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Abstract. With the development of the ubiquitous computing and
large-scale information processing systems, the demand for lightweight
block ciphers which is suitable for resource constrained computing
devices is increasing. Hence, the methodology for design and analysis
of block ciphers is becoming more important. In this paper, we use the
Mixed-Integer Linear Programming (MILP) based tools for automatic
differential cryptanalysis in a clever way to find improved single-key and
related-key differential characteristics for DESL (a lightweight variant
of the well known Data Encryption Standard), and obtain tighter secu-
rity bound for LBlock-s (a core component of an lightweight authenti-
cated encryption algorithm submitted to the international competition
for authenticated encryption – CAESAR) against related-key differential
attack. To be more specific, in searching for improved characteristics, we
restrict the differential patterns allowed in the first and last rounds of the
characteristics in the feasible region of an MILP problem by imposing
different constraints than other rounds, and we partition the differential
patterns of the DESL S-box into different sets with 2-bit more infor-
mation associated with each pattern according to their probabilities. In
addition, we show how to use the Gurobi optimizer combined with a
known good characteristic to speed up the characteristic searching and
bound proving process. Using these techniques, we managed to find the
currently known best 9-round related-key differential characteristic for
DESL, and the first published nontrivial related-key and single-key dif-
ferential characteristics covering 10 rounds of DESL. Also, we obtain the
currently known tightest security bound for LBlock-s against related-
key differential attack. These techniques should be useful in analysis and
design of other lightweight block ciphers.
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1 Introduction

Cryptography plays a central role in protecting today’s information system, and
block cipher is one of the most important types of cryptographic algorithms.
Moreover, with the development of the ubiquitous computing and large-scale
information processing systems, the demand for lightweight block ciphers which
are suitable for resource constrained computing devices such as sensor nodes,
and RFID tags is increasing. Therefore, design and analysis of lightweight block
ciphers draw much attention from the researchers in applied cryptography.

Differential cryptanalysis [20], introduced by Eli Biham and Adi Shamir in
the late 1980s, is one of the most effective attacks on modern block ciphers.
Moreover, many cryptanalytic techniques, such as the related-key differential
attack [2,6,19], truncated differential attack [24], statistical saturation attack
[11,16], impossible differential attack [1,23], (probabilistic) higher order differen-
tial attack [24,43], boomerang attack [18], multiple differential attack [8,9,15,17],
differential-linear cryptanalysis [42], multiple linear attack [5,14,28–30] and so
on so forth, are essentially based on differential attack.

Typically, the first step in differential attack is to find a differential charac-
teristic with high (or the highest possible) probability. Hence, a method used for
searching for good (or the best) differential characteristic is of great importance.
For a designer, such method can be used to obtain a proven security bound
against differential attack, which is a necessary part of the design of a block
cipher. In fact, a large part of the design document of a modern block cipher is
devoted to the security evaluation of differential attack. For an attacker, such
method can be used to find high probability differential characteristics of a cipher
which lead to distinguishers or key recovery attacks.

Matusi’s branch-and-bound depth-first search algorithm [31] is a classic
method for finding the best differential characteristic of a cipher. Several works
were devoted to improving the efficiency of Matsui’s approach. The concept of
search pattern was introduced in [34] to reduce the search complexity of Matusi’s
algorithm by detecting unnecessary search candidates. Further improvements
were obtained by Aoki et al. [10] and Bao et al. [48]. Remarkably, significant
efficiency improvement on Matsui’s approach was observed for specific ciphers
in [48].

Despite its guarantee for finding the best single-key differential characteristic
for a cipher (given unlimited computational power), Matsui’s algorithm and its
variants has some important limitations making it not practically applicable in
many situations. Firstly, for most ciphers, the original algorithm of Matsui is not
practically applicable in the related-key model. Even though there exits Matsui’s
variant (see Biryukov et al.’s work [3]) for finding related-key differential charac-
teristics, this method is not very useful for ciphers with nonlinear key schedule
algorithms, whereas ciphers with nonlinear key schedule algorithms are plenti-
ful. Moreover, with the developement of new techniques for cryptanalysis (e.g.,
the differential fault attack [13,21,47] and biclique attack [7]), the related-key
model is becoming more important and highly relevant to the design and analy-
sis of symmetric-key cryptographic algorithms. Secondly, Matsui’s approach is
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inefficient in finding the best characteristics for many ciphers, and some speeding-
up techniques for Matusi’s approach were intimately related to the special prop-
erties of the specific ciphers under consideration, making it difficult to implement
and far from being a generic and convenient tool for cryptanalysis.

