
Improvement of UC Secure Searchable
Symmetric Encryption Scheme

Shunsuke Taketani and Wakaha Ogata(B)

Tokyo Institute of Technology, Meguro, Japan
{taketani.s.aa,ogata.w.aa}@m.titech.ac.jp

Abstract. Searchable symmetric encryption refers to a system whereby
clients store encrypted documents in a server that can be searched by
keywords without revealing private information. In this paper, we demon-
strate that the UC-secure SSE scheme proposed by Kurosawa and Ohtaki
is inefficient under certain scenarios, and we propose a modified scheme.
Our scheme has reliability and privacy, where privacy is slightly weaker
than the original Kurosawa-Ohtaki scheme. Therefore, our scheme offers
UC-security with slightly weaker privacy. More precisely, the additional
information our scheme leaks is only the size of a set of keywords. On
the other hand, the index size for our scheme is much smaller than the
original scheme when the set of keywords is a very sparse subset of l-bit
strings for some l. The UC-secure Kurosawa-Ohtaki scheme is improved
with the proposed scheme by introducing a new tag for proving “non-
existence.” The proposal is an example of how an SSE scheme can be
effectively converted into a verifiable SSE scheme.

1 Introduction

In recent years, many storage services have become available with which clients
can store documents or files on the service provider’s server. By using such
services, clients can access their information at any time and from anywhere and
any device. If the number of stored files increases, a keyword search is desirable
to find particular files. On the other hand, the client can encrypt files to avoid
leaking confidential information to the service provider. Searchable symmetric
encryption (SSE) enables the client to search a large number of encrypted files
with encrypted keywords.

The concept for SSE was introduced by Song et al. [21], and many SSE
schemes have since been proposed [2,9,11,12,14,18]. Most SSE schemes offer
privacy; e.g., the server cannot learn anything about the stored files or keywords.
However, such schemes do not have any mechanism to verify search results; that
is, it is assumed that the server is honest and that it always follows protocol.
Thus, Kurosawa and Ohtaki [18] introduced enhanced security notions, reliability
and universally composable security (UC-security) for SSE schemes. Reliability
ensures the validity of search results even if the server is malicious. Kurosawa

c© Springer International Publishing Switzerland 2015
K. Tanaka and Y. Suga (Eds.): IWSEC 2015, LNCS 9241, pp. 135–152, 2015.
DOI: 10.1007/978-3-319-22425-1 9

136 S. Taketani and W. Ogata

and Ohtaki showed that an SSE scheme that has both privacy and reliability
has UC-security1, and proposed a concrete SSE scheme which has UC-security.

In this paper, we evaluate the scheme proposed by Kurosawa and Ohtaki [18],
and show that it is inefficient under some scenarios. We then propose a modified
scheme for which privacy is somewhat weaker than the original Kurosawa-Ohtaki
scheme. Therefore, our scheme provides UC-security with slightly weaker privacy.
More precisely, the additional information our scheme leaks is merely the size of
a set of keywords. Yet, the index size for our scheme is much smaller than the
original scheme when the set of keywords is a very sparse subset of l-bit strings
for some l. The index size is reduced by eliminating dummy elements from the
original index and introducing a new tag that proves that the eliminated elements
do not exist in the reduced index.

Related works. Various SSE schemes have been proposed. Some support addi-
tional search functions, such as multi-keyword searching [1,13], ranked searching
[7], and fuzzy searching [3,22]. Others support adding and removing documents
[15–17,19].

In [10], a verifiable SSE scheme is proposed. The scheme has two modes: “pri-
vacy preferred” and “efficiency preferred.” However, the former mode, which is
relatively more secure in terms of privacy, requires a very large index. Moreover,
no formal security proof is provided for this scheme.

[19] proposed another verifiable SSE scheme. However, their scheme does not
assume that a client will query a keyword that is not contained in the set of
keywords used to build the index. Assume that a client generates an (encrypted)
index based on a certain keyword set W, forgets W, and then searches for w �∈ W.
In this case, the server has no choice but to return “no document hits” without
any proof. This means that the server can forge the search results by answering
“no document hits”at any time.

2 Verifiable Searchable Symmetric Encryption

In this section, we define a (verifiable) SSE scheme and its security. Basically,
we follow the notation used in [8,18,20].

– Let D = {D0, . . . , DN−1} be a set of documents.
– Let W be a set of keywords.
– For a keyword w ∈ W, let D(w) denote the set of documents that contain w.

We consider a system model that has two components: a client and a server.
Roughly speaking, in SSE schemes, clients encrypt all documents in D before
storing them on a server. Clients can then search through these documents using
a keyword w ∈ W from the set D, the output for which is derived as follows:

C(w) = {Ci | Ci is a ciphertext of Di ∈ D(w)}. (1)
1 In [20], it was shown that strong reliability rather than ordinary reliability is required

to be US-security.

Improvement of UC Secure Searchable Symmetric Encryption Scheme 137

In response to a search query, the server returns C(w). If there is a mechanism
to verify the validity of the response, the scheme is a verifiable SSE (vSSE).

