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Abstract. In this paper, we revisit the problem of factoring RSA moduli
with implicit hint, where primes of two RSA moduli share some number
of middle bits. Suppose that for two n-bit RSA moduli N1 = p1q1 and
N2 = p2q2, q1 and q2 are (αn)-bit primes, p1 and p2 share tn bits at
positions from t1n to t2n = (t1 + t)n. Faugère et al. (PKC 2010) showed
that when t ≥ 4α, one can factor N1 and N2 in polynomial time. In
this paper, we improve this bound to t > 4α − 3α2 by presenting a
new method of solving a homogeneous linear equation modulo unknown
divisors. Our method is verified by experiments.

Keywords: RSA modulus · Factorization with implicit hint · Copper-
smith’s technique · Middle bit

1 Introduction

How to efficiently factor integers which are composed of large primes is one of
the most concern problems in algorithmic number theory. However, for now it
does not exist any polynomial time algorithm. Therefore, many cryptosystems
based on the difficulty of factorization problem are designed. Since its invention
[18], the RSA public key cryptosystem is the most studied scheme in cryptology
and has been widely used in practical applications due to its effective encryption
and decryption. From the work of Coron and May [7], it has been proved that
recovering the private key of the RSA cryptosystem and factoring the moduli
are determinately equivalent in polynomial time.

However, there still exist many weaknesses in the RSA cryptosystem. For
example, to achieve high efficiency in the decryption phase, small decryption
exponents are often adopted and the security of such an RSA cryptosystem may
be threatened by cryptanalysis such as small private exponent attack [4,20],
small CRT-exponent attack [11] and so on. Moreover, the pseudo random number
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generators which are used in the key generation algorithm in the RSA cryptosys-
tem may also threaten the security. Recently, Lenstra et al. [13] and Bernstein
et al. [3] discovered this weakness and successfully factor some RSA moduli
which are used in the real world. Hence, along this direction many researchers
have paid many attentions to factoring RSA moduli with some specific hints.

Implicit Factorization. For the convenience of describing the problem of
implicit factorization, we begin with a simple example. Assume that there are
two n-bit RSA moduli N1 = p1q1 and N2 = p2q2, where q1, q2 are (αn)-bit prime
integers.

In PKC 2009, May and Ritzenhofen [16] firstly proposed an efficient method
to factor the RSA moduli if p1 and p2 share a large number of the least significant
bits (LSBs). It has been rigorously proved in [16], if tn ≥ αn + 3, then (q1, q2)
is the shortest vector in a related two-dimensional lattice. Once (q1, q2) is found
by some lattice basis reduction method, the two RSA moduli are factored. May
and Ritzenhofen also heuristically generalize their method to deal with implicit
factorization of multiple RSA moduli.

Shortly later, Faugère et al. [8] analyzed the problem of implicit factoriza-
tion where the primes share most significant bits (MSBs) or bits in the middle.
According to Faugère et al.’s work, when p1 and p2 share tn ≥ 2αn + 3 MSBs,
(q1, q2) can be found from a two-dimensional lattice. In the case of tn bits shared
in the middle of the binary expressions of p1 and p2, they gave a heuristic bound
that for the case of tn ≥ 4αn + 7, and q1 and q2 can be recovered from a
three-dimensional lattice.

Related Works. Since the problem of implicit factorization has been proposed,
it attracts a lot of attentions. Sarkar and Maitra [19] combined the implicit
factorization and approximate integer common divisor problem, and by solving
modular equations, they obtained the same bound of [8,16] for both LSBs case
and MSBs case. Then Kurosawa and Ueda [12] reconsidered the method of [16]
and gave a more tighter bound on the numbers of shared LSBs. In 2014, Peng
et al. [17] and Lu et al. [15] used two different methods to improve the bound for
both LSBs case and MSBs case. The intriguing point is that these two completely
different methods obtained the same bounds on the numbers of shared LSBs or
MSBs and it is worth to do further investigation to find the internal relations.
However, all the above mentioned methods do not work for the case that the
primes share middle bits.

