
Adaptive Sampling-Based Motion Planning
for Mobile Robots with Differential Constraints

Andrew Wells and Erion Plaku(B)

Department of Electrical Engineering and Computer Science,
Catholic University of America, Washington, DC, USA

plaku@cua.edu

Abstract. This paper presents a sampling-based motion planner geared
towards mobile robots with differential constraints. The planner con-
ducts the search for a trajectory to the goal region by using sampling
to expand a tree of collision-free and dynamically-feasible motions. To
guide the tree expansion, a workspace decomposition is used to parti-
tion the motion tree into groups. Priority is given to tree expansions
from groups that are close to the goal according to the shortest-path
distances in the workspace decomposition. To counterbalance the greed-
iness of the shortest-path heuristic, when the planner fails to expand
the tree from one region to the next, the costs of the corresponding
edges in the workspace decomposition are increased. Such cost increases
enable the planner to quickly discover alternative routes to the goal when
progress along the current route becomes difficult or impossible. Com-
parisons to related work show significant speedups.

Keywords: Sampling-based motion planning · Differential constraints ·
Workspace decomposition · Discrete search

1 Introduction

In motion planning, the objective is to compute a collision-free and dynamically-
feasible trajectory which enables the robot to reach a desired goal region while
avoiding collisions with obstacles. Motion planning arises in numerous robotics
applications ranging from autonomous vehicles, manufacturing, surveillance to
robotic-assisted surgery, air-traffic control, and computer animations [1,5,13].

In order to facilitate the execution of the planned motions, the motion plan-
ner needs to take into account the underlying robot dynamics. Robot dynamics
express physical constraints on the feasible motions, such as minimum turning
radius, directional stability, bounded curvature, velocity, and acceleration. Robot
dynamics are often modeled as differential equations of the form ṡ = f(s, u) to
indicate the changes that occur in the state s as a result of applying the input
control u, e.g., setting the acceleration and steering angle. Such differential con-
straints make motion planning challenging as the planner needs to find controls
that result in a motion trajectory to the goal that is not only collision-free but
also dynamically-feasible so that it can be followed by the robot.
c© Springer International Publishing Switzerland 2015
C. Dixon and K. Tuyls (Eds.): TAROS 2015, LNAI 9287, pp. 283–295, 2015.
DOI: 10.1007/978-3-319-22416-9 32

284 A. Wells and E. Plaku

To take into account the constraints imposed by the robot dynamics and
obstacles, this paper draws from sampling-based motion planning which has
shown promise in solving challenging problems [5,13]. In a sampling-based for-
mulation, motion planning is defined as a search problem. To conduct the search,
a motion tree is rooted at the initial state and is incrementally expanded by
adding collision-free and dynamically-feasible trajectories as branches. The pro-
posed approach uses a workspace decomposition to obtain a simplified planning
layer which serves to guide the sampling-based search. The workspace decom-
position is used to induce a partition of the motion tree into groups and to
determine routes along which to expand each group. In particular, each group
is defined by a region r in the decomposition and the motion-tree vertices that
are in r. The search is driven by procedures to (i) select a group, (ii) expand the
motion tree from the selected group, and (iii) update heuristic costs to reflect
the progress made. To promote expansions toward the goal, priority is given to
groups that are close to the goal according to the shortest-path distances in the
workspace decomposition. After selecting a group, attempts are made to expand
the motion tree along the shortest path in the workspace decomposition to the
goal region. To counterbalance the greediness of the shortest-path heuristic, when
the group expansion fails, the costs of the corresponding edges in the workspace
decomposition are increased. Such cost increases enable the proposed approach
to quickly discover alternative routes to the goal when progress along the cur-
rent route becomes difficult or impossible. Experimental validation is provided
using high-dimensional models with nonlinear dynamics where the robot has to
operate in complex environments and wiggle its way through narrow passages in
order to reach the goal. Comparisons to related work show significant speedups.