Hereafter, |X| denotes the bit length of X for a bit string X, and |X| denotes
the cardinality of X for a set X. Furthermore, “PPT” refers to the probabilistic
polynomial time.

2.1 System Model

Formally, a vSSE scheme has two phases: the store phase (executed only once)
and the search phase (executed a polynomial number of times). Such a scheme
consists of the following six polynomial-time algorithms:2

vSSE = (Gen, Enc, Trpdr, Search, Dec, Verify)

such that

– K ← Gen(1λ): a probabilistic algorithm that generates a key K, where λ is a
security parameter. This algorithm is run by the client during the store phase,
and K is kept secret.

– (I, C) ← Enc(K,D,W): a probabilistic encryption algorithm that outputs an
encrypted index I and C = {C0, . . . , CN−1}, where Ci is the ciphertext for
Di. This algorithm is run by the client during the store phase, and (I, C) are
sent to the server.

– t(w) ← Trpdr(K,w): an algorithm that outputs a trapdoor t(w) for a keyword
w. This is run by the client during the search phase, and t(w) is sent to the
server.

– (C̃(w),Proof) ← Search(I, C, t(w)): a deterministic search algorithm, where
C̃(w) is the search result and Proof is its proof. This algorithm is run by the
server during the search phase, and (C̃(w),Proof) is sent to the client.

– accept/reject ← Verify(K, t(w), C̃(w),Proof): a deterministic verification
algorithm that determines the validity of C̃(w) based on Proof . This algorithm
is run by the client.

– D ← Dec(K,C): a deterministic decryption algorithm. The client uses this
algorithm for all C ∈ C̃(w), when Verify(K, t(w), C̃(w),Proof) = accept.

Correctness entails the following from the scheme for the set of documents
D and a keyword w ∈ W:

– Di = Dec(K,Ci) if C = {C0, . . . , CN−1} is the output of Enc(K,D,W).
– Verify(K, t(w), C̃(w),Proof) = accept, if (I, C) is outputted by

Enc(K,D,W), t(w) is outputted by Trpdr(K,w), and (C̃(w),Proof) is out-
putted by Search(I, C, t(w)).

2.2 Security Definition

We next define some security conditions that should be satisfied by a vSSE
scheme.
2 If the search result does not need to be verified, Proof and Verify can be omitted.

138 S. Taketani and W. Ogata

– Adversary A chooses (D,W) and sends them to challenger C.
– C generates K ← Gen(1k) and sends (I, C) ← Enc(K,D,W) to A.
– For i = 0, . . . , q − 1, do:

1. A chooses a keyword wi ∈ W and sends it to C.
2. C sends the trapdoor t(wi) ← Trpdr(K,wi) back to A.

– A outputs bit b.

Fig. 1. Real game Gamereal

– Adversary A chooses (D,W) and sends them to challenger C.
– C sends L1(D,W) to simulator S.
– S computes (I , C) from L1(D,W), and sends them to C.
– C relays (I , C) to A
– For i = 0, . . . , q − 1, do:

1. A chooses wi ∈ W and sends it to C.
2. C sends L2(D,W,w, wi) to S, where w = (w1, . . . , wi−1).
3. S computes t (wi) from L2(D,W,w, wi) and sends it to C.
4. C relays t (wi) to A.

– A outputs bit b.

Fig. 2. Simulation game GameLsim

Privacy. In a vSSE, the server should learn as little information as possible
regarding D,W, and the queried keyword w. Let L = (L1, L2) be a pair of
leakage functions, such that L1(D,W) (and respectively, L2(D,W,w, w)) denote
the information the user permits the server to learn during the store phase (and
respectively, the search phase). Here, w = (w1, w2, . . .) is the list of keywords
queried in past searches, and w is the keyword queried now. The client’s privacy
is defined by using two games: a real game Gamereal, and a simulation game
GameL

sim, as shown in Figs. 1 and 2, respectively. Gamereal is played by a challenger
C and an adversary A, and GameL

sim is played by C, A and a simulator S.

Definition 1 (L-privacy). We say that a vSSE scheme has L-privacy, if there
exists a PPT simulator S such that

|Pr(A outputs b = 1 in Gamereal) − Pr(A outputs b = 1 in GameL
sim)| (2)

is negligible for any PPT adversary A.

In most existing SSE schemes, L1(D,W) includes (|D0|, . . . , |DN−1|) and
some information about W, such as |W| or the length of the keywords. On the
other hand, L2(D,W,w, w) consists of

List(w) = {j | Dj ∈ D contains w}

Improvement of UC Secure Searchable Symmetric Encryption Scheme 139

(Store phase)

– A1 chooses (D,W) and sends them to C.
– C generates K ← Gen(1λ), and sends (I, C) ← Enc(K,D,W) to A2.

(Search phase)

– For i = 0, . . . , q − 1, do
1. A1 chooses a keyword wi and sends it to C.
2. C sends the trapdoor t(wi) ← Trpdr(K,wi) to A2.
3. A2 returns (C̃(wi)

∗,Proof ∗
i) to C.

