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Abstract. Directions and paths, as commonly provided by navigation
systems, are usually derived considering absolute metrics, e.g., finding
the shortest or the fastest path within an underlying road network. With
the aid of Volunteered Geographic Information (VGI), i.e., geo-spatial
information contained in user generated content, we aim at obtaining
paths that do not only minimize distance but also lead through more
popular areas. Based on the importance of landmarks in Geographic
Information Science and in human cognition, we extract a certain kind
of VGI, namely spatial relations that define closeness (nearby, next to)
between pairs of points of interest (POIs), and quantify them follow-
ing a probabilistic framework. Subsequently, using Bayesian inference we
obtain a crowd-based closeness confidence score between pairs of POIs.
We apply this measure to the corresponding road network based on an
altered cost function which does not exclusively rely on distance but also
takes crowdsourced geo-spatial information into account. Finally, we pro-
pose two routing algorithms on the enriched road network. To evaluate
our approach, we use Flickr photo data as a ground truth for popular-
ity. Our experimental results – based on real world datasets – show that
the paths computed w.r.t. our alternative cost function yield competitive
solutions in terms of path length while also providing more “popular”
paths, making routing easier and more informative for the user.

1 Introduction

User generated content has benefited many scientific disciplines by providing a
wealth of new data. Technological progress, especially smartphones and GPS
receivers, has facilitated contributing to the plethora of available information.
OpenStreetMap1 constitutes the standard example and reference in the area
of VGI. Authoring geo-spatial information typically implies coordinate-based,
1 https://www.openstreetmap.org/.
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quantitative data. Contributing quantitative data requires specialized applica-
tions (often part of social media platforms) and/or specialized knowledge, as is
the case of OpenStreetMap (OSM).

The broad mass of users contributing content, however, are much more
comfortable using qualitative information. People typically do not use geo-
coordinates to describe their spatial motion, for instance when traveling or roam-
ing. Instead, they use qualitative information in the form of toponyms (land-
marks) and spatial relationships (“near”, “next to”, “close by”, etc.). Hence,
there is an abundance of geo-spatial information (freely) available on the Inter-
net, e.g., in travel blogs, largely unused. In contrast to quantitative information,
which is mathematically measurable, qualitative information is based on per-
sonal cognition. Therefore, accumulated and processed qualitative information
may better represent the human way of thinking.

This is of particular interest when considering the “routing problem” (equiv-
alent to “path computation”). Traditional routing queries use directions from
systems that only take inherent cost measure of the underlying road network
into account, e.g., distance or travel time. In human interaction, such informa-
tion is usually enhanced with qualitative information (e.g. “the street next to the
church”, “the bridge North of the Eiffel tower”). Combining traditional routing
algorithms with crowdsourced geo-spatial references we aim to more properly
represent human perception while keeping it mathematically measurable.

Fig. 1. Shortest (continuous) and alternative
paths (dot dashed and dotted) alongside POIs
in the city of Paris. This result is an output of
some of the algorithms presented in this paper.

In [1], the authors analyze the
important role of landmarks for
the representation of geographic
space in human mind, i.e., peo-
ple tend to describe their position
in space based on landmarks and
relations between them. Based
on this fact, in this work, we
enrich a road network with infor-
mation about spatial relations
between pairs of Points of Inter-
est (POIs) extracted from user
generated data (travel blog data).
Using these relations, we obtain
routes that are easier to interpret
and follow, possibly rather resem-
bling a route that a person would
provide.

As an example, consider the
routing scenario in Fig. 1 which is
set in the city of Paris, France.
The continuous line represents the
conventional shortest path from
starting point “Gare du Nord” to the target at “Quai de la Rapée” while the
dot dashed and dotted lines represent alternative paths computed by the algo-
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rithms introduced in this paper. The triangles in this example denote touristic
landmarks and sights. For instance, the dot dashed path on the bottom right
passing through recognizable locations such as “Place de la République”, “Cirque
d’hiver” and “la Bastille”, as proposed by our algorithms, is considerably easier
to describe and follow, and might yield more interesting sights for tourists than
the shortest path.

The major challenge in this contribution is the extraction of crowdsourced
geo-spatial information from textual data and the enrichment of an existing
road network with this information. The enriched road network is subsequently
used to provide paths between a given start and target that satisfy the claim of
higher popularity (which is formally introduced in Sect. 3), while only incurring
a minor additional spatial distance. In addition to this main application, we note
that our techniques can furthermore be used to automatically provide interest-
ing touristic routes in any place where information about POIs is available. The
transition from textual information to routing in networks is not at all straight-
forward, therefore we employ and develop various methods from different angles
of computing science. In a pre-processing step, we first mine VGI from user
generated texts, by employing Natural Language Processing (NLP) methods in
order to determine spatial entities (POIs) and spatial relations between them (see
Sect. 2). Furthermore, due to the inherent uncertainty of crowdsourced data, we
employ probability distributions to quantitatively model spatial relations mined
from the text (see Sect. 2.2). Having this information available, we propose and
approach for “popular” path computation. To summarize, our contributions are
as follows:

– We introduce a Bayesian inference-based transition from the modeled spatial
relations to spatial closeness confidence measurements according to the crowd
(see Sect. 3.1).

