coding (with fixed dictionary) in [12].
However the procedure of obtaining the optimal value is completely different
and novel in our method, and is adapted to the dictionary learning application.

The initial optimal value of the regularization parameter is set to ‖DT Y ‖∞,
where ‖.‖∞ returns the maximum absolute value of the matrix entries, since for
λ(1) > ‖DT Y ‖∞, the solution of zero is optimal in (5) [12], and consequently, no
update of initial dictionary is occurred in the dictionary update stage (Fig. 1).

It is worth mentioning that the performance of homotopy methods depends
on the tracing the optimal solutions while the value of the regularization para-
meter changes. As we discussed in this subsection, by the proposed optimal
choice for the regularization parameter, our algorithm tends to keep the optimal
solutions along iterations for both dictionary and sparse coefficients.

4 Simulations Results

In this section, we compare our method with other methods using synthetic
signals to evaluate the performance of algorithms in recovering the dictionary
that produces the data.
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– Initialization: Choose an initial dictionary D ∈ Rp×q

– For n = 1, . . . , N (main loop)
Sparse coding stage:
1. Initialize with D = D(n−1), X(k=0) = X(n−1)

2. For k = 1, . . . , Ks

U(k) = X(k−1) +
1

c
(DT (Y − DX(k−1))),X(k) = S λ(n)

2c

(U(k))

End For

3. Set X(n) = X(Ks)

Dictionary update stage:
1. Initialize with X = X(n), D(k=0) = D(n−1)

2. For k = 1, . . . , Kd

D(k) = D(k−1) + ρ(Y − D(k−1)X)XT

Normalize columns of dictionary whose norms are more than 1.
3. End For
4. Set D(n) = D(Kd)

Regularization parameter selection:
1. Obtain the optimum regularization parameter λopt by (9)
2. decrease the regularization parameter by λ(n+1) = max((1 − )λopt, λd)

– End For (main loop)

– Final answer is D = D(N)

Fig. 1. Our proposed dictionary learning algorithm

A dictionary of size 30 × 60 is randomly generated with independent identi-
cally distributed (i.i.d.) Gaussian entries, and its columns are normalized to have
unit norms. 4000 sample signals {yl}4000l=1 are produced by linear combination of
a few (precisely determined by Q in each experiment) number of atoms with the
coefficients which are i.i.d. Gaussian in random and independent locations. We
compare our method with MOD [5] and K-SVD [1] as two well-known meth-
ods, and also with the Majorization dictionary learning algorithm [13] which
has improved those methods and its sparse coding algorithm is similar to our
method. For other methods, the MATLAB codes published online by the authors
were used. All the experiments were done with core i5 CPU with 4 GB of memory
using Matlab 2011a under Microsoft Windows 7 operating system.

The percentages of recovered atoms are compared for different methods dur-
ing the execution time with data generated by Q = 4 number of atoms in Fig. 2.
The CPU time is considered in this experiment to roughly compare the compu-
tational complexity of the algorithms. The value of ε for homotopy decreasing
factor is set to 0.05 and applied every 4 iterations (to obtain an equilibrium point
for a higher value of the regularization parameter, as described in the previous
section). We found that this implementation leads to an appropriate tradeoff
between the speed and preserving the performance in our algorithm. The desired
value of λd in our algorithm and the value of the regularization parameter in MM
method are both set to 0.18. Figure 2 shows that our method converges faster
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and more accurate in this case. In order to better compare the speed of the algo-
rithms, the CPU times are reported for different algorithms while the sparsity
level Q varies from 3 to 6. Also, the percentages of the recovered atoms for this
experiment are shown in Fig. 3(a) to compare the performance of algorithms in
recovering dictionary atoms. The corresponding implementation times are shown
in Fig. 3(b). The values are averaged over three independent implementations of
algorithms. Based on this figure, our algorithm is more successful in recovering
the dictionary except for Q = 3, and is faster in all the cases, compared to other
methods.

Fig. 2. Comparison of the percentage of recovered atoms vs. the computational time
for different methods in Q = 4.

Fig. 3. Comparison of performance of dictionary learning algorithms for datasets with
different values of sparsity level Q: (a) Percentage of recovered atoms, (b) implemen-
tation time.

5 Conclusion

In this paper, we proposed a homotopy-based method for dictionary learning
for sparse representation in which the value of the regularization parameter
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decreases along iterations. We proposed an adaptive selection for the regulariza-
tion parameter which best preserves the optimality of sparse coefficients after
the dictionary update at each iteration. The results showed that our method is
more successful in recovering the dictionaries compared to other methods, and
it has faster implementation time.
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Abstract. This paper proposes an invertible nonlinear dimensionality
reduction method via jointly learning dictionaries in both the origi-
nal high dimensional data space and its low dimensional representation
space. We construct an appropriate cost function, which preserves inner
products of data representations in the low dimensional space. We employ
a conjugate gradient algorithm on smooth manifold to minimize the cost
function. By numerical experiments in image processing, our proposed
method provides competitive and robust performance in image compres-
sion and recovery, even on heavily corrupted data. In other words, it can
also be considered as an alternative approach to compressed sensing.
While our approach can outperform compressed sensing in task-driven
learning problems, such as data visualization.

Keywords: Invertible nonlinear dimensionality reduction · Joint dictio-
nary learning · Inner products preservation · Compressed sensing

1 Introduction

Dimensionality reduction (DR) is a powerful instrument to tackle large scale
signal processing problems. It often serves as a preprocessing step to transform
original high dimensional data to a low dimensional space. Then specific tasks,
such as filtering or 2D visualization, can be performed directly on the low dimen-
sional representations, cf. [1]. Most classic DR algorithms focus on finding a low-
dimensional embedding of original data, which are often not reversible. In other
words, there is no reliable reconstruction from the low dimensional space back
to the original high dimensional space. However, in many applications, such as
communication transmission, image down-sampling and super-resolution, and
modeling the time varying data (dynamic textures), it requires that such DR
processes can be reversible. Hence, finding an invertible nonlinear DR mapping
is a long standing problem in the community.

Recently, the technique of compressed sensing (CS) [2] has shown that high
dimensional signals and images can be reconstructed from the measurements in
far lower dimensional space than what is usually considered necessary. Formally,
it assumes that a signal x ∈ R

m admits a factorization x = Dα with respect
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 279–286, 2015.
DOI: 10.1007/978-3-319-22482-4 32
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to a set of atoms D, also known as a dictionary, where α ∈ R
k is sparse. Then

the CS problem can be formulated as recovering x from its low dimensional
representation y = Ax or y = ADα, with y ∈ R

d×m for d � m. Here, A ∈ R
d×m

is called a projection matrix.
This paper considers an alternative process of DR associated with the dictio-

nary learning (DL) models [3,4]. Namely, the dictionary D is not given as some
orthonormal basis, but learned from training samples. This problem has been
studied in the framework of CS, known as Blind CS in [5]. Moreover, D and A
can also be simultaneously learned from data via some joint optimizations [6,7].
However, one challenge in the CS model is that it has to guarantee incoherence
between the projection matrix A and the dictionary D, as well as mutual inco-
herence between pair atoms in D and A themselves [2]. It is commonly known
to be difficult to achieve, when D is redundant. Additionally, specific learning
tasks, such as 2D visualization, in compressed domain, are often difficult [8].

In this work, different from the methods of CS via optimizing the projection
matrix [6,7], we propose an alternative approach to model the process of DR,
using a couple dictionaries (D ∈ R

m×k, P ∈ R
d×k) with d � m, referred to as

DRCDL in this work. It can successfully achieve the task of interest, while still
avoid to learn the projection matrix directly.

2 Joint Dictionary Learning Under Inner Products
Preservation

Let us denote by X := [x1, . . . , xn] ∈ R
m×n the data matrix containing n data

samples xi ∈ R
m, and Y := [y1, . . . , yn] ∈ R

d×n with d < m be its corre-
sponding low dimensional representation via some DR mapping g : xi �→ yi for
all i = 1, . . . , n. In this work, we assume that both the original data and its
low dimensional representation share the same or quite similar sparse structure.
Such an assumption is popularly adopted in the framework of coupled sparse
representation [9].

We assume that all data points xi ∈ R
m admit sparse representations with

respect to a common dictionary D := [d1, . . . , dk] ∈ R
m×k, i.e.

xi = Dφi, for all i = 1, . . . , n, (1)

where φi ∈ R
k is the corresponding sparse representation of xi. In this work, we

further assume that all columns of the dictionary D have unit norm. We then
define the set

S(m, k) := {D ∈ R
m×k| ddiag(D�D) = Ik}, (2)

where ddiag(Z) is the diagonal matrix whose entries on the diagonal are those
of Z, and Ik denotes the identity matrix. We assume that the low dimensional
representations Y share the same sparse structure with respect to a low dimen-
sional dictionary P := [p1, . . . , pk] ∈ R

d×k, i.e. yi = Pφi with P ∈ S(d, k). By a
slight abuse of notations, we denote by φD : xi �→ φi and φP : yi �→ φi the sparse
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coding in the original data space and the low dimensional representation space,
respectively. Then, we denote a nonlinear DR mapping by

g : xi �→ PφD(xi), (3)

and reversely by
g−1 : yi �→ DφP (yi). (4)

The aim of DR is to find a DR mapping g : xi �→ yi, which is stable and
preserves as much useful structure as possible. When the DR mapping is linear,
according to the Johnson-Lindenstrauss (JL) lemma, cf. [10], every n-point sub-
set of Euclidean space can be embedded in dimension O(ε−2 log n) with 1 + ε
distortion with 0 < ε < 1/2. Specifically, distance or inner product information
of the high dimensional data is preserved in the low dimensional representation
space, when ε is close to zero [11,12]. The loss introduced by the DR mapping g
can be measured by the following function

G(X;Y ) :=
n∑

i=1

(x�
i xj − y�

i yj)2. (5)

Recall the assumption that both the original data point xi and its low dimen-
sional representation yi := g(xi) share the same sparse structure, i.e. xi = Dφi

and yi = Pφi. We adopt the loss function (5) directly to the current coupled
sparse representation setting as

G(D,P )(X;Y ) =
n∑

i=1

(
φ�

i

(
D�D − P�P

)
φj

)2
. (6)

Roughly speaking, the loss G(D,P ) is small, if either the sparse representations are
pair-wise conjugate with respect to D�D −P�P , or the difference D�D −P�P
is essentially small. In this work, we consider the second argument. Since both
dictionaries D and P are often assumed to be full rank, P can be also considered
as a low rank approximation of D.

In order to ensure stability of the proposed nonlinear DR mapping g, we need
to guarantee moderate mutual incoherence in both the high and low dimensional
dictionaries, i.e. D ∈ R

m×k and P ∈ R
d×k, according to the theory in sparse

representation, cf. [13]. However, when the difference D�D−P�P is sufficiently
small, the mutual coherence of D is ensured to be close to the mutual coherence
of P . Hence, instead of penalizing on both D and P , we propose to apply a
logarithmic barrier function to enforce the mutual coherence of P , i.e.

r(P ) = −
∑

1≤i<j≤k

log
(
1 − (pip

�
j )2

)
. (7)

Finally, let us denote Φ(Y, P ) := [φP (y1), . . . , φP (yn)] ∈ R
k×n. Then, by consid-

ering the reconstruction error in the original data space, we propose the following
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cost function

f : S(m, k) × S(d, k) × R
d×n → R

(D,P, Y ) �→ 1
2n

‖X − DΦ(Y, P )‖2F +
μ1

2k2

∥∥D�D − P�P
∥∥2

F
+ μ2r(P ),

(8)

where μ1 > 0 weighs between the loss of distance preservation of DR and the
reconstruction error of the training samples, and μ2 > 0 controls the mutual
coherence of the dictionary to be learned.

As a special case, we can assume that the dictionary P is simply constructed
from D via a linear mapping specified by U ∈ R

m×d, i.e. P = U�D. Then the low
dimensional representations yi can be directly obtained via yi = U�xi = U�Dφi.
Minimizing the term

∥∥D�D − P�P
∥∥2

F
leads to a simple solution that U is the

eigenvectors of D corresponding to its first d largest eigenvalues. We call this
model compressive coupled dictionaries learning (CCDL) in the rest of the paper.

3 A Conjugate Gradient DR Algorithm

Recall the fact that the set S(m, k) is the product of k unit spheres, i.e. a
k(m−1) dimensional smooth manifold. In what follows, we adopt the conjugate
gradient algorithm on smooth manifolds, which has demonstrated its competitive
performance in (co-)sparse dictionary learning, cf. [3,4], to minimize the cost
function f on the product manifold S(m, k) × S(d, k) × R

d×n.
In this work, we employ the sparse solution given by solving an elastic-net

problem, cf. [14], as

φ∗ := argmin
φ∈Rk

1
2‖y − Pφ‖22 + λ1‖φ‖1 + λ2

2 ‖φ‖22, (9)

where λ1 > 0 and λ2 > 0 are regularization parameters, which ensures stability
and uniqueness of solutions. Let us define the set of indices of the non-zero entries
of the solution φ∗ = [ϕ∗

1, . . . , ϕ
∗
k]� ∈ R

k as Λ := {i ∈ {1, . . . , k}|ϕ∗
i �= 0}. Then

the solution of the elastic net (9) has a closed-form expression as

φ∗
D(y) :=

(
D�

Λ DΛ + λ2Id

)−1 (
D�

Λ y − λ1sΛ

)
, (10)

where sΛ ∈ {±1}|Λ| carries the signs of φ∗
Λ, DΛ ∈ R

m×|Λ| is the subset of D in
which the index of atoms (rows) fall into support Λ. The solution φ∗

P (y) shares
an algorithmically convenient property of being locally twice differentiable with
respect to both P and y, cf. [15,16].

Recall the tangent space TDS(m, k) of S(m, k) at D ∈ S(m, k) as

TDS(m, k) := {Ξ ∈ R
m×k|ddiag(Ξ�D) = 0}, (11)

and the orthogonal projection of a matrix Z ∈ R
m×k onto the tangent space

TDS(m, k) with respect to the inner product 〈Ξ,Ψ〉 = tr(Ξ�Ψ) as

ΠD(Z) := Z − Dddiag(D�Z). (12)
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Then, by computing the first derivation of f at (D,P, Y ) in tangent direction
(HD,HP ,HY ) ∈ T(D,P,Y )S(m, k) × S(d, k) ×R

d×n, we get the Riemannian gra-
dient of f at (D,P, Y ) as

grad f(D,P, Y ) =
(
ΠD

(∇f (D)
)
,ΠP

(∇f (P )
)
,∇f (Y )

)
, (13)

where ∇f (D), ∇f (P ), and ∇f (Y ) are the Euclidean gradients of f with respect
to the three arguments, respectively. Firstly, the Euclidean gradient ∇f (D) of f
with respect to D is computed as

∇f (D) =
n∑

i=1

(DφP (yi) − 2xi) φP (yi)� +
2μ1

k2
D(D�D − P�P ). (14)

Using some shorthand notation, let Λi be the support of nonzero entries of
φP (yi), and denote Ki := P�

Λi
PΛi

− λ2Ik, ri := P�
Λi

yi − λ1sΛi
, Δxi :=

xi − DφP (yi), and qi := riΔx�
i . Then, the Euclidean gradient ∇f (P ) of f is

computed as

∇f (P ) =
n∑

i=1

2V{−yi(Δxi)�DΛi
K−1

i + PΛi
K−1

i D�
Λi

q�
i K−1

i

+ PΛi
K−1

i qiDΛi
K−1

i } +
2μ1

k2
P (P�P − D�D) + μ1∇r(P ), (15)

with

∇r(P ) = P
∑

1≤i<j≤n

2p�
i pj

1 − (p�
i pj)2

(Eij + Eji) (16)

being the gradient of the logarithmic barrier function (7). Here, V{·} denotes the
full vector of {·}. By Eij , we denote a matrix whose ith entry in the jth column
is equal to one, and all others are zero. Finally, the Euclidean gradient ∇f (Y )
is computed as

∇f (Y ) =
[V{DΛ1K

−1
1 Δx1}, . . . ,V{DΛn

K−1
n Δxn

}]
. (17)

By assembling the Riemannian gradients, geodesics and parallel transports on
the underlying manifolds, a conjugate gradient algorithm on S(m, k)×S(d, k)×
R

d×n is straightforward. Due to the page limit, we omit the presentation of the
algorithm, and refer to [4] for more technical details.

4 Numerical Experiments

In this section, we investigate the performance of our proposed DR framework
via couple dictionaries learning (DRCDL) and its linear version - compressive
CDL (CCDL) for signal compression, reconstruction, and visualization. Before
presenting our experiments, we briefly discuss the question of choosing the para-
meters in our formulation. Considering the high coherence among the images or
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(a) PIE data (b) Reovered data
using RPCA

(c) Reovered data
using Gaussian CS

(d) Reovered data
using DRCDL

Fig. 1. From (b) to (d), recovering the reduced data from d = 16, using RPCA,
Gaussian CS, and DRCDL, respectively. The PSNR is 23.01 dB, 25.28 dB and 31.12 dB.
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(a) PCA on original data,
m = d = 784.
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(b) PCA on compressed
data (DRCDL, d = 10).
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(c) PCA on compressed
data (CCDL, d = 10).
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(d) Gaussian CS on original
data, d = 10.

(e) Reconstructed MNIST images.

Fig. 2. From (a) to (d), employing PCA on original data and reduced data, respectively.
(e) shows that reconstructing MNIST images from d = 16 to m = 784, using CS and
DRCDL, CCDL. From top to bottom (six rows): original data, recovered images using
Gaussian CS, Gaussian CS based on K-SVD dictionary, DRCDL and CCDL.

imaginary patches, we prefer a dictionary with low redundancy, namely, k ≤ 2m
for D ∈ R

m×k. For parameters (λ1, λ2) in Eq. (9), we put an emphasis on sparse
solutions and choose λ2 ∈ (0, λ1

10 ), as proposed in [14]. The parameters for μ1, μ2

in (8) could be well tuned via performing cross validation. The CMU Multi-PIE
[17] faces and MNIST handwritten digital databases1 are used as the benchmark
dataset for images compression, reconstruction and 2D visualization in our exper-
iments. In order to evaluate our proposed method on DR and reconstruction,

1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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(a) 33 Training images used for learning dictionary

(b) Lena (c) DRCDL (d) CCDL (e) JPEG (f) BCS

Fig. 3. Recovery performance on Lena with a compression rate η = 32. (b) is the cor-
rupted image with PSNR = 16.12 dB; (c) to (f) are recovered images using DRCDL,
CCDL, JPEG2000 and BCS. The PSNR (dB) is 26.52, 26.44, 16.60 and 22.28, respec-
tively.

we compare it with the classic CS approach with the random Gaussian sensing
matrix [2] (Gaussian CS), and robust principle components analysis (RPCA)
[18]. In Figs. 1 and 2, 5000 images are randomly chosen for training D, and 500
images are randomly taken from remaining dataset for testing. We first reduce
the dimensionality from m = 1024, 784 to d = 16 for PIE and MNIST, and then
recover them using Gaussian CS, RPCA, and proposed DRCDL, CCDL, respec-
tively. Figures 1 and 2(e) demonstrate that the proposed methods perform much
better on signal reconstruction, in comparison with Gaussian CS and RPCA.

In Figure 2, we impose PCA on original data and reduced data respectively,
to achieve a 2D visualization. Figure 2(b), (c) and (d) show that learning directly
in the compressed domain, is feasible. Compared to Gaussian CS, our proposed
methods (DRCDL and CCDL) exhibit more stable and competitive performance
on the results of PCA, even in very low-dimensional compressed domain with
d = 10. Figure 3 shows the results of image compression and recovery on single
image - Lena. Compared to Bayesian CS (BCS) [19] and JPEG2000, our pro-
posed methods DRCDL and CCDL exhibit a stronger performance, when the
input data is heavy corrupted.

5 Conclusions

This paper proposes a coupled dictionary learning approach to achieve the task of
invertible nonlinear DR. It aims to preserve distance information of the original
high dimensional dataset in their low dimensional representations. Our experi-
ments in image recovery and visualization demonstrate robust as well as com-
petitive performance of the proposed framework, in comparison with the state
of the art methods.
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Abstract. A classification framework using only a set of distance matri-
ces is proposed. The proposed algorithm can learn a classifier only from a
set of distance matrices or similarity matrices, hence applicable to struc-
tured data, which do not have natural vector representation such as time
series and graphs. Random forest is used to explore ideal feature repre-
sentation based on the distance between points defined by a set of given
distance matrices. The effectiveness of the proposed method is evaluated
through experiments with point process data and graph structured data.

Keywords: Classification · Structured data · Decision trees · Random
forest · Spike train · Graph kernel

1 Introduction

In recent years, the need for dealing with structured objects are increasing.
Structured objects does not have natural vector representation, and the conven-
tional Euclidean distance cannot be used for measuring distance or similarity of
these objects. Examples of structured data include time series, graphs, character
strings and genome sequences. For these structured data, if we could define an
appropriate metric between each pair of objects, distance based classifier such as
k-nearest neighbor (k-NN; [1]) or similarity based classifier such as the support
vector machine (SVM [2]) are of the choice for the purpose of classification. For
the objects represented as vectors, distance metric learning (DML [4–7]) is one
of the standard approaches for optimizing the distance metric for the given task
and given dataset. However, most of existing works on DML assume that objects
are represented as vectors, and the problem of DML is formulated as a learning
of the Mahalanobis distance matrix.

Different methods are developed in different research fields to define metrics
for structured data. Designing a kernel function to capture the intrinsic similarity
of structured objects has been extensively studied [8]. One example is found in
graphs; graphs do not have fixed length vector representation in general, and
there are various alternatives for similarity measures or kernels between graphs
developed to analyse graph structured data such as Web graphs, power grid
networks, and protein interaction networks [9–11]. Another example is analysis
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 287–294, 2015.
DOI: 10.1007/978-3-319-22482-4 33



288 K. Takano et al.

of point processes, i.e., sequences of time points at which events occur [12]; since
its discrete nature, the realization of point process cannot be identified with
a function in L2 space commonly done in continuous time series analysis, and
there are considerable effort to define distance metrics for point process data in
the literature of neuroscience [13–19]. As described above, structured data such
as graphs and point processes have a number of different metrics, and given
these kind of structured datasets, it is not obvious which metric is the most
appropriate for the given task with the dataset at hand, and the problem of
metric selection remains as an issue for the data analyst.

In this paper, we consider the situation that we are given a set of different
distance matrices calculated for a set of structured objects, and solely based on
them, we aim at learning a highly accurate classifier. The proposed approach is
instantiated by using the random forest (RF [20]), hence the proposed method
can handle both classification problems and regression problems.

2 Notation and Problem Setting

Let O = {oi}ni=1 be a set of objects oi ∈ O of size n, where O is some space to
which objects belong to. We consider classification problems, and for an object
oi ∈ O, there is an output yi ∈ Y, where Y is a discrete set of class labels. Given
a set of observations D = {(oi, yi)}ni=1, we consider a predictor f : O → Y, which
try to approximate the underlying correspondence of the input object and the
output label.

We consider the case where the objects are not represented as vectors. Sup-
pose there are m different distance measures for a pair of objects (oi, oj), namely,
there are m distance functions d(l) : O × O → R. We assume that we observe
m distance matrices D(1), . . . , D(m), where D(l) ∈ R

n×n, [D(l)]ij = d(l)(oi, oj).
We assume that all we are given are distance matrices calculated based on those
distance measures and a set of outputs {yi}ni=1 for each objects. We propose to
construct a predictor f based on whether a new input is close to or away from
training samples. In the following section, we propose a concrete procedure for
learning the predictor f by using a set of distance matrices.

We note that the problem setting in this paper is similar to that of the
multiple kernel learning (MKL [22,23]), in which the optimal combination of the
given kernel matrices are explored. Distance matrix D ∈ R

n×n and kernel matrix
K ∈ R

n×n are mutually convertible, though, the way of conversion is not unique.
In this work, distance matrix D is transformed to a kernel matrix K by the
double centering 2Kij = −Dij + 1

n

∑n
l=1 Dil + 1

n

∑n
l=1 Dli − 1

n2

∑n
k=1

∑n
l=1 Dkl

followed by truncation of negative eigenvalues to make the kernel matrix pos-
itive semi-definite. Given a kernel matrix K, the Euclidean distance matrix in
the kernel-induced feature space is obtained by Dij = Kii + Kjj − 2Kij . In
experimental section, we interchangeably use distance and kernel (similarity)
by using either of the above explained transformations, and the performance of
some MKL algorithms and that of the proposed algorithm are compared. Also,
by optimizing the convex combination of different distance matrices, a modified
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LMNN (Large Margin Nearest Neighbor) method is proposed in [24]. This vari-
ant of LMNN for distance matrices is also included for the target of comparison
in the experimental section.

3 Implementation Based on Trees

Given distance matrices

D = (D(1), . . . , D(m)) ∈ R
n×mn, (1)

we consider their concatenation. We extract the feature vector corresponding to
the i-th object oi as

ξi = (d(1)(oi, o1), d(1)(oi, o2), . . . , d(2)(oi, o1), . . . , d(m)(oi, on)) ∈ R
mn, (2)

which is illustrated in Fig. 1. When a new object onew to be classified is given,
we first calculate distances from all of the training samples with respect to m
distance metrics1, and concatenate the distances to obtain the mn-dimensional
feature vector representation

ξnew = (d(1)(onew, o1), d(1)(onew, o2), . . . , d(m)(onew, on)) ∈ R
mn (3)

of the new object to be inputted to the learned classifier.
Elements of ξi are distances from oi to other objects, measured by m different

distance measures. We propose to use ξi as an input for the random forest
(RF [20]). The RF is composed of a number of binary decision trees trained by
using bootstrap samples of data with randomly sampled elements. We hereafter
explain how each binary decision tree works. A binary decision tree is constructed
by repeated splits of subsets of Rnm into two descendant subsets, beginning with
R

nm itself. The terminal subsets form partitions of input space, in our case, Rnm.
Each terminal subset is designated by a class label.

In Fig. 2, we show an illustrative example showing the expected behaviour of
the learnt decision tree with inputs ξi. For the purpose of illustration, we assume
binary classification problem as shown in Fig. 2, where an object oi is a point
in R

2. We introduce two distance measures d(1) and d(2), which are Euclidean
distances calculated only using the first and the second dimension of the points,
respectively. Two spirals correspond to two distinct classes (a point in class 1 is
marked ◦ and a point in class 2 is marked �), and each class has 50 samples.
Since the number of samples n = 100 and the number of different distance
metrics is m = 2, the dimensionality of the feature vector ξi, i = 1, . . . , n is
mn = 200. Tree in Fig. 2 is a binary decision tree learned by using the dataset
{ξi}ni=1, ξi ∈ R

200. In the root node of the tree, the first decision is made based
on the distance from the sample o98 with respect to the second distance metric
d(2). When a new object onew is inputted, if d(2)(onew, o98) > 3.65, the object
is immediately labelled as class 1. If the distance is ≤ 3.65 (shaded region in
1 So, we need to access to the distance functions.
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Fig. 1. Feature extraction procedure for an object oi from a given set of distance
matrices. m distance matrices D(l), l = 1, . . . ,m are concatenated into a large matrix
D ∈ R

n×mn. From the matrix D, a feature vector ξi for an object oi is extracted as
the i-th row of the matrix.

Fig. 2. Illustrative example of classification by tree with input ξ ∈ R
nm.
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the bottom left panel), we proceed to the next step of the decision tree. In the
next step, the distance from o26 with respect to d(1) is examined, and if it is less
than 1.49, the sample is labeled as class 1. Otherwise, we proceed to the final
step and d(2)(onew, o10) is examined. The class assignment is done by averaging
the outcomes of all decision trees. We note that the proposed method is similar
to the landmark method for learning with similarity function [21]. The defining
difference from the method used in [21] is that our method utilize the RF for
adaptively select the elements of feature vectors used for classification.

4 Experiments

To show the effectiveness of the proposed method, two different classes of struc-
tured objects are considered. The one is the spike train, which is considered as
examples of point process data and of importance in neuroscience, and the other
is graphs, which is one of the most popular structured objects.

4.1 Experimental Protocol

Given a set of structured objects O = {oi}ni=1, we make a set of distance or
kernel matrices by using m different algorithms. Based on the set of matrices,
we perform classification by using the following methods:

Single: Apply k-NN classification, the SVM, and the RF for each single matrix.
Each matrix is (if necessary) transformed to a distance matrix for k-NNs and
RF, and to a kernel matrix for SVMs. The RF is performed using the feature
vector extracted from the distance matrix.

Averaging: Apply the three classifiers to a matrix D obtained by averaging the
m matrices as D = 1

m

∑m
l=1 Dl for k-NNs and for RFs, and K = 1

m

∑m
l=1 Kl

for SVMs.
MKL1,2: The m different matrices are transformed into kernel matrices, and

then combined into one kernel matrix by MKL algorithms MKL1(called
align in the original paper) and MKL2(called alignf), which are com-
putationally efficient and shown to offer state-of-the-art classification accu-
racy [23]. The obtained matrices are used to train k-NNs, SVMs, and RFs.

LMNN: The m different matrices are transformed into distance matrices, and
combined into one distance matrix by a variant of the LMNN algorithm [24]
for convex combination of distance matrices. The obtained matrix is used to
train the three classifiers.

Proposed: The m different distance matrices are concatenated by row, and the
proposed method based on the RF is applied.

In summary, m different matrices plus four combined matrices (Averaging,
MKL1,2, and LMNN) are prepared for three classifiers as targets for comparison
to the proposed method, hence the total number of classifiers is 3 × (m+ 4) + 1.

The given dataset is divided into 10 disjoint subsets, and the classification
error rates are calculated by 10-fold cross validation. Tuning parameters of three
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Fig. 3. Classification errors of various methods for spike train and protein datasets.
The x-axis corresponds to different methods divided into three categories, kNN, SVM,
and RF, according to the base classifiers. The numbers 1 to 8 indicate single metrics.
Other symbols indicate different strategies to combine matrices, where A, M1, M2, L,
and P are Average, MKL1, MKL2, LMNN, and the Proposed method, respectively.

classifiers, the number k in k-NNs, soft margin parameter C > 0 in SVMs, and
the number of trees and the depth of trees in the RF, are optimized by 10-fold
cross validation using only training dataset.
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4.2 Spike Train and Protein Graph Datasets

We evaluate the classification methods using two types of structured data, the
spike train and graph.

As a spike train dataset, we use an artificial data created by Fellous et al. [25].
The original dataset with detailed description is available from http://cnl.salk.
edu/fellous/data/JN2004data/data.html. We adopted a three classes dataset
(Spike), which is a set of artificially generated spike patterns. Each class has 35
samples and the dataset Spike is composed of 105 samples. There are consid-
erable number of metrics for spike trains. In this paper, we use three distance
metrics ([13–15]) and five kernels ([16–19], where [19] proposed two kernels) for
point process data. Since we have m = 8 different metrics, the number of the
methods for comparison is 3 × (m + 4) + 1 = 37.

As a graph objects, we use a graph made on the Protein dataset, which comes
with the task of classifying enzymes and non-enzymes. The number of samples
in Protein is 1113. The GraphHopper kernel [11], the PROP kernel [10], and
the Weisfeiler-Lehman kernel [9] are selected for the kernel functions for graph
structured objects because of their computational efficiency and wide use in
the literature. Implementation and datasets are downloaded from http://image.
diku.dk/aasa/software.php. Since we have m = 3 different kernel matrices, the
number of the methods for comparison is 3 × (m + 4) + 1 = 22. Boxplots of the
classification errors are shown in Fig. 3, which shows that the proposed method
performs comparable or superior to other classification methods.

5 Conclusion

In this paper, we constructed a simple classifier which can be trained using
only a set of distance matrices. The aim of the proposed method is dealing
with structured data, and frees us from the problem of metric selection for such
structured data. Considering the increase of non-vectorial, complicated data, the
need for a principled and automatic method for selecting or combining many
candidate metrics for such data is increasing. In spite of its simplicity of the
proposed method, the method offers favorable classification accuracy as shown
by experiments using both point process datasets and graph datasets.

The proposed method can efficiently combine different distance metrics, and
can find an appropriate distance measure using the supervised information {yi}.
Distance measure is an important latent structure for an abstract space of
objects, and the analysis of the obtained distance structure by the proposed
method is our important future work. As mentioned in Sect. 3, the proposed
approach have similarity to the learning with similarity function. Theoretical
analysis of our propose method will be investigated in the same line of [21].
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25870811, and 25120009.
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Abstract. Over the past years Robust PCA has been established as
a standard tool for reliable low-rank approximation of matrices in the
presence of outliers. Recently, the Robust PCA approach via nuclear
norm minimization has been extended to matrices with linear struc-
tures which appear in applications such as system identification and data
series analysis. At the same time it has been shown how to control the
rank of a structured approximation via matrix factorization approaches.
The drawbacks of these methods either lie in the lack of robustness
against outliers or in their static nature of repeated batch-processing. We
present a Robust Structured Low-Rank Approximation method on the
Grassmannian that on the one hand allows for fast re-initialization in an
online setting due to subspace identification with manifolds, and that is
robust against outliers due to a smooth approximation of the �p-norm
cost function on the other hand. The method is evaluated in online time
series forecasting tasks on simulated and real-world data.

1 Introduction

Many applications such as system identification and time series analysis motivate
the problem of Structured Low-Rank Approximation (SLRA). While common
low-rank approximations like PCA aim to find a low-dimensional subspace to
represent high-dimensional data optimally with respect to some norm or diver-
gence, in the structured case this problem is extended by the additional con-
straint that the low-rank approximation has to meet a certain linear structure
(Hankel, Toeplitz, Sylvester).

For the prominent case of Hankel matrices a method dubbed Singular Spec-
trum Analysis (SSA) [4] has been presented, which performs the simplest way of
SLRA in that it computes a low-rank approximation of a (Hankel-) structured
matrix followed by a so-called diagonal averaging step, which is the projection
onto the space of Hankel matrices. An obvious drawback of this method is that
this projection can destroy the low-rank property established before. The method
of Cadzow [6] alternates between these two steps until the algorithm converges
to a solution that is indeed low-rank and structured. However, as Chu et al. [8]
and Markovsky [12] state, this solution can be far away from the initialization
with no guarantees of finding an actually meaningful approximation to the data.
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 295–303, 2015.
DOI: 10.1007/978-3-319-22482-4 34
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Recently, Ishteva et al. [11] have proposed a factorization approach with a cost
function that joints the structural and low-rank constraint. The dimension of
the two matrix factors is an upper bound on the rank of the approximation and
its structure is enforced with a side condition. The approximation is fitted to the
data according to an �2-norm, although it is well known that low-rank approx-
imations of this kind can be vulnerable against outliers. For the unstructured
case this has been the major incentive to move from PCA to robustified PCA
methods such as the Robust PCA method by Candes et al. [7] which recovers a
subspace in the presence of sparse outliers of great magnitude. Ayazoglu et al. [1]
have proposed to extend this concept to structured matrices by introducing addi-
tional Lagrangian multipliers. Their method is called Structured Robust PCA
(SRPCA), and its performance is demonstrated in visual applications like Target
Location Prediction, Tracklet Matching (both matrix completion problems) and
Outlier Removal from trajectories, which can be interpreted as outlier identifi-
cation through robust subspace estimation.

One of the drawbacks of many Robust PCA approaches and thus also the
SRPCA approach is their batch-processing nature. In an online setting the algo-
rithm needs to be re-run from scratch if the data set grows or changes over time.
This can be alleviated by factorizing the low-rank approximation of data into an
orthogonal matrix representing the subspace and a coefficient matrix containing
the coordinates of the currently observed data in this subspace, cf. [2,9] for the
unstructured case. Whenever new data comes in, it is possible to initialize the
subspace optimization with the previous estimate and to update both the sub-
space and the coordinates to the new data. Obviously, whenever the subspace
does not change significantly this saves computational effort compared to a ran-
dom initialization. We will firstly derive a batch algorithm for Robust Structured
Low-Rank Approximation on the Grassmannian and then outline how to process
structured data online in an efficient way. We illustrate the performance of the
proposed algorithm on several time series forecasting tasks.

2 Robust Structured Low-Rank Approximation
on the Grassmannian Using a Smoothed �p-norm
Cost Function

2.1 Low-Rank and Sparsity Constraints in the Unstructured Case

Low-rank approximation of data is a well-studied problem, cf. [13] for a recent
overview. In the past years a trend can be seen towards Robust PCA methods
that are tolerant against outliers in the data. An often considered data model is
X = L + S, where the input data X ∈ R

m×n is assumed to be composed of a
low-rank part L with rank (L) ≤ k and a sparse matrix S that contains few non-
zero entries. While in [7] the low-rank constraint is enforced via minimization of
the nuclear norm, in this work we will consider the Robust PCA setting on the
Grassmannian

Grk,m := {P ∈ R
m×m|P = UU�,U ∈ Stk,m}. (1)
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The subspace is hereby represented by an element U of the Stiefel manifold
Stk,m = {U ∈ R

m×k|U�U = Ik}, where Ik is the (k × k)-identity matrix. The
low-rank approximation is then L = UY with Y ∈ R

k×n.
In contrast to the �2-norm in common PCA, robust approaches use relax-

ations of the �0-norm for fitting the low-rank approximation to the data, as
gross outliers might otherwise distort the estimation. The smoothed �p-norm

hµ : Rm×n → R
+, X �→

n∑

j=1

m∑

i=1

(
x2
ij + μ

) p
2 , 0 < p < 1 (2)

presented in [9] behaves similarly to the �0-norm for sparse outliers, but treats
small additive Gaussian noise like an �2 norm. A Robust Low-Rank Approxima-
tion problem using the sparsifying function (2) writes as

(
Û, Ŷ

)
= arg min

U∈Stm,k,Y∈Rk×n
hµ(X − UY), L̂ = ÛŶ. (3)

The sparse component can be recovered via Ŝ = X − L̂, possibly followed by a
thresholding operation to remove residual noise.

2.2 Extension to Linear Matrix Structures and Algorithmic
Description

Besides the low-rank and sparsity decomposition no other assumptions are made
on the data in (3). In many applications however, structured matrices like
Hankel, Sylvester or Toeplitz matrices play an important role. Following the
notation of [11] we denote by S a linear matrix structure, by S(d) a structured
matrix obtained from a data series d and by PS (X) the orthogonal projection
of any (possibly unstructured) matrix X onto the image of S w.r.t. the standard
inner product. For example, if H is a Hankel structure the orthogonal projection
PH is equivalent to the diagonal averaging step in SSA [4].

In order to include the structural constraint we extend the cost function (3)
by the side condition L ∈ S. This motivates the Lagrangian Multiplier scheme

min
U∈Stm,k,Y∈Rk×n,Λ∈Rm×n

hμ (X − UY) + 〈Λ,UY − PS (UY)〉 + ρ
2
‖UY − PS (UY) ‖2

F .

(4)

Algorithm 1 outlines the extension of the Robust PCA method from Hage
and Kleinsteuber [9] to the case of structured matrices. The algorithm con-
siders a partial observation X̂ of the data with A defining which entries are
actually observed. In each iteration, three steps are performed. Firstly, the
subspace estimate is updated. In this realization the subspace is uniquely
identified with a Grassmannian projector P = UU� with U ∈ Stk,m. The
optimization problem is solved via Conjugate Gradient (CG) descent with
backtracking line-search using a QR-decomposition based retraction on the
Grassmannian. Once P and thereby U have been found the coordinates Y
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are updated with a CG method in Euclidean space, such that a new opti-
mum low-rank estimate L = UY is found. In a third step the Lagrangian
multiplier Λ is updated, then ρ is increased and μ is decreased. While μ con-
trols the behavior of the sparsifying function hµ(·), the parameter ρ weighs
between the data fitting term and the structural side condition. More precisely,
as long as ρ is small the Robust PCA
term is the leading power and a low-
rank approximation is fitted to the
data. With increasing ρ the struc-
tural condition is more and more
enforced until it is the dominating
term in the cost function. In a practi-
cal application the optimization can
also be terminated if the residual
Hankel penalty ε, i.e. the Frobe-
nius distance to the next Hankel-
structured matrix normalized by the
number of matrix entries falls below
a certain threshold τ .

3 Efficient Online
Time Series Forecasting
via Robust SLRA

We have outlined how to use man-
ifold optimization for Robust SLRA
on the Grassmannian. In the impor-
tant case of a Hankel structure
SLRA corresponds to identifying an
LTI system, cf. [13]. In practical
applications, however, an observed
system might be time-variant. Or
the observed data is not related
to a physical system at all but
still exhibits repetitive or periodic
behavior. The field of Time Series
Analysis [3] deals with these signals
and numerous auto-regressive meth-
ods for filtering and forecasting data
series exist. In the SLRA context a
low-rank Hankel matrix (and thus an
LTI) is fitted to the observed data
and the future development is extrap-
olated from this approximation. Thereby, the rank bounds the complexity
of the approximation. If the behavior of the data changes over time a new
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model needs to be determined for each observation instance. For our proposed
Grassmannian Robust SLRA method this means that both a new subspace and
new coordinates need to be computed. However, when the signal characteristics
vary moderately over time it is likely that the new subspace lies close to the previ-
ously found one. Therefore, the subspace should not be randomly initialized but
rather updated with the new data point, in a similar way as Robust Subspace
Tracking ([10,14]) in the unstructured case. As discussed earlier, however, we
do not optimize directly on the space of structured low-rank matrices. Instead
we relax the structural constraint, update the subspace and then tighten the
structural side condition again by varying the parameter ρ in the cost function.

In Algorithm 2 we describe an
Online Time Series Forecasting
method based on Robust Struc-
tured Low-Rank Approximation on
the Grassmannian. The algorithm
receives as inputs the time series of
data d to be analyzed as well as the
desired order of the system and the
forecasting range, i.e. the number
of samples to be predicted. Since a
Hankel matrix of size m×m contains
(2m−1) samples of data, the predic-
tion starts at d(2m). A data vector
x(j) of length (2m − 1) is extracted
from the data up to the present posi-
tion, padded with zeros according to
the forecasting range and structured
to form a Hankel matrix. The first
subspace estimate U(0) is not initial-
ized randomly but with U(j−1), the
final subspace estimate of the previ-
ous set of data samples. Note that
the subscript (j) counts the position
of the current set of data samples in
the data stream while in Algorithm 1
the superscript (i) denoted the iter-
ation count of the alternating minimization steps in the batch process. Accord-
ingly, for each set of data samples at position j the number of alternating min-
imization steps I(j) for the current estimation must be set beforehand. This
number varies between a predefined Imin and Imax, and the choice is based on
the residual Hankel penalty ε(j−1) of the previous iteration. This corresponds to
the observation that significant changes in the system behavior lead to higher
values for ε and require more iterations in the optimization process, whereas less
update steps are required if the subspace changes slowly or does not change at
all. We start with the previous iterate on the Stiefel manifold and execute the
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three steps from Algorithm 1 in an alternating manner until convergence. Notice
that the cost function parameter μ is fixed here and only the Lagrangian para-
meter ρ is changed in each iteration to steer between data fit and structure. The
forecasting is realized as a robust matrix completion problem, i.e. the respective
entries in the lower right corner of X are considered unobserved entries. Once
a structured low-rank estimate has been found, the predicted entries of d can
easily be read from the last entries of l(j).

4 Experimental Results

In a first experiment we evaluate our method on an impulse response prediction
task for a noisy observation of a simulated SISO Linear Time Varying (LTV)
system. The data is generated via

ẋ(t + 1) = A(t)x(t) + b�u(t), A(t) = e0.001tZ, Z� = −Z

y(t) = c�x(t) + n(t)

with b, c being uniform random vectors and Z being a random skew-symmetric
matrix. The additive observation noise n(t) contains of two parts, Gaussian noise
with σ = 0.01 and randomly appearing (rate 0.05) salt and pepper noise samples
that take on values of ±0.5. The degree of the system is chosen as k = 5 and
we generate the impulse response of the system for 300 samples. Our method is
compared to the SLRA method from [11] and both algorithms are implemented
in MATLAB on a desktop computer. We predict three time steps into the future
from an observation of 2m−1 samples, and the parameters are empirically chosen
as m = 20, ρ ∈ [10−6, 10] (both methods), p = 0.5, μ = 0.005, τ = 5×10−4. The
SLRA method is randomly initialized in each step, converges within 30 iterations
and requires about 0.4 s. The iteration number of our method varies between
Imin = 16 and Imax = 128 iterations with an average of 22 iterations that add
up to 0.7 s per forecasting step. The forecasting results in Fig. 1 indicate that
both methods are able to cope with the Gaussian noise quite well and predict
the system behavior quite reliably, but the spurious outliers introduce errors in
the SLRA extrapolation due to the �2-error weighting. Our proposed method is
much more robust at the price of a higher computational effort. However, due to
the beneficial subspace initialization the computation time is still competitive.

In a second experiment we compare our method on real-world data
with SLRA and the forecast routine in MATLAB with a 12-month-seasonal
ARIMA(0,1,1) model1. The time series is the well-known Airline Passenger
dataset from [3] normalized to the range [0 1]. The upper bound on the rank of
the approximation is chosen as k = 8, and we forecast 6 samples from 2m − 1
samples with m = 18, which corresponds to projecting the monthly amount
of passengers half a year into the future from observing the past three years.
Figure 2 shows that all three methods succeed in forecasting the data, with
average absolute deviations of 0.060 for SLRA, 0.036 for ARIMA and 0.044 for
1 http://mathworks.com/help/econ/forecast-airline-passenger-counts.html.

http://mathworks.com/help/econ/forecast-airline-passenger-counts.html
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Fig. 1. Forecasting of 3 samples of a SISO-LTV impulse response with additive noise
and ouliers
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Fig. 2. Six month forecast of monthly airline passenger data from the years 1952–1960
based on 3 year observation period.
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Fig. 3. Six month forecast of monthly airline passenger data from the years 1996–2009
based on 3 year observation period.

our method. On average, the ARIMA implementation requires 1.3s, SLRA 0.7s
and our method (Imin = 8, Imax = 64, 12 iterations on average) is the fastest
with 0.3s. The popularity of this well-known but also well-behaving dataset
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has inspired us to perform another experiment on airline passenger data. We
have obtained the system-wide (domestic and international) number of passen-
ger enplanements in the USA for the years 1996–2014 from the American Bureau
of Transportation Statistics [5]. Due to the dramatic developments in the year
2001 this data is obviously more challenging. Figure 3 shows the dataset and
the six month forecasts of the three compared methods with the experimental
setup as before. The seasonal ARIMA model copes best with the challenging
conditions (average absolute error of 0.086), but it needs to be noticed that the
actual seasonality is known a priori while SLRA and our method do not have
this information. As before, the SLRA method is able to forecast data reliably
under good conditions but suffers from the gross outliers, resulting in an average
absolute error of 0.182. Finally, our method shows more robustness against gross
outliers (average absolute error of 0.102), although in this real-world example
the low-rank and sparse data model is not exactly met.

5 Conclusion

We have presented a novel method for Robust Structured Low-Rank Approxima-
tion on the Grassmannian. Using an approximated �p-norm, the method robustly
fits an approximation of upper-bounded rank and linear structure to the given
data. For the special case of a Hankel structure we have furthermore shown
how to use the developed concept for Robust Online Time Series Forecasting.
We have shown how to benefit from the manifold setting in online processing,
as we can increase the efficiency by re-using the previously identified subspace.
Experimental results show that our method performs effectively and efficiently
in simulated and real-world applications.
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Abstract. Modeling real-world acoustic signals and namely speech sig-
nals as piecewise stationary random processes is a possible approach to
blind separation of linear mixtures of such signals. In this paper, the
piecewise AR(1) modeling is studied and is compared to the more com-
mon piecewise AR(0) modeling, which is known under the names Block
Gaussian SEParation (BGSEP) and Block Gaussian Likelihood (BGL).
The separation based on the AR(0) modeling uses an approximate joint
diagonalization (AJD) of covariance matrices of the mixture with lag 0,
computed at epochs (intervals) of stationarity of the separated signals.
The separation based on the AR(1) modeling uses the covariances of lag 0
and covariances of lag 1 jointly. For this model, we derive an approxi-
mate Cramér-Rao lower bound on the separation accuracy for estimation
based on the full set of the statistics (covariance matrices of lag 0 and
lag 1) and covariance matrices with lag 0 only. The bounds show the con-
dition when AR(1) modeling leads to significantly improved separation
accuracy.

Keywords: Autoregressive processes · Cramér-Rao bound · Blind
source separation

1 Introduction

Blind source separation has found applications namely1 in biomedical signal
processing, for separating signals of interest from unwanted parasitic signals
and noises, and in acoustical signal processing [6]. Modeling real-world acoustic
signals and namely speech signals as piecewise stationary random processes is
a possible approach to blind separation of linear mixtures of such signals. It
appears that many times (depending on properties of the separated signals),
methods utilizing nonstationarity of the separated signals outperform the more
classical methods based on non-Gaussianity of the separated signals, or perform
1 This work was supported by The Czech Science Foundation through Project

No. 14-13713S.
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equally well but with much lower computational complexity [5,10]. The methods
using signal nonstationarity divide the received signals (mixtures) to epochs, in
each epoch the signals are modeled as stationary, but properties of the signals
(namely their power) are assumed to change significantly in different epochs
[1,7–9].

The separation is called determined or overdetermined, if the number of the
available mixtures is higher or equal to the number of the sources, and is called
underdetermined otherwise. The latter case is studied in [4]. In this paper we
focus on the squared mixtures, where the number of the mixtures is equal to the
number of the sources.

The simplest nonstationarity-based separation methods use only covariance
matrices with lag 0. The mixing/demixing matrix can be found through an
approximate joint diagonalization of these matrices [1]. This method can be
statistically efficient (attaining a Cramér-Rao lower bound, CRB) [2,8], if the
separated data obey the assumed model, i.e. when the signals are i.i.d. in all
epochs. Real-world signals such as speech signals rarely obey the condition. Our
experiments with natural speech signals sampled at 16 kHz show that the cor-
relation between two consecutive samples of the signals is typically 0.75 – 0.95.
This fact indicates that the separation methods using only the covariance matri-
ces with lag 0 may not be optimal, and more accurate modeling of the separated
signals may increase accuracy of the separation.

A method called Block-AutoRegressive Blind Identification (BARBI) [11]
uses an autoregressive model of a general order n in each epoch of the source
signals. We refer to the method as BARBI(n). The number of the estimated
parameters grows with increasing model order n and the method seems to suffer
of overfitting, if n > 2. In this paper we provide a theoretical justification for
improved performance of BARBI(1) compared to BARBI(0) through the CRB
analysis.

2 Data Model

Consider linear instantaneous square mixing model

Xt = AZt, (1)

where Zt denotes a single time instance of the input signals, A ∈ R
d×d is a mixing

matrix and Xt ∈ R is a time instance of the resulting mixtures. The input signals
are modeled by mutually independent piecewise stationary processes. We divide
the data into M epochs of the length T and assume that on each epoch the i−th
signal zit takes a form of order one autoregressive process

zit = −ρimzit−1 + σimwit, (2)

for t = (m − 1)T + 1, . . . mT , where wit is a Gaussian white noise with zero
mean and unit variance, ρim is an autoregressive coefficient corresponding to
the i−th input signal and the m−th epoch, and white noise sequences satisfy
independence relation
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Cov[wit, wjt′ ] = δijδtt′ .

The covariance of the input vector Zt in the m−th epoch with lag 0 is then
given by

Dm = Cov [Zt, Zt] = diag(d1m, d2m, . . . ddm), (3)

where

dim =
σ2

im

1 − ρ2im
.

Covariance of the mixture Xt with lag 1 in the m−th epoch is

Cov [Zt, Zt+1] = DmQm (4)

where Qm = −diag(ρ1m, ρ2m, . . . ρdm) is a diagonal matrix of the m−th epoch
autoregressive coefficients. The covariance matrices of the mixture Xt in the
m−th epoch with lag 0 and with lag 1

Rm = ADmAT , Sm = ADmQmAT (5)

are estimated from the data as

R̂m =
1
T

mT∑

t=(m−1)T+1

XtX
T
t , Ŝm =

1
T − 1

mT−1∑

t=(m−1)T+1

Xt+1X
T
t . (6)

The vector of the unknown parameters is

θ = [vec(A)T ; vec(D)T ; vec(Q)T ]T (7)

where D and Q are d × M matrices with elements dim and ρim, i = 1, . . . , d,
m = 1, . . . , M , respectively. Matrix A is the main parameter of interest and
D, Q are nuisance parameters. Since each change in scale of the signals can
be compensated by adequate change of the mixing matrix, the parameter D is
constrained by the condition

∑
m dim = 1 for all i = 1, . . . , d. It means that

the sum of the variances of each signal over all epochs is 1. Indeed, there are
inequality constraints 0 ≤ dim and −1 < ρim < 1 so that all signals in all epochs
are stable AR processes.

3 Cramér-Rao Bound

The Cramér-Rao Bound is defined as an inverse of the Fisher information matrix.
We shall assume, for simplicity, that the available data are Gaussian. It holds
that for normally distributed data with a mean μ(θ) and covariance matrix C(θ)
the Fisher information matrix has elements

Fθiθj
=

(
∂μ

∂θi

)�
C−1

(
∂μ

∂θj

)
+

1
2

tr
(

C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
. (8)
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In our case, the data have zero mean and only its covariance matrix C depends
on the estimated parameter. In particular,

C = Cov([X1, . . . , XMT ]) = blockdiag(C1, . . . , CM ) (9)

where

Cm = btoeplitz(ADmAT , ADmQmAT , . . . , ADmQ(T−1)
m AT ). (10)

Cm is the covariance matrix of the data in the m−th epoch, it is a symmetric
block-Toeplitz matrix with the displayed first block-row.

Now, the CRB on vec(A) is given as the left-upper corner submatrix of F−1

of the size d2 × d2, obeys

CRB(vec(A)) = CRBA = (A−1 ⊗ I)CRBI (A−T ⊗ I). (11)

CRBI is esentially (i.e. after a suitable re-ordering its columns and rows) block
diagonal, with diagonal blocks of size 1 × 1 and 2 × 2,

CRBI (Akk) =
1
T

(12)

for k = 1, . . . , d, and

CRBI ([Ak�, A�k]) =
1

MT

1
φk�φ�k − 1

[
φk� −1
−1 φ�k

]
(13)

for k, � = 1, . . . , d, k �= �, where [11]

φk� =
1
M

M∑

m=1

dkm

d�m

1 − 2ρkmρ�m + ρ2�m
1 − ρ2�m

. (14)

Note that in the special case of all autoregressive parameters identical, ρkm = ρ
for k = 1, . . . , d, m = 1, . . . , M , the resultant CRB expressions are independent
of ρ.

3.1 CRB for Estimates Based on the Statistics

In this subsection, we investigate the maximum possible accuracy of the sep-
aration using only the statistics {R̂m} and {R̂m, Ŝm}, respectively. Thanks to
the central limit theorem it holds that for T → ∞ these statistics have asymp-
totically normal distribution with the asymptotic mean equal to the theoretical
covariances {Rm} and {Rm, Sm}, respectively, and have asymptotical covariance
of errors proportional to 1

T . The CRB for the estimates based on the statistics
means computing the information content about the estimated parameter θ in
the “concentrated” data {R̂m} and {R̂m, Ŝm}, assuming that the noise in the
“concentrated” data is exactly zero mean and has exactly Gaussian distribution
with the covariance structure that follows from analysis of the true statistics.
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For computing the CRB as the inverse of the Fisher information matrix we
will use the general formula (8) again. In this case, both the mean μ and the
covariance matrix C depend on the estimated parameter. A detailed computa-
tion, not included here due to lack of space, shows that only the former term
in (8) is dominant, has asymptotic order O(T ) for large T , and the latter term
is negligible, having the order O(1) only. The O(1) terms will be neglected with
respect to the leading term proportional to T . The asymptotic CRB is inversely
proportional to T .