4. C computes

accept/reject ← Verify(K, t(wi), C̃(wi)
∗,Proof ∗

i)

and returns a set D̃(wi)
∗ of plaintexts of documents in C̃(wi)

∗ to A1 if
the result is accept, otherwise sends reject to A1.

– If there exists i, such that both Verify(K, t(wi), C̃(wi)
∗,Proof ∗

i) = accept

and (C̃(wi)
∗,Proof ∗

i) = (C(wi),Proof i) hold, then A (strongly) wins; other-
wise A loses.

Fig. 3. Gamereli

and the search pattern

SPattern((w1, . . . , wq−1), w) = (sp1, . . . , spq−1), spj =
{

1 if wj = w
0 if wj �= w

that reveals the past queries that are the same as w.

Reliability. In an SSE scheme, a malicious server should not cheat a client by
returning a false result C̃(w)∗(�= C(w)) during the search phase. We generally
call this notion (weak) reliability. In [20], strong reliability was also defined, and
a relation between strong reliability and universal composability was discussed.
Strong reliability is formulated by considering the game Gamereli shown in Fig. 3.
This game is played by an adversary A = (A1,A2) (malicious server) and a
challenger C. We assume that A1 and A2 can communicate freely.

Definition 2 ((Strong)Reliability). We say that a vSSE scheme satisfies
(strong) reliability if for any PPT adversary A, Pr(A wins) is negligible for
any (D,W) and any search queries w0, . . . , wq−1.

From now on, we will say just Reliability for what we mean Strong Reliability.

Universally Composable Security. It is known that if protocol Σ is secure
in the universally composable (UC) security framework, then the security of Σ
is maintained even if it is combined with other protocols. The security in the

140 S. Taketani and W. Ogata

Store: Upon receiving the input (store, sid,D0, . . . , DN−1,W) from the
(dummy) client, verify that this is the first input from the client with
(store, sid).
If it is, then store D = {D0, . . . , DN−1}, and send L1(D,W) to S. Otherwise,
ignore this input.

Search: Upon receiving (search, sid, w) from the client, send L2(D,W,w, w) to
S.
1. If S returns “OK,” then send D(w) to the client.
2. If S returns ⊥, then send ⊥ to the client.

Fig. 4. Ideal functionality FL
vSSE

UC framework is defined by associating it with a given ideal functionality F .
Refer to [4–6] for the formal definition of the UC framework. Kurosawa and
Ohtaki introduced an ideal functionality of vSSE [18,20]. Here, we generalize
the definition in order to handle the general leakage functions L = (L1, L2) as
shown in Fig. 4. Note that the server does not interact with FL

vSSE , because it
does not have its own input and output.

Definition 3 (UC-Security with Leakage L). We say that vSSE scheme
has universally composable (UC) security with leakage L, if it realizes3 the ideal
functionality FL

vSSE.

The following theorem can be proved in the same way as the theorem in [20].

Theorem 1. vSSE has UC security with leakage L against non-adaptive adver-
saries if the vSSE scheme satisfies L-privacy and reliability.

2.3 Kurosawa-Ohtaki Scheme (KO-Scheme)

We next review the UC-secure SSE scheme proposed by Kurosawa and Ohtaki,
KO-scheme [18]. In this scheme, the set of searchable keywords is W ⊆ {0, 1}l

for some l.
Let SKE = (G,E,E−1) be a symmetric encryption scheme, where G is a

key-generation algorithm, E is an encryption algorithm, and E−1 is the corre-
sponding decryption algorithm. For a security parameter λ, let π : {0, 1}λ ×
{0, 1}l+1+log N → {0, 1}l+1+log N be a pseudorandom permutation, where N
denotes the number of documents in D, and let MAC : {0, 1}λ ×{0, 1}∗ → {0, 1}n

be a tag-generation function. For simplicity, we write y = π(x) rather than
y = π(K,x), and MAC(m) rather than MAC(K,m), where K is a key.

The KO-scheme proceeds as follows:
3 That is, if there does not exist any environment Z that can distinguish the real world

and the ideal world by interacting with the real-world adversary or the ideal-world
adversary.

Improvement of UC Secure Searchable Symmetric Encryption Scheme 141

Gen(1λ): Run G to generate a key K0 for SKE. Randomly choose a key K1 ∈
{0, 1}λ for π and a key K2 ∈ {0, 1}λ for MAC. Output K = (K0,K1,K2).

Enc(K,D,W): First, compute Ci = E(K0,Di) for each Di ∈ D, and let C =
{C0, . . . , CN−1}. Let I be an array of size 2×2lN . We write I[i] for the i-th
element of I.
1. Let

I[i] ← (dummy, MAC(i‖dummy))
for all i = 0, . . . , 2 × 2lN − 1.

2. For each w ∈ {0, 1}l, suppose that D(w) = (Ds1 , . . . , Dsm
). Then for

j = 1, . . . ,m, let

addr = π(0, w, j)
tagw,j = MAC(addr‖Csj

)
I[addr] ← (sj , tagw,j).

3. For each Dk ∈ D, suppose that document number k appears Nk times in
I. Then for j = 1, . . . , 2l − Nk, let

addr = π(1, j, k)
tagj,k = MAC(addr‖Ck)
I[addr] ← (k, tagj,k).