– We define a new cost criterion which is used to enrich an underlying road
network with the aforementioned confidence measurements (see Sect. 3.2).

– We extend our previously presented road network enrichment approach (see
[2]) with a skyline-based road network enrichment approach.

– Finally, we propose two algorithms which use the enriched road network to
compute actual paths (see Sect. 4).

2 Pre-processing: Spatial Relation Extraction
and Modeling

This section highlights our approach on qualitative data extraction from texts
and presents a probabilistic approach for representing spatial relationships based
on distance and orientation features. Key ingredients of our approach are NLP
methods for information extraction from texts and algorithms that train prob-
abilistic models, which are required due to the inherent uncertainty of crowd-
sourced data. Our discussion below includes a short description of NLP tools we
use to extract spatial relations between POIs, the features we used to model spa-
tial relations as probability distributions, and a short analysis of the modeling
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approach used in [3]. These models are necessary to assess the quality of spatial
relations extracted from text which will be used in Sect. 3.2 for the enrichment
of the underlying road network.

2.1 Spatial Relation Extraction from Texts

In this work, we choose travel blogs as a rich source for (crowdsourced) geo-
spatial data. This selection is based on the fact that people tend to describe
their experiences in relation to their trips and places they have visited, which
results in “spatial” narratives. To gather such data, we use classical Web crawling
techniques and compile a database consisting of 250,000 texts, obtained from 20
travel blogs.

Obtaining qualitative spatial relations from text involves the detection of
(i) POIs (or toponyms) and (ii) spatial relationships linking the POIs. The
employed approach involves geoparsing, i.e., the detection of candidate phrases,
and geocoding, i.e., linking the phrases to actual coordinate information.

For the relation extraction task we follow the approach used in [4] where a
Natural Language Processing Toolkit (NLTK) (cf. [5]) based spatial relation
extraction approach is presented. NLTK is a leading platform for analyzing
raw natural language data. The search for spatial relations in texts results into
triplets of the form (Pi, Rk, Pj), where pi and pj are named entities (landmarks)
and Rk is the spatial relation that intervenes between Pi and Pj . Following this
path, we managed to extract 500,000 POIs from the aforementioned travel blog
text corpus. For the geocoding of the POIs, we rely on the GeoNames2 geograph-
ical gazetteer data, which contains over 10 million POI names worldwide and
their coordinates. This procedure associates (whenever possible) POIs extracted
from travel blogs with geographical coordinates. Using the GeoNames gazetteer
we were able to geocode about 480,000 out of the 500,000 extracted POIs and
to end up with about 600,000 triplets of the form (Pi, Rk, Pj) worldwide.

For our experiments we want to focus on regions with high triplet density in
order to get meaningful results. Therefore, we focus on the cities of Paris and
New York. The triplets we extracted for each of these two cities define what we
call Spatial Relationship Graph, i.e., a spatial graph in which nodes represent
POIs and edges are spatial relationships between them. Let us point out that
for the scope of this work, i.e., a combination of short and enriched routes,
we only consider distance and topological relations that denote closeness (near,
close, next to, at, in etc.). The use of relations that denote direction, e.g., North,
South etc., or remoteness, e.g., away from, far from etc., is an open direction for
future work.

2.2 Modeling Spatial Relations

Feature Extraction In order to train probabilistic models, we need informative
features. We model each spatial relation in terms of distance and orientation as

2 http://www.geonames.org/.

http://www.geonames.org/
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presented in [3]. Therefore, we extract occurrences of a spatial relation (such
as “near”) from travel blogs. For each occurrence, we create a two-dimensional
spatial feature vector D = (Dd,Do)ᵀ where Dd denotes the distance and Do

denotes the orientation between Pi and Pj . Specifically, assuming a projected
(Cartesian) coordinate system, the distance between two POIs Pi and Pj is
computed as the Euclidean metric between the two respective coordinates. The
orientation is established as the counterclockwise rotation of the x-axis, centered
at point Pj , to point Pi. This way, we end up with a set of two-dimensional feature
vectors Drel = {D1,D2, . . . , Dn} for each spatial relation. We will use the set of
two-dimensional feature vectors in order to train a probabilistic model for each
spatial relation.

Probabilistic Modeling. As described in [3], by using a set of two-dimensional
feature vectors for each spatial relation such as “near” or “into”, we can train
Gaussian Mixture Models (GMMs), which have been extensively used in many
classification and general machine learning problems [6].

In general, a GMM is a weighted sum of M -component Gaussian densities
as p(d|λ) =

∑M
i=1 wig(d;μi, Σi) where d is a l-dimensional data vector (in our

case l = 2), wi are the mixture weights, and g(d;μi, Σi) is a Gaussian density
function with mean vector μi ∈ R

l and covariance matrix Σi ∈ R
l×l. To fully

characterize the probability density function p(d|λ), one requires the mean vec-
tors, the covariance matrices and the mixture weights. These parameters are
collectively represented as λ = {wi, μi, Σi} for i = 1, . . . , M .