Our Contribution. Recall the work of [17], Peng et al. firstly used a low
dimensional lattice which is exactly considered in [8,16] to obtain a reduced
basis, then they represented the desired vector as a linear equation of the reduced
basis, they solved out the linear equation by using Coppersmith’s technique, and
finally obtain an improved bound.

In this paper, inspired by the idea of [17], for the first time we optimize the
bound on the number of shared bits in the middle position. As it has been shown
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Fig. 1. Comparison with previous ranges on t with respect to α. Since t ≤ 1 − α, any
valid range is under the thick solid diagonal line. Here the dotted line denotes the lower
bound on t in [8] and the thin solid line denotes that in this paper. The grey shaded
area is a new improvement presented in this paper.

in [8], if there are enough shared middle bits, the desired factorization can be
directly obtained from the L3 lattice basis reduction algorithm. We present a
method to deal with the case where the shared middle bits are not enough to
ensure that the desired factorization is included in the output of the L3 algo-
rithm. The starting point is that we represent the vector which we desire to
find out as an integer linear combination of the reduced basis vectors of the
lattice and obtain a modular equation system with three modular equations and
three unknown variables. Then we transform the first two modular equations of
the system to a modular equation by applying the Chinese remainder theorem
and reduce one of the unknown variables by elimination with the last equation.
Finally, we can obtain a homogeneous linear equation with two unknown vari-
ables modulo an unknown divisor of a known composite large integer. Once the
small root of the modular equation has been solved out, the desired vectors can
be recovered, which means the bound on the number of shared middle bits can
be improved. Ignoring the small constant which is dependent on the bitlength
n, the previous bound t ≥ 4α can be improved to t > 4α − 3α2. To the best of
our knowledge, our lower bound on the number of the shared middle bits is the
first improvement on the implicit factorization problem of middle bits case and
experimental results also show this improvement.

An explicit description on our improvement is illustrated in Fig. 1.
The rest of this paper is organized as follows. Preliminaries on lattices are

given in Sect. 2. In Sect. 3, we give a brief description of previous work of implicit
factorization for middle bits case. Section 4 is our improvement and the experi-
mental results. Finally, Sect. 5 is the conclusion.

2 Preliminaries

Consider the linear independent vectors w1, w2, · · · , wk ∈ R
n. Then the lat-

tice L spanned by w1, · · · , wk is the set of all integer linear combinations of
w1, · · · , wk. The number of vectors, namely k, is the dimension of L and the
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vectors w1, · · · , wk is a basis of L. Any lattice of dimension larger than 1 has
infinitely many bases.

For a lattice, calculating its shortest vector is known to be NP-hard problem
under randomized reductions [2]. However, since the L3 lattice basis reduction
algorithm which can output an approximation of shortest vector in polynomial
time has been introduced in [14], lattice becomes a fundamental tool to analyze
the security of public key cryptosystem.

Lemma 1. (L3, [14]) Let L be a lattice of dimension k. Applying the L3 algo-
rithm to L, the output reduced basis vectors v1, · · · , vk satisfy that

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

In [6], a strategy which is usually called Coppersmith’s technique has been
discussed. It used lattice-based method to find small integer roots of modular
equation with one variable, and of integer equation with two variables. In [10],
Jochemsz and May extended the results and gave a general method to find roots
of multivariate polynomials.

Given a polynomial g(x1, · · · , xk) =
∑

i1,··· ,ik

ai1,··· ,ik
xi1
1 · · · xik

k , we define

‖g(x1, · · · , xk)‖2 =
∑

i1,··· ,ik

a2
i1,··· ,ik

The following lemma due to Howgrave-Graham’s result [9] gives a sufficient
condition under which modular roots are still satisfied for integer equations.