The concentrated data using the covariances with only lag 0 denoted Ŷ0 are
composed of L(R̂m) for m = 1, . . . , M , where L(R) is the vector of elements of
a lower triangular part of a matrix R,

L(R) = [R11, R21 . . . Rd1, R22, R32 . . . Rd2, R33 . . . Rdd]T . (15)

The concentrated data using the covariances with lag 0 and 1 denoted Ŷ0+1 will
be composed of L(R̂m) and L((Ŝm + ŜT

m)/2) for m = 1, . . . , M . Note that while
Sm is symmetric, its sample estimate Ŝm may not be symmetric and thus we
symmetrize it.

The covariance matrices of Ŷ0 and Ŷ0+1 can be computed as functions of
parameter θ in (7). Again, they are block diagonal, having M blocks, because
data in individual epochs and also the sample covariance matrices in them are
mutually statistically independent. A straightforward but lengthy computation
leads to the result that the asymptotic CRB for estimates based on the statistics
Ŷ0+1, denoted CRB(0+1)(A) are identical to those in (13). It follows that Ŷ0+1 is
asymptotically sufficient. CRB for estimates based on Ŷ0, denoted CRB(0)(A),
is higher, sometimes significantly. In particular,

CRB(0)(vec(A)) = CRB(0)
A = (A−1 ⊗ I)CRB(0)

I (A−T ⊗ I) (16)

where CRB(0)
I is block diagonal and independent of A again, and

CRB(0)
I ([Ak�, A�k]) =

1
MT

1
ϕk�ϕ�k − ω2

k�

[
ϕk� −ωk�

−ωk� ϕ�k

]
(17)

for k, � = 1, . . . , d, k �= �, with

ϕk� =
1
M

M∑

m=1

dkm

d�m

1 − ρkmρ�m

1 + ρ2�m
, ωk� =

1
M

M∑

m=1

1 − ρkmρ�m

1 + ρ2�m
. (18)

In the special case ρin = ρ for all i = 1, . . . , d, m = 1, . . . , M , it holds

CRB(0)(A) = CRB(A)
1 + ρ2

1 − ρ2
. (19)

If ρ is close to ±1, the difference is significant.
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4 Estimating A

From (10) it follows that A−1 can be sought as a matrix that jointly diagonalizes
the matrices R̂m and Ŝm, m = 1, . . . , M [3]. The ordinary (unweighted) approx-
imate joint diagonalization algorithms as UWEDGE [1] produce consistent but
not optimal estimates of A. The asymptotically optimum estimate of θ can be
found by minimizing the expression

θ̂ = argminθ(Ŷ0+1 − Y0+1(θ))T [Cov(Ŷ0+1)]−1(Ŷ0+1 − Y0+1(θ)). (20)

The matrix C0+1(θ) = Cov(Ŷ0+1) is a function of the unknown parameter θ. In
practice, C0+1(θ) can be replaced by C0+1(θ̂c), where θ̂c is a consistent estimate
of θ, to achieve an asymptotically optimum estimate. Note that C0+1(θ) is nearly
block diagonal if its columns and rows are appropriately sorted and A ≈ I.
The weighted AJD algorithm WEDGE [1], and also BARBI [11] estimate a
demixing matrix V . Let V [i] be an estimate of V = A−1 from the i−th iteration.
Then, the partially demixed covariance matrices are given as R̂

[i]
m = V [i]R̂mV [i]T

and Ŝ
[i]
m = V [i]ŜmV [i]T . These matrices are used to estimate parameters of the

separated signals, i.e. d
[i]
jm = (R̂[i]

m)jj and ρ
[i]
jm = −(Ŝ[i]

m )jj/(R̂[i]
m)jj where (X)jj

means the (j, j)−th element of matrix X.
The main iteration of WEDGE is

V [i+1] = [A[i]]−1V [i],

where the diagonal elements of A[i] are set to 1, and the off-diagonal elements
of A[i] obey the 2 × 2 linear systems

[
A

[i]
k�

A
[i]
�k

]
=

{
M∑

m=1

[
p̂T

��mWk�mp̂��m p̂T
kkmWk�mp̂��m

p̂T
kkmWk�mp̂��m p̂T

kkmWk�mp̂kkm

]}−1 M∑

m=1

[
p̂T

��mWk�mp̂k�m

p̂T
kkmWk�mp̂k�m

]
,

(21)
where p̂k�m = [(R̂[i]

m)k�, (Ŝ
[i]
m )k�] and Wk�m should be proportional to the inverse

of a 2 × 2 covariance matrix of p̂k�m for k, � = 1, . . . , d, k �= �. We use the choice

W−1
k�m =

dkmd�m

1 − ρkmρ�m

[
1 + ρkmρ�m −ρkm − ρ�m

−ρkm − ρ�m (1 + (ρkm + ρ�m)2 − ρ2kmρ2�m)/2

]
. (22)

In BARBI, the relation (21) is replaced by

[
Â

[i]
k�

Â
[i]
�k

]
=

{
M∑

m=1

[
p̂T

��mqkm p̂T
kkmqkm

p̂T
kkmqkm p̂T

kkmq�m

]}−1 M∑

m=1

[
qT
kmp̂k�m

qT
�mp̂k�m

]
, (23)

where qkm = Wk�mp��m, and in the case of the AR order 1 it reads

qkm =
1

2dkm(1 − ρ2km)

[1 + ρ2km

−2ρkm

]
. (24)



310 P. Tichavský et al.

5 Simulations

In the first simulation we consider a mixture of three piecewise AR(1) signals.
The signals are composed of M = 10 epochs, each of the length T = 100.
The signals have the same AR coefficient ρ in all epochs. The variances of the
signals are increasing, 1, 2, ..., 10, decreasing 10, 9, . . . , 1 and constant 5, . . . , 5,
respectively, in the 10 epochs. We mix the signals using a random orthogonal
(for simplicity) mixing matrix and demix them by BARBI(0) and BARBI(1)
algorithms. The resultant average interference-to-signal ratios (ISR) obtained
in 100 independent trials and corresponding CRB and CRB(0) are plotted as
function of ρ in Fig. 1. We can see that BARBI(1) is nearly statistically efficient
unless ρ is in a vicinity of −1. BARBI(0) does not achieve the CRB(0) except
for ρ close to zero, but it follows the trend of CRB(0).
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Fig. 1. Average ISR for separation of a mixture of artificial piecewise AR(1) signals
achieved by BARBI(0) and BARBI(1) and corresponding CRBs versus the AR coeffi-
cient.

0 50 100 150 200
−55

−50

−45

−40

−35

−30

−25

−20

−15

M

IS
R

 [d
B

]

BARBI(0)
BARBI(1)

Fig. 2. Average ISR for separation of a mixture 16 natural speech signals achieved by
BARBI(0) and BARBI(1) versus the number of epochs.
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In the second simulation, we consider a mixture of 16 natural speech signals
sampled at 16 kHz of the total length of 8.375 s, taken from the database in [4].
The average correlation between two consecutive samples in these signals is from
0.65 to 0.95, and the overall average is 0.81. Average ISR achieved by BARBI(0)
and BARBI(1) versus the number of epochs is shown in Fig. 2.

6 Conclusions

We have proved that in blind separation of natural signals, piecewise AR(1)
modeling represented by the algorithm BARBI(1) gives significantly improved
separation accuracy if the sample lag-1 correlation of the original signals is close
to 1. We plan to extend these results to underdetermined mixtures.
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2 GIPSA-Lab, Université Joseph Fourier (UJF), Grenoble, France

rafael.ando@gipsa-lab.grenoble-inp.fr
3 School of Applied Sciences, UNICAMP, Campinas, Brazil

Abstract. In this paper, we analyse and solve a source separation prob-
lem based on a mixing model that is nonlinear and non-invertible at the
space of mixtures. The model is relevant considering it may represent
the data obtained from ion-selective electrode arrays. We apply a new
approach for solving the problems of local stability of the recurrent net-
work previously used in the literature, which allows for a wider range of
source concentration. In order to achieve this, we utilize a second-order
recurrent network which can be shown to be locally stable for all solu-
tions. Using this new network and the priors that chemical sources are
continuous and smooth, our proposal performs better than the previous
approach.

1 Problem Statement

The general blind source separation (BSS) problem consists in estimating sources,
represented by the vector s = [s1, s2, ..., sn]T , that have been mixed by an
unknown function F(.), given only the mixtures x = [x1, x2, ..., xn]T and prior
information on the model or the sources.

x = F(s). (1)

For a linear function F(.), the problem can be uniquely solved – up to scale and
permutation ambiguities – by formulating a criterion of statistical independence,
but this is no longer possible for a generic nonlinear mapping. [2,5,6]. It is well
known that the nonlinear BSS problem is very difficult to solve, since the generic
nonlinearities can cause multiple statistical independent solutions that are still
mixtures of the sources.

In the literature, we can find several approaches for dealing with specific
nonlinear mixtures, such as the Post-Nonlinear (PNL) [2,7] and the Linear-
Quadratic (LQ) [4]. For the latter, a recurrent network has been proposed as
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part of the solving system, and, with some modifications, can also be used for
a different mixing model which shall be analyzed in this paper, represented as
follows:

x1 = s1 + a1s
2
2

x2 = s2 + a2
√

s1
(2)

This model describes data obtained from ion-selective-electrodes (ISEs), where
we have two sources (i.e. chemical species) and two sensors. More details about
the suitability of model (2) to the problem can be found in [3].

Fig. 1. Illustration of the folding of the
source space
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Fig. 2. Increase of the folded area with
the selectivity coefficients

Our main goal in this paper is to obtain an estimate y = (y1, y2) of the
sources s = (s1, s2), when the exact selectivity coefficients aij and the mixtures
x = (x1, x2) are known. For the mixing model (2), the nonlinearity creates a
difficulty for being non-invertible, since two distinct source points can be mapped
onto the same mixture. Indeed, as can be seen in Fig. 1, the model effectively
“folds” the source space, and this folding depends on the selectivity coefficients,
as seen in Fig. 2. For a given point in the mixture space x = (x1, x2), it can be
seen that the possible solutions are the sources y = (s1, s2) and a mixture of the
sources, given by:

y∗ =

((√
s1

(
a1a

2
2 − 1

)
+ 2a1a2s2

)2

(a1a2
2 + 1)2

,
−a1a

2
2s2 + 2a2

√
s1 + s2

a1a2
2 + 1

)
(3)

The folding frontier (i.e., the locus of the points for which y = y∗) is given by:

a1a2s2 =
√

s1. (4)

Since we are dealing with aqueous ionic solutions, we can restrict the sources
concentrations to si ∈ [0, 1]. In this region of interest, we shall henceforth call the
points below and above the folding frontier regions 1 and 2 respectively, as seen
in Fig. 3. It can also be seen that while some of the points in region 1 are mapped
to an invertible area (i.e., y∗ is outside the region of interest, and therefore no
ambiguity ensues), all points from region 2 are mapped to the non-invertible
area.
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Fig. 3. Mapping of the frontiers in the source
and mixture spaces
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2 Recurrent Network Analysis

The use of recurrent networks to solve this problem has already been considered
before by Duarte and Jutten [3], who achieved good but limited results since the
network used is not locally stable for all possible ionic concentrations. In order
to solve this issue, a new approach that implements a second-order recurrent
network based on the Newton-Raphson’s method has been proposed [1]. The
goal in using a recurrent network is to obtain the solutions of the model (2)
numerically, since obtaining the analytical solution is not always straightforward.

2.1 Recurrent Network

The main idea to obtain a separating system is to represent (2) as

G(s) =
[

s1 + a1s
2
2 − x1

s2 + a2
√

s1 − x2

]
= 0 (5)

Then, the source separation problem can be interpreted as a homogeneous non-
linear equation system and can be solved by root-finding algorithms such as the
Newton-Raphson’s method [1]. This leads to the following equation:

y(m + 1) = y(m) − μJG
−1G(y(m)) (6)

where y is the estimate of the sources, μ ∈ (0, 1] is an adjustment scale factor,
m is the iteration index of the network and JG is the Jacobian matrix of G. To
avoid discontinuities in the derivatives when extending (2) to R

2, we can use:

x1 = y1 + a1y
2
2

x2 = y2 + a2

√
|y1|sign(y1)

(7)

which is the same model as (2) in the region of interest [0, 1] × [0, 1].
When the network converges, we obtain y(m + 1) = y(m), which is defined

as a fixed point of the network. From (6), we can show that this happens if and
only if G = 0, since JG

−1 is non-singular.
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2.2 Stability of Solutions

We can calculate the stability condition of Eq. (6), for all fixed points. It is well
known that for discrete dynamic systems, if all eigenvalues λi of the Jacobian
matrix of the recurrence evaluated at the fixed point satisfy |λi| < 1, the system
is locally stable. Computing the Jacobian matrix at the fixed points, leads to:

J|G=0 =

[
∂y1(m+1)

∂y1(m)
∂y1(m+1)

∂y2(m)
∂y2(m+1)

∂y1(m)
∂y2(m+1)

∂y2(m)

]

G=0

=
[
1 − μ 0

0 1 − μ

]
(8)

From (8) we conclude that for μ ∈ (0, 1], the fixed points are always locally
stable. According to this result, the stability problem found in [3] no longer
exists, since the solution (s1, s2) is stable for all source concentrations. However,
we now have to deal with a non-separating solution (3) that is also stable. Since
the two solutions are always in different regions, it is important to know how
to control which solution we want the network to obtain. Given a sufficiently
small step for the network in (6) – e.g., μ = 0.1 –, if we initialize in (0.9, 0.1)
and (0.1, 0.9) we converge to solutions in regions 1 and 2 respectively, as seen in
Fig. 4. As a result, specifying the initial point can be used to reach the separating
solution of the model.
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Fig. 5. Trajectories near the folding frontier.

2.3 Pivot Points

To have more knowledge about the solutions’ trajectories near the folding fron-
tier, we can look at Fig. 5. In Fig. 5a, we see the trajectory of the sources when
it crosses the frontier. In Fig. 5b, we see two different trajectories in the (y1, y2)
plane: the one represented by squares, corresponding to the estimate when we
initialize in region 1, and one represented by circles when we initialize in region 2.

From the initial point of the trajectory, we can see that the solution corre-
sponds to the square estimate before crossing the frontier, and the circle one
afterwards. Let us define the point when the solution crosses the frontier as the
pivot. Moreover, the pivot is also the point at which the initialization should be
changed.
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After observing the behaviour of the trajectory of the sources and the esti-
mates in several simulations, it was suggested that the correct solution should
combine the estimates in such a way that the resulting signal would be as smooth
as possible near the folding frontier. As can also be seen in Fig. 5, we can ver-
ify that, near the border, the correct solution is smoother than the alternative
in which no change of initialization occurs. Therefore, using as priors that the
source are continuous and smooth, we propose an algorithm that determines
which initialization should be applied to the points at the non-bijective region
in order to obtain the correct solution.

3 Proposed Algorithm

In this section, we propose an algorithm that identifies the pivots and the ini-
tializations that should be used to recover the signal. In the following sections,
we will present the technical aspects of the proposed algorithm.

3.1 Identification of Potential Pivots

In order to identify the pivots, we calculate the entire estimate with only the
initialization in region 1 and make a system that predicts, at a given point of
the calculated signal, if the next point would cross the border. The prediction
does not have to be very accurate, since it only identifies potential pivots. After
identifying all pivots, we segment the signal into blocks in which all the points
are either initialized in region 1 or 2. In Fig. 6 we can see two signals in each
graph, a thin one representing the estimated sources obtained with initialization
at region 1, and a thick one representing the real sources. The vertical lines
represent potential pivots given by the algorithm, and as we can see, all points
where the initialization should be changed were identified.

For the prediction of the next point, a factor based on the curvature of the tra-
jectory of the estimates was included. This is because when the sources cross the
border, the trajectories of the estimates tend to rapidly change their direction,
yielding high curvature. The algorithm therefore considers such abrupt varia-
tions as an indicative that the next point is a probable pivot. For more details
about how the prediction is done, one can look at the pseudocode in Table 1.

3.2 Classification of Each Block

After segmenting the signal, we need to identify which initialization each block
should be given. For that, we initially check for points outside the non-bijective
area. As previously mentioned, we know that such points can only come from
region 1, so we can safely initialize its corresponding block in it. For the remaining
blocks, we select the initialization that maximizes the measure of smoothness
around the pivot. We define smoothness as:

S(y) = Var(y2(n + 1) − y2(n)) (9)
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Fig. 6. Block segmentation of the estimates. Thick and thin curves represent the
sources and the estimate, respectively.

where Var(.) is the empirical variance calculated in a N -sized window (N = 11
samples) centered around the pivot and n is the sample index of the signal.
A pseudocode of the entire algorithm can be seen in Table 1:

Table 1. Pseudocode of the proposed algorithm

4 Simulation Results

In this section, we analyse the performance of the proposed algorithm and com-
pare it to the previous methods for solving the problem [3]. We simulate sources
by filtering a uniform random signal with a high order low-pass filter, with vari-
able cut-off frequency. As one may notice, the smaller the cut-off frequency,
the smoother the estimated sources obtained. To estimate the performance of
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the technique, we measure the Signal-to-Interference ratio (SIR) – defined in
Eq. (12) – for each block of the signal.

SIR = 10 log10

(
E{s2}

E{(s − y)2}
)

(12)

If a block’s SIR is lower than a certain threshold, we consider that the estimates
are wrong, otherwise we consider them correct. For our simulation, we used
15 dB as the threshold. We can then calculate the percentage of errors given by
the algorithm.
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4.1 First Scenario

In this simulation, we keep the sources’ smoothness constant and vary the selec-
tivity coefficients h, defined, for the sake of illustration, as a1 = a2 = h. Figure 7
shows the average percentage of errors, for 300 trials for each h and 20 different
h ∈ [0.1, 0.95]. We can verify that for selectivity coefficients h < 0.6, results
for both the proposed network and the previous one can be considered similar.
However, for h ∈ [0.6, 0.9] our approach yields considerably better results. For
h > 0.9 (i.e. for ill-conditionned mixtures), the errors with the two methods are
above 10 % and grow rapidly with h, and we can consider that both methods
fail.

4.2 Second Scenario

In the second scenario, we keep the selectivity coefficients constant (h = 0.8)
and vary the sources’ smoothness by adjusting the filter’s cutoff frequency. As
we can see in Fig. 8, for all cutoff frequencies tested, the proposed algorithm
performed better than the previous technique.
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We can also see that regardless of the signal’s smoothness, the percentage
of errors in our technique remains roughly constant and very low (about 2 %),
which suggests the smoothness of the sources do not interfere in the algorithm’s
performance.

5 Conclusion

In this paper we considered a problem of source separation in non-invertible
nonlinear mixtures derived from an application in which chemical sensor arrays
are used to measure ionic concentrations. For the simple case of two mixtures and
two sources, we proposed a new method for solving the problem which has better
stability properties. The nonlinear mapping studied presented difficulties caused
by the existence of multiple solutions, which makes the model non-invertible.
Nonetheless, our proposed method was capable of solving it using the prior
source smoothness, and experimental results attested to the efficiency of the
method even when the mixture is ill-conditioned.

Future works include extending the method to the blind case (i.e. when the
mixing coefficients are unknown) and investigating other approaches, such as how
the overdetermined scenario (i.e., with more sensors than sources), could provide
additional information which would help solve the non-invertibility problem.
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Abstract. This paper studies the problem of Non-symmetric Joint
Diagonalization (NsJD) of matrices, namely, jointly diagonalizing a set
of complex matrices by one matrix multiplication from the left and one
multiplication with possibly another matrix from the right. In order to
avoid ambiguities in the solutions, these two matrices are restricted to
lie in the complex oblique manifold. We derive a necessary and sufficient
condition for the uniqueness of solutions, and characterize the Hessian of
global minimizers of the off-norm cost function, which is typically used to
measure joint diagonality. By exploiting existing results on Jacobi algo-
rithms, we develop a block-Jacobi method that guarantees local conver-
gence to a pair of joint diagonalizers at a quadratic rate. The performance
of the proposed algorithm is investigated by numerical experiments.

Keywords: Non-symmetric joint diagonalization of matrices · Complex
oblique manifold · Uniqueness conditions · Block Jacobi algorithm ·
Local quadratic convergence

1 Introduction

Joint Diagonalization (JD) of a set of matrices has attracted considerable atten-
tions in the areas of statistical signal processing and multivariate statistics. Its
applications include linear blind source separation (BSS), beamforming, and
direction of arrival (DoA) estimation, cf. [1]. Classic literature focuses on the
problem of symmetric joint diagonalization (SJD) of matrices. Namely, a set of
matrices are to be diagonalized via matrix congruence transforms, i.e. multipli-
cation from the left and the right with a matrix and its (Hermitian) transposed,
respectively.

In this work, we consider the problem of Non-symmetric Joint Diagonaliza-
tion (NsJD) of matrices, where the two matrices multiplied from the left and
the right are different. Such a general form has been studied in the scheme of
multiple-access multiple-input multiple-output (MIMO) wireless transmission,
cf. [2]. In the work of [3], NsJD approaches have demonstrated its application
in solving the problem of independent vector analysis. Moreover, the problem of
NsJD is closely related to the problem of the canonical polyadic decomposition
of tensors. We refer to [4,5] for further discussions on the latter subject.
c© Springer International Publishing Switzerland 2015
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One contribution of this work is the development of a block Jacobi method
for solving the problem of NsJD at a super-linear rate of convergence. Jacobi-
type methods have a long history in solving problems of matrix joint diagonal-
ization. Early work in [6] employs a Jacobi algorithm for solving the unitary
joint diagonalization problem based on the common off-norm cost function. In
the non-unitary setting, Jacobi-type methods have been developed for both the
log-likelihood formulation, cf. [7], and the common off-norm case, cf. [8,9]. The
current work provides an extension of [10], which only considers the problem in
the real symmetric setting.

2 Uniqueness of Non-symmetric JD

In this work, we denote by (·)� the matrix transpose, (·)H the Hermitian trans-
pose, (·) the complex conjugate of entries of a matrix, and by Gl(m) the set of
all m × m invertible complex matrices. Let {Ci}n

i=1 be a set of m×m complex
matrices, constructed by

Ci = ALΩiA
H
R, i = 1, . . . n, (1)

where AL, AR ∈ Gl(m) and Ωi = diag
(
ωi1, . . . , ωim

) ∈ C
m×m with Ωi �= 0. It is

worth noticing that there is no relation between the matrices AL and AR. The
task of NsJD is to find a pair of matrices XL,XR ∈ Gl(m) such that the set of
matrices {

XH
LCiXR

∣∣ i = 1, . . . , n
}

(2)

are jointly diagonalized. In order to investigate properties of any algorithm that
aims at finding such a joint diagonalizer, it is fundamental to understand under
what conditions there exists a unique solution. In the remainder of this section,
we therefore elaborate the uniqueness properties of the non-symmetric joint diag-
onalization problem (2).

As it is known from the SJD case, there is also an inherent permutation and
scaling ambiguity here. Let DL,DR ∈ Gl(m) be diagonal and P ∈ Gl(m) be a
permutation matrix. If X∗

L ∈ Gl(m) and X∗
R ∈ Gl(m) are the joint diagonalizers

of problem (2), then so is the pair of (X∗
LDLP,X∗

RDRP ). In other words, the
joint diagonalizers can only be identified up to individual scaling and a joint
permutation. We define the set of two jointly column-wise permuted diagonal
(m × m)-matrices by

G(m) :=
{
(D1P,D2P )

∣∣D1,D2 ∈ Gl(m) are diagonal and

P ∈ Gl(m) is a permutation matrix
}
. (3)

As the set G(m) admits a group structure, we can define an equivalence class on
Gl(m) × Gl(m) as follows.

Definition 1 (Essential Equivalence). Let (XL,XR) ∈ Gl(m)×Gl(m), then
(XL,XR) is said to be essentially equivalent to (YL, YR) ∈ Gl(m) × Gl(m), and
vice versa, if there exists (EL, ER) ∈ G(m) such that

XL = YLEL and XR = YRER. (4)
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Moreover, we say that the solution of problem (2) is essentially unique, if it
admits a unique solution on the set of equivalence classes.

Due to the fact that

XH
LCiXR = (XH

LAL)Ωi(AH
RXR), (5)

we assume without loss of generality that the Ci = Ωi, i = 1, . . . , n, are already
diagonal. In other words, we investigate the question of under what conditions
the set G(m) admits the only solutions to the joint diagonalization problem (2),
when the Ci’s are already diagonal.

In order to characterize the uniqueness conditions, we need to define a mea-
sure of collinearity for diagonal matrices. Recall Ωi = diag(ωi1, . . . , ωim) ∈
C

m×m for i = 1, . . . , n. For a fixed diagonal position k, we denote by zk :=
[ω1k, . . . , ωnk]� ∈ C

n the vector consisting of the k-th diagonal element of
each matrix, respectively. Then, the collinearity measure for the set of Ωi’s is
defined by

ρ(Ω1, . . . , Ωn) := max
1≤k<l≤n

|c(zk, zl)|, (6)

where c(zk, zl) is the cosine of the complex angle between two vectors v, w ∈ C
n,

computed as

c(v, w) :=

{
vHw

‖v‖‖w‖ if v �= 0 ∧ w �= 0,

1 otherwise.
(7)

Here, ‖v‖ denotes the Euclidean norm of a vector v. Note, that 0 ≤ ρ ≤ 1 and
that ρ = 1 if and only if there exists a complex scalar ω ∈ C and a pair zk, zl,
k �= l so that zk = ωzl. In other words, ρ = 1 if and only if there exist two
positions (k, k) and (l, l) such that the corresponding entries in the matrices Ωi

only differ by multiplication with a complex scalar ω. We adopt the methods for
uniqueness analysis of symmetric joint diagonalization cases, developed in [11],
to the NsJD setting.

Lemma 1. Let Ωi ∈ C
m×m, for i = 1, . . . , n, be diagonal, and let XL,XR ∈

Gl(m) so that XH
LΩiXR is diagonal as well. Then the pair (XL,XR) is essentially

unique if and only if ρ(Ω1, . . . , Ωn) < 1.

Proof. First, consider the case m = 2 and let

XL =
[
l1 l2
l3 l4

]
∈ Gl(2), and XR =

[
r1 r2
r3 r4

]
∈ Gl(2). (8)

Then XH
LΩiXR is diagonal for i = 1, . . . , n, if and only if

{
ωi1l1r2 + ωi2l3r4 = 0
ωi1l2r1 + ωi2l4r3 = 0

(9)

for i = 1, . . . , n. The corresponding system of linear equations reads as
[
ω11 ω21 . . . ωn1

ω12 ω22 . . . ωn2

]H [
l1r2 l2r1
l3r4 l4r3

]
= 0, (10)
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which only has a unique trivial solution if and only if the coefficient matrix in
ω’s has rank 2, which in turn is equivalent to ρ(Ω1, . . . , Ωn) < 1. Specifically,
the trivial solution, i.e.

l1r2 = l2r1 = l3r4 = l4r3 = 0, (11)

together with the invertibility of XL and XR yields that either

l1 = r1 = l4 = r4 = 0, or l2 = r2 = l3 = r3 = 0. (12)

Therefore, one can conclude that (XL,XR) ∈ G(2). For the case m > 2, if ρ = 1
then there exists a pair (k, l) such that |c(zk, zl)| = 1 and the same argument as
above shows that ρ = 1 implies the non-uniqueness of the joint diagonalizer.

For the reverse direction of the statement, we assume that the joint diagonal-
izer is not in G(m). We further assume that one of the Ωi’s, say Ω1, is invertible.
Then

XH
LΩiXR(XH

LΩ1XR)−1 = XH
LΩiΩ

−1
1 (XH

L)−1, (13)

for i = 1, . . . , n, gives the simultaneous eigendecomposition of the diagonal matri-
ces ΩiΩ

−1
1 . Since we assume (XL,XR) /∈ G(m), this eigendecomposition is not

unique and thus each matrix ΩiΩ
−1
1 must have at least two identical eigenvalues

and these eigenvalues must be located at the same positions (k, k) and (l, l) for
all the matrices ΩiΩ

−1
1 . In other words, there exists a pair (k, l) with k �= l such

that
ωik

ω1k
=

ωil

ω1l
, (14)

which is equivalent to |c(zk, zl)| = 1 and hence ρ(Ω1, . . . , Ωn) = 1. If all the Ωi’s
are singular, we distinguish between two cases. Firstly, assume that there is a
position on the diagonals, say k, where all ωik = 0. Then |c(zk, zl)| = 1 holds true
for any k �= l and thus ρ = 1. Secondly, if there is no common position where
all the Ωi’s have a zero entry, there exists an invertible linear combination,
say Ω0, which can also be diagonalized via the same transformations. Then by
considering a new set {Ωi}n

i=0, the same argument as from (13) to (14) for the
invertible case applies by replacing Ω1 with Ω0. �

3 Analysis of the Joint Diagonality Measure

To deal with the scaling ambiguity, we restrict the search space for the diago-
nalizing matrices to the quotient space

Op(m) = Gl(m)/{D ∈ Gl(m) | D is diagonal.}, (15)

cf. [12] for further details. As representatives for one equivalent class, we choose
elements from the set of complex oblique matrices, i.e.

OB(m) :=
{
X ∈ C

m×m|ddiag(XHX) = Im, rk X = m
}
, (16)
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where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and Im is the m×m identity matrix. As a measure for the joint diagonality,
we choose

f : Op(m) × Op(m) → R, (XL,XR) �→ 1
4

n∑

i=1

∥∥∥ off(XH
LCiXR)

∥∥∥
2

F
, (17)

where off(Z) = Z − ddiag(Z) and ‖ · ‖F is the Frobenius norm of matrices.
The convergence rate of the Jacobi method depends on a non-degenerated

Hessian form of the cost function at the optimal solution. In what follows, we
therefore characterize the critical points of (17) and specify their Hessian form.
Let us denote the set of all m×m matrices with zero diagonal entries by

off(m) =
{
Z ∈ C

m×m|zii = 0, for i = 1, . . . , m
}
. (18)

Then, for any X ∈ Op(m), the following map

μX : off(m)→Op(m), Z �→ X(Im +Z) diag
{

1
‖X(e1+z1)‖ , . . . , 1

‖X(em+zm)‖
}

, (19)

where Z = [z1, . . . , zm] ∈ off(m) and ei is the i-th standard basis vector, is a
local and smooth parameterization around X. Let X := (XL,XR) ∈ Op2(m) :=
Op(m) × Op(m) and denote by H := (HL,HR) ∈ TX Op2(m) the tangent vector
at X . The first derivative of f evaluated at X in tangent direction H yields

Df(X )(H)=
n∑

i=1

tr
(

off
(
XH

LCiXR

)
XH

RCH
i HL + off

(
HH

LCiXR

)
XH

RCH
i XL+

off
(
XH

LCiXR

)
HH

RCH
i XL + off

(
XH

LCiHR

)
XH

RCH
i XL

)
.

(20)

Since any joint diagonalizer X ∗ is a global minimum, it satisfies D f(X ∗)H = 0.
We use μX := (μXL

, μXR
) as the local parameterization of Op2(m) and compute

the Hessian form Hf (X ∗) : TX ∗Op2(m) × TX ∗Op2(m) → R. Let X ∗ = (X∗
L,X∗

R)
be a pair of joint diagonalizers. Without loss of generality assume that X∗H

L AL is
diagonal and denoted by ΛL := diag(λL1, . . . , λLm). Similarly, we denote ΛR :=
diag(λR1, . . . , λRm) = AH

RX∗
R. A tedious but direct calculation leads to

Hf (X ∗)(H,H)= d2

d t2 (f ◦μX ∗)(tΘ, tΞ)
∣∣∣
t=0

=
m∑

j �=k

[
θjk

ξkj

]�
⎡

⎣
n∑

i=1
|δij |2

n∑
i=1

δijδik

n∑
i=1

δijδik
n∑

i=1
|δik|2

⎤

⎦

︸ ︷︷ ︸
=:Bjk

[
θjk

ξkj

]
, (21)

where δij is the j-th diagonal entry of the diagonal matrix Δi := X∗
LCiX

∗
R =

ΛLΩiΛR.
Clearly, the Hessian of f at X ∗ is at least positive semi-definite, and diagonal

in terms of 2 × 2 blocks, with respect to the standard basis of the parameter
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space off(m) × off(m). Then, the definiteness of the Hessian simply depends on
the determinant of Bjk’s, which is computed by

det(Bjk) =
( n∑

i=1

|δij |2
)( n∑

i=1

|δik|2
)

−
∣∣∣∣

n∑

i=1

δijδik

∣∣∣∣
2

= |λLj |2 |λRj |2 |λLk|2 |λRk|2
(( n∑

i=1

|ωij |2
)( n∑

i=1

|ωik|2
)

−
∣∣∣∣

n∑

i=1

ωijωik

∣∣∣∣
2
)

. (22)

By the Cauchy-Schwarz inequality, det(Bjk) is non-negative, and is equal to zero
if and only if there is a pair of positions (j, k), so that zj ∈ R

n and zk are linearly
dependent, i.e. ρ(Ω1, . . . , Ωn) = 1. Thus, we conclude.

Lemma 2. Let the NsJD problem (2) have a unique joint diagonalizer. Then
the Hessian of the off-norm function (17) at the joint diagonalizer is positive
definite.

4 Block-Jacobi for Non-symmetric Joint Diagonalization

In this section, we develop a block Jacobi algorithm to minimize the cost function
(17). Firstly, let us define the complex one dimensional subspace

Vij :=
{
Z = (zkl) ∈ C

m×m|zkl = 0 for (k, l) �= (i, j)
}
. (23)

It is clear that ⊕i�=j(Vij × Vji) = off(m) × off(m). We then define

Vij(X ) := { d
d t μX (t · Z)|t=0 |Z ∈ (Vij × Vji)}, (24)

yielding a vector space decomposition of the tangent space TX Op2(m).
The block Jacobi-type method iteratively employs the search along the sub-

spaces Vij(X) in a cyclic manner. More precisely, let (Θjk, Θkj) ∈ Vij × Vji and
denote θ = [θjk θkj ]� ∈ C

2. For any point X ∈ Op2(m), we construct a family
of maps

{
ν
(X )
jk

}m

j �=k
by

ν
(X )
jk : C2 → Op2(m), θ �→ μX (Θjk, Θkj). (25)

The algorithm is presented in Algorithm 1. It is readily seen with (21) that
the Vij are orthogonal with respect to Hf (X ∗). Therefore, the following result
guarantees the super linear convergence rate of the block Jacobi method to an
exact joint diagonalizer in case that this diagonalizer is essentially unique.

Theorem 1 ([13]). Let M be an n-dimensional manifold and let x∗ be a local
minimum of the smooth cost function f : M → R with nondegenerate Hessian
Hf (x∗). Let μx be a family of local parameterizations of M and let ⊕iVi be a
decomposition of Rn. If the subspaces Vi := T0μx∗(Vi) ⊂ Tx∗M are orthogonal
with respect to Hf (x∗), then the Block-Jacobi method is locally quadratic conver-
gent to x∗.
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Algorithm 1. Jacobi Algorithm for Non-Symmetric Joint Diagonalization

Step 1: Given an initial guess X (0) = (X
(0)
L , X

(0)
R ) ∈ Op2(m) and set s = 0.

Step 2: Set s = s + 1 and let Xs = Xs−1.

For 1 ≤ j < k ≤ m, update

Xs ← ν
(Xs)
jk

(
θ∗),

with θ∗ = −Hϕ(0)−1∇ϕ(0). Here, H and ∇ denote the usual Hessian and the
gradient of the function

ϕ : C2 → R, θ �→ f ◦ ν
(Xs)
jk (θ)

Step 3: If ‖Xs − Xs−1‖ is small enough, stop
Otherwise, go to Step 2.
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Fig. 1. Convergence properties of the proposed block Jacobi algorithm.

For an experimantal evaluation of this result, we consider the task of jointly
diagonalizing a set of non-symmetric matrices {C̃i}n

i=1, constructed by

C̃i = ALΛiA
H
R + εEi, i = 1, . . . , n, (26)

where A ∈ C
m×m is a randomly picked matrix in OB(m), the modulus of diago-

nal entries of Λi are drawn from a uniform distribution on the interval (9, 11),
Ei ∈ C

m×m represents the additive noise, whose entries are generated from a
uniform distribution on the unit interval (−0.5, 0.5), and ε ∈ R is the noise level.
We set m = 5, n = 20, and run six tests in accordance with increasing noise, by
using ε = d × 10−2 where d = 0, . . . , 5. Each experiment was initialized with the
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same point, which is randomly drawn within an appropriate neighbourhood of
the true joint diagonalizer.

The convergence of algorithms is measured by the distance of the accumu-
lation point X ∗ := (X∗

L,X∗
R) to the current iterate X (k) := (X(k)

L ,X
(k)
R ), i.e.,

by ‖X
(k)
L − X∗

L‖F + ‖X
(k)
R − X∗

R‖F . According to Fig. 1, our proposed algorithm
converges locally quadratically fast to a pair of joint diagonalizers under the
NsJD setting, i.e., when ε = 0, whereas with an increasing level of noise, the
convergence rate slows down accordingly with a tendency of more gradual slopes.
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Abstract. The interest in robust methods for blind source separation
has increased recently. In this paper we shortly review what has been
suggested so far for robustifying ICA and second order blind source sep-
aration. Furthermore do we suggest a new algorithm, eSAM-SOBI, which
is an affine equivariant improvement of (already robust) SAM-SOBI. In
a simulation study we illustrate the benefits of using eSAM-SOBI when
compared to SOBI and SAM-SOBI. For uncontaminated time series
SOBI and eSAM-SOBI perform equally well. However, SOBI suffers a
lot when the data is contaminated by outliers, whereas robust eSAM-
SOBI does not. Due to the lack of affine equivariance of SAM-SOBI,
eSAM-SOBI performs clearly better than it for both, contaminated and
uncontaminated data.

Keywords: ICA · SOBI · Location and scatter functionals · Time series

1 Introduction

Statistical procedures whose behavior is not influenced much by atypical obser-
vations or slight deviations from the model assumptions are considered robust.
Many robust methods have been developed to make classical statistical proce-
dures valid and efficient in a neighborhood of the normal model, valid in many
nonparametric models, and to cope with outliers. For an overview see [1].

The interest in robust methods has recently increased in blind source sep-
aration problems. In this paper, we will shortly review what has been done so
far (as well as pointing out some pitfalls too) and suggest an improvement to
SAM-SOBI [2], which is a non-affine equivariant robustification of SOBI.
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2 Robust Statistics

The main tools for robust multivariate methods are location and scatter func-
tionals. Let x be a p-variate random vector with cumulative distribution function
(cdf) Fx.

A p-variate vector valued functional T(Fx) = T(x) is called a location func-
tional, if it is affine equivariant in the sense that T(FAx+b) = AT(Fx)+b for all
full rank p × p matrices A and all p-vectors b. A p × p matrix valued functional
S(Fx) = S(x) is called a scatter functional, if it is positive definite and affine
equivariant in the sense that S(FAx+b) = AS(Fx)A′ for all full rank p×p matri-
ces A and all p-vectors b. Sample versions of location functionals and scatter
functionals are called location statistics and scatter statistics, respectively. They
are obtained by replacing Fx by the empirical cdf Fn. In many applications the
equality in the previous equation can be relaxed to S(FAx+b) ∝ AS(Fx)A′, in
which case S(Fx) is called a shape matrix.

Clearly the mean vector E(x) is a location functional and the covariance
matrix COV(x) = E((x − E(x))(x − E(x))′) is a scatter functional. There exist
many other location and scatter functionals which all have different properties.
For example, M-functionals are defined by the two implicit equations T(x) =
E(w1(r))−1E(w1(r)x) and S(x) = E(w2(r)(x − T(x))(x − T(x))′), where w1(r)
and w2(r) are nonnegative continuous functions of the Mahalanobis distance
r = ||S(x)−1/2(x − T(x))||2. Later in this paper we use the Hettmansperger-
Randles estimator [3], which has the weight functions w1(r) = 1/r and w2(r) =
p/r2. This estimator can be seen as the joint estimate of the spatial median
and Tyler’s shape matrix. Tyler’s shape matrix is considered the most robust
M-estimate and it is especially efficient in high-dimensions.

If S(x) is a diagonal matrix for all x having independent components, it is said
to have the independence property. This is important as in many applications
zero off-diagonal values are taken as indicators of independence. Most robust
scatter functionals do posses that property only if all the components (or all
the components except for one) are symmetric. However, every scatter matrix
S(x) can be symmetrized by defining Ssym(x) = S(x1−x2), where x1 and x2 are
independent copies of x. All symmetrized scatter matrices have the independence
property.

Many robust statistical methods replace the mean vector and the covariance
matrix with robust functionals - but this requires the assumption that the robust
sample statistics estimate the same population quantity, or the corresponding
functionals have similar properties (like independence property). Most of these
functionals have been designed for the elliptical model and hence it is impor-
tant to note that depending on the underlying model, different scatter function-
als estimate different population quantities. However, in all symmetric models,
T(x) estimates the center of symmetry and in the elliptical model all scatter
matrices estimate the same population quantity up to multiplication by a con-
stant. Note that this is not the case for example in the independent component
model. For detailed discussion about this see [4].
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3 Robust Blind Source Separation

For simplicity and due to lack of space we consider here only the following blind
source separation (BSS) model

x = As,

where x is the observable p-variate random vector, A an unknown p × p full
rank mixing matrix and s the unknown source. The goal in BSS is to find an
unmixing matrix W such that z = Wx recovers s up to some indeterminancies,
depending on the assumptions made on s. Two cases are considered here.

3.1 Independent Component Analysis

In the independent component analysis (ICA) it is assumed that the components
of s are independent and that at most one of them is gaussian. There are many
algorithms for ICA (see e.g. [5,6]). Most of them first whiten the data using the
covariance matrix and then search for an orthogonal transformation to recover
the independent components. The covariance matrix is highly nonrobust and
therefore using it makes all these algorithms nonrobust too. However, one can
not just plug in any robust scatter functional to robustify the whitening step -
only scatter functionals having the independence property can be used [4].

The problem of nonrobustness in ICA is well-known. For example Ollila [7]
shows that deflation-based fastICA has an unbounded influence function. Thus
even one outlier can reduce the quality of the estimated unmixing matrix hugely.

Two approaches have been considered to robustify ICA.

1. Precleaning the data: Here the goal is to remove all atypical observations
before actually performing ICA. This approach was used for example in [8,9].
The problem in this approach is how to define atypical observations. In order
to do that, some model assumptions are required for typical observations.
That, however, is counterintuitive in ICA as often the “extreme” observations
are influential in the algorithms to maximize non-gaussianity. Thus extreme
observations and atypical observations should be very well separated.

2. Using robust procedures: In [10] a standard ICA algorithm is robustified by
replacing each nonrobust step by a robust step. There, however, a discus-
sion about when the same population quantities or population values of the
functional with similar properties are estimated, is omitted. For example, the
minimum covariance determinant scatter estimate is wrongly recommended
for the whitening step, even though it does not posses the independence prop-
erty, and hence the assumption of at most one skew source is made implicitly.
In [11] two robust scatter functionals, both having the independence property,
are used and a robust generalized version of FOBI is obtained.

3.2 Second Order Blind Source Separation

In second order blind source separation the data points are not assumed to be
iid as in ICA - instead the sources are assumed to be stationary time series. The
model is then written as
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x(t) = As(t), t = 1, 2, 3 . . .

Let si(t) denote the ith time series. We assume that E(s(t)) = 0 for every t, and
that, for τ = 0, 1, 2, ..., E(si(t)sj(t+τ)) = 0 for i �= j and E(si(t)si(t+τ)) = γi(τ)
with γi(τ) �= γj(τ) for i �= j. Furthermore we assume that s(t) is symmetric.

Not many robustness considerations have been made in this model so far.
Already in univariate time series analysis, the notion of an outlier gets a bit com-
plicated. According to [1] three different types of outliers should be addressed:
(i) isolated outliers, which are single gross errors; (ii) patchy outliers, which occur
in a succession and destroy completely the covariance structure; (iii) complete
level shift in mean value, which is a structural break with a moderate mean
increase without effect on the covariance structure.

Thinking about different approaches to robustify BSS it is obvious that the
approach based on first removing atypical observations is not possible here. Since
the correlation structure is important, single observations cannot be removed. An
alternative approach would be to filter the observed series using robust filters
in order to get rid of the outlying data points and then use a standard BSS
method for the filtered data. We are not aware of such approaches used in second
order blind source separation and we also believe that prefiltering might be
counterproductive to the applied BSS. Therefore we prefer an approach that
uses directly robust methods.

The most popular approach in this model is SOBI [12] algorithm:

1. Whitening the series: x(t) ← COV(x(t))−1/2(x(t) − E(x(t))), where A1/2 is
a symmetric square root of A.

2. Computing K autocovariance matrices: Rτ = E(x(t)x(t + τ)′) for τ =
1, . . . , K.

3. Symmetrizing the autocovariance matrices: Rτ = (Rτ + R′
τ )/2.

4. Finding an orthogonal matrix U = (u1, . . . ,up) that jointly diagonalizes
R1, . . . ,RK .

There are many variants of SOBI which mainly differ on the way the matrix U
is computed, see for example [13–15]. The original SOBI uses Jacobi rotations
but for instance [13] suggest a deflation-based approach, where the directions
u1, . . . ,up are found one after another by maximizing

∑K
k=1 G(u′Rku) under

the constraint that u′
iCOV(x(t))uj = δij i = 1, . . . , j − 1. G can in this context

be any increasing twice differentiable function.
SAM-SOBI [2] was recently proposed as a robustifaction of the original SOBI

by modifying it as follows:

1. Robust centering of the data: x(t) ← (x(t) − T(x(t))), where T(x(t)) is the
spatial median.

2. Robust uncorrelating of the data: x(t) ← S(x(t))−1/2(x(t)), where S(x(t)) is
the spatial sign covariance matrix S(x) = E

(
x(t)

||x(t)||
x(t)

||x(t)||
′)

.
3. Computing K robust autocovariance matrices based on the spatial sign auto-

covariance matrix: Rτ = E
(

x(t)
||x(t)||

x(t+τ)
||x(t+τ)||

′)
for τ = 1, . . . , K.
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4. Symmetrizing the robust autocovariance matrices: Rτ = (Rτ + R′
τ )/2.

5. Using Jacobi rotations to find the orthogonal matrix U that jointly diago-
nalizes R1, . . . ,RK .

Thus, all the highly non-robust parts of SOBI, mean vector, covariance matrix
and autocovariance matrices have been replaced by robust alternatives. This
minimizes the effect of atypical observations and therefore SAM-SOBI can be
considered robust. However, it has some minor flaws. First, the spatial median is
not a location functional and the spatial sign covariance matrix is not a scatter
functional in the sense defined above. Both are only equivariant under orthogonal
transformations. Second, the spatial median centers the sources/signals similarly
as the mean vector only under symmetry and the spatial sign covariance matrix
does not posses the independence property. Figure 1 demonstrates that for sym-
metric data the location estimates are not distinguishable as in the case of skew
data. The spatial sign covariance matrix is also a bit tilted in the skew case.
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−
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0
2

4
6

Fig. 1. Comparison of mean and spatial median together with covariance matrix and
spatial sign covariance matrix for a bivariate normal distribution (left panel) and a
distribution with two independent exponential distributions (right panel).

3.3 An Affine Equivariant SAM-SOBI

We present here an important improvement for SAM-SOBI which combines the
first two steps and uses there the affine equivariant Hettmansperger-Randles
estimate (see [3]). Therefore the new affine equivariant SAM-SOBI, eSAM-SOBI,
has the following steps:

1. Robust whitening of the data: x(t) ← S−1/2(x(t))(x(t) − T(x(t))), where
T(x(t)) and S(x(t)) are the Hettmansperger-Randles estimates.

2. Computing K robust autocovariance matrices based on the spatial sign auto-
covariance matrix: Rτ = E

(
x(t)

||x(t)||
x(t+τ)

||x(t+τ)||
′)

for τ = 1, . . . , K.
3. Symmetrizing the robust autocovariance matrices: Rτ = (Rτ + R′

τ )/2.
4. Finding an orthogonal matrix U that jointly diagonalizes R1, . . . ,RK .
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This has the advantage that the starting step is affine equivariant, making the
whole procedure affine equivariant. Note that we do not restrict here the joint
diagonalization to using Jacobi rotations but suggest also to consider different
functions G in the deflation-based approach as they might have an impact on
the robustness too.

To conclude this section, note that robustness was also considered for non-
stationary BSS in [16], but due to space limitation we can not discuss that here.

4 Simulation Study

To compare the three different version of SOBI discussed in this paper, we
conduct a small simulation study. For that we consider SOBI, SAM-SOBI and
eSAM-SOBI using Jacobi rotations and deflation-based versions of all three of
them using the G functions G(x) = |x|a with a = 1, 2, 3 and G(x) = log(x).
From these, a = 2 should be quite similar to the Jacobi approach, and a = 1
and log have a more robust flavor, see [13] for further discussion.

We sampled 2000 observations from three sources S. The first source was an
AR(3)-process with t3 distributed innovations. The second source was a MA(7)-
process and the last source an ARMA(4,3)-process. The sources were mixed with
a random matrix A having each element simulated from a N(0, 1) distribution.
Having a non-trivial mixing matrix A is important here as only the performance
of the affine equivariant methods does not depend on its value. In the statis-
tics literature the spatial sign-covariance matrix is considered efficient only for
uncorrelated data with equal scales.

To evaluate the robustness properties, we have the three following outlier
scenarios (i) isolated outlier: observation X(100) was replaced with an isolated
outlier (50, 50, 50)′; (ii) patchy outliers: observations X(100), . . . ,X(114) got in
each component additive error coming from a N(10, 1) distribution; (iii) level
shift: the last one hundred observations were all added (1, 1, 1)′. In all three cases
the contaminated data points hence do not follow anymore the model X = AS.

For all 15 estimates, the unmixing matrix W was estimated 1000 times for
the clean data, and all three outlier scenarios using K = 12. To evaluate the
performance we used the minimum distance index D from [17], which is given
by D = infP,J,D

1√
p−1

||PJDŴA − Ip||2, where P ia a permutation matrix, J a
signchange matrix and D a scaling matrix. The values of D are in the interval
[0, 1] where 0 corresponds to a perfect separation.

The results in Fig. 2 show that in the uncontaminated data SOBI and eSAM-
SOBI perform equally well. However, SOBI suffers considerably under all three
outlier setups. eSAM-SOBI seems almost unaffected from the isolated or patchy
outliers, and suffers only a little from the level shift. It is clearly the best method
also under this scenario. SAM-SOBI seems unaffected by any disturbances and
the performance is stable throughout. It is however always worse than eSAM-
SOBI. The reason for that is the missing affine equivariance. The difference
between the methods based on the way they were jointly diagonalized are only
marginal and not consistent. For example, it seems that log is worse for eSAM-
SOBI, but has a robustifying effect on SOBI — but only for the isolated outlier.
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Fig. 2. Boxplots for the performance criterion D for SOBI, SAM-SOBI and eSAM-
SOBI using different joint diagonalization approaches for all four scenarios.

5 Conclusion

In this paper we reviewed robust methods for BSS and suggested a new algo-
rithm, eSAM-SOBI. Simulations demonstrated the good performance of eSAM-
SOBI. Different options to relax the symmetry assumption needed here should
be investigated. Also investigating the impact of different joint diagonalization
approaches might be worthwhile.
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Abstract. This contribution summarizes the results on the asymptotic
performance of several variants of the FastICA algorithm. A number of
new closed-form expressions are presented.
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1 Introduction

In what follows, we denote scalars by lowercase letters (a, b, c, . . .), vectors by
boldface lowercase letters (a,b, c, . . .) and matrices by boldface uppercase let-
ters (A,B,C, . . .). Greek letters (α, β, γ, . . .) are reserved for particular scalar
quantities. We denote by AT the matrix transpose of A and by ‖ · ‖ the Euclid-
ean norm.

1.1 ICA Data Model

We consider the following noiseless linear ICA model:

y(t) = Hs(t), t = 1, . . . , N,

where

1. s(t) def= (s1(t), . . . , sd(t))T denotes the tth realization of the unknown source
signal. The components s1(t), . . . , sd(t) are mutually statistically indepen-
dent, have unit variance and at most one of them is Gaussian. Furthermore,
s(1), . . . , s(N) denote N independent realizations of s.

2. y(t) def= (y1(t), . . . , yd(t))T denotes the tth realization of the observed signal.
3. H ∈ R

d×d is a full rank square matrix, called the mixing matrix.

1.2 Data Preprocessing

Most ICA methods require the observed signal {y(t)} to be standardized [1–3].
The standardization of {y(t)} consists of the data centering and data whitening,

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 336–343, 2015.
DOI: 10.1007/978-3-319-22482-4 39
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which involve the estimation of E[y] and Cov(y). In practice, E[y] and Cov(y)
are usually estimated by the sample mean and sample variance:

ȳ def=
N∑

t=1

1
N

y(t), Ĉ def=
1
N

N∑

t=1

(y(t) − ȳ)(y(t) − ȳ)T.

In this work, we shall consider several different data preprocessing scenarios.
Denote

C̃ =
1
N

N∑

t=1

(y(t) − E[y])(y(t) − E[y])T.

The following data preprocessing scenarios will be studied:

1. Theoretical whitening and theoretical centering.

x(t) def= Cov(y)− 1
2 (y(t) − E[y]). (1)

2. Theoretical whitening and empirical centering.

x(t) def= Cov(y)− 1
2 (y(t) − ȳ). (2)

3. Empirical whitening and theoretical centering.

x(t) def= C̃− 1
2 (y(t) − E[y]). (3)

4. Empirical whitening and empirical centering.

x(t) def= Ĉ− 1
2 (y(t) − ȳ). (4)

In the sequel, x(t) will always stand for the standardized signal under one of the
scenarios defined above. The specific data preprocessing scenario will be stated
explicitly when necessary.

1.3 Variants of the FastICA Algorithm

Before proceeding further, we need to introduce some notations first. We denote
by S the unit sphere in R

d. We denote by g(·) : R → R the nonlinearity function,
and by G(·) its primitive. The nonlinearity function g is usually supposed to be
non-linear, non-quadratic and smooth. For any function f : Rd → R

m, we write
Êx[f(x)] def= 1

N

∑N
t=1 f(x(t)) for conciseness.

The Deflationary FastICA Algorithm. This version of the FastICA algo-
rithm extracts the sources sequentially. It consists of the following steps [3]:

– Input: x(1), . . . ,x(N).
1. Set p = 1.
2. Choose an arbitrary initial iterate w ∈ S;
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3. Run iteration
w ← Êx[g′(wTx)w − g(wTx)x] (5)

w ← w −
p−1∑

i=1

(wDFL
i )Tw (6)

w ← w
‖w‖ (7)

until convergence1. The limit is stored as wDFL
p .