Let R = {R1, . . . , Rn} denote the set of all spatial relations that we take
into account. In our setting, each relation Rk is modeled under a probabilis-
tic framework by a 2-dimensional GMM, trained on each relation’s set of two-
dimensional feature vectors Drel. For the parameter estimation of each GMM,
we use Expectation Maximization (EM) [7]. EM enables us to update the para-
meters of a given M-component mixture with respect to a feature vector set
Drel = {D1, . . . , Dm} with 1 ≤ j ≤ m and Dj ∈ R

l, such that the log-likelihood
L =

∑m
j=1 log(p(Dj |λ)) increases with each re-estimation step, i.e., EM re-

estimates model parameters λ until convergence. Further details on modeling
spatial relations under a probabilistic framework are given in [3].

This procedure results in a trained GMM of the form pk(D|λ), for each spatial
relation Rk, 1 ≤ k ≤ n. Given a distance and orientation vector, we can use this
model to estimate the probability that a particular relation exists. Based on this
information, by bayesian inference we derive a closeness score for pairs of POIs.
This procedure is described in the next section.

3 Road Network Enrichment

In this section, we describe our approach to enrich an actual road network with
crowdsourced geo-spatial information. Our discussion below includes a descrip-
tion of how we transform a Spatial Relationship Graph, as presented in Sect. 2.1,
into a weighted graph, and how we use the edge weights of the weighted graph
in order to modify the edge costs of a real road network.
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3.1 From Relationship to Weighted Graphs

As presented in Sect. 2, the spatial relation extraction procedure results in a
relationship graph between POIs. A simple example of such a graph is shown in
Fig. 2. In general, let P = {P1, . . . , Pm} denote the set of nodes representing the
POIs, and let R = {R1, . . . , Rn} denote the pre-defined set of spatial closeness
relations, represented by spatial NLP expressions like “next to” or “close by”.

Furthermore, let Ri,j ⊆ R denote the set of relations extracted from the
text between two distinct nodes Pi and Pj . Note that Rk denotes an abstract
relation, while Ri,j denotes a set of occurrences of relations between a pair of
nodes. Let Di,j denote the spatial feature vector (distance and orientation),
between two distinct POIs Pi and Pj (as presented in Sect. 2.2). Finally, let
D :=

⋃
i�=j∧Ri,j �=∅ Di,j denote the set of all spatial feature vectors between all

pairs of POIs which have non-empty sets of relations.
We want to estimate the posterior probability of a class Rk ∈ Ri,j based

on the spatial feature data Di,j between two POIs Pi and Pj . This is given by
Eq. 1. Here, p(Di,j |Rk) denotes the likelihood of Di,j given relation Rk based
on the trained GMM (presented as p(D|λ) Sect. 2.2), while P (Rk) denotes the
prior probability of relation Rk given only the observed relations Ri,j .

P (Rk|Di,j) =
p(Di,j |Rk)P (Rk)
n∑

l=1

p(Di,j |Rl)P (Rl)
(1)

In a traditional classification problem the spatial relation Rk between a pair of
POIs would be classified to the spatial relation model with the highest posterior.
In contrast to this approach, we consider each posterior probability P (Rk|Di,j)
as a measure of confidence of the existence of relation Rk between Pi and Pj .
Remember that all the relations we consider reflect terms of spatial closeness.

Fig. 2. Simple relationship graph. Nodes represent POIs and each edge represents the
set of relations Ri,j through which its adjacent nodes Pi and Pj are connected. Each
of these sets is mapped onto the closeness score Wi,j , turning the relationship into a
weighted graph.
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We combine all these posteriors into one measure which we refer to as closeness
score Wi,j of the pair of POIs Pi and Pj , defined in Eq. 2.

Wi,j =
1

|R| ·
|Ri,j |∑

i=1

P (Rk|Di,j)
maxk{P (Rk|D)} (2)

Here, we sum all the posteriors P (Rk|Di,j) normalized by the maximum pos-
terior of each relation in the relationship graph and we normalize the summation
by the total number of spatial relations in the relationship graph. This is done
for all pairs Pi, Pj where Ri,j �= ∅. We refer to these pairs as close since at
least one of our relations, reflecting closeness, exists. As is illustrated in Fig. 2,
assigning the respective weights Wi,j to the edges of the relationship graph, we
obtain a weighted graph. Note that Wi,j ∈ [0, 1] but typically 0 < Wi,j � 1. In
Sect. 5 the influence of Wi,j on the results is examined, in particular, different
scalings are tested. In this weighted relationship graph, denoted by H∗, there
exists a vertex for each POI and an edge (Pi, Pj) (equipped with weights Wi,j

and Euclidean distances dij) for each pair of POIs Pi, Pj that are close in the
above sense (Ri,j �= ∅).