Finally, output (I, C).
Trpdr(K,w): Output

t(w) = (π(0, w, 0), . . . , π(0, w,N − 1))

Search(I, C, t(w)): Parse t(w) as t(w) = (addr0, . . . , addrN−1). Suppose that

I[addri] = (si, tagi)

for i = 0, . . . , N −1. First, set C̃(w) ← empty. Then, for i = 0, . . . , N −1, add
Csi

to C̃(w), if si �= dummy. Set Proof = (tag0, . . . , tagN−1). Finally, output
(C̃(w),Proof).

Verify(K, t(w), C̃(w),Proof): Parse t(w), C̃(w), and Proof as

t(w) = (addr0, . . . , addrN−1)
C̃(w) = (C̃0, . . . , C̃m−1)
Proof = (tag0, . . . , tagN−1).

Then, verify the validity of the result with the following steps.
1. Let Xi ← C̃i for i = 0, . . . ,m − 1.
2. Let Xi ← dummy for all i = m, . . . , N − 1.
3. If tagi = MAC(addri‖Xi) for all i = 0, . . . , N − 1, then output accept.

Otherwise output reject.
Dec(K,C): Output a document D = E−1

K0
(C) for a ciphertext C.

142 S. Taketani and W. Ogata

Proposition 1. For W ⊆ {0, 1}l, let

LKO = (LKO
1 , LKO

2)
LKO
1 (D,W) = (|D0|, . . . , |DN−1|, l)

LKO
2 (D,W,w, w) = (List(D, w), SPattern(w, w))

The above scheme has LKO-privacy and reliability. Therefore, it also has UC
security with leakage LKO.

Remark 1. In [18], Kurosawa and Ohtaki claimed that only List(D, w) is leaked
during the search phase. However, it is obvious that the trapdoor leaks a search
pattern, since Trpdr is deterministic.

2.4 Inefficiency of KO-Scheme

With the KO-scheme, the index size is O(2lN), where l denotes the bit-length
of the keywords. Here we consider a case where W is a set of English words that
includes a long word, namely “indistinguishability.” The bit-length of this set of
keywords is l = 8 × 20. With such a keyword set, then, the index will become
very large.

Let l be the maximum length of the keywords expressed as bit strings, and
W0 = {0, 1}l. Then, W ⊆ W0 holds. In general, the KO-scheme is inefficient
whenever |W| � |W0|, and it is not uncommon.

An easy solution to this problem is to transform each word into a short bit
string as follows: Let l′ = 	log2 |W|
. First, the client numbers the keywords in
W from 0 to |W| − 1. That is, W = {w0, . . . , w|W|−1}. For the Enc algorithm,
the client does not use the keyword wi ∈ W, but rather its index i ∈ [0, 2l′ − 1].
Then, the index size is O(2l′N) ≈ O(|W|N), even if |W| � 2l.

For this solution, however, the client must keep W on hand in order to
translate the keyword w into its index i when searching w.

In the next section, we provide another solution to reduce the size of the
index.

3 Improvement of KO-Scheme

In this section, we propose a new vSSE scheme.
The idea of reducing the index size is elimination of dummy elements from the

index, and introduction of a new tag that proves that the eliminated elements
do not exist in the constructed index.

Let M = |W| be the number of keywords. The index of our scheme is much
smaller than the index of the KO-scheme, if M � 2l. This means that the
computation cost to generate an index and to search it is also reduced.

Improvement of UC Secure Searchable Symmetric Encryption Scheme 143

3.1 Concrete Description of Our Scheme

Here, SKE = (G,E,E−1),D, π, and MAC follow the denotations from Sect. 2.3.
Our vSSE scheme is as follows:

Gen(1λ): Run G to generate a key K0 for SKE. Randomly choose a key K1 ∈
{0, 1}λ for π and a key K2 ∈ {0, 1}λ for MAC. Output K = (K0,K1,K2).

Enc(K,D,W): First, compute Ci = E(K0,Di) for each Di ∈ D and let C =
{C0, . . . , CN−1}.
Our index I is an array of size MN + 1, and each element of I has four
fields:

(addr, ID, tag, Ntag).

Hereafter, I[i] denotes the i-th element in I, and I[i].addr denotes the addr
field of the i-th element in I. Furthermore, we will use the same notation for
the other three fields. I is constructed as follows.
1. Set

I[MN].addr ← 2l+1+log N

I[MN].ID ← dummy

I[MN].tag ← dummy.

2. Let

pi,j =

{
π(0, wi, j) if Dj ∈ D(wi)
π(1, wi, j) if Dj /∈ D(wi)

for wi ∈ W and Dj ∈ D, and set

I[Ni + j].addr ← pi,j

I[Ni + j].ID ← j

I[Ni + j].tag ← MAC(0‖pi,j‖Cj)

for i = 0, . . . ,M − 1 and j = 0, . . . , N − 1. At this time, each element of
I is

I[0] = (p0,0, 0, MAC(0‖p0,0‖C0), undefined)
I[1] = (p0,1, 1, MAC(0‖p0,1‖C1), undefined)

...
I[N − 1] = (p0,N−1, N − 1, MAC(0‖p0,N−1‖CN−1), undefined)
I[N] = (p1,0, 0, MAC(0‖p1,0‖C0), undefined)

...
I[2N − 1] = (p1,N−1, N − 1, MAC(0‖p1,N−1‖CN−1), undefined)

...
I[MN − 1] = (pM−1,N−1, N − 1, MAC(0‖pM−1,N−1‖CN−1), undefined).