4. Break if p = d. Otherwise p ← p + 1 then go to step 2).
– Output: WDFL = (wDFL

1 , . . . ,wDFL
d ).

The Symmetric FastICA Algorithm. The symmetric version of FastICA
extracts all the sources simultaneously. It can be described as follows:

– Input: x(1), . . . ,x(N).
1. Choose an arbitrary orthonormal matrix W = (w1, . . . ,wd) ∈ R

d×d.
2. Run

w1 ← Êx[g′(wT
1x)w1 − g(wT

1x)x] (8)
...

wd ← Êx[g′(wT
dx)w1 − g(wT

1x)x] (9)

W ←
(
WWT

)−1/2

W (10)

until convergence. The limit is denoted by WSYM .

– Output: WSYM = (wSYM
1 , . . . ,wSYM

d ).

2 Asymptotic Performance

Let us introduce the notion of gain matrix:

GDFL def= (WDFL)TC−1/2H, GSYM def= (WSYM )TC−1/2H,

where C−1/2 stands for the sphering matrix used in the data preprocessing stage,
i.e. C = Cov(y) in scenarios (1) and (2), C = C̃ in scenario (3) and C = Ĉ
in scenario (4). Without loss of generality, we shall omit the permutation and
sign ambiguities of ICA. Then, GDFL ≈ I and GSYM ≈ I, hence C−1/2WDFL

and C−1/2WSYM can be considered as estimators of B def= (H−1)T. In the
sequel, we will study the asymptotic errors of N1/2(C−1/2WDFL − B) and
N1/2(C−1/2WSYM − B) under proposed data preprocessing scenarios.

The proofs of the results presented below are based on the method of M-
estimators. However, all proofs will be omitted due to the lack of space. A com-
plete version of this work can be provided upon request. The readers are also
referred to [4] for a more detailed account of this subject.
1 We impose the number of iterations to be even, so that the well known sign-flipping

phenomenon disappears.
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2.1 The Asymptotic Error of Deflationary FastICA

Assume that the following mathematical expectations exist for i = 1, . . . , d:

αi
def= E[g′(zi) − g(zi)zi]

βi
def= E[g(zi)2]

γi
def= E[g(zi)zi]

ηi
def= E[g(zi)]

τi
def= (E[z4i ] − 1)/4,

where zi = si − E[si] for i = 1, . . . , d.

Theorem 1. Let bi denote the ith column of B. Under some mild regularity
conditions, we have

N1/2(C−1/2wDFL
i − bi)

D−−−−→
N→∞

N (0,RDFL
(k) ),

where k ∈ {1, 2, 3, 4} is the label of the underlying data preprocessing scenario
(see (1)–(4)) and RDFL

(k) is given as follows:

RDFL
(1) =

i−1∑

j=1

β2
j

α2
j

bjbT
j +

i−1∑

p,q=1
p�=q

ηpηq
αpαq

bpbT
q +

β2
i

α2
i

d∑

j=i+1

bjbT
j , (11)

RDFL
(2) =

i−1∑

j=1

βj − η2
j

α2
j

bjbT
j +

βi − η2
i

α2
i

d∑

j=i+1

bjbT
j , (12)

RDFL
(3) =

i−1∑

j=1

βj − γ2
j + α2

j

α2
j

bjbT
j +

i−1∑

p,q=1
p�=q

ηpηq
αpαq

bpbT
q + τibibT

i

+
βi − γ2

i

α2
i

d∑

j=i+1

bjbT
j −

i−1∑

j=1

E[s3i ]ηj
αj

(bjbT
i + bibT

j ), (13)

RDFL
(4) =

i−1∑

j=1

βj − γ2
j + α2

j − η2
j

α2
j

bjbT
j + τibibT

i +
βi − γ2

i − η2
i

α2
i

d∑

j=i+1

bjbT
j

−
i−1∑

j=1

E[s3i ]ηj
αj

(bjbT
i + bibT

j ). (14)

Corollary 2. There holds N1/2(GDFL
ij −δij)

D−−−−→
N→∞

N (0, V DFL
(k) ), where GDFL

ij

denotes the (i, j)th entry of GDFL and V DFL
(k) is given as follows:
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1. Case j < i:

V DFL
(1) =

β2
j

α2
j

V DFL
(2) =

βj − η2
j

α2
j

V DFL
(3) =

βj − γ2
j + α2

j

α2
j

V DFL
(4) =

βj − γ2
j + α2

j − η2
j

α2
j

.

2. Case j = i:

V DFL
(1) = V DFL

(2) = 0, V DFL
(3) = V DFL

(4) = τi.

3. Case j > i:

V DFL
(1) =

βi

α2
i

(15)

V DFL
(2) =

βi − η2
i

α2
i

(16)

V DFL
(3) =

βi − γ2
i

α2
i

(17)

V DFL
(4) =

βi − γ2
i − η2

i

α2
i

. (18)

2.2 The Asymptotic Error of Symmetric FastICA

Theorem 3. Under some mild regularity conditions, we have N1/2(C−1/2

wSYM
i − bi)

D−−−−→
N→∞

N (0,RSYM
(k) ), where

RSY M
(1) =

d∑
j �=i

βi + βj − 2γiγj − 2η2
j

(|αi| + |αj |)2 bjb
T
j + 2

d∑
j �=i

ηjbj

|αi| + |αj |
d∑

j �=i

ηjb
T
j

|αi| + |αj | , (19)

RSY M
(2) =

d∑
j �=i

βi + βj − 2γiγj − 2η2
i

(|αi| + |αj |)2 bjb
T
j , (20)

RSY M
(3) =

d∑
j �=i

βi − γ2
i + βj − γ2

j + α2
j − η2

j

(|αi| + |αj |)2 bjb
T
j +

d∑
j �=i

ηjbj

(|αi| + |αj)|
d∑

j �=i

ηjb
T
j

(|αi| + |αj |)

+τibib
T
i −

d∑
j �=i

E[s3i ]ηj

2(|αi| + |αj |) (bjb
T
i + bib

T
j ), (21)

RSY M
(4) =

d∑
j �=i

βi − γ2
i + βj − γ2

j + α2
j − η2

i − η2
j

(|αi| + |αj |)2 bjb
T
j + τibib

T
i . (22)
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Corollary 4. For i, j = 1, . . . , d, there holds N1/2(GSYM
ij − δij)

D−−−−→
N→∞

N (0, V SYM
(k) ), where

1. Case j = i:

V SYM
(1) = V SYM

(2) = 0, V SYM
(3) = V SYM

(4) = τi.

2. Case j �= i:

V SYM
(1) =

βi + βj − 2γiγj
(|αi| + |αj |)2 , (23)

V SYM
(2) =

βi + βj − 2γiγj − 2η2
i

(|αi| + |αj |)2 , (24)

V SYM
(3) =

βi − γ2
i + βj − γ2

j + α2
j

(|αi| + |αj |)2 , (25)

V SYM
(4) =

βi − γ2
i + βj − γ2

j + α2
j − η2

i − η2
j

(|αi| + |αj |)2 . (26)

Remark 5. Although the asymptotic error of the FastICA algorithm has already
been studied by quite a few researchers [5–8], many of the results presented in
this contribution, notably expressions (11)–(13) established in Theorem 1 and
(19)–(22) in Theorem 3, are new.

Example 1. The validity of formulas (15)-(18) and (23)–(26) is verified in com-
puter simulations, see Figs. 1 and 2. The simulations are configured as follows:
d = 3, N = 5000, all three sources have identical bimodal Gaussian distri-
bution with asymmetrical density. Both deflationary FastICA and symmetric
FastICA have been tested with different data preprocessing (1)–(4) in 5000 inde-
pendent trials.

2.3 Discussion

First, comparing the expressions in Corollary 2 and Corollary 4, we find that for
the (i, j)th entry of the gain matrix,

V DFL
(1) − V DFL

(2) = V DFL
(3) − V DFL

(4) =
η2
j

α2
j

, j < i,

V DFL
(1) − V DFL

(2) = V DFL
(3) − V DFL

(4) =
η2
i

α2
i

, j > i,

V SYM
(1) − V SYM

(2) =
2η2

i

(|αi| + |αj |)2 , i �= j,

V SYM
(3) − V SYM

(4) =
η2
i + η2

j

(|αi| + |αj |)2 , i �= j.
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Fig. 1. Asymptotic error of the deflationary FastICA in each preprocessing scenario.
We plotted the histograms of an (upper) off-diagonal entry of N1/2GDFL in 5000
independent trials versus the theoretical curves of the Gaussian PDFs with variances
given by (15)–(18).
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Fig. 2. Asymptotic error of the symmetric FastICA in each preprocessing scenario. We
plotted the histograms of an off-diagonal entry of N1/2GSY M in 5000 independent trials
versus the theoretical curves of the Gaussian PDFs with variances given by (23)–(26).

Since all the differences above are non-negative2, we assert that the empirical
data centering generally leads to a better asymptotic performance.
2 They become zero if ηi and/or ηj vanish. This is the case if, e.g. g is pair and the

involved sources have symmetric distributions.
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3 Conclusion

The contribution of this work is twofold. First, we derived explicit formulas
for the asymptotic error of the two most important variants of the FastICA
algorithm, the deflationary FastICA and the symmetric FastICA, under four
different data preprocessing scenarios. Many of the presented formulas are novel.
Second, we assessed the impact of empirical data preprocessing procedure on
the asymptotic performance of the algorithms. We showed that, compared to
the theoretical data centering, the empirical data centering generally leads to a
better separation performance.
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Abstract. Recently, there has been a growing interest in estimation of
sparse channels as they are observed in underwater acoustic and ultra-
wideband channels. In this paper we present a new Bayesian sparse
channel estimation (SCE) algorithm that, unlike traditional SCE meth-
ods, exploits noise statistical information to improve the estimates. The
proposed method uses approximate maximum a posteriori probability
(MAP) to detect the non-zero channel tap locations while least square
estimation is used to determine the values of the channel taps. Com-
puter simulations shows that the proposed algorithm outperforms the
existing algorithms in terms of normalized mean squared error (NMSE)
and approaches Cramér-Rao lower bound of the estimation. In addition,
it has low computational cost when compared to the other algorithms.

Keywords: Bayesian · Sparse channel estimation · Cramér-Rao lower
bound

1 Introduction

Fast and accurate channel estimation at the receiver is often of much impor-
tance due to the need for optimal demodulation and decoding in limited time.
Sparse channels, those whose time domain impulse response has much less non-
zero taps than their length, have been observed in many practical scenarios such
as acoustic underwater [1], ultrawideband propagation [2] and seismic explo-
ration [3]. Since traditional channel estimation methods, such as the least squares
method, fail to exploit sparsity of these channels, in the last decade, several
sparse channel estimation (SCE) methods have been proposed to improve the
estimates [4–10].

In [4,10], two iterative approaches called ITD-SE and MIDE are reported
which utilize thresholds to detect the channel support1 followed by a structured

C. Jutten—This work has been partly funded by ERC project 2012-ERC-AdG-
320684 CHESS.

1 Non-zero channel tap locations.
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least square (LS) estimate to determine the values of the channel taps. Sim-
ple structure, low complexity and no dependency on the channel order along
with acceptable accuracy are the advantages of these threshold-based support
detection methods. Moreover, in [5], an iterative MAP-based approach is intro-
duced to jointly estimate the location and the values of the taps. For this
purpose, three algorithms have been examined: L2MAP with Threshold,
LASSO-MAP with Threshold and Backward-Detection MAP. These methods
have very low complexity and near-optimal performance at high SNRs; never-
theless they presume the channel sparsity level is known a priori while it’s rarely
known in practice. Furthermore, they have limitations on the sparsity rate of the
channel.

The algorithms mentioned above, neglect noise statistical information and
posterior information of the channel support, which can explain their limited
performance. In this paper, to overcome the problems mentioned, as in [4], we
present a two stage Bayesian procedure, based on support detection and then
channel estimation. For the former part, following [11], we propose a MAP-
based tap detection approach which not only considers sparsity of the channel
but also exploits noise statistics and posterior information of the channel support
to improve the estimates; and for the latter, a structured least square estimation
is applied. Unlike Bayesian approaches in SCE algorithms that usually assume
Gaussian distribution for the channel, regarding the procedure in [11], the chan-
nel distribution in our algorithm is arbitrary. Experimental results demonstrate
that our algorithm approaches the Cramér-Rao lower bound of the estimation
based on knowing the true channel support (called CRB-S in [4]) at high SNRs.
Besides, it has a low computational cost. Note that as our main contribution to
SCE algorithms is a support detection approach using approximate MAP, we
call it Support Detection using Maximum A posteriori Probability (SDMAP) in
this paper.

The paper is organized as follows: System Model and MAP Setup are given
in Sect. 2. In Sect. 3, SDMAP algorithm is proposed. Experimental results are
investigated in Sect. 4 in order to compare the performance of SDMAP with
existing algorithms in term of normalized mean square error (NMSE) and com-
putational complexity. Finally, we conclude the paper in Sect. 5.

Notation: Throughout the paper, we denote scalars with lowercase letters (e.g.,
x), vectors with lowercase boldfaced letters (e.g., x) and matrices with uppercase
boldfaced letters (e.g., X). xi stands for the ith column of the matrix X. Sets
are designated by uppercase calligraphic letters; the cardinality of the set S is
|S|. We use xS to denote the |S|- dimensional vector of the entries in the vector
x indexed by S. Also, for any m×n matrix X, we use XS to denote the m× |S|
matrix corresponding to the columns of X indexed by S and X(S1,S2) to denote
the |S1| × |S2| matrix corresponding to the rows and columns of X indexed by
S1 and S2 respectively. Im is denoted for the m × m identity matrix. ‖x‖ means
the 2-norm of the vector x. Finally, |x| stands for a vector whose elements are
the absolute values of the corresponding elements of x.
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Fig. 1. Time domain discrete impulse response of a sparse channel

2 System Model and MAP Setup

2.1 System Model

Typically, channel estimation is accomplished by sending a training sequence
and processing the channel output. Mathematically, let {un}Li=1, L ∈ N denote a
training sequence and h ∈ RN , N ∈ N be the finite discrete impulse response of
the channel (See Fig. 1). The resulting observations y ∈ RM ,M = L+N −1 are
the convolution of the training signal u = [u1, u2, u3, ..., uL]T and the impulse
response h = [h1, h2, h3, ..., hN ]T corrupted by an additive noise vector n. In
matrix form, we have

y = Uh + n = UShS + n, (1)

where, n ∼ N (0, σ2IM ) is an M ×1 Gaussian noise vector, S is the true support
set of h and U is the M × N training Toeplitz matrix with the first column
[u1, u2, u3, ..., uL, 0, ..., 0]T as in [4].

We assume that the sparse channel vector h is modeled as h = hB � hG, in
which � is element-wise Hadamard multiplication, hB is an N ×1 vector, whose
elements are independent and identically distributed (i.i.d) Bernoulli random
variables with success probability Pa = |S|

N and the elements of hG are drawn
from an arbitrary distribution. Clearly, hB models the support of h, with a
sparsity level equal to Pa.

2.2 MAP Setup

The goal is to estimate h from knowledge of the observation vector y and the
training signal u. To achieve this goal, first, we obtain an estimate of the channel
support, S, via MAP detection procedure, which is given by,

ŜMAP = argmax
S

P{y|S}P{S}, (2)
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in which, P denotes the probability distribution. Since each element of h is
active according to a Bernoulli distribution with success probability Pa, P(S) is
given by,

P{S} = Pa
|S|(1 − Pa)

N−|S|
. (3)

Rather than obtaining the probability of y conditioned on the support, P{y|S},
directly, we serve the approach in [11] to make our algorithm independent of
the channel distribution. For this purpose, we project y onto the orthogonal
complement of US via multiplying (1) by Π⊥

S = IM − US(USTUS)−1UST

which leads to Π⊥
S y = Π⊥

S n ∼ N (0, σ2Π⊥
S ). Ignoring constant multiplicative

factors, we have,

P{y|S} ∝∼ P{Π⊥
S y|S}

∝∼ exp
(

− 1
2
(Π⊥

S y)T (σ2Π⊥
S )−1(Π⊥

S y)
)
, (4)

in which, ∝∼ denotes approximate proportion2. Since evaluation of the sup-
port in (2) leads to prohibitive computational task, alternatively, we propose a
support detection procedure in the next section that requires a fitness function
which is defined by,

μ(S) � ln
(
P{y|S}P{S}

)

= ln
(
exp(− 1

2σ2
(yTΠ⊥

S y))
)

+ ln
(
Pa

|S|(1 − Pa)
N−|S|

)

∝ 1
σ2

(
yTUS(UT

SUS)−1UT
Sy

)
+ 2|S| ln

( |S|
N − |S|

)
. (5)

After finding dominant channel support using the SDMAP scheme of the next
section, it only remains to determine the values of the channel taps at the obtained
support. To accomplish this, structured least square estimation is applied as
follows,

ĥ = (UT
SUS)−1UT

Sy. (6)

3 Proposed Algorithm for Support Detection (SDMAP)

In this section, we introduce our algorithm to detect the channel support. This
algorithm is presented in two steps, first support candidates selection and then
estimation of the channel order.

3.1 Support Candidates Selection

To obtain support candidates, first, we compute unstructured least square esti-
mate, ĥ = (UTU)−1UTy, and sort the absolute value of the elements in ĥ, |ĥ|,
in descending order and keep the respective indices S.
2 A justification of (4) for Gaussian channels is given in [11].
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3.2 Order Estimation Procedure

To obtain the channel order, first, we initialize the channel order by,

P = #{|ĥi| >
max(|ĥ|)

2
, 1 � i � N, i ∈ N}, (7)

in which, max(|h|) stands for the largest element in the vector |h|. Regarding the
initial order P , we determine the direction toward which the current support,
SP = {S(i), i = 1, ..., P}, is inclined. In this regard, to determine the move
direction we use some criteria which will be discussed further. After finding the
direction toward which the current support tends to move, the support order
changes until some stopping criteria are satisfied or the number of maximum
move steps is exceeded.

Forming the direction and stopping criteria suitably, requires the knowledge
of the noisy part of the fitness function (5). To choose suitable stopping rules,
we can exploit the pure noisy part of the fitness function which is given by,

μn(S) =
1
σ2

(
nT US(UT

SUS)−1UT
S︸ ︷︷ ︸

H

n
)
. (8)

Since H in (8) is a symmetric, idempotent matrix with rank(H) = |S|, μn(S)
is chi-squared distributed with ν = |S| degrees of freedom, i.e. χ2(ν), in which
ν is the parameter of the chi-squared distribution [12, Theorem A.87]. As the
mean and variance of this chi-squared distributed random variable are ν and 2ν,
respectively, we can obtain tolerance limits3 of μn(S) as follow,

Lower-bound: lb(ν) = ν − α
√

2ν;

Upper-bound: ub(ν) = ν + β
√

2ν, (9)

in which, α and β are chosen such that about 10% of the distribution occurs
outside the bounds in (9). In our simulations, we used α = 1.1 and β = 1.3.
Considering the effect of noise on the fitness function (5) and trying to reduce
it, we define the direction criterion as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Move backward (i.e. keep P − 1) if,
μ(SP−1) − μ(SP ) > lb(P − 1) − ub(P ) &
μ(SP+1) − μ(SP ) < ub(P + 1) − lb(P ); (10a)
Move forward (i.e. keep P + 1) if,
μ(SP−1) − μ(SP ) < lb(P − 1) − ub(P ) &
μ(SP+1) − μ(SP ) > ub(P + 1) − lb(P ); (10b)
Don’t move if,
neither of the two above is satisfied. (10c)

3 Tolerance limits are the bounds that the probability of random variable occurrence
outside them is a certain value.
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Qualitatively spoken, moving backward simultaneously requires that the ten-
dency of the current support to change to the previous support (i.e. μ(SP−1) −
μ(SP )) be greater than the lower limit of the noisy part and the tendency to
change to the next support (i.e. μ(SP+1) − μ(SP )) be less than the upper limit
of the noisy part. Likewise, moving forward simultaneously requires that the
tendency to change to the previous support be less than the lower limit of the
noisy part and the tendency to change to the next support be greater than the
upper limit of the noisy part.

After finding the direction using (10), the algorithm moves in the obtained
direction until approximately no change is observed in the fitness function. This
is accomplished by using a stopping rule which is given by:

μ(SPnew) − μ(SPpre) < ub(Pnew) − lb(Ppre), (11)

Algorithm 1. SDMAP Algorithm
1: procedure SDMAP(U, y, σ2)
2: corr = yTU, A = UTU
3: ĥ = A−1corr
4: Sort the elements in |ĥ| in descending order and save the respective indexes in

Sc

5: Pinit ← #{|ĥi| > max(|ĥ|)
2

, 1 � i � N, i ∈ N}
6: if (10a) is satisfied then
7: P ← Pinit

8: μnew ← μ(SP−1)
9: repeat

10: P ← P − 1
11: μold ← μnew

12: μnew ← μ(SP−1)
13: until μnew − μold < ub(P − 1) − lb(P ) ∨ P = 1
14: else if (10b) is satisfied then
15: P ← Pinit

16: μnew ← μ(SP+1)
17: repeat
18: P ← P + 1
19: μold ← μnew

20: μnew ← μ(SP+1)
21: until μnew − μold < ub(P + 1) − lb(P ) ∨ P = N
22: end if
23: Sf = Sc(1 : P )
24: ĥf = A(Sf , Sf )−1corr(Sf )
25: function μ(S)

26: F = 1
σ2 (corr(S)A(S, S)−1corr(S)T ) + 2|S| ln( |S|

N−|S| )
27: return F
28: end function
29: Output ĥf

30: end procedure
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in which, Ppre and Pnew are the previous and new orders, respectively. (11) qual-
itatively expresses that the algorithm stops when the tendency of the previous
support SPpre to change to the new support SPnew (i.e. μ(SPnew) − μ(SPpre)) is
less than the upper bound of the noisy part. The final pseudocode form of our
algorithm is given in Algorithm 1.

4 Computer Simulations

In this section, we investigate the performance of our algorithm (SDMAP) in
comparison with five algorithms: L2MAP [5], Backward-MAP [5], LASSO-MAP
[5], MIDE [10] and ITD-SE [4]. For this purpose, we consider a sparse channel
with length N = 30 and support size |S| = 5 (see Fig. 1) and draw the elements
of the training matrix, UM×N ,M = 50, from a zero-mean i.i.d. Gaussian distri-
bution (N (0, 1

N )). The estimation efficiency is evaluated using normalized mean
squared error (NMSE) which is defined as,

NMSE =
1

NMC

NMC∑

n=1

‖h − ĥn‖2

‖h‖2 , (12)

where, NMC is the number of Monte Carlo iterations, ĥn is the channel estimator
in the nth experiment and h is the true channel. To compare computational
complexity of the proposed algorithm with other methods, we use CPU time
as a simple metric. Our simulation is implemented using MATLAB 2012 on a
laptop computer with 2.4 GHz Intel i5 processor and 4 GB memory running the
Windows 7 64 bit operating system.

From Fig. 2(a), we observe that SDMAP algorithm outperforms all the other
compared algorithms in the sense of NMSE and approaches the theoretic lower
bound CRB-S at high SNRs. Figure 2(b) demonstrates the computational effi-
cacy of our algorithm over the other methods.

Fig. 2. Performance comparison. (a) NMSE versus SNR. (b) Computational complex-
ity versus SNR
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5 Conclusion

In this paper, we proposed a new Bayesian strategy for channel estimation called
SDMAP. As it can be seen from simulation results, SDMAP has strengths in
terms of NMSE and low computational cost. The reason is that our algorithm
utilizes a priori information of noise in the support detection stage. The use of
noise statistics provides the posterior information of the channel support, and
finally leads to reducing the misdetection.
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Abstract. The task of blind source separation (BSS) is to recover orig-
inal signal sources which are observed only via their superposition with
unknown weights. Since we are interested in estimation of the number of
relevant sources in noisy observation, we use the Bayesian formulation
which automatically removes spurious sources. A tool for this behavior
is joint estimation of the unknown prior covariance matrix of the sources
in tandem with the sources. In this work, we study the effect of vari-
ous choices of the covariance matrix structure. Specifically, we compare
models using the automatic relevance determination (ARD) principle
on the first and the second diagonal, as well as full covariance matrix
with Wishart prior. We obtain five versions of the variational BSS algo-
rithm. These are tested on synthetic data and on a selected dataset from
dynamic renal scintigraphy. MATLAB implementation of the methods is
available for download.

Keywords: Blind source separation · Covariance model · Variational
bayes approximation · Non-negative matrix factorization

1 Introduction

The blind source separation (BSS) problem arises in situations where several
sources are observed only via their superposition such as in case of audio or
medical signal processing [8] or hyperspectral imaging [10]. The task is to sep-
arate original sources, e.g. in the form of images and their related weights. The
classical separation methods include principal or independent component analy-
sis [6], non-negative matrix factorization [7], or projection methods [1,4].

In this work, we are focused on the Bayesian approach to the BSS problem
which has advantages under poor signal to noise conditions and is capable to
provides an estimate of the number of relevant sources. Another advantage for
further processing of the results is the availability of uncertainty bounds around
the estimate in the form of full probability distribution function. The ability to
estimate the number of relevant sources is available due to a specific choice of
the prior structure, typically unknown covariance matrix [9,12]. In this paper,
c© Springer International Publishing Switzerland 2015
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we study various choices of the structure of the prior covariance matrix and
their effects on the behavior of the resulting separation algorithm. Specifically,
we study three different assumptions leading to different covariance structures:
(i) the source weights are most likely sparse which can be modeled using auto-
matic relevance determination (ARD) approach [2,14], (ii) the source weights
are smooth with occasional abrupt changes which can be modeled by sparse
differences of the weights, and (iii) both weights and their differences can be
sparse, which can be modeled by bi-diagonal covariance matrix. Since evalua-
tion of exact posterior densities is not tractable, we apply the Variational Bayes
method to obtain approximate posterior densities [11]. The first two structures
are standard and the algorithms are well known, however, the last model is com-
putationally intractable even under the Variational Bayes approach. Therefore,
we propose to derive the posterior distribution for a full prior covariance matrix
of the source weights using Wishart distribution. The introduced overparame-
trization is mitigated by the use technique known as matrix localization [5]. This
heuristics is very successful in atmospheric modeling. Similar approach has been
also applied for model of convolution kernels in blind deconvolution [13].

The resulting variants of the variational BSS algorithm are tested on a syn-
thetic dynamic image data where advantages and disadvantages of the tested
priors are demonstrated. The advantages of the proposed method were also
observed on a real data set from dynamic renal scintigraphy, where the pro-
posed method compares favorably with competing approaches such as the NMF
algorithm [7]. Matlab implementations of the algorithms are freely available for
download.

2 Bayesian Blind Source Separation

We introduce the Bayesian model of blind source separation. Prior models for all
parameters of the model are described here except the prior for source weights
which is described in the next section.

2.1 Observation Model

A sequence of recorded data vectors, dt ∈ Rp×1, t = 1, . . . , n, is stored column-
wise in matrix D ∈ Rp×n. The assumed decomposition is

D = AXT + E, (1)

where matrix A ∈ Rp×r represents the source images in its columns, matrix
X ∈ Rn×r represents source weights in its columns, matrix E ∈ Rp×n represents
noise term of the observation model, and symbol ()T denotes transposition of a
vector or a matrix in this paper.

We assume that all elements of the matrices D, A, X, and E are positive;
however, modification to full support is straightforward.
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2.2 Noise Model

We use the isotropic Gaussian noise model [15] with zero mean and common
variance for all pixels, ei,j ∼ Nei,j

(0, ω−1). Then, the observation model can be
rewritten as

f(D|A,X, ω) =
n∏

t=1

Ndt

(
AxT

t , ω−1Ip

)
, f(ω) = Gω(ϑ0, ρ0), (2)

where symbol N denotes normal distribution and symbol Ip denotes identity
matrix of the given size. In the Bayesian methodology, all unknown parameters
have their prior distribution. The prior distribution for the precision of the noise,
ω, has a conjugate prior in the form of the Gamma distribution, denoted as G,
with selected prior constants ϑ0, ρ0.

2.3 Prior Model of Source Images

The prior model of the source images is common for all methods in the paper.
Each source image, i.e. column of the matrix A, ak, has prior in the form of the
normal distribution with unknown precision parameter related to each source
image as

f(ak|ξk) = tNak

(
0p,1, ξ

−1
k Ip, [0,∞]

)
, f(ξk) = Gξk(φ0, ψ0), (3)

where tN denotes truncated normal distribution with given support and ξk is
an unknown precision parameter with the Gamma prior for k = 1, . . . , r where
φ0, ψ0 are selected prior constants. This parameter acts as the automatic rele-
vance determination (ARD) term [14].

3 Prior Models of Covariance Matrix of Source Weights

3.1 Isotropic Prior

The only assumption in this case is that the elements of each weights vector
are isotropic [11], i.e. that their covariance matrix is identity matrix as f(xk) =
tNxk

(0n,1, In, [0,∞]) for k = 1, . . . r.

3.2 Sparse Prior

The key assumption of this prior is that the source weights are most likely sparse.
Once again, we employ the ARD principle; however, in a different way than in
Sect. 2.3. Here, each element of source weight, xk,j , has its own ARD prior with
relevance parameter, υk,j , which can be written in vector form as

f(xk|υk) = tNxk

(
0n,1,diag(υ−1

k ), [0,∞]
)
, f(υk,j) = Gυk,j

(α0, β0), (4)

∀j = 1, . . . , n, where diag() denotes square matrix with argument vector in its
diagonal and zeros otherwise and α0, β0 are selected prior constants.

The purpose of this approach is to favor zeros in estimates of the elements
of the weights.
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3.3 Sparse Differences Prior

Sparse prior from Sect. 3.2 could possibly lead to very non-smooth solutions. If
smooth solutions are preferred, a model of sparse differences instead of sparse
elements could be more appropriate. The differences of xk can be expressed using
∇ operator as ∇xk, where ∇ ∈ Rn×n is the matrix with ones on its diagonal,
−1s on its superdiagonal, and zeros otherwise. We employ the ARD principle
on each element of ∇xk with relevance parameter υ∇

k . This can be formulated
equally using full vector xk as

f(∇xk|υ∇
k ) ↔ f(xk|υk) = tNxk

(
0n,1,∇−1diag(υ−1

k )(∇−1)T , [0,∞]
)
, (5)

f(υk,j) = Gυk,j
(α0, β0), ∀j = 1, . . . , n, (6)

with selected prior constants α0, β0.

3.4 Wishart Prior

Till this moment, we have modeled only selected diagonals of the covariance
matrix. However, it is possible to model the full covariance matrix. For this
task, we use vectorized form of the matrix X as −→x = vec(X) = [xT

1 , . . . ,xT
r ]T ∈

Rnr×1 where the covariance between all elements is a full covariance matrix
Υ ∈ Rnr×nr. Prior distribution on an unknown full covariance matrix is usually
chosen in the form of Wishart matrix distribution,

f(−→x |Υ ) = tN−→x
(
0nr,1, Υ

−1, [0,∞]
)
, f(Υ ) = WΥ (α0In, β0), (7)

where W() denotes the Wishart matrix distribution and α0, β0 are selected prior
constants.

The weak point of this prior model is that n2r2 additional parameters have
to be estimated which makes this problem very ill-posed.

3.5 Wishart Prior with Localization

We assume that the most relevant prior knowledge is located only in several
diagonals of the covariance matrix and its sub-matrices. This idea originates in
data assimilation of atmospheric models [5]. Therefore, we replace the remaining
entries in the estimate by zeros. Formally, we use the Hadamard matrix product
which is defined between two matrices of the same size as C = A◦B where ci,j =
ai,jbi,j . Then, the localization of the posterior estimate of the full covariance
matrix from Sect. 3.4 is

Υ̂loc = Υ̂ ◦ L, (8)

where Υ̂ denotes estimate of Υ and L is the localization matrix of the same
size as the matrix Υ . There could be many possible localization matrices L [3]
however their study is out of the scope of this paper. Here, we will show results
with two localization matrices (i) matrix of ones, i.e. without any localization
(denoted as Wishart), and (ii) localization matrix L with ones on the first and the
second diagonals of all sub-matrices and zeros otherwise (denoted as Localized
Wishart).
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3.6 Approximate Solution Using Variational Bayes Method

The whole probabilistic prior model is formed using equations (2)–(3) and prior
model from Sects. 3.1–3.5. Estimation algorithm for each prior model was derived
using the Variational Bayes method [11] where equations for shaping parame-
ters of the posterior probability densities of the model parameters are found in
the form of a set of implicit equations which has to be solved iteratively. Solu-
tions for the first three models are available from previous publications, equation
for the proposed version with Wishart prior and localization are given in the
AppendixA. This yields five different versions of the variational BSS algorithm
(two versions with Wishart prior, with and without localization). All prior para-
meters (with subscript 0) are set to 10±10 in order to yield non-informative priors
while all algorithms are not sensitive to this selection.
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Fig. 1. The results of the five studied methods (the second to the sixth rows) together
with NMF algorithm results (the seventh row) in synthetically generated data (the first
row).
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4 Experiments

4.1 Experiment on Synthetic Dataset

All five derived algorithms are now being tested on synthetic dataset in order to
study the impact of covariance matrix models on resulting estimates. The data
are generated according to model (1) using three sources with different time-
dependent weights as displayed in Fig. 1, top row, degenerated by homogeneous
Gaussian noise. All algorithms run with the same conditions such as starting
point of iterations and expected number of sources which is set to r = 4 in order
to study the ability of algorithms to recognize the correct number of sources
since the modeled number of sources is 3.

The results from all tested algorithms are given in Fig. 1, rows 2–6, together
with the state of the art non-negative matrix factorization (NMF) algorithm
[7], row 7. There are estimated source images and source weights in row-wise
schema where four images in each row are accompanied with related four weights
vectors. It can be seen that all algorithms are capable to correctly estimate
source images. The main differences between the algorithms is in estimates of
the source weights. The fourth redundant source from BSS with isotropic prior
of NMF has been estimated such that its activity is taken from the first and
the second source. The same behavior can bee seen on the result of BSS with
the Sparse prior; however, the tendency to favor zeros in source weights can
be nicely observed here. The BSS with sparse differences prior provides smooth
estimates of the source weights; however, the algorithm estimated the fourth
source as a combination of the second and the third source. The BSS with the
Wishart prior does not penalizes redundant sources and the activity in fourth
source is taken from the first. Only the BSS with Wishart prior and localization
achieves suppression of the redundant source. It is still estimated, however, with
negligible activity which is under the displayed resolution.

4.2 Experiment on Dynamic Scintigraphy Dataset

In this experiment, we will use a selected data from dynamic renal scintigraphy1

to demonstrate the performance of the methods on real data. The data has
original resolution 128×128 pixels; however, we select a region with one kidney of
the size 37×47 where medically relevant sources (kidney pelvis and parenchyma)
are located. The whole sequence is composed of 100 images with sampling period
of 10 s.

We compare only BSS algorithms based on the Sparse differences prior and
the Wishart prior with localization with the NMF algorithm. The r = 3 for
the tested algorithms. The results are summarized in Fig. 2. Estimated source
images and source weights are in a row-wise schema. Two methods, BSS with
Sparse differences prior and the NMF, estimate threes significant sources where
sources 2 and 3 correspond to biological activity of the pelvis. Only the BSS with
1 www.dynamicrenalstudy.org.

www.dynamicrenalstudy.org
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Fig. 2. Results of selected BSS algorithms on dynamic renal scintigraphy data. Source
images are in the first three columns and related TACs are in the second three columns.

Wishart prior and localization estimates only two sources which correspond very
well with the expected biological function of pelvis and parenchyma.

5 Discussion and Conclusion

The problem of blind source separation (BSS) is generally ill-posed, especially
under the conditions such as noisy observations or unknown number of sources.
Bayesian approach is generally valuable for its ability to estimate the number of
relevant sources using hierarchical priors. In this work, we study various choices
of prior covariance structure of the source weights. Covariance structures with
ARD and ARD principle of the differences were already published. We propose
another model using Wishart prior and develop Variation Bayes estimation algo-
rithm with non-standard step of covariance localization. The proposed algorithm
was found to have superior ability to suppress redundant sources in blind source
separation of noisy image sequences. All versions of the variational BSS algo-
rithm are implemented in Matlab and freely available for download from http://
www.utia.cz/AS/softwaretools/image sequences/.

Acknowledgement. This work was supported by the Czech Science Foundation,
grant No. 13-29225S, and by the Grant Agency of the Czech Technical University
in Prague, grant No. SGS14/205/OHK4/3T/14.

A Shaping Parameters of Posterior Distributions

Posterior distributions are f̃(A|D) = tNA(μA, Ip ⊗ΣA), f̃(ξk|D) = Gξk (φk, ψk) ,

f̃(x|D) = tNx (μx, Σx) , f̃(Υ |D) = WΥ,nr (ΣΥ , β) , f̃(ω|D) = Gω (ϑ, ρ) ,

http://www.utia.cz/AS/softwaretools/image_sequences/
http://www.utia.cz/AS/softwaretools/image_sequences/
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with shaping parameters Σ−1
A =

(
ω̂XT X + Ξ̂

)
, μA =

(
ωDX̂

)
ΣA, φ =

φ0 + p
21r,1, ψ = ψ0 + 1

2diag
(

̂AT A
)

, Σ−1
x =

(
(ω̂̂AT A) ⊗ In + Υ̂ ◦ L

)
μx =

Σx

(
ω̂vec

(
DT Â

))
Σ−1

Υ =
(
x̂xT + α−1

0 Inr

)
β = β0 + 1 ϑ = ϑ0 + pn

2 , ρ =

ρ0 + 1
2 tr

(
(D − ÂX̂T )(D − ÂX̂T )T

)
.
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Stéphane Chrétien and Tianwen Wei(B)
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Abstract. The subdifferential of convex functions of the singular spec-
trum of real matrices has been widely studied in matrix analysis, opti-
mization and automatic control theory. Convex analysis and optimization
over spaces of tensors is now gaining much interest due to its potential
applications to signal processing, statistics and engineering. The goal of
this paper is to present an applications to the problem of low rank tensor
recovery based on linear random measurement by extending the results
of Tropp [6] to the tensors setting.

1 Introduction

1.1 Background

Tensors have been recently a subject of great interest in the applied mathemat-
ics community. We refer to [3,4] for a modern reference on this subject. Many
applications of tensors are based on solving tensor related optimization prob-
lems, such as minimizing certain norms under linear constraints. Such problems
have been recently successfully addressed in the 2D setting, i.e. for matrices, by
the statistics, signal processing, inverse problems and automatic control com-
munities in particular. Two of the reasons for this rapid growth of interest in
the application of matrix norms to penalized estimation problems is that some
norms promote spectral sparsity and that much work had been done in the
fields of matrix analysis and convex analysis to analyze the subdifferential of
such norms; see for example [5,7]. Our goal in the present paper is to extend
previous results on matrix norms to the tensor setting. In particular, we propose
a general study of the subdifferential of certain convex functions of the spectrum
of real tensors and apply our results to the computation of the subdifferential of
useful and natural matrix norms. We also present an application of our formu-
las to the problem of low rank tensor recovery using sparsity promoting norm
minimization under random linear constraints, a natural extension of previous
works by Tropp [6].

1.2 Notations

For any convex function f : Rn �→ R∪ {+∞}, the conjugate function f∗ associ-
ated to f is defined by

f∗(g) def= sup
x∈Rn

〈g, x〉 − f(x).

c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 360–367, 2015.
DOI: 10.1007/978-3-319-22482-4 42
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The subdifferential of f at x ∈ R
n is defined by

∂f
def= {g ∈ R

n | ∀y,∈ R
n f(y) ≥ f(x) + 〈g, y − x〉} .

Moreover, it is well known (see e.g. [2]) that g ∈ ∂f(x) if and only if

f(x) + f∗(g) = 〈g, x〉.
In the present paper, a tensor represented by a multi-dimensional array in

R
d1×···×dD . Let D and n1, . . . , nD be positive integers. Let X ∈ R

n1×···×nD

denote a D-dimensional tensor. If n1 = · · · = nD, then we say that X is cubic.
The set of D-mode cubic tensors will be denoted by R

n×···×n, where D will stay
implicit. For any index set C ⊂ {1, . . . , n1} × · · · × {1, . . . , nD}, XC will denote
the subarray (Xi1,...,iD )(i1,...,iD)∈C .

2 Basics on Tensors

2.1 Tensor Norms

The Spectrum of a Tensor. Let us define the spectrum as the mapping which
to any tensor X ∈ R

n×···×n associates the vector σ(X ) given by

σ(X ) def=
1√
D

(σ(1)(X ), . . . , σ(D)(X )),

where σ(d)(X ) denotes the vector consisting of the singular values of the mode-d
matricization of X .

Norms of Tensors. Let X = (Xijk) and Y = (Yijk) be tensors in R
n1×···×nD .

We can define several tensor norms on R
n1×···×nD . The first one is a natural

extension of the Frobenius norm or Hilbert-Schmidt norm from matrices to ten-
sors. We start by defining the following scalar product on R

n1×···×nD :

〈X ,Y〉def=
n1∑

i1=1

· · ·
nD∑

iD=1

Xi1,...,iDYi1,...,iD .

Using this scalar product, we can define the following norm, which we call the
Frobenius norm

‖X‖F
def=

√
〈X ,X〉.

One may also define an “operator norm” in the same manner as for matrices as
follows

‖X‖ def= max
u(d)∈R

nd ,

‖u(d)‖2=1,d=1,...,D

〈X , u(1) ⊗ · · · ⊗ u(D)〉

We also define

‖X‖∗
def=

1
D

D∑

d=1

‖σ(d)‖1.
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2.2 Orthogonally Decomposable Tensors

The Orthogonally decomposable (ODEC) tensors are defined as follows

Definition 2.1. Let X be a tensor in R
n1×···×nD . If

X =
r∑

i=1

αi · u
(1)
i ⊗ · · · ⊗ u

(D)
i , (2.1)

where r � n1 ∧ · · · ∧ nD, α1 � · · · � αr > 0 and {u
(d)
1 , . . . , u

(d)
r } is a family

of orthonormal vectors for d = 1, . . . , D, then we say (2.1) is an orthogonal
decomposition of X .

Denote α = (α1, . . . , αr, 0, . . . , 0) in R
n1∧···∧nD . For each d ∈ {1, . . . , D}, we

may complete {u
(d)
1 , . . . , u

(d)
r } with {u

(d)
r+1, . . . , w

(d)
nd } so that matrix U (d) =

(u(d)
1 , . . . , u

(d)
nd ) ∈ R

nd×nd is orthogonal. Using U (1), . . . , U (D), we may write (2.1)
as

X = D(α) ×1 U (1) ×2 U (2) · · · ×D U (D). (2.2)

where D = diag(α) is a diagonal tensor with the ith diagonal being αi for
i = 1, . . . , r and the other diagonal entries being zero. Note that representation
(2.2) is generally not unique unless n1 = · · · = nD and α1, . . . , αr are all distinct.

It is easy to calculate the norms of ODEC tensors.

Proposition 2.2. Let X be an orthogonally decomposable tensor and let

X =
r∑

i=1

αi · u
(1)
i ⊗ · · · ⊗ u

(D)
i ,

be an orthogonal decomposition of X . Then

‖X‖ = α1 and ‖X‖∗ =
r∑

i=1

αi.

3 Further Results on the Spectrum

In this section, we will present some further results on the spectrum such as the
question of characterizing the image of the spectrum and the subdifferential of
a function of the spectrum.

3.1 A Technical Prerequisite: Von Neumann’s Inequality
for Tensors

Von Neumann’s inequality says that for any two matrices X and Y in R
n1×n2 ,

we have
〈X,Y 〉 ≤ 〈σ(X), σ(Y )〉,
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with equality when the singular vectors of X and Y are equal, up to permuta-
tions when the singular values have multiplicity greater than one. This result has
proved useful for the study of the subdifferential of unitarily invariant convex
functions of the spectrum in the matrix case in [5]. In order to study the subd-
ifferential of the norms of certain type of tensors, we will need a generalization
this result to higher orders. This was worked out in [1]. Let us recall the containt
of the main result of [1].

Definition 3.1. We say that a tensor S is blockwise decomposable if there exists
an integer B and if, for all d = 1, . . . , D, there exists a partition I

(d)
1 ∪ . . . ∪ I

(d)
B

into disjoint index subsets of {1, . . . , nd}, such that Xi1,...,iD = 0 if for all b =
1, . . . , B, (i1, . . . , iD) �∈ I

(1)
b × . . . × I

(D)
b .

An illustration of this block decomposition can be found in Fig. 1. The following
result is a generalization of von Neumann’s inequality from matrices to tensors.
It is proved in [1].

Theorem 3.2. Let X ,Y ∈ R
n1×···×nD be tensors. Then for all d = 1, . . . , D, we

have
〈X ,Y〉 � 〈σ(d)(X ), σ(d)(Y)〉. (3.3)

Equality in (3.3) holds simultaneously for all d = 1, . . . , D if and only if
there exist orthogonal matrices W (d) ∈ R

nd×nd for d = 1, . . . , D and tensors
D(X ),D(Y) ∈ R

n1×···×nD such that

X = D(X ) ×1 W (1) · · · ×D W (D),

Y = D(Y) ×1 W (1) · · · ×D W (D),

where D(X ) and D(Y) satisfy the following properties:

(i) D(X ) and D(Y) are block-wise decomposable with the same number of
blocks, which we will denote by B,

(ii) the blocks {Db(X )}b=1,...,B (resp. {Db(Y)}b=1,...,B) on the diagonal of D(X )
(resp. D(Y)) have the same sizes,

(iii) for each b = 1, . . . , B the two blocks Db(X ) and Db(Y) are proportional.

3.2 Subdifferential for ODEC Tensors

Theorem 3.3. Let f : Rn × · · · × R
n �→ R satisfy property

f(s1, . . . , sD) = f(sτ(1), . . . , sτ(D)) (3.4)

for all τ ∈ SS. Then for all ODEC tensors X , we have

(f ◦ σ)∗(X ) = f∗(σ(X )) (3.5)

Using this result combined with von Neumann’s inequality for tensors, one easily
obtains the following corollary.
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Fig. 1. A block-wise diagonal tensor.

Corollary 3.4. Let f : Rn × · · · × R
n �→ R satisfy property

f(s1, . . . , sD) = f(sτ(1), . . . , sτ(D)) (3.6)

for all τ ∈ SS. Let X be an ODEC tensor. Then necessary and sufficient con-
ditions for an ODEC tensor Y to belong to ∂(f ◦ σ)(X ) are

1. Y has the same mode-d singular spaces as X for all d = 1, . . . , D,
2. σ(Y) ∈ ∂f(σ(X )).

Corollary 3.5. Let X = D(α)×1U (1)×2 · · ·×D U (D) be an ODEC tensor. Then
the subdifferential ∂‖ · ‖∗(X ) includes the following set

Ω =
{

D(1) ×1 U (1) ×2 · · · ×D U (D) + V
∣∣∣ ‖V‖ ≤ 1, V ×i U (i)T = 0, i = 1, . . . , D

}
.

4 Application to Tensor Recovery with Gaussian
Measurements

Let X# ∈ R
n1×n2×n3 be an unknown true signal, Φ(·) : Rn1×n2×n3 �→ R

m be a
known linear measurement mapping and

y = Φ(X#) + ξ (4.7)

be a noised vector of measurements in R
m.

We focus on the following optimization problem:

min
X

‖X‖∗ subject to ‖Φ(X ) − y‖ � η. (4.8)
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Let X̂ be any solution of optimization problem (4.8). We are interested in giving
a bound for

‖X̂ − X#‖F .

The main tool of this section is the following result by Tropp [6]:

Theorem 4.1. Assume that ‖ξ‖ � η. Then with probability at least 1 − e−t2/2,
we have

‖X̂ − X#‖F � 2η

[
√

m − 1 − w(D(‖ · ‖∗,X#)) − t]+
,

where [a]+ = max{a, 0} for any a ∈ R.

The quantity w(D(‖ · ‖∗,X#)) denotes the conic Gaussian width w(·) of the
descent cone D(‖ · ‖∗,X#). The definitions of these notions are given as follows:

Definition 4.2. Let K ∈ R
d be a cone, the conic Gaussian width w(K) is

defined as
w(K) = E[ sup

u∈K∩Sd−1
〈g, u〉],

where g ∼ N (0, I) is a standard Gaussian vector and Sd−1 denotes the unit
sphere in R

d.

Definition 4.3. Let f : Rd �→ R̄ be a proper convex function. The descent cone
D(f, x) of the function f at a point x ∈ R

d is defined as

D(f, x) def= {λu |λ > 0, u ∈ R
d, f(x + u) � f(x)}.

According to Theorem 4.1, the error bound of ‖X̂ − X#‖F depends on the
conic Gaussian width w(·) of the descent cone D(‖·‖∗,X#). The following result
reveals that the latter is then closely related to the subdifferential of ‖ · ‖∗ at
X#.

Proposition 4.4. Assume that ∂‖X#‖ is nonempty and does not contain the
origin. Then

w2(D(‖ · ‖∗,X#)) � E inf
τ�0

dist2F (G, τ∂‖X#‖∗),

where G ∈ R
n1×n2×n3 is a tensor with i.i.d. random Gaussian entries and

distF (G, τ∂‖X#‖∗)
def= inf

Y∈τ∂‖X#‖∗
‖G − Y‖F ,

i.e. the distance between G and the set τ∂‖X#‖∗.

To derive a bound for ‖X̂ − X#‖F , we need to give an upper bound for

E inf
τ�0

dist2F (G, τ∂‖X#‖∗).

The following result establishes such a bound in the case that X# is odec.
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Proposition 4.5. If X# is odec, then we have the following bound:

E inf
τ�0

dist2F (G, τ∂‖X#‖∗) � r3 + r + 3r(n1 + n2 + n3 − 3r) + r(n1n2 + n2n3 + n1n3)

−r2(n1 + n2 + n3).

Proof. If X# is orthogonally decomposable, i.e.

X# =
r∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ u

(3)
i

= D(σ) ×1 U (1) ×2 U (2) ×3 U (3),

where D(σ) is a diagonal tensor with diagonal elements σ = (σ1, . . . , σr) and
U (j) = (u(j)

1 , . . . , u
(j)
r ) for j = 1, 2, 3, then the subdifferential ∂‖·‖∗(X#) includes

the following set

Ω =

{
r∑

i=1

u
(1)
i ⊗ u

(2)
i ⊗ u

(3)
i + V

∣∣∣ ‖V‖ � 1, V ×i U (i) = 0, i = 1, 2, 3.

}
. (4.9)

Hence

E inf
τ�0

dist2F (G, τ∂‖X#‖∗) � E inf
τ�0

dist2F (G, τΩ) = E inf
τ�0

inf
Y∈Ω

‖G − τY‖2F .

Note that V in (4.9) can also be characterized by

V = T ×1 U
(1)
⊥ ×2 U

(2)
⊥ ×3 U

(3)
⊥ , (4.10)

where T ∈ R
(n1−r)×(n2−r)×(n3−r) is a tensor such that ‖T ‖ � 1 and U

(i)
⊥ ∈

R
ni×(ni−r) is a matrix such that Ũ (i) = (U (i)|U (i)

⊥ ) is orthogonal for i = 1, 2, 3.
In view of (4.9) and (4.10), we assert that any Y ∈ Ω can be written as

Y = C ×1 Ũ (1) ×2 Ũ (2) ×3 Ũ (3).

where tensor C is block-wise diagonal with two diagonal blocks C1 = diag(1) ∈
R

r×r×r and C2 = T ∈ R
(n1−r)×(n2−r)×(n3−r).

Because G ∈ R
n1×n2×n3 is a tensor with i.i.d. random standard Gaussian

entries, for any orthogonal matrices W (1),W (2),W (3) with appropriate size, ten-
sor G×1W

(1)×2W
(2)×3W

(3) still has i.i.d. standard Gaussian entries. Therefore,
we may choose a coordinate system such that

E inf
τ�0

inf
Y∈Ω

‖G − τY‖2F = E inf
τ�0

inf
C∈Ω̃

‖G − τC‖2F ,

where Ω̃ denotes the set of block-wise diagonal tensors with two diagonal blocks
C111 = D(1) ∈ R

r×r×r and C222 ∈ R
(n1−r)×(n2−r)×(n3−r) verifying ‖C2‖ � 1.

Partitioning G in the same manner, we obtain

‖G − τC‖2F = ‖G111 − τD(1)‖2F + ‖G222 − τT ‖2F +
2∑

i,j,k=1
i,j,k are not equal

‖Gi,j,k‖2F .
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Since G is a tensor with independent Gaussian entries, it follows that

E

2∑

i,j,k=1
i,j,k are not equal

‖Gijk‖2F = r(n1n2 + n2n3 + n1n3) − r2(n1 + n2 + n3).

Thus

E inf
τ�0

inf
C∈Ω̃

‖G − τC‖2F = E inf
τ�0

inf
‖C2‖�1

(
‖G111 − diag(τ)‖2F + ‖G222 − τC2‖2F

)

+ r(n1n2 + n2n3 + n1n3) − r2(n1 + n2 + n3).

Choosing τ = ‖G2‖, we get

E inf
τ�0

inf
‖C2‖�1

(
‖G1 − diag(τ)‖2F + ‖G2 − τC2‖2F

)
� E‖G1 − diag(‖G2‖)‖2F

Since

E‖G1 − diag(‖G2‖)‖2
F = r3 + rE‖G2‖2 � r3 + r + r

(√
n1 − r +

√
n2 − r +

√
n3 − r

)2

� r3 + r + 3r(n1 + n2 + n3 − 3r),

It follows that

E inf
τ�0

dist2F (G, τ∂‖X#‖∗) � r3 + r + 3r(n1 + n2 + n3 − 3r) + r(n1n2 + n2n3 + n1n3)

− r2(n1 + n2 + n3).

If the tensor is cubic, i.e. ni = n for i = 1, 2, 3, then we have with at least
probability 1 − e−t2/2 that

‖X̂ − X#‖F � 2η

[
√

m − 1 − √
(r3 + r + 9r(n − r) + 3rn(n − r)) − t]+

.
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Abstract. Sparse modeling have become one of the standard
approaches for latent variable analysis in the literature of statistics,
machine learning and signal processing. This paper considers a super-
vised dimension reduction, which is a fundamental problem in data sci-
ence. Particularly, the problem of linear discriminant analysis is consid-
ered. Extending the previous attempt to impose sparsity invoking regu-
larization for Fisher’s discriminant model, the proposed method bridges
two different formulations of linear discriminant analysis, namely, the
Fisher’s discriminant model and the normal model, via a particular form
of regularization. The proposed discriminant problem is efficiently solved
by using the proximal point algorithm. The proposed method is shown
to work well through experiments using both artificial and real-world
datasets.

Keywords: Linear discriminant analysis · Sparse regularization ·
Classification

1 Introduction

One of the characteristics of modern data is its high dimensionality with small
number of samples. It is known that traditional models in statistics usually per-
form poorly on such data. For example, based on the theory of random matrix [1],
linear discriminant analysis (LDA [2]), which is widely used for classification in
many fields, is both theoretically and experimentally shown not to work well in
high dimensional settings [3].

