
Chapter 12

Longitudinal Wave Propagation Including High Frequency Component
in Viscoelastic Bars

T. Tamaogi and Y. Sogabe

Abstract The purpose of this study to evaluate the attenuation and the dispersion properties for viscoelastic materials over a

wide range of frequencies. The viscoelastic properties within the frequency of around 200 kHz were examined by using the

solid and hollow bars of polymethyl methacrylate (PMMA). The PMMA properties were testes by the longitudinal impact

experiments in the lower frequency area of up to around 15 kHz and the ultrasonic propagation experiments using the

ultrasonic transducers in the high frequency area from 20 to 200 kHz. Consequently, it was found that the second-mode

vibration as well as the first-mode should be considered in the high frequency area. It was also confirmed that the second-

mode vibration influenced deeply as the radial thickness became thin.
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12.1 Introduction

Polymer materials are widely used in various fields because of their impact resistance or the vibration control. It is well

known that the deformation of the materials remarkably depends on the time or the strain rate. The shape of a stress wave in a

viscoelastic bar changes as it propagates because of the attenuation and the dispersion that mainly depend on the material

damping characteristics. The dynamic properties of viscoelastic materials have been evaluated by some techniques such as

the wave propagation method [1, 2] and the viscoelastic SHB method [3, 4] based on the elementary theory. Taking the

geometric dispersion or the three-dimensional effect into account, more precise theories have been demonstrated [5, 6].

The dynamic properties of viscoelastic materials in the high frequency area are complex, but it is difficult to evaluate the

properties only by the impact experiment. In this work, the ultrasonic propagation experiments as well as the longitudinal

impact experiments were performed using PMMA materials in order to evaluate the attenuative and dispersive features over

a wide range of frequencies based on the three-dimensional exact theory.

12.2 Viscoelastic Theory

12.2.1 Viscoelastic Model

In the case of a thin and uniform viscoelastic bar, the constitutive equation about for a one-dimensional longitudinal wave is

written in the following form:

P Dð Þσ x; tð Þ ¼ Q Dð Þε x; tð Þ; ð12:1Þ

where x is the coordinate along the rod axis, t is the time, ρ is the material density, σ and ε are stress and strain along the x-
axis, respectively. D denotes the differentiation with respect to time D=∂=∂t, p(D) and Q(D) are linear differentiation

operators.
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The complex compliance, which represents one of the viscoelastic properties of the material, is defined by the ratio of

strain to stress in the frequency domain as

J∗ ωð Þ ¼ J1
∗ ωð Þ � i J2

∗ ωð Þ: ð12:2Þ

The viscoelastic characteristics of materials are identified as 5-element model in this paper as shown in Fig. 12.1. The

relation between viscoelastic parameters of 5-element model and the real and the imaginary part of the complex compliance

are given by

J1
∗ ωð Þ ¼ 1

E1

þ E2

E2
2 þ ωη2ð Þ2

J2
∗ ωð Þ ¼ ωη2

E2
2 þ ωη2ð Þ2

9>>=
>>; : ð12:3Þ

The Poisson’s ratio of a viscoelastic medium ν can be assumed to be a real constant as well as the elastic medium. The

complex Lame’s functions λ∗ ωð Þ and μ∗ ωð Þ are shown as follows by using ν and J∗ ωð Þ:

λ∗ ωð Þ ¼ ν

1þ νð Þ 1� 2νð ÞJ∗ ωð Þ

μ∗ ωð Þ ¼ 1

2 1þ νð ÞJ∗ ωð Þ

9>>=
>>; : ð12:4Þ

12.2.2 Three-Dimensional Exact Theory

Consider a stress wave propagating in an infinite cylindrical elastic bar. The equation of motion is written in the following

ρ
∂2

u

∂t2
¼ λþ 2μð ÞgradΔ� 2μrot Ω; ð12:5Þ

where u denotes the displacement vector, λ and μ are the Lame coefficients, Δ=divu, 2Ω=rotu. Assuming axial symmetry,

and applying the Fourier transformation with respect to the time and the correspondence principle [7] to (12.5), the following

equations for a viscoelastic medium on the cylindrical coordinate plane are deduced:

�ρω2Ur ¼ λ* þ 2μ*
� �∂D

∂r
� 2iξμ*W

�ρω2Uz ¼ λ* þ 2μ*
� � �iξð ÞD� 2μ*

∂W
∂r

þW

r

� �
9>>=
>>; ; ð12:6Þ

where the displacement ur r; z;ωð Þ=Ur r;ωð Þ � exp �iξzð Þ and uz r; z;ωð Þ=Uz r;ωð Þ � exp �iξzð Þ, the volumetric strain

Δ r; z;ωð Þ=D r;ωð Þ � exp �iξzð Þ, the rotation vector Ωθ r; z;ωð Þ=W r;ωð Þ � exp �iξzð Þ, ξ ωð Þ=k ωð Þ � iα ωð Þ respectively.