Note that all values in the addr field are distinct, because π is a
permutation.

144 S. Taketani and W. Ogata

3. Sort I[0], . . . , I[MN] based on the addr field, such that

I[0.addr < I[1].addr < · · · < I[MN].addr.

4. For r = 0, . . . ,MN , compute

Ntagr =

{
MAC(1‖0‖I[r].addr) if r = 0
MAC(1‖I[r − 1].addr‖I[r].addr) if r �= 0

and set
I[r].Ntag ← Ntagr.

Finally, output (I, C).
Trpdr(K,w): Output

t(w) = (π(0, w, 0), . . . , π(0, w,N − 1)).

Search(I, C, t(w)): First set C̃(w) ← empty. Parse t(w) as t(w) =
(addr0, . . . , addrN−1). For i = 0, . . . , N − 1, search addri from the addr
field in I, and follow the steps below:
-- If addri = I[ri].addr for some ri ∈ [0,MN − 1], then set

C̃(w) ← C̃(w) ∪ CI[ri].ID

pri ← I[ri].tag.

-- If addri < I[0].addr, set

pri ← (0‖I[0].addr, I[0].Ntag).

-- If I[ri − 1].addr < addri < I[ri].addr for some ri ∈ [1,MN], then set

pri ← (I[ri − 1].addr‖I[ri].addr, I[ri].Ntag).

Set Proof = (pr0, . . . , prN−1). Finally, output (C̃(w),Proof).
Verify(K, t(w), C̃(w),Proof): Parse C̃(w),Proof , and t(w) as

C̃(w) = (C̃0, . . . , C̃m−1)
Proof = (pr0, . . . , prN−1)
t(w) = (addr0, . . . , addrN−1)

and follow the steps below to verify the validity of the search result.
1. If m is not equal to the number of prjs that are tags—meaning that they

do not consist of a pair of addr and Ntag—then output reject.
2. For each prj that is a tag, if there does not exist a distinct i ∈ {0, . . . , m−

1}, such that
MAC(0‖addrj‖C̃i) = prj , (3)

then output reject.

Improvement of UC Secure Searchable Symmetric Encryption Scheme 145

3. For a prj that is not a tag but rather a pair of addr and Ntag, assume
that prj = (addr′

j,1‖addr′
j,2, Ntagj). If the following two statements are

true for all such j, then output accept.

addr′
j,1 < addrj < addr′

j,2 (4)
MAC(1‖addr′

j,1‖addr′
j,2) = Ntagj (5)

Otherwise, output reject.
Dec(K,C): Output document D = E−1

K0
(C) for a ciphertext C.

3.2 Security

Let

Lnew = (Lnew
1 , Lnew

2)
Lnew
1 (D,W) = LKO

1 (D,W) ∪ |W| = (|D0|, . . . , |DN−1|, l, |W|)
Lnew
2 (D,W,w, w) = LKO

2 (D,W,w, w) = (List(D, w), SPattern(w, w))

We can prove that the above scheme satisfies Lnew-privacy and reliability, and
therefore UC-security with leakage Lnew.

Theorem 2. If the symmetric encryption scheme SKE = (G,E,E−1) is secure
in terms of indistinguishability against chosen-plaintext attacks (IND-CPA), and
if π is a pseudorandom permutation, then the proposed scheme satisfies Lnew-
privacy.

Proof. We construct the simulator S as follows. First, S receives L1(D,W) =
(|D0|, . . . , |DN−1|, l, |W|).
1. S runs Gen(1λ) to generate key K = (K0,K1,K2).
2. Let C ′

j = E(K0, 0|Dj |) for j = 0, . . . , N − 1, and let C′ = {C ′
0, . . . , C

′
N−1}.

3. Choose w′
0, . . . , w

′
M−1 from {0, 1}l randomly, and set W ′ = {w′

0, . . . , w
′
M−1}.

Compute the index I ′ as if all of the documents D0, . . . , DN−1 ∈ D include
all of the keywords in W ′. That is, for i = 0, . . . ,M −1 and j = 0, . . . , N −1,

I ′[r′
i,j] = (π(0, w′

i, j), j, tag′
i,j , undefined) (6)

I ′[MN] = (2l+1+log N , dummy, MAC(0‖dummy), undefined)

where

r′
i,j = Ni + j

tag′
i,j = MAC(0||π(0, w′

i, j)||C ′
j).

Next, sort the elements based on the addr field, and set

I ′[r].Ntag ← MAC(1‖I ′[r − 1].addr‖I ′[r].addr).

146 S. Taketani and W. Ogata

4. Return (I ′, C′).

During the i-th search iteration, S is given

List(wi) = {s0, . . . , sm−1}

and
SPattern(w, wi) = (sp1, . . . , spi−1)

(but neither wi nor w). S simulates the trapdoor as follows.