Lemma 2. (Howgrave-Graham, [9]) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

1.g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

2.‖g(x1X1, · · · , xkXk)‖ <
pm

√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

Lattice based approaches of solving small roots of a modular or integer equa-
tion are first to construct a lattice from the polynomial of the equation, then
by lattice basis reduction algorithm obtain new short lattice vectors which cor-
respond to new polynomials with small norms and with the same roots as the
original polynomial. These approaches usually rely on the following heuristic
assumption.

Assumption 1. Lattice based constructions always yield algebraically indepen-
dent polynomials, and the common roots of these polynomials can be efficiently
computed by using numerical or symbolic methods.
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Gaussian Heuristic. In [1] a claim states that with overwhelming probability,
the minima λi(L) of a random n-dimensional lattice L are all asymptotically
close to the Gaussian heuristic, that is, for all 1 ≤ i ≤ n,

λi(L)

det(L)
1
n

≈
√

n

2πe
,

where the minima λi(L) denotes the i-th minimum of lattice L, which means
it is the radius of the smallest zero-centered ball containing at least i linearly
independent lattice vectors.

Note that for our attack, the low-dimensional lattice we constructed is not a
random lattice, however, according to our practical experiments, the lengths of
the vectors of the lattice basis outputted from the L3 algorithm to that specific
lattice are indeed asymptotically close to the Gaussian heuristic. Based on this
observation on the lengths of our reduced basis vectors, we give the following
attacks and we also do experiments to verify our attacks.

3 Previous Method of Factoring Two RSA Moduli with
Implicitly Common Middle Bits

Let N1 = p1q1 and N2 = p2q2 be two given RSA moduli of n bits, where q1 and
q2 are (αn)-bit primes and p1 and p2 are primes that share tn bits at position
from t1n to t2n = (t1 + t)n. For convenience, we write N1 and N2 as follows:

N1 = p1q1 = (p122
t2n + p2t1n + p10)q1,

N2 = p2q2 = (p222
t2n + p2t1n + p20)q2.

Then we reduce the equations by modulo 2t2n, one can obtain two equations
with 5 unknown variables p, p10 , p20 , q1, q2:

N1 ≡ (p2t1 + p10)q1 mod 2t2n

N2 ≡ (p2t1 + p20)q2 mod 2t2n.

Faugère et al. transformed the problem of factoring N1 and N2 to finding short
vectors of a three-dimensional lattice, more precisely, a lattice L defined by the
row vectors of the following matrix

⎛

⎝
K 0 N2

0 K −N1

0 0 2t2n

⎞

⎠,

where K = 2(α+t1)n.
Clearly, the vector v = (q1K, q2K, r) with r being the unique remainder in

(−2t2n−1, 2t2n−1] of q1N2 − q2N1 modulo 2t2n is in L. Due to the work of [8], v
is the shortest vector in L when

tn ≥ 4αn + 7.
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Then one can obtain the primes (q1, q2) by a lattice basis reduction algorithm.
Note that, for large n, we simplify the bound as t ≥ 4α by ignoring the small
constant 7

n .

4 Our Improvement

In this section, we propose a method to deal with the failure case of t < 4α in
the previous section and improve the lower bound on t.

Note that, when t < 4α the vector (q1K, q2K, r) is not the shortest vector of
L, which means (q1K, q2K, r) is generally not included in the outputted basis of
the L3 algorithm.

To facilitate the description, we denote λ1 = (l11, l12, l13), λ2 = (l21, l22, l23)
and λ3 = (l31, l32, l33) as the basis vectors of L1 obtained from the L3 algorithm.
With overwhelming probability, the minima of a lattice are all asymptotically
close to the Gaussian heuristic, hence we have that ‖λ1‖ ≈ ‖λ2‖ ≈ ‖λ3‖ ≈
det(L)

1
3 . Thus, the sizes of lij can be estimated as det(L)

1
3 = 2

2α+3t1+t
3 n.