3.2 From Weighted Graphs to Road Network Enrichment

Now that we have extracted and statistically condensed the crowdsourced data
into a closeness score, we need to apply the obtained closeness scores to the
underlying network. We have investigated several strategies and have decided
upon a compromise between simplicity and effectiveness. We will present two
road network enrichment approaches and we propose two algorithms on rout-
ing with enriched graphs. The first enrichment approach, also analyzed in our
previous work in [2], is based on Djikstra shortest path computation while the
second is based on Skyline path computation.

Initially, let G = (V,E, d) denote the graph representing the underlying road
network, i.e., the vertices v ∈ V correspond to crossroads, dead ends, etc., the
edges e ∈ E = V × V represent roads connecting vertices. Furthermore, let
d : E → R

+
0 denote the function which maps every edge onto its distance. We

assume that P ⊆ V , i.e., each POI is also a vertex in the graph. This is only a
minor constraint since we can easily map each POI to each nearest node on the
graph or introduce pseudo-nodes. Our two enrichment methods are described
below.

Djikstra Shortest Path Approach. For each pair of spatially connected POIs,
Pi, Pj , we compute the shortest path connecting Pi and Pj in G, which we denote
by r(i, j). We then define a new cost function c : E → R

+
0 which modifies the

previous cost d(e) of an edge as follows:

c(e) = d(e) ·
∏

e∈r(i,j)

(1 − αWi,j) (3)
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where e ∈ r(i, j) iff e is an edge within the shortest path from Pi to Pj and where
α ∈ [0, 1] is a weight scaling factor to control the balance between the spatial
distance d(e) and the modification caused by the closeness score Wi,j . In the
case of α = 0, we obtain the unadapted edge weight c(e) = d(e). Summarizing,
the more shortest paths between POI pairs run through e, the lower its adjusted
cost c(e). The reason for enriching the shortest paths is that they represent the
most intuitive connections between any two points in a road network.

We now define the enriched graph G∗ = (V,E, c). It consists of the original
vertices and edges and is equipped with the new cost function which implies the
re-weighting of edges. Any path computation algorithm in G∗ (e.g. a Dijkstra
search) therefore favors edges which are part of shortest paths between POIs
which are close according to the crowd. When computing the cost of a path
on G∗, as before, we sum the respective edge weights which now differ from
the original edge weights (due to the altered cost function). We refer to this
procedure of incorporating the crowdsourced information as D-enrich.

Path Skyline Approach. One shortcoming of D-enrich is the assumption
that the crowd unanimously favors exactly one path to connect a pair of POIs
Pi and Pj , namely the shortest path. Especially in multicriteria networks which
comprise of a set of cost criteria, e.g., travel time, energy consumption, road
tolls, optimality is usually defined as a personal trade-off between the given
criteria. For example: How much additional time has to be spent to avoid a toll
road? However, defining this trade-off numerically as a vector of preferences is
not reasonable, and even if it would be, finding the personally preferred trade-
offs for all users is in general not possible. Therefore, the best practice is to
present a set of alternative paths to the user. The most established and very
comprehensive set of alternative paths is the so-called path skyline [8]. This set
contains all paths which are non-dominated in the following sense: The cost
vector u dominates a cost vector v, denoted u ≺dom v, if u has a smaller cost
value than v in at least one dimension i and v does not have a smaller cost value
than u in any dimension j. Hence, the path skyline comprises all paths which are
optimal under some monotone combination function of the cost criteria. Hence,
the path skyline contains all optimal paths for all possible trade-offs between
the cost criteria.

To enrich our road network, we compute the path skyline (w.r.t. distance and
travel time) as proposed in [9] between each pair of spatially connected POIs Pi

and Pj in G, denoted by s(i, j). Although the paths contained in s(i, j) differ
from one another, they often share some edges. Simply following each path for
enrichment might unnecessarily favor edges contained in many skyline paths.
Therefore, we adjust the weights of edges independent of the number of skyline
paths in which they occur. Let Si,j ⊂ E denote the set of all distinct edges which
are part of at least one skyline path from Pi to Pj . Analogously to D-enrich, we
define the cost function c : E → R

+
0 to modify the original cost d(e) of an edge,

as before. While the adjusted cost function is the same as before (see Eq. 3), the
set of edges with adjusted costs is a superset, i.e., Si,j ⊇ r(i, j).
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We now define the enriched graph G∗∗ = (V,E, c). It consists of the origi-
nal vertices and edges equipped with the altered cost function reflecting a re-
weighting of edges contained in skyline paths. Any path computation algorithm
in G∗∗ (e.g. a Dijkstra search) therefore favors edges which are part of the Sky-
line paths between POIs which are close according to the crowd. We refer to this
procedure of incorporating the crowdsourced information as S-enrich.