2 Related Work

The discussion of related work focuses on sampling-based motion planning since
it is the basis for the proposed approach. Over the years, numerous approaches
have been proposed on how to conduct a sampling-based search. RRT [15], which
is one of the most widely used planners, and its variants [11,14] expand the
motion tree from the nearest vertex to a random sample to bias the search toward
the largest uncovered Voronoi regions. Other approaches rely on probability
distributions [10], subdivisions [6], principal-component analysis [7], stochastic
transitions [8], and density estimations [9].

Even though considerable progress has been made, it remains challenging
to effectively incorporate robot dynamics into planning. As the problem dimen-
sionality increases and the robot dynamics become more complex, the search in
many of these approaches becomes less and less efficient [5,13].

To improve the computational efficiency, Syclop [17,19] coupled discrete
search over a workspace decomposition with sampling-based motion plan-
ning. Subsequent work [16,18] offered further improvements by partitioning the
motion-tree into groups and using shortest-path distances as heuristic costs to
effectively guide the motion-tree expansion. Comparisons to RRT and other

Adaptive Sampling-Based Motion Planning for Mobile Robots 285

planners showed significant speedups. The approach proposed in this paper
builds upon this line of work which couples discrete search with sampling-based
motion planning. The proposed approach addresses the shortcomings observed
in Syclop [19] and its variants [16,18] when dealing with complex problems.
In particular, these planners, due to the greediness of the shortest-path heuris-
tic, spend considerable time before realizing that the current guide should be
abandoned due to constraints imposed by obstacles and robot dynamics. Fig. 1
shows an illustration where the shortest-path heuristic leads Syclop and its vari-
ants along an infeasible route. Other examples are shown in Fig. 3. The proposed
approach addresses such shortcomings by counterbalancing the greediness of the
shortest-path heuristic with edge penalties. When the tree expansion fails to
make progress, the costs of the corresponding edges in the workspace decompo-
sition are increased. Such cost increases enable the proposed approach to quickly
discover alternative routes to the goal. As illustrated in Fig. 1, after failing to
move the robot through the impassible openings at the top and on the right,
the increases in the edge costs quickly enable the proposed approach to discover
a feasible route to the goal by passing through the opening on the left side.
Comparisons to prior work show significant speedups.

(a) (b) (c)

Fig. 1. Illustration of how the proposed approach changes the heuristic costs over time
to account for expansion failures: (a) initial heuristic costs; (b) updated heuristic costs
after the snake-like robot fails to pass through the opening at the top; and (c) updated
heuristic costs after robot fails to pass through the opening on the right side. The color
of each region r represents the shortest-path distance in the workspace decomposition
from r to the goal (red: near, blue: far). Figures are best viewed in color and on screen.

3 Problem Formulation

A robot model is defined in terms of its state space S, control space U , and
dynamics f . A state s ∈ S defines the position, orientation, velocity, steering
angle, and other components related to motion. A control u ∈ U defines the
external inputs that are used to control the robot. Dynamics are specified as a
set of differential equations ṡ = f(s, u) which indicate the changes that occur to
the state s when applying the control u. An example is provided below.

Example: The snake-like robot used in the experiments is modeled as a
car pulling several trailers. This provides a high-dimensional model with

286 A. Wells and E. Plaku

second-order differential equations, defined as (adapted from [13, pp.731])

ẋ = v cos(θ0) cos(ψ) ẏ = v sin(θ0) cos(ψ) θ̇0 = v sin(ψ)/L

v̇ = ua ψ̇ = uω θ̇i =
v

d
(sin(θi−1) − sin(θ0))

i−1∏

j=1

cos(θj−1 − θj) (1)

The state s = (x, y, θ0, v, ψ, θ1, . . . , θN) defines the position (x, y), orientation θ0,
velocity v, and steering angle ψ of the car, and the orientation θi of each of the
N trailers. The control u = (ua, uω) defines the acceleration and the rotational
velocity of the steering angle. The body and hitch lengths (L and d) are set to
small values so that the robot resembles a snake, as shown in Fig. 1.

