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Abstract The need of reducing aircrafts’ fuel consumption and emissions has led
the aircraft industry to the design of smart structural elements, which are composite
panels with built-in multisensors monitoring systems. The potential economic
benefit in terms of maintenance and inspection planning strongly depends on the
performances of the built-in monitoring system. The discrimination between
damaged and not damaged structural components based on monitoring outcomes is
indeed the result of a decision process, in which the state of the structure is assessed
based on observations, affected by uncertainties. These might lead to erroneous
estimation of the structural damage with consequent strong influence on the
maintenance portfolio. In this paper, a reliability-based optimization of the life
cycle cost of a smart aircraft component is proposed in the framework of a Bayesian
damage update methodology by following a damage-tolerant approach. The
methodology is applied to the delamination detection due to impacts on a composite
component. The statistical models for the monitoring performance depend on a
multilevel defect classification based on the five classes of events in accordance
with the FAA AC No: 20 107B. Multiclass ROC analysis and threshold optimi-
zation are introduced in the perspective of the maintenance portfolio. A cost model
accounting for the calculation of the value at risk (VAR), meant as the potential loss
associated with the maintenance portfolio, is implemented.
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1 Introduction

Built-in health monitoring systems in structural components of airplanes allow to
assessing the damage state and the consequent structural capacity. There is a strong
interest to optimize and customize maintenance activities, aiming at the reduction of
costs directly and/or indirectly associated with unnecessary inspections and
replacement actions. In this setting, recent developments in structural heath mon-
itoring (SHM) do provide new possibilities.

Performance evaluation is crucial in SHM system development. In this paper,
performance of an SHM system for impact detection will be computed in terms of
its effectiveness in minimizing the service life costs of the structure, which shall be
estimated via a Bayesian strategy that accounts for statistical model of impacts, their
localization, and the category of damage they may cause.

2 Methodology

Impacts on composite structural panels are a major concern in the aircraft main-
tenance planning because they can be cause of capacity reduction without any
evident sign of damage to a visual inspection. These “barely visible” impacts might
indeed cause delamination or matrix cracking with consequent degradation of the
structural properties of the laminate. Modern structural health monitoring systems
that rely on ultrasonic guided waves aim to size and localize damages with one or
more network of sensors which are able to give indication of a delamination. There
are many different methodologies/technologies nowadays available, though the
research in this field is still ongoing to find the most reliable and economical
solution. Despite the kind of monitoring system built-in in the panel, the uncer-
tainties involved in the outcome of the monitoring results must be always taken into
account in a proper probabilistic setting. Uncertainties, such as environmental
random noise (temperature, humidity, vibrations) on the SHM operations, might
influence the identification of the damage, leading to false or missed detection.

The methodology used in this research to properly account for the statistical
properties of the monitoring system is depicted in Fig. 1.

The probabilistic description of the loads, the capacity, and the impacts are
inputs of the model and characterize the failure domain Qg

Qr = {R(t) — L(r) <0} (1)

in which R(z) is the capacity and L(¢) are the loads varying in time z.

In this paper, a damage tolerance approach is considered. This requires that
damaged components will not lead to failure before they are detected and repaired.
In probabilistic terms, the requirement is that the probability of failure p¢ due to a
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Fig. 1 Optimization of the replacement strategy subjected to reliability constraints

critical damage not being detected must be less than the target probability pr,
usually 107 per flight hour (FH). The probability of failure can be written as

pe(t) = Pr[Ro[l — D(¢)] — L(¢) <0] (2)

where Ry is the capacity of the undamaged component and D(¢) is the damage.
Indicating with fi (x,7) the marginal density of the load and with Fg(x,f) the
cumulative distribution function of R(z) = Ry(1 — D(¢)), and assuming indepen-
dence between R and L, the probability of failure can be evaluated by the integral

pelt) = | Fr(x, 0fi (x, 1) 3)
0

This integral can be calculated via methods of structural reliability implemented
in commercial software such as STRUREL once the complete probabilistic
description of the variable involved is provided. Equation (2) explicitly involves the
decrement of resistance due to impact damages D(¢) which must be calculated by
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the mechanical model of the structural component. This model (either FEM or
empirical model) must be able to give the post-impact strength of the panel which is
a stochastic process with marginal density function fp;)(d).