3.3 Influence of Adjusted Costs

In order to measure the influence of the adjusted cost values along a computed
path p = (e1, . . . , er) on an enriched graph (G∗or G∗∗), we introduce the enrich-
ment ratio (ER) function er.

er(p) =
1

d(p)

r∑

i=1

c(ei) (4)

Here, d(·) and c(·) are as in the previous two sections. By normalizing with
the total length of the path, we are able to compare the spatial connectivity
of paths independent of length as well as start and target nodes. Here, a lower
ratio implies higher closeness score values along the edges of the path. If none
of the edges of a path is part of any shortest or skyline path between POIs, its
enrichment ratio is 1, while the (highly unlikely) optimal enrichment ratio is 0.
On the enriched graphs G∗ and G∗∗ we may now define our path computation
algorithms.

4 Path Computation on Enriched Graphs

Now that we have a measure quantifying the enrichment of a path, we investigate
the effect of D-enrich and S-enrich on the actual path computation. For this
purpose, we present two approaches which make use of the enriched network
and the weighted relationship graph H∗ (Sect. 3.1). In Sect. 5 they are compared
to the conventional shortest paths within the original graph, as obtained with
Dijkstra’s algorithm, which we denote by Dij-G.

Note that for the evaluation procedure, all paths in this paper are computed
by Dijkstra’s algorithm because our main focus is not the routing itself but
the incorporation of textual information into existing road networks. If desired,
speed-up techniques, such as preprocessing steps and/or other search algorithms,
could easily be employed.

Our first approach, given start and target nodes, executes a Dijkstra search
in the enriched road network graph G∗ or G∗∗ w.r.t. the adjusted cost function.
Depending on the enrichment used, D-enrich or S-enrich, we refer to the first
algorithm as Dij-G∗or Dij-G∗∗, respectively.

Our second approach, uses the enriched road network graphs G∗ or G∗∗ as
well as the weighted relationship graph H∗. Given start and target nodes within
the enriched graph (G∗or G∗∗), entry and exit nodes within H∗ are determined.
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Subsequently, we route within H∗, i.e., from POI to POI, again using Dijkstra’s
algorithm. Depending on the enrichment used, D-enrich or S-enrich, we refer to
the second approach we want to present as Dij-H∗ or Dij-H∗∗, respectively. Note
that in both cases we use the same graph H∗, but we refer to the S-enrich case
as Dij-H∗∗ in order to differentiate the two methods.

All approaches, return paths connecting start and target. But while Dij-
G computes the shortest path in the original graph G, all the approaches com-
pute the shortest paths in the enriched graphs w.r.t. the adjusted cost function
c. By construction of c, it favors edges which are part of the Dijkstra shortest
paths or the skyline paths, between close POIs. Dij-H∗ and Dij-H∗∗ in contrast,
do not only favor these edges, but are restricted to them. Having found entry
and exit nodes within H∗, Dij-H∗ and Dij-H∗∗ hop from POI to POI in direction
of the target. Hence, Dij-G, Dij-G∗, Dij-G∗∗, Dij-H∗, Dij-H∗∗ in that order, rep-
resent an increasing binding to the extracted relations. Dij-G is not bound to the
relations at all, while Dij-G∗ and Dij-G∗∗ (by the adjusted cost function) favors
“relation-edges”, and Dij-H∗ and Dij-H∗∗ are strictly bound to the relations and
the graph formed by them.

Let us formalize Dij-H∗ (Dij-H∗∗ can be formalized in the same way). Given
start and target node in G∗ (or G∗∗ for the Dij-H∗∗ case), it first determines
the so-called entry and exit nodes to and from H∗. However, to exclude POIs
which would imply a significant detour, we restrict the set of valid POIs, i.e.,
we restrict the search to a subgraph of H∗, denoted as h∗. Figure 3 illustrates
our computationally inexpensive implementation of a query ellipse that allows
for some deviation in the middle of the path as well as for minor initial and final
detours.

Start End

1.4d

1.6d

d

Fig. 3. Restriction of relationship graph H∗

to a subgraph h∗, in order to avoid implausi-
ble detours. The green dots represent POIs,
i.e., nodes of H∗ which are also in h∗, the
blue ones are left out (color figure online).

The pseudo-code for the second
approach is given in Algorithm1.
Here, we present only the Dij-H∗

case, since Dij-H∗∗ works in the same
way by utilizing the G∗∗ graph. After
selecting the valid set of POIs (Step
2), entry and exit nodes to and from
H∗ are determined, i.e., the clos-
est POIs to start and target node,
respectively (Steps 4 and 5). Entry
and exist nodes connect the road net-
work G∗ to the relationship graph
H∗. Subsequently, the shortest path
in h∗ from entry to exit node is
computed using Dijkstra’s algorithm
w.r.t. the Euclidean distance (Step
5). Note that a shortest path within
H∗ is a sequence of POIs. We there-
fore map this sequence onto G∗ by computing the shortest paths between the con-
secutive pairs of POIs in G∗ w.r.t. the adjusted cost function (Step 8). Also, we
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Algorithm 1. Dij-H∗