Over the years, there have been a number of efforts to make linear discrim-
inant analysis in high dimension reliable and to enable it to find meaningful
features. Latent variable analysis assumes that only small number of intrin-
sic parameter play key role in explaining the observed data and describing the
underlying data generating structure. Currently, sparse modeling is regarded as
a promising approach for finding the latent structure in linear models. Algo-
rithms imposing sparsity promoting regularization to the classification axes for
LDA are proposed in [4,5]. In [6], the Penalized LDA(PLDA) is proposed, which
minimizes between class variance with the �1-norm regularization, under the
constraint that the within class variance is smaller than one.
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 368–375, 2015.
DOI: 10.1007/978-3-319-22482-4 43
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In this paper, based on the penalized LDA framework proposed in [6], we
consider an elastic-net type penalization [7] that takes account both sparsity and
adherency to the normal discriminant model. The proposed penalization avoids
too sparse solution, which sometimes cause problems in penalized classification,
and it also shows adherence to the normal model solution. An algorithm using
proximal point algorithm is derived to solve the proposed problem.

The rest of the paper is organized as follows. In Sect. 2, we define notations
to describe the problem considered in this paper, and introduce two different
models for linear discriminant analysis. Then, in Sect. 3, we explain the penal-
ized linear discriminant analysis, which is the basis of the proposed method in
this work. Section 4 introduces our approach for penalized linear discriminant
analysis, and an efficient optimization algorithm for the problem is derived. Sec-
tions 5 is devoted to show the experimental results, and our conclusion is drawn
in Sect. 6.

2 Notation and Preliminary

Let X ∈ R
n×p be the data matrix of p-dimensional vectors x1, . . . ,xn, where n

is the number of samples and xi ∈ R
p. Each sample is supposed to belong to one

of two classes C1 or C2 of sizes n1 and n2, respectively. We consider the two class
classification problem in this paper. Let μ1,μ2 be the mean vectors of samples
in class C1 and class C2, respectively, and μ and ξ be the mean vectors of whole
samples and difference of two mean vectors ξ = μ1 − μ2, respectively. Σw and
Σb are the within and the between class covariance matrices, respectively, and
empirically estimated as

Σ̂w =
1
n

2∑

k=1

∑

i∈Ck

(xi − μ̂k)(xi − μ̂k)�, Σ̂b =
1
n

X�X − Σ̂w, (1)

where μ̂k = 1
nk

∑
i∈Ck

xi, k = 1, 2 are empirical estimates of the mean vectors
of samples in class Ck, k = 1, 2. We also define a positive-definite estimate of the
within class covariance matrix Σw as Σ̃w, which has the same diagonal elements
as Σ̂w, but other off-diagonal elements are set to zero. The empirical estimate
of μ and ξ are defined as μ̂ = 1

n

∑2
k=1 nkμ̂k and ξ̂ = μ̂1 − μ̂2, respectively.

In the following, we introduce two different formulations for linear discrim-
inate analysis, namely, Fisher’s Discriminant Model Formulation and Normal
Model Formulation. In their idealized situations, the classification axes obtained
by these methods are identical. In our proposed method described in Sect. 4, an
elastic-net type regularization is imposed to Fisher’s discriminant model to keep
the solution close to that of the normal model.

2.1 Fisher’s Discriminant Model Formulation

Fisher’s Discriminant Model Formulation of linear discriminant problem aims
at finding the classification vector (axis) maximizing the between class variance
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while minimizing the within class variance. This is often formulated as a mini-
mization problem of the Fisher’s criterion JF (β) = β�Σwβ/β�Σbβ, and it is
equivalently formulated as the following minimization problem

min
β

{−β�Σ̂bβ}, s.t. β�Σ̃wβ = 1. (2)

Recalling the definition of the between class covariance matrix, the solution of
the problem is shown to be β̃ = Σ̃−1

w (μ1 − μ2).

2.2 Normal Model

The Normal Model Formulation is another well-known form of linear discrimi-
nant analysis, which is supported by probabilistic model perspective. Suppose
the distributions of data in two classes C1 and C2 are Gaussians with means μ1

and μ2 and the same covariance matrix Σ = Σw for both classes. The Bayesian
classifier defined by

f(x) = sign
(

log
P (C1|x)
P (C2|x)

)

is obtained by simple calculation, under the above assumption, as

log
P (C1|x)
P (C2|x)

= {Σ−1
w (μ1 − μ2)}�x − 1

2
μ1Σ

−1
w μ1 +

1
2
μ2Σ

−1
w μ2 + log

P (C1)
P (C2)

.

That is, the Bayes optimal classifier is given by a linear classifier and its projec-
tion vector is the same as that obtained by Fisher’s criterion, and its empirical
estimate is given by β̂ = Σ̃−1

w (μ̂1 − μ̂2).

3 Penalized Linear Discriminant Analysis

In [6], the authors adopted Fisher’s discriminant formulation

min
β

{−β�Σ̂bβ + P1(β)}, s.t. β�Σ̃wβ ≤ 1, (3)

with weighted �1-norm regularization defined by

P1(β) = λ1

p∑

i=1

|δiβi|, λ1 ≥ 0, (4)

where δi, i = 1, . . . , p are sample standard deviation of elements of x. The prob-
lem (3) is named Penalized Linear Discriminant Analysis (PLDA).

Since the objective function −β�Σ̂bβ+P1(β) to be minimized is not convex,
an iterative optimization approach called the Majorization-Minimization (MM)
algorithm [8] is used, which is briefly explained as follows for the sake of self-
containedness. Consider the following non-convex optimization problem:

min
β

f(β). (5)
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MM algorithm is a general algorithmic framework, which first upper bounds the
objective function f(β) by a function g(β|β(m)), which is said to majorize the
function f(β) at the point β(m) as

f(β) ≤ g(β|β(m)), f(β(m)) = g(β(m)|β(m)). (6)

From an initial β(0), the MM algorithm solves (5) by iteratively minimizing the
majorized objective function as

β(m+1) = arg min
β

g(β|β(m)). (7)

The MM approach is applied to solve the PLDA problem (3). Let f(β) =
−β�Σ̂bβ. For a fixed β(m), f(β) is majorized as

f(β) ≤ f(β(m)) + (β − β(m))�∇f(β(m)) = β(m)�Σ̂bβ
(m) − 2β�Σ̂bβ

(m).

Therefore, the PLDA problem is solved by iteratively minimizing the sub-
problem

min
β

d(m)�β + P1(β), s.t. β�Σ̃wβ ≤ 1, (8)

where d(m) = −Σ̂bβ
(m). The solution to the sub-problem is given by the soft-

thresholding operator [9].

4 Proposed Linear Discriminant Analysis Formulation

4.1 Adherent Penalization

We consider the equation constraint in penalized Fisher’s problem

min
β

{−β�Σ̂bβ + P (β)}, s.t. β�Σ̃wβ = 1, (9)

which can be shown to be equivalent to the problem with inequality con-
straint [6].

Then, we consider the penalization P (β) = P1(β) + P2(β), where P1(β) is
the weighted �1-norm term (4) which is the same as in PLDA, while

P2(β) = λ2‖Σ̃wβ − ξ̂‖22, λ2 ≥ 0, (10)

which we call the adherent penalization. Note that P2(β) is a quadratic form in β
and the penalization P1(β) + P2(β) is similar to the elastic-net [7]. The rational
behind this penalization is in the fact that the optimal LDA classification axis
in normal model is β = Σ−1

w (μ1 − μ2), and it is reasonable to keep ‖Σ̃wβ − ξ̂‖
as small as possible. Here ξ̂ = μ̂1 − μ̂2 and ‖ · ‖ is certain vector norm. In
this work, considering that P1(β) is a weighted �1-norm penalization, and the
elastic net-type penalization is shown to find less sparse solution that can be
overlooked by �1-norm penalization, we adopt the �2-norm and defined P2(β) =
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λ2‖Σ̃wβ − ξ̂‖22, λ2 ≥ 0. We call the problem (9) with P (β) = P1(β) + P2(β)
the Adherently Penalized Linear Discriminant Analysis (APLDA) henceforth.

The sparsity penalty P1(β) and adherency penalty P2(β) complement each
other. The sparsity penalty prefers a sparse structure in the general sense to
control its complexity while the adherency penalty prefers a discriminant vector
β as close as possible to the solution of the normal model. By combining these
two penalties, we obtain the following objective function to be minimized:

J(β) = −β�Σ̂bβ + P1(β) + P2(β)

= −β�Σ̂bβ + λ1

p∑

i=1

|δiβi| + λ2(β�Σ̃wβ − 2ξ̂�Σ̃wβ) + const.

= −β�Σ̂bβ + λ1

p∑

i=1

|δiβi| + λ2 − 2λ2ξ̂
�Σ̃wβ + const.

≤ β(m)�Σ̂bβ
(m) − 2β(m)�Σ̂bβ − 2λ2ξ̂

�Σ̃wβ + λ1

p∑

i=1

|δiβi| + const.

= c
(m)�
λ2

β + λ1

p∑

i=1

|δiβi| + const.

In the above derivation, we used the equality constraint β�Σ̃wβ = 1 and the
inequality is the result of majorization. In the final line of the above equations,
c
(m)
λ2

= −2(β(m)�Σ̂b + λ2ξ
�Σ̃w). At the m-th iteration step, the majorized

objective function J (m)(β) = c
(m)�
λ2

β + λ1

∑p
i=1 |δiβi| is minimized by solving

min
β

J (m)(β) s.t. β�Σ̃wβ = 1. (11)

This sub-problem is iteratively solved until convergence. The convergence of
this procedure is guaranteed by the property of the MM algorithm. Since the
problem (9) is not convex, we need to select a reasonable initial value β(0) for this
algorithm. Following the method in [6], we use the leading eigenvector of Σ̃−1

w Σ̂b

as an initial value of β. To solve the sub-problem, we propose an algorithm based
on the proximal point algorithm as shown in next section.

4.2 Proximal Gradient Method

The proximal operator of a convex function h is defined by

proxh/L(x) = arg min
u

(
h(u) +

L

2
‖u − x‖22

)
, (12)

where L > 0 is a parameter. Proximal method is a class of algorithms for solving
a convex optimization problem that uses the proximal operators of the objective
function [10]. We solve the sub-problem (11) by proximal point algorithm [11],
which iteratively updates the estimate of β by β̃t+1 = proxJ(m)/L(βt) followed
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by the projection βt+1 = Π(β̃)t+1. Here, the projection operator is defined by
Π(β) = 1√

β�Σ̃wβ
β, which is to satisfy the equality constraint β�Σ̃wβ = 1.

With a simple manipulation, the minimizer of the proximal operator of the
objective function J (m) is shown to be given by

β̃t+1
i =

⎧
⎪⎪⎨

⎪⎪⎩

Lβt
i−c

(m)
i −λ1δi
δiL

, (Lβt
i−c

(m)
i

δiL
≥ λ1),

0, (−λ1 <
Lβt

i−c
(m)
i

δiL
< λ1),

Lβt
i−c

(m)
i +λ1δi
δiL

, (Lβt
i−c

(m)
i

δiL
≤ λ1).

(13)

5 Experimental Results

5.1 Artificial Dataset

In this subsection, with a simple artificial dataset, we show that the proposed
method could improve the classification accuracy compared to conventional LDA
and PLDA. In conventional LDA, the classification axis is obtained by solving
the generalized eigen-value problem Σ̂bβ = λΣ̂wβ. In PLDA, the classification
axis is obtained by solving the problem (3), and in APLDA, it is obtained by
solving the problem (9).

The dataset is composed of samples from two Gaussian distribu-
tions with means μ1 = (0.5, 0.5, 0.4, 0.4, . . . , 0.4) ∈ R

p and μ2 =
(−0.5,−0.5, 0.4, 0.4, . . . , 0.4), and a common covariance matrix Σ. The covari-
ance matrix is a symmetric band matrix with diagonal element 1, and its first and
second neighbors are 0.09 and 0.03, respectively. An example of the covariance

matrix when p = 5 is Σ =

(
1.00 0.09 0.03 0.00 0.00
0.09 1.00 0.09 0.03 0.00
0.03 0.09 1.00 0.09 0.03
0.00 0.03 0.09 1.00 0.09
0.00 0.00 0.03 0.09 1.00

)
. Varying the dimensionality

p = 5, 10, 100, 300, and 500, we generated 50 samples (i.e., 25 samples for each
class) and estimated the classification vectors with LDA, PLDA, and the pro-
posed APLDA. The classification accuracy is evaluated by using the 1000 test
samples.

From Fig. 1 and Table 1, we can see that the accuracy of ordinal LDA starts to
degenerate between p = 100 and 300, and the accuracy of LDA in high dimension
setting is just slightly better than random guess. On the other hand, Penalized
LDA (PLDA) is not harmed by the increase of dimensionality. APLDA is also
robust to the increase of the dimensionality, and basically it shows superior
accuracy compared to PLDA.

5.2 Real-World Dataset

In the following, we show empirical results using three UCI-classification
datasets [12] with high dimensional feature vectors (isolet with p = 617, secom
with p = 591, and USPS with p = 256). For these datasets, since the classification
accuracy of LDA was around 50%, LDA is removed from the list of compari-
son. Instead, näıve Bayes discriminant analyses proposed in [3] (labeled nB),
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Fig. 1. Classification accuracy vs
sample size

Table 1. A table of classifica-
tion accuracy for different methods
with different sample dimensional-
ities for estimating the classifica-
tion axes.

p LDA PLDA APLDA

5 0.65877 0.65873 0.66095

10 0.66376 0.66962 0.67457

100 0.69469 0.70690 0.72463

300 0.53518 0.73457 0.73002

500 0.53610 0.72646 0.74752
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Fig. 2. Classification accuracies for real-world datasets.

sparse discriminant analyses proposed by Mai et al. [5] (labeled Mai), and by
Cai &Liu [4](labeled Cai) are compared to PLDA and the proposed APLDA. The
classification accuracies are summarized in Fig. 2. From Fig. 2, although there is
no single method consistently outperforms others, APLDA is comparable to or
better than other conventional methods.

6 Conclusion

For the Fisher’s discriminant model, we introduced the adherent penalization,
which is a combination of �1-norm penalization and �2-norm penalization simi-
lar to the elastic-net [7]. The rational behind the proposed penalization is that
in addition to the sparsity promoting �1-norm penalization, it is reasonable to
keep the solution of the penalized Fisher’s problem close to the optimal solution
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for the normal model of the linear discriminant analysis. The adherent penal-
ization is imposed in the form of �2-norm, and by using the equality constraint
of the Fisher’s problem, the penalized objective function is reduced to a simple
sub-problem by using the MM algorithm approach. Then the sub-problem is
solved by using the proximal point algorithm followed by projection to satisfy
the equality constraint.

The aim of this paper is in introducing an elastic-net type regularization
to linear discriminant problem, which we called the adherent regularization. In
this work, we experimentally see that the proposed method work well in high
dimensionality setting and comparable to or sometimes improves PLDA. It is
our important future work to develop asymptotic theory or to show consistency
of APLDA.

Acknowledgement. Part of this work is supported by KAKENHI No.26120504,
25870811, and 15H01678.
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1 LISIC, ULCO, Université Lille Nord de France, Calais, France
{robert.chreiky,gilles.delmaire,matthieu.puigt,

gilles.roussel}@lisic.univ-littoral.fr
2 University of Balamand, Koura, Lebanon

antoine.abche@balamand.edu.lb
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Abstract. Recently, some informed Non-negative Matrix Factorization
(NMF) methods were introduced in which some a priori knowledge (i.e.,
expert’s knowledge) were taken into account in order to improve the sep-
aration process. This knowledge was expressed as known components of
one factor, namely the profile matrix. Also, the sum-to-one property of
the profile matrix was taken into account by an appropriate sequential
normalization. However, our previous approach was unable to check both
constraints at the same time. In this work, a new parametrization is pro-
posed which takes into consideration both constraints simultaneously by
incorporating a new unconstrained matrix. From this parameterization,
new updates rules are introduced which are based on the framework of
the Split Gradient Method by Lantéri et al. The cost function is defined
in terms of a weighted Frobenius norm and the developed rules involve a
new shift in order to ensure the non-negativity property. Simulations on a
noisy source apportionment problem show the relevance of the proposed
method.

Keywords: Informed source separation · Non-negative matrix factor-
ization · Split gradient · Source apportionment

1 Introduction

Source apportionment consists of estimating the particulate matter sources (and
their relative concentrations) which are present in the ambiant air. A source is
fully characterized by a profile which gathers the m chemical species proportions
(expressed in ng/ng) that constitute it. In practice, n data samples—collected
from a chemical sampler—can be written as a mixture of p profiles, with different
concentrations (expressed in ng/m3). Mathematically, if we respectively denote
by X, G, and F the non-negative n×m data matrix, n× p contribution matrix,
and p × m profile matrix, the collected data reads

X ≈ G · F. (1)
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 376–383, 2015.
DOI: 10.1007/978-3-319-22482-4 44



Split Gradient Method for Informed Non-negative Matrix Factorization 377

G and F are usually unknown and their estimation from X can be referred
as a Blind Source Separation (BSS) problem [1] which can be solved, e.g., by
Non-negative Matrix Factorization (NMF) [1, Ch. 13]. However, Viana et al. [12]
show that the state-of-the-art blind NMF approaches do not provide a consistent
performance.

In our recent work [7,8], several informed NMF methods were proposed which
incorporate a priori knowledge about the source separation problem: (i) some
entries of F are known [7] (or bounded [8]) by experts, and (ii) the rows of F are
summed to one [7,8]. In order to tackle the first information, we introduced a
specific parameterization which allows to take into account the known values of
F . Then, a normalization step was applied after the updates of F , thus resulting
in a somewhat inelegant yet efficient strategy, where all the above constraints
were never satisfied within iterations, except after convergence. The informed
methods in [7,8] should be seen as extensions of the well-known multiplicative-
update NMF introduced by Lee and Seung [6].

Recently, many NMF approaches have been introduced to take into account
the sum-to-one constraints, e.g., for remote sensing applications [9]. However,
such constraints are applied to the columns of F and the source separation
problem can be addressed by solving separately independent sub-problems, each
one is related to a column of F , using the Sum-to-one Constraint Least Squares
(SCLS) algorithm [3].

But, this strategy is not appropriate for the application under consideration
in this work since the sum-to-one constraints are applied along the rows of F ,
thus leading to dependent sub-problems. To the best of the authors’ knowledge,
the only exception is the work proposed by Lantéri et al. [5], where the rows of
both G and F are normalized. In this paper, an extension of the work in both
[5,7] is developed. Indeed, the proposed method considers some known values of
the profile matrix while satisfying the sum-to-one constraints within iterations.
Therefore, it is far more elegant than [7,8] and provides a better source separation
performance in the tests provided in this paper.

The remainder of the paper is structured as follows. In Sect. 2, the method
in [5] is presented. In Sect. 3, the proposed informed method is introduced and
its performance is investigated in Sect. 4.

2 Split Gradient NMF Methods

In [5], the authors introduced an approach with sum constraints on both G and
F . More specifically, they assumed1 the rows of F to be summed to 1 and the
rows of G to be summed to the corresponding sums of the rows of X, i.e.,

Fp×m · 1m×m = 1p×m, (2)
Gn×p · 1p×p = Xn×m · 1m×p, (3)

1 Actually, Lantéri et al. summed the rows of G to 1 and the rows of F to the sums
of the rows of X. When expressed in the source apportionment application, it can
be equivalently written as Eqs. (2) and (3).
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where 1p×m is the (p × m) matrix of ones. Lantéri et al. [5] took into account
the sum-to-one constraint by introducing unconstrained matrices Z and T such
that

F =
Z

Z · 1m×m
and G =

T ◦ (X · 1m×p)
T · 1p×p

, (4)

where ◦ and / denote the Hadamard product and division, respectively. Denot-
ing D(., .) a discrepancy measure, NMF with sum-to-one constraints aims to
estimate

arg min
G�0,F�0

D(X,GF ) s.t.
{

F · 1m×m = 1p×m,
Gn×p · 1p×p = Xn×m · 1m×p.

(5)

Using Eq. (4), the problem (5) then reads

{T̂ , Ẑ} = arg min
T�0,Z�0

D
(

X,
T ◦ (X · 1m×p)

T · 1p×p
· Z

Z · 1m×m

)
. (6)

The approach proposed in [5] is relying on the differentiation of the cost function
with respect to T and Z and provides update rules from a heuristic way [2] by
using non-negative gradient descent formulations.

Due to the presence of noise and of potential outliers in the data X, only
Eq. (2) is satisfied in the application considered in this paper and Eq. (3) is
thus not taken into account below. In this paper, we only consider the squared
Frobenius norm denoted ‖.‖2f but an extension to other parametric divergences
is possible. Therefore, the source apportionment problem may be outlined as

{Ĝ, Ẑ} = arg min
G�0,Z�0

‖X − G ·
(

Z

Z · 1m×m

)
‖2f . (7)

Additionally, we would like to include some set components to the profile matrix
according to a specific parameterization which is developed in the next section.

3 Informed Split Gradient NMF

3.1 NMF Parameterization

In many applications, the values of some components of the profile matrix may
be provided by experts. Here we detail the parameterization—proposed in [7]
and outlined hereafter for the sake of clarity—which takes into account this
knowledge. Let Ω be a p × m binary matrix which informs the presence or the
absence of constraints on each element fij of the matrix F , i.e., ωij = 1 if
fij is known and 0 otherwise. We then define the p × m binary matrix Ω as
Ω � 1p×m − Ω. We denote by Φ the p × m sparse matrix of set values, i.e.,

Φ � F ◦ Ω. (8)

By construction, ϕij—the (i, j)-th element of Φ—is equal to zero when ωij = 0.
We can easily prove that

Φ ◦ Ω = Φ, Φ ◦ Ω = 0. (9)
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From [7], we define ΔF as the free part of the matrix profile under the form

ΔF � F − Φ ◦ Ω. (10)

Following the general procedure in [7]—which combines Eqs. (10), (8), and (9)—
we obtain the matrix form:

F = Ω ◦ Φ + Ω ◦ ΔF. (11)

It should be noticed that the rows of F are summed to 1, which implies that

(Ω ◦ ΔF ) · 1m×m = 1p×m − Φ · 1m×m. (12)

As a consequence—and as in [5]—we define an unconstrained matrix Z, of the
same size as the profile matrix F , such that

F ◦ Ω = Ω ◦ ΔF =
Ω ◦ Z

(Ω ◦ Z) · 1m×m

· (1p×m − Φ · 1m×m). (13)

We thus derive from Eq. (11) our new parameterization, i.e.,

F = Ω ◦ Φ +
Ω ◦ Z

(Ω ◦ Z) · 1m×m

· (1p×m − Φ · 1m×m). (14)

As an example, let us assume F is a 1 × 4 profile matrix and Φ = [0, 0.1, 0, 0.3].
It leads to 11×4 −Φ ·14×4 = [0.6, 0.6, 0.6, 0.6]. As a consequence, the parameteri-

zation reads F =
[

Z11 · 0.6
Z11 + Z13

, 0.1,
Z13 · 0.6

Z11 + Z13
, 0.3

]
. The parameterization (14) is

the basis for the development of new update rules.

3.2 Proposed Method

In this subsection, we focus on the update rules for F . Indeed, as G is uncon-
strained in this paper, we do not need to develop extended update rules. The
informed problem may be formulated as a weighted Frobenius norm between X
and its estimation G · F with additional constraints, i.e.,

min J (G,F ) = min
G�0,F�0

‖X − GF‖2f,W s.t. F satisfies Eq. (14), (15)

where W is built with expert’s individual uncertainties σij , i.e., Wij = 1
σ2
ij

.
Expressing J with respect to a matrix trace, its differentiation reads

∂J
∂F

= 2GT ((GF − X) ◦ W ). (16)

At this stage, the sum-to-one constraints on F were not taken into account yet.
For that purpose—and as in [5]—we consider an unconstrained matrix Z which
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satisfies Eq. (14) and we derive J with respect to its general term, which is
applied to the i-th row of F :

∂J
∂Zik

=
m∑

j=1

∂J
∂Fij

· ∂Fij

∂Zik
. (17)

Firstly, we need to compute the derivative of the general term of the matrix
profile with respect to Zik, i.e.,

∂Fij

∂Zik
= 0 + (1 −

m∑

l=1

Φil)
∂

∂Zik

(
ΩijZij∑m
l=1 ΩilZil

)
. (18)

Noticing that ∂
∂Zik

(
∑m

l=1 ΩilZil) = Ωik, the fraction to derive becomes:

∂

∂Zik

(
ΩijZij∑m
l=1 ΩilZil

)
=

Ωikδjk∑m
l=1 ΩilZil

+ ΩijZij
∂

∂Zik

(
1∑m

l=1 ΩilZil

)
, (19)

=
Ωikδjk∑m
l=1 ΩilZil

− ΩijZij(∑m
l=1 ΩilZil

)2Ωik, (20)

where δjk is the Kronecker function equal to 1 when j = k. Equation (18) then
reads:

∂Fij

∂Zik
= (1 −

m∑

l=1

Φil)
Ωij∑m

l=1 ΩilZil

[
δjk − ΩikZij∑m

l=1 ΩilZil

]
. (21)

Secondly, we need to differentiate J with respect to Zik using Eq. (17). Replacing
Eq. (21) into Eq. (17) leads to

∂J
∂Zik

=
1 − ∑

l Φil

(
∑m

l=1 ZilΩil)

⎛

⎝ ∂J
∂Fik

.Ωik − Ωik

(
∑m

l=1 ZilΩil)

m∑

j=1

(
∂J
∂Fij

.Zij .Ωij)

⎞

⎠ , (22)

which can be transformed into a matrix form by noticing that the sums in the
above equation correspond to the right multiplication by 1m×m. Noticing that

(B ◦ (A · 1m×m))1m×m = (B · 1m×m) ◦ (A · 1m×m) (23)

for any matrices A and B, and that

Ω ◦ Z

(Ω ◦ Z) · 1m×m

=
Ω ◦ F

1p×m − Φ · 1m×m
, (24)

the matrix form of Eq. (22)—not explicited for space consideration—reads

∂J
∂Z

=
1p×m − Φ · 1m×m

(Z ◦ Ω) · 1m×m

◦
[

∂J
∂F

◦ Ω − Ω

1p×m − Φ · 1m×m
◦
(
(
∂J
∂F

◦ F ◦ Ω) · 1m×m

)]
.

(25)
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Let U � −∂J
∂F . The opposite of Eq. (25) can be written with respect to U as

− ∂J
∂Z

= Ω ◦
(

U − (U ◦ Ω ◦ F ) · 1p×m

1p×m − Φ · 1m×m

)
◦

(
1p×m − Φ · 1m×m

(Z ◦ Ω) · 1m×m

)
. (26)

The third KKT condition with respect to Z (which is a necessary condition to
get a stationary point) is expressed as Z ◦ ∂J

∂Z = 0. This expression may be
written with respect to F by using the property (13), i.e.,

F ◦ Ω ◦ ∂J
∂Z

= 0. (27)

In the case of a stationary point (F = F k = F k+1), combining Eqs. (26) and
(27) yields

Ω ◦ F k ◦ U − (U ◦ Ω ◦ F k) · 1m×m

1p×m − Φ · 1m×m
◦ F k+1 ◦ Ω = 0. (28)

Since (F k+1 ◦Ω) is the free part of F k+1, it turns out that the new updated rule
for the profile matrix is given by

F k+1 = Ω ◦ Φ + Ω ◦ F k ◦ U

[U ◦ Ω ◦ F k] · 1m×m

◦ (1p×m − Φ · 1m×m). (29)

Equation (29) stands for the general form of the update rules of our informed
NMF method. However, we need to make sure that non-negativity is preserved.
In the general case, it means that U should be positive. The authors in [5]
proposed to shift U by adding η · 1p×m, where η is a parameter estimated at
each iteration. In this paper, we propose to add a shift equal to the sum of the
negative part of −∂J

∂F in Eq. (16). The shifted matrix—denoted Us hereafter—
then reads

Us = GT ((X − GF ) ◦ W ) +
[
GT (GF ◦ W )

]
1m×m. (30)

The actual update rule for our proposed Split-Gradient Method for Constrained
Weighted NMF (SG-CWNMF) consists of applying Us, defined in Eq. (30), to
Eq. (29). These update rules satisfy (i) the non-negativity of F , (ii) sum-to-one
constraints, and (iii) the third KKT condition. However, it cannot be shown in
this paper for space consideration.

4 Experimental Validation

In this section, we investigate the enhancement of our proposed SG-CWNMF
method in a simulation of source apportionment. The data matrix consists of
50 samples and 7 species, with a known uncertainty measure σij—provided by
a chemical expert—associated to each data point xij . A uniform noise ranging
in [−min(λσij ;xij);λσij ] is added while keeping the data positive. Note also
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Table 1. Positions and values of the constraints used in the informed NMF methods.
X means no constraint.

Fe Ca SO4 Zn Mg Al Cr

Source 1 700 X X X X X 0

Source 2 X 400 5 0 X 75 X

Source 3 400 X X 0 X X 0

Fig. 1. Performance of the tested NMF methods with respect to the input SNR. Perf.
criterion: MER (in dB).

that λ is related to an input Signal-to-Noise Ratio (SNR). The profile matrix—
whose initialization is provided by chemical experts—consists of three (partially
correlated) industrial profiles. The contribution matrix G is then initialized as
the solution of a weighted and constrained least-square cost function [11].

In addition to our proposed SG-CWNMF method, we test blind NMF [6],
WNMF [4], SG-WNMF (a weighted version of [5] with our proposed shift), and
our previous informed CWNMF [7]. Nine constraints on the profile matrix are
used in the tests, as shown in Table 1. The performance criterion is the Mixing
Error Ratio (MER) [13], computed as the average2 of the MERs estimated on
each column of the contribution matrix G. The tested methods were stopped
after 5 105 iterations. Figure 1 shows the MERs of the tested methods with
respect to the input SNR. Our proposed SG-CWNMF outperforms all the other
methods (around 2 dB in the noisiest scenarios). Additionally, in a noiseless
case—not shown in Fig. 1—the SG-CWNMF method provides MERs at least
200 dB higher than those from the other tested methods.

5 Conclusion

In this paper, we proposed a new NMF parameterization to combine the pres-
ence of known components in the profile matrix together with the sum-to-one
constraint of the rows. We derived new updates rules—consistent with the KKT
conditions—which can be viewed as multiplicative update rules applied to the
free part of the profile matrix. In that sense, the proposed approach is far
2 Please note that in our previous work [7,8], we were computing the sums of the
MERs estimated on each column of G.
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more elegant than our previous method [7]—which sequentially tackles these
constraints—and can be easily extended to a gradient-like technique, as in [5].
Our proposed method was shown to outperform four state-of-the-art approaches
tested on simulated mixtures of industrial particulate matter sources, with var-
ious input SNR conditions. In future work, we will search for alternatives to
multiplicative update rules and other kinds of constraints to inform the NMF,
e.g., soft constraints [10].
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Abstract. In this paper, we report the 2015 community-based Signal
Separation Evaluation Campaign (SiSEC 2015). This SiSEC consists of
four speech and music datasets including two new datasets: “Profession-
ally produced music recordings” and “Asynchronous recordings of speech
mixtures”. Focusing on them, we overview the campaign specifications
such as the tasks, datasets and evaluation criteria. We also summarize
the performance of the submitted systems.

1 Introduction

Sharing datasets and evaluating methods with common tasks and criteria has
recently become a general and popular methodology to accelerate the devel-
opment of new technologies. Aiming to evaluate signal separation methods, the
Signal Separation Evaluation Campaign (SiSEC) has been held about every one-
and-half year in conjunction with the LVA/ICA conference since 2008. The tasks,
datasets, and evaluation criteria in the past SiSECs are still available online
with the results of the participants. They have been referred to and utilized
for comparison and further evaluation by researchers in the source separation
community, not limited to the past participants, as shown in Fig. 1.

In this fifth SiSEC, two new datasets were added: A new music dataset for
a large-scale evaluation was provided in “Professionally produced music record-
ings” and another new dataset including real recording was provided in “Asyn-
chronous recordings of speech mixtures”. For further details, the readers are
referred to the web page of SiSEC 2015 at https://sisec.inria.fr/. In Sect. 2, we
specify the tasks, datasets and evaluation criteria, with a particular focus on
these new datasets. Section 3 summarizes the evaluation results.

2 Specifications

SiSEC 2015 focused on the following source separation tasks and datasets.
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 387–395, 2015.
DOI: 10.1007/978-3-319-22482-4 45
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Fig. 1. The number of papers referring SiSEC datasets found by full-text-search on all
ICASSP proceedings (ICASSP) and by abstract-search on IEEE Xplore (Others).

T1 Single-channel source estimation
T2 Multichannel source image estimation

D1 Underdetermined speech and music mixtures
D2 Two-channel mixtures of speech and real-world background noise
D3 Professionally produced music recordings
D4 Asynchronous recordings of speech mixtures

T1 aims to estimate single-channel source signals observed by a specific ref-
erence microphone, whereas T2 aims to estimate multichannel source images
observed by the microphone array.

In D1 and D2, we utilized the same datasets as in SiSEC 2013, which permits
easy comparison. Their specifications are given in details in [1].

The new D3 dataset, the Mixing Secret Dataset 100 (MSD100) is designed to
evaluate the separation of multiple sources from professionally-produced music
recordings. MSD100 consists of 100 full-track songs of different styles, and includes
both the stereophonic mixtures and the original stereo sources images. The data
is divided into a development set and a test set, each consisting of 50 songs, so that
algorithms which need supervised learning can be trained on the development set
and tested on the test set. The duration of the songs ranges from 2 min and 22 s
to 7 min and 20 s, with an average duration of 4 min and 10 s.

For each song, MSD100 includes 4 stereo sources corresponding to the bass,
the drums, the vocals and “other” (i.e., the other instruments). The sources were
created using stems from selected raw multitrack projects downloaded from the
‘Mixing Secrets’ Free Multitrack Download Library1. Stems corresponding to a
given source were summed together and the result was normalized, then scaled so
that the mixture would also be normalized. The mixtures were then generated by
summing the sources together. For a given song, the mixture and the sources have
the same duration; however, while the mixture is always stereo, some sources can
be mono (typically, the vocals). In that case, it appears identical in the left and
right channels of the mixture. All items are WAV files sampled at 44.1 kHz.

The D4 dataset aims to evaluate the separation of mixtures recorded with
asynchronous devices. A new dataset added to D4 contains real recordings
1 www.cambridge-mt.com/ms-mtk.htm.

www.cambridge-mt.com/ms-mtk.htm
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of three or four speakers using four different stereo IC recorders (8 channels
in total). A standard way to make datasets for BSS evaluation is to record each
source image first, which is used as the ground truth, and then to make a mix-
ture by summing them up. Unlike conventional synchronized recording, it is not
easy in an asynchronous setting because the time offset (time of recording start)
of each device is unknown and because there is a sampling frequency mismatch
between channels. To obtain consistent source images and real mixtures, a chirp
signal was played back from a loudspeaker for time-marking, and the time offsets
at the different devices were aligned precisely at a sub-sample level. It is assumed
that the sampling frequency of each device is invariant over the whole recording.
This dataset consists of three types of mixing: realmix, sumrefs and mix. The
realmix is a recording of the real mixture, the sumrefs is the summation of the
source images, and the mix is the simulated mixture generated by convolving
impulse responses with the dry source and applying resampling for the artificial
sampling frequency mismatch.

The BSS Eval toolbox [2] was used to evaluate the following four power-based
criteria: the signal to distortion ratio (SDR), the source image to spatial distor-
tion ratio (ISR), the signal to interference ratio (SIR), and signal to artifacts ratio
(SAR). The version 2.0 of the PEASS toolbox [3] was used to evaluate the follow-
ing four perceptually-motivated criteria: the overall perceptual score (OPS), the
target-related perceptual score (TPS), the interference-related perceptual score
(IPS), and the artifact-related perceptual score (APS). More specifically, T1 was
evaluated by bss eval source denoising.m for D2 or bss eval source.m for
others. T2 on D3 and D4 was evaluated with bss eval image.m. For D1 and
D2, the PEASS toolbox was used for the comparison with previous SiSEC.

3 Results

We evaluated 27 algorithms in total: 3, 2, 19, and 3 algorithms for D1, D2, D3
and D4, respectively. The average performance of the systems is summarized in
Tables 1, 2, 3, and Figs. 2 and 3. Because of the space limitation, only part of
the results is shown.

Three algorithms were submitted to D1 as shown in Table 1. Sgouros’s
method [4] for instantaneous mixtures is based on direction of arrival (DOA)
estimation by fitting a mixture of directional Laplacian distributions. The other
two algorithms are for convolutive mixtures. Bouafif’s method [5] exploits a
detection of glottal closure instants in order to estimate the number of speakers
and their time delays of arrival (TDOA). It also aims at separation with less arti-
facts and distortion. Indeed, it shows higher SARs and APSs. However, the SIRs
and IPSs are lower. This fact illustrates the well known trade-off between SIR
and SAR in BSS. Nguyen’s method is similar to [6] and the permutation prob-
lem is solved by multi-band alignment [25]. Overall, the performance is almost
equivalent to the past SiSEC, which indicates that underdetermined BSS for
convolutive mixtures is still a tough problem.

Two algorithms were submitted to D2 as shown in Table 2. López’s method [7]
designs the demixing matrix and the post-filters based on a single-channel
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Table 1. Results for the D1 dataset: (a) The performance of T1 for the instantaneous
mixtures averaged over datasets “test” and “test2” in 2 mics and the over dataset
“test3” in 3 mics. (b) The performance of T2 for the convolutive mixtures averaged
over “test” dataset in 2 mics and over “test3” dataset in 3 mics. SP and MU represents
speech and music data, respectively.

(a)

2mic/3src (SP) 2mic/3src (MU) 2mic/4src (SP) 3mic/4src (SP)
System SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Sgouros [4] 7.6 18.8 8.6 8.3 18.4 9.4 5.6 15.6 6.5 6.6 19.1 7.0

(b)

2mic/3src (SP) 2mic/4src (SP) 3mic/4src (SP)
System SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR

OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS

Bouafif [5]
-4.3 1.4 -1.9 8.6 -5.7 1.6 -3.6 8.2 – – – –
8.4 67.0 1.4 85.1 8.4 55.1 1.0 83.3 – – – –

Nguyen
7.0 11.6 11.6 9.2 4.5 8.3 8.0 6.4 4.3 7.2 6.6 8.0
40.9 65.3 55.9 58.0 36.9 62.2 51.0 48.7 35.6 62.2 53.3 47.0

Table 2. Results for the D2 dataset (only for task T1)

Systems Criteria dev test

Ca1 Sq1 Su1 Ca1 Ca2 Sq1 Sq2 Su1 Su2

López [7] SDR - - - 4.0 4.5 5.1 11.0 −3.8 3.9

SIR - - - 14.9 16.1 9.6 16.3 −1.6 8.8

SAR - - - 4.7 5.0 8.6 13.0 4.3 6.3

Ito [8] SDR 7.2 8.9 4.9 8.1 7.8 10.8 13.8 6.7 7.6

SIR 25.9 23.7 15.3 25.7 27.7 26.8 28.6 21.0 27.9

SAR 7.2 9.2 5.6 8.2 7.8 11.0 14.0 6.9 7.7

source separation method. In this submission, they used spectral subtraction
as the single-channel source separation method. Note that the performance may
vary depending on the choice of the single-channel method. Ito’s method is
based on full-band clustering of the time-frequency components [8]. Thanks to a
frequency-independent time-varying source presence model, the method robustly
solves the permutation problem and shows good denoising performance even
though it does not explicitly include spectral modeling of speech and noise.

Similarly to the previous SiSEC, D3 attracted most participants. The eval-
uated methods includes 5 methods available online (not submitted by partici-
pants) and are as follows.

– CHA: system using a two-stage Robust Principal Component Analysis
(RPCA)2, with an automatic vocal activity detector and a melody detec-
tor [9].

2 http://mac.citi.sinica.edu.tw/ikala/.

http://mac.citi.sinica.edu.tw/ikala/
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Table 3. Results of T2 for the D4 dataset

Systems Criteria 3src 4src

realmix sumrefs mix realmix sumrefs mix

Wang [25] SDR 4.4 4.4 4.6 3.0 3.0 2.5

ISR 4.8 4.9 5.2 3.5 3.6 3.3

SIR 20.8 20.7 18.6 18.0 17.9 16.8

SAR 12.8 12.9 13.9 11.0 11.2 10.9

Miyabe [26] SDR 6.9 6.8 10.6 4.0 3.8 3.3

ISR 11.2 11.1 15.1 8.8 8.5 7.3

SIR 11.0 10.9 14.9 6.7 6.4 6.0

SAR 11.7 11.6 15.5 7.8 7.6 7.4

Murase SDR 2.7 2.6 2.4 0.9 0.8 1.0

ISR 7.0 6.8 7.0 5.2 5.1 5.3

SIR 5.2 4.6 4.2 1.7 1.6 2.3

SAR 5.0 5.3 5.5 4.2 4.2 3.6

– DUR1, DUR2: systems using a source-filter model for the voice and a Non-
negative Matrix Factorization (NMF) model for the accompaniment3, without
(DUR1) and with (DUR2) unvoiced vocals model [10].

– HUA1, HUA2: systems using RPCA4, with binary (HUA1) and soft (HUA2)
masking [11].

– KAM1, KAM2, KAM3: systems using Kernel Additive Modelling (KAM),
with light kernel additive modelling (KAM1)5, a variant with only one iter-
ation (KAM2), and a variant where the energy of the vocals is adjusted at
each iteration (KAM3) [12,13].

– NUG1, NUG2, NUG3: systems using spatial covariance models and Deep
Neural Networks (DNN) for the spectrograms, with one set of four DNNs
for the four sources for all the iterations (NUG1), one set for the first itera-
tion and another set for the subsequent iterations (NUG2), and one DNN for
all the sources (NUG3) [14].

– OZE: system using the Flexible Audio Source Separation Toolbox (FASST)
(version 1)6 [15,16].

– RAF1, RAF2, RAF3: systems using the REpeating Pattern Extraction Tech-
nique (REPET)7, with the original REPET with segmentation (RAF1) [17–
20], the adaptive REPET (RAF2) [18,20], and REPET-SIM (RAF3) [19,20].

3 http://www.durrieu.ch/research/jstsp2010.html.
4 https://sites.google.com/site/singingvoiceseparationrpca/.
5 http://www.loria.fr/∼aliutkus/kaml/.
6 http://bass-db.gforge.inria.fr/fasst/.
7 http://zafarrafii.com/repet.html.

http://www.durrieu.ch/research/jstsp2010.html
https://sites.google.com/site/singingvoiceseparationrpca/
http://www.loria.fr/~aliutkus/kaml/
http://bass-db.gforge.inria.fr/fasst/
http://zafarrafii.com/repet.html
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Fig. 2. Results of T2 for the D3 dataset (vocals).

– STO: system using a predominant pitch extraction and an efficient comb fil-
tering8 [21,22].

– UHL1, UHL2, UHL3: systems using DNN, with an independent training mate-
rial, with four DNNs for the four sources (UHL1) [23], then augmented with
an extended training material (UHL2) [23], then using a phase-sensitive cost
function (UHL3) [23,24].

– Ideal: system using the ideal soft masks computed from the mixtures and the
sources.

Figures 2 and 3 show the box plots for the SDR, ISR, SIR, and SAR (in dB),
for the vocals and the accompaniment, respectively, for the test subset. Out-
liers are not shown, median values are displayed, and higher values are better.
As we can see, the separation performance is overall better for the accompa-
niment, as many songs feature weak vocals. Also, supervised systems typically
8 http://www.audiolabs-erlangen.de/resources/2014-DAFx-Unison/.

http://www.audiolabs-erlangen.de/resources/2014-DAFx-Unison/
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Fig. 3. Results of T2 for the D3 dataset (accompaniment).

achieved better results compared to unsupervised systems. Finally, depending
on the systems, more or less large statistical dispersions are observed, meaning
that different methods lead to different performances, depending on the songs,
hence the need for a large-scale evaluation for music source separation.

Three methods were submitted to D4. Wang’s method consists of an exhaus-
tive search for estimating the sampling frequency mismatch and a state-of-the-art
source separation technique [25]. Their results show the highest SIR but ISR is
not so high. Miyabe’s method consists of the maximum likelihood estimation of
the sampling frequency mismatch [26] followed by auxiliary function based inde-
pendent vector analysis [27]. Their results show the highest ISR. So, this combi-
nation would be interesting. Murase’s system does not include the compensation
of sampling frequency mismatch. It directly designs the time-frequency mask
based on non-negative matrix factorization in the time-channel domain with
sparse penalty added to [28]. It is robust to the sampling frequency mismatch,
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but the performance is limited due to using amplitude information only. Also,
the results of realmix and simrefs are almost the same for all algorithms, which
indicates that an effective evaluation was obtained by preparing the ground truth
with time marking proposed in this task.

4 Conclusion

In this paper, we reported the tasks, datasets and evaluation criteria with the
evaluation results in SiSEC 2015. Two new datasets were added in this SiSEC.
We hope that these datasets and the evaluation results will be used in future
research of the source separation field. Also, we have a plan to conduct web-based
perceptual evaluation, which will be presented as follow-up report.

Acknowledgment. We would like to thank Dr. Shigeki Miyabe for providing the new
ASY dataset, and Mike Senior for giving us the permission to use the MSD database
for creating the MSD100 corpus.
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Abstract. In this paper, an online constrained independent vector analy-
sis (IVA) algorithm that extracts the desired speech signal given the
direction of arrival (DOA) of the desired source and the array geome-
try is proposed. The far-field array steering vector calculated using the
DOA of the desired source is used to add a penalty term to the standard
cost function of IVA. The penalty term ensures that the speech signal
originating from the given DOA is extracted with small distortion. In
contrast to unconstrained IVA, the proposed algorithm can be used to
extract the desired speech signal online when the number of interferers is
unknown or time varying. The applicability of the algorithm in various
scenarios is demonstrated using simulations.

1 Introduction

Many modern communication systems require a high-quality handsfree capture
of speech using one or more microphones. The signal received at the microphones
is usually a mixture of desired and undesired source signals. One common app-
roach to extract the desired source signal from the received mixture is through
the use of beamforming algorithms. Beamformers can either be fixed, which
require the knowledge of the DOA of the desired source, or data-dependent,
which require an accurate estimate of the second-order statistics (SOS) of the
desired and the undesired signals. The estimation of the SOS is a challenging
task that can be accomplished, for example, by detecting the activity of the
desired sound sources [1,14].

Independent component analysis (ICA) provides an alternative approach to
source extraction in which sound sources are separated based on the assumption
that their signals are mutually statistically independent. Some common methods
to obtain independent components include maximization of non-Gaussianity of
the separated signals [10,11], minimization of mutual information, [6] and maxi-
mum likelihood-based signal estimation [4]. ICA algorithms however suffer from
scaling and permutation ambiguities and non-uniqueness of solution in under-
determined scenarios [6].

A joint institution of the University of Erlangen-Nuremberg and Fraunhofer IIS.

c© Springer International Publishing Switzerland 2015
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To improve the quality of the extracted signal and to mitigate the inherent
problems in ICA, various researchers have proposed to incorporate prior infor-
mation by adding constraints to the optimization problem of ICA. DOA-based
constraints were first introduced in ICA in [13]. The authors performed source
separation through joint diagonalization of SOS [12] with a soft DOA-based con-
straint on each separation filter. Similarly in [9], a hard constraint on one of the
separation filters was applied to ensure an undistorted response in the direc-
tion of the desired source. Both of these are batch algorithms and require prior
knowledge of the number of sources. In contrast, the authors in [15] used a soft
constraint to extract the desired source without prior knowledge of the number
of sources. The use of DOA-based prior information mitigates the permutation
ambiguity in ICA as each separation filter is constrained to extract an indepen-
dent component originating from a given direction. However, if the sources are
close to each other, permutation ambiguity might occur nonetheless.

To solve the permutation ambiguity, IVA was proposed in [8] as a generaliza-
tion of ICA. In IVA, statistical dependence between the output signals is jointly
minimized across all frequency bins such that permutation ambiguity does not
occur. An online variant of IVA was proposed in [7]. In this paper, we propose
an online geometrically constrained IVA (CIVA) algorithm that works in the
frequency domain to extract the desired source whose DOA is known. We aug-
ment the standard cost function of IVA with a penalty term that restricts the
Euclidean angle between one of the separation filters and the far-field steering
vector calculated using the desired source DOA. This ensures that the desired
speech signal is always delivered at the output of the corresponding separation
filter with small distortion and without the knowledge of number of interferers.
In contrast, the unconstrained IVA algorithm introduces higher distortion of the
desired speech signal in non-determined and reverberant scenarios.

2 Problem Formulation

We consider a scenario where a sound field composed of L speech signals and
background noise is captured by M microphones. The L speech signals are
assumed to be mutually statistically independent. The signal received at the
m-th microphone can be described in the short-time Fourier transform (STFT)
domain with sufficiently long time-frames as follows

Ym(n, k) =
L∑

l=1

Am,l(k) Sl(n, k) + Vm(n, k), (1)

where n and k represent the time and frequency indices, Sl(n, k) denotes the
signal of the l-th source, Vm(n, k) denotes the background noise component,
and Am,l(k) denotes the acoustic transfer function (ATF) between l-th source
and m-th microphone. The M microphone signals can be expressed in vector
notation as follows

y(n, k) = A(k)s(n, k) + v(n, k), (2)
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where s(n, k) = [S1(n, k) · · · SL(n, k)]T, y(n, k) = [Y1(n, k) · · · YM (n, k)]T, and
A(k) = [a1(k) · · · aL(k)] with al(k) = [A1,l(k) · · · AM,l(k)]T . In this paper, we
consider the problem where only one of the L sources is desired. Without loss of
generality, we assume source 1 to be desired and rewrite (2) as follows

y(n, k) = a1(k) S1(n, k) +
L∑

u=2

au(k) Su(n, k) + v(n, k). (3)

The extraction of source signals from the received mixture in a standard blind
source separation (BSS) algorithm is achieved by a demixing matrix W(k) as
follows

ŝ(n, k) = W(k) y(n, k), (4)

where ŝ(n, k) is a vector of estimated sources at the output of the BSS algorithm,
and each row of the demixing matrix represents a filter. For L = M , the demixing
matrix W(k) can then be written out as follows

W(k) = [w1(k) w2(k) w3(k) · · · wM (k)]H . (5)

The aim in this paper is as follows: given the DOA of the desired source, compute
a demixing matrix W(k), by minimizing the statistical dependence among the
output signals ŝ(n, k), while ensuring that w1(k) extracts the desired source
signal.

3 Geometrically Constrained Independent
Vector Analysis

The optimization criterion employed in this paper to estimate the demixing
matrix is based on minimization of mutual information. In Sect. 3.1, we review
the concept of IVA proposed in [8]. In Sect. 3.2, we present the proposed geomet-
rically constrained IVA algorithm for online extraction of the desired source. For
simplicity of derivation, we assume M = L and use the index m for sources and
microphones. In the performance evaluation, we demonstrate the applicability
of the proposed algorithm to scenarios where M �= L as well.

3.1 Unconstrained IVA

The derivation of unconstrained IVA in this section follows from [8]. In standard
IVA, the source signals are modelled as multivariate random variables Sm(n) =
[Sm(n, 1) · · · Sm(n,K)]T, where K denotes the total number of frequency bins.
The cost function of IVA based on mutual information between the multivariate
random variables Ŝm(n) is then given by

Jiva (W) = −
M∑

m=1

E
{

log p
[
Ŝm(n)

]}
−

K∑

k=1

log|det [W(k)] |. (6)
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Gradient-based iterative algorithms are used to find a demixing matrix W(k)
that minimizes (6). The iterative update for W(k) is given by

Wb(k) = Wb−1(k) − η
∂Jiva

∂Wb−1(k)
= Wb−1(k) − η∇Wb(k), (7)

where η (η ≥ 0) is the learning rate of the algorithm and b is the iteration index.
The probability density function (PDF) of the output signals Ŝm(n), required in
(6) to compute the gradient, can be estimated using the data or modeled based
on prior knowledge [6]. Since speech signals are known to have a supergaussian
PDF, they are modelled in IVA using a multivariate Laplacian distribution as
follows

p [Sm(n)] = p [Sm(n, 1), · · · , Sm(n,K)] = α exp

⎛

⎝−
√√√√

K∑

k=1

|Sm(n, k)|2
⎞

⎠. (8)

For the m-th output signal, score functions are then calculated as the following
partial derivatives

ϕ(k)
[
Ŝm(n)

]
=

∂log p
[
Ŝm(n, 1) · · · Ŝm(n,K)

]

∂Ŝm(n, k)
=

Ŝm(n, k)√∑K
k=1 |Ŝm(n, k)|2

. (9)

Using (9), the gradient ∇Wiva(k) of the cost function in (6) is given by

∇Wiva(k) =
∂Jiva

∂W(k)
= E

{
ϕ(k)(n)yH(n, k)

}
− W−H(k), (10)

where

ϕ(k)(n) =
[
ϕ(k)

[
Ŝ1(n)

]
ϕ(k)

[
Ŝ2(n)

]
· · · ϕ(k)

[
ŜM (n)

] ]T

. (11)

3.2 Geometrically Constrained IVA

Due to the inherent scaling ambiguity, the estimated signals in a BSS system
must be normalized to a reference microphone. We can therefore replace the
desired source ATF vector a1(k) in (3) by the relative transfer function (RTF)
vector of the desired source with respect to a reference microphone. Assuming far
field propagation, the RTF with respect to the first microphone can be written
as

g1(k) =
[
1 ej(2πf/c)[r2 − r1]

Tq1 · · · ej(2πf/c)[rM − r1]
Tq1

]T
, (12)

where rm is the location of the m-th microphone, q1 represents a unit-norm
vector pointing in the direction of the desired source, c is the speed of sound and
f = k Fs(2K)−1 is the frequency in Hertz with Fs being the sampling frequency.
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We define a penalty function to restrict the Euclidean angle between w1(k) and
g1(k). The Euclidean angle between w1(k) and g1(k) is defined as

cos Θ(k) =
Re

{
wH

1 (k) g1(k)
}

||w1(k)|| ||g1(k)|| . (13)

The proposed penalty function that steers the filter of interest w1 in the direction
of the desired source is then given by

Jp (w1) =
K∑

k=1

[cos Θ(k) − 1]2 . (14)

The cost function for the geometrically constrained IVA algorithm is then
obtained by augmenting the IVA cost function in (6) by Jp, i.e.,

Jciva (W) = Jiva (W) + λ Jp (w1) , (15)

where λ (λ ≥ 0) is the penalty parameter. The gradient of Jciva with respect to
the elements of the demixing matrix can be expressed as

∇Wciva(k) =
∂Jciva

∂W(k)
= ∇Wiva(k) + λ∇Wp(k), (16)

where ∇Wiva(k) is the gradient of Jiva given in (10) and ∇Wp(k) is the gradient
of Jp. Since the penalty function Jp is only a function of w1(k), the gradient of
Jp with respect to filters wu(k) (u = 2, 3 . . . M) is zero, i.e.,

∇Wp(k) =
∂Jp

∂W(k)
=

[∇wH
1 (k)

0M−1×M

]
, (17)

where the gradient of the proposed penalty function with respect to w∗
1(k) is

derived based on the theorems in [3]. It is given by

∇w1(k) = C ·
[

(cos Θ(k) − 1)
(
g1(k) − w1(k)

||w1(k)||2 Re
{
wH

1 (k)g1(k)
})]

,

(18)

where C = 1/
(||w1(k)|| · ||g1(k)||2). Using (10) and (17), the gradient matrix

for geometrically constrained IVA algorithm is given by

∇Wciva(k) = E{ϕ(k)(n)yH(n, k)} − W−H(k)︸ ︷︷ ︸
∇Wiva(k)

+λ

[∇wH
1 (k)

0M−1×M

]

︸ ︷︷ ︸
∇Wp(k)

. (19)

Similar to the online IVA algorithm derived in [7], we obtain an online variant
of the CIVA algorithm by omitting the expectation operator in (19). To avoid
divergence of the algorithm due to source signal fluctuations, we normalize the
gradient matrix at each frame by its Frobenius norm || · ||F and update as follows

Wn(k) = Wn−1(k) − η
∇Wn,civa(k)

||∇Wn,civa(k)||F . (20)

Finally, scaling ambiguity is mitigated by multiplying W−1
n (k)�I at each frame,

where � denotes the element-wise product.
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4 Performance Evaluation

The quality of the desired speech signal at the output of the proposed algorithm
was evaluated using simulated audio data. To obtain the microphone signals,
clean speech signals sampled at 16 kHz were convolved with simulated room
impulse responses. Room impulse responses were generated using [5]. A circular
microphone array with a diameter of 2.5 cm was employed. The STFT frame size
was 1024 samples with 50 % overlap. In all experiments, a diffuse noise with 30
dB signal-to-noise (SNR) ratio and a sensor noise with 40 dB SNR was added
to the microphone signals. The segmental signal-to-interference (segSIR) ratio
and segmental speech distortion index (segSD) [2] were used to measure the
performance and the desired source signal at the reference microphone was used
as ground truth.