1. If spj = 1 for some j < i, then S sets t′i = t′j and returns t′i.
2. If List(wi) = ∅, then S randomly chooses w′ ∈ {0, 1}l\(W ′ ∪ Wused)4, oth-

erwise, S randomly chooses w′ ∈ W ′\Wused, where Wused is initially empty.
Then, S sets

Wused = Wused ∪ {w′}

addr′
j =

{
π(0, w′, j) if j ∈ List(wi)
π(1, w′, j) if j /∈ List(wi)

for j = 0, . . . , N − 1, and returns

t′i = (addr′
0, . . . , addr′

N−1).

We will prove that there is no adversary A who can distinguish the games
Gamereal and Gamesim by using six games Game0, . . . , Game5. Let Game0 =
Gamereal. Hereafter, we write

Pi = Pr(A outputs b = 1 in Gamei)

for simplicity.

– Game1 is equivalent to Game0, except that each Cj = E(K0,Dj) is replaced
with C ′

j = E(K0, 0|Dj |) for j = 0, . . . , N − 1. From the assumption for SKE,
|P0 − P1| is negligible.

– Game2 uses a real random permutation π2 for computing addrs rather than
pseudorandom permutation π as with Game1. Then, |P1 − P2| is negligible,
owing to the pseudorandomness of π.

– Game3 is equivalent to Game2, except that the set of keywords is changed
from W to W ′(|W ′| = M), and the random permutation is changed to π3,
whose output for a keyword wi ∈ W is the same as the output of π2 for
input w′

i ∈ W ′, and the output for w′
i ∈ W is the same as the output of π2

for wi ∈ W for all i. Then, π3 is a random permutation, as is π2, and the
constructed indexes for Game2 and Game3 are identical. Hence, |P2 − P3| is
negligible.

4 If {0, 1}l\(W ′ ∪ Wused) = ∅, w′ is chosen from W ′\Wused.

Improvement of UC Secure Searchable Symmetric Encryption Scheme 147

– Game4 is equivalent to Game3, except that the List(w′) in Game3 is replaced by
List′(w′) = {0, . . . ,M − 1} for all w′ ∈ W ′, and π3 is replaced by π4, which
satisfies

π4(0‖w′‖j) =

{
π3(0‖w′‖j) if j ∈ List(w′)
π3(1‖w′‖j) if j /∈ List(w′)

π4(1‖w′‖j) =

{
π3(1‖w′‖j) if j ∈ List(w′)
π3(0‖w′‖j) if j /∈ List(w′)

for all j = 0, . . . , N −1 and all w′. Then, π4 is also a random permutation, and
the constructed indexes for Game3 and Game4 are identical. Hence, |P3 −P4| is
negligible.

– In Game5, we use pseudorandom permutation π, rather than π4, and this is
the only difference between Game5 and Game4. Because π4 is a random permu-
tation, |P4 − P5| is negligible, owing to the pseudorandomness of π.

From the above, |P0 − P5| is negligible. Since it is obvious that Game5 =
Gamesim, Gamereal and Gamesim are indistinguishable for any adversary A. ��
Theorem 3. If MAC is existentially unforgeable against chosen-message attacks,
our scheme satisfies reliability.

Proof. Suppose that for (D,W) and search queries w0, . . . , wq−1, there exists an
adversary A = (A1,A2) who can break the reliability. We show that a forger B
against MAC can be constructed using A.

B behaves like a client. When B receives (D,W) from A1 during the store
phase, it creates I and C ordinarily, except that B does not choose the key for
MAC, but rather uses its own MAC oracle to compute I. Here, B will send queries
to its MAC oracle only when constructing I.then B sends (I, C) to A2. We note
that B will send queries to its MAC oracle only when constructing I.

In the search phase, A1 sends wi to B for q times. B calculates a trapdoor
t(wi) for wi normally and sends it to A2. A2 outputs (C̃(wi)∗,Proof ∗

i) and
sends it back to B. While this step, B also runs the Search algorithm and gets
(C(wi), P roofi) for its own.

For each i, A2’s output (C̃(wi)∗,Proof ∗
i) is either of the following three types:

Type 1 (C̃(wi)∗,Proof ∗
i) = (C(wi),Proof i).

Type 2 (C̃(wi)∗,Proof ∗
i) �= (C(wi),Proof i) and:

Type 2-1 the Verify algorithm outputs reject.
Type 2-2 the Verify algorithm outputs accept.

For each output of Type 1, B returns D(wi) to A1.
For each output of Type 2, B has to return reject if it is Type 2-1, and

a plaintext D̃(wi)∗ of C̃(wi)∗ if it is Type 2-2. However, B cannot distinguish
Type 2-1 and Type 2-2, since B does not have the key for the MAC itself.

For this problem, B randomly chooses J from [1, q] at the beginning of the
search phase. This J is the prediction by B of i such that i-th output is the first
Type 2-2 output. Based on this J , B performs as follows.