Let W denote the workspace in which the robot operates. Let O1, . . . , Om ⊂
W denote the obstacles and let G ⊂ W denote the goal region. A state s ∈ S is
considered valid if there are no self-collisions or collisions with obstacles when
the robot is placed according to the position and orientation specified by s. Such
function, collision : S → {true, false}, can be implemented efficiently by using
available collision-detection packages, such as PQP [12]. The goal is reached when
the position defined by s, denoted by pos(s), is in G. From a motion-planning
perspective, the effect of the dynamics is captured by a function

snew ← motion(f, s, u, dt), (2)

which uses a fourth-order Runge-Kutta numerical integration to compute the
new state snew obtained by applying the control u to s for one time step dt.
A motion trajectory ζ : {0, 1, . . . , �} → S is obtained by starting at a state s and
applying a sequence of control inputs 〈u0, u1, . . . , u�−1〉 in succession, i.e.,

ζ(0) = s and ∀i ∈ {0, . . . , � − 1} : ζ(i + 1) = motion(f, ζ(i), ui, dt) (3)

The motion-planning problem can now be stated as follows: Given a workspace W ,
obstacles O1, . . . , Om ⊂ W , goal region G ⊂ W , robot model 〈S,U, f〉, and an
initial state sinit ∈ S, compute a sequence of control inputs 〈u0, u1, . . . , u�−1〉 such
that dynamically-feasible trajectory ζ : {0, 1, . . . , �} → S obtained by applying
the control inputs in succession starting at sinit is collision-free and reaches the
goal, i.e., ∀i ∈ {0, 1, . . . , �} : collision(ζ(i)) = false and pos(ζ(�)) ∈ G.

4 Method

Pseudocode for the approach is shown in Alg. 1. To facilitate presentation, the
workspace decomposition is described first in Section 4.1. The overall guided
search is described in Section 4.2.

4.1 Workspace Decomposition

To obtain a simplified planning layer, the unoccupied area of the workspace, i.e.,
W \ (O1 ∪ . . . ∪ Om ∪ G), is decomposed into nonoverlapping triangular regions

Adaptive Sampling-Based Motion Planning for Mobile Robots 287

Algorithm 1. Pseudocode for the proposed approach
Input: W : workspace; O1, . . . , Om ⊂ W : obstacles; G ⊂ W : goal region
〈S, U, f〉: robot model; sinit ∈ S: initial state; tmax: upper bound on runtime
Output: collision-free and dynamically-feasible trajectory to goal or null if no
solution is found within tmax runtime

1: D = (R, E, C) ← WorkspaceDecomposition(W, O1, . . . , Om, G)
2: 〈h(r1), . . . , h(rn)〉 ← HeuristicCosts(D, G)
3: 〈T , Γ 〉 ← InitMotionTree(sinit)
4: while time < tmax do
5: for κ iterations do
6: Γr ← SelectGroup(Γ, 〈h(r1), . . . , h(rn)〉)
7: 〈status, vlast〉 ← ExpandMotionTree(T , Γ, Γr)
8: if status = goalReached then return traj(T , vlast)
9: if status = collisionEncountered then

10: rnext ← first(ShortestPath(D, region(vlast), G))
11: for rneigh ∈ neighs(D, rnext) do IncreaseEdgeCost(D, rnext, rneigh)
12: 〈h(r1), . . . , h(rn)〉 ← UpdateHeuristicCosts(D, G)
13: return null

t1, . . . , tn [20]. Figs. 1–3 show some examples. The workspace decomposition is
represented as an undirected, weighted, graph D = (R,E,C), where R, E, C
denote the regions, edges, and edge costs, respectively. The set of regions contains
the triangles and the goal region, i.e., R = {t1, . . . , tn, G}, since these regions can
be used to generate collision-free motions. The set of edges captures the physical
adjacency of the regions in the workspace decomposition, i.e.,