For ciphers that cannot be analyzed by Matsui’s approach, the cryptanalysts
turn to other methods which can be employed to find reasonably good character-
istics. Although the characteristics found by these methods are not guaranteed to
be the best, they do produce currently the best known results for many ciphers.

In [4], Biryukov et al.extend Matsui’s algorithm by using the partial (rather
than the full) difference distribution table (pDDT) to prevent the number of
explored candidates from exploding and at the same time keep the total proba-
bility of the resulting characteristic high. In [35], truncated differentials with the
minimum number of active S-boxes are found by a breadth-first search based on
the Dijkstra’s algorithm, and then these truncated differentials are instantiated
with actual differences.

Another line of research is to model the differential behavior of a cipher
as an SAT or Mixed-Integer Linear Programming (MILP) problem which can
be solved automatically by SAT or MILP solvers. Compared with other meth-
ods, these methods are easier to implement and more flexible. In [32,40,41],
SMT/SAT solvers are employed to find differential characteristics of Salsa and
other ciphers. Mouha et al. [33], Wu et al. [36], and Sun et al. [37] translated
the problem of counting the minimum number of differentially active S-boxes
into an MILP problem which can be solved automatically with open source or
commercially available optimizers. This method has been applied in evaluat-
ing the security against (related-key) differential attacks of many symmetric-key
schemes. However, this tool cannot be used to find the actual differential char-
acteristics directly. In Asiacrypt 2014, two systematic methods for generating
linear inequalities describing the differential properties of an arbitrary S-box
were given in [39]. With these inequalities, the authors of [39] were able to con-
struct an MILP model whose feasible region is a more accurate description of
the differential behavior of a given cipher. Based on such MILP models, the
authors of [39] proposed a heuristic algorithm for finding actual (related-key)
differential characteristics, which is applicable to a wide range of block ciphers.
In [38], Sun et al. get rid of the heuristic argument in [39] by constructing MILP
models whose feasible regions are exactly the sets of all (related-key) differential
characteristics.

These MILP based methods [37,39] mainly focus on finding characteristics
with the minimum (or reasonably small) number of active S-boxes. However, it
is well possible that a characteristic with more active S-boxes is better than a
characteristic with a smaller number of active S-boxes. Even though a method for
finding the best characteristic of a cipher by encoding the probability information
into the differential patterns is proposed in [38], this method is only applicable
to ciphers with 4× 4 S-boxes and infeasible when the number of rounds is large.
Therefore, by using these methods, we may miss some better characteristics. In
this paper, we mainly focus on how to use the MILP based methods in a clever
way such that better characteristics can be found.
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Our Contribution. Based on Sun et al.’s MILP framework for automatic dif-
ferential analysis presented in [37–39], we propose several techniques which are
useful for finding improved characteristics. To be more specific, we restrict the
differential patterns allowed in the first and last rounds to be those with rela-
tively high probability in the differential distribution table, which makes sure
that the active S-boxes in the first and last rounds assume relatively high prob-
abilities. We also partition the differential patterns into different sets. For each
of these sets, we associate 2-bit more information into its differential patterns,
and try to find a characteristic maximizing a special objective function rather
than maximizing the number of differentially active S-boxes. Moreover, after we
find a good characteristic with NA active S-boxes, we use the tool presented in
[38] to enumerate all characteristics with NA, NA +1 and NA +2 active S-boxes,
from which we may find better characteristics than the original one. We also
present some tricks in using the Gurobi [22] optimizer which may speed up the
solving process.

With these techniques, we find a related-key characteristic covering 9 rounds
of DESL whose probability is 2−41.89, while the best previously published 9-
round related-key differential characteristic with probability 2−44.06 is given in
[38]. Note that in [3], only the upper bound of the probability of the related-key
differential characteristics covering 9 rounds of DESL is given. We also present
a 10-round single-key and related-key differential characteristics of DESL with
probabilities 2−52.25 and 2−51.85 respectively. Moreover, we give so far the tight-
est security bound of the full LBlock-s with respect to related-key differential
attack.