Input: Enriched Graph G∗, Spatial Relationaship Graph H∗, start s, target t
Output: Path p between s and t

1 begin
2 h∗ ← subgraph of H∗ in bounding ellipse
3 p ← empty path
4 Pentry ← select POI P ∈ h∗ closest to s
5 Pexit ← select POI P ∈ h∗ closest to t
6 ph ← Dijkstra(h∗, Pentry, Pexit)

7 predecessor ← s
8 foreach POI P on path ph do
9 v ← select node v ∈ G∗ representing P

10 p.Append(Dijkstra(G∗, predecessor, v))
11 predecessor ← v

12 end
13 p.Append(Dijkstra(G∗, last, t))

14 return p

15 end

compute the shortest paths in G∗ from start to entry node and exit to target
node. Concatenating these paths (start to entry, POI to POI, exit to target), we
return a full path.

5 Experimental Evaluation

In this section, we want to investigate the effect and impact of the network
enrichment. We compare the results of the conventional Dijkstra search, Dij-G,
to the results of Dij-G∗ and Dij-H∗, which use the Djikstra shortest path enriched
(D-enrich) graph G∗, and the results of Dij-G∗∗ and Dij-H∗∗, which use the
skyline path enriched (S-enrich) graph G∗∗. All approaches are evaluated on real
world datasets. Besides comparing the computed path w.r.t. their enrichment
ratio (ER) and length (as presented in Sect. 3.2), we introduce a measure of
popularity based on Flickr data, which is explained in the following section.
All the text processing parts were implemented in Python while modeling parts
were implemented in Matlab. Network enrichment and path computation tasks
were conducted using the Java-based MARiO Framework [10] on an Intel(R)
Core(TM) i7-3770 CPU at 3.40 GHz and 32 GB RAM running Linux (64 bit).

5.1 Enrichment Ratio, Distance and Popularity Evaluation

Our experiments are set in two cities, Paris and New York. These regions have
comparatively high density of spatial relations, Flickr photo data, and OSM
data, which accounts for an exact representation of the road networks. As men-
tioned before, we compare the output of Dij-G, Dij-G∗, Dij-H∗, Dij-G∗∗ and
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Table 1. Statistics for the weighted relationship graphs, Flickr datasets and road
networks of Paris and New York respectively.

Relationship Graph (H∗) Flickr Road Network (G)

Dataset # POI Pairs # Relations # Photos # Max Photos per Vertex # Vertices # Edges

Paris 400 2K 400K 100 550K 300K

New York 300 1.5K 90K 200 220K 120K

Dij-H∗∗ w.r.t. to the paths they return, more precisely, w.r.t. ER and length
of these paths. Since ER is a measure introduced in this paper, we use Flickr
data as an independent ground truth. We are aware that to cognitive aspects
(like the importance of sights or the value of landmarks) there is no absolute
truth. However, in order to be able to draw comparisons, we presume that if the
dataset is large enough, the bias can be neglected. We use a geotagged Flickr
photo dataset, provided by the authors in [11], to assign a number of photos
to each vertex of the underlying road network. The number of Flickr photos
assigned to each vertex is referred to popularity. In our settings, every photo
which is within the 20-meter radius of a vertex, contributes to the popularity
of that vertex. The popularity of a path is computed by the summation of all
popularity values along this path.

The sizes of the weighted relationship graphs H∗, road network and Flickr
photo data for both cities are shown in Table 1. Regarding the weighted rela-
tionship graphs, we provide the number of unique POI pairs extracted from
the travel blog corpus and the number of spatial (closeness) relations extracted
between them, as was presented in Sect. 2. Regarding Flickr data, we provide
the total number of geotagged photos in each city and the maximum number of
photos assigned to one vertex of the road network. Finally, regarding the road
network, we provide the total number of edges and vertices. Note that although
the datasets differ in terms of density (w.r.t. to relations and Flickr photos), our
algorithms provide similar results.

We present two experimental settings: In Setting (i) we examine the influence
of different scalings of the closeness score Wi,j in terms of enrichment ratio, path
length increase (distance) and popularity. Setting (ii) investigates the influence
of the path length, i.e., the distance between start and target is varied, again
in terms of enrichment ratio, path length increase (distance) and popularity. In
both settings we present the ER performance of the algorithms separately from
their performance in terms of distance and popularity as ER is a measure that
mainly proves that our network enrichment approach works properly, i.e., ER
should increase with the increase of the influence of Wi,j on the network and the
increase of the path length. Hence, based on our own measure (ER) we validate
that the proposed approach works properly.

In Setting (i), for 100 randomly chosen pairs of start and target nodes the
respective shortest paths within the actual road network are computed using
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Fig. 4. (a), (b) show ER increase for algorithms Dij-G∗ and Dij-H∗for Paris dataset
for Settings i and ii respectively. (c), (d) show ER increase for algorithms Dij-G∗ and
Dij-H∗for New York dataset for Settings i and ii respectively.