E = {(r, r′) : r, r′ ∈ R share an edge}. (4)

Edge costs are used to provide the approach with short routes to the goal region.
Initially, the cost of an edge is set to the Euclidean distance between the cen-
troids of the corresponding regions, i.e., C(r, r′) = ||centroid(r) − centroid(r′)||2.
As described later, the approach increases C(r, r′) when it fails to make progress
expanding the motion tree from r to r′. These cost increases enable the approach
to discover alternative routes to the goal. The approach also relies on a function
LocateRegion : W → R ∪ {⊥} which maps a point p ∈ W to the region r ∈ R
that contains p. The symbol ⊥ denotes the case when p falls inside an obstacle.
LocateRegion is implemented efficiently to run in polylogarithmic time [3].

4.2 Guided Motion-Tree Search

The search for a collision-free and dynamically-feasible trajectory from the initial
state sinit to the goal G is conducted by expanding a motion tree T = (VT , ET).
Each vertex v ∈ VT is associated with a collision-free state, denoted by state(v).
Each edge (v, v′) ∈ ET is associated with some control input u ∈ U such that
state(v′) = motion(f, state(v), u, dt). A solution is found when a vertex v that
has reached G is added to T , i.e., pos(state(v)) ∈ G. In that case, the solution

288 A. Wells and E. Plaku

Fig. 2. Illustration of a motion tree. Initial state is shown as a blue circle; the other
vertices are shown as white circles. Goal region is shown in yellow.

corresponds to the trajectory obtained by concatenating the motions associated
with the edges in T from the root to v. An illustration is shown in Fig. 2.

To effectively guide the search, the motion-tree vertices are grouped together
based on the corresponding regions in the workspace decomposition. In fact, for
a region r ∈ R, let Γr denote all the vertices that map to r, i.e.,

Γr = {v : v ∈ VT ∧ pos(state(v)) ∈ r}. (5)

This mapping induces a partition of the motion tree into groups, i.e.,

Γ = {Γr : r ∈ R ∧ |Γr| > 0}. (6)

Since the decomposition D = (R,E,C) provides a simplified planning layer, the
shortest-path distance from r to G is used as a heuristic cost to estimate the
feasibility of reaching G by expanding T from Γr. The search is then driven by
(i) selecting a group Γr from Γ based on the heuristic costs, (ii) expanding T
from Γr, and (iii) updating the heuristic costs to reflect the progress made. These
steps are repeated until a solution is found or an upper bound on the runtime
is reached. The rest of the section describes these procedures in more detail.

Group Selection. The group-selection strategy combines the heuristic costs
with selection penalties in order to promote expansions from groups that are
close to the goal or groups that have not been frequently explored in the past.
Let h(r) denote the shortest-path distance in D = (R,E,C) from r ∈ R to G.
Let nsel(Γr) denote the number of times Γr has been selected for expansion. The
heuristic cost and the number of selections are combined to define a weight

w(Γr) = (ε + 1 − h(r)/hmax)αβnsel(Γr), (7)

where hmax = maxr′∈R h(r′), ε > 0, α ≥ 1, and 0 < β < 1. Among all the groups
in Γ , the one with the maximum weight is selected for expansion, i.e.,

SelectGroup(Γ) = arg max
Γr∈Γ

w(Γr). (8)

Note that α serves to tune the strength of the heuristic by promoting selections
of those groups that are close to the goal according to shortest-path distances in

Adaptive Sampling-Based Motion Planning for Mobile Robots 289

Algorithm 2. ExpandMotionTree(T , Γ, Γr)
Input: T : motion tree; Γ : partition of T into groups;
Γr: group from which to expand T
Output: Function attempts to add a collision-free and dynamically-feasible tra-
jectory from a vertex in Γr. It returns 〈status, vlast〉 indicating the status of the
expansion and the last vertex added to T