The performance of the proposed online CIVA algorithm was compared to
the online IVA algorithm proposed in [7]. The learning rate η was set to 150 and
λ was set to 10. The filter w1(k) that extracts the desired signal in CIVA was
initialized with g1(k) while all the other filters were initialized with columns of
an identity matrix. In the first scenario, we evaluated the quality of the extracted
desired signal when the number of interferers was fixed. The simulations were
repeated for T60 = 150 ms and T60 = 300 ms on a 20 s speech segment with source
positions as depicted in Fig. 1. Source 1 to 3 were selected as desired one by
one and the results were averaged over the three simulations. The performance
measures for M > L, M = L and M < L are given in Table 1. With M =
L, unconstrained IVA provided better interferer suppression as the solution in
this case is unique. Nevertheless, constrained IVA still resulted in lower speech
distortion. When M was increased from 3 to 4, the CIVA algorithm provided
a gain in segSIR of 5.3 dB at T60 = 150 ms and 3.5 dB at T60 = 300 ms along
with a decrease in desired speech distortion, while the performance of the IVA
algorithm deteriorated due to non-uniqueness of solution with M = 4, L = 3.
The performance of the IVA algorithm deteriorated further when L was increased
to 5, while the CIVA algorithm provided a segSIR of 8.7 dB and 3.6 dB for T60

= 150 ms and T60 = 300 ms respectively. Moreover, it can be noted that the

Fig. 1. Room geometry
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CIVA algorithm maintained a very low desired speech distortion in all cases as
the proposed penalty restricts the Euclidean angle between w1(k) and g1(k).

Table 1. Performance measures for fixed number of sources

Algorithms T60 = 150ms T60 = 300ms

segSD segSIR (dB) segSD segSIR (dB)

Unprocessed mixture 1.9 1.5

IVA [7] (M = 3, L = 3) 0.21 14.9 0.31 4.7

CIVA (M = 3, L = 3) 0.12 11.7 0.24 5.2

Unprocessed mixture 1.9 1.5

IVA [7] (M = 4, L = 3) 0.27 8.2 0.39 3.8

CIVA (M = 4, L = 3) 0.04 17.0 0.07 8.7

Unprocessed mixture 0.7 −0.3

IVA [7] (M = 4, L = 5) 0.54 0.2 0.57 0.1

CIVA (M = 4, L = 5) 0.05 8.7 0.08 3.6

In the second scenario, the proposed algorithm was evaluated with a time
varying number of interferers with M = 6 and T60=150 ms. The number of active
sources over time is plotted in Fig. 2 (Top). Source 1 was selected as desired. The
segSIR improvement calculated for segments of 1 s is plotted in Fig. 2 (Bottom).
The experiment showed the effectiveness of the proposed algorithm with an
unknown, time varying number of interferers. It must be noted that the online
IVA algorithm did not converge as M was greater than L. The proposed online
CIVA algorithm, however, converges in all cases.
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improvement over time. M = 6, T60 = 150ms.
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5 Conclusions

An online constrained IVA algorithm was developed to extract the desired speech
signal given the desired source DOA. The DOA was used to obtain the array
steering vector. A penalty function was then added to IVA to penalize the Euclid-
ean angle between one separation filter and the array steering vector. Simulations
demonstrated the applicability of the algorithm to scenarios with fixed and time-
varying number of interferers. Future work includes comparison of the algorithm
against beamforming algorithms and evaluation with measured data.

References

1. Araki, S., Sawada, H., Makino, S.: Blind speech separation in a meeting situ-
ation with maximum SNR beamformers. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2007)

2. Benesty, J., Chen, J., Huang, Y.: Microphone Array Signal Processing. Springer,
Berlin (2008)

3. Brandwood, D.: A complex gradient operator and its application in adaptive array
theory. IEE Proc. F Commun. Radar Signal Process. 130, 11–16 (1983)

4. Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE
Signal Process. Lett. 4, 112–114 (1997)

5. Habets, E.A.P.: Room Impulse Response Generator. Technical report, Technische
Universisteit Eindhoven (2006)

6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley,
New York (2001)

7. Kim, T.: Real-time independent vector analysis for convolutive blind source sepa-
ration. IEEE Trans. Circuits Syst. 1, 1431–1438 (2010)

8. Kim, T., Lee, S.Y.: Blind source separation exploiting higher-order frequency
dependencies. IEEE Trans. Audio Speech Lang. Process. 15, 70–79 (2006)

9. Knaak, M., Araki, S., Makino, S.: Geometrically constrained independent compo-
nent analysis. IEEE Trans. Audio Speech Lang. Process. 15, 715–726 (2007)

10. Li, H., Adali, T.: A class of complex ICA algorithms based on the kurtosis cost
function. IEEE Trans. Audio Speech Lang. Process. 19, 408–420 (2008)

11. Novey, M., Adali, T.: Complex ICA by negentropy maximization. IEEE Trans.
Neural Networks 19, 596–609 (2008)

12. Parra, L., Spence, C.: Convolutive blind separation of non-stationary sources. IEEE
Trans. Speech Audio Process 8, 320–327 (2000)

13. Parra, L.C., Alvino, C.V.: Geometric source separation: merging convolutive source
separation with geometric beamforming. IEEE Trans. Speech Audio Process. 10,
352–362 (2002)

14. Taseska, M., Habets, E.A.P.: Spotforming using distributed microphone arrays.
In: IEEE workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA) (2013)

15. Zhang, W., Rao, B.D.: Combining independent component analysis with geomet-
ric information and its application to speech processing. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (2009)



On-line Multichannel Estimation of Source
Spectral Dominance

Francesco Nesta1(B), Trausti Thormundsson1, and Zbyněk Koldovský2
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Abstract. Despite its popularity, multichannel source demixing is
intrinsically limited in real-world applications due to the model mismatch
between the convolutive mixing model and the actual recordings. Vary-
ing number of sources, reverberation, diffuseness and spatial changes are
common uncertainties that need to be handled. Post-processing is com-
monly adopted to compensate for these mismatches, generally in the
form of non-linear spectral filtering. In this work we analyze the prop-
erty of the normalized differences between the output magnitudes of a
linear spatial filter. We show that thanks to the time-frequency sparsity
of acoustic signals, such distributions can be approximatively modeled
by a bimodal Gaussian mixture model. An on-line bimodal constrained
GMM fitting is proposed, in order to estimate the posterior probability
of source spectral dominance. It is shown that the estimated posteri-
ors can be used to produce a filtered output with very low distortion,
outperforming traditional non-linear methods.

Keywords: Source separation · GMM · Binary masking · Speech
enhancement

1 Introduction

Multichannel spatial filtering has shown to be effective with the enhancement of
a given sound source of interest from the remaining noise. Supervised methods
exploit prior geometrical information in the form of source position, leading to
classical beamformer [2] or to more sophisticated cancellation filter bank (CFB)-
based methods [3]. On the other hand, unsupervised methods are traditionally
based on separation frameworks using Independent Component Analisys (ICA)
[9] or spatial/spectral clustering [1]. Differently from traditional single channel
enhancement methods, multichannel filtering exploits spatial cues to discrimi-
nate between multiple sources and do not necessarily need any strong assumption
on the nature of the sound signal. As a main advantage such methods are able
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to deal with the separation of highly non-stationary signals such as concurrent
speech sounds.

Despite their popularity, spatial filtering methods have intrinsic limita-
tions due to the approximated mixing system modeling. Mixtures are generally
approximated as a linear combination of signals generated by a finite number of
spatially localized sources, often referred to as coherent sources. However, this
condition is only partially fulfilled in real-world since the noise spatial covari-
ance can be highly time-varying. Furthermore, in presence of high reverberation,
linear deximing with short filters is suboptimal and leads to a large cross-source
output signal leakage.

For the above limitations, spatial demixing is rarely used alone for source
separation and is usually complemented by post-filtering methods exploiting
other spectral cues. For instance, in classical beamforming a GSC structure
is employed to remove the residual noise in the target channel [2]. In source
separation systems with a limited number of microphones, spectral masking
is generally adopted in the form of binary masks [6] or Wiener-like gains [3].
However, these methods do not explicitly model the uncertainty of the spatial
filter and as a result, they require heuristic tuning hyperparameter optimized to
avoid distortion in the target signal.

In this work we discuss on the meaning of the normalized cross-output-
channel magnitude differences, i.e. the normalized differences of magnitudes mea-
sured at the outputs of the spatial filter, and show how its pdf can be used to
predict the posterior probability of source dominance, compared to the Ideal
Binary Mask (IdBM) [4,11]. Then, we propose an on-line fitting of a constrained
GMM model whose posteriors are used to generate spectral gains for the filtering.

2 Models for Multichannel Observations

In this work we limit the analysis to the case of recordings made by 2 microphones
but the discussion can be easily extended to a generic multichannel case. We
indicate with s(t) the time-domain signal generated by a target speech and with
x1(t) and x2(t) the signal sampled at the first and second microphones which
can be modeled as xi(t) = si(t) + ni(t), where si(t) and ni(t) ∀i = 1, 2 indicates
the reverberant image of the target source and the noise contributions to each
microphone (which can be viewed as generated by a multiplicity of coherent noise
sources). We assume that a generic spatial filtering system is trained to produce
an estimate of si(t) and of ni(t). If s(t) is a coherent source, regardless of the
spatial characteristic of n(t), the output of the system can be approximatively
modeled as

ŝi(t) = si(t) + α[ni(t)], n̂i(t) = γ[ni(t)] + β[si(t)] (1)

where α[·] and β[·] are time-varying convolutive transformations modeling the
residual of noise and speech in the corresponding channels, and γ[·] models the
distortion of the estimated noise due to the approximated linear demixing. This
model comes from the application of the Minimal Distortion Principle (MDP)
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[5] to a generic inverse multichannel filter where the noise sources might exceed
the number of microphones (see [7] Sect. 5.2 for details).

By means of a time-frequency analysis, e.g. a weighted short-time Fourier
transform (STFT), each signal can be transformed from time-domain to a dis-
crete time-frequency representation. Therefore, let Si(k, l) and Ni(k, l) (with
i = 1, 2) be the downsampled subband representation of the time-domain sig-
nals where k and l indicates the frequency bin and subband frame, respectively.
Assuming that the convolutive transformations are approximatively stationary
within the STFT analysis window and that the target speech and noise are
uncorrelated, we can model the output magnitude of the spatial filter as

|Ŝi(k, l)| � |Si(k, l)| + α(k, l)|Ni(k, l)| (2)

|N̂i(k, l)| � γ(k, l)|Ni(k, l)| + β(k, l)|Si(k, l)|

where α(k, l), β(k, l) and γ(k, l) are positive constants. In oracle conditions, if
the magnitudes of the target source and noise were available the Ideal Binary
Mask extracting the target source could be estimated as

IdBM(k, l) = 1, if |Si(k, l)| > LC · |Ni(k, l)|, IdBM(k, l) = 0, otherwise(3)

where LC is the local signal-to-noise ratio (SNR) in linear scale, typically set to 1
(i.e. 0 dB) [4,11]. In our case we only observe Ŝi(k, l) and N̂i(k, l) from which we
cannot directly infer the IdBM. However, by modeling the statistical distribution
of features derived from |Ŝi(k, l)| and |N̂i(k, l)| it is possible to estimate the
probability that the IdBM is 1 in a particular time-frequency point.

3 Normalized Cross-output-channel Magnitude
Differences as Discriminative Features
for T-F Source Dominance

First, we define the normalized cross-output-channel magnitude differences as

fk(l) =
|Ŝ(k, l)| − |N̂(k, l)|
|Ŝ(k, l)| + |N̂(k, l)| (4)

where we remove the dependence on the channel i to simplify the notation. By
substituting (2) in (4) we get

fk(l) � [1 − β(k, l)]
√

SNR(k, l) + [α(k, l) − γ(k, l)]
[1 + β(k, l)]

√
SNR(k, l) + [γ(k, l) + α(k, l)]

(5)

where SNR(k, l) is the true instantaneous signal-to-noise ratio (in linear scale)
in the (k, l) T-F point. Due to the sparseness of acoustic signals in the T-F
domain, the SNR will assume values close to 0 or close to infinity according
to which source is dominant/active for a particular time-frequency point. As a



On-line Multichannel Estimation of Source Spectral Dominance 407

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7
x 10

−3

output magnitude ratio

pd
f

(a)

−1 −0.5 0 0.5 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

output magnitude ratio

pd
f

(b)

Fig. 1. Kernel density of f(k, l) for a specific subband-based k (a) and for the entire
frame (b).

consequence, the gains are expected to cluster around the centers α(k,l)−γ(k,l)
γ(k,l)+α(k,l)

and 1−β(k,l)
1+β(k,l) for T-F points dominated by the noise and target source, respec-

tively. Therefore, we can expect the density of fk(l), ∀k, being approximatively
bimodal with each component displaced and spread according to the statistic of
the variables α(k, l), γ(k, l), β(k, l).

To help the understanding of this discussion, we consider the case where
Ŝ(k, l) and N̂(k, l) are estimated through a two-channel spatial filter based on
a geometrically constrained Independent Component Analysis [8]. By using the
true oracle images S(k, l) and N(k, l), we define the IdBM and cluster T-F points
in two classes, target source and noise source dominated points. Then, the kernel
density estimate of fk(l) is computed for each class separately. In Fig. 1(a) the
resulting densities for the two classes are shown with different colors. It can be
observed that the full distribution resembles a mixture of exponential compo-
nents which can be approximatively modeled with two Gaussian components.
Note, this is only a convenient approximation since the observations in fk(l) are
bounded in the range [−1; 1] and in general each component cannot be symmet-
ric. However, in practice, a simple Gaussian model is enough accurate to describe
the uncertainty of fk(l) in representing the dominance classes.

Figure 1(b) shows the density obtained with the fk(l) of all the subbands.
On average a bimodal GMM fits well the empirical distribution, which implies
that the model can be also used for a frame-based multichannel target source
activity detection. Note, function in Eq. (4) produces a convenient 1-dimensional
discriminative representation correlated to the IdBM class probabilities. How-
ever, an alternative function could be used as long as a suitable model is available
for describing its pdf.

4 Constrained On-line GMM Parameter Fitting

According to the above analysis, in each T-F point, we model the density of
fk(l) with a bimodal GMM as

p[fk(l)] = w1,k(l) · N [μ1,k(l), σ2
1,k(l)] + w2,k(l) · N [μ2,k(l), σ2

2,k(l)] (6)
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where the N(μ1, σ
2
1) and N(μ2, σ

2
2) represent the distribution of the spectral

gains for points dominated by the target source and noise respectively. Following
the interpretation of fk(l), μ1,k(l) is expected to be larger than μ2,k(l) and
therefore proper constraints need to be added to the model. In this work we
fit the model variables using a sequential approximation of the expectation-
maximization approach as in [12]. We define with c ∈ {1, 2} the class labels,
where 1= “target speech dominant”, 2= “noise dominant”. We are interested
in the probability p[c = 1|fk(l), λk(l)], where λk(l) = [μ1,k(l), σ2

1,k(l), w1,k(l),
μ2,k(l), σ2

2,k(l), w2,k(l)] is the parameter vector for the target speech and noise
component models, estimated at the frame l. The probability of T-F target
speech dominance pk(l) can be computed using the Bayes formula as

pk(l) = p[c = 1|fk(l), λk(l)] =
w1,k(l)p[fk(l)|c = 1, λk(l)]

∑2
c=1 wc,k(l)p[fk(l)|c, λk(l))

(7)

In the sequential on-line learning, within the frame l, the mixture parameters
are updated ∀c = 1, 2 and ∀k as

wc,k(l) = (1 − ηc) · wc,k(l − 1) + ηc · p[c|fk(l), λk(l − 1)] (8)

μc,k(l) =
(1 − ηc) · μc,k(l − 1)

wc,k(l)
+

ηc · p[c|fk(l), λk(l − 1)]fk(l)

wc,k(l)
(9)

σc,k(l) =
(1 − ηc) · σc,k(l − 1)

wc,k(l)
+

ηc · p[c|fk(l), λk(l − 1)](fk(l) − μc,k(l))2

wc,k(l)
(10)

where ηc is a learning rate step-size. Iterating equations (7)-(10) the GMM
parameters are updated on-line with the incoming data. To avoid divergence
in trivial solutions some constraints are necessary. First, the weights w1,k(l) or
w2,k(l) can approach zero if either the target or the noise signal is absent for
a long time. To avoid this divergence the values of the weights are constrained
within the iteration as

w1,k(l) = min[max(w1,k(l), ε), 1 − ε], w2,k(l) = 1 − w1,k(l) (11)

where ε is set to a small value (e.g. 0.05). To guarantee that the estimated
components are in the correct order, for each frequency bin k we impose:

μ1(k, l) > μ2(k, l), (12)

and to avoid σ2
1,k(l) and σ2

2,k(l) approach 0, the following constraint is applied:

σ2
c,k(l) = min(σ2

c,k(l), εσ2),∀c (13)

where εσ2 is a small value (e.g. 0.0001).

5 Proposed System Architecture

Figure 2(b) shows the block architecture of the proposed filtering scheme. The
multichannel recordings are sent to the input of a convolutive spatial filter which
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decomposes the input in target speech and noise signal components. In this
work we evaluate the performance with both a blind spatial filter learned with
a geometrically constrained ICA [8] and with a semi-blind filter based on a pre-
trained cancellation filterbank [3]. The time-domain outputs are transformed in
T-F representation by means of a STFT analysis with Hanning windows of 2048
points with increments of 128 samples.

(a) (b)

Fig. 2. Block diagram of the proposed filtering structure.

To improve the robustness of the on-line fitting, a two level hierarchy struc-
ture is proposed as shown in Fig. 2(a). In the top level, a GMM model is used to
fit all the subband features fk(l), ∀k in a single model and estimate the proba-
bility of speech dominance p(l) in the entire frame. This block can be considered
as an adaptive multichannel Voice Activity Detector (VAD). The frame-based
posterior dominance probability p(l) is then used to weight the learning rate of
the subband-based GMM fitting, as follow:

η1 = η · p(l), η2 = η · (1 − p(l)) (14)

where η is the maximum step-size used for the subband parameter tracking. This
approach prevents the GMM to update the target model parameters during
speech pauses, which improves the convergence speed of the on-line learning.
The subband posterior probabilities pk(l) are then used to compute spectral
gains used to filter the multichannel input. Two alternative filtering approaches
are proposed:

– M1: use the posteriors to directly compute the gains as gk(l) = pk(l), if
pk(l) > 0.5 (0 otherwise). This approach is justified by the interpretation of
the posteriors learned by the GMM model, which are related to the probability
of IdBM(k, l) being equal to 1.

– M2: use the posteriors indirectly to estimate the expectation of the noise power
P (k, l) as

P (k, l) = (1 − ak(l)) · P (k, l) + ak(l) · |N̂(k, l)|2] (15)
ak(l) = 1 − pk(l), if pk(l) < 0.5, (0 otherwise)
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and then use the noise power to estimate the spectral gains with conven-
tional single-channel methods (in this work we used a standard spectral
subtraction [10]).

6 Experimental Evaluation

Sources are recorded at fs = 16 kHz, in a room of size 5 × 5 × 2.5 meters with
T60=300 ms with two microphones spaced of 0.2m and at a distance of 2 m from
the center of the array. Two datasets of 100 mixtures are generated:

– The first dataset is obtained by combining a target and noise interfering speak-
ers (randomly chosen from a collection of male and female speakers). The
target speaker is assumed to be in an angular region of +/ − 10o around the
center of the array, while the noise is randomly displaced in any direction out
of the target region. The average SNR at the input is of about -2 dB.

– The second dataset is obtained from the first dataset but reducing the dynamic
of the interfering speaker by 6 dB and adding a stereo real-world cafeteria noise
to the mixture. The average SNR at the input is of about -0.5 dB.

Tables 1 and 2 show the SNR and SDR improvement obtained for the two
datasets with the blind and the semi-bind spatial filter. Performance are
compared to conventional spectral masking methods such as binary masking

Table 1. Mean and (standard deviation) SNRi and SDRi performance when using a
blind ICA-based spatial filter.

Dataset1 BM GW M1 M2

SNRi 5.46 (3.21) 6.46 (3.11) 8.42 (2.90)) 11.27 (4.51)

SDRi 5.04 (1.55) 5.42 (1.45) 5.62 (1.60) 5.47 (1.63)

Dataset2 BM GW M1 M2

SNRi 2.20 (1.01) 3.09 (1.29) 5.40 (1.99) 9.49 (2.62)

SDRi 3.59 (0.96) 4.03 (0.88) 4.09 (1.26) 3.94 (1.38)

Table 2. Mean and (standard deviation) SNRi and SDRi performance when using a
semi-blind CFB-based spatial filter.

Dataset1 BM GW M1 M2

SNRi 6.97 (3.90) 6.26 (2.28) 10.23 (3.01) 12.08 (4.04)

SDRi 5.14 (1.68) 5.46 (1.35) 6.21 (2.17) 5.64 (2.18)

Dataset2 BM GW M1 M2

SNRi 1.35 (0.50) 2.68 (1.18) 8.83 (1.32) 11.78 (1.72)

SDRi 3.60 (0.82) 3.95 (0.70) 5.64 (1.44) 5.37 (1.46)
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BM(k, l) = |Ŝ(k, l)| > c · |N̂(k, l)| and parametric wiener-like filter GW (k, l) =
|Ŝ(k,l)|

|Ŝ(k,l)|+c·|N̂(k,l)| where the hyper parameter c was tuned to optimize the SDR
scores. It can be noted that method M1 achieves the best overall scores which
highlight that the GMM model fits well the IdBM class probabilities as long as
the noise can be considered enough sparse in the time-frequency domain. On the
other hand, in real-world diffuse noise, the indirect use of the posteriors in M2
delivers the best overall results since the noise has a lower degree of sparsity.

7 Conclusions

In this paper we discuss on the property of the normalized cross-output-channel
magnitude difference of a spatial filter. It is shown that under certain condi-
tions, its statistic can be approximatively modeled with a bimodal GMM whose
posteriors can predict the probability of target source dominance. An on-line
constrained GMM learning structure together with a filtering scheme is then
proposed. Through an experimental evaluation with both coherent and real-
world reverberant challenging recordings, it is shown that the proposed method
can generate masks able to enhance the target source with a limited amount of
distortion.

Future works may concern the use of better density models to generate
more accurate posteriors, in combination with more advanced spectral filtering
structures.
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Abstract. Additional priors for nonnegative matrix factorization
(NMF) are a powerful way of adapting NMF to specific tasks, such as for
example audio source separation. For this application, priors supporting
sparseness or temporal continuity have been proposed. However, these
priors are not helpful for all kinds of signals and should therefore only
be used when needed. For some mixtures, only some components of the
mixtures should be supported by these priors. We present an easy, but
efficient method of adapting priors to different components. We show,
that the separation results are improved, while the computational com-
plexity is even slightly reduced. We also show, that our method is a
helpful modification for the combination of different priors.

Keywords: NMF · Audio source separation · Temporal continuity ·
Sparseness

1 Introduction

In the past, several extensions to nonnegative matrix factorization (NMF) have
been proposed to adapt it to the task of source separation. Some extensions use
convolutive bases instead of multiplicative ones [9,10], others introduce addi-
tional constraints such as sparsity [6,13], temporal continuity [13] or spectral
continuity [2]. An overview over different versions of NMF can be found in [4].

We focus on NMF with additional constraints. Most existing methods [2,6,13]
add these constraints to all of the components of the NMF, weighting them
equally. However, these priors often only make sense for some of the compo-
nents. Recent work on only applying the constraints to some components either
require an additional training step [8] or are restricted to specific tasks, such as
separation of harmonic and percussive sources [3]. We propose a way of individ-
ually adapting priors to the components, so that they are used stronger on the
components where they are more helpful. Our method can be used on any kind
of mixture and does not require training or prior information about the sources.

The paper is structured as follows: In Sect. 2, we provide basic information
about NMF for source separation. In Sect. 3 we describe NMF with additional
temporal continuity criterion as an example for additional priors. We then intro-
duce our method of adapting this prior to the NMF components and generalize
this method for other priors in Sect. 4. In Sect. 5 we evaluate our method by
experiment, before closing the paper with our conclusions in Sect. 6.
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 413–420, 2015.
DOI: 10.1007/978-3-319-22482-4 48
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2 NMF for Monaural Source Separation

We assume an audio mixture x in time domain, consisting of M sources sm. X is
the complex valued result of the short time Fourier transform (STFT) of x. For
source separation, NMF can be applied to the magnitude spectrogram X = |X|.

NMF approximates a matrix X ∈ R
K×N
+ by a product of two matrices B

and G as X ≈ X̃ = BG, B ∈ R
K×I
+ , G ∈ R

I×N
+ . I defines the number of

NMF components. B and G are iteratively calculated, minimizing a cost term
c(B,G) between X and X̃. Usually c(B,G) only consists of a reconstruction term
cr(B,G), where commonly used terms are the Euclidean distance, the Kullback-
Leibler (KL) divergence and the Itakura-Saito (IS) distance. Lee and Seung [7]
introduced multiplicative update rules for the squared Euclidean distance as
well as for the KL divergence, resulting in convergence to a local minimum of
the cost term. These update rules can be calculated using the gradient of c(B,G)
with respect to B, ∇Bc(B,G) = ∇+

Bc(B,G) − ∇−
Bc(B,G), where ∇+

Bc(B,G)
and ∇−

Bc(B,G) are elementwise nonnegative terms, and the equivalently defined
gradient with respect to G, ∇Gc(B,G). The update rules are

B ← B ⊗ ∇−
Bc(B,G)

∇+
Bc(B,G)

and G ← G ⊗ ∇−
Gc(B,G)

∇+
Gc(B,G)

, (1)

where ⊗ denotes elementwise multiplication and the divisions are also elemen-
twise. For the methods presented in this paper, this generalized formulation of
the update rules is sufficient. Exact update rules for KL-divergence and squared
Euclidean distance can be found in [7] and for the IS-distance in [4]. Figure 1
shows the factorization of a spectrogram of a mixture of a harmonic and a per-
cussive source with NMF with I = 2 with the resulting matrices B (on the left)
and G (on top). The columns of B capture the spectral shape of the acoustical
events and can be interpreted as spectral bases. The rows of G can be inter-
preted as temporal activations. After performing NMF, phase information and
finer structures of the spectrograms are restored using a filtering step, which is
usually done by Wiener filtering (see e.g. [5,11]). If I is higher than the number
of sources M , the components have to be assigned to the sources in a cluster-
ing step, resulting in M spectrograms corresponding to the estimated sources.
Finally, these spectrograms are transformed back to time domain by inverse
STFT.

3 NMF with Temporal Continuity

An example for an additonal prior for NMF is the temporal continuity, proposed
by Virtanen [13] to prevent incorrect factorizations. In the factorization in Fig. 1
it can be observed, that temporal gaps appear in the activation vector of the
harmonic note where it is overlapped by the percussive tone. To prevent this,
Virtanen proposed to add a temporal continuity term ct(G) to the reconstruction
error term cr(B,G), resulting in a cost function c(B,G) = cr(B,G) + αtct(G),
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Fig. 1. Factorization of an audio mixture using NMF.

where αt is a weight to adjust the influence of ct(G). For αt = 0 this model
equals the standard NMF. The update rule for G transforms to

G ← G ⊗ ∇−
Gcr(B,G) + αt∇−

Gct(G)
∇+

Gcr(B,G) + αt∇+
Gct(G)

, (2)

while the update term for B stays the same as in Eq. (1). Virtanen proposes a
temporal squared difference (TSD) cost term,

ct(G) =
I∑

i=1

1
σ2

i

N∑

n=2

(gi,n − gi,n−1)2, (3)

with σi =
√

(1/N)
∑N

n=1 g2i,n being the standard deviation of each row of G and
gi,n denoting one element of the matrix G at indizes i and n. The negative and
positive gradient terms of this cost function are

[∇−
Gct(G)]i,n =

2N(gi,n−1 + gi,n+1)∑N
l=1 g2i,l

+
2Ngi,n

∑N
l=2(gi,l − gi,l−1)2(∑N

l=1 g2i,l

)2 (4)

and
[∇+

Gct(G)]i,n =
4Ngi,n∑N

l=1 g2i,l
. (5)

4 Component-Adaptive Priors

The assumption of temporal continuity does not hold for all signals. In the
example in Fig. 1 it only holds for the first (harmonic) component, whereas the
second (percussive) component is not continuous in time. In fact, percussive
sources usually have an impulse-like behaviour in time. Therefore, using the
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additional cost term is not advisable for the second component, as it deteriorates
the resulting temporal activation vector. The percussive component is being
smeared in time when using the temporal continuity prior. However, Virtanen
only proposed a method to either use the temporal continuity term on all or no
components.

In [3] it was proposed to only use priors on some components. Priors sup-
porting harmonic structures are used on one half of the components, priors for
percussive structures on the other half, assuming that harmonic and percussive
structures will then automatically develop in the corresponding components.
This approach has several disadvantages: First of all, it is not possible to use
a structured initialization (e.g. SVD) with this approach, since these initializa-
tions already define which structures will develop in which component. Secondly,
different mixtures might need a different number of percussive or harmonic com-
ponents, which is not considered in this approach. The method also has the down-
side of only being applicable for mixtures of harmonic and percussive sources.

In the following, we will introduce a method for adapting the temporal con-
tinuity prior in a way that it is used stronger for components that need an addi-
tional temporal continuity term, while it is used weaker for components that do
not. With this method, structured initializations are possible and the priors are
automatically adapted to the different components, solving the problem of the
fixed harmonic and percussive components and making it applicable to any kind
of mixture. We also describe, how this method can be used for other priors.

4.1 Finding Harmonic Components

Temporal continuity is mostly only desirable for harmonic components. To adapt
the prior to the components, harmonic components have to be identified. Perform-
ing harmonic/percussive classification has two downsides: First of all, harmonic
and percussive signals are not perfectly distinguishable. A harmonic signal might
have a percussive onset, or a percussive signal a harmonic decay. This makes clas-
sification difficult and might lead to additional errors. Secondly, this step produces
additional computational complexity, which might be unwanted.

An easier way is to use the cost term ct(G). For undistorted signals we expect
it to be low for signals that are continuous in time (e.g. harmonic) and high for
others (e.g. percussive). Assuming that separation distortions are small, we can
use this term as information about the behaviour of the different components.

4.2 Adapting the Prior

With this motivation, it seems reasonable to adapt the prior by multiplying the
gradient terms ∇−

Gct(G) and ∇+
Gct(G) in Eq. (2) with a factor 1/ct(G). Thus,

the effect of the additional cost term is amplified for components with a low
value of ct (e.g. harmonic components) compared to components with high ct.
The update rule for G transforms to

G ← G ⊗
∇−

Gcr(B,G) + αt∇−
Gct(G)

ct(G)

∇+
Gcr(B,G) + αt∇+

Gct(G)

ct(G)

. (6)
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The gradient terms for the TSD prior, weighted with this factor are
[∇−

Gct(G)
ct(G)

]

i,n

=
2(gi,n−1 + gi,n+1)∑N

l=2(gi,l − gi,l−1)2
+

2gi,n∑N
l=1 g2i,l

(7)

and [∇+
Gct(G)
ct(G)

]

i,n

=
4gi,n∑N

l=2(gi,l − gi,l−1)2
. (8)

Note, that Eqs. (7) and (8) are less computationally complex than Eqs. (4) and
(5) because of a reduced number of multiplications.

Figure 2 shows a comparison of the temporal activations for factorization of
the same example as in Fig. 1 with standard NMF, Virtanens TSD (αt = 250)
and the presented adaptive prior (αt = 431, the equivalent value to αt = 250 for
Virtanens TSD with respect to the harmonic component). Figure 2a shows the
resulting temporal activations for the harmonic component. The positive effect
of the temporal continuity is preserved with the proposed method, the gaps in
the temporal activation of the harmonic component are avoided. However, the
negative effect, the temporal smearing of the percussive component (Fig. 2b), is
reduced compared to the factorization with NMF with Virtanens TSD.

Fig. 2. Comparison of temporal activation vectors G of standard NMF, NMF with
Virtanens temporal continuity (ct(G), αt=250) and the proposed method
(c̃t(G),αt=431).

4.3 Mathematical Description and Generalization

Comparing Eqs. (2) and (6) it can be observed, that the proposed method can
be interpreted as using a new cost function c̃t with ∇Gc̃t(G) = ∇Gct(G)

ct(G) . With
the properties of the natural logarithm, it is obvious, that c̃t(G) = ln(ct(G)).

Thus, we can generalize our model for any cost function c with the require-
ment, that the prior only makes sense for components with a low value of c.
Then, using ln(c) as prior leads to an adaption of the cost function c to the
components.
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5 Experimental Results

We performed source separation as described in Sect. 2. To evaluate the sep-
aration quality of the NMF without being affected by errors of a clustering
algorithm, we used a non-blind clustering with knowledge of the original sig-
nals, as described in [13]. As measure for separation quality, we used the signal-
to-distortion ratio (SDR), signal-to-inference ratio (SIR) and signal-to-artifacts
ratio (SAR), as proposed in [12]. All given values are averaged over the complete
testset.

We compared our method to standard NMF and to NMF with Virtanens
TSD. To show, that our method is applicable to other priors and that it is
beneficial for the combination of different priors, we also tested it on a com-
bination of the TSD prior and a sparseness prior on B. Sparse spectral basis
vectors can be assumed for some components (e.g. harmonic notes), but not for
all (e.g. impulse-like or noisy components). Therefore, the prior should be used
stronger on the components, that are relatively sparse and the requirement for
our method is fulfilled. We used the same sparseness prior as was used in [13],
with the difference, that we used the prior on B and not on G. The cost function
of this prior was

cs(B) =
I∑

i=1

1√
(1/K)

∑K
l=1 b2l,i

K∑

k=2

bk,i (9)

We compared a combination of ct and cs to one of c̃t and c̃s = ln (cs), using the
proposed adaptive weighting. We chose αs,cs = 1.4 and αs,c̃s = 130, the weights
with the best separation quality, for the spectral priors.

5.1 Testset and Setup

The testset consists of 60 audio signals, including harmonic and percussive sig-
nals, speech, vocals and noise, each being sampled with 44.1 kHz. These signals
were mixed in every possible two-source combination, resulting in 1770 mixtures.
The testset is identical to the one used in [11].

For the STFT, we used a window size of sw = 212 and a hop size of sh = 211

samples. I was set to 20 for every mixture, since this had shown to be a suitable
number of components for this testset. As reconstruction error term, we used
KL-divergence, as this produced the best separation results. We initialized the
NMF by performing an SVD on the complex spectrogram X as proposed in [1].

5.2 Results

A comparison of the SDR using NMF with Virtanens TSD and our adaptive
version of it for different values of αt, is shown in Fig. 3a. Note, that α = 0
equals the standard NMF without priors. The SDR results for the combination
of priors are shown in Fig. 3b. Our method reached higher SDR values over a
broad range of αt in both cases. An overview over the highest reached values
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Fig. 3. Experimental results: Adaptive priors lead to a higher maximum separation
quality.

Table 1. Maximum SDR, SIR and SAR for different priors.

NMF ct c̃t ct + cs c̃t + c̃s

SDR [dB] 12.69 13.17 13.36 13.24 13.47

SIR [dB] 18.76 19.10 19.34 19.32 19.56

SAR [dB] 15.64 16.65 16.66 16.87 17.00

of SDR, SIR and SAR is given in Table 1. The separation quality is improved
for all measures, when using the adaptive cost terms (c̃t, c̃s) compared to the
original ones (ct, cs).

Comparing our method with the method in [3] is difficult because of the
different preconditions. Thus, we used a random initialization and only evaluated
the mixtures of harmonic and percussive signals in our testset, since these are
the limitations of [3]. We evaluated the methods for Virtanens TSD (Eq. (3))
as harmonic prior and an equivalent spectral squared difference as percussive
prior. Those are two of the priors that are used in [3], where the harmonic prior
is put on one half of the components and the percussive prior on the other
half. For our method we used the natural logarithm of the two priors on all
components to adapt the priors to the components. We performed the methods
with different combinations of the weights, choosing the best combination for
evaluation. We also evaluated NMF without priors. The average SDR over all 440
harmonic/percussive mixtures was 14.84 dB for the standard NMF. Method [3]
reached a maximum of 15.28 dB, our method reached a maximum of 15.76 dB.

6 Conclusion

In this paper, we introduced a way of adapting a temporal continuity prior to the
NMF components so that the prior is used stronger on the components, where
it is more helpful. Our method does not need any additional computational
steps, but only changes the cost function, leading to less computational complex
update rules. We showed, that our method can be generalized for other priors
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and showed by experiment, that it leads to better separation results than the
original prior. We also evaluated our method for the combination of different
priors, verifying, that our method is also beneficial for this scenario.

We conclude, that the adaption to the different components is a helpful exten-
sion to existing priors. Our results should motivate future research on this topic.
Future work could include methods to decide for the optimal value of αt and αs

depending on the specific mixture, or combinations of more different priors.
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Abstract. In this paper, we propose a method to estimate a correlation
coefficient of two correlated complex signals on the condition that only the
amplitudes are observed and the phases are missing. Our proposed method
is based on a maximum likelihood estimation. We assume that the orig-
inal complex random variables are generated from a zero-mean bivariate
complex normal distribution. The likelihood of the correlation coefficient
is formulated as a bivariate Rayleigh distribution by marginalization over
the phases. Although the maximum likelihood estimator has no analyti-
cal form, an expectation-maximization (EM) algorithm can be formulated
by treating the phases as hidden variables. We evaluate the accuracy of
the estimation using artificial signal, and demonstrate the estimation of
narrow-band correlation of a two-channel audio signal.

Keywords: Correlation · Complex signal · Maximum likelihood · EM
algorithm

1 Introduction

Correlation of complex sequences plays an important role in array signal process-
ing and almost all of its application [1]. The estimation of correlation is easily
obtained by a simple product sum of the signal sequences. However, the correla-
tion estimation by the product sum cannot be used when the phase observation
is unreliable or unavailable. For example, in asynchronous distributed acoustic
sensing systems which gather signals observed by multiple independent record-
ing devices, the biases of the sampling frequencies of the individual devices cause
drift of the phases [2,3]. The effect of the drift on the amplitude is not serious,
but the phase is strongly affected [4]. Also, when we analyze the output of the
nonlinear signal processing in the amplitude domain, such as nonnegative matrix
factorization (NMF) [5], the phases are often missing. Although many phase esti-
mation methods are studied [6], the accurate estimation of the correlation cannot
be guaranteed.

The goal of this paper is to estimate a correlation coefficient of two complex
signal channels from the observation of amplitude without information of the
c© Springer International Publishing Switzerland 2015
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phase. Since the correlation coefficient is expressed by a nonnegative number,
it cannot be used for estimation of phase difference, and the usage is some-
what limited. Still, the correlation coefficient gives important information, and
the correlation estimation from amplitude is useful for specific purposes. For
example, the estimation can be used to reduce the computational cost of the
maximum likelihood compensation of drift [3], which requires large computa-
tional power and memory. As discussed in [3], only the limited frequency bins
with high correlation contributes much to the observation, and estimation of
the correlation only from the amplitude is informative for the efficient analy-
sis discarding the useless frequency bins. Also, the correlation estimation from
amplitude is expected to be useful for evaluation of channel capacity [7], for the
estimation of SNR to optimize of the coefficients of the signal enhancement such
as SS or Wiener filter, and so on.

To estimate a correlation coefficient between two complex random variables
without phase observation, we propose a maximum likelihood estimation assum-
ing that the original complex variables are generated from a zero-mean bivariate
complex normal distribution. We show that the likelihood is given by the mar-
ginalization of the arguments, appearing as a bivariate Rayleigh distribution [7],
whose parameter estimation algorithm has not been derived to the best of our
knowledge. We derive an expectation-maximization (EM) algorithm to maximize
the likelihood of the bivariate Rayleigh distribution, and obtain the maximum
likelihood estimator of the correlation coefficient.

2 Statement of Problem

Suppose there are two correlated complex random variables Xi ∈ C, i = 1, 2,
which have means of zero, variances σ2

i , correlation ρ and the uniform arguments
Θi as

E [Xi] = 0, (1)

E
[
|Xi|2

]
= σ2

i , (2)

E [X1X
∗
2 ] = σ1σ2ρ, (3)

fΘi
(θi) =

1
2π

, − π ≤ θi < π, (4)

where E [·] is the expectation operator, | · | is the absolute value, {·}∗ is the
complex conjugate, σ2

i is the variance of Xi, Θi = ∠Xi, ∠{·} is the argument,
and fA(a) denotes the probability density of a random variable A whose sample
is denoted as a. Hereafter, we denote random variables and the samples with
upper and lower case letters, respectively.

Suppose the complex random variables X1,X2 are unavailable, but we can
observe their absolute values Y1, Y2:

Yi = |Xi| . (5)
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Our goal is to estimate the correlation coefficient |ρ|, the absolute value of
the cross correlation ρ between X1 and X2, under the condition that only the
absolute values are observed. It is obvious that the maximum likelihood esti-
mator of the variance σ2

i can be obtained as the average of the square of the
observation:

σ2
i = E

[
|Xi|2

]
← 1

N

N∑

n=1

yi (n)2 , (6)

where (n), n = 1, . . . , N denotes the index of the N observations. Note that
we omit the sample index (n) when the explicit declaration is unnecessary. In
contrast to the estimation of variance, the correlation coefficient |ρ| is different
from the correlation of the absolute observations:

|ρ| =
|E [X1X

∗
2 ]|

σ1σ2
�= E [Y1Y2]

σ1σ2
. (7)

Thus the following mean of the product of the observed absolute samples does
not give a good estimation:

|ρ| ← 1
Nσ1σ2

N∑

n=1

y1 (n) y2 (n). (8)

Therefore, the estimation of the correlation coefficient with the absolute obser-
vation is not trivial.

3 Correlation Estimation Assuming Bivariate Complex
Normal Distribution

3.1 Probabilistic Model

In this section, we discuss the estimation of the correlation coefficient |ρ| from
the absolute samples y1, y2 assuming that the unobserved complex samples x
with the statistics given by (1)–(3) are generated from a zero-mean bivariate
complex normal distribution as

fX1,X2 (x1, x2; ρ) =
exp

(
−σ2

2 |x1|2+σ2
1 |x2|2−2σ1σ2Re[ρ∗x1x∗

2 ]

σ2
1σ2

2(1−|ρ|2)

)

π2σ2
1σ

2
2

(
1 − |ρ|2

) . (9)

Then, the joint density of the observation Yi and the unobserved argument
Θ1, Θ2 is expressed as

fY1,Y2,Θ1,Θ2 (y1, y2, θ1, θ2; ρ) =
y1y2 exp

(
−σ2

2y2
1+σ2

1y2
2−2σ1σ2|ρ|y1y2 cos(θ1−θ2−∠ρ)

σ2
1σ2

2(1−|ρ|2)

)

π2σ2
1σ

2
2

(
1 − |ρ|2

) ,

(10)
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by applying the polar coordinate conversion to (9). By the marginalization of
the uniform distribution of the arguments Θ1, Θ2, the likelihood of the absolute
observation Y1, Y2 is given as a bivariate Rayleigh distribution, which can be
found in many papers, e.g., [7] as a special case of multivariate Nakagami-m
distributions:

fY1,Y2 (y1, y2; |ρ|) =
∫ π

−π

∫ π

−π
fY1,Y2,Θ1,Θ2 (y1, y2, θ1, θ2; ρ) dθ1dθ2

=
4y1y2

σ2
1σ2

2

(
1 − |ρ|2

) I0

⎛

⎝ 2 |ρ| y1y2

σ1σ2

(
1 − |ρ|2

)

⎞

⎠ exp

⎛

⎝− σ2
2y2

1 + σ2
1y2

2

σ2
1σ2

2

(
1 − |ρ|2

)

⎞

⎠ ,

(11)

where Iν(·) denotes the modified Bessel function of the first kind with the order ν.
It can be seen that the density of Y1 and Y2 depends on the correlation coefficient
|ρ| but not on the argument ∠ρ of the correlation. Therefore, the maximization
of the likelihood gives the estimation of the correlation coefficient |ρ|. However,
the maximum likelihood estimator does not have the analytical form.

3.2 Maximum Likelihood Estimation by EM Algorithm

Here we describe the maximum likelihood estimation of the correlation coefficient
|ρ| by the iterative procedure. By treating the observed samples y1(n) and y2(n)
together with the unobserved arguments θ1(n) and θ2(n), we can formulate the
EM algorithm. We treat the arguments Θ1, Θ2 as hidden variables, and the
posterior density of the hidden variables is given by

fΘ1,Θ2|Y1,Y2 (θ1, θ2|y1, y2; ρ) =
fY1,Y2,Θ1,Θ2 (y1, y2, θ1, θ2; ρ)

fY1,Y2 (y1, y2; ρ)

=
exp

(
2|ρ|y1y2 cos(θ1−θ2−∠ρ)

σ1σ2(1−|ρ|2)

)

2πI0

(
2|ρ|y1y2

σ1σ2(1−|ρ|2)

) . (12)

Then, the auxiliary function Q(|ρ|, |ρ̄|) to maximize in each iteration of the EM
algorithm is obtained as

Q (|ρ| ; |ρ̄|) =
N∑

n=1

〈
log fY1,Y2,Θ1,Θ2 (y1 (n) , y2 (n) , θ1 (n) , θ2 (n) ; ρ)

〉
θ1(n),θ2(n)|y1(n),y2(n);|ρ̄|

∝ 2 |ρ|
σ1σ2

(
1 − |ρ|2

)
N∑

n=1

y1 (n) y2 (n)λ (n) − N log
(
1 − |ρ|2

)
, (13)

〈g (a)〉a|b;c =

∫

D(a)
fA|B (a|b; c) g (a) da, (14)
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where D(a) is the domain of the variable a, and λ(n) is the posterior expectation
of cos(θ1(n) − θ2(n) − ∠ρ) with the current parameter estimation |ρ̄|, given by

λ (n) = 〈cos (θ1 (n) − θ2 − ∠ρ)〉θ1(n),θ2(n)|y1(n),y2(n);|ρ̄|

= L

⎛

⎝ 2 |ρ̄| y1(n)y2(n)

σ1σ2

(
1 − |ρ̄|2

)

⎞

⎠ , (15)

L (x) = I1 (x)/I0 (x) (16)

Since L(x) is a monotonically increasing function giving L(0) = 0 and limx→∞
L(x) = 1, λ(n) acts as weighting in the update of the estimation of |ρ| in the
M-step:

|ρ| =
1

Nσ1σ2

N∑

n=1

y1 (n) y2 (n) λ (n) . (17)

By iterating the updates of E- and M-steps given by (15) and (17), respectively,
the estimation of |ρ| converges to a local optimal. Note that σ2

1 and σ2
2 are

estimated by (6), which can also be derived as the maximization of the auxiliary
function, although the related terms are omitted in (13). Also note that L(x)
can be calculated by one-dimensional table lookup.

4 Experimental Results

4.1 Evaluation with Artificial Signal

To evaluate the performance of the proposed method, we conducted a numerical
simulation to estimate the correlation coefficients of artificial two-channel com-
plex signals generated from pseudorandom numbers. To show the baseline, we
also evaluated the performance of absolute correlation given by (8). In addition,
to show the upper limit with the ideal condition, we evaluated the standard
maximum likelihood estimation under the condition where the original complex
sequences is available, given by

|ρ| ← 1
Nσ1σ2

∣∣∣∣∣

N∑

n=1

x1 (n)∗
x2 (n)

∣∣∣∣∣ . (18)

As the evaluation criterion, we calculated the root mean squared errors (RMSEs).
The correlated data are generated by the linear mixture of the two inde-

pendent pseudorandom numbers with the same variance. We controlled the cor-
relation by manipulating the linear mixture. To evaluate the robustness of the
proposed method against the mismatch of the Gaussian assumption, we also eval-
uated the artificial signals generated by super-Gaussian pseudorandom numbers.
The super-Gaussian data are generated from the circular generalized normal dis-
tribution [8], whose density of the random variables X1,X2 is given by

fXi
(xi) =

ci exp
(
−

(
|xi|
ξi

)ci)

2πξ2i Γ
(

2
ci

) , (19)
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where ξi > 0 is the scale parameter, ci > 0 is the shape parameter, and Γ (·)
is a gamma function. The shape parameters are set as c1 = 0.5 and c2 = 0.8,
and scale parameters are adjusted to give the unit variance. With such shape
parameter setting, the sequences have super Gaussian property with long tail,
and their kurtosis, a well-used Gaussianity measure, are about 7.4 and 2.3. Note
that the kurtosis is changed after the mixing to give correlation.

We show an example of the estimation in Fig. 1. For both Gaussian and
super-Gaussian data, the absolute correlation does not give accurate estima-
tion. Although the variance of the proposed method is slightly larger than the
estimation with arguments, the estimated correlation coefficients distribute near
the true correlation coefficients and the accuracy of the proposed method is
match better than the baseline. The estimation of the correlation coefficients of
super-Gaussian data tends to underestimate the correlation, but the RMSEs are
similar to the Gaussian case without the model mismatch. Thus it is confirmed
that the proposed method can effectively estimate the correlation coefficients of
the complex sequences without the observation of arguments.

To examine the effect of the bias and variances of the estimation, we eval-
uate RMSEs of various numbers of observed samples. The result is shown in
Fig. 2. Although the proposed method has larger variance than the ideal esti-
mation with phase, we can see that the estimation accuracy of the proposed
method improves according to the increase of the number of the samples when
the data is Gaussian. Thus the proposed method can estimate the correlation
of Gaussian data effectively with small bias. However, we can see the satura-
tion of the improvement of the accuracy under the condition mismatch with the
super-Gaussian data.

4.2 Demonstration with Audio Data

As a demonstration of the correlation coefficient estimation in practical signal
processing, we evaluated the estimation of the correlation coefficients of the
narrow band amplitudes of a two-channel audio signal.

We analyzed observation of speech mixture by an array of two microphones.
The data is chosen from the Underdetermined Test dataset of the Signal Sep-
aration Evaluation Campaign (SiSEC) [9], a benchmark of speech separation.
Utterances of four female speakers were recorded in a room whose reverberation
time T60 is 250 ms. The spacing of the microphones was 1 m. The recorded data
was 10 s long, sampled with the frequency of 16 kHz. The signal was analyzed
by short-time Fourier transform with the von Hann window of the length 1024
samples and the shift 128 samples. The number of the frames is 1258.

The estimated results are shown in Fig. 3. In contrast to the artificial signals,
the true correlation coefficients are unknown. Thus it should be noted that the
horizontal axis is not the true correlation coefficients but the estimated correla-
tion coefficients by the ideal estimation in (18) with the original complex signal
given. We can see that the proposed method is much better than the baseline.
Superiority of the proposed method holds for other frame lengths, which strongly
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Fig. 1. An example of the estimation results of correlation coefficients between two
artificial signals generated from (a) Gaussian and (b) super-Gaussian pseudorandom
numbers. The number of samples was 100 for each trial. The EM iteration number was
10. The RMSEs are about 0.42, 0.05 and 0.12 for the baseline, the ideal estimation and
the proposed method, respectively for the results in (a), and about 0.05, 0.37 and 0.12
for the results in (b).

Fig. 2. Root mean squared errors for the number of the samples N = 10, 20, 50,
100, 200, 500, 1000, 2000, 5000, 10000. The RMSEs of each condition was calculated from
100 trials. The EM iteration number was set to 200.

Fig. 3. Estimation results of narrow band correlation coefficients of a two-channel audio
signal. The EM iteration number was 10. The RMSEs from the ideal estimation are
about 0.28 and 0.20 for the baseline and the proposed method, respectively.

affects the correlation. However, the accuracy is not as good as that of the artifi-
cial signal. Thus, further analysis is required to improve the estimation accuracy
with the realistic signals.
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5 Conclusions

In this paper, we proposed an EM algorithm to obtain the maximum likelihood
estimation of the correlation coefficient of the two correlated complex random
variables only with the observation of the absolute values. Assuming that the
original complex data are generated from a zero-mean bivariate complex normal
distribution, we formulated the likelihood of the correlation coefficient. Although
the maximum likelihood estimator is not analytical, we formulated the EM algo-
rithm by treating the difference of the arguments as a hidden variable. We eval-
uated accuracy and the robustness against the model mismatch of the proposed
method by the simulation using artificial signals. Also, we demonstrated the
estimation of the narrow-band correlation coefficients of the two-channel audio
signal. It is confirmed that the proposed method is much more accurate than
the estimation with the correlation of the absolute values. However, estimation
of the real signal was worse than that of the artificial signal, and the further
analysis and improvement are required. Our future work includes the modified
maximum likelihood estimation with a non-Gaussian distribution.
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Abstract. Identification and extraction of singing voice from within musical
mixtures is a key challenge in source separation and machine audition. Recently,
deep neural networks (DNN) have been used to estimate ‘ideal’ binary masks
for carefully controlled cocktail party speech separation problems. However, it
is not yet known whether these methods are capable of generalizing to the
discrimination of voice and non-voice in the context of musical mixtures. Here,
we trained a convolutional DNN (of around a billion parameters) to provide
probabilistic estimates of the ideal binary mask for separation of vocal sounds
from real-world musical mixtures. We contrast our DNN results with more
traditional linear methods. Our approach may be useful for automatic removal of
vocal sounds from musical mixtures for ‘karaoke’ type applications.

Keywords: Deep learning � Supervised learning � Convolution � Source
separation

1 Introduction

Much work in audio source separation has been inspired by the ability of human
listeners to maintain separate auditory neural and perceptual representations of com-
peting speech in ‘cocktail party’ listening scenarios [1–3]. A common engineering
approach is to decompose a mixed audio signal, comprising two or more competing
speech signals, into a spectrogram in order to assign each time-frequency element to the
respective sources [4–7]. Hence, this form of source separation may be interpreted as a
classification problem.