148 S. Taketani and W. Ogata

For outputs of A2 before the J-th output in the search phase, B considers
all Type 2 outputs to be Type 2-1, and returns reject to A1.

If the J-th output of A2 is not Type 2, B fails to forge a MAC and aborts.
Otherwise, B considers it as Type 2-2, and determines its output as below.

Case a: C(wJ) �= C̃(wJ)∗

Suppose that

t(wJ) = (addr0, . . . , addrN−1)
C(wJ) = (Cq0 , . . . , Cqm−1)

C̃(wJ)∗ = (C∗
0 , . . . , C∗

m∗−1)
Proof ∗

J = (pr∗
0 , . . . , pr∗

N−1).

Note that addrj = π(0, wJ , j), and that B knows all of the above values.
Because C̃(wJ)∗ �= C(wJ), we need to consider only the following three cases.
Case a-1: m∗ = m, and there exists C∗

i in C̃(wJ)∗ but not in C(wJ)
Case a-2: m∗ > m
Case a-3: m∗ < m.
In both Cases a-1 and a-2, there exists C∗

i in C̃(wJ)∗ but not in C(wJ).
Then, B randomly chooses pr∗

j ∈ Proof ∗
J that is a tag, and outputs a

forged message-tag pair ((0‖addrj‖C∗
i), pr∗

j). Here we assume that A wins
in Gamereli and that B successfully predicts J , that is,

Verify(K, t(wJ), C̃(wJ)∗,Proof ∗
J) = accept (7)

holds with a non-negligible probability. We show that B’s output shown
above is a valid forgery against MAC with a non-negligible probability. This
means that pr∗

j = MAC(0‖addrj‖C∗
i), and that B did not send the query

(0‖addrj‖C∗
i) to its own MAC oracle.

First, from Eqs. (3) and (7), there exists pr∗
j′ such that

MAC(0‖addrj′‖C∗
i) = pr∗

j′ , in Proof ∗
J . j = j′ holds with at least probability

1/m. Next, we can see that B has never queried (0‖addrj′′‖C∗
i) for any j′′

to its own MAC oracle when computing I, because C∗
i �∈ C(wJ). Therefore,

B has succeeded in forging a valid tag with non-negligible probability.
In Case a-3, there exists Cqi in C(wJ), but not in C̃(wJ)∗. Then, pr∗

qi
consists of a pair of addrs and Ntag. Let pr∗

qi = (addr∗
1‖addr∗

2 , Ntag∗).
B outputs ((1‖addr∗

1‖addr∗
2), Ntag∗) as a forgery. Assume that A wins in

Gamereli. From Eqs.(4) and (5),

addr∗
1 < addrqi < addr∗

2

MAC(1‖addr∗
1‖addr∗

2) = Ntag∗

hold. Further, Cqi ∈ C(wJ) implies that addrqi appears in the addr field
of I. Therefore, B did not query (1‖addr′

1‖addr′
2) to the MAC oracle for

any (addr′
1, addr′

2) such that addr′
1 < addrqi < addr′

2. This means that if
A wins in Gamereli with non-negligible probability, then B succeeds with a

Improvement of UC Secure Searchable Symmetric Encryption Scheme 149

non-negligible probability. This contradicts the assumption about the secu-
rity of MAC.

Case b: C(wJ) = C̃(wJ)∗

From (C(wJ),Proof J) �= (C̃(wJ)∗,Proof ∗
J), it is obvious that Proof J �=

Proof ∗
J .

Suppose that

Proof J = (pr1, . . . , prN),
Proof ∗

J = (pr∗
1 , . . . , pr∗

N)

Then, there exists an i s.t. pri �= pr∗
i . Since pri and pr∗

i are either a tag or
a pair (addr1‖addr2, Ntag) of addrs and Ntag, every case will be either of
the following four cases.
Case b-1: both pri and pr∗

i are tags
Case b-2: both pri and pr∗

i are pairs (addr1‖addr2, Ntag)
Case b-3: pri is a tag, and pr∗

i is a pair (addr1‖addr2, Ntag)
Case b-4: pri is a pair (addr1‖addr2, Ntag), and pr∗

i is a tag.
In Case b-1, B knows the Cj which satisfies pri = MAC(0‖addri‖Cj). So it
chooses another Cj′ from C(wJ) randomly, and outputs (0‖addri‖Cj′) and
pr∗

i .

In Cases b-2 and b-3, B outputs ((1‖addr∗
1‖addr∗

2), Ntag∗), where pr∗
i =

(addr∗
1‖addr∗

2 , Ntag∗).

In Case b-4, if there exists an i′(�= i) where Case b-3 is occurring, then B
applies exactly the same method as in Case b-3 to pr∗

i′ instead of pr∗
i
5.

If A succeeds in breaking the reliability, B successfully predicts J in prob-
ability 1/q. When A wins and B successfully predicts J , then B successfully
forges a MAC with probability at least 1/N . Therefore, we obtain

Pr(B succeeds) ≥ Pr(Awins in Gamereli) × 1
qN

.

Note that q and N are polynomials of security parameter λ.

As a result, our scheme satisfies reliability if MAC is unforgeable against
chosen message attack. ��

From Theorems 1, 2, and 3, our scheme is UC-secure.