1: v ← select vertex at random from Γr

2: r′ ← select region at random from shortest path in D = (R, E, C) from r to G
3: p ← generate point at random inside r′

4: for several steps do
5: u ← controller(state(v), p); snew ← motion(f, state(v), u, dt)
6: if collision(snew) = true then return 〈collision, v〉
7: vnew ← NewVertex(); state(vnew) ← snew;

region(vnew) ← LocateRegion(pos(snew)); VT ← VT ∪ {vnew};
8: (v, vnew) ← NewEdge(); control(v, vnew) ← u; ET ← ET ∪ {(v, vnew)}
9: Γrnew ← find(Γ, region(vnew))

10: if Γrnew = null then { Γrnew ← NewGroup(rnew); insert(Γ, Γrnew) }
11: insert(Γrnew , vnew)
12: if region(vnew) = G then return 〈goalReached, vnew〉
13: if near(pos(snew), p) = true then return 〈targetReached, vnew〉
14: v ← vnew
15: return 〈targetNotReached, v〉

D = (R,E,C). To balance the greediness of the heuristic, β provides a penalty
factor which reduces the weight each time Γr is selected for expansion. This
guarantees that Γr will not always be selected, since, after a number of weight
reductions, some other group will have larger weight than Γr. This enables the
approach to avoid becoming stuck when expansions from Γr are infeasible due
to constraints imposed by the obstacles and robot dynamics. Finally, a small
nonzero value is used for ε to ensure that each Γr has a positive weight, which
guarantees that every Γr will be eventually selected for expansion. This enables
the approach to be methodical during the search.

Group Expansion. After selecting Γr, the objective is to expand T from a
vertex v ∈ Γr along the shortest path in D = (R,E,C) from r to G. Pseudocode
is shown in Alg. 2. The vertex v is selected uniformly at random from the vertices
in Γr (Alg. 2:1). Random selections are commonly used in sampling-based motion
planning as a way to promote expansions along different directions [5, chap. 7].
After selecting v, a target region r′ is selected uniformly at random from the
first few regions along the shortest path in D from r to G, and a target point
p is generated uniformly at random inside r′ (Alg. 2:2–3). This ensures that the
target will not be too far away from r, which increases the likelihood of successful
expansions. The objective is then to expand T from v toward p in order to get
closer to G (Alg. 2:4–11). Specifically, a PID controller [2] is used to determine an
input control u that would steer the robot toward p (Alg. 2:5). A new state, snew,
is obtained by integrating the motion equations f when the control u is applied

290 A. Wells and E. Plaku

to state(v) for one time step (Alg. 2:5). If snew is in collision, the expansion from
v terminates. Otherwise, a new vertex vnew and a new edge (v, vnew) are added
to T (Alg. 2:6–8). At this time, the motion-tree partition is also updated. If
region(vnew) had not been reached before, then a new group Γregion(vnew) is created
and added to Γ (Alg. 2:9–10). Otherwise, the group Γregion(vnew) is retrieved
from Γ . In each case, the vertex vnew is added to Γregion(vnew) (Alg. 2:11). These
updates give the approach the flexibility to expand the motion tree from new
groups.

If snew reached the goal region G, the motion-tree expansion terminates suc-
cessfully (Alg. 2:12). The expansion from v also terminates if the target point p is
reached (Alg. 2:113). Otherwise, the expansion continues from vnew (Alg. 2:14).
In this way, ExpandMotionTree(T , Γ, Γr) expands the motion tree T from a
vertex v ∈ Γr along the shortest path in D from r to G.