A benchmark for this approach is known as the ‘ideal binary mask’ and represents a
performance ceiling on the approach by providing a fully-informed separation based on
the spectrograms for each of the component source signals. Using the source spec-
trograms, each time-frequency element of the mixture spectrogram may be attributed to
the source with the largest magnitude in the respective source spectrogram. This ideal
binary mask may then be used to establish reference separation performance. In a
recent approach to binary-mask based separation, the ideal binary mask was used to
train a deep neural network (DNN) to directly estimate binary masks for new mixtures
[7]. However, this approach was limited to a single context of two known speakers and
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a sample rate of only 4 kHz. Therefore, it is not yet known whether the approach is
capable of generalizing to less well controlled scenarios featuring unknown voices and
unknown background sounds. In particular, it is not known whether such a DNN
architecture is capable of generalizing to the more demanding task of extracting
unknown vocal sounds from within unknown music [8–10].

In this paper, we employed a diverse collection of real-world musical multi-track
data produced and labelled (on a song-by-song basis) by music producers. We used 63
typical ‘pop’ songs in total, each featuring vocals of various kinds. For each multi-track
song/mix, comprising a set of component ‘stems’ (vocals, bass, guitars, drums, etc.),
we pooled audio labeled as ‘vocal’ separately to all other audio (i.e., the accompanying
instruments). We then obtained arbitrary mixtures for each song, simulating the process
of mixing to produce ‘mixes’ for each song. Using the first 50 songs as training data,
we trained a convolutional DNN to predict the ideal binary masks for separating the
respective vocal and non-vocal signals for each song. For reference, we also trained an
equivalent linear method (convolutional non-negative matrix factorization - NMF) of
similar scale. We then tested the respective models on mixes of new songs featuring
different musical arrangements, different singing and different production. From both
models we obtained probabilistic estimates of the ideal binary mask and analyzed the
resulting separation quality using objective source separation quality metrics. These
results demonstrate that a convolutional DNN approach is capable of generalizing
voice separation, learned in a musical context, to new musical contexts. We also
illustrate the capability of the probabilistic convolutional approach [7] to be optimized
for different priorities of separation quality according to the statistical interpretation
employed. In particular, we highlight the differences in performance for the two
respective architectures in the context of the trade-off between artefacts and separation.

2 Method

We consider a typical simulated ensemble musical performance scenario featuring a
variety of musical contexts and a variety of vocal performances. In each context, which
we refer to as ‘a song’, there are a multitude of musical accompaniment signals and at
least one (often more) vocal signals. The various signals are mixed together (arbitrarily)
and the resulting mixture is refered to as ‘a mix’. The engineering problem is to auto-
matically separate all vocal signals from the concurrent accompaniment signals. We used
63 fully produced songs, taken from the MedleyDB database [11]. The average duration
of the songs was 3.7 min (standard deviation (STD): ±2.7 min). The average number of
accompanying sources (stems) was 7.2 (STD: ±6.6 sources) and the average number of
vocal sources was 1.8 (STD: ±0.8 sources).

For each song, the source signals were classified as either vocal or non-vocal
(according to the labels assigned by the music producers). Vocal sounds included both
male and female singing voice and spoken voice (‘rap’). Non-vocal sounds included
accompanying instruments (drums, bass, guitars, piano, etc.). Source sounds were
studio recorded and featured relatively little interference from other sources. All source
sounds were then peak normalized before being linearly summed into either a vocal
mixture or a non-vocal mixture respectively. The two separate (vocal/non-vocal)
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mixtures were then peak normalized and linearly summed to provide a complete
mixture (i.e., a ‘final production mix’). This provided for a mixture that resembled a
mix that might be produced by a human mixing engineer [12]. All sources and mixtures
were monaural (i.e., we did not employ any stereo processing).

All signals were sampled at a rate of 44.1 kHz. The respective source
(vocal/non-vocal) and mixture signals were transformed into spectrograms using the
short-time Fourier transform (STFT) with window size of 2048 samples, overlap
interval of 512 samples and a Hanning window. This provided spectrograms with 1025
frequency bins. The phase component of each spectrogram was removed and retained
for later use in inversion. From the source spectrograms a binary mask was computed
where each element of the mask was determined by comparing the magnitudes of the
corresponding elements of the source (vocal/non-vocal) spectrograms and assigning the
mask a ‘1’ when the vocal spectrogram had greater magnitude and ‘0’ otherwise.

The first 50 songs (taken in arbitrary order) were used as training data and the final
13 songs were used as test data. The magnitude-only mixture spectrograms computed
from the first 50 songs and the respective ideal binary masks were used as training data.
Note, phase was not used in training the model.

For the training data, the mixture spectrogram and the corresponding source
spectrograms were cut up into corresponding windows of 20 samples (in time). The
windows shifted at intervals of 60 samples (i.e., there was no overlap). Thus, for every
20-sample window, for training the models there was a mixture spectrogram matrix of
size 1025 × 20 (frequency bins x time) samples and an ideal binary mask matrix of the
same size. From the 50 songs designated as training data, this gave approximately
15,000 training examples. For the testing stage, the spectrograms for the remaining 13
songs were cut up with overlap intervals of 1 sample (which would ultimately be
applied in an overlapping convolutional output stage). Prior to windowing, all spec-
trogram data was normalized to unit scale.

Deep Neural Network. We used a feed-forward DNN of size 20500 ×
20500 × 20500 units (1025 × 20 = 20500). Each spectrogram window of size 1025 × 20
was unpacked into a vector of length 20500. The DNNwas configured such that the input
layer was the mixture spectrogram (20500 samples). The DNN was trained to synthesize
the ideal binary mask at its output layer. The DNN employed the biased-sigmoid acti-
vation function [13] throughout with zero bias for the output layer. The DNNwas trained
using 100 full iterations of stochastic gradient descent (SGD). Each iteration of SGD
featured a full sweep of the training data. Dropout was not used in training. After training,
the model was used as a feed-forward probabilistic device.

Probabilistic Binary Mask. In the testing stage, there was an overlap interval of 1
sample. This means that the test data described the mixture spectrogram in terms of a
sliding window and the output of the model described predictions of the ideal binary
mask in the same sliding window format. The output layer of the DNN was sigmoidal
and hence we may interpret these predictions in terms of the logistic function.
Therefore, because of the sliding window, this procedure resulted in a distribution (size
20) of predictions for each time-frequency element of the mixture spectrogram [7]. We
chose to summarize this distribution by taking the mean and we evaluate the result in
terms of an empirical confidence estimate, separately for each source, as follows:
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For each time-frequency element, of each source, we computed the mean prediction
and applied a confidence threshold (α);

MV
t;f ¼

1 for 1
T

PT
i¼0 Stþi;f [ a

0 for 1
T

PT
i¼0 Stþi;f � a

(

ð1Þ

where MV refers to the binary mask for the vocal source, T refers to the window size
(20), t is the time index, i is the window index and f is the frequency (bin) index into the
estimated mask (S). The corresponding (but independent) binary mask for the
non-vocal source (MNV) is computed as follows;

MNV
t;f ¼

1 for 1
T

PT
i¼0 Stþi;f\ð1� aÞ

0 for 1
T

PT
i¼0 Stþi;f �ð1� aÞ

(

ð2Þ

Thus, by adjustment of α, masks at different levels of confidence could be con-
structed for both sources.

Non-negative Matrix Factorization. For comparison to the DNN approach, an equiv-
alent non-negative matrix factorization (NMF) based approach was implemented using
the same training and test data (as described above). We used the same unpacking
strategy, which has been tested before for NMF-based separation of speech and music
[14]. The spectrograms of the training data were sampled and unpacked analogously to
the DNN approach, resulting in a large (220500 × 15000) matrix that was then
decomposed using the traditional multiplicative updates algorithm with KL divergence
[15]. This means that for this training matrix V, V = WH, where we set the number of
basis vectors (columns of W) and the respective activations (rows of H) to 1500. We
performed this training stage for both vocal and non-vocal mixtures, and kept the two
basis vectors matrices Wv and Wnv. For the testing stage, we concatenated both matrices
and initialized a corresponding Hu matrix randomly, so that for each unpacked spec-
trogram, Vu, of the set of test songs, Vu = [Wv Wnv] Hu. We then ran the same
multiplicative updates algorithm but keeping the composite Wu matrix fixed [14], and
updating Hu. The test spectrogram was then re-composed for either vocal (Vv = WvHv)
or non-vocal (Vnv = WnvHnv) vectors, and used to define a soft mask via the
element-wise division Sv = Vv/(Vv + Vnv). The matrix was then packed back to the
original spectrogram size by averaging the consecutive frames of the soft mask. This
allowed us to define an equivalent α parameter (as used in the DNN approach) so that
the binary mask Bv = 1 when Sv > α, 0 when Sv <= α and analogously for Bnv and Snv.

Finally, the respective masks were resolved by multiplication with the original
(complex) mixture spectrogram and the resulting masked spectrograms were inverted
with a standard overlap-and-add procedure. Separation quality (for the test data) was
measured using the BSS-EVAL toolbox [16] and is quantified in terms of
signal-to-distortion ratio (SDR), signal-to-artefact ratio (SAR) and signal-
to-interference ratio (SIR). Separation quality was assessed at different confidence
levels by setting different values of α.
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3 Results

Figure 1 plots spectrograms illustrating the stages of mixture and separation for a brief
excerpt (*1.5 s) from a randomly chosen test song separated using the DNN (at
α = 0.5). The spectrograms for the source vocal and non-vocal signals are shown at the
top. The middle panel plots the mixture spectrogram, illustrating the difficulty of the
problem (even for an ideal binary mask). At the bottom of Fig. 1 are plotted spec-
trograms representing the separated audio for the vocal and non-vocal signals
respectively (DNN, α = 0.5).

The various objective source separation quality metrics (SDR/SIR/SAR) were
computed for the separated sources, as estimated with each model, as a function of α.
The same measures were also computed for the ideal binary mask. Figure 2 plots a
summary of the respective measures. For each measure, and for each separation context
(DNN/ideal binary mask/NMF), Fig. 2a plots the mean across-song performance
computed by first averaging the measures across vocal/non-vocal sources. Figure 2b

Fig. 1. Separation of vocal sounds from musical mixtures using a probabilistic convolu-
tional deep neural network. Spectrograms for 1.5 s excerpt from test song; Upper: original
sources, middle: monaural mixture, lower: separated audio (DNN, α = 0.5). Note: frequency axis
represents the range 0–22 kHz on a logarithmic axis.

Deep Karaoke: Extracting Vocals from Musical Mixtures 433



plots the across-song average for the vocal sources only and Fig. 2c plots the same for
the non-vocal (accompaniment) sources only. Shaded areas and error bars represent
95 % confidence intervals. The results for the DNN and NMF (as a function of α)
feature similar functions illustrating the trade-off between the various parameters as
statistical confidence is adjusted. Both models provide similar intersection points and
there is some evidence of performance advantage for the DNN. However, the slopes
and shapes of the functions are qualitatively different. In particular, the DNN functions
for SAR and SIR more closely resemble ‘ideal’ sigmoid functions. In this context, SAR
and SIR may be interpreted as energetic equivalents of positive hit rate (SIR) and false
positive rate (SAR). Hence, if these slopes are interpreted as being analogous to
cumulative density functions (indexed using α), then the DNN results might be
interpreted as demonstrating a wider probability function that is closer to normally
distributed. However, although these plots provide insight into the mapping of prob-
ability to performance, they do not provide a very interpretable comparison of the
models. In particular, the plots do not allow us to interpret performance in like terms
with respect to the critical trade-off between artefacts and separation.

In order to provide a like-for-like comparison, Fig. 3a plots mean SAR as a function
of mean SIR for both models (taken from Fig. 2a) for the useable range of

Fig. 2. Separation quality as a function of α: DNN versus NMF versus ideal binary mask.
Left to right are plotted SIR, SDR and SAR for the DNN, ideal binary mask and NMF
respectively. (a) plots across-source, across-song mean, (b) plots across-song mean for the vocal
sources, (c) plots the same for the non-vocal sources only. Shaded areas and error bars represent
95 % confidence intervals.
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0.1 < α < 0.9. Figure 3b plots the same for the functions of Figs. 2b and 3c plots the
same for the functions of Fig. 2c. Overall (Fig. 3a), the DNN provides *3 dB better
SAR performance for a given SIR index. This advantage is mostly explained by
the *5 dB advantage for the vocal sources (Fig. 3b) and only a small advantage is
evident for the non-vocal signals (Fig. 3c).

4 Discussion and Conclusion

We have demonstrated that a convolutional deep neural network is capable of sepa-
rating vocal sounds from within typical musical mixtures. Our convolutional DNN is of
nearly a billion parameters and was trained with relatively little data (and relatively few
iterations of SGD). We have contrasted this performance with a like-for-like (suitably
scaled) NMF approach, in the context of a trade-off between artefact and separation
quality, indexed via confidence in the statistical predictions made.

The main advantage of the DNN appears to be in its general learning of what
‘vocal’ sounds are (Fig. 3b). Since the NMF approach is limited to linear factorization,
we may at least partly attribute the advantage of the (nonlinear) DNN to abstract
learning via demodulation [13]. The DNN appears to have biased it’s learning towards
making good predictions via correct positive identification of the vocal sounds.

Both methods feature the largest known parameterizations for this particular
problem and, to some extent, both methods may be considered ‘deep’ [7, 13, 17]; both
featured demodulated (magnitude) spectrograms produced using STFT and re-synthesis
via inverse STFT. We also note that the relatively small amount of data employed in
training the DNN may have been offset by the fact that the spectrograms were sampled
using a Hanning window, hence minimizing aliasing/distortion in the training data that
may otherwise have resulted in over-fitting [18] (and see [19]).

Acknowledgment. AJRS, GR and MDP were supported by grant EP/L027119/1 from the UK
Engineering and Physical Sciences Research Council (EPSRC). Data and materials are available
at doi:10.15126/surreydata.00807909.

Fig. 3. Trade-off: interference versus artefacts. DNN versus NMF. mean SAR as a function
of mean SIR [0.1 < α < 0.9] (a) overall mean (Fig. 2a), (b) vocals (Fig. 2b), (c) non-vocals
(Fig. 2c).
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Evaluation of the Convolutional NMF
for Supervised Polyphonic Music Transcription

and Note Isolation
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Abstract. We evaluate the convolutive nonnegative matrix factoriza-
tion in the context of automatic music transcription of polyphonic piano
recordings and the associated problem of note isolation. Our intention is
to find out whether the temporal continuity of piano notes is truthfully
captured by the convolutional kernels and how the performance scales
with complexity. Systematic studies of this kind are lacking in existing
literature. We make use of established measures of accuracy and sim-
ilarity. NMF dictionaries covering the piano’s pitch range are learned
from a given sample bank of isolated notes. The kernel alias patch size
is varied. By using a measure of performance advantage, we show up
that the improvements due to convolved bases do not justify the extra
computational effort as compared to the standard NMF. In particular,
this is true for the more realistic case, in which the dictionary does not
fully correspond to the mixture signal. Further pertinent conclusions are
drawn as well.

Keywords: Nonnegative matrix factorization · Convolution · Super-
vised learning · Polyphony · Automatic music transcription · Note
separation

1 Introduction

Nonnegative matrix factorization (NMF) [1] meanwhile is an established tool
in music processing, and music transcription has emerged as its main area of
application, see [2,3]. Since a complete transcription would also include a note’s
velocity, this information, together with the learned bases, can be used to iso-
late notes from the mixture by Wiener filtering. This can be done either in a
supervised or in an unsupervised task.

In this study, we seek to compare the performance of the convolutional NMF
[4,5] with the standard NMF in regard to supervised learning, i.e. where the bases
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are held fixed and their activations are updated until the modeled spectrogram
is in the shortest distance from the observed spectrogram. In our evaluation, we
resort to more frequently used measures, such as the root-mean-square deviation
(RMSD). We also provide perception-related ratings. Above, we are interested in
seeing how the superior modeling accuracy that convolutional bases are expected
to bring about relates to the extra computational effort. As the convolutional
NMF was designed for capturing the temporal evolution of sound patterns, we
expect it to track the temporal decay of notes more faithfully than the standard
NMF. For the transcription of polyphonic recordings and the related task of note
isolation, temporal continuity of notes is a crucial factor. Thus, the convolutional
NMF looks promising and seems to be a reasonable alternative to other variants
that favor temporal continuity through additional penalty terms in the cost
function. More generally speaking, our interest is in evaluating the aptitude of
the convolutional NMF for musical applications.

2 Convolutional NMF

The basic idea behind the convolutional or convolutive NMF is to treat sequences
of single-column bases, or multi-column bases, in the exact same manner that
single-column bases are treated by the standard NMF. This is meant to bet-
ter capture the temporal evolution of repeating patterns of the dominant or
principal components in the mixture as compared with the standard, i.e. non-
convolutional, NMF. In our case, we mean sequences of magnitude and/or power
spectra when speaking of patterns and the principal components are piano notes.
We will further refer to the length of such a sequence of spectra as the “patch
size”. The rank of the factorization is given by the number of distinct piano
notes.

Now consider a Bregman distance DX
F formally given in the form of the

Kullback–Leibler (KL) divergence with X of size K × N , xkn ∈ R
+
0 , being

approximated as

X ≈ Y =
M−1∑

m=0

S(m) · A rshift m, (1)

where A is the activations matrix, rshift is the zero-fill right-shift operator
applied to the rows of A, S is the bases matrix or the spectral imprint, m
is the patch index and M the patch size, respectively. To show that (1) is indeed
a convolution in n, we need to consider the following term which is applied to
every element of Y,

ykn =
R∑

r=1

M−1∑

m=0

skr(m) · ar,n−m =
R∑

r=1

skr(n) ∗ arn, (2)

where ∗ denotes convolution and R is the rank of Y, R � min (K,N). The
generalized KL divergence w.r.t. X,

DX
KL(Y,X) =

∑

k,n

ykn log
ykn

xkn
−

∑

k,n

ykn +
∑

k,n

xkn, (3)
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is generated from the convex function

F (X) =
∑

k,n

xkn log xkn −
∑

k,n

xkn. (4)

Alternatively, the KL divergence from (3) can be replaced by [2]

DX
KL′(Y,X) = ‖Y � log (Y � X) − Y + X‖F, (5)

where ‖·‖F is the Frobenius norm, � stands for element-wise division and � for
element-wise multiplication, respectively. Note that for M = 1, (1) turns into the
standard NMF. So, in supervised learning, the problem at hand can be stated
as follows. Given X and S, skr ∈ R

+
0 , R � min (K,N), M ∈ N, find

Aopt = arg min
A

DX
KL′(Y,X) s.t. arn ∈ R

+
0 . (6)

2.1 Multiplicative Update Rule

Aopt in (6) can be found using the convolutional update rule given in [5], which is

A ← A � [
ST(m) · (X � Y) lshift m

] � [
ST(m) · 1]

, (7)

where 1 is a K × N all-ones matrix and lshift stands for the row-wise zero-fill
left-shift operator. In [5], it is further suggested that for each S(m) a different
Am should be learned and that the final A should be computed as A = 〈Am〉,
where 〈·〉 denotes the time average operator,

〈Am〉 =
1
M

M−1∑

m=0

Am. (8)

2.2 Dictionary Learning and Normalization

To construct an instrument’s dictionary, one requires a dataset of separate note
recordings. A typical piano range, e.g., would consist of I = 88 notes, starting
with A0 and ending with C8, at a distance of a semitone. For every ith note, one
computes the spectrogram Xi and learns the corresponding patch of M bases
using [5]

Si(m) ← Si(m) �
[
(Xi � Yi) · (Ai rshift m)T

]
�

[
1 · (Ai rshift m)T

]
, (9)

while alternating with (7). In a final step, the M Ai matrices are discarded and
the convolutional bases Si(m) are kept. The overcomplete dictionary, which is
held stiff in (6), is obtained by stringing the note patches together to

S(m) =
[
S1(m) S2(m) · · · SI(m)

] ∈ R
K×MI . (10)
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After each update (9), it is very common to normalize the columns of Si(m)
by their lengths in the Euclidean space. A reason for doing this is numerical sta-
bility. Another way of normalizing is by patch, i.e. either by relating each matrix
element to the largest singular value of Si(m), by taking the Euclidean matrix
norm, or as an alternative by dividing each matrix element by the Frobenius
norm. In this wise, the temporal decay of the notes’ spectral envelopes can be
tracked.

2.3 Gaussian-Additive Mixture Model

Consider the short-timeFourier transform (STFT) domain. In reference to the cen-
tral limit theorem, the Fourier coefficients are approximately complex-normally
distributed. We further assume that they are circularly-symmetric, i.e. that they
have zero mean and zero covariance matrix. Now, if we stipulate that the note
components are mutually independent, the mixture’s PSD can be decomposed
into a sum of notes’ PSDs. In other words, the NMF can be performed on the
mixture’s PSD. Yet note that this model does not hold for the magnitude spectra,
as the square root of a sum of squares is not equal to the sum of magnitudes.

2.4 Note Separation

With the signal model from Sect. 2.3, Wiener filtering can be used to separate
the note components from the mixture. In a first step, one computes the learned
spectrograms

Ŷi =
M−1∑

m=0

Si(m) · Âi rshift m, (11)

i = 1, 2, . . . , I, and applies Wiener filtering to every element separately:

ẑikn =
ŷikn∑I

j=1 ŷjkn

· xknejφkn ∀ i, k, n, (12)

where φ is the phase of x in time-frequency (TF) point (n, k) and j is the
imaginary unit. The corresponding time-domain signal is obtained by the inverse
STFT on Ẑi.

3 Evaluation

For the purpose of evaluation, we design various dictionaries using the RWC
Music Database, while each dictionary is trained for Yamaha’s Pianoforte, nor-
mal playing style, and “mezzo” level of dynamics.1 For the STFT, we apply a
4-term Blackman–Harris window of the size of the transform and overlap suc-
ceeding blocks by 87.5 %.

1 https://staff.aist.go.jp/m.goto/RWC-MDB/.

https://staff.aist.go.jp/m.goto/RWC-MDB/


Evaluation of the Convolutional NMF 441

As for the mixture signal, we generate it from a MIDI file taken from the
Saarland Music Data (SMD) using Kontakt 5 by Native Instruments.2 The 32-s
excerpt is part of Chopin’s Opus 10.3 We generate two mixtures: one synthetic
using the RWC samples and one realistic for the Berlin Concert Grand. We per-
form the NMF on the mixture using the NMFlib for a fixed number of 30 itera-
tions.45 The critical testing parameter is the patch size M which is increased from
1 onwards. Also, we evaluate the NMF performance for the transform lengths
of 2048 and 4096 points for two different nonnegative TF representations: the
magnitude spectrum and the power spectrum. Overall, we train 24 dictionaries,
one for each set of configuration parameters. We normalize the basis spectra by
patch using the Euclidean matrix norm.

3.1 Performance Measures

F -measure. In binary classification, the F -measure indicates the accuracy of a
system under test and it is defined as the harmonic mean of precision and recall:

F � 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
, (13)

where TP is the number of true positives, FP is the number of false positives
and FN is the number of false negatives. In the case of music transcription, true
positives denote those TF points that have significant contributions according
to (11) in the same spots as in the perfect transcription. False positives are
activations in the wrong spots and false negatives denote missing activations,
respectively. The F -score attains its best value at 1 and its worst value at 0.

Root-mean-square Deviation. The root-mean-quare deviation (RMSD) is a
frequently used measure of accuracy for comparing errors of different models for
a particular variable. With regard to notes:

RMSDi �

√√√√ 1
N

N∑

n=1

[ẑi(n) − si(n)]2, (14)

where N is the length (in samples) of the time-domain signal si(n) and ẑi(n) is
its estimate. Lower values are preferred.

2 http://www.mpi-inf.mpg.de/resources/SMD/SMD MIDI-Audio-Piano-Music.html.
3 The results shown are representative of what we experienced for different piano

recordings.
4 https://code.google.com/p/nmflib/.
5 The number was chosen empirically. Above it, no significant improvement was

observed.

http://www.mpi-inf.mpg.de/resources/SMD/SMD_MIDI-Audio-Piano-Music.html
https://code.google.com/p/nmflib/
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Perceptual Similarity Measure. “PEMO-Q” [6] is a method for the objective
assessment of the perceptual quality of audio. It uses the model of auditory
perception by Dau et al. to predict the audio quality of a test signal relative
to a reference signal. PEMO-Q aligns the levels of both signals and transforms
them into so-called “internal representations” of the auditory model. The cross-
correlation coefficient between the two representations serves as a measure of
the perceived similarity, PSM. And so, it can be used as a measure of the test
signal’s degradation.

Average Performance and Performance Advantage. The major goal of
this evaluation is to relate the performance of the convolutional NMF to its
computational complexity in a more formal manner. We state the average per-
formance as

Pavg � P

T
, (15)

where P can be expressed as any of the above measures and T shall denote the
execution time of the NMF. Moreover, we define the performance advantage of
the convolutional NMF as the logarithm of the ratio between the performances
of the convolutional and the standard NMF over time,

PA � log
PM/TM

P1/T1

≈ log
PM

M · P1
(16)

with TM ≈ M · T1, i.e. on the assumption that it takes M times longer to
compute the convolutional M -basis NMF as compared to the standard single-
basis NMF [5]. A PA that is above zero indicates an advantage, a disadvantage
if below zero, i.e. if it is negative, and a value of zero means equality.

3.2 Music Transcription and Note Isolation

In the first part of our evaluation, we compute the accuracy of the convolutional
NMF as a function of the patch size M for different configurations using the
F -measure. The perfect or reference transcription is computed from the score.
For each note, we obtain a waveform signal from the respective MIDI track
using the Kontakt 5 sampler. For all notes, we compute the time-pitch power
spectra. We compare the powers with a threshold of −60 dB, and so we obtain a
binary mask for the entire excerpt. The same thresholding procedure is applied
to each note signal estimated according to (12). The two binary masks are then
compared against each other in terms of (13). Errors are manifested in missing
or superfluous positives that represent a mismatch between the signal and the
model. Figure 1 summarizes the results.

In the second part, we evaluate the quality of separated notes. For this, we use
the RMSD and the PSM. All note signals are normalized to 0 dBFS RMS before
computing the RMSD. In Fig. 2, the average over all isolated notes is shown.
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3.3 Interpretation of Results and Observations

Looking at Fig. 1, one can observe a slight improvement that is due to a greater
patch size in the case of the synthetic mix. For the realistic mix, the improve-
ment is minor. The greater patch size seems rather counterproductive when the
power is used as the nonnegative representation together with a lower frequency
resolution. It looks like the magnitude spectra yield a better accuracy for both
the mixtures. It is also evident that a higher frequency resolution improves the
transcription. The fact that some curves are not monotonically increasing might
be due to random initializations in the NMFlib.

Figure 2 confirms once more that a significantly better result can be expected
if the dictionary fits the mixture. In regard to the RMSD, a gain of 3 dB can
be stated. Here again, a higher frequency resolution has a stronger impact on
the result than a larger patch. When listening to the note samples, we would
further observe that for low-pitched notes a 2048-point STFT is insufficient
to discriminate neighboring partials. For high-pitched notes, this issue is less
critical. For the synthetic mix, the perceptual similarity between notes is higher
in the case of magnitude spectra. Yet for the realistic mixture, the power spectral
representation gives comparable if not better results.

Even though a performance improvement with respect to the F -measure and
also the PSM is undeniable between 1 and 4 bases in particular, the PA-curves
indicate that it comes at the expense of an almost M times higher effort. For a
patch size greater than 4, the improvement looks negligible in most cases. Plus,
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Fig. 1. F -measure values versus performance advantage of the convolutional NMF for
music transcription
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(a) Synthetic mixture

1 2 4 8 16 32
−8

−6

−4

−2

0

Patch size

R
M

SD
0 in

 d
B

 

 
Magnitude (4096)
Magnitude (2048)
Power (4096)
Power (2048)

1 2 4 8 16 32
−4

−3

−2

−1

0

Patch size

PA
(R

M
SD

)

 

 
Magnitude (4096)
Magnitude (2048)
Power (4096)
Power (2048)

1 2 4 8 16 32
0.6

0.7

0.8

0.9

1

Patch size

PS
M

 

 

Magnitude (4096)
Magnitude (2048)
Power (4096)
Power (2048)

1 2 4 8 16 32
−4

−3

−2

−1

0

Patch size

PA
(P

SM
)

 

 
Magnitude (4096)
Magnitude (2048)
Power (4096)
Power (2048)

(b) Realistic mixture
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Fig. 2. RMSD and PSM values versus performance advantage of the convolutional
NMF for note isolation

irrespective of the chosen test case and measure, PA ≈ − log M , i.e. negative
(disadvantageous) for all M > 1. And what is more, the improvement is scarcely
audible. Another negative side effect of the convolution worth noting is that the
attacks of low-pitched notes are smoothed out.
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4 Conclusion

We conclude that because of the large pitch range of the piano, the STFT size
should be no smaller than 4096 at a sampling rate of 44.1 kHz to separate low-
pitched notes. As for the spectral representation, in most test cases the magni-
tude spectrum is more performant than the power spectrum. At this point, we
do not have an explanation for this enigma that questions the validity of the
Gaussian-additive mixture model. Finally, the study shows that is it senseful to
favor a single-basis NMF over a computationally intensive convolutional NMF
in musical applications, especially if the runtime plays an important role. No
significant sound quality loss was established in our experiments.
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Abstract. Time-frequency constrained interpolation of audio has
proven to be an effective technique in removing a wide variety of acoustic
disturbances. Traditionally these techniques assume that the signal is sta-
tionary for the duration of the interpolation, which limits the types of
disturbances that can be addressed. In this paper we propose masked pos-
itive semi-definite tensor factorisation followed by a novel form of multi-
channel spectral subtraction to solve the problem, and we demonstrate
excellent results on some real-world examples. The proposed methods can
remove disturbances that were previously considered highly challenging
to interpolate, for example a burst of wind noise in a voice recording.

Keywords: PSTF · Masked PSTF · Multi-channel spectral subtrac-
tion · Minorisation-Maximisation

1 Introduction

Auto-regressive (AR) interpolation using a noise model combined with a signal
model was introduced in [1] to remove low frequency noise pulses from an audio
signal. In [2], we demonstrated how to use this AR model to interpolate time-
frequency constrained disturbances. Such methods have been used to remove
many different sorts of disturbances; coughs, chairs banging and a dropped
wrench being just some of the successful examples. While this is an industry
standard technique, it does not work well for very long duration disturbances.
A good example of this problem is wind noise, where the disturbance is a burst
of non-stationary noise, and the duration is long enough for the stationarity
assumptions in the AR model to be invalid.

The short time Fourier transform (STFT) is a well-known technique for the
processing of audio in the time frequency domain. Within the time-frequency
domain, non-negative matrix factorisation (NMF) [3,4] and its multi-channel
variant, positive semi-definite tensor factorisation (PSTF) [5,6] have proven to
be good models for acoustic behaviour on larger time-scales. However, one well-
known problem with NMF and PSTF is non-uniqueness [7]. In general, there are
many equivalent solutions to the simple NMF/PSTF model including permuta-
tions and scaling, which means that the correct categorisation of the detected
features as disturbance or desired signal can be problematic. Many techniques
c© Springer International Publishing Switzerland 2015
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have been used to resolve these ambiguities, such as sparsity and using training
data [8,9]. These are relevant for many source separation tasks, but we would
prefer to have a blind interpolation technique, as that has wider applicability.

User-defined masks have been applied to NMF for missing data interpola-
tion and bandwidth extension [10,11]. These problems are different to those
addressed in this paper as they are replacing missing data instead of reducing
or removing the effect of an unwanted disturbance while perceptually preserving
the underlying desired audio signal.

In this paper we use a masked PSTF model based on that given in [6] that
can be solved iteratively using an improved minorisation-maximisation algorithm
to give a Maximum Likelihood estimate of the model parameters. As has been
shown, e.g. in [4], this maximum likelihood approach is equivalent to minimising
the Itakura-Saito divergence. The use of the mask resolves the uniqueness ambi-
guities normally associated with NMF/PSTF approaches. Consequently there is
no training or dictionary learning required in our approach.

Armed with the masked PSTF model, we can express our interpolation prob-
lem as the sum of a time-frequency varying signal process and a time-frequency
varying noise process, where the user defines a mask for each process. Each
process is further characterised as being the sum of one or more PSTF compo-
nents. Having found an optimal solution for the model parameters, the inter-
polation is performed by applying gains in the STFT domain. The gains can
be calculated either using a Wiener filtering approach similar to that in [3], or
our proposed multi-channel spectral subtraction method which incorporates a
novel ‘least harm’ criterion. While Wiener filtering is attractive as it provides
the minimum mean square error estimator given the masked PSTF model, it
tends to sound overprocessed in audio applications. Spectral subtraction, on the
other hand, attempts to replace the disturbance with synthesised audio that
matches the expected statistics of the desired signal, and in our application is
often perceptually superior to the minimum mean square error interpolation.

2 The Masked PSTF Model

We first define some notation:

– C is the number of audio channels.
– F is the number of STFT frequencies.
– T is the number of STFT frames.
– K is the number of components in the PSTF model.
– f, t, k are indices corresponding to F, T,K.
– we express differentiation as a function ∂f(∂x) rather than a derivative ∂f

∂x .

At each time-frequency point in the STFT we can collate the observations for
each of the C channels to form an observation vector xft

xft = [x1,f,t, · · · xC,f,t]
H
.
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We assume that xft is the sum of K unknown independent components
zftk. We also assume that each zftk is independently drawn from a multivariate
complex circular symmetric normal distribution N with an unknown covariance
matrix ψftk that varies over both time and frequency. Lastly, we assume that
the covariance ψftk is the product of a mask mftk, a spatial covariance matrix
Ufk and an activation vtk with the constraints that mftk ≥ 0, Ufk is a positive
semi-definite matrix, and vtk ≥ 0. To summarise:

xft =
∑

k

zftk, zftk ∼ N (0, ψftk) , ψftk = mftkUfkvtk. (1)

U and v form the latent variables of the model. The mask m is defined a-
priori, and is normally binary mftk ∈ {0, 1}, but non-binary masking could be
used instead. It is principally the use of the mask that distinguishes our model
from [6], and this resolves the non-uniqueness problem to allow factorisation
into disturbance and signal components. In our case the mask for the distur-
bance components should indicate the time-frequency region of the disturbance,
whereas the mask for the signal components should contain both the disturbance
and some surrounding undisturbed signal.

Assuming that the observations are independent, we can define an interme-
diate covariance matrix σft and write the likelihood of the observations given
the latent variables can be written as:

xft ∼ N (0, σft) , σft =
∑

k

ψftk (2)

L (X;U, v) =
∑

f

∑

t

− ln det πσft − xH
ftσ

−1
ft xft. (3)

3 Maximum Likelihood Solution

The maximum likelihood estimates for U and v are found by maximising (3). Many
techniques are available for solving this problem. We will use a minorisation-
maximisation approach [6,12] because of its convergence guarantees.Minorisation-
maximisation requires that we construct an auxiliary function L+

(
Û , v̂, U, v

)

which has to satisfy the minorisation criterion over the search subspace [12]. We
can fix v̂ = v and then maximise the auxiliary function with respect to Û to give
a guaranteed improvement in the likelihood. Similarly we can fix Û = U and
maximise with respect to v̂.

There are of course any number of auxiliary functions that satisfy these
constraints. The art is in choosing a function that is both tractable and gives
good convergence. A suitable minorisation in our case is given by:

ψ̂ftk = mftkÛfkv̂tk, σ̂ft =
∑

k

ψ̂ftk

L+(Û,v̂,U,v)=∑t

∑
f − ln detπσft−tr(σ̂ftσ

−1
ft )+C−xH

ftσ
−1
ft (∑k ψftkψ̂−1

ftkψftk)σ−1
ft xft. (4)
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3.1 Optimising with Respect to U

Setting the partial differentiation of (4) with respect to Ûfk to zero when v̂tk =
vtk gives an analytically tractable solution for updating U . We define two inter-
mediate positive semi-definite matrices Afk, Bfk as

Afk =
∑

t

σ−1
ft mftkvtk (5)

Bfk = Ufk

(
∑

t

σ−1
ft xftx

H
ftσ

−1
ft mftkvtk

)
Ufk. (6)

The solution to ∂L+
(
∂Ûfk

)
= 0 for all ∂Ufk is given by ÛfkAfkÛfk = Bfk.

We note that it is also given by the modified equation

ÛfkAfkÛH
fk = Bfk. (7)

The general solution set to this modified equation can be expressed in terms of
square root factorisation and an arbitrary orthonormal matrix Θfk as

Afk = A
1/2H
fk A

1/2
fk , Bfk = B

1/2H
fk B

1/2
fk , Ûfk = B

1/2H
fk ΘfkA

−1/2H
fk . (8)

We choose Θfk to preserve the positive semi-definite nature of Ûfk, which can
be done using singular value decomposition of A

1/2
fk B

1/2H
fk by

A
1/2
fk B

1/2H
fk = αΣβH , Θfk = βαH . (9)

Note that the positive semi-definite solution to (7) is invariant to the choice
of square root factorisation. So to update U given the current estimates of U
and v we use the following algorithm:

1. Use (1) and (2) to calculate σft for each frame and frequency.
2. For each frequency f and component k:

(a) Use (5) and (6) to calculate Afk and Bfk.
(b) Use Cholesky factorisation to calculate A

1/2
fk and B

1/2
fk .

(c) Use (9) to calculate Θfk.
(d) Use (8) to calculate Ûfk.

3. Copy Û → U .

3.2 Optimising with Respect to v

Similarly, setting the partial derivative of (4) with respect to v̂tk to zero when
Ûfk = Ufk gives an analytically tractable update for v. We define two interme-
diate variables A′

tk, B′
tk ≥ 0:

A′
tk =

∑

f

tr
(
σ−1

ft Ufk

)
mftk (10)

B′
tk = v2

tk

∑

f

xH
ftσ

−1
ft Ufkσ−1

ft xftmftk. (11)
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The solution to ∂L+/∂v̂tk = 0 is then given by

v̂tk =

√
B′

tk

A′
tk

. (12)

So to update v given the current estimates of U and v we use the following
algorithm:

1. Use (1) and (2) to calculate σft for each frame and frequency.
2. For each frame t and component k:

(a) Use (10) and (11) to calculate A′
tk and B′

tk.
(b) Use (12) to calculate the updated v̂tk.

3. Copy v̂ → v.

We update with respect to Û and v̂ alternately until convergence. We found that
using a fixed number of iterations was found to be adequate rather than using
a convergence test.

4 The Masked PSTF Interpolation

With suitably defined masks we can estimate U and v as shown in Sect. 3. We
then calculate an estimate for the desired data x̃ft using the proposed spectral
subtraction technique with a ‘least harm’ criterion as follows.

To define the masks, the operator graphically selects a region on a spectro-
gram that indicates where the disturbance occurs. Similarly an enclosing region
that is representative of the desired signal can be indicated. We can use these
two regions to define a disturbance mask and a desired mask. We can then split
the components in our masked PSTF model into two categories, disturbance and
desired, and assign the appropriate mask to each component.

We define a selection vector sk that is zero for disturbance components and
one for desired components. The covariance of the desired data σ̃ft is then

σ̃ft =
∑

k

ψftksk. (13)

Our interpolation task is then to create an estimate for the desired signal x̃ft

as a linearly transformed version of the observation via

x̃ft = Gftxft. (14)

The simplest solution is to use the minimum mean square estimator which is
given by the classic Wiener equation Gft = σ̃ftσ

−1
ft . Unfortunately, the Wiener

filter tends to sound over processed if the disturbance is significantly larger than
the desired signal. We propose a multi-channel variant of spectral subtraction to
create an interpolated result that matches the desired covariance. This matching
involves square root factorisations and an arbitrary orthonormal matrix Θft:

σ̃ft = GftσftG
H
ft, Gft = σ̃

1/2H
ft Θftσ

−1/2H
ft . (15)
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Given that there is a continuum of possible solutions to (15), we introduce a
least harm criterion to resolve the ambiguity; we find the solution that is closest
to the original in a Euclidean sense

(
E

{∥∥x̃ft − xft

∥∥2
})

. Substituting (14) and

(15) shows that the closest solution is found by maximising tr
(
σ̃
1/2H
ft Θftσ

1/2
ft

)
,

and Θft can be found via singular value decomposition of σ
1/2
ft σ̃

1/2H
ft :

σ
1/2
ft σ̃

1/2H
ft = αΣβH , Θft = βαH . (16)

Note that this makes Gft positive semi-definite and invariant to the choice
of square root factorisation. The algorithm is therefore:

1. For each frame t and frequency f :
(a) For each k, use (1) to calculate ψftk from Ufk, vtk.
(b) Use (2) and (13) to calculate σft and σ̃ft.
(c) Use Cholesky factorisation to calculate σ

1/2
ft and σ̃

1/2
ft .

(d) Use (16) to calculate Θft.
(e) Use and (15) and (14) to calculate x̂ft.

5 Results

In this section some real-data results are presented using spectrogram plots.
These are accompanied by the website www.cedaraudio.com/PSTFexamples
which contains further examples and the accompanying audio, including compar-
isons against a state-of-the-art AR interpolator. We believe that these subjective
results are much the best way to assess the performance of an applied algorithm
such as this.

For illustration we show the real-world example of a recording made on a
windy day in Cape Cod. This extract is taken from a promotional video where the
narrator is moving out of a wind shadow and back while recording on a handheld
microphone. Figure 1a shows the original spectrogram, where the 2 s burst of
wind noise can be seen. Figure 1b shows the same image with the disturbance
mask as a grey overlay. The good mask is indicated by the outer dotted rectangle.

Figures 1c and d show the results using both Wiener filtering and spectral
subtraction. The masked PSTF model used just 2 disturbance components, 2
good components and 30 iterations. The Wiener filter has lost a lot of the ambi-
ent background as well as putting a low frequency drop out in the voice. We
estimate that the spectral subtraction method achieves about 20dB of reduction
of the wind noise for virtually no perceptible loss in the voice and preserves the
background ambience. The noise reduction is less than that for the Wiener filter,
but the lack of artefacts makes the result much more palatable.

We discovered that it is generally better to underestimate the number of
components required for the disturbance and the desired categories. With more
components there is more opportunity for audio features to be misclassified as
disturbance or desired, leading to suboptimal results.

www.cedaraudio.com/PSTFexamples
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Fig. 1. Spectrograms showing the burst of wind noise from 5.5 to 7.9 s.

6 Conclusion

We have introduced a new method to approach the time-frequency constrained
interpolation problem. The Masked PSTF technique with either Wiener Fil-
tering or the proposed multi-channel spectral subtraction significantly extend
the range of problems that can be successfully addressed in practice. It is our
opinion that the spectral subtraction algorithm gives more acoustically pleasing
results than the Wiener filtering approach. Future work would include investi-
gating the effects of priors to create a Bayesian solution, and alternative optimi-
sation schemes to minorisation-maximisation such as expectation-maximisation
and Markov Chain Monte Carlo (MCMC) methods.
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Abstract. The problem of removing non stationary noise coming from
a moving acoustic source in outdoor environment is investigated in this
paper. By making use of the known instantaneous location of the mov-
ing source (provided by a second modality), we propose a time-domain
method for removing the noise coming from this source in a mixture of
acoustic sources. The proposed method consists in an irregular resam-
pling of the mixed data recorded by the sensors, and by linearly com-
bining the resampled data to remove the undesired source. It’s similar
to the beamforming approach, but instead of seeking to enhance a tar-
get source, we seek to remove an undesired one. Simulation on synthetic
data show the effectiveness of the proposed method with a few number
of sensors.

Keywords: Non-stationary noise suppression · Moving acoustic source ·
Multimodality · Delay compensation · Beamforming

1 Introduction

The task of removing noise coming from an undesired and dominant source in
a mixture of several acoustic sources has application in many areas like hearing
aids, speech enhancement in wireless communication, or auditory scene analysis
to name a few [1,2]. This issue remains a challenge when the undesired source
is moving. In this paper, we consider the problem where a target fixed acoustic
source is corrupted by a dominant noise coming from a fast moving acoustic
source. We consider the case where the noise source moves along a straight
line at constant speed in a plane. The high speed of the moving source may
cause a doppler frequency shift between the recording microphones [3]. The
task of canceling the noise coming from the moving source is discussed in an
outdoor environment but we consider only the direct path and we do not take
into account the reflexions. This kind of problem can occur in airport platforms,
on roadsides or along railway lines. The problem described above belongs to the
general framework of non-stationary noise suppression. Conventional methods
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for the non-stationary noise suppression include spectral subtraction [4], source
separation [5] and beamforming [6].

The spectral subtraction methods performs subtraction of the estimated noise
spectrum to the spectrum of the recorded signal (containing both the target
source and the noise) to get an estimated noiseless spectrum of the target source
from which one can compute its temporal profile [7]. However, these methods
require a proper estimate of the noise spectrum, which is difficult to obtain in a
context of highly non-stationary noise, like the case of a fast moving source.

Another approach to remove undesired source from the mixture is to per-
form source separation. Most of source separation methods have been proposed
for fixed sources and exploit the source statistics, especially their mutual inde-
pendence. For moving sources, some methods performed a block-wise separation
using statistical methods, where for each bloc the sources are assumed to be
fixed [5]. However, this assumption no longer holds if the sources are moving
faster so that the bloc length for which they can be considered as fixed is not
enough to perform statistical processing.

Regarding the beamforming methods, they proceed by combining the signals
recorded by an array of sensors in order to achieve a spatial filtering that will
enhance the signal coming from the direction of the target source and remove
noises coming from the other directions [6,8]. Recently, new methods coupling
video and audio modalities have been proposed to unmix moving acoustic sources
[9,10]. These techniques firstly estimate the instantaneous positions and the
velocities of the sources by the video, and make use of the source locations to
design some beamforming methods.

The method proposed in this paper is within the scope of the approaches
using multimodality. Assuming that the instantaneous location of the moving
source are provided by a second modality like a video system or the Global
Positioning System (GPS), we develop a temporal method for removing this
source in the mixture. The first step of the proposed method consists in an
irregular resampling of the recorded signals, in order to compensate the difference
of propagation delays of the moving source between two sensors. In a second step,
we linearly combine the resampled data to remove the noise coming from the
moving source. The paper is organized as follows: Sect. 2 presents the problem
modelization and a simple way to instantaneously estimate the location of the
moving source. Section 3 presents the proposed method for cancelling the noise
coming the undesired fast moving source. In Sect. 4, we show simulation results
and in Sect. 5 we derive conclusions.

2 Problem Statement

2.1 Mixing Model

Let’s recall that we deal with the problem where a target fixed source s1 is
corrupted by a dominant and moving source s2. By considering only the direct
path, the mixing model is given by Eq. (1):
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mk(t) = ak1s1 (t − τk1) + ak2 (t − τk2(t)) s2 (t − τk2(t)) , 1 ≤ k ≤ K. (1)

where mk(t) is the mixed data recorded at sensor k, K is the number of sensors.
akl(t) and τkl(t) are the mixing coefficient and the propagation delay from source
l to sensor k at time index t. The delay τkl(t) between source l and sensor k at
time index t is proportional to the distance Dkl(t) between source l and sensor k
and in a far field context, we can also assume that the mixing coefficient akl(t) is
proportional to the inverse of the distance Dkl(t). Denoting c the sound velocity
in air, it leads to:

akl(t) =
1

Dkl(t)
and τkl(t) =

Dkl(t)
c

. (2)

Since s1(t) does not move, then ak1(t) = ak1 and τk1(t) = τk1.

2.2 Instantaneous Localization of the Moving Source

Set (Xs2(t), Ys2(t), Zs2(t)) the instantaneous localization of the moving source
s2. Since we consider that the source s2 moves along a straight line at a constant
speed v2 in a plane, for example in the XY plane (see Fig. 1), the coordinates of
s2 at any time t is given by:

⎧
⎪⎨

⎪⎩

Xs2(t) = Xs2(t0) + v2(t − t0) cos(θ2)
Ys2(t) = Ys2(t0) + v2(t − t0) sin(θ2)
Zs2(t) = Zs2(t0)

(3)

where θ2 is the angle between the x-axis and the trajectory axis of s2 (Fig. 1).

Fig. 1. Mixing configuration

Equation (3) shows that to estimate the current location of s2, one only
require the estimated position of s2 at a reference time t0, the estimated speed
v2 of s2 and the estimated angle θ2. These parameters can be obtained with a
second modality like GPS in a cooperative environment, or can be estimated by
processing video and/or audio signal [11,12]. In this paper, we will not address
the problem of estimating the previous parameters, but we assume that they
are provided by one of the methods mentioned above. Furthermore, since θ2 is
constant and without loss of generality, we will consider in the remaining of the
paper that θ2 = 0, to simplify the equations.
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3 Removing of the Noise Coming from the Moving
Source

Below we describe a method for removing the moving source noise at a given
sensor k. In this purpose we choose a reference sensor r (r �= k), the mixed data
recorded at sensors k and r are respectively:

mk(t) = ak1s1 (t − τk1) + ak2 (t − τk2(t)) s2 (t − τk2(t)) (4)

mr(t) = ar1s1 (t − τr1) + ar2 (t − τr2(t)) s2 (t − τr2(t)) (5)

The propagation delay from source s2 to the sensors k and r are respectively
τk2(t) and τr2(t). We are going to resampled irregularly the signal recorded on
sensor r such that the propagation delay from s2 to the two sensors
(k and r) becomes the same. According to equation (2), τk2(t) = Dk2(t)

c . Set
(Xmk

, Ymk
, Zmk

) the known location of the sensor mk. Then the distance between
source 2 and sensor k at time t is given by:

Dk2(t) =
√

(Xmk
− Xs2(t))

2 + (Ymk
− Ys2(t))

2 + (Zmk
− Zs2(t))

2
. (6)

According to (3) and for θ2 = 0, one can easily show that:

Dk2(t) =
√

D2
k2(t0) − 2v2(t − t0)

(
Xmk

− Xs2(t0)

)
+ v2

2 (t − t0)
2
. (7)

Therefore:

τr2(t) =

√

τ2
r2(t0) − 2v2(t − t0)

(
Xmr

− Xs2(t0)

)

c2
+

v2
2 (t − t0)

2

c2
. (8)

To resample the signal recorded on sensor r, we compute mr(t + εkr(t)) by
Eq. (9), where εkr(t) is a time shift that will allow to equalize the propagation
delays of from the source 2 to the sensors k and r.

mr(t + εkr(t)) = ar1s1 [t + εkr(t) − τr1]
+ ar2 [t + εkr(t) − τr2[t + εkr(t)]] s2 [t + εkr(t) − τr2[t + εkr(t)]]

(9)

We then seek of εkr(t) such that:

εkr(t) − τr2[t + εkr(t)] = −τk2(t). (10)

One can shows that:

τr2[t + εkr(t)] =

√
τ2
r2(t) +

v2
2

c2
[εkr(t)]2 +

2v2εkr(t)

c2
[
v2(t − t0) − (Xmr − Xs2(t0))

]
.

(11)
Otherwise:

εkr(t) − τr2[t + εkr(t)] = −τk2(t) ⇒ [τk2(t) + εkr(t)]
2 = τr2[t + εkr(t)]2. (12)



458 W.S.B. Ouedraogo et al.

By combining Eqs. (11) and (12), one gets the quadratic Eq. (13), from which
one of the two solutions gives the desired εkr(t).

[εkr(t)]
2

[
1 − v2

2

c2

]
+ 2εkr(t)

[
τk2(t) − v2

2(t − t0) − v2(Xmr − Xs2(t0))

c2

]
+
[
τ
2
k2(t) − τ

2
r2(t)

]
= 0.

(13)
It follows that the resampled signal on sensor r is given by:

mr(t + εkr(t)) = ar1s1 [t − τr1 + εkr(t)] + ar2 [t − τk2(t)] s2 [t − τk2(t)] . (14)

Thus, for removing the moving source s2 from sensor k, we just have to linearly
combine mk(t) and mr(t + εkr(t)) as illustrated on Eq. (15):

m̃k(t) = ar2 [t − τk2(t)] mk(t) − ak2 [t − τk2(t)] mr(t + εkr(t))
= ak1ar2 [t − τk2(t)] s1(t − τk1) − ar1ak2 [t − τk2(t)] s1 [t − τr1 + εkr(t)] .

(15)

By construction, m̃k contains two paths of the target source s1, from which a
scaled and delayed estimation ŝ1 of s1 can be estimated by:

ŝ1(t) = ak1s1(t − τk1) − ar1
ak2 [t − τk2(t)]
ar2 [t − τk2(t)]

s1 [t − τr1 + εkr(t)] . (16)

The method described above allows us to remove the noise coming from the
moving source, but it also creates a second path on the target source (right term
in (16)), that we deal with the multipath suppression algorithm proposed in [13].
This algorithm is not detailed here due to lack of place.

4 Simulation Results

This section shows simulation results on synthetic data.The proposed method
is compared with the Linearly Constrained Minimum Variance (LCMV) beam-
forming method [8]. Let’s recall that, in the same way than the method described
in this paper, LCMV-beamforming also make use of the sources locations. It’s
aims at enhancing the signal coming from the direction of the target source, and
reduce noises coming from the other directions.

The efficiency of the estimation of s1 is quantified by the signal-to-interference
ratio (SIR) and by the signal-to-distortion ratio (SDR), as defined in [14]. To
compute the SIR and SDR, ŝ1 is decomposed as:

ŝ1 = starget + einterf + eartifact. (17)

where starget is a scaled and delayed version of the original source s1, and where
einterf , and eartifact are the interference, and artifact error terms, respectively
[14]. The SIR and the SDR are then computed through Eqs. (18) and (19),
respectively. The larger the SIR and the SDR are, the better the estimation is.
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Due to the dynamic nature of the model, the SIR and the SDR are computed
blockwise of length 1s.

SIR = 10 log10
‖starget‖2
‖einterf‖2 . (18)

SDR = 10 log10
‖starget‖2

‖einterf + enoise + eartifact‖2 . (19)

The fixed source, s1, is a speech while the moving source, s2, is a tone at
frequency 400 Hz that moves at 50 km/h parallel to the x-axis. Figure 3 shows
the original source s1 and the mixed signal recorded at microphone 1. We set
the coordinates of s1 to (0 m, 0.1 m, 1.5 m) and the coordinates of s2 at the
reference time t0 to (0 m, 5 m, 0 m). We consider a uniform linear antenna whose
sensors are distributed along the x-axis and centered at the origin of this axis.
The distance between two consecutive sensors is d = 5 cm and for each sensor k,
we set Ymk

= 0 and Zmk
= 1.5 m. Figure 2 shows the simulation scenario.

Fig. 2. Simulation scenario
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Fig. 3. Original source s1 and mixed data at microphone 1

Figure 4 shows the estimations of the target source, ŝ1, by proposed method
and by beamforming with different numbers of sensors. One can see from Fig. 4
that the proposed method is able to remove the noise from the moving source
with only 2 microphones, therefore there is no need to increase the number of
sensors. To achieve this performance the LCMV-beamforming method requires
at least 3 microphones (in this example).