Dijkstra’s algorithm, Dij-G. Continuing, for the same start and target pairs, we
run Dij-G∗, Dij-H∗, Dij-G∗∗ and Dij-H∗∗. Subsequently, for each pair the differ-
ence w.r.t. ER, distance and popularity is computed, and finally averaged over
all pairs. We require the distance between start and target nodes to be at least
30 % and at most 50 % of the Euclidean extent of the network (approximately
6 km to 10 km), in order to exclude paths which start and end in the outskirts
of the city (where there are few to no POIs). Figure 4 ((a), (c)) show the influ-
ence of the closeness score Wi,j on ER for the datasets of Paris and New York
respectively. As we increase the impact of Wi,j , we observe an increase of ER
for all four cases in comparison to Dij-G in both datasets. For the Paris dataset,
the increase in ER is in the range of 80 % to 250 % for the Dij-G∗ and Dij-G∗∗,
with the latter performing better, and in the range of 250 % to 620 % for Dij-H∗

and Dij-H∗∗ with the latter performing better. For the New York dataset, the
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increase in ER is in the range of 20 % to 80 % for the Dij-G∗ and Dij-G∗∗, with
the latter performing better, and in the range of 80 % to 150 % for Dij-H∗ and
Dij-H∗∗, with the latter performing better.

Fig. 5. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗and
Dij-H∗for Paris dataset for experimental Setting i. (b), (d) show Distance and Flickr
popularity increase for algorithms Dij-G∗and Dij-H∗for Paris dataset for experimental
Setting ii.

Moreover, the first column of Figs. 5 and 6 ((a), (c)) shows the influence of
weight scaling factor Wi,j on distance and popularity. As we increase Wi,j from
0.2 to 1.0, we observe an increase of distance and popularity for both cases in
comparison to Dij-G in both datasets. The increase among all datasets, in terms
of path length is in the range of 3 % to 16 % for Dij-G∗ and Dij-G∗∗, and in
the range of 7 % to 38 % for Dij-H∗ and Dij-H∗∗. Additionally, the increase in
popularity is in the range of 30 % to 120 % for Dij-G∗ and Dij-G∗∗, and in the
range of 40 % to 160 % for Dij-H∗ and Dij-H∗∗.
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It is clear that Dij-G∗ and Dij-G∗∗ always perform better than Dij-H∗ and
Dij-H∗∗ in terms of path length increase, but Dij-H∗and Dij-H∗∗perform always
better in terms of ER and popularity. This is because Dij-H∗and Dij-H∗∗ route
directly through the POIs, causing greater detours, but passing along highly
weighted parts of the enriched graphs (G∗or G∗∗), which mostly coincide with
dense Flickr photo regions. Moreover, it is clear that S-enrich always performs
better than D-enrich, in terms of ER and popularity with a very short increase,
of about 2–3 % in path length. This validates that skyline enrichment provides
competitive paths in terms of distance (minorincrease) and popularity (signifi-
cant increase).

Continuing, in Setting (ii) we vary the distance between and target, relative
to the extent of the whole network. We consider five different distance brackets
of shortest paths in the original graph G, the first one ranging from 10 % to 20 %,
the last one ranging from 50 % to 60 % of the extent of the whole network. For 100
randomly chosen pairs of start and target nodes (within the respective distance
bracket) paths with Dij-G, Dij-G∗, Dij-G∗∗, Dij-H∗ and Dij-H∗∗ are computed.
As before, for each pair the difference w.r.t. ER, distance and popularity is
computed and averaged over all pairs. Figure 4 ((b), (d)) show the increase of
ER as we proceed through the distance brackets for both datasets. The second
column of Figs. 5 and 6 ((b), (d)) show the results in terms of distance and
popularity increase. As we proceed through the distance brackets, we observe
an increase of the distance and popularity for all cases in comparison to Dij-G
in both datasets. The increase among all datasets, in terms of path length, is
in the range of 3 % to 18 % for Dij-G∗ and Dij-G∗∗, and in the range of 5 % to
30 % for Dij-H∗ and Dij-H∗∗. Finally, the increase in terms of popularity is in
the range of 10 % to 70 % for Dij-G∗ and Dij-G∗∗, and in the range of 30 % to
140 % for Dij-H∗ and Dij-H∗∗. As in our previous experimental setting, it is clear
that Dij-G∗ and Dij-H∗ always perform slightly better (only 2–3 %) in terms of
path length increase, while Dij-G∗∗ and Dij-H∗ always outperform Dij-G∗ and
Dij-H∗ in terms of enrichment ratio and popularity. This underlines the validaty
of S-enrich, as it provides significantly more popular paths while only incurring
minor detours (2–3 % in terms of path length).