Write the vector (q1K, q2K, r) as a linear combination of λ1, λ2 and λ3

with integral coefficients x0, y0, z0, namely (q1K, q2K, r) = x0λ1 + y0λ2 + z0λ3.
Moreover, the entry r is q1N2 − q2N1 mod 2t2n = q1q2(p20 − p10) mod 2t2n in
(−2t2n−1, 2t2n−1] and |q1q2(p20 −p10)| is less than 2(2α+t1)n. Hence, when t ≥ 2α,
we have that r = q1q2(p20 − p10).

Then we get three modular equations modulo unknown prime numbers:
⎧
⎨

⎩

x0l11 + y0l21 + z0l31 = q1K ≡ 0 (mod q1),
x0l12 + y0l22 + z0l32 = q2K ≡ 0 (mod q2),
x0l13 + y0l23 + z0l33 = q1q2(p20 − p10) ≡ 0 (mod q1q2)

(1)

Since |lij | ≈ 2
2α+3t1+t

3 n, the desired solutions of (1) can be estimated roughly by
x0, y0, z0 ≈ qjK

lij
≈ 2

4α−t
3 n.

Using the Chinese remainder theorem, from the first two equations of (1) we
get an equation with the form of

ax0 + by0 + cz0 ≡ 0 (mod q1q2), (2)

where a is an integer satisfying a ≡ l11 (mod N1) and a ≡ l12 (mod N2), b is
an integer satisfying b ≡ l21 (mod N1) and b ≡ l22 (mod N2) and c is an integer
satisfying c ≡ l31 (mod N1) and c ≡ l32 (mod N2). Clearly, a, b and c can be
calculated from l11, l12, l21, l22, l31, l32, N1 and N2 by the extended Euclidean
algorithm.

Then we reduce the common variable z0 from equation (2) and the third
equation of (1) by elimination technique. Therefore, we can obtain a modular
equation with the form of

a′x0 + b′y0 ≡ 0 (mod q1q2), (3)
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In order to recover the integral coefficients x0 and y0, we construct a modular
equation

f(x, y) = a′x + b′y ≡ 0 (mod q1q2).

Since gcd(a′, N1N2) is 1, or else we have found a factor of N1N2. Therefore, we
can use f̂ = a′−1f(x, y)mod N1N2.

Then we select polynomials as follows:

gk(x, y) = ym−kf̂k(x, y)(N1N2)max{s−k,0}, for k = 0, 1, · · · ,m,

where m and s are integers which will be chosen later. Below we let s ≤ m and
σ = s

m ∈ [0, 1].
Obviously, all the above polynomials have the same roots which are desired

integral coefficients (x0, y0) modulo (q1q2)s and the solutions can be roughly
estimated by |x0| 	 X(:= 2

4α−t
3 n) and |y0| 	 Y (:= 2

4α−t
3 n), neglecting any

small constant because N is relatively large.
Then we construct a matrix, whose row vectors are the coefficient vectors of

gk(xX, yY ) with respect to the monomials on x, y. It is easy to check that it is
a triangular matrix, and its diagonal entries are

XkY m−k(N1N2)max{s−k,0}, for k = 0, · · · ,m

Let the row vectors of this matrix span a lattice L1.
By construction, its determinant is easily determined as

det(L1) = XSxY Sy (N1N2)SN

where the exponents Sx, Sy, SN are calculated as follows:

Sx =
m∑

k=0

k =
1
2
m2 + o(m2),

Sy =
m∑

k=0

(m − k) =
1
2
m2 + o(m2),

SN =
s−1∑

k=0

(s − k) =
σ2

2
m2 + o(m2).