Organization of the Paper. In Sect. 2, we introduce the MILP framework for
automatic differential cryptanalysis. In Sect. 3, we present several techniques for
finding improved (related-key) differential characteristics. Then we apply these
techniques to DESL and LBlock-s in Sect. 4. Section 5 is the conclusion and
discussion.

2 MILP Based Framework for Automatic Differential
Cryptanalysis

A brief introduction of Sun et al.’s method is given below. Sun et al.’s method
[37–39] is an extension of Mouha et al.’s technique [33] based on Mixed-Integer
Linear Programming, which can be used to search for (related-key) differen-
tial characteristics and obtain security bounds of a cipher with respect to the
(related-key) differential attack automatically.

Sun et al.’s method is applicable to ciphers involving the following three
operations:

– bitwise XOR;
– bitwise permutation L which permutes the bit positions of an n dimensional

vector in F
n
2 ;

– S-box, S : Fω
2 → F

ν
2 .
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Note that a general linear transformation T : Fn
2 → F

m
2 can be treated as

some XOR summations and bitwise permutations of the input bits. In Sun et
al.’s methods, a new variable xi is introduced for every input and output bit-
level differences, where xi = 1 means the XOR difference at this position is 1
and xi = 0 if there is no difference.

Also, for every S-box involved in the cipher, introduce a new 0–1 variable Aj

such that

Aj =
{

1, if the input word of the Sbox is nonzero,
0, otherwise.

Now, we are ready to describe Sun et al.’s method by clarifying the objec-
tive function and constraints in the MILP model. Note that we assume that all
variables involved are 0–1 variables.

Objective Function. The objective function is to minimize the sum of all vari-
ables Aj indicating the activities of the S-boxes:

∑
j Aj .

Constraints. Firstly, for every XOR operation a ⊕ b = c ∈ {0, 1}, include the
following constraints ⎧⎨

⎩
a + b + c ≥ 2d⊕
a + b + c ≤ 2
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

(1)

where d⊕ is a dummy variable.
Assuming (xi0 , . . . , xiω−1) and (yi0 , . . . , yiν−1) are the input and output dif-

ferences of an ω × ν S-box marked by At, we have
⎧⎨
⎩

At − xik
≥ 0, k ∈ {0, . . . , ω − 1}

−At +
ω−1∑
j=0

xij
≥ 0 (2)

and ⎧⎪⎪⎨
⎪⎪⎩

ω−1∑
k=0

xik
+

ν−1∑
k=0

yjk
≥ BSdS

dS ≥ xik
, 0 ≤ k ≤ ω − 1

dS ≥ yjk
, 0 ≤ k ≤ ν − 1

(3)

where dS is a dummy variable, and the branch number BS of an S-box S, is
defined as mina�=b{wt((a ⊕ b)||(S(a) ⊕ S(b)) : a, b ∈ F

ω
2 }. For an bijective S-box

we have ⎧⎪⎪⎨
⎪⎪⎩

ω
ν−1∑
k=0

yjk
−

ω−1∑
k=0

xik
≥ 0

ν
ω−1∑
k=0

xik
−

ν−1∑
k=0

yjk
≥ 0

(4)

Then, treat every possible input-output differential pattern (x0, . . . , xω−1) →
(y0, . . . , yν−1) of an ω × ν S-box as an (ω + ν)-dimensional vector (x0, . . . , xω−1,
y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆ R

ω+ν , and compute the H-representation of the
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convex hull of all possible input-output differential patterns of the S-box. From
the H-representation select a small number of linear inequalities using the greedy
algorithm presented in [38] which can be used to exactly describe the differential
behavior of the S-box. Finally, relate the input and output variables of the S-box
using these inequalities. Now, if we require that all the variables involved are 0–1
variables, then the feasible region of the resulting MILP model is exactly the set
of all differential characteristics. We mention here that all the constraints in (3)
and (4) can be omitted if we have already use the constraints from the critical
set, since these constraints remove all impossible patterns.