Figure 5 shows the performance indices evolution versus time, both for the
proposed method and for LCMV-Beamforming. From the performance reported
on Fig. 5, we can conclude that our method performs better than the LCMV-
beamforming with 2 microphones, and achieves similar results than LCMV-
beamforming with 3 microphones.
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Fig. 4. Results of estimation of the target source s1

Fig. 5. Evolution of performance vs time

5 Conclusion

In this paper, we propose a method for removing noise coming from a fast mov-
ing acoustic source. The proposed method requires only two microphones and
exploits the known position of the moving source, assumed to be provided by
other modality like a video system or a GPS. The proposed method consists in
an irregular resampling of the data recorded by a reference sensor, and to lin-
early combine it with the data recorded by second sensor in order to remove the
undesired source. Simulation on synthetic data shows that the proposed method
outperforms beamforming with 2 sensors and achieves similar results than beam-
forming with a great number of sensors. Future works include evaluation of the
proposed method on actual data and to take into account localization errors.
The case of multiple undesired moving sources will also be investigated.
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Abstract. This article presents a new method for speaker verification,
which is based on the non-negative matrix deconvolution (NMD) of the
magnitude spectrogram of an observed utterance. In contrast to typical
methods known from the literature, which are based on the assumption
that the desired signal dominates (for example GMM-UBM, joint fac-
tor analysis, i-vectors), compositional models such as NMD describe a
recording as a non-negative combination of latent components. The pro-
posed model represents a spectrogram of a signal as a sum of spectro-
temporal patterns that span durations of order about 150 ms, while many
state of the art automatic speaker recognition systems model a proba-
bility distribution of features extracted from much shorter excerpts of
speech signal (about 50 ms). Longer patterns carry information about
dynamical aspects of modeled signal, for example information about
accent and articulation. We use a parametric dictionary in the NMD
and the parameters of the dictionary carry information about the speak-
ers’ identity. The experiments performed on the CHiME corpus show
that with the proposed approach achieves equal error rate comparable
to an i-vector based system.

1 Introduction

In this article an application of the non-negative matrix deconvolution (NMD)
with a parametric dictionary to the speaker recognition is considered. The spe-
cific task is the text-independent speaker verification, which is usually done
by modeling the probability distribution of mel-frequency cepstral coefficients
(MFCCs) [1]. MFCCs represent the spectral envelope of a signal within short-
time (20 ms) frames and their probability distribution is often modeled using
Gaussian mixture models (GMMs).

In GMM-based speaker recognition systems different short-time frames are
assumed to be statistically independent. Thus, temporal information is lost (e.g.
how a word was uttered, what was the accent and rate of speech). In order
to obtain a contextual information, delta and delta-delta features are typically
concatenated to the feature vectors [1]. This results with a set of approximately

c© Springer International Publishing Switzerland 2015
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decorrelated features that can carry information extracted from signal excerpts
with duration about 50 ms. There are also attempts to model the distribution
of spectrogram excerpts decorrelated by means of temporal DCT or 2D DCT in
the standard GMM or i-vector framework [2,3].

The compositional models [4] of a spectrogram provide alternative possibility
for speaker modeling. In these models, the magnitude spectrum is modeled as
a sum of magnitude spectra generated by different sources or atomic parts of
each source. In [5] application of compositional model in the speaker identifica-
tion system was presented. This system was prepared for a closed-set speaker
identification task. The dictionary was composed of groups of templates (so-
called exemplars) for a specific set of speakers. Each group contained exemplars
extracted from utterances of a single speaker. During the speaker recognition,
the NMD algorithm determined which exemplars were activated. The recog-
nized speaker was the one, whose exemplars were activated most often. In [6]
non-negative matrix factorization was used in order to extract robust features.

In this article a method for the speaker verification using nonnegative matrix
deconvolution with parametric dictionary is described. This solution gives a pos-
sibility to apply a compositional model to the speaker verification task as there
is no need to know all of the tested speakers in advance. Moreover, adaptation
of small number of parameters instead of whole dictionary requires less data. In
the method proposed in this work transformation of the spectrogram segments
to decorrelated coefficients is obtained separately for each state (phase of phone
realization). Thus, for each state various spectral patterns (about 150 ms long)
can be obtained by varying these uncorrelated coefficients.

2 Method

2.1 Model

The proposed system models the magnitude spectrogram X ∈ R
B×N of an

observed utterance with non-negative matrix deconvolution [7,8], where B is
the number of frequency bands and N is the number of time frames in the
utterance. NMD models X as a weighted linear combination of temporally shifted
spectrogram patches and it can be mathematically formulated as

X ≈
T−1∑

t=0

D(t)
t→
A , (1)

where D(t) ∈ R
B×P is the dictionary and A ∈ R

P×N is the activation matrix.
P is the number of templates in the dictionary. pth columns of each D(t), t =
1, . . . , T form a template, which is a B × T spectrogram segment that is used as
the basic building block in the spectrogram deconvolution. Operator over matrix
A denotes the shift of columns of matrix A t columns to the right. The t first
columns are padded with zeros. For example:

A =
[

1 2 3 4
5 6 7 8

]
2→
A =

[
0 0 1 2
0 0 5 6

]
. (2)
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In the present work we use parametric dictionary D(t) which is expressed as

D(t) = exp
(
D̂(t) + [V1(t)T1s . . . VP (t)TP s]

)
, (3)

where s is a length J column vector representing speaker variability of the dic-
tionary, D̂(t) ∈ R

B×P denotes speaker-independent (average) dictionary, and
matrices V1(t), . . . ,VP (t) ∈ R

B×K contain components representing speaker
variability for each of the P templates. Matrices Tp ∈ R

K×J transform state-
independent weights of components representing speaker variability s to state-
dependent weights (see Eq. 8). Thus, each template (which refers to the columns
of matrix D(t)) is composed of speaker-independent component and a linear
combination of J components modeling speaker variability. Each template cor-
responds to a state, while state refers to a segment of spectrogram centered on
a certain stationary part of a phoneme.

The system works in development, training and test phases. From the devel-
opment dataset, matrices D̂(t), V1(t), . . . ,VP (t), and T1, . . . ,TP are deter-
mined. In the training phase of the speaker verification system, given an enroll-
ment utterance, vector str is estimated and stored in the database. During the
test phase, vector ste is adapted to a test utterance. The similarity of the claimed
speaker and test speaker in the test utterance can be computed using a vector
similarity measure between str and ste. In this work the cosine similarity is used.
The spectro-temporal features used in this technique are mel-frequency spectral
coefficients (square root of energies at the outputs of mel-scale filterbank).

2.2 Development Phase

In order to determine speaker-independent template matrix D̂(t) and matrices
with components representing speaker variability V1(t), . . . ,VP (t), development
data with a phonetic annotation is needed. Excerpts of spectrogram that are
specific to each state are extracted from the training corpus in the form of so-
called exemplars and stored in set E = {epqs}p=1,...,P ;s=1,...,S;q=1,...,Qps

, where
p is the index of a state, q is the index of exemplar, Qps is the number of
exemplars for pth state, and s is the index of the speaker. Matrices D̂(t) and
V1(t), . . . ,VP (t) are computed in such a way, that by changing parameter vector
s (which has small number of elements) all exemplars from the development
can be approximated. Each exemplar is an excerpt (T consecutive frames) of a
spectrogram centered at the center of a segment labeled with a desired state.
Each exemplar can be considered as B × T matrix. After vectorization, vector
epqs with BT elements is obtained, where elements of the exemplar are ordered
with respect to the columns.

For each state all the exemplars are gathered, and the center point is esti-
mated. The center point mp is a point for which a sum of Kullback-Leibler
divergences to the exemplars is lowest:

mp = arg min
d

S∑

s=1

Qps∑

q=1

DKL(epqs‖d) = log

⎛

⎝ 1
∑S

s=1 Qps

S∑

s=1

Qps∑

q=1

eqps

⎞

⎠ , (4)
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where

DKL(X‖X̃) =
∑

ij

[
Xij log

(
Xij

X̃ij

)
− Xij + X̃ij

]
. (5)

Center point vectors mp (defined in Eq. 4) are used as the columns of speaker-
independent template matrix D̂(t); Each B-dimensional block of vector mp is
assigned to the pth column of matrix D̂(t) for t = 1, . . . , T .

The estimation of matrixces Vp(t) is done for each state p separately. Each
matrix Vp(t) is obtained from all exemplars of state p available in the develop-
ment dataset. For each state p covariance matrix Pp is determined as

Pp =
S∑

s=1

Qps∑

q=1

(log epqs − logmp)(log epqs − logmp)T (6)

and its eigendecomposition is performed. Let us denote eigenvectors of Pp

ordered according to respective eigenvalues as v(p)
1 , . . . ,v(p)

BT . The first K vectors
are used to construct Vp matrix as

Vp =
[
v(p)
1 . . . v(p)

K

]
. (7)

The role of matrices Tp is to transform blocks of matrix V(t) in such a way
that good approximation of exemplars can be achieved with state-independent
weights ss. This can be written as

cpqs ≈ Tpss ∀q, s, (8)

where cpqs are weights of components representing speaker variability Vp(t) for
pth state, for qth example of speaker s, while ss is the average vector s extracted
for speaker s. In order to obtain matrices Tp, vector cpqs representing speaker
variability is optimized for each exemplar epqs in the development dataset indi-
vidually as

cpqs = arg min
c′

{
T−1∑

t=0

[
DKL

(
epqs| exp(d̂p(t) + Vp(t)c′)

)]}
. (9)

Next, for each state p and for each speaker s in the development dataset, mean
µps is calculated as

µp,s =
1

Qps

Qps∑

q=1

cpqs. (10)

These means are used to construct matrix M as

M =

⎡

⎢⎢⎢⎣

µ1,1 µ1,2 . . . µ1,S

µ2,1 µ2,2 . . . µ2,S
...

...
. . .

...
µP,1 µP,2 . . . µP,S

⎤

⎥⎥⎥⎦ . (11)
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Matrix M is decomposed using semi-NMF algorithm [9]. In the preliminary
experiments, other techniques like PCA for this decomposition, but semi-NMF
gave the best results. The semi-NMF gives approximation of matrix M as the
product of mixed-sign matrix N and non-negative matrix W as M ≈ NW. In
contrast to NMF only matrix W is constrained to have nonnegative elements.
The columns of matrix N are basis vectors n1, . . . ,nK . Matrices T1, . . . ,TP are
the blocks of matrix with columns nk

⎡

⎢⎣
T1

...
TP

⎤

⎥⎦ = [n1 . . . nK ] . (12)

2.3 Training and Test Phase

During the training and test phases in the speaker verification system, the ele-
ments of matrix A and vector s have to be determined.

The parameters s and A of the model are optimized to minimize the
Kullback-Leibler divergence between a given utterance X and its model X̃ =
∑T−1

t=0 D(t)
t→
A as

min
s,A

DKL

(
X‖X̃(s,A)

)
+ λs‖A‖1 ,

s.t.
A ≥ 0 ,

s ≥ 0 .

(13)

There is also norm-1 penalty λs‖A‖1 of the activation matrix included in the
cost function, which can be changed by tuning weight λs. The starting matrix
A was obtained from annotations of the development dataset. Each frame has a
label that refers to one of six word-classes. Each state corresponds to on of these
word-classes. The parameters of the Markov chain for these labels are estimated
during the development phase. The starting matrix A contain likelihoods of
being in a given state for a given frame. Adaptation of the model’s parameters
can be summarized as a sequence of the following steps:

1. Initialization.
2. Update A matrix using the formula

A ←
T∑

t=0

A � DT(t)
←t

(X
X̃

)

DT(t)
←t

(1B×N ) +λs1P×N

, (14)

where multiplication � and division are element-wise, 1 denotes matrix filled
with ones, and operator ← works analogously to → in (1) but columns of a
matrix are shifted to the left.

3. Compute partial derivatives ∂DKL

∂s .
4. Perform line search with clipping of values of s below zero.
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5. Update the dictionary parameters

s ← s − α
∂DKL

∂s
(15)

where α refers to the step size obtained during the line-search.
6. Update the dictionary using new s. Normalize the dictionary - divide each

column of matrix D(t) by its norm.
7. If the iteration count is lower than the maximum number of iterations go to

Step 1.

During the training phase vector str is adapted to the enrollment utterance.
During the test phase ste is adapted to the test utterance. Next, these vectors
are compared using cosine similarity and the score is obtained as

score(str, ste) =
sTtrste

‖str‖‖ste‖ . (16)

This score is used to decide whether speaker in the training and test utterances
is the same or not. If the score is higher than a certain threshold then speaker the
answer of the system is that the speaker is the same in both (training and test)
utterances. The mentioned threshold can be set according to false alarm/miss
error tradeoff according to an application. In this paper, the threshold is set to
obtain equal error rates of two types.

3 Experiments

3.1 Data and Spectro-Temporal Representation

Experiments have been performed using recordings from the CHiME corpus
[10], which contains utterances from 34 speakers. The experiments were con-
ducted using recordings without additive noise. However, relatively small amount
of reverberation is present in the CHiME recordings (RT60 300 ms). For each
speaker 500 utterances with the same grammar are available. The vocabulary
contains 52 words. The first 300 utterances of each speaker have been used as a
development dataset, while the other 200 utterances were have been used as a test
utterances. The original data are sampled with rate 16000 samples/second. The
data were downsampled to 8000 samples/second in order to obtain a telephone
bandwidth. The telephone data were used in many previous speaker recognition
studies. The average duration of each utterance is about 1.5 s.

The proposed algorithm has been compared to state of the art systems which
use MFCCs to represent the signals. First, the preemphasis filter with coefficient
0.97 was applied. Next, the signal was divided into 25 ms frames. The frame step
was 10 ms. After FFT computation mel-frequency filterbank was used. The 40
filters spanned the frequency range 64–4000 Hz. After type II discrete cosine
transform 20 cepstral coefficients were used.
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Table 1. EER (%) for the baseline i-vector based system

UBM components i-vector dimension

10 15 20

128 8.89 7.62 7.46

256 4.41 4.57 6.16

512 5.02 5.55 6.19

The frame-wise feature extraction in the proposed system is equal to the
MFCC calculation, except the last two steps, namely the application of a loga-
rithm and the discrete cosine transform are not used. This is because the compo-
sitional model is based on sum of magnitudes approximation and an extraction
of uncorrelated components is done during estimation of matrix V(t).

3.2 Results

In order to compare the system proposed in this work, an i-vector based system
which can be considered as the state of the art system, was used. The MSR
Toolbox code was used to extract i-vectors [11]. First, the development dataset
was used to train the GMM universal background model (UBM). In the experi-
ments several number of components of the UBM were tried: 128, 256, and 512.
Next, for the test dataset the sufficient statistics and i-vectors were calculated.
The number of i-vector elements was 10, 15, or 20. Finally, a similarity between
training and test i-vectors was computed with the cosine similarity. The scores
were used to make a decision whether speaker in the training and test utter-
ances were the same. Based on these scores, equal error rate was calculated for
the test dataset. It is done by finding the threshold for which false acceptance
and rejection error rates are equal. The results are presented in Table 1. The
best results were obtained for the case where the number of UBM components
is 256 and the dimension of i-vector is equal to 10. The results obtained for the
proposed system are presented in Table 2. The system was tested for the fol-
lowing values of parameters: the number of dictionary templates P = 250, the
number of components representing speaker variability K = 10. Parameter K
was chosen according to the results of the preliminary experiments. Dimensions
J of parameter vector s was varied. The best result was obtained for J = 25,
where EER is 4.29.

Table 2. Results for the proposed system

Dimension of vector s EER

25 4.29

20 5.59

15 7.30
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4 Conclusions

In this work a new method for the speaker recognition is proposed. It is based
on compositional model with a parametric dictionary. The advantage of such a
model in contrast to the other known from the literature speaker recognition
methods is that compositional models describe a recording as a mixture of sig-
nals (desired signal and interference signals). Additionally, the applied models
represent spectrogram of the recording as a sum of spectro-temporal patterns
that span duration of order about 150 ms, while typical speaker recognition sys-
tems are based on substantially shorter speech excerpts (about 40 ms). Longer
patterns carry information about dynamical aspects of modeled signal.

In the best case the achieved EER is 4.29 % while the system based on i-
vector performs at 4.40 %. The obtained error is comparable to the baseline, but
the proposed method can be easily extended to model the interfering sources.
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Abstract. Currently, many virtual reality systems and augmented real-
ity displays lack the immersiveness and fidelity of real-life auditory space.
This limitation is derived from an inability to easily measure individual-
ized head related transfer functions (HRTFs), the key technology behind
high-fidelity spatial audio. This study presents an initial framework based
on a joint maximization EM algorithm for affordable HRTF estimation
that eliminates the need for both head-tracking and/or prior source loca-
tion knowledge from the HRTF measurement process.

1 Introduction

In natural listening environments, humans use a unique set of acoustic cues to
localize incoming sounds. These localization cues, collectively represented by a
head related transfer function (HRTF), describe the acoustic transformations
caused by direction specific interactions of a sound wave with a listener’s head,
shoulders, and outer ears. For high-fidelity virtual audio applications, an HRTF
measured on the specific listener is essential. Headphone-based spatial rendering
with non-individualized HRTFs can lead to inside-the-head localization, front-
back reversals, and unwanted spectral distortions [4]. While individualized HRTF
filtering can provide users of 3D audio systems with a requisite sense of immer-
sive realism, traditional processes for measuring individualized HRTFs are both
cumbersome and prohibitively expensive for the common consumer. As such,
significant advances must be made in the ease with which individualized HRTFs
are measured for the end user of a spatial audio system.

Traditional HRTFs are measured by playing a known broadband reference
audio signal from a loudspeaker at a known location with respect to the listener’s
head, and recording the signals that arrive at two microphones placed inside the
listener’s ear canals. The reference and recorded audio signals are then used to
calculate a transfer function for the linear time-invariant (LTI) systems created
by the anatomical features of the listener’s head, shoulders, and outer ears.
These sample HRTFs (extracted from binaural recordings) are then measured
at many spatial locations around the listener by changing the location of the
loudspeaker or listener in a known way. Later, the set of sample HRTFs and their
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E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 470–477, 2015.
DOI: 10.1007/978-3-319-22482-4 55



Towards Individualized Spatial Audio via Latent Variable Modeling 471

corresponding head-relative locations are used to estimate a spatially-continuous
HRTF (in a process sometimes referred to as HRTF interpolation or estimation).

Because both features (sample HRTFs) and labels (head-relative locations)
are known, traditional continuous HRTF estimation can be thought of as a
relatively straightforward supervised learning problem, and has been success-
fully accomplished using a number of methods (for a review, see [5]). How-
ever, conventional sample HRTF measurements utilize prohibitively expensive
loudspeaker arrays or headtracking devices to obtain head-relative loudspeaker
location data. This makes widespread commercialization of high-fidelity HRTFs
challenging. A potential solution to this problem is to try to estimate a con-
tinuous HRTF without head-tracking or loudspeaker arrays. Consider a sample
HRTF collected without knowledge of the location of the sound source. View-
ing this location information as a latent variable (functionally) converts HRTF
estimation into an unsupervised, or “blind” learning problem. With this inter-
pretation, the algorithmic framework developed in this study is a novel first step
towards the ultimate goal of commecially feasible individualized spatial audio.

The organization of the paper is as follows: Sect. 2 presents the structure of
the blind HRTF estimation process, which is initialized with an average HRTF
taken from an existing database. Section 3 further details the two fundamental
maximization steps, Binaural Source Localization and Continuous HRTF Esti-
mation, providing details on how these specific steps are leveraged in context
of the overall process. Section 4 presents the results of the blind HRTF estima-
tion algorithm on simulated data. Finally, Sect. 5 outlines some conclusions and
suggests the logical direction for future work and development.

2 The Iterative Localization and HRTF Estimation
Technique

The blind estimation process can be formulated as a coordinate ascent algo-
rithm. In this case, the algorithm is initialized with the parameters of a contin-
uous HRTF estimation model, and the estimation procedure is carried out in
an iterative joint maximization EM procedure [2] (two alternating maximization
steps): Binaural Source Localization (M-Step 1) and Continuous HRTF Estima-
tion (M-Step 2). Both steps are given the distinction of being a maximization
step because in each process the defined objective is being maximized under the
assumption that the missing data from the other step is known.

Figure 1 provides a simplified schematic of the relationship between the Bin-
aural Source Localization and Continuous HRTF Estimation M-Steps. As indi-
cated, starting with the parameters of an average continuous HRTF model
(an average HRTF taken from an existing database), and binaural recordings
(extracted from real sample HRTFs, see Sect. 3), a binaural localizer can be
used to estimate the locations (labels), of the sample data (Binaural Source
Localization step). Once estimated labels are available, a method for estimat-
ing the parameters of the continuous HRTF model can then use those location
labels to reapproximate the continuous HRTF for the next iteration (Continuous



472 E.S. Schwenker and G.D. Romigh

Binaural
Recordings

HRTF
Estimation

Binaural
Localization

HRTF
Model

Source
Locations

Start

Fig. 1. The iterative localization and HRTF estimation technique (ILHET). Starting
with an initial HRTF model estimate and a set of binaural recordings, traverse the
circle until an optimal HRTF estimation is obtained.

HRTF Estimation step). The newly approximated continuous HRTF is expected
to yield better localization results on the next iteration, and those better local-
ization results should in turn create an incrementally better continuous HRTF
estimate. This cycle continues until a convergence threshold is achieved.

In the current study, a broader view of a traditional EM algorithm is adopted
where focus is placed on the overall success of the individual M-Steps rather
than successful attainment of an optimal joint distribution over both the loca-
tion labels and continuous HRTF parameters. This modular formulation makes
the procedure more amenable to plugging-in existing algorithms for Continuous
HRTF Estimation and Binaural Source Localization to accomplish each M-Step.
One set of algorithms is described in detail below. For convenience, the overall
two-stage framework will be hereafter referred to as the Iterative Localization
and HRTF Estimation Technique or ILHET (pronounced /’aIl9t/).

3 Experimental Methods

To evaluate the effectiveness of the ILHET, two existing algorithms were imple-
mented in context of the Binaural Source Localization and Continuous HRTF
Estimation steps defined above. Note that these M-Step algorithms use pre-
recorded datasets of binaural recordings in place of real-time measurements for
the purpose of developing and refining the ILHET.

3.1 Binaural Source Localization

For the binaural source localization stage of the ILHET, the perceptually-based
localization model from Middlebrooks [1] was used. This model works by
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comparing the signals that arrive at the two ears (the binaural recordings) to a
database of the listener’s directional transfer function (DTF) templates, a set of
normalized HRTFs. Within the ILHET implementation a new set of DTF tem-
plates are calculated at each iteration by sampling the current estimate of the
continuous HRTF at 600 equally distributed locations, and normalizing those
sample HRTFs by the average sample HRTF spectrum across those locations.
For each binaural recording and DTF, a frequency-independent interaural level
difference (ILD) and right and left log-power spectral features are extracted.
A single location estimate is then generated for each binaural recording based
on which set of DTF features best match the features of the binaural recording.
A more detailed explanation of the feature extraction and template matching
procedure can be found in Middlebrooks [1].

3.2 Continuous HRTF Estimation

The continuous HRTF model used was that of Romigh et al. [3], based on the low
order spherical harmonic (SH) representation of HRTF spectra and the spatial
interaural time difference (ITD) function. With this model, sample HRTFs are
fit with a set of spatially continuous SH basis functions, and the resulting SH
coefficients (weights) form the new continuous HRTF parameters. The fidelity
of the SH model is controlled by the SH representation order, a constant that
determines the rate of spatial change of the basis functions over the sphere. As a
result, SH order becomes an important consideration in ILHET evaluation pro-
cedure that is specific to the continuous model described in this study. Using this
representation with a SH order of 4 or greater preserves all of the features rele-
vant for sound source localization with a relatively small number of parameters,
and also allows the use of a Bayesian HRTF estimation technique described by
Romigh [3]. The Bayesian HRTF estimation technique has the added advantage
of incorporating a priori knowledge of general HRTFs to significantly lower the
number of sample HRTFs required to estimate a full continuous HRTF. Details
of the Bayesian HRTF estimation technique and low-order SH representation
can be found in Romigh et al. [3].

3.3 Dataset

Datasets of binaural recordings containing 277 non-redundant measurements
(evenly distributed over 3D space) were created by convolving a known periodic
chirp stimuli, a commonly used reference signal in HRTF measurement, with the
measured HRTF set (collection of sample HRTFs) for 12 different listeners. All
HRTF sets were recorded at the Auditory Localization Facility (ALF) of the Air
Force Research Laboratory at Wright-Patterson AFB, OH, see Fig. 2.

3.4 Procedure

For each listener in the data set, a continuous HRTF was estimated using the
ILHET and a limited set of the available binaural recordings N = [6, 12, 25,
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Fig. 2. Auditory Localization Facility (ALF), at Wright Patterson Air Force Base, OH.

50, 100, 150, 200, 250]. Locations were chosen from those available by randomly
selecting a quasi-equally distributed set of spatial locations of the appropriate
number. Every run started with a non-individualized average HRTF model and
for each N, the ILHET was run for two iterations at each increasing SH order
from 0 to 14, with the resultant HRTF model forming the initial estimate at the
next SH-order run. This step-up procedure ensures that as the localizer becomes
more accurate, the HRTF model moves to higher orders, where finer spatial vari-
ation is captured. The algorithm terminated only after the final ILHET iteration
of the final SH order specified.

4 Results and Discussion

Evaluation results are summarized in Fig. 3 and broken down into two metrics
that reflect the performance of the two-stages of the ILHET, localization error
and the spectral distortion of the estimated HRTF. Here, localization accuracy
is defined as the total angular error between the true location of a sample HRTF
and the estimated location provided by the binaural localization step. Spectral
distortion is the root mean square (RMS) error between the true and estimated
spectra (in dB) from 200 Hz to 15 kHz. All results are averaged over listener
and location, and plotted as a function of the number of locations used in the
ILHET.

The results of Fig. 3a indicate that the average localization error (over unseen
sample locations) decreases rapidly as the number of locations is increased from
0 and approaches performance with the ground truth HRTF with 50 to 100
measurements (“ground truth HRTF” refers to the HRTF set recorded for each
subject in the ALF facility). This means that with 50 to 100 measurements,



Towards Individualized Spatial Audio via Latent Variable Modeling 475

0 50 100 150 200

15

20

25

30

35

40

45

50
(a)

Number of Measurements

A
ve

ra
ge

 A
ng

ul
ar

 E
rr

or

Ground Truth (95% CI)

Database Average (95% CI)

0 50 100 150 200
3

3.5

4

4.5

5

5.5
(b)

Number of Measurements

S
pe

ct
ra

l D
is

to
rt

io
n

4th Order
14th Order

Fig. 3. (a) Average angular error (simulated localization with final c estimate) versus
number of training locations (b) Spectral distortion versus number of training locations
as a function of SH interpolation order.

the localization stage of the algorithm trained with unlabeled data performs
as well as the localization stage with all of the labeled HRTF data available.
Figure 3b above highlights how the choice of order in the continuous HRTF esti-
mation (M-Step 2) affects spectral distortion. The results show that for a small
measurement set size (<50 locations), a high (14th order) representation pro-
duces better estimate than a low-order representation (4th order). The lower
4th order representation appears to benefit most from the design of the algo-
rithm and presents an interesting point of discussion, as Romigh et al. [3] find
that a 4th order SH representation achieved localization accuracy at a level of
performance comparable to a fully individualized HRTF, despite the fact that
a low order representation induces a significant amount of both spectral and
spatial smoothing. The spectral smoothing present in a 4th order estimate can
be visualized in Fig. 4.

Figure 4 shows the dramatic progression of the HRTF estimation procedure
for two different subjects as more locations are used in formation of the estima-
tion. Each separate panel represents the estimated 4th order HRTF spectrum
plotted as a function of angle around the median plane. The number at the top of
each panel identifies the number of spatial measurements used in the estimation.
In addition, note that color is used to indicate the level in decibels, where red
and blue specify regions of high and low magnitude, respectively. Each time the
ILHET algorithm is run, it starts with the same initial guess for the database
average, given on the far left and as is shown, does begin to capture the impor-
tant features of an individuals ground truth 14th order HRTF that was custom
measured in an anechoic facility. As a final point, its important to recognize that
the results presented here were exploratory in scope and that these insights into
ideal measurement set sizes and interpolation order, will serve to help guide the
algorithm towards a more refined design.
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Fig. 4. 4th order HRTF magnitudes (in dB) plotted as a function of angle along the
median plane (comparison between 2 different subjects for 4 different measurement set
sizes).

5 Conclusion and Future Work

This study used the iterative construct of a joint-maximization EM algorithm
to derive a novel method for HRTF estimation (ILHET) that eliminates both
knowledge of head orientation and/or loudspeaker location knowledge from the
process. Keeping to the practical problem, assumptions were made which gen-
eralized each M-Step into a more modular form; however, the overall method
was successful in its estimation of a continuous HRTF across a database of 12
subjects, as both the average localization error on testing data and the spectral
distortion improved over multiple iterations. To ensure robustness for measure-
ments taken in everyday listening environments (the eventual objective), the
necessary next steps involve consideration of non-anechoic and noisy recordings
to see how the proposed method handles more realistic input data. Furthermore,
note that currently the testing locations are evenly distributed over 3D space.
Randomizing or perhaps developing realistic head-movement paths (represent-
ing the motions of a person using the technique) would present an interesting
follow-up study. Finally, it is essential to begin formulating a plan for perceptual
testing of the estimated continuous HRTF structures, to ensure that the metrics
defined here function as suitable maximum likelihood estimators.
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Abstract. Blind source separation (BSS) was performed to reduce the crosstalk
in the surface electromyografic signals (SEMG) for the muscle force estimation
applications. A convolutive mixture model was employed to separate the SEMG
signals from two finger extensor muscles using a frequency-domain approach. It
was assumed that the tension of each muscle varies independently and the
independence of the SEMG was replaced by minimization of the covariance of
muscle forces represented by integrated SEMG. This covariance was also used
to resolve the permutation ambiguity inherent to the frequency-domain BSS.
The forces estimated by the reconstructed sources were compared with the
measured forces to calculate the crosstalk reduction efficiency. The proposed
algorithm was shown to be more effective in frequency domain than an ICA
algorithm for extensor muscles crosstalk reduction.

Keywords: Blind source separation � Convolutive mixture � Surface electro-
myography � Muscle crosstalk reducing

1 Introduction

Surface electromyografic signals (SEMG) are widely used in medicine, prosthesis
control and biomechanical studies [1]. Integrated SEMG (IEMG) is commonly used in
biomechanics as an estimator of muscle force [2]. However, crosstalk or interference
from neighbor muscles is a widespread problem in SEMG measurements [3]. It appears
when two or more muscles situated close to each other are active during a SEMG
recording. This effect may cause precision decrease of IEMG-based force estimations.
Blind source separation (BSS) methods may be performed to reduce this crosstalk [2,
4] and thus improve the performance of muscle force estimation.

BSS is a method of source signal recovering from several mixtures when no a priori
information is available on source properties (source spatial position etc.). To reduce
the crosstalk from neighbor muscles BSS is applied to mixtures, in which each muscle
is thought to be a source, and mixture signals are thought to be transformed vectors of
source signals. Most of mixing transformations are supposed to be linear, instantaneous
or convolutive. A linear instantaneous model can be used in the case of small muscles
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located close to each other [4]. However, validity of the instantaneity hypothesis is very
sensitive to electrode location [2]. Merletti [5] explained the limitations of the
instantaneous model by a convolutive effect of a volume conductor and by action
potential propagation. Jiang and Farina [6] proposed an extension of a BSS technique
based on second-order moments (SOBI) for the case of sources being delayed in the
mixtures. However, little information is available on convolutive mixture separation of
SEMG signals.

The purpose of this study was to perform convolutive BSS of SEMG mixtures to
reduce the crosstalk in the SEMG signals and to improve the precision of the muscle
force estimation. We first discus the hypothesis of independent sources for SEMG
signals. As independence of the SEMG sources is not always verified, we propose to
replace it by a criterion calculated on the integrated SEMG. The criterion characterizes
the fact that the variations of the forces produced by the two muscles are biome-
chanically independent. This criterion was also used to resolve the permutation
ambiguity inherent to the frequency-domain BSS.

2 Blind Source Separation of SEMG Signals

2.1 Mixture Model

Let us consider the standard convolutive mixing model of two EMG signals:

xkðtÞ ¼
X2
j¼1

XL�1

l¼0

hkjðlÞsjðt � lÞ; ð1Þ

where x1(t), x2(t) denote the observation mixtures, s1(t), s2(t) the source signals.
hkj(l) are the elements of the impulse response matrix from source j to sensor k, L is the
length of the impulse response. A noise-free model was considered as the noise can
be previously filtered before SEMG separation. The FIR convolutive mixing model can
be reformulated into an instantaneous one in the frequency domain. N-point short-time
Fourier transform was performed (STFT), which transformed the observation sequen-
ces {xk(t)} to the time-frequency domain {Xk(t, f)}. For each frequency bin f Eq. (1)
becomes:

Xkðt; f Þ ¼
X2
j¼1

Hkjðf ÞSjðt; f Þ; ð2Þ

or in the matrix form:

Xðt; f Þ ¼ Hðf ÞSðt; f Þ: ð3Þ
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2.2 Blind Source Separation of SEMG

BSS is generally based on the assumption of independent sources and the idea is to
adjust the separating filters G(f) such that the outputs y are as mutually independent as
possible in each frequency bin f:

Yðt; f Þ ¼ Gðf ÞXðt; f Þ; ð4Þ

Usually in ICA algorithms, G(f) is decomposed as:

Yðt; f Þ ¼ Rðf ÞVðf ÞXðt; f Þ; ð5Þ

where R is a rotation matrix, V is a whitening matrix. As sources are supposed to be
uncorrelated, the whitening matrix is calculated by eigenvalue decomposition of the
covariance matrix in each frequency. To calculate the rotation matrix R an indepen-
dence criterion must be chosen, for example, with the help of fourth-order
cumulants [7].

For SEMG signals, the hypothesis of mutually independent sources has to be
discussed. A muscle is composed of Muscle Fibres (MFs) organized into Motor Units
(MUs). This functional unit is composed of an alpha-motoneuron, innervating several
MFs (from tens to hundreds MFs depending on the MU and on the muscle charac-
teristics). Activation of the MU produces an electric field generated by each MF into
the MU. The summation of these electric fields provides a specific waveform called
Motor Unit Action Potential (MUAP). This full electrical activity is called electro-
myogram (EMG) and can be recorded using electrodes located on the skin surface
(SEMG). The contraction of Muscle fibres requires a train of action potentials which
induces a MUAP Train (MUAPT).

Finally a MUAPT (i.e. one source) writes as a train of a specific waveform. The
waveforms issued from two distinct muscles are very close as the physiological process
is the same and so are not independent. Some differences may appear only if the muscle
widths (and so the number of Fibers) are very different. Recall that an SEMG signal is a
sparse signal composed of a train of this waveform. If the two trains are not syn-
chronized or if a great part of the waveforms from two sources are not temporally
overlapped, then a BSS method based on independence may work as proved in [2, 4,
6]. The MUAP train produces a frequency discharge which varies with the force
produced by the muscle. The period of the train decreases when the force increases. It
means that in the case of low force level, the sources will be less temporally overlapped
than in case of high force level.

Consequently, it may appear that SEMG sources are not independent and even not
uncorrelated. We cannot use the whitening step and we must find a new criterion to
separate the sources. We focused on the signal nature to choose this criterion. Bio-
mechanics studies [8] showed that in isometric contraction, a linear relation exists
between the IEMG, which represents muscle activity, and the tension (or force) pro-
duced by the muscles. The IEMG is calculated from the estimated outputs by:
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Y int
j ðt; f Þ ¼ 1

s

Z t

t�s

Yjðz; f Þ
�� ��2dz; ð6Þ

where Y int
j is an IEMG of a j-th estimated sources, τ is an integration window varying

between 25 ms and 200 ms. Here we assume that the tension of each muscle varies
independently and we propose a new separation criterion where the minimization of the
covariance of the integrated SEMG replaces the independence of the SEMG.

cov Y int
1 ðt; f Þ; Y int

2 ðt; f Þ� � ! min: ð7Þ

The separating matrices G(f) were researched by adding the constraint as follows.
As we looked for normalized sources the main diagonal elements of the mixture matrix
H(f) are ones and the secondary diagonal elements are complex numbers hij with a
modulus in [0; 1]. By putting ones to the main diagonal we assume that the vector of
the sources is a vector of the contributions from the i-th source to the i-th electrode.

To reduce the estimation error we directly calculated the matrix G(f), which is
inverse to H(f). Firstly we looked for a 2-by-2 matrix whose main diagonal elements
are ones and the secondary diagonal elements are complex numbers equal to -hij. After
finding the matrix satisfying the criterion (7) it was divided by its determinant to make
this matrix inverse to H(f).

The minimization was performed using Nelder-Mead algorithm.

2.3 Permutation Problem

The main problem in a frequency approach is to resolve the permutation ambiguity. As
we had only two sources, only two permutations of estimated sources are possible in
each frequency bin f. We assume that the force profile of one source is similar in all
frequency bins, hence the IEMG of each estimated source in the f frequency bin is
highly correlated with the IEMG of the same estimated source in the f-1 frequency bin.
So, we choose the permutation which maximizes the sum of the covariances:

X2
j¼1

cov Y int
j ðt; f Þ; Y int

j ðt; f � 1Þ
� �

! max: ð8Þ

2.4 Source Reconstruction

The sources Y(t,f) were calculated in each frequency bin by applying the corresponding
separating matrix G(f) to the mixture X(t,f) in the same frequency bin.

Obtained sources were used to reconstruct the source signal using inverse STFT:

s_jðtÞ ¼ ISTFT Yjðt; f Þ
� �

; ð9Þ
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3 Results

3.1 Experimental Setting

Bipolar SEMG recordings (Fig. 1) were performed as described in [2] on one male
volunteer with no prior known condition or trauma on his right forearm. The SEMG
signals from extensor indicis (EI) and extensor digiti minimi (EDM) were acquired
during the experimental task of the extension of the index and the little finger by two
pairs of electrodes, which were placed over the muscles. These two fingers have been
chosen because they are known to be biomechanically independent. Five extensions
were produced. The first four extensions were alternating, i.e. only one muscle was
extended at the same time, and the fifth trial was a simultaneous extension of the index
and little fingers. Finger extension forces were measured at the same time by the
KISTLER 9017B force sensors. The SEMG and force recordings were performed by
mean of the BIOPAC MP150 acquisition system. Both force and SEMG recordings
were sampled synchronously at 2 kHz with a 500 Hz anti-aliasing filter. After acquiring
the SEMG signals were filtered forwards and backwards with an order eight Butter-
worth band-pass digital filer in [20; 500] Hz. The force signals were filtered forwards
and backwards with an order four Butterworth low-pass digital filer with fs = 5 Hz
because only low-frequency variations of the force have biomechanical application [9].
Integration time τ was fixed to 100 ms to calculate IEMG.

3.2 Blind Source Separation

Two BSS algorithms, one ICA based (JADE) [7] and the algorithm based on proposed
criterion (IEMG-based), were performed in frequency domain using the convolutive
mixture model. BSS were performed by two different ways. At first, BSS algorithms
were applied to the whole signal mixtures. Afterwards, the BSS algorithms were
performed as follows. The separation matrices were calculated only for the part of the
mixtures corresponding to the simultaneous extension of the index and little fingers, i.e.

Fig. 1. The reordered SEMG signals (a) and the forces (b) of the index and the little fingers. The
movement when the both fingers were active simultaneously is highlighted
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to the fifth movement (Fig. 1) and then applied to the whole signal mixtures in each
frequency bin.

The permutation problem, which is typical for the frequency approach, was solved
using the fact that the IEMG profiles of the reconstructed sources remained the same
from one frequency bin to another (Fig. 2).

The sources were reconstructed (Fig. 3) and used to estimate the finger forces. The
crosstalk reduction efficiency was estimated as described below.

3.3 Force Estimation and Crosstalk Reduction Efficiency Measure

The forces of EI and EDM muscles were estimated by calculating IEMG using the
reconstructed source signals. The IEMG was calculated by applying (6) to the recon-
structed source signals. As the force measurements, the calculated IEMG signals were
filtered forwards and backwards with an order four Butterworth low-pass digital filer
with fs = 5 Hz.

Fig. 2. The IEMG of the 3 first frequency bins of the estimated signal from extensor indicis
muscle

Fig. 3. The SEMG signal from extensor indicis muscle before and after BSS
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Signal-to-Crosstalk Ratio. The first four trials, which are corresponding to the
alternating finger movements, were used to calculate the Signal-to-crosstalk ratio
(SCR). As only one finger was active at the same time during these finger movements,
the signal of the source corresponding to the active muscle is a useful signal, and the
signal coming from the other source could be thought as a crosstalk. The SCR was
calculated as:

SCRðdBÞ ¼ 10 log10
P1

P2

� �
; ð10Þ

where P1 is a power of the signal of interest and P2 is the crosstalk.
The resulting SCR was calculated as a mean of SCRs in both initial or both

reconstructed signals.

Root-Mean-Square Deviation. The RMS deviation between the measured force and
the force estimated by IEMG was calculated after normalization of the measured and
estimated force to unit power.

3.4 Discussion

The crosstalk reduction efficiencies of JADE and IEMG-based algorithm were com-
pared for two different ways of separation matrices calculation (Table 1).

The findings lead us to believe that the crosstalk reduction in SEMG of finger
extensor muscles seems to be efficient when a convolutive mixture model is used. We
can also assume that the permutation problem was properly solved for the both
methods.

The performances of the both methods are close when G(f) were calculated from
the whole mixtures, because first four movements were alternating that makes the
sources unsynchronized and independent during the main part of the mixtures.

Table 1. Comparison of IEMG-based algorithm with JADE algorithm. The separation matrices
were calculated from the whole mixtures and from the fifth movement

Separation method SCR (dB) RMS

No method (signal mixture) 5,34 0,74
The matrices G(f) were calculated from the
whole mixtures

IEMG-based method 12,98 0,47
Frequency JADE 12,84 0,47
The matrices G(f) were calculated from the
fifth movement

IEMG-based method 11,12 0,54
Frequency JADE 8,30 0,56
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For the fifth movement the sources are strongly temporally overlapped that could
make the sources no more independent, because the MUAPs’ waveforms are similar.
That may explain the decrease of JADE performance when G(f) were calculated from
the fifth movement.

However, it would be beneficial to replicate the outlined approach for different
electrode positions and for SEMG signals from other muscles.

4 Conclusion

We focused on the separation of FIR convolutive mixtures of Surface electromyografic
signals (SEMG) to reduce the crosstalk in the SEMG signals and to improve the
precision of the muscle force estimation. As independence of the SEMG sources is not
always verified, we proposed to replace it by a criterion calculated on the integrated
SEMG. The criterion characterizes the fact that the variations of the forces produced by
the two muscles are biomechanically independent.
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Abstract. It has become common for neurological studies to gather
data from multiple modalities, since the modalities examine complemen-
tary aspects of neural activity. Functional magnetic resonance imaging
(fMRI) and electroencephalogram (EEG) data, in particular, enable the
study of functional changes within the brain at different temporal and
spatial scales; hence their fusion has received much attention. Joint inde-
pendent component analysis (jICA) enables symmetric and fully multi-
variate fusion of these modalities and is thus one of the most widely
used methods. In its application to jICA, Infomax has been the widely
used, however the relative performance of Infomax is rarely shown on
real neurological data, since the ground truth is not known. We propose
the use of number of voxels in physically meaningful masks and statisti-
cal significance to assess algorithm performance of ICA for jICA on real
data and show that entropy bound minimization (EBM) provides a more
attractive solution for jICA of EEG and fMRI.

Keywords: Data fusion · Independent component analysis · fMRI ·
EEG · Medical imaging

1 Introduction

In neurological studies, the collection of data using more than one modality is
becoming increasingly common since each modality provides a complementary
view of neural activity [12]. Thus, effective utilization of all such joint information
forms the main motivation for performing a combined analysis on multimodal-
ity data. Two functional modalities, fMRI and EEG, are more frequently fused
[2,19] due to the fact that the high spatial resolution of fMRI and the high tem-
poral resolution of EEG [10] augment each other, providing a more detailed view
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of functional changes within the brain. JICA is a straightforward, yet effective
method for coupling these two modalities in a symmetric and fully multivariate
manner and has become one of the most popular data multivariate fusion meth-
ods. Though any independent component analysis (ICA) algorithm can be used
to perform jICA, Infomax [3] is currently the most widely used technique. This
is due to several factors: first, Infomax has been shown to perform well on fMRI
data [17], a frequently fused modality in fusion studies, second, Infomax was
the first algorithm used to perform jICA [4], and third, Infomax is the default
method in the fusion ICA toolbox (FIT, http://mialab.mrn.org/software/fit/).

Despite this popularity, the comparative advantages of Infomax over other
ICA algorithms for fusion using jICA have not been studied for real neurological
data due to the lack of a ground truth. In this paper, we show that since little is
known about the nature of fMRI or EEG latent sources and their interactions,
it is preferable to use an algorithm with a flexible nonlinearity that can fit a
wide range of source distributions. In particular, we present a unified framework
for the comparison of ICA algorithms for jICA. We show that an algorithm
employing a dynamic nonlinearity that can better match latent sources drawn
from both super- and sub-Gaussian distributions, such as EBM [13], provides
more desirable performance than Infomax, whose fixed nonlinearity favors super-
Gaussian distributions [3].

Since the goal of fusing neurological data is to estimate interpretable results
and, where applicable, to determine components that differentiate between two
groups, we use the number of voxels in physically meaningful masks and statisti-
cal significance values to assess the performance of jICA algorithms on real data.
The masks are created with the widely used WFU PickAtlas toolbox [14,15] to
correspond to activation regions for the well known auditory oddball (AOD)
task, see e.g. [16]. The measure of statistical significance is defined in terms of
p-values corresponding to a two-sample t-test run on the estimated component
loadings.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the jICA model, AOD task, and mask creation. Then we describe the experi-
mental results in Sect. 3. Lastly, in Sect. 4 we present our conclusions.

2 Methods

The inherent dissimilarities between different modalities make their direct fusion
difficult. For this reason, rather than jointly analyzing the multimodality datasets
directly, it is often beneficial to reduce each modality to a feature, i.e., a lower-
dimensional representation of the dataset, for each subject within the study.
This allows for the exploration of associations across these feature sets through
an analysis of variations across individuals [1,5,6,18]. This investigation of the
variations between subjects through fused features provides a natural way to find
associations across modalities as this allows for the construction of a common
dimension for datasets of otherwise different dimensionality as well as ease of
identification and interpretation of biomarkers of disease [8,19].

http://mialab.mrn.org/software/fit/
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2.1 JICA

We begin with an extension of the generative model for ICA to K datasets

X[k] = A[k]S[k], k = 1, . . . ,K, (1)

where each dataset, X[k], is a linear mixture of M sources, s[k]m 1 ≤ m ≤ M , via
mixing matrices, A[k]. For solving (1), ICA can be performed on each dataset
separately, which while straightforward, is not a desirable solution because it
does not exploit interactions between datasets from different modalities.

By assuming that each dataset is mixed with the same mixing matrix, A, we
can extend ICA to the fusion of multiple datasets thus allowing us to convert
the problem posed in (1) into a single ICA in which the sources from multiple
disparate datasets form underlying “joint sources.” Joint component estima-
tion, and hence, the estimation of individual components, can then be achieved
through the performance of a single ICA on the horizontally concatenated X[k]

defined as

X = [X[1],X[2], . . . ,X[K]] = A[S[1],S[2], . . . ,S[K]]
= AS. (2)

In this application, let X[1] be the matrix of fMRI features for all subjects, whose
dimensions are M × V , where M is the number of subjects and V is number
of voxels in the fMRI spatial map (60,261). Similarly, let X[2] be the matrix of
EEG features for all subjects, whose dimensions are M × T , where T is number
of time points in the EEG feature (451).

The columns of the estimated mixing matrix, Â, provide the loadings of each
component across subjects. The p-th column of the estimated mixing matrix,
âp, represents the relative weights of the p-th source estimate, ŝp, for each cor-
responding subject. Since each dataset is reduced to a feature for each subject,
to look for differences in the expression of components between two groups, a
two-sample t-test can be performed on the component loadings, where one group
is represented by the component loadings from the first group and the second
by the component loadings from the second group. However, though easy to cal-
culate, the use of significance values to determine algorithm performance may
not be ideal as discussed in [2]. Additionally, a two-sample t-test can not be
performed for feature data drawn from only one group.

We should briefly describe the basic concepts behind both Infomax and EBM
and how their differences translate into separate performances for the two meth-
ods. Though not initially proposed in this light, Infomax can be shown to be
equivalent to using a maximum likelihood framework [7], and the use of a sigmoid
noninearity implies that all sources are drawn from a distribution that is hyper-
bolic secant in shape [7]. Note that though this distribution is super-Gaussian,
which can be a good approximation of many physical signals, such an assump-
tion leads to very poor performance in the case when the sources vary greatly
from the assumed distribution [7]. In contrast to this technique, EBM does not
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assume any distribution for the latent sources and instead attempts to upper
bound their entropy through the use of several measuring functions [13]. These
functions provide different bounds on the entropy of the latent sources, with the
tightest bound being closest to the true entropy. The measuring functions used
in this implementation of EBM describe a wide variety of distributions including
those that are unimodal, bimodal, symmetric, and skewed [13]. This ability to
describe a diverse set of distributions leads to more accurate estimation of all
sources within the mixture and thus better optimization of the cost. Therefore,
EBM is expected to provide improved performance over Infomax for achieving
ICA, since the main objective is the maximization of independence.

2.2 Auditory Task and Feature Extraction

The fMRI and EEG task AOD data used in this analysis were obtained from 22
healthy controls and 14 patients with schizophrenia. The subjects were scanned
while listening to three kinds of auditory stimuli: standard (500 Hz occurring with
probability 0.80), novel (nonrepeating random digital sounds with probability
0.10), and target (1 kHz with probability 0.10, to which a button press was
required). The fMRI data was preprocessed using: slice timing correction to
account for the delay time of the sequential acquisition of horizontal slices of the
brain, registration to correct for subject motion, and spatial normalization to
allow for the straightforward comparison of brains of differing size. After fMRI
preprocessing, task-related spatial activity maps are created for each subject and
used as features for the fusion analysis [8]. The EEG data was preprocessed by
amplifying the signals to correct for the minor observed changes. Event-related-
potentials (ERPs), which are used as features for the EEG data, are formed by
averaging the EEG matched to the stimulus of the AOD task for each subject
[8]. To produce results for healthy-only data, features were drawn and analyzed
from the healthy controls alone.

2.3 Mask Creation

The masks used in this analysis were created using WFU PickAtlas [14,15],
which allows for the creation of masks by selecting different areas of the brain
called Brodmann areas (BAs). Masks including areas that are expected to be
activated during the AOD task were created for each component. This prior
knowledge was obtained from previously published experimental results, see e.g.
[4], as well as from knowledge about the specific BAs, [9,11]. The included areas
for each mask are as follows:

1. Motor-temporal (MT): BAs 7, 8, 22, 29, and 39, which include areas corre-
sponding auditory processing and logical reasoning.

2. Auditory-motor (AM): BAs 1, 2, 3, 7, 10, 11, 21, 22, and 31, which include
areas related to motor control and auditory processing.

3. Frontal-temporal (FT): BAs 10, 30, 38, which include areas corresponding to
memory and intention.
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These masks are applied to the components in order to compare the relative
performance of ICA algorithms in producing physically meaningful components.

3 Results and Discussion

3.1 Detection of Significant Components

Using significance values is a natural way to compare algorithm performance for
the jICA fusion of data drawn from two groups, since a primary purpose of such
an analysis it to produce components, which significantly differentiate between
groups, e.g., patients from controls. The results of the experiment are shown
in Fig. 1 and Table 1. Only the physically meaningful components, which resulted
in uncorrected p-values below 0.05 are considered. These components correspond
to temporal-sensorimotor and auditory-motor activation regions, respectively.
We can see from Table 1 that EBM consistently produces components with
greater significance than Infomax.

Fig. 1. Statistically significant components obtained using jICA. a. corresponds to a
temporal-sensorimotor component. b. corresponds to an auditory-motor component.
The spatial maps correspond to z-maps thesholded at 3.5, where red and orange rep-
resent activation while blue represents deactivation. It should be noted that Infomax
found two other significant components, however neither of them was physically mean-
ingful. EBM found no other significant components showing its ability to reject false
positives.

It is also noteworthy that we can see the effect of using a dynamic nonlinearity
on the ERP components in Fig. 1. The ERP components are less sparse and
less unidirectional for EBM than they are for Infomax, due to the usage of a
nonlinearity that does not constrain the estimated sources to be super-Gaussian.
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Table 1. Statistical significance of components depicted in Fig. 1

Infomax EBM

Temporal-sensorimotor 0.005 0.002

Auditory-motor 0.023 0.005

3.2 Voxels in Masks

When data from two groups is not available, such as when the study is con-
ducted on only healthy individuals, statistical significance values cannot be
used to assess the algorithmic differences of jICA. Instead we use the number
of voxels in physically meaningful masks, because the purpose of neurological
data fusion is to produce physically meaningful components. See Fig. 2 for com-
ponents that were generated using the healthy-only data. These components
correspond to motor-temporal, auditory-motor, and frontal-temporal activation
regions, respectively. The number of activated voxels for each component that
overlap with the corresponding mask are shown in Table 2.

Fig. 2. Sample components obtained using jICA. a. corresponds to a motor-temporal
component. b. corresponds to an auditory-motor component. c. corresponds to frontal-
temporal. The spatial maps correspond to z-maps thesholded at 3.5, where red and
orange represent activation while blue represents deactivation (Color figure online).
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Table 2. Number of voxels in masks for the components depicted in Fig. 2

Infomax EBM

Motor-temporal 635 2171

Auditory-motor 1935 2391

Frontal-temporal 476 949

From Table 2, we see that EBM produces more activated voxels in spatially
interpretable regions. We also note from Fig. 2 that EBM produces components
with physically meaningful symmetries, such as the default mode network activa-
tion seen in c. Additionally, as observed in both Figs. 1 and 2, Infomax produces
components with more conflicting signs in voxels activation, which are difficult
to interpret physiologically, than those generated by EBM. Finally, as seen with
Figs. 1 and 2, EBM, in general, produces components with higher activation val-
ues than Infomax. Thus, for these reasons, we conclude that EBM provides a
more meaningful decomposition than Infomax.

4 Conclusions

In this paper, we discussed two methods to assess the performance of ICA algo-
rithms for the fusion of fMRI and EEG data using jICA. For detecting differ-
ences between two groups, the use of significance values is a natural way to
probe algorithmic differences, since one of the main purposes of such an analysis
it to produce components that significantly differentiate between groups. How-
ever, there can be issues with this metric. Additionally, this metric cannot be
used to assess the algorithmic differences of jICA for data drawn from only one
group, i.e., healthy-only data. Instead, we used the number of voxels in phys-
ically meaningful masks, since the main purpose of data fusion is to produce
interpretable results. We applied the first metric on AOD data drawn from sub-
jects with schizophrenia and healthy controls and the second metric on AOD
data drawn from only healthy subjects in order to evaluate the performance of
EBM versus Infomax. We demonstrated that EBM produces components with
greater significance, i.e., discriminatory power, than Infomax. We also showed
that the components estimated using EBM display more physically meaning-
ful symmetries. These components have, in general, higher activation and fewer
conflicting signs in voxel activation than Infomax. These results demonstrate the
effectiveness of an algorithm that employs a dynamic nonlinearity, such as EBM,
for the fusion of multiple modalities using jICA.
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Abstract. In this paper, we assume several heterogeneous, geolocalized,
and time-stamped sensors to observe an area over time. We also assume
that most of them are uncalibrated and we propose a novel formulation
of the blind calibration problem as a Nonnegative Matrix Factorization
(NMF) with missing entries. Our proposed approach is generalizing our
previous informed and weighted NMF method, which is shown to be
accurate for the considered application and to outperform blind calibra-
tion based on matrix completion and nonnegative least squares.