The accumulation of damage in time will cause the condition p¢ > pr implying
the necessity of maintenance. Engineers usually use this methodology, called
condition-based maintenance (CBM), to evaluate the optimal inspection time for
degrading systems.

The novelty of this paper is to propose a method for including SHM measure-
ments into the CBM, in case of a multilevel damage characterization. In this
framework, a Bayesian updating strategy is used. Given a set of indicators from the
SHM system Y (¢), a Bayesian formula is used to calculate the posterior probability
density function of D(¢), called f[’)(t) (d), for given likelihood of the SHM perfor-

mances and prior knowledge of the structural damage state fp(;)(d), that is
fll)(z) (d) o< Pr(Y(2)|D(1) = d)fp(r) (d) 4)

For the evaluation of the likelihood function in the latter, a characterization of
the multilevel damage classification and a proper statistical treatment of the mon-
itoring system are discussed in the following.

3 Multilevel Damage Classification

The classification of the damage on composite material used in the aircraft industry
is an issue in the certification of airplanes. Guidance on the design and maintenance
strategy with respect to impacts is given in the Advisory Circular of the Federal
Aviation Administration AC 20-107B. Although following such circular is not
mandatory for the aircraft industry, we have adopted the damage classification
therein described in this work. In particular, the circular identifies 5 categories of
damage related to both their detectability and repair action. It is remarkable that this
is not the only possible multilevel damage description. Other and older guidance
circulars proposed classification with respect to the probability of occurrence of
the impact (AMC25.1309 and ICAO Airworthiness Manual, ITA-4-I). Referring
to the circular for further details, we briefly indicate the five categories as
Ay, Ay, A3, Ay, As, being the category As associated with the most catastrophic event.
A maintenance action is related to categories A, . . .,As. Maintenance action for A,
is due within few flights, while for A3 action must be taken before the airplane is
allowed for the next flight. Other categories require immediate inspection action.
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3.1 Classical ROC and Multiclass ROC Analysis

Statistical description of classifier is usually achieved through the so-called receiver
operating characteristic (ROC) analysis. The ROC analysis is suited to characterize,
from a statistical viewpoint, a binary choice. A point in the ROC curve identifies the
relation between the true-positive and the false-positive conditional probabilities for
a given value of the threshold decision variable. The threshold reflects the confi-
dence that the identification is successful and the defect is actually present. ROC
has been successfully applied to the inspection planning of composite panels
monitored by SHM system [1].

Indicating with P; the event that the SHM detects a category of damage A; and
with N = P; the negative detection (no damage event), the confusion matrix
associated with the aircraft damage scenario is given in Table 1.

The symbol #(Pj|Ak) indicates the number of times that the SHM system iden-
tifies the damage category P; being the real damage Ax. Thus, the entire damage
scenario can be described by a multiclass ROC analysis, P; being the classifier
classes. Recently, in the literature, attention has been focused in finding the optimal
class’ thresholds, extending the concept of area under ROC (AUC) into the volume
under ROC hypersurface (VUS). Because of the complex nature of the problem,
multithreshold optimization is still very challenging. In this paper, motivated by the
state of the art in SHM and keeping in mind the sake of optimal inspection planning,
some simplification will be done.

With regard to the influence of the SHM system measurements on the mainte-
nance and inspection planning, the category classification is simplified to just two
classes, A, and Aj, being the higher categories related to damages evident to the
airplane crew. Moreover, in this paper, we consider a SHM that is able to detect the
presence of damage, event P, but not of estimating the size of the damage. This
results in a simplification of the confusion matrix given in Table 2.

Table 1 Confusion matrix for the multilevel damage

A, A A, Ay As
PI=N #(P1|A1) #(P1|A2) #(P1As) #(P1|A4) #(P1As)
P, #(P2]A1) #(P2|A2) #(P2|A3) #(P2|As) #(P2|As)
P; #(P3]A1) #(P3]A2) #(P3]A3) #(P3|Aq) #(P3|As)
Py #(P4|Ar) #(P4]A2) #(P4|A3) #(P4|Aq) #(P4|As)
Ps #(Ps|A1) #(Ps|A2) #(Ps|As) #(Ps|Aq) #(Ps|As)
Table 2 Simplified A A, As

confusion matrix

N #(NIA) #(N|As) #(N|A3)
P #(PA) £(PlAy) #(PlAy)
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The events can be grouped as the following:

the events (N|A;), true negatives (TN);

(P|A;) and (PJA3), true positives (TP);

missed detections, false negatives (FN), are the events (N|A;) and (N|A3);
the event (P|A;) is a false alarm or false positive (FP).