3 Techniques for Obtaining Better Characteristics

In [37–39], MILP models are constructed and solved to search for characteristics
with a small or the minimal number of active S-boxes. The main reason pre-
venting the solution of such MILP models from leading to better characteristics
is that the objective function in the MILP model is to minimize the number of
differentially or linearly active S-boxes. Under this setting, an MILP optimizer,
say Gurobi, is constantly trying to find a characteristic with a smaller number of
active S-boxes. In this process, some characteristics with higher probability but
larger numbers of active S-boxes are lost. Therefore, the method presented in
[37–39] may fail to find some better characteristics. In this section, we show how
to mitigate this situation such that improved characteristics can be obtained
automatically.

Technique 1. Finding Characteristics with More Active S-Boxes. For
an iterative r-round block cipher E, Sun et al.’s methods can be used to find a
characteristic with the minimal or a reasonably small number of active S-boxes.
Assuming that such an r-round characteristic with NA active S-boxes has been
found, then we add the constraint NA ≤ ∑

j Sj ≤ NA + m to the MILP model,
where Sj ’s are the variables marking the activities of the involved S-boxes. Then
we try to enumerate all related-key differential characteristics satisfying all the
constraints in the model, where m is a small positive integer typically chosen
to be 1 or 2. From these characteristics we may find better ones. This is in
fact the same heuristic employed by Biham et al. in [12], where they try to find
differential characteristics with higher probabilities for the amplified boomerang
attack. They try to accomplish this by adding an active S-box in the first round.
This might seem a bad thing (as this increase the number of active S-boxes), but
they find out that in exchange they get 3 more differentials of the active S-boxes
with probability 2−2 instead of 2−3.

Technique 2. Imposing Different Constraints for Different Rounds.
Another technique for getting better characteristic is to allow only those differ-
ential patterns in the first and last rounds of a characteristic to take relatively
high probabilities. This is because the input of the first round and the output
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of the last round is relatively free when compared to other rounds. In fact, for
every characteristic we get, we can always manually modify its input and out-
put differences (such that high probability differential patterns are used in the
first and last rounds) to get a characteristic which is at least not worse than
the original one. This manual process can be done automatically in the MILP
framework by, in the first and last rounds, using the constraints generated from
the critical set of the convex hull of all differential patterns with probability
higher than a threshold value pT we choose, rather than the convex hull of all
possible differential patterns. Note that it is important to do this automatically
since the enumeration process may return thousands of characteristics.

Technique 3. Encoding More Information into the Differential Pat-
terns of an S-Box. In Sect. 5 of [38], an MILP based method for constructing
an MILP model which can be used to search for the best (related-key) differen-
tial characteristic of a block cipher with 4×4 S-box is proposed by encoding the
probability information of the differentials of a 4 × 4 S-box into the differential
patterns.

Take the PRESENT S-box S for example. For every possible differential
pattern (x0, x1, x2, x3) → (y0, y1, y2, y3), a corresponding differential pattern with
probability information can be constructed as follows

(x0, x1, x2, x3, y0, y1, y2, y3; p0, p1) ∈ {0, 1}8+2

where the two extra bits (p0, p1) are used to encode the differential probability
PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] as follows

⎧⎨
⎩

(p0, p1) = (0, 0), if PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] = 1;
(p0, p1) = (0, 1), if PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] = 2−2;
(p0, p1) = (1, 1), if PrS [(x0, . . . , xω−1) → (y0, . . . , yν−1)] = 2−3.

(5)

Hence, the probability of the differential pattern (x0, x1, x2, x3) →
(y0, y1, y2, y3) is 2−(p0+2p1). We refer the reader to [38] for more information
of the technique.

This technique is only feasible for ciphers for 4 × 4 S-boxes because there
are only 3 different probabilities for all differential patterns of a typical 4 × 4 S-
boxes and hence we need only �log2 3	 = 2 extra bits to encode the probability
information for each differential pattern. For an ω × μ S-box, if d extra bits
are needed to encode the differential probability information, then we need to
compute the H-representation of the convex hull of a subset in R

ω+μ+d. For the
PRESENT S-box, we need to compute the H-representation of a convex hull of
a subset in R

4+4+2 = R
10. For the S-box of DESL, this technique is infeasible

since there are 9 different probabilities for the differentials of the DESL S-box and
we need at least �log2 9	 = 4 extra bits to encode the probability information.
This will force us to compute the H-representation of a convex hull of a set
in R

6+4+4 = R
14 which leads to MILP models with too many constraints to be

solved in practical time. In the following, we propose a technique which partitions
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the differential patterns into several sets according to their probabilities and
encodes their probability information with less extra bits.