Corollary 1. If the symmetric encryption scheme SKE = (G,E,E−1) is IND-
CPA secure, and if π is a pseudorandom permutation, and if MAC is existentially
unforgeable against chosen-message attacks, then the above scheme is UC-secure
with leakage Lnew.
5 When Proof ∗

J is accepted by Verify, such i′ will always exist because the Verify

algorithm starts with a step to check whether the number of the tags in Proof is
equal to the numbers of encrypted documents in the search result C(wJ) = C(wJ),
and output reject if not.

150 S. Taketani and W. Ogata

Table 1. Comparison of the efficiency of proposed scheme with the KO-scheme

KO-scheme [18] Proposed scheme

Index Size(bits) O(2lN logN) O(MN logN)

Complexity Enc O(2lN) O(MN)

Search O(N) O(N logMN)

Verify O(N) O(N + m2)

N : number of documents
l : (maximum) length of keywords
M : number of keywords |W| (M ≤ 2l)
m : number of documents in the search result

The leaked information under our scheme is slightly more than the leakage
from the KO-scheme. In particular, our scheme leaks the number of keywords to
the server.

Should the client prefer to avoid leaking the exact number of keywords,
dummy keywords can be added to W. Of course, the more dummy keywords
that are added, the larger the index grows. This is constitutes a trade-off between
security and computational costs.

Nevertheless, the proposed scheme can modify the maximum length of a
keyword l by replacing the permutation π with a collision resistant hash function.

3.3 Comparison

Table 1 shows the index size and the computational cost for each algorithm,
comparing the KO-scheme with the proposed scheme. In the estimation on the
cost of Enc algorithm, we ignored the cost of sorting, which we see it as negli-
gible compared to MAC. We eliminated the rows for algorithms Gen, Trpdr, Dec,
inasmuch as they are exactly the same in both schemes.

We can see that our Enc algorithm is much more efficient and that the index
size is much smaller than the KO-scheme, when |W| � 2l. However, our Search
and Verify algorithms are less efficient than those in the KO-scheme, because
our scheme requires an extra step to search the addrs from the addr field in
Search, and to search the Cis corresponding to tags in Verify.

4 Conclusion

In this paper, we provided generalized definitions for the privacy and UC-security
of SSE schemes, and we proposed a vSSE scheme as a modified version of the
KO-scheme. Whereas the privacy of the proposed scheme is slightly weaker than
the original, the index size is much smaller when the set of keywords is a very
sparse subset of l-bit strings for some l.

Importantly, the idea of Ntag to prove “non-existence” can be applied widely.
For example, the weak point of the (dynamic) vSSE scheme [19] can be overcome

Improvement of UC Secure Searchable Symmetric Encryption Scheme 151

by adding an Ntag after sorting the elements in I based on label. Similarly,
most SSE schemes might be converted to vSSE schemes by including a tag and
an Ntag.

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Boldyreva, A., Chenette, N.: Efficient Fuzzy search on encrypted data. IACR Cryp-
tology ePrint Archive 2014/235

4. Canetti, R.: Universally composable security: “A New Paradigm for Crypto-
graphic,” protocols. Revision 1 of ECCC Report TR01-016 (2001)

5. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2005). http://eprint.iacr.
org/

7. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25,
222–233 (2014)

8. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

9. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

10. Chai, Q., Gong, G.: Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In: 2012 IEEE International Conference on Communi-
cations (ICC), pp. 917–922 (2012)

11. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM Conference
on Computer and Communications Security, pp. 79–88 (2006). Full version: Cryp-
tology ePrint Archive, Report 2006/210. http://eprint.iacr.org/

12. Goh, E.-J.: Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive (2003)

13. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

14. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR,
and WLC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

15. Kamara, S., Papamanthou, C., Roeder, T.: CS2: a searchable cryptographic cloud
storage system. MSR Technical Report no. MSR-TR-2011-58. Microsoft (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

152 S. Taketani and W. Ogata

16. Kamara, S., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security, pp.
965–976 (2012)

17. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013)

18. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012)

19. Kurosawa, K., Ohtaki, Y.: How to update documents Verifiably in searchable sym-
metric encryption. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 309–328. Springer, Heidelberg (2013)

20. Kurosawa, K., Ohtaki, Y.: How to construct UC-secure searchable symmetric
encryption scheme. Cryptology ePrint Archive, Report 2015/251 (2015). http://
eprint.iacr.org/2015/251

21. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

22. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: Proceedings of INFOCOM 2012,
pp. 451–459 (2012)

http://eprint.iacr.org/2015/251
http://eprint.iacr.org/2015/251

	Improvement of UC Secure Searchable Symmetric Encryption Scheme
	1 Introduction
	2 Verifiable Searchable Symmetric Encryption
	2.1 System Model
	2.2 Security Definition
	2.3 Kurosawa-Ohtaki Scheme (KO-Scheme)
	2.4 Inefficiency of KO-Scheme

	3 Improvement of KO-Scheme
	3.1 Concrete Description of Our Scheme
	3.2 Security
	3.3 Comparison

	4 Conclusion
	References