Solving (12.7) in D and W of solid and hollow bars, the Bessel’s differential equations are obtained. The solutions can be

expressed as follows: The subscript s and h means solid and hollow bars, respectively.
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Fig. 12.1 Viscoelastic

models for determining

mechanical properties
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Ds r;ωð Þ ¼ A0J0 prð Þ
Ws r;ωð Þ ¼ A1J1 qrð Þ

)
; ð12:7Þ

Dh r;ωð Þ ¼ A0J0 prð Þ þ B0Y0 prð Þ
Wh r;ωð Þ ¼ A1J1 qrð Þ þ B1Y1 qrð Þ

)
; ð12:8Þ

where J0, and J1 are the Bessel functions of first kind, Y0, and Y1 are those of second kind. A0, A1, B0 and B1 are the arbitrary

functions of ω, p2=ρω2= λ* þ 2μ*
� �� ξ2, q2=ρω2=μ* � ξ2, respectively. The displacement and Stress are calculated from

above equations. Considering stress free boundary conditions at the external surface of the bar, the following frequency

equation results of solid and hollow bars:

c11 c12

c21 c22

�����
����� ¼ 0; ð12:9Þ

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

����������

����������
¼ 0; ð12:10Þ

where c11= q2 � ξ2
� �

J0 pað Þ � 2pJ1 pað Þ=a, c12= 2iξð Þ qJ0 qað Þ � J1 qað Þ=a½ �, c13= q2 � ξ2
� �

Y0 pað Þ � 2 pY1 pað Þ=a,
c14= 2iξð Þ qY0 qað Þ � Y1 qað Þ=a½ �, c21=2iξ pJ1 pað Þ, c22= q2 � ξ2

� �
J1 qað Þ, c23=2iξ pY1 pað Þ, c24= q2 � ξ2

� �
Y1 qað Þ,

c31= q2 � ξ2
� �

J0 pbð Þ � 2pJ1 pbð Þ=b, c32= 2iξð Þ qJ0 qbð Þ � J1 qbð Þ=b½ �, c33= q2 � ξ2
� �

Y0 pbð Þ � 2pY1 pbð Þ=b,
c34= 2iξð Þ qY0 qbð Þ � Y1 qbð Þ=b½ �, c41=2iξ pJ1 pbð Þ, c42= q2 � ξ2

� �
J1 qbð Þ, c43=2iξ pY1 pbð Þ, c44= q2 � ξ2

� �
Y1 qbð Þ,

a and b are the outer and inner radii, respectively.

Solving (12.9) and (12.10) for complex wave number ξ(ω) numerically, the attenuation coefficient α(ω), the wave

number k(ω) and the phase velocity C(ω) are given by

α ωð Þ ¼ �Im ξ ωð Þ½ �; ð12:11Þ

k ωð Þ ¼ Re ξ ωð Þ½ �; ð12:12Þ

C ωð Þ ¼ ω

k ωð Þ: ð12:13Þ

12.3 Experimental Methods

The longitudinal wave propagation experiments and the ultrasonic propagation experiments using the ultrasonic transducers

were carried out. The experimental methods and dimensions using the PMMA solid bars were indicated in reference [8].

Figure 12.2 shows a schematic diagram of an ultrasonic wave propagation experiment using wave packets generated by

the ultrasonic transducers when the PMMA hollow bars are used. The length and outer and inner diameter are 1000 mm,

15 mm and 9 mm, respectively. Six kinds of ultrasonic transducers having several characteristic frequencies from 20 to

200 kHz are prepared as shown in Table 12.1. The ultrasonic transducer is attached to the one side of the specimen. Four

semiconductor strain gages are situated on the outer surface separated by equal intervals. The transducer is vibrated at the

natural frequency by giving the voltage amplified with an AC amplifier.
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12.4 Experimental Results and Analyses

12.4.1 Measurement Results and Attenuative and Dispersive Features

The measured strain waves using the ultrasonic transducer type ① (49.75 kHz) on a PMMA hollow bar is denoted in

Fig. 12.3a as a typical example. It is found that the attenuation and dispersion generate as the waves propagate. The

frequency spectrum of each wave are represented in Fig. 12.3b. The frequency spectrums have a lot of frequency elements of

in the frequency around 50 kHz. The values of 46.9–50.3 kHz, which are 70 % of the maximum values of the frequency

spectrums, are used for evaluation of the attenuative and dispersive features.

The strain wave propagating on the surface of the bar is obtained by the following equation [8]:

εz ¼ ε0exp � αþ ikð Þf gz; ð12:14Þ

where z is the coordinate along the rod axis, ε indicates the strain in the frequency domain. Using the least square method,

the attenuation coefficient and phase velocity can be determined from the experimental data [8].