Definition 1. Define D[p]
S to be the set of all differential patterns of an ω × μ

S-box with probability p, that is

D[p]
S = {(x0, · · · , xω−1, y0, · · · , yμ−1) : PrS [(x0, . . . , xω−1) → (y0, . . . , yμ−1)] = p},

and we use D[p1,··· ,pt]
S to denote the set D[p1]

S ∪ · · · ∪ D[pt]
S .

Take the DESL S-box for example. For every possible differential pattern
(x0, · · · , x5) → (y0, · · · , y3), we can construct a corresponding pattern

(x0, · · · , x5, y0, · · · , y3; θ0, θ1) ∈ R
6+4+2

such that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(θ0, θ1) = (0, 0), if (x0, · · · , x5, y0, · · · , y3) ∈ D[ 6464 ]

S ;

(θ0, θ1) = (1, 0), if (x0, · · · , x5, y0, · · · , y3) ∈ D[ 1664 , 1464 , 1264 ]

S ;

(θ0, θ1) = (0, 1), if (x0, · · · , x5, y0, · · · , y3) ∈ D[ 1064 , 8
64 , 6

64 ]

S ;

(θ0, θ1) = (1, 1), if (x0, · · · , x5, y0, · · · , y3) ∈ D[ 4
64 , 2

64 ]

S .

(6)

In this technique, the constraints for S-boxes are the critical sets of all pat-
terns with the above encoding scheme, and the objective function is chosen to
be minimizing

∑
(θ0 +λθ1), where λ is a positive constant. Note that the differ-

ential patterns in D[p1,··· ,pt] with larger pi will lead to a smaller θ0 + λθ1, and
therefore tend to make the objective function

∑
(θ0 + λθ1) smaller.

Note that this method is heuristic in nature. Firstly, unlike the case of
PRESENT S-box, the encoding scheme does not represent the exact probability
of a differential. Secondly, the solution which minimizes the objective function
is not necessarily corresponding to the best characteristic. Finally, the partition
of the differential patterns and the selection of λ are rather ad-hoc (we choose
λ = 3 when applied this technique to DESL). All these problems deserve further
investigation. In the next section, we will show that although this technique is
heuristic and rather ad-hoc, it does produce the currently known best results for
DESL.

Finally, we would also like to point out a feature provided by the MILP
optimizer Gurobi [22] which may be useful in speeding up the searching process
of better characteristics. In Gurobi, an MILP start (MST) file is used to specify
an initial solution for a mixed integer programming model. The file lists values to
assign to the variables in the model. If an MILP start file has been imported into
an MILP model before optimization begins, the Gurobi optimizer will attempt
to build a feasible solution from the specified start values. A good initial solution
often speeds up the solution of the MILP model, since it provides an early bound
on the optimal value, and also since the specified solution can be used to seed
the local search heuristics employed by the MILP solver. An MILP start file
consists of variable-value pairs, each on its own line. Any line that begins with
the hash sign (#) is a comment line and is ignored. The following is a simple
example:
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# MIP start
x1 1
x2 0
x3 1

Therefore, by converting known good characteristics into an MST file, and
importing it into our MILP model before optimization begins, we may speed up
the searching process.

4 Application to DESL and LBlock-s

The techniques presented in Sect. 3 are implemented in a Python [44] framework,
and we show its applications in the following.

4.1 Improved Single-Key and Related-Key Differential
Characteristics for DESL

DESL [25] is a lightweight variant of the well known block cipher DES (the Data
Encryption Standard), which is almost the same as DES except that it uses a
single S-box instead of eight different S-boxes as in DES. This S-box has a special
design criteria to discard high probability (single-key) differential characteristics.
This simple modification makes DESL much stronger than DES with respect to
differential attack. In [3], Alex Biryukov et al. observed that Matsui’s tool is
infeasible for finding the best differential characteristics for DESL. However,
Matsui’s tool can find the best characteristic of the full DES in no more than
several hours on a PC. To the best of our knowledge, there is no published
single-key or related-key differential characteristics covering 10 rounds of DESL,
and in fact, even in the design document of DESL, there is no concrete security
bounds provided for DESL.