Updating the Heuristic Costs. To counterbalance the greediness of the
shortest-path heuristic, when a collision is encountered during the motion-tree
expansion, the costs of the corresponding edges in the workspace decomposition
D = (R,E,C) are increased. More specifically, let vlast denote the last vertex
that was added to T during the expansion from Γr (Alg. 1:6). Let rnext denote
the first region of the shortest path in D = (R,E,C) from region(vlast) to G
(Alg. 1:8). The costs of the edges in D that have rnext as a vertex are then
increased in order to reduce the likelihood of future expansions passing through
rnext since the previous expansion resulted in a collision (Alg. 1:9). Specifically,
the cost of each edge (rnext, rneigh) ∈ E is increased as

C(rnext, rneigh) ← C(rnext, rneigh) + γ/C(rnext, rneigh), (9)

where γ > 0. The intuition is that our estimation of the difficulty of passing
through a region should increase when motion-tree expansions fail. The increase
is large when C(rnext, rneigh) is small, and it is slowly reduced over time as the edge
cost becomes larger. The parameter γ can be tuned to provide appropriate cost
increases based on the workspace size. As the experiments indicate, the approach
works well for a wide range of parameter values and workspace sizes.

The heuristic costs h(r1), . . . , h(rn) are also updated in order to reflect the
increases in the edge costs (Alg. 1:10). These updates enable the approach to dis-
cover alternative routes to reach G, as shown in Fig. 1. Note that h(r1), . . . , h(rn)
can be computed by a single call to Dijkstra’s shortest-path algorithm using G
as the source. When dealing with large scenes, in order to save computation
time, the heuristic costs can be updated after several attempts have been made
to expand the motion tree instead of doing the updates after each attempt.

5 Experiments and Results

Experiments are conducted with a high-dimensional snake-like robot model
whose dynamics are expressed by second-order differential equations, as
described in Section 3. As shown in Figs. 1 and 3, the robot is required to

Adaptive Sampling-Based Motion Planning for Mobile Robots 291

(a) (b)

(c) (d)

Fig. 3. The other four scenes used in the experiments (first scene is shown in Fig. 1).
The color of each region r represents the distance of the shortest path in the workspace
decomposition from r to the goal (red: near, blue: far). Videos showing solutions
obtained by the approach are available for download [21].

move in complex scenes characterized by narrow passages, some of which are
so small that it is impossible for the robot to pass through them. These scenes
demonstrate the ability of the approach to quickly discover alternative routes
to the goal. Experiments are also conducted with a scene which does not have
impassible narrow passages (Fig. 3(d)) to show that the approach works well in
different scenarios.

The approach is compared to RRT [14], which is one of the most popular
sampling-based motion planners. As recommended, the RRT implementation
uses the connect version, goal bias, and efficient data structures for nearest
neighbors [4]. The approach is also compared to prior work on coupling motion
planning with discrete search [18], using a highly efficient implementation.

Experiments are also conducted to measure the scalability of the approach
when varying the dimensionality of the robot state (by changing the number of
links) or the size of the scene. Results are also presented to demonstrate that
the approach works well for a wide range of parameter values.

Due to the randomized nature of sampling-based motion planning, each
method is run 60 times for each scenario. A time limit of 100s is set for each run.
Running time measures everything from reading the input until finding a solu-
tion. Results show the mean runtime and standard deviation after discarding the
five best and worst runs in order to reduce the influence of outliers. Experiments
were run on an Intel Core i7 machine using Fedora 20 and GNU g++-4.9.2.

292 A. Wells and E. Plaku

5 10 15 20
1/16

1/8
1/4
1/2

1
2
4
8

16
32
64

m
ea

n
ru

nt
im

e
[s

]

[scene: Fig.1]

5 10 15 20

[scene: Fig.2(a)]

5 10 15 20
number of links

[scene: Fig.2(b)]

5 10 15 20

[scene: Fig.2(c)]

5 10 15 20

[scene: Fig.2(d)]

RRT
prior
new

Fig. 4. Runtime results when varying the number of links of the snake-like robot model.
Each bar indicates one standard deviation. Due to the significant differences in runtime,
logscale is used for the y-axis with the label showing the actual value rather than its
logarithm. New refers to the proposed approach and prior refers to prior work [18].