Keywords: Blind calibration · Mobile sensor network · Informed non-
negative matrix factorization · Missing values

1 Introduction

Monitoring a natural or an industrial area is usually obtained from automated
measurements provided by a set of sensors or from campaigns conducted by sci-
entists. In the first case, the collected data are very accurate but the high sensor
cost limits their number, hence a poor spatial sampling rate over the area. In the
second case, the geographical coverage is large but—as the cost of such campaigns
is high—sustaining them is difficult, hence a very low time sampling rate. Wire-
less Sensor Networks (WSN) were shown to solve the drawbacks of both above
strategies: sensors in WSN are usually cheap and mobile, thus allowing their mas-
sive deployment for both an accurate time and spatial sampling. Moreover, even
if they are individually less accurate than high cost sensors, they globally pro-
vide a similar accuracy while adding a finer spatial resolution [6]. However, their
calibration is an issue—as the sensors might not be accessible—and blind sensor
calibration techniques were proposed in, e.g., [1,4,9,11,12,14,16,18] for that pur-
pose. These methods may be divided into two categories, depending if the sensor
network is mobile [9,12,14,18] or not [1,4,11,16]. Blind Mobile Sensor Calibration
(BMSC) techniques usually assume that sensors in the same vicinity should pro-
vide the same data while Blind Fixed Sensor Calibration (BFSC) methods need
additional assumptions about the acquired signals in order to perform the calibra-
tion, namely the measurement matrix in a compressed sensing framework [4,16]
or the low-rank subspace in which the observed data lie [1,11].
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 497–505, 2015.
DOI: 10.1007/978-3-319-22482-4 58



498 C. Dorffer et al.

In this paper, we investigate the BMSC problem as an informed matrix fac-
torization, since our formulation provides a specific structure of the matrix
factors. Assuming the calibration parameters, the acquired signals, and the
sensed physical phenomenon to be nonnegative, we revisit blind calibration as
an informed Nonnegative Matrix Factorization (NMF) problem that we solve
with an extended version of our previous work [10].

The remainder of the paper is structured as follows. We introduce the con-
sidered problem in Sect. 2, for which we propose a solution in Sect. 3. Section 4
investigates the experimental performance of our proposed method while we
conclude and discuss about future work in Sect. 5.

2 Problem Statement

In this paper, we assume that a geographical area is observed by m heteroge-
neous, geolocalized, time-stamped, and mobile sensors along time. Such a situa-
tion arises in crowdsensing for example [8], where volunteers share some sensed
information provided by their mobile device, e.g., their smartphone. The data
obtained with crowdsensing are usually irregularly sampled in both the time
and the space, hence the need of appropriate methods to process them. In this
paper, we focus on blindly calibrating the sensors, for which we first introduce
the definitions and assumptions used in this paper.

Definition 1 ([15]). A rendezvous is a temporal and spatial vicinity between
two sensors.

Sensors in rendezvous should acquire the same phenomenon, thus providing the
same data. Such rendezvous are classically used in BMSC. Most approaches—
e.g., [9,12]—consider that uncalibrated data are randomly distributed around the
calibrated ones, so that averaging the measurements in rendezvous performs the
calibration. However, the averaging-based calibration is not always applicable—
see [7, Fig. 2] for example. As an alternative, some authors consider rendezvous
between both calibrated and uncalibrated sensors [14] in order to locally perform
the calibration1. The newly calibrated sensors are then used to calibrate the still
uncalibrated ones in other rendezvous and so on. Such a multi-hop calibration
technique needs a dense network to be deployed, so that one can ensure each
sensor to be in rendezvous with a (newly) calibrated sensor [14]. However, multi-
hop calibration might suffer from propagating calibration estimation errors.

In this paper, we start from the same idea of rendezvous and the same hypoth-
esis of dense sensor network but we propose a matrix formulation allowing to
calibrate the whole sensor network without multiple hops. For that purpose, we
first introduce the following definition.

Definition 2. A scene S is a discretized area observed during a time interval
[t, t+Δt). A spatial pixel has a size lower than Δd, where Δt and Δd define the
vicinity of the rendezvous.
1 Using calibrated and uncalibrated sensors has also been considered in BFSC [1,11].
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A scene can thus be seen as a grid of locations where sensors go to and where
they sense a physical phenomenon. When two sensors share a common position
in a scene, they are in rendezvous (Fig. 1). Setting Δt and Δd in order to define
a scene highly depends on the nature of the sensed phenomenon [15]. In this
paper, we assume to observe one scene2 S that we rearrange as a vector y �
[y(1), . . . , y(n)]T , where n is the number of space samples in S.

S X

Fig. 1. From a scene S (with n = 16 spatial samples, m = 3 sensors and 2 rendezvous)
to the data matrix X (white pixels mean no observed value).

We now assume that m heterogeneous sensors are observing S (see Fig. 1).
Let x(i, j) be the sample from Sensor j corresponding to the i-th sample in y.
Physically, x(i, j) is a sensor-output voltage which is here assumed to be linked
to the sensed phenomenon y(i) according to an affine relationship, i.e.,

x(i, j) � y(i) · αj + βj , (1)

where αj and βj are the unknown gain and offset associated with Sensor j,
respectively. These coefficients are assumed to be constant over the scene3.

We now define G and F , the n×2 and 2×m matrices which respectively read

G �

⎡

⎢⎣
y(1) 1

...
...

y(n) 1

⎤

⎥⎦ and F �
[

α1 α2 · · · αm

β1 β2 · · · βm

]
. (2)

If we assume each sensor to observe the whole scene S, the matrix form of Eq. (1)
then reads

X � G · F, (3)

2 The case of multiple scenes—out of the scope of this paper—is discussed in Sect. 5.
3 Some authors, e.g., [9], consider the sensor responses to drift over time.
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where X � [x(i, j)] is a low-rank matrix, assumed to be well-conditioned. Solving
the blind calibration problem then consists of estimating F from the observed
matrix X. In particular—considering the n × m weight matrix W defined as

W (i, j) �
{

0 if x(i, j) is not available,
ρj otherwise, (4)

where ρj is a weight coefficient associated with Sensor j—BMSC for Scene S
can be written as a weighted matrix factorization problem, i.e.,

min
G≥0,F≥0

‖W ◦ (X − G · F )‖2f , (5)

where ‖.‖f is the Frobenius norm and where ◦ denotes the Hadamard product.
In this paper, we assume X, G, and F to be nonnegative, which is satisfied

in practice for several environmental sensors such as dust sensors [17]. We now
introduce our proposed weighted NMF method for estimating F .

3 Proposed Blind Calibration Method

In this section, we introduce our proposed approach for BMSC. The problem (5)
may yield scale ambiguities in the columns of F , as for any source separation
problem. In order to solve them, we consider that one sensor—say Sensor m—is
calibrated and that its calibration parameters are respectively equal to4

αm = 1 and βm = 0. (6)

i.e., if the value x(i,m) is available, we get x(i,m) � yi. At this stage, it should
be noticed that the factorization problem in Eq. (5) is informed. Indeed, Eqs. (2)
and (6) show the last column in both G and F to be known. Taking into account
such information should improve the factorization and fix the scale ambiguity
inherent to blind factorization.

Recently, informed NMF methods were proposed [5,10] and considered the
available information as a penalization term in the NMF optimization [5] or as a
specific parameterization which sets the known parameters [10]. As a penaliza-
tion term does not freeze the known entries of G—which do not depend on the
observed data—the latter strategy seems better suited for the considered prob-
lem5. However, the parameterization in [10] only considers information on F . In
this paper, we thus generalize [10] in order to apply it to the considered BMSC
problem.

Using the same formalism as in [10], we define ΩF and ΩG, the binary matri-
ces which inform the presence/absence of constraints in F and G, respectively.
4 Actually, if no calibrated sensor is available, it is still possible to perform a relative

calibration, thus providing some consistency in the sensor responses [1,4,11].
5 An alternative might consist of successively (i) updating F or G with usual update

rules and (ii) replacing the known entries by their actual values at each iteration.
However, this strategy yielded a low performance in some preliminary tests.
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We then define ΦF and ΦG, the sparse matrices of set entries in F and G,
respectively. It should be noticed that

ΦF = ΩF ◦ F and ΦG = ΩG ◦ G. (7)

Defining Ω
F � 1 − ΩF (respectively Ω

G � 1 − ΩG) and ΔF (respectively
ΔG)—the matrix of free parameters in F (respectively in G)—we extend [10]
and derive

F = ΩF ◦ ΦF + Ω
F ◦ ΔF and G = ΩG ◦ ΦG + Ω

G ◦ ΔG. (8)

Solving Eq. (5) is then performed using an alternating technique, where we suc-
cessively aim to estimate F and G using the parameterization in Eq. (8), i.e.,

min
ΔF≥0

‖W ◦(X−G·ΦF −G·ΔF )‖2f and min
ΔG≥0

‖W ◦(X−ΦG·F−ΔG·F )‖2f . (9)

Using the same strategy as in [10]—the proof is omitted for space considera-
tions but it is based on a Majoration-Minimization optimization—we derive the
update rules which read, respectively:

F ← ΦF + ΔF ◦ Ω
F ◦

[
GT (W ◦ (X − G · ΦF )+)

GT (W ◦ (G · ΔF ))

]
, (10)

and G ← ΦG + ΔG ◦ Ω
G ◦

[
(W ◦ (X − ΦG · F )+)FT

(W ◦ (ΔG · F ))FT

]
. (11)

The superscript + here denotes the function defined as (z)+ � max{ε, z}, where
ε is a small user-defined threshold. It should be noticed that, contrary to [10],
we here consider a matrix factorization problem with missing entries. Let us
remind that calibration can only be done if the sensor network is dense enough,
as assumed in Sect. 2.

Lastly, in order to apply informed NMF to the considered problem, we must
initialize G and F , which is known to be tricky. Classical strategies consist of
a random initialization while some authors propose an initialization provided
by experts [10], the output of another factorization method [3], or a physical
model [13]. In this paper, we take advantage of the fact that X is low rank and
that some entries of X equal some of G according to Eq. (6). Our proposed strat-
egy to initialize NMF then consists of applying a matrix completion technique
[2] to X. The completed matrix is denoted X̃ hereafter. By construction, the last
column of X̃ is an estimation of the first column of G. Estimating F can then
be obtained from X̃ and G using nonnegative least-squares. In this paper, we
study the enhancement provided by our proposed informed NMF with respect
to the matrix-completion-based calibration, that we use for initializing NMF.

4 Experimental Validation

In this section, we aim to investigate the enhancement provided by our proposed
informed NMF method for BMSC. For that purpose, we simulate a crowdsensing-
like particulate matter sensing during a time interval [t, t + Δt), which satisfies
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the assumptions in Sect. 2. The scene is a 10 × 10 discretized area (the length
of y is thus equal to n = 100) which is observed by m = 26 sensors, i.e., m − 1
uncalibrated and mobile dust sensors [17] connected to mobile devices and one
calibrated, high quality, and mobile sensor6.

The observed concentrations in y range between 0 and 0.5 mg/m3, for which
the sensor response is assumed to be affine [17]. For each uncalibrated sen-
sor, each observed data point represents a nonnegative voltage linked to the
corresponding ground truth point in y according to Eq. (1). In particular, fol-
lowing the datasheet in [17], the gain and offset coefficients αj and βj are ran-
domly set according to a Gaussian distribution centered around 5 V/(mg/m3)
and 0.9 V, respectively, and then projected onto their respective interval of
admissible values—provided by the manufacturer [17]—i.e., 3.5 < αj < 6.5 and
0 < βj < 1.5, ∀j = 1, . . . , m − 1. We then get a 26 × 100 theoretical observation
matrix for which we randomly keep k+l samples in X only, where k (respectively,
l) is the number of calibrated (respectively, uncalibrated) sensor samples—with
k � l—hence providing the irregular spatial sampling over the scene. Lastly,
Gaussian noise realizations may be added to the observed uncalibrated sensor
data and the weight coefficients ρj defined in Eq. (4) are set to

ρj = 1, ∀j = 1, . . . , m − 1, and ρm = l. (12)

In this section, we aim to explore the influence of the number of rendezvous
between calibrated and uncalibrated sensors, the number of missing entries in
X and the influence of the input SNR to the BMSC performance. For each test
condition—i.e., one number of rendezvous, one proportion of missing entries, or
one input SNR—25 simulations are performed. In each run, we randomly set the
positions of the samples in X in the three experiments and we generate different
noise realizations in the last one. The number k of calibrated sensor values in
the m-th column of X is set to k = 4 in all the tests. Except when we make
these values vary, the proportion of uncalibrated sensors to have rendezvous with
calibrated ones, and the proportion of missing entries in X are set to 30 % and
90 %, respectively.

Figure 2 shows the Root-Mean Square Error (RMSE) achieved by our pro-
posed method in the above test configurations. The RMSEs are computed over
the first line7 of F , for the uncalibrated sensors only. Dark gray (respectively,
light gray) areas show the RMSE envelope while the solid lines (respectively,
dashed lines) represent the median RMSE obtained after 106 NMF iterations
(respectively, at initialization). On the left plot, we first investigate the effect
of the proportion of missing entries—ranging from 20 to 95 %—on BMSC in a
noiseless configuration. Our proposed method is robust to the number of missing
entries (with consistent RMSEs below 10−10 until 90 % of missing values) and
outperforms the matrix-completion-based initialization (with a median RMSE
6 Actually, we get k fixed, calibrated, and accurate sensors whose obtained values are

modeled as those of the m-th sensor in the BMSC problem.
7 RMSEs computed over the second line of F—not shown for space consideration—are

similar to those plotted in Fig. 2.
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Fig. 2. Performance of the BMSC method vs (left) the proportion of missing values,
(center) the proportion of rendezvous between calibrated and uncalibrated sensors, and
(right) the input SNR.

around 3). When 5 % of the data in X are available, the dense network assump-
tion is not satisfied anymore and the performance drastically decreases.

The central plot shows the influence of the number of uncalibrated sensors to
have rendezvous with calibrated ones. The achieved performance is quite similar
to the previous one, except that the upper side of the dark gray envelope is
much higher than the median RMSE when the rendezvous proportion is equal
to 10 %. Please note even when the calibration error is high, rows of F are
correctly estimated, up to a scale coefficient which cannot be handled anymore.

The right plot shows the influence of the input SNR on the BMSC perfor-
mance. In addition to the noiseless case, we make vary the SNR from 11 to 70 dB.
The calibration accuracy decreases with the input SNR and is quite similar to
the one obtained with matrix completion for the lowest tested input SNRs.

5 Conclusion and Discussion

In this paper, we revisited blind mobile sensor calibration as a matrix factor-
ization problem. Assuming any of the matrices in the factorization to be non-
negative, we generalized our previous informed NMF [10] for the considered
application. The approach was shown to be robust to the number of missing
entries and to the number of rendezvous between calibrated and uncalibrated
sensors. However, some assumptions—e.g., the dense sensor network over the
considered zone, or the fact that X is well-conditioned—might seem restrictive.
It should be noticed that the approach proposed in this paper can be extended
to the case of multiple scenes, by stacking all the observed—and sufficiently
different—matrices in one unique well-conditioned matrix, so that we multiply
the number of both the known sensors and the rendezvous. In that case, it is
more likely that the calibration assumptions will be satisfied.

In future work, we aim to explore several directions. As mentioned above,
joint-factorization will be investigated. Moreover, the NMF method proposed in
this paper is an extension of the Lee and Seung multiplicative update algorithm,
which is known to be slow to converge when the size of the data matrix is
large. Extending recent and fast NMF methods to our informed framework will



504 C. Dorffer et al.

be considered. We will also explore the calibration enhancement provided by
some spatial information about the scene S and the effects of the scene spatial
discretization on the calibration performance.
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Abstract. In this paper we introduce a content based image retrieval
system that leverages the benefits of the scattering transform as a means
of feature extraction. To measure similarity between feature vectors, we
adapt a probability product kernel and derive an approximate version
which can be implemented efficiently. The proposed approach achieves a
retrieval performance superior to comparable filterbank transform systems.
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1 Introduction

Many pattern recognition and pattern matching problems can be solved by a
general two-step approach, namely, feature extraction (FE) and applying a sim-
ilarity measure (SM). In image processing, the FE step typically refers to an
algorithm that produces a feature vector of few numerical values from an input
image such that it describes the contents of the image sufficiently well in a given
context of application, while the SM step assigns a real value to each pair of
feature vectors corresponding to the similarity of the respective images. Often,
the SM is a non-negative real value.

Without loss of generality, we assume that a higher degree of similarity cor-
responds to a lower similarity measure. The present work focuses on Content-
based image retrieval (CBIR). In CBIR, a signature database stores the features
extracted from a set of images. When a search query is initiated, the system
evaluates the SM and returns the images with the lowest SM values.

Many recent works about CBIR of texture images follow a common scheme
introduced in [5]. For the FE, the involved images are subjected to a filter-
bank transform. The SM evaluates the histogram similarity of the respective
transformed data, typically by applying a parametrized version of the Kullback-
Leibler Divergence (KLD). This idea was further developed in several later publi-
cations [3,4,9,16], often by varying the subband representation or the statistical
model. Linear filterbank transforms feed the input image to a bank of frequency-
selective filters, yielding a set of band-pass signals as a representation. One dif-
ficulty in constructing FE based on such a decomposition is that the higher
frequency subbands are prone to deformations in the spatial domain.
c© Springer International Publishing Switzerland 2015
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This work introduces an FE/SM framework for texture images which is
descriptive, yet robust with respect to translations and deformations. Unlike
the KLD based SM methods inspired by generative models, we motivate and
derive an SM by geometrical intuitions. Namely, we adopt ideas from sub-
band histogram estimation [5] and kernel machines [7] in order to construct
low-dimensional representations of Scattering transforms [11].

2 Feature Extraction with Scattering Transforms

2.1 Notations

In this work, we consider a signal as an element of the Lebesgue space L2(R2).
Bold-faced lowercase letters x or xi denote vectors, while regular lowercase let-
ters like x or xi denote scalar values. Depending on the context, uppercase letters
stand either for scalar values or for matrices. An asterisk denotes the convolution
f ∗ g of two signals f and g.

2.2 The Scattering Transform

Let θ ∈ L2(R2) be a rotationally symmetric window function with low-pass
characteristics. Let η ∈ R

2 \ {0} and J ∈ Z be fixed and R ⊂ SO(2) a finite
subgroup of rotation matrices. With ψ(x) = θ(x)eiηᵀx, we define the wavelet
ψj,R as

ψj,R(x) = 4−jψ(2−jRx), j ∈ {J, J − 1, ...}, R ∈ R. (1)

Furthermore, let φ ∈ L2(R2) be a low-pass and rotationally symmetric scaling
function, and define φJ ∈ L2(R2) as

φJ(x) = 4−Jφ(2−Jx), (2)

such that for the respective Fourier transforms ψ̂, φ̂, the equality

|φ̂(2Jω)|2 +
J∑

j=−∞

∑

R∈R
|ψ̂(2JRω)|2 = 1 (3)

holds, for almost all ω ∈ R
2.

The key building block of the Windowed Scattering transform (WST) [11] is
a dyadic wavelet decomposition Uφ,ψ,J,R[f ; j, R] of the input signal f ∈ L2(R2)
with the complex modulus performed on the band-pass components, defined as

Uφ,ψ,J,R[f ; j, R] =

{
|ψj,R ∗ f |, j ≤ J,

φJ ∗ f, j > J.
(4)

The modulus operation | · | traverses some of the energy of the band-pass sig-
nals towards lower frequencies. Therefore, Uφ,ψ,J,R can be applied to the output
signals |ψj,R ∗ f | again. Basically, the idea of the WST is to apply Uφ,ψ,J,R
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successively to the input signal and to keep the low-pass signals only. This
yields a tree-like structure of low-pass signals. The WST along the path p =
((j1, R1), ..., (jm, Rm)) of scaling factors and rotations is defined as

Sφ,ψ,J,R[f ; p] = φJ ∗ |ψjm,Rm
∗ | · · · ∗ |ψj1,R1 ∗ f | · · · ||. (5)

Scattering representations are known to be robust with respect to additive noise
and spatial translations and deformations [11]. Their expressiveness increases
with the maximum path length M .

In order to reduce redundancy and to increase invariance to distortions, the
Normalized WST (NWST) [1] was introduced. Let p̃ be the predecessor of p,
i.e. p = ((j1, R1), ..., (jm, Rm)) implies p̃ = ((j1, R1), ..., (jm−1, Rm−1)). Let ϕ
denote a narrow-band low-pass blurring filter. For the layers m ≥ 1, the NWST
is defined as

S̄ϕ,φ,ψ,J,R[f ; p] =

{
Sφ,ψ,J,R[f ;p]

|f |∗ϕ , if p is in layer m = 1,
Sφ,ψ,J,R[f ;p]
Sφ,ψ,J,R[f ;p̃] , otherwise.

(6)

Specifically, each subband of the WST is normalized by the respective parent
subband, except for the subbands in the first layer which are normalized by the
mean of the modulus of the input signal. In practice, a small constant is added
to the denominator in order to avoid division by zero.

2.3 Subband Modeling

In what follows, we propose to model the gray-value distributions of the different
WST subbands with parametrized probability density functions (PDFs) and
describe the images in terms of their respective parameters to obtain a complete
FE mechanism on top of the WST.

The most distinctive features in textures are those of higher frequencies and
are thus carried by the layers m ≥ 1. These layers contain signals of the form

Sφ,ψ,J,R[f ; p] = φJ ∗ |ψjm,Rm
∗ | · · · ∗ |ψj1,R1 ∗ f | · · · ||, p �= p0. (7)

Since the modulus of a band-pass filtered natural image looks a lot like a nat-
ural image under dim lighting condition, we can treat each subband as a low-
resolution approximation of the modulus of a band-pass filtered natural image,
provided the input signal of the WST is also a natural image. It is known,
that the distribution of band-pass components of natural images are close to
be Gaussian. For this reason, a generalized form of the normal distribution is
typically used as a model [10]. For complex band-pass filters like those used for
the WST, this implies a Rayleigh-like distribution of the respective moduli. In
order to further account for variations in shape, we employ Weibull Distribu-
tion (WD) as a generalization of the Rayleigh distribution as a model for the
WST subbands. As suggested in Fig. 1, the WD model is capable of describing
the subband histograms fairly well. In fact, the WD was already successfully
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Fig. 1. Histograms (blue) and respective ML Weibull fittings (red) of WST subbands
from layers m = 1 and m = 2 for different texture patches from the UIUC texture
database (Color figure online)

employed in the modeling of complex wavelet coefficients [9]. The PDF of the
WD is defined for x ≥ 0 as

pWD(x|λ, k) = λk · (λx)k−1e−(λ·x)k

, (8)

where λ ∈ R+ is the scale parameter, and k ∈ R+ determines the shape of the
WD. Even though it is sensible to model the WST with its Weibull coefficients,
it is still questionable if this decision is justifiable for the NWST. It is certainly
valid for the first layer since it only involves an overall scaling. Unfortunately, this
can not be assumed for the other descendant layers. Nevertheless, experiments
show, that in practice this assumption still holds. This is due to the fact that for
the most important ranges of k, the multiplicative inverses of WD distributed
samples exhibit histograms which again can be well modeled by the WD. Thus,
the WD will dominate the subband histograms of the NWST, as well.

The respective shape and scale parameters of the (N)WST subbands of a
texture image altogether constitute a feature vector. In order to extract them, a
Maximum Likelihood estimation can be employed [14].

3 The Similarity Measure

3.1 Probability Product Kernels

Intuitively, perceptional dissimilarity can be interpreted geometrically as a dis-
tance of data points in a metric vector space [15]. As a consequence, it appears
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worthwhile to base the similarity on a positive-definite kernel. The entities we
deal with in this work are probability distributions which motivates the use
of Probability Product Kernels [7]. Specifically, for two PDFs p and q, The
Bhattacharyya coefficient, defined as

BC(p, q) =
∫ ∞

−∞

√
p(x)q(x)dx, (9)

is a popular choice for Kernels and as such imposes a Hilbert space structure
on probability based features. It has been shown to be useful in several image
and audio processing tasks [2,6,17] and will thus be the starting point for the
following discussion.

3.2 Weibull Similarity

To the authors’ best knowledge, no closed form expressions exist for the
Bhattacharyya coefficient of a pair of WDs with different shape parameters. Our
aim is to derive a simple approximation of (9) for two WDs pWD(x|
λ1, k1), pWD(x|λ2, k2). Let us assume that k1 ≈ k2. This is a justifiable assump-
tion since the distributions are always compared for each subband individually.
Let us further define

k =
k1 + k2

2
and λ =

k

√
λk
1 + λk

2

2
. (10)

This ultimately leads to

BC(pWD(x|λ1, k1), pWD(x|λ2, k2))

=
√

λk1
1 λk2

2

√
k1k2

∫ ∞

0

xk−1e− λ
k1
1 xk1+λ

k2
2 xk2

2 dx

≈
√

λk
1λ

k
2

√
k1k2

∫ ∞

0

λ−k

k
pwbl(x|k, λ)dx = 4

√
λk
1λ

k
2

λk
1 + λk

2

√
k1k2

k1 + k2
.

(11)

For the sake of convenience, let us write the arithmetical and geometrical mean
of two values y1, y2 ∈ R+ as μa(y1, y2) = (y1 + y2)/2 and μg(y1, y2) =

√
y1y2,

respectively. From the last equation of (11) we define our similarity measure for
pairs of Weibull PDFs pWD(x|λ1, k1) and pWD(x|λ2, k2) as

K(λ1, k1;λ2, k2) =
μg(λk

1 , λ
k
2)

μa(λk
1 , λ

k
2)

· μg(k1, k2)
μa(k1, k2)

. (12)

Just like (9), the expression (12) defines a Kernel for Weibull PDFs.
For a pair of sets of N independent WDs with the parameter vectors

λ1,k1,λ2,k2 ∈ R
N
+ , we can write

K(λ1,k1;λ2,k2) =
N∏

i=1

K(λ1,i, k1,i;λ2,i, k2,i). (13)
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For a pair of WST transforms with N subbands, it is therefore straightforward
to derive an SM. Since by our definition a low SM indicates a high similarity we
apply the logarithm and reverse the sign which finally leads us to

SMScat(λ1, k1;λ2, k2) = −
N∑

i=1

ln K(λ1,i, k1,i;λ2,i, k2,i). (14)

4 Numerical Experiments

We evaluated our methods in an image retrieval experiment analogous to [5]. The
code reproducing the key results is available online1. For comparison, we also
implemented the FWT+GGD+KLD method according to [5]. Additionally, we
implemented a method based the Dual-Tree Complex Wavelet Transform (DT-
CWT), inspired by [9]. For the latter, the subband histograms were modeled by
the WD, but the KLD was replaced by the proposed SM in (14) for the sake of
comparability.

The database D1 is the same as used in [5]. The database D2 was gener-
ated from images of the following subset of the UIUC texture database2: Bark1,
Bark2, Wood2, Wood3, Water, Marble, Floor1, Floor2, Pebbles, Wall, Brick1,
Glass1, Glass2, Carpet1, Carpet2, Wallpaper, Fur, Knit, Curdoroy, Plaid. Two
640 × 480 images from each class were used to create five overlapping 256 × 256
patches which are then scaled down to half the edge size. Hence, we get a data-
base of 20 different texture classes each containing ten 128 × 128 patches. All
image patches are normalized to zero mean and unit energy, in order to avoid
any bias caused by the overall lighting condition of each original texture image.
The set of all patches generated from the same texture is considered a class. Its
cardinality will be denoted by c in the following. Consequently, c = 16 for D1
and c = 10 for D2. For each image patch, the c − 1 most similar patches were
retrieved. The retrieval rate for each patch is defined as the ratio of the number
of retrieved patches from the same class to c−1. The overall retrieval rate is the
average of the retrieval rates for all the images in the database.

The retrieval rates are summarized in Table 1. While WST+WD+SMScat

produces a similar result as DT-CWT+WD+SMScat on Database D1,
NWST+WD+SMScat is able to outperform all of the competing frameworks by
4.72% for M = 2 and 5.12% for M = 3. Database D1 is widely used as a bench-
mark for CBIR. In order to provide a sense for the state of the art, Table 2 sum-
marizes the results from recent publications on comparable approaches: DWT +
Generalized Gamma Distribution (GΓD) [3], Wavelet Domain Hidden Markov
Models (WD-HMM) [4] and Rotated Complex Wavelets [8]. Also, the original
result for FWT+GGD+KLD from [5] was included, since we were not able to
reproduce it. To the authors’ best knowledge, the best published result for this
1 http://www.gol.ei.tum.de/fileadmin/w00bhl/www/texture retrieval scattering 15.

zip.
2 http://www-cvr.ai.uiuc.edu/ponce grp/data/.

http://www.gol.ei.tum.de/fileadmin/w00bhl/www/texture_retrieval_scattering_15.zip
http://www.gol.ei.tum.de/fileadmin/w00bhl/www/texture_retrieval_scattering_15.zip
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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Table 1. Performance of WST + WD and NWST + WD in comparison with FWT +
GGD and DT-CWT + GGD on databases 1 and 2

FWT DT-CWT WST+WD, WST+WD, NWST+WD, NWST+WD,

+GGD +WD M = 2 M = 3 M = 2 M = 3

+KLD +SMScat +SMScat +SMScat +SMScat +SMScat

D1 75.50 % 78.18 % 78.93 % 78.14 % 84.90 % 85.30%

D2 52.39 % 59.61 % 66.50 % 63.78 % 66.94% 65.17 %

Table 2. Performance of state of the art methods on Database D1

FWT+GGD+KLD FWT+GΓD+KLD WD-HMM Rotated Wavelets

76.93 % 78.40 % 80.05 % 82.81 %

experiment so far was achieved by Rotated Complex Wavelets with a retrieval
rate of 82.81% which is still outperformed by 2.09 % by NWST+WD+SMScat

with M = 2 and 2.49 % with M = 3.
Database D2 is considerably smaller than D1, but involves more variation

within the classes, for instance, in terms of camera angle and deformation. Again,
the WST greatly improves the retrieval performance. However, this time the
regular WST does not fall behind the NWST. Also, increasing the maximum
path length up to M = 3 harms the performance. However, we can conclude
that NWST+WD+SMScat performs comparably well and produces the best
results in both our test settings.

5 Conclusion and Future Work

In this work, we derive an FE based on the Scattering transform of texture images
and propose an SM inspired by the Bhattacharryya kernel. In the application of
image texture retrieval, our method demonstrates superior performance. Since
approaches for rotation invariant Scattering representations are already avail-
able [12,13], it appears feasible to extend the presented ideas towards a rotation
invariant CBIR framework which would allow for more general problem settings.
The Kernel property of (12) enables us to transfer the idea to other machine
learning tasks, such as classification via support vector machines. Since the Scat-
tering transforms of other data types can be expected to have similar statistics,
it could be viable to apply the proposed techniques on other signal types with
repetitive characteristics, for instance in audio processing.
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Abstract. Perfusion magnetic resonance imaging is a technique used in
diagnostics and evaluation of therapy response, where the quantification
is done by analyzing the perfusion curves. Perfusion- and permeability-
related tissue parameters can be obtained using advanced pharmacokinetic
models, but, these models require high spatial and temporal resolution
of the acquisition simultaneously. The resolution is usually increased by
means of compressed sensing: the acquisition is accelerated by under-
sampling. However, these techniques need to be improved to achieve
higher spatial resolution and/or to allow multislice acquisition. We pro-
pose a modification of the L+S model for the reconstruction of perfusion
curves from the under-sampled data. This model assumes that perfusion
data can be modelled as a superposition of locally low-rank data and
data that are sparse in the spectral domain. We show that our model
leads to a better performance compared to the other methods.

Keywords: Perfusion · MRI · DCE-MRI · Compressed sensing · Spar-
sity · Locally low-rank

1 Introduction

Perfusion magnetic resonance imaging (MRI), more specifically the dynamic
contrast enhanced MRI (DCE-MRI) [1–4], is nowadays a promising method for
medical diagnosis and evaluation of therapy response. Using perfusion MRI,
oncological and cardiovascular diseases can be diagnosed and their effective treat-
ment can be monitored. In perfusion MRI, a suitable contrast agent is admin-
istered intravenously. Due to the cardiovascular system, the contrast agent is
distributed within the organism and its temporal and spatial distribution can
be observed and analyzed. The time dependency of contrast agent concentration
in a region of interest is called perfusion curve(s). The tissue-specific perfusion
parameters, necessary for the diagnosis, are estimated from the perfusion curves
by approximation using a pharmacokinetic model.

The usual pharmacokinetic models in use are the Tofts and the extended
Tofts models [5], which only allow estimating of a limited number of perfusion
c© Springer International Publishing Switzerland 2015
E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 514–521, 2015.
DOI: 10.1007/978-3-319-22482-4 60
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parameters. To allow estimating of additional highly relevant perfusion parame-
ters such as the blood flow and vessel permeability, more complex models need
to be used [5]. However, successful application of such models assumes high tem-
poral resolution of the acquisition to capture the vascular-distribution phase of
the contrast agent. These requirements substantially limit the achievable spa-
tial resolution of the data acquired or the ability to acquire multiple slices (i.e.
perfusion curves in 3D volume). Using the classic (Nyquist-rate) acquisition in
MRI, it is impossible for both resolutions to be high at the same time.

Therefore, much effort is devoted to using compressed sensing (CS) in MRI.
In MRI, the images are acquired in their Fourier domain (also termed k-space).
CS comes into play naturally by under-sampling of the k-space (sampling below
the Nyquist rate). The k-space sampling trajectories used include: cartesian sam-
pling [6], radial sampling [7] (including the flexible golden-angle technique [8])
and spiral trajectories [9].

Good quality of reconstruction is strongly dependent on good a priori knowl-
edge of the signal. Many CS reconstruction techniques applied to DCE-MRI use
basic formulations of single priors, like the total variation (TV) in the spatial [8]
or the temporal [10] domain or the wavelet transform in the spatial and/or the
temporal domains [6]. The assumption that different tissues have different but
consistent perfusion characteristics is usually mathematically described by the
low-rank property of the so-called Casorati matrix, which is an image sequence
reshaped such that each image in time forms a column vector [11,12].

More sophisticated approaches in DCE-MRI combine several priors. Arti-
cle [13] assumes that the Casorati matrix is low-rank and sparse in the spectral
domain (row-by-row spectra). A more efficient approach [14] regards the data
as the sum of a low-rank component and a component sparse in the spectral
domain (L+S model). Superior results have been achieved by regularization via
low-rank penalty block-by-block, like in [15,16].

In the present article, we propose to use the sum of locally low-rank matrix
and a component which is sparse in the spectral domain (local L+S model)
instead of the (global) L+S model in [14]. We show that we can achieve better
signal-to-noise ratio (SNR) with our local L+S model than when using global
L+S model. We compare this approach with a model using locally low-rank and
component sparse in the spectral domain simultaneously (locally L&S model) as
presented in [16].

2 Materials and Methods

To work with perfusion data, image sequences are reformatted to the so-called
Casorati matrix [11], where each column of this matrix represents a single image
in one temporal phase. Such a matrix is used in all models mentioned below.

2.1 Locally Low-Rank and Sparse Matrix Model
(Local L&S Model)

The locally L&S model [16] utilizes the fact that perfusion curves have similar
time courses in some space regions and have a sparse row spectrum. The similar
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time-dependency of perfusion curves in each tissue of desired data reconstruction
M is enforced by assuming a low rank of non-overlapping blocks of matrix M
(with a few non-zero singular values in each block) and a sparse row spectrum
with a few non-zero elements. Matrix M is of size N1N2 × Nf, where N1, N2

represent the size of each image/frame and Nf is their overall number. The
reconstruction can be achieved by solving the following convex optimization
problem:

min
M

1
2
‖EM − d‖2F + λL

Nb∑

i=1

‖BiM‖∗ + λS ‖TM‖1 , (1)

where T is the operator of 1D Fourier transform applied to the matrix rows,
E is the under-sampled 2D Fourier transform for each image (representing the
measurement process), d is the under-sampled (acquired) data in k-space, and
λL, λS are suitable regularization parameters. Bi is an operator choosing the
block i out of the entire matrix, and Nb is the number of blocks. The quadratic
term is the data fidelity term, ‖M‖∗ is the nuclear norm, which is the sum of
singular values of M (enforces low-rank), and ‖TM‖1 is the �1-norm, which is
the sum of absolute values of entries in TM (enforces sparsity of perfusion curves
in the Fourier domain).

2.2 Low-Rank and Sparse Matrix Decomposition
(Global L+S Model)

In the context of perfusion MRI, Low-Rank and Sparse Matrix Decomposition
(L+S model) was first introduced in [14]. Unlike the L&S model (either local
or global), which aims at promoting low-rank and spectral-domain sparsity of
the solution simultaneously, the L+S model aims to compose the desired recon-
struction matrix as a sum of low-rank matrix L and matrix S with sparse row
spectrum, i.e. in this model the desired reconstruction is M = L + S. This
decomposition can be obtained by solving the following convex problem:

min
L,S

1
2
‖E(L + S) − d‖2F + λL ‖L‖∗ + λS ‖TS‖1 . (2)

2.3 Locally Low-Rank and Sparse Matrix Decomposition
(Local L+S Model)

In [15,16], the locally low-rank constraint is used instead of the (global) low-rank
and it can improve the quality of desired reconstruction data if applied to areas
with similar perfusion curves. We propose using this locally low-rank prior in
the previously introduced L+S model instead of using the global low-rank of
matrix L. The local L+S model can be formulated as

min
L,S

1
2
‖E(L + S) − d‖2F + λL

Nb∑

i=1

‖BiL‖∗ + λS ‖TS‖1 . (3)
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A crucial question is choosing the appropriate size of the blocks in order to
capture areas with similar perfusion parameters and improve the reconstruction
as will be shown in the following.

3 Experimental Results

3.1 Perfusion Phantom

For the purpose of simulation, we have created a perfusion phantom using Mat-
lab. We have utilized the modified Shepp-Logan phantom [17], which simulates
a brain slice, see Fig. 1. We use a perfusion phantom of 100 × 100 px × 100
time points in size. The perfusion curves assigned to clearly separated areas of
the phantom share the same behaviour in time, following the log-normal model
[3]. At every time instant, the k-space values have been perturbed by additive
Gaussian noise with a standard deviation of 0.05 to simulate the measurement
noise. This model is simplified but it allows us to accurately compare the behav-
iour of methods.

To capture perfusion data, we use radial trajectories, where random slopes of
halflines startingat theoriginof k-spaceareused independently for each time frame.

Fig. 1. Single temporal frame of perfusion phantom (arrows mark areas in which recon-
struction of perfusion parameters using different methods is further compared) (Color
figure online).

3.2 Under-Sampled Perfusion Data Reconstruction

For under-sampled perfusion-phantom data, three types of reconstruction were
performed, based on: local L&S model (1), global L+S model (2) and local L+S
model (3). The respective optimization problems were solved using the proximal
gradient method [18]. Non-overlapping square blocks of different sizes were used
for local methods. The parameters λL, λS were empirically chosen (dependent
on the method used, size of blocks and resolution, see Figs. 2 and 3) such that
the reconstruction gave the highest possible SNR. In all cases, algorithms were
stopped when the relative change in the solution was less than 10−5.



518 M. Daňková et al.

Fig. 2. Comparison of global and local L+S models — dependency of SNR on percent-
age of measured coefficients.

Fig. 3. Comparison of local L+S model and local L&S models — dependency of SNR
on percentage of measured coefficients.

Reconstructions of perfusion curves were compared for the global and local
L+S models, using different sizes of the blocks and different percentages of mea-
sured coefficients, see Fig. 2. Partitioning into blocks brought an increase in the
SNR. It can be seen that block size affects the reconstruction quality. The opti-
mal block size depends on the contents of the image used — better performance
is achieved for blocks small enough to include only a tissue with similar perfusion
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Fig. 4. Reconstruction of perfusion curves (from 35 % of the Fourier coefficients) in
different regions (marked by red arrows in Fig. 1) using global and local L+S model
(left) and local L+S and local L&S model (right), the last pair represents non-perfused
tissue (the blue line, i.e. the original curve, is hidden under the red line, representing
the local L+S model) (Color figure online).
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parameters but large enough to regularize sufficient area. For the perfusion phan-
tom, the optimal block sizes were 10 × 10 and 15 × 15, the latter valid for the
strongly under-sampled acquisition.

A comparison of the local L+S model (for an optimal block size of 10 × 10)
and the local L&S model for various block sizes is shown in Fig. 3. It can be seen
that the local L+S model has even a better SNR than when using the optimal
block size (10 × 10 or 15 × 15) in the local L&S model.

In Fig. 4, the reconstructed perfusion curves (from 35 % of coefficients) in
different regions (marked by red arrows in Fig. 1) are compared for global and
local L+S model (with the reference perfusion phantom curves), local L+S model
and local L&S model respectively. Usually, the local L+S model better follows
the shape of perfusion curves but it is smoother than in the case of the global
L+S model and local L&S model. Notice also that non-perfused tissue (Fig. 4(c))
is also better approximated by the local L+S model than by the others.

To have an idea of the speed of convergence, the reconstruction from 35 % of
measured coefficients, using blocks 10×10, takes about 24 iterations (30 s) using
the L&S model, and 163 iterations (105 s) using the L+S model. The local L+S
converges faster than the global L+S model because the SVD (singular value
decomposition) is computed on much smaller matrices.

4 Conclusion

The use of advanced pharmacokinetic models in magnetic resonance perfusion
imaging is a promising method that allows estimating of additional highly rele-
vant perfusion parameters. However, it requires high spatio-temporal resolution,
which is not possible when using the classic acquisition in MRI. The article pro-
poses using a local L+S model to reconstruct under-sampled perfusion data. The
results obtained on a perfusion phantom indicate that the proposed local L+S
model recovers more accurate perfusion curves than the global L+S model and
the local L&S model, even in the highly under-sampled regime.
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Abstract. Sonography techniques use multiple transducer elements for
tissue visualization. The signals detected at each element are combined
in the process of digital beamforming, requiring that large amounts of
data be acquired, transferred and processed. One of the main challenges
is reducing the data size while retaining the image contents. For this pur-
pose, we propose a component based model for the raw ultrasonic signals.
We show that a decomposition based approach with a suited processing
scheme for each component individually, can achieve over twenty-fold
reduction of needed data size.

Keywords: Biomedical ultrasound · Signal modeling · Sparse represen-
tation · Dictionary learning

1 Introduction

Medical ultrasound imaging allows visualization of internal body structures by
radiating them with acoustic energy and analyzing the returned echoes. The two-
dimensional image typically comprises of multiple one-dimensional scan lines,
each constructed by integrating the data collected by the transducer elements
following the transmission of an acoustic pulse along a narrow beam. As the
transmitted pulse propagates through the body, echoes are scattered by acoustic
impedance perturbations in the tissue. These back-scattered echoes are detected
by the transducer elements and combined, after aligning them with the appro-
priate time delays, in a process referred to as beamforming, which results in
Signal-to-Noise Ratio (SNR) enhancement. Each resulting beamformed signal
forms a line in the image.

Taking into account the high frequency used for ultrasound imaging, the
number of transducer elements and the number of lines in an image, the amount
of data needed to be transferred and processed is very large, motivating methods
to reduce the amount of needed data without compromising the reconstructed
image quality and its diagnostic credibility. In recent years, there has been grow-
ing interest in reducing the amounts of data in general signal processing appli-
cations, and significant research efforts have been focused at the field of sparse
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E. Vincent et al. (Eds.): LVA/ICA 2015, LNCS 9237, pp. 522–529, 2015.
DOI: 10.1007/978-3-319-22482-4 61



Decomposition-Based Compression of Ultrasound Raw-Data 523

representations and Compressed Sensing (CS) [9,10]. Ideas arising from CS the-
ory have been successfully implemented in diverse applications such as radar
[3,5], Synthetic Aperture Radar (SAR) [17,20], and MRI [16].

Several preliminary works have recently adapted these methods to ultrasound
signals [4,11–15,18,19,21].

Another set of works attempting to reduce the amount of sampled data in
ultrasound signals, based on complementary ideas arising from the Finite Rate
of Innovation (FRI) framework [6,25], was carried out by Tur et al. [24] and later
extended by Wagner et al. [26].

The authors modeled the ultrasonic echo as a finite stream of strong pulses,
which are replicas of a known-shape pulse with unknown time-delays and ampli-
tudes:

x(t) =
L∑

�=1

a�h(t − t�) (1)

Assuming that overall L pulses were reflected back to the transducer from the
pulse’s propagation path, the detected signal is completely defined by 2L degrees
of freedom, corresponding to the unknown parameters {a�, t�}L

�=1. Based on the
FRI framework, these 2L parameters are estimated and the signal recovered from
a minimal subset of 2L of the signal’s Fourier series coefficients. The needed
coefficients are recovered from low rate samples of the analog signals, as the
sampling frequency is now determined by the number of pulses L, which is
rather small compared with the bandwidth of the transmitted pulse, leading to
a substantial sample rate reduction.

These works achieve an almost eight-fold reduction of sample rate, however
the reconstructed data is partial as it only contains the macroscopic reflections
while disregarding the speckle.

As the focus of our work, we aim at reducing the large amount of data needed
to be stored and processed while preserving the image contents including the
speckle.

Our proposed digital processing scheme is based on the separation of the
received ultrasonic echoes into two components, both carrying valuable infor-
mation: the strong reflectors component, that is highly important for tracking
purposes in cardiac ultrasound imaging [7,23], and the speckle, also referred to
in this work as the background component, that characterizes the microscopic
structure of the tissue [8].

We then show that each component on its own is compressible, and derive the
suitable representation bases. Thereafter, the compressed background signals are
integrated in a digital beamforming process. To conclude the proposed algorithm,
the strong reflectors may be reconstructed from their sparse coefficients obtained
during the decomposition stage, combined with the beamformed background
signals and processed to form an image.

Applying the proposed processing schemes to real cardiac ultrasound data,
we successfully reconstruct both macroscopic and microscopic reflections from
the scanned region, such that the image contents are highly preserved, while
achieving over twenty-fold reduction of the data size.
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Throughout this paper, we use the term raw signals to refer to the ultrasonic
signals detected by each sensor immediately after their sampling.

2 Signal Decomposition

As previously stated, each received signal x is initially decomposed into a back-
ground signal xb and strong reflectors component xs. The decomposition algo-
rithm is based on a greedy detection of the strong reflectors followed by their
separation from the original signal.

Modeling the strong reflectors component, we mostly adopt the “stream of
pulses” signal model [24,26] according to which this component is composed
of a limited number of strong pulses, that are amplified and delayed replicas
of a known-shape pulse (1). This pulse h(t) has the form of a sinusoid signal
oscillating at the transmission frequency f0 in a Gaussian envelope.

As an extension to this model, we suggest that the returning pulse shape is
somewhat corrupted with respect to the transmitted pulse. This corruption may
be manifested in either a frequency shift, resulting from the frequency depen-
dent attenuation [2], or a phase shift formed between the carrier wave and the
Gaussian envelope. In order to account for those possible corruptions, we propose
to represent the strong reflectors in a time-frequency domain using the Short-
Time Fourier Transform (STFT). This will allow simultaneous optimization of
both the time-delay and frequency shift.

Denoting the STFT of x(t) by X(t, ω), the STFT decomposition is

X(t, ω) = Xb(t, ω) + Xs(t, ω) = Xb(t, ω) +
L∑

k=1

akH(t − tk, ω − ωk) (2)

The proposed decomposition algorithm is described in Algorithm 1.
In the presented algorithm, the strong reflectors are detected as the maximal

magnitude peaks of the STFT. In practice, the detection can be improved by
matching the known pulse pattern in a narrow region around each peak. The
maximal number of pulses L and error threshold ε0 are chosen empirically.

It can be observed that the strong reflectors are naturally compressed by
saving only the pulse model parameters {ak, tk, ωk}L

k=1 along the decomposition
process. This may be thought of as sparse coding over a very large dictionary
whose atoms represent all the possible time and frequency shifts of the known
pulse. However, due to the high sampling rate of the signals and the enormous
dimensions of such dictionary, standard OMP-like techniques are not feasible
and an alternative amplitude-based pulse matching was here performed.

3 Background Data Compression

Resulting from intereferences of weak ultrasonic reflections, speckle is typically
characterized by a statistical model with few parameters, indicating that it could
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Algorithm 1. STFT-based Decomposition
Task: Decompose a given signal x into the strong reflectors and background com-
ponents (xs, xb respectively)
Inputs: The signal’s STFT X(t, ω), the STFT signature of the pulse model H(t, ω)
centered such that arg max

(t,ω)
|H(t, ω)| = (0, 0), the maximal number of pulses L, and

an error threshold ε0.
Initialization: Set the initial residual r0 = X(t, ω)
Main Iteration: for k = 1, ..., L perform the following:

– Locate the strongest reflection (tk, ωk) with magnitude ak:

(tk, ωk) = arg max
(t,ω)

|X(t, ω)| ; ak = X(tk, ωk)

– Residual update: rk = rk−1 − akH(t − tk, ω − ωk)
– Stopping Rule: If ‖rk‖∞ < ε0, stop. Otherwise, apply another iteration.

Output: xs(t) = ISTFT
(∑k

j=1 ajH(t − tj , ω − ωj)
)
, xb(t) = ISTFT (rk).

be easily sparsified. Having separated the two components, and considering that
the strong reflectors are readily compressed, we next want to compress the back-
ground component as well.

For that purpose, each such background signal will be sparsely represented
over an optimized dictionary that is trained offline from prototype examples
using the K-SVD algorithm [1]. For the training set we use a small, randomly-
chosen subset of the signals constituting a single frame of real cardiac imag-
ing data, each of them divided into one-dimensional, non-overlapping patches.
Although our goal is to compress raw signals, i.e. signals detected by each sensor
prior to receive beamforming, the training set signals are chosen to be beam-
formed scan lines, since those were shown to have improved SNR [22].

It should be emphasized that the aforementioned dictionary learning process
is only performed once for every imaging system settings, and do not need to be
repeated for every analyzed signal or even for every imaged frame.

Returning to the online processing cycle, each separated background compo-
nent is next divided into non-overlapping patches and sparsely represented over
the trained dictionary.

Denote by ϕm ∈ R
N the background component of the signal received by

the m-th sensor. Each such component is divided into P patches ym,p ∈ R
Q of

length Q:
ϕm =

[
yT

m,1 yT
m,2 . . . yT

m,P

]T
(3)

Denote the dictionary by A ∈ R
Q×K (K > Q), then using Orthogonal Matching

Pursuit (OMP) we solve for each patch (∀1 ≤ m ≤ M, 1 ≤ p ≤ P )

arg min
zm,p

‖zm,p‖0 subject to ‖Azm,p − ym,p‖2 ≤ ε (4)
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Following, each patch is reconstructed by ŷm,p = Azm,p and the recovered
patches are plugged back to reassemble the full signals {ϕm}M

m=1. Afterwards,
these signals are combined to produce the beamformed background signal, which
could then be further processed to form the image. Moreover, we note that a sim-
plified beamforming process may be carried out in the representation domain, as
a weighted combination of the sparse representation coefficients. The weights are
data independent and can be pre-computed, so that only the sparse coefficients
should be transferred to the beamformer.

4 Simulation and Results

Our proposed method was evaluated on several sets of consecutive frames of
cardiac ultrasound data provided by GE Healthcare.

The results obtained for a typical frame are illustrated in Fig. 1. The original
frame is presented along with the corresponding background estimation and its
24-fold compressed version.

Fig. 1. Background estimation and compression results. (a) Original image. (b) STFT
background image. (c) Compressed STFT background image (PSNR = 29.16[dB]).

It can be observed that the proposed decomposition successfully detects and
removes the strong reflections, producing a background image with relatively
homogeneous regions. Moreover, the compression scheme produces a visually
good image that preserve even the subtle image features. These results were
obtained despite the formerly mentioned challenges, and while achieving a com-
pression ratio of 24.56, implying that the number of coefficients needed for recon-
struction is only 4% of the number of time samples in the received RF signal.

Similar results were obtained for other cardiac ultrasound frames and for
computer simulated phantoms.

Recall that the dictionary used for sparse coding was learned from a subset
of a single frame, yet our results indicate that it is suitable for representing data
of other frames obtained with the same imaging settings (not necessarily from
the same consecutive set as the image used for training).
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Comparing our decomposition-based compression with a direct compression
of the raw signals, that was performed using a similar K-SVD dictionary learning
approach, we found that in order to obtain a compressed image of comparable
quality in terms of the visible amount of saved features, a compression factor of
only 10.99 was obtained in the direct compression.

In this regard, it should be pointed out that for analyzing the total amount
of saved data, a fair comparison demands that the amount of coefficients needed
for representing the strong reflectors is added to those used for representing the
background signal. By doing so, a slightly reduced compression ratio of 21.4 is
achieved. Nonetheless, this achieved compression ratio is still twice as high as
the one achieved for the original raw data.

Moreover, assuming a known pulse shape, the strong reflectors reconstruction
is straightforward and does not require beamforming or any additional process-
ing. Therefore, in terms of the data needed to be employed in beamforming com-
putations, the higher compression factor (that only considers the background)
is still applicable.

The decomposition-based compression is thus significantly advantageous to
a direct compression of the raw data in terms of the achieved compression ratio.

5 Conclusions

In this work, we extended previous models proposed in [24,26] by integrating the
speckle reflections and assembling a direct sum of two components, each of which
carries valuable information and could be characterized by a limited amount of
parameters. In accordance with this model, we developed a decomposition-based
processing scheme for raw ultrasound signals that exploits the inherent redun-
dancy of the data, and achieves an improved compression ratio while preserving
the image information.

The proposed decomposition-based compression is equivalent to sparse cod-
ing over a two-dictionary set (union of subspaces), that is a mixture of a fixed
dictionary for the strong reflectors, based on apriori knowledge of the pulse
shape, and a data-driven dictionary for the background component.

The novelty of this model lies in the component-based approach, especially
as it concerns the raw signals rather than the beamformed ones or the resulting
image. It is clearly desirable to compress the data as early in the processing chain
as possible. As far as digital compression is concerned, our approach operates on
raw signals “close to the source”, i.e. immediately after sampling. Though not
yet attempted in the scope of our work, we believe that utilizing the proposed
two-component model and learned dictionary, a low rate sampling scheme can be
established, such that our algorithm may be extended to the compressed sensing
framework. Doing so, our results could be compared with other ultrasound com-
pression techniques currently employed in the analog domain. Furthermore, the
potential gain of the component-based approach goes beyond compression. Our
experiments indicate that by appropriate alterations to the proposed processing
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scheme, the resulting image quality may be enhanced, for example by suppress-
ing side-lobe artifacts. Further elaboration on this matter is beyond the scope
of this paper.

Finally, we note that the component-based modeling may open more possibil-
ities for analyzing ultrasonic signals. While we identified two main components,
other decomposition ideas may be investigated, such as separating the first- and
second- harmonic echoes, or detecting more than two components related to
various artifacts which require special processing.
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