We first generate an MILP model for 9-round DESL in the related-key model
according to the technique 2 and technique 3 presented in Sect. 3. By solving this
model using the Gurobi optimizer [22], we find a 9-round related-key differential
characteristic for DESL with probability 2−41.89, which is the best published 9-
round related-key differential characteristic so far. The concrete results are given
in Tables 1 and 2.

Subsequently, we construct an MILP model for 10-round DESL in the related-
key model. Before we start to solve this model, we import the 9-round related-
key differential characteristic found previously as an MILP start file. Finally, we
find a 10-round related-key differential characteristic of DESL with probability
2−51.85 and 14 active S-boxes (see Tables 3 and 4). Then by employing the
technique 1 of Sect. 3, we search for characteristics with 14, 15 or 16 active S-
boxes. Finally, we find a single-key (a special case of the related-key model where
there is no key difference) differential characteristic with probability 2−52.25 and
15 active S-boxes, which is given in Table 5. Note that this is the first published
nontrivial single-key differential characteristic covering 10 rounds of DESL.
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Table 1. A 9-round related-key differential characteristic for DESL with probability
2−41.89 (characteristic in the encryption process)

thgiRtfeLsdnuoR

0 00000000000000010000000000000000 00000000010000000000000000000000
1 00000000010000000000000000000000 00000000000000000000000000000000
2 00000000000000000000000000000000 00000000010000000000000000000000
3 00000000010000000000000000000000 00000100000000000000000000000000
4 00000100000000000000000000000000 00000000010000000100000000000000
5 00000000010000000100000000000000 00100000000000000000000110000000
6 00100000000000000000000110000000 00000010110000000100000000000000
7 00000010110000000100000000000000 00000000000001000000000000000000
8 00000000000001000000000000000000 00000010100000000100000000000000
9 00000010100000000100000000000000 01100000000000000100000110010000

Table 2. A 9-round related-key differential characteristic for DESL with probability
2−41.89(characteristic in the key schedule algorithm)

Rounds The differences in the key register

1 000000000000000010000000000000000000000000000000
2 000000000000000000000000000000000000000000000000
3 000000000000100000000000000000000000000000000000
4 000000000010000000000000000000000000000000000000
5 000000000000010000000000000000000000000000000000
6 010000000000000000000000000000000000000000000000
7 000000001000000000000000000000000000000000000000
8 000000000000000000000010000000000000000000000000
9 000000000000001000000000000000000000000000000000

Table 3. A 10-round related-key differential characteristic for DESL with probability
2−51.85 (characteristic in the key schedule algorithm)

Rounds The differences in the key register

1 111111111111111111111111111111111111111111111101
2 111111111111111111111111111111111111111011111111
3 111111111111111111111111111111111111111111111111
4 111111111111111111111111101111111111111111111111
5 111111111111111111111111111111111111111111110111
6 111111111111111111111111111111111110111111111111
7 111111111111111111111111111111111111111111011111
8 111111111111111111111111111111111111011111111111
9 111111111111111111111111111111111111111111111111
10 111111111111111111111111011111111111111111111111
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Table 4. A 10-round related-key differential characteristic for DESL with probability
2−51.85(characteristic in the encryption process)

thgiRtfeLsdnuoR

0 11111111111111111111111111011101 11011111111111111111111111111110
1 11011111111111111111111111111110 11111111111111111111111111011111
2 11111111111111111111111111011111 11011111111111111111111111111110
3 11011111111111111111111111111110 11111111111111010111111111111111
4 11111111111111010111111111111111 01011111111111111111111111111110
5 01011111111111111111111111111110 11111111111111010111010111111111
6 11111111111111010111010111111111 11111111111111111111111111111110
7 11111111111111111111111111111110 11111111111111111111111111011111
8 11111111111111111111111111011111 11111111111111111111111111111111
9 11111111111111111111111111111111 11111111111111111111111111011111
10 11111111111111111111111111011111 11011111111011111111101101111111