The attenuation coefficient and phase velocity on the hollow and solid bar (the diameter is 8 mm) are shown in Figs. 12.4

and 12.5. The plots in the figures show average experimental values, and the vertical bars indicate the standard deviation.

The solid line is the analytical values obtained by the solution for the first mode of the complex wave number using 5-

element model shown in Fig. 12.1. The viscoelastic values E1, E2, η2, E3 and η3 are 5.89 GPa, 58.4 GPa, 2.80 MPa·s,

122 GPa, 0.39 MPa·s.

It is found that the experimental and model’s predicted values for both α(ω) and C(ω) on solid bar are almost identical in

Fig. 12.5a, b. It is enough to evaluate the properties for the PMMA solid bar of a wide range of frequencies using the first

mode of the complex wave number. In contrast, the experimental and model’s predicted values for both α(ω) and C(ω) on
hollow coincide with each other within the low frequency area in Fig. 12.4a, b. However, experimental and analytical values

are disagreement in the high frequency area. It is considered that the high-order mode vibrations are generated.

Table 12.1 Properties

of ultrasonic transducers

(Fuji Ceramics Corporation) Type

Frequency Diameter Length Capacitance

kHz mm mm pF

① 0.05Z15D 49.75 15 26.20 136

② 0.075Z15D 74.95 15 16.40 220

③ 0.1Z15D 99.60 15 10.50 339

④ 0.13Z10D 131.40 10 8.40 192

⑤ 0.15Z20D 148.50 20 8.40 788

⑥ 0.2Z15D 198.70 15 6.20 564

oscillator

100mm

1000mm

specimen

15mm

9mm
Gage4Gage3Gage2Gage1

70mm 70mm 70mm

Fig. 12.2 Schematic diagram of propagation experiment using wave packets generated by ultrasonic transducer
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12.4.2 Effect of High-Order Mode for Hollow Bar

Figure 12.6 shows the model’s predicted values of first and second mode solutions for α(ω) and C(ω) on the hollow bar with

the outer and inner diameter of 15 and 9 mm. It is seen that the value of the second mode become small remarkably in the

frequency around 65 kHz, and is almost the same value of the first mode. It is verified that the disagreement between the

experimental and the analytical values in the high frequency area in Figs. 12.4a, b is due to the higher-order mode vibration.

Therefore, it can be said that the higher-order mode vibration as well as the first mode vibration propagate on the hollow bar

in the high frequency area.

Fig. 12.3 Experimental results on propagation test using wave packets generated by ultrasonic transducer type① (49.75 kHz) on PMMA hollow

bar. (a) Measured strain waves; (b) frequency spectrums

Fig. 12.4 Experimental and analytical values for α(ω) and C(ω) on PMMA hollow bar. (a) Attenuation coefficient; (b) phase velocity

Fig. 12.5 Experimental and analytical values of α(ω) and C(ω) on PMMA solid bar with diameter of 8 mm. (a) Attenuation coefficient; (b) phase
velocity
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12.5 Conclusions

The conclusions obtained from the present study are summarized as follows:

• The attenuation and dispersion properties for viscoelastic material over the wide range of frequencies were examined by

the ultrasonic propagation experiments using the ultrasonic transducers having several characteristic frequencies.

• It was found that the viscoelastic properties on PMMA solid and hollow bars in the low frequency area could be evaluated

by the first mode vibration using the 5-element model based on the three-dimensional exact theory.

• The higher-order mode vibration as well as the first mode vibration propagated on the hollow bar in the high frequency

area.

References

1. Sackman, J.L., Kaya, I.: On the determination of very early-time viscoelastic properties. J. Mech. Phys. Solids 16(2), 121–132 (1968)

2. Sogabe, Y., Tsuzuki, M.: Identification of the dynamic properties of linear viscoelastic materials by the wave propagation testing. Bull. JSME

29(254), 2410–2417 (1986)

3. Sogabe, Y., Yokoyama, T., Yokoyama, T., Nakano, M., Kishida, K.: A split Hopkinson bar method for testing materials with low characteristic

impedance. Dyn. Fract. 300, 137–143 (1995)

4. Juea, Z., Shishengb, H., Lili, W.: An analysis of stress uniformity for viscoelastic materials during SHPB tests. Lat. Am. J Solids Struct 3(2),
125–148 (2006)

5. Zhao, H., Gary, G.: A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical Bar.

Application to experimental techniques. J. Mech. Phys. Solids 43(8), 1335–1348 (1995)

6. Benatar, A., Rittel, D., Yarin, A.L.: Theoretical and experimental analysis of longitudinal wave propagation in cylindrical viscoelastic rods. J.

Mech. Phys. Solids 51(8), 1413–1431 (2003)
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Fig. 12.6 Analytical values of first and second mode for α(ω) and C(ω) on PMMA hollow bar. (a) Attenuation coefficient; (b) phase velocity
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