To each element in this classification is associated a cost, namely Crp, Ctn,
Crp, Cpn.

The decision process associated with the simplified confusion matrix in Table 2
is to select the optimal discriminant threshold between the events N and P. To
explain this concept, the conditional densities of the damage detection for given
damage in the panel are plotted in Fig. 2, yr being the threshold.

4 Statistical Performances of the SHM System

From the confusion matrix, one can derive one point in the ROC curve. This is
usually not sufficient to statistically describe the performances of the SHM system.
The probability of detection (POD) and the probability of false alarm (PFA) are
defined as

POD(d) = 1 — Pr(y <yr|damage) (5)
PFA = Pr(y > yr|no damage) (6)

Let us consider a network of Ng transducers and Ny sensing calls. Each sensing
call corresponds to a particular sequence of sensors/actuators calls for the SHM
system to take a decision on the damage state. Due to the sensor position as well as
the presence of stiffeners in the panel or the particular lamination, the SHM out-
come will depend on the location of the actual damage. There will be parts of the



Value at Risk for a Guided Waves-Based System ... 915
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panel in which it will be more likely to find damage if it is present and parts with
lower probability of POD. Same concept can be applied to the probability of failure.
Thus, it makes sense to define POD/PFA maps in which every point of the panel is
characterized by its coordinates and the local value of the POD and PFA. Figure 3
shows an example of POD map for a particular sensing path. Indicating with j € [
the index identifying the j-th sensing strategy, the POD;(A,) is a map indicating the
probability of the SHM to detect a damage of class A, by the sensing strategy /. In
general, for more sensing strategies, assuming independence between POD;(A,),
the final POD can be expressed as follows:

P(ij > yrld € A,) =1-]] [t —PoD;A,)] (7)

jel el

5 Bayesian Updating and Threshold Optimization

The failure probability evaluated from Eq. (3) can be updated by the SHM system
outcome. To this aim, it is recognized that the likelihood function in Eq. (4) is the
complement to the POD map of the monitoring system. The updated damage
density fl’)(t) (d) is estimated from the SHM information by Bayes’ formula

P (d) o< T T [1 = POD;(A,) s () (8)

Once the damage is updated, the distribution of the capacity R(f) =
Ry(1 — D(¢)) is also updated, and the probability of failure, which is the probability
of the outcome of the event R(r) — L(¢) <0, is evaluated.
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5.1 Expected Cost Analysis for Threshold Optimization

The optimization of the threshold yr can now be implemented by the minimization
of a cost functional, which accounts for the monitoring system ability to detect the
damage. As the events TP and FP both imply an inspection, assuming negligible the
repair costs compared to the out-of-service costs of the airplane (longer for a TP),
the costs associated with these will be assumed to be Cy and £Cy, respectively. The
event FN is associated with the cost of the component failure Cy;, and no cost is
associated with the event TN. For a given time window (usually one year), the cost
functional

Cr(yr) = Cinrp(y1) + ECinpp(yr) + Cunen (V1) )

where each cost term is multiplied by the expected number of the event outcome
within the time frame. The cost-based optimization problem is now formulated as

YTopt = arg rr}lin Cr(yr) with pf<pr (10)
T

5.2 Value at Risk Approach for Threshold Optimization

The optimization of the threshold parameter yr is based on the evaluation of the
expected cost, which is valuable information to compare different maintenance
strategies, in accordance with [2]. The assessment of the financial risk associated
with the maintenance portfolio can be evaluated by financial risk measures such as
the value at risk (VAR). This quantity can be calculated as the percentile of the cost,
meant as random variable, i.e.,

VAR,(Cr) = inf{x: P(Cr <x) > p} (11)

In order to calculate the VAR, the full probabilistic description of the variable
Cr(yr) must be achieved. Usual values for the percentile p are 95 that means a 5 %
probability that the maintenance cost will exceed the VARys(Cr). Details on
analytical procedure to find the distribution of the cost have been given in [2], and
the reader is therein referred to.
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