Here, we may conclude that both D-enrich and S-enrich approaches show
convincing results. Both cases yield significant increase in terms of ER as well
as in terms of the independent Flickr-based measure popularity, while increasing
path length only slightly. In the best case, ER increase amounts to almost 700 %
while popularity increase amounts to almost 160 % (in comparison to the con-
ventional shortest paths, as computed by Dij-G ), while the worst case increase
in path length is about 38 % with most cases being less than 10 %. Overall, D-
enrich works slightly (2–3 %) better in terms of path length while the S-enrich is
always significantly better (more than 10 % in most of the cases) in terms of pop-
ularity scores. Consequently, we can claim that spatial relations, extracted from
crowdsourced information, can indeed be used to enrich actual road networks
and define an alternative kind of routing which reflects what people perceive as
“close”.
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Fig. 6. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗ and
Dij-H∗ for New York dataset for experimental Setting i. (b), (d) show Distance and
Flickr popularity increase for algorithms Dij-G∗ and Dij-H∗ for New York dataset for
experimental Setting ii.

Finally, Fig. 7 illustrates the trade-off (mean distance and popularity increase
overall experiments) that we take by deviating from the shortest path in order to
obtain more interesting paths. This figure shows the relative increase in distance
and popularity of the paths returned by our proposed approaches, compared
to the baseline approach Dij-G. Here, we use letter D to refer to the distance
increase while we use letter P to refer to popularity increase. For both datasets,
we can observe that by road network enrichment we can obtain a significant
increase in popularity of up to 120% for the meager price of no more than 25%
additional distance incurred in both experimental settings. With the proposed
S-enrich approach we achieve to significantly increase popularity while keeping
the distance increase almost in the same levels with the D-enrich approach.
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Fig. 7. Trade-off between distance and popularity increase of paths

6 Related Work

Research areas relevant to this work include: (i) qualitative routing and (ii)
mining of semantic information from moving object trajectories and trajectory
enrichment with extracted semantic information. In what follows, we discuss
previous work in both of these areas.

While finding shortest paths in road networks is a thoroughly explored
research area, qualitative routing has hardly been explored. Nevertheless, pro-
viding meaningful routing directions in road networks is a research topic of
great importance. In various real world scenarios, the shortest path may not be
the ideal choice for providing directions in written or spoken form, for instance
when in an unfamiliar neighborhood, or in cases of emergency. Rather, it is often
more preferable to offer “simple” directions that are easy to memorize, explain,
understand and follow. However, there exist cases where the simplest route is
considerably longer than the shortest. The authors in [12] and [13] try to tackle
the problem of efficient routing by using cost functions that trade off between
minimizing the length of a provided path while also minimizing the number
of turns on the provided path. The major shortcoming of these approaches is
that they focus almost exclusively on road network data without taking into
account any kind of qualitative information, i.e., information coming from the
user. Opposed to that, we try to approach the problem of efficient routing by
integrating spatial knowledge coming from the crowd thus enriching an actual
road network.

The discovery of semantic places through the analysis of raw trajectory data
has been investigated thorougly over the course of the last years. The authors in
[14–16] provide solutions for the semantic place recognition problem and catego-
rize the extracted POIs into pre-defined types. Moreover, the concept of “seman-
tic behavior” has recently been introduced. This refers to the use of semantic
abstractions of the raw mobility data, including not only geometric patterns but
also knowledge extracted jointly from the mobility data as well as the underlying
geographic and application domains in order to understand the actual behaviour
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of moving users. Several approaches like [17,21] have been introduced the last
decade. The core contribution of these articles lies in the development of a seman-
tic approach that progressively transforms the raw mobility data into semantic
trajectories enriched with POIs, segmentations and annotations. Finally, recent
work [22], can extract and transform the aforementioned semantic information
into a text description in the form of a diary. The major drawback of these
approaches is that they do not intergrate the extracted semantic information
into the road network. Instead, they use the extracted information only on spe-
cific trajectories. In our contribution, we analyze crowdsourced data in order to
extract semantic spatial information and intergrate it into an actual road net-
work. This will enable us to provide routes that are near-optimal w.r.t. distance
while spatially more popular according to the crowd.

7 Conclusions and Outlook

In this work we presented new approaches to computing knowledge-enriched
paths within road networks. We incorporated novel methods to extract spatial
relations between pairs of POIs, such as “near” or “close by”, from crowdsourced
textual data, namely travel blogs. We quantified the extracted relations using
probabilistic models to handle the inherent uncertainty of user-generated con-
tent. Based on these models, we proposed a new cost function to enrich real world
road networks, based on Djikstra and skyline path computation. The new cost
function reflects the closeness aspect according to the crowd. In contrast to exist-
ing approaches, we did not enrich previously computed paths with semantical
information, but the entire network. Continuingly, two routing algorithms were
presented taking this closeness aspect into account. Finally, we evaluated our
ideas on two real world road network datasets, i.e., Paris, France, and New York
City, USA. We used metadata from geotagged Flickr photos as a ground truth to
support our initial goal of providing more popular paths. All our approaches per-
formed very well by providing slightly longer paths but with significantly higher
values of popularity. For future work, we are researching alternative methods
for aggregating all categories of spatial relations. Furthermore, we would like to
investigate ways to suggest the popular path descriptions to the user based on
the POIs they will encounter underway.
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