On the other hand, the dimension of L1 is dim(L1) = m + 1. According to
Lemmas 1 and 2, one can obtain polynomial equations which share the root
(x0, y0) over integers if

det(L1)
1

dim(L1) < γ(q1q2)s,

where γ is a small constant. Now, for large N1 and N2, the required condition
can be reduced as det(L1)

1
dim(L1) < (q1q2)s, namely,

X
1
2m2+o(m2)Y

1
2m2+o(m2)(N1N2)

σ2
2 m2+o(m2) < (q1q2)σm2+o(m2)
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Table 1. For 1000-bit RSA moduli, theoretical and experimental results of middle bits
problem

Bitsize of pi, qi Theo. of [8] Theo. of ours dim(L1) = 21 dim(L1) = 41

(1− α)log2N, αlog2N Expt Time(sec) Expt Time(sec)

900,100 407 370 380 118.015 370 6732.652

850,150 607 533 560 196.863 540 10824.582

800,200 failed 680 710 294.561 690 15249.878

To obtain an asymptotic bound, we assume m goes to infinite and ignore the
small terms o(m2). Putting the bounds X,Y into the above inequality, we obtain
that

(
4α − t

3
) · 1

2
· 2 + 2 · σ2

2
< 2α · σ

For optimization, we let σ = α, and finally we obtain the following bound on t:

t > 4α − 3α2.

Then we can obtain several polynomial equations which share the root (x0, y0)
over integers. Under Assumption 1, we can successfully collect the desired roots.

Experimental Results. We have implemented the experiment program in
Magma 2.10 computer algebra system [5] on a PC with Intel(R) Core(TM)
Duo CPU(2.53GHz, 1.9GB RAM Windows 7). In all experiments, we obtained
several integer equations with desired roots (x0, y0) over Z and found that these
equations had a common factor with the form of ax + by. In this situation,
ax0+by0 always equals to 0 and gcd(x0, y0) is small. Hence, the solution (x0, y0)
can be solved out.

The following Table 1 lists some theoretical and experimental results on fac-
toring two 1000-bit RSA moduli with shared middle bits.

Note that, in the case of (800, 200), the theoretical bound of [8] is 807 bits
larger than 800 bits, which means this case can not be found.

Extension to More RSA Mudoli. We heuristically generalize the above
result from two RSA moduli to an arbitrary number of n-bit RSA moduli. By
combining modulo equations and reducing common variables, we can similarly
improve the previous bound of [8].

The key sketch of our method can be described as follows:
(1) For k RSA moduli, based on the work of [8], we firstly construct a k(k+1)

2 -
dimensional lattice. If the shared middle bits are not enough to ensure that the
factorization is included in the output of the L3 algorithm, we represent the
desired vector as an integer linear combination of the reduced basis vectors of
the lattice and obtain a modular equation system with k(k+1)

2 modular equations
and k(k+1)

2 unknown variables.
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(2) In this step, we reduce the unknown variables by elimination in order. At
first, we can respectively obtain two homogeneous linear equations with k(k+1)

2
unknown variables modulo qiqj , for 1 ≤ i, j ≤ k and i 
= j and reduce one of the
unknown variables by elimination of these two equations.

Then we have an equation f1 modulo qiqj . Note that, we can also obtain an
equation f2 modulo qiql and an equation f3 modulo qjql, where l = 1, · · · , k and
l 
= i, j. By applying the Chinese remainder theorem, we can obtain an equation
modulo qiqjql from f1 and f2, similarly we can obtain another equation modulo
qiqjql from f1 and f3. Then we can reduce one unknown variable and obtain a
homogeneous linear equation modulo qiqjql.

(3) Based on this order, we can finally obtain a homogeneous linear equation
modulo q1q2 · · · qk and the number of unknown variables is

k(k + 1)
2

− 1 − 1 − 2 − · · · − (k − 2) = 2k − 2.

By solving this modular equation, we can obtain an improved bound.

5 Conclusion

In this paper, we revisited the problem of implicit factorization and we for the
first time improved the bound of implicit factorization on the number of the
middle bits that the primes share. Our method is to recover the coordinates of
the expression of the desired vectors with respect to some reduced lattice basis.
It is nice to see our theoretical bound and experimental results are both have an
improvement on existing results.
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