
Towards Fast and Accurate Solutions to Vehicle
Routing in a Large-Scale and Dynamic

Environment

Yaguang Li1(B), Dingxiong Deng1, Ugur Demiryurek1, Cyrus Shahabi1,
and Siva Ravada2

1 Department of Computer Science, University of Southern California,
Los Angeles, California

{yaguang,dingxiod,demiryur,shahabi}@usc.edu
2 Oracle, USA

siva.ravada@oracle.com

Abstract. The delivery and courier services are entering a period
of rapid change due to the recent technological advancements,
E-commerce competition and crowdsourcing business models. These
revolutions impose new challenges to the well studied vehicle routing
problem by demanding (a) more ad-hoc and near real time computa-
tion - as opposed to nightly batch jobs - of delivery routes for large num-
ber of delivery locations, and (b) the ability to deal with the dynamism
due to the changing traffic conditions on road networks. In this paper,
we study the Time-Dependent Vehicle Routing Problem (TDVRP) that
enables both efficient and accurate solutions for large number of delivery
locations on real world road network. Previous Operation Research (OR)
approaches are not suitable to address the aforementioned new challenges
in delivery business because they all rely on a time-consuming a priori
data-preparation phase (i.e., the computation of a cost matrix between
every pair of delivery locations at each time interval). Instead, we pro-
pose a spatial-search-based framework that utilizes an on-the-fly shortest
path computation eliminating the OR data-preparation phase. To further
improve the efficiency, we adaptively choose the more promising deliv-
ery locations and operators to reduce unnecessary search of the solution
space. Our experiments with real road networks and real traffic data and
delivery locations show that our algorithm can solve a TDVRP instance
with 1000 delivery locations within 20 min, which is 8 times faster than
the state-of-the-art approach, while achieving similar accuracy.

1 Introduction

The vehicle routing problem (VRP) aims to find a set of routes at a minimal cost
(e.g., total distance or travel time) for a set of geographically dispersed delivery
locations which are assigned to a fleet of delivery vehicles. Each location is visited
only once, by only one vehicle, and each vehicle has a limited capacity. VRP
is an NP-hard combinatorial optimization problem. Exact algorithms based on
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 119–136, 2015.
DOI: 10.1007/978-3-319-22363-6 7

120 Y. Li et al.

branch-and-bound or dynamic programming are slow and only capable of solving
relatively small instances (e.g., less than 30 delivery locations), thus heuristics
are mainly used in practice.

While VRP and its variations (e.g., VRP with time windows and VRP with
multiple depots) have been extensively studied in the literature [1], in recent
years we are witnessing a renewed interest to this problem due to two very impor-
tant transformations. First, the traffic data at a very high resolution have become
available that can significantly enhance the accuracy of the routes assigned to
delivery vehicles and can consequently result in considerable benefit. For exam-
ple, according to UPS [2] the company can save $50 million a year if the average
daily travel distance of its drivers can be reduced by one mile, which is typically
less than 1 % of the daily travel distance of a delivery vehicle. Second, due to the
increasing popularity of on-line shopping (i.e., E-commerce), there is a growing
need for fast delivery to very large number of customers; to the point that some
E-commerce companies (e.g., Google Express [3]) are developing their own pro-
prietary delivery solutions to stay ahead of the competition. This is because the
existing solutions provided by the major delivery companies (e.g., FedEx and
UPS) assume that the delivery orders (and their locations) are known (at least
a day) in advance. It is also not hard to envision an Uber-type application for
deliveries in near-future, democratizing the delivery business.

These two transformations have challenged the traditional approaches to
VRP. The basis of all the traditional approaches are to utilize some sort of
Operation Research (OR) technique (e.g., integer programming) to solve VRP.
Consequently, as an input to all these approaches, a pairwise distance matrix
is required, which contains the distances between every two delivery locations.
Without the dynamism resulting from traffic data and in the world where deliv-
ery plans were prepared the night before for a small number of delivery locations,
creating such a matrix a priori was acceptable. However, considering travel-time
as the “distance”, different time intervals in the day require different distance
matrices (due to traffic congestions), which increases the complexity of prepar-
ing the input for the OR approaches. The increase in the complexity along with
more delivery locations and less time to prepare the delivery plans render the
OR data-preparation phase impractical.