Table 5. A 10-round single-key differential characteristic for DESL with probability
2−52.25

thgiRtfeLsdnuoR

0 00000000000000010000000000000000 00000000010000000000000000000000
1 00000000010000000000000000000000 00000000000000000000000000000000
2 00000000000000000000000000000000 00000000010000000000000000000000
3 00000000010000000000000000000000 00000100000000000000000000000000
4 00000100000000000000000000000000 00000000010000000100000000000000
5 00000000010000000100000000000000 00100000000000000000000110000000
6 00100000000000000000000110000000 00000010110000000100000000000000
7 00000010110000000100000000000000 00000000000001000000000000000000
8 00000000000001000000000000000000 00000010100000000100000000000000
9 00000010100000000100000000000000 01100000000000000100000110010000

4.2 Tighter Security Bound for LBlock-s

LBlock is a lightweight block cipher proposed by Wu et al. in ACNS 2011 [46]. It
is a Feistel Network with a 64-bit block size and a 80-bit key size. Since its publi-
cation, LBlock received extensive cryptanalysis, such as [27] and [45]. According
to [45], the security of LBlock against biclique attack is not strong enough due to
its relatively weak diffusion of the key schedule algorithm. So a new key sched-
ule algorithm is proposed in [45]. The LBlock with this improved key schedule
is called LBlock-s, which is a core component of the authenticated encryption
LAC [26] submitted to the CAESAR competition (Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness). Also, instead of using
10 different S-boxes in LBlock, LBlock-s uses only one S-box to reduce the cost
of hardware implementation. For a detailed description of the cipher LBlock-s we
refer the reader to [45] and [26] for more information. In this section, we apply
the technique presented in this paper and the method presented in [38,39] to
LBlock-s, and we obtain so far the tightest security bound for the full LBlock-s.
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To obtain the security bound for LBlock-s against related-key differential
attack, we generate two MILP instances for 10-round and 11-round LBlock-s
using the method presented in [38,39]. Then we use the Gurobi optimizer to
solve these models. The results indicate that there are at least 10 active S-boxes
for 10-round LBlock-s, and 11 active S-boxes for 11-round LBlock-s. However,
when we solve the 11-round model, we use the 10-round related-key differential
characteristic found by the Gurobi model by solving the 10-round model as an
MILP start file (see Sect. 3), and import it into the 11-round model. Finally, we
observe a roughly 7 % speed up compared with the case without using the MILP
start file. Then, we employ the technique 2 presented in Sect. 4.1 of [39] to
generate an MILP model for 11-round LBlock-s such that only the differential
patterns of the S-box with probability greater than or equal to 2−2 are allowed.
By solving this model, we prove that there are at least 12 active S-boxes for 11-
round LBlock-s in the related-key model if only those S-box differential patterns
with probability greater than or equal to 2−2 are allowed. These results indicate
that the probability of any related-key differential characteristic for the 11-round
LBlock-s is at most (2−2)10×2−3 = 2−23. Consequently, the probability of the full
round LBlock-s (32 rounds in total) is upper bounded by 2−23×2−23×(2−2)10 =
2−66. Note that this is so far the tightest security bound for full LBlock-s against
related-key differential attack.

5 Conclusion and Discussion

In this paper, we use the MILP based methods in a clever way to find bet-
ter (related-key) differential characteristics of DESL and obtain tighter security
bound for LBlock-s. The key idea is to force the active S-boxes in the first and
last rounds of a characteristic to take the differentials with relatively high prob-
abilities, encode more information into the differential patterns, and to find bet-
ter characteristics by enumerating all characteristics with their objective value
(number of active S-boxes) close to the minimum number of active S-boxes.
Moreover, we show how to use Gurobi and a known good characteristic to speed
up the searching process. Finally, we would like to propose some problems deserv-
ing further investigation. Firstly, how to find the related-key differential char-
acteristic of DESL with the maximal probability automatically by using MILP
technique? Secondly, how to exploit the special features and tune the available
parameters of the Gurobi optimizer to speed up the solving process further?
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