Results on Problem Dimensionality. Fig. 4 provides a summary of the
results when increasing the number of links in the snake-like robot model. The
results indicate that the proposed approach significantly outperforms RRT and
the prior work [18]. RRT is known to have difficulties when dealing with narrow
passages. In fact, since RRT expands the motion tree from the nearest neighbor
to a randomly-sampled state, RRT often becomes stuck attempting to expand
from vertices that are close to obstacles. The motion planner from prior work [18],
although significantly faster than RRT, still has difficulty solving the problems
with multiple narrow passages, some of which are impassible. The prior plan-
ner spends considerable time before realizing that it should consider alternative
routes to the goal. In contrast, the proposed approach increases the edge costs of
the workspace decomposition when it fails to make progress from one region to
the next. These cost increases enable the approach to update the shortest-path
heuristics and to quickly discover alternative routes to the goal.

Results on Scene Size. Table 1 shows the results when varying the scene
size. During the scaling, the dimensions of the narrow passages are kept the
same as in the original scene. In this way, the difficulty of the problem due to
narrow passages remains the same in the scaled versions as in the original scene.
When considering larger scenes, an increase in runtime is expected since longer
trajectories have to be planned. Results in Table 1 show that RRT quickly times
out in the large scenes. There is also a significant increase in the runtime of the
prior planner [18] since it now spends more time before realizing that it should
consider alternative routes. The running time of the proposed approach also
increases, but even in the large scenes it remains computationally efficient.

Parameter Selection. Table 2 summarizes the impact of the parameter selec-
tion on the performance of the proposed approach. The results indicate that
the approach works well for a wide selection of parameter values. When starting

Adaptive Sampling-Based Motion Planning for Mobile Robots 293

Table 1. Mean runtime (std in parentheses) when scaling the scene. During scaling,
the sizes of the narrow passages are kept the same as in the original scene. Entries
marked with X indicate failure. Results are shown for the scene in Fig. 3(c) where the
snake-like robot model has 15 links.

scene scaling factor 0.75 1.0 2.0 3.0 4.0

new 0.18s (0.03) 0.25s (0.05) 0.93s (0.12) 3.38s (0.30) 7.60s (0.69)
prior 1.52s (0.93) 3.20s (1.06) 32.68s (17.02) 97.34 (5.10) X
RRT 7.20s (2.93) 15.56s (7.08) 95.14 (9.30) X X

Table 2. Results when varying the parameters of the approach. Results along each
row are obtained by changing the corresponding parameter as indicated and keeping
the other parameters to their default values (shown in bold). Recall that α tunes the
strength of the heuristic (Eqn. 7), β provides the group-selection penalty (Eqn. 7),
γ impacts the increase in the edge costs (Eqn. 9), and κ indicates the frequency of
updating the heuristic costs (Alg. 1:5). Results are shown for the scene in Fig. 3(b)
where the snake-like robot model has 15 links.

param param values mean runtime[s] (std)

α 2 4 8 12 16 0.18 (0.02) 0.15 (0.02) 0.15 (0.02) 0.16 (0.02) 0.15 (0.02)
β 0.5 0.65 0.75 0.85 0.95 0.18 (0.02) 0.17 (0.02) 0.16 (0.02) 0.16 (0.02) 0.15 (0.02)
γ 15 25 50 75 100 0.17 (0.02) 0.15 (0.02) 0.15 (0.02) 0.15 (0.02) 0.15 (0.02)
κ 1 5 10 20 30 0.99 (0.17) 0.28 (0.05) 0.19 (0.03) 0.15 (0.02) 0.14 (0.02)

with a new problem, our recommendation is to use the default values shown in
Table 2 as they have worked well for a variety of problems.

6 Discussion

This paper presented an efficient approach for planning dynamically-feasible tra-
jectories that enable a mobile robot to reach a goal region while avoiding colli-
sions with obstacles. The approach used a workspace decomposition to partition
a motion tree into equivalent groups and guide the expansion of the motion tree
along shortest-path routes. A key component of the approach was its adjust-
ment of the edge costs in order to quickly discover alternative routes to the goal
when expansions along the current route failed to make progress. Comparisons
to related work showed significant speedups. Directions for future work include
further improvements to the interplay between sampling-based motion planning
and discrete search, investigation of machine-learning techniques to find optimal
parameter values, and extensions of the approach to multiple robots.

Acknowledgement. This work was supported by NSF IIS-1449505 and NSF ACI-
1440587.

294 A. Wells and E. Plaku

References

1. Alterovitz, R., Goldberg, K.: Motion Planning in Medicine: Optimization and
Simulation Algorithms for Image-Guided Procedures. Springer Tracts in Advanced
Robotics (2008)

2. Åström, K.J., Hägglund, T.: PID controllers: theory, design, and tuning. The
Instrumentation, Systems, and Automation Society (1995)

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.H.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag (2008)

4. Brin, S.: Near neighbor search in large metric spaces. In: International Conference
on Very Large Data Bases, pp. 574–584 (1995)

5. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press (2005)

6. Şucan, I.A., Kavraki, L.E.: A sampling-based tree planner for systems with complex
dynamics. IEEE Transactions on Robotics 28(1), 116–131 (2012)

7. Dalibard, S., Laumond, J.-P.: Control of probabilistic diffusion in motion plan-
ning. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic
Foundation of Robotics VIII. STAR, vol. 57, pp. 467–481. Springer, Heidelberg
(2009)

8. Devaurs, D., Simeon, T., Cortés, J.: Enhancing the transition-based RRT to deal
with complex cost spaces. In: IEEE International Conference on Robotics and
Automation, pp. 4120–4125 (2013)

9. Gipson, B., Moll, M., Kavraki, L.E.: Resolution independent density estimation for
motion planning in high-dimensional spaces. In: IEEE International Conference on
Robotics and Automation, pp. 2437–2443 (2013)

10. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion
planning with moving obstacles. International Journal of Robotics Research 21(3),
233–255 (2002)

11. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research 30(7), 846–894 (2011)

12. Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast proximity queries with swept
sphere volumes. In: IEEE International Conference on Robotics and Automation,
pp. 3719–3726 (2000)

13. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
14. LaValle, S.M.: Motion planning: The essentials. IEEE Robotics & Automation

Magazine 18(1), 79–89 (2011)
15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. International

Journal of Robotics Research 20(5), 378–400 (2001)
16. Le, D., Plaku, E.: Guiding sampling-based tree search for motion planning with

dynamics via probabilistic roadmap abstractions. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 212–217 (2014)

17. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Impact of workspace decompositions on
discrete search leading continuous exploration (DSLX) motion planning. In: IEEE
International Conference on Robotics and Automation, pp. 3751–3756 (2008)

18. Plaku, E.: Robot motion planning with dynamics as hybrid search. In: AAAI
Conference on Artificial Intelligence, pp. 1415–1421 (2013)

19. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Motion planning with dynamics by a
synergistic combination of layers of planning. IEEE Transactions on Robotics
26(3), 469–482 (2010)

Adaptive Sampling-Based Motion Planning for Mobile Robots 295

20. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications 22(1–3), 21–74 (2002). http://
www.cs.cmu.edu/∼quake/triangle.html

21. Wells, A., Plaku, E.: Supplementary material, http://faculty.cua.edu/plaku/
TAROS15Videos.zip

http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html
http://faculty.cua.edu/plaku/TAROS15Videos.zip
http://faculty.cua.edu/plaku/TAROS15Videos.zip

	Adaptive Sampling-Based Motion Planning for Mobile Robots with Differential Constraints
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method
	4.1 Workspace Decomposition
	4.2 Guided Motion-Tree Search

	5 Experiments and Results
	6 Discussion
	References