Therefore, in this paper, we take a completely different approach to solve VRP
by utilizing the lessons learned from the field of spatial-databases. First, consid-
ering the vehicle routing problem in time-dependent road networks, we compute
network distance (i.e., travel-time) on-the-fly utilizing a time-dependent shortest
path technique from the spatial-database literature [4]. Note that although some
OR-based approaches are developed for the Time-Dependent version of VRP [5,6]
(called TDVRP hereafter), they still rely on the time-consuming data preparation
phase. In fact, the complexity of that phase becomes even worse because now it
requires the computation of the pairwise distance matrix for each and every time
interval in a day. We, however, completely eliminate the data preparation phase by
on-demand calculation of shortest path between two delivery locations and at the
same time caching the partial results from the expansion of shortest path compu-
tation for future use. As a byproduct, our proposed approach could start finding
the solutions as soon as the delivery requests are received.

Towards Fast and Accurate Solutions to Vehicle Routing 121

Second, we improve another phase in the OR approach known as local search,
by exploiting the spatial information of the locations in the search. In particular,
the local search starts from an initial solution and iteratively moves to new solu-
tion by selecting from a neighborhood of the current solution through “the move
operators”. The main bottleneck of the local search is that it needs large number
of iterations to find neighborhood solutions and this number grows exponentially
with the number of delivery locations. We observe that local search relies on
blind evaluation of delivery locations and move operators towards finding neigh-
borhood solutions in which they treat each delivery locations and operators
equally. However, we argue that not all delivery locations are equally impor-
tant: some delivery locations are more promising to generate the effective neigh-
borhood solutions and hence we assign weights to each delivery location. The
delivery locations with higher weights are more likely to be chosen and their
weights are adjusted adaptively based on their previous performance. A simi-
lar idea applies to the operators: operators with higher weights are more likely
to be applied. Consequently, our algorithm leverages a spatially guided search
by selecting promising delivery locations and operators first, which significantly
reduces the running time while generating high-quality solution.

We conducted extensive experiments on real world road network of Los Ange-
les with real traffic data. Experimental results show that (1) by leveraging the
real time-dependent traffic pattern, we can reduce the travel cost of routes by
7 % on average with respect to its static counterparts, and (2) our algorithm can
solve TDVRP with 1000 delivery locations within 20 min, which is 8 times faster
than the state-of-the-art approach, while achieving similar accuracy.

The remainder of this paper is organized as follows. In Sect. 2, we formally
define our Vehicle Routing Problem in Time-dependent road network. In Sect. 3,
we present our spatial-search-based framework to solve this problem. Experiment
results are reported in Sect. 4. In Sect. 5, we review the related work and Sect. 6
concludes the paper.

2 Problem Definition

In this section, we formally define the vehicle routing problem in time-dependent
road networks. We model the road network as a time-dependent weighted graph
where the non-negative weights are time-dependent travel times (i.e., positive
piece-wise linear functions of time) between the nodes.

Definition 1 (Time-dependent Graph). A Time-dependent Graph (GT) is
defined as GT = (V,E), where V and E represent set of nodes and edges, respec-
tively. For every edge e(vi, vj), there is a cost function c(vi, vj , t) which specifies
the travel cost from vi to vj at time t.

Definition 2 (Time-dependent Travel Cost). Let {s = v1, v2, · · · , vk = d}
represents a path which contains a sequence of nodes where e(vi, vi+1) ∈ E and
i = 1, · · · , k − 1. Given a GT , a path (s, d) from source s to destination d, and a
departure-time at the source ts, the time-dependent travel cost TT (s � d, ts) is

122 Y. Li et al.

the time it takes to travel along the path. Since the travel time of an edge varies
depends on the arrival time to that edge (i.e., arrival dependency), the travel
time is computed as follows:

TT (s � d, ts) =
k−1∑

i=1

c(vi, vi+1, ti)

where t1 = ts, ti+1 = ti + c(vi, vi+1, ti), i = 1, · · · k.

Definition 3 (Time-dependent Shortest Path). Given a GT , s, d and ts,
the time-dependent shortest path TDSP(s, d, ts) is a path with the minimum
travel-time among all paths from s to d starting at time ts.

Definition 4 (Vehicle Routing Problem in Time-dependent Road Net-
work). Given a time-dependent graph GT , a depot vd ∈ V , a start time ts, k
delivery vehicles with capacity C, and a set of delivery locations Vc ⊂ V , each
delivery location vi ∈ Vc has a demand of di, TDVRP aims to find k routes with
the minimum total time-dependent travel cost subject to the following constraints:

• all routes start and end at the depot;
• each delivery location in Vc is visited exactly once by exactly one vehicle;
• the total demands of delivery locations in a route must not exceed C;

Note that the input TD road network Gt could have more than 100 thousand
nodes and edges, the delivery locations are a small subset of nodes in the given
road network and the travel time between each delivery location is not known
in advance. This is different with the typical input of VRP, which requires a
pairwise cost matrix between each pair of delivery locations per instance.

3 Proposed Algorithm

In this section, we first investigate one state-of-the-art local search based algo-
rithm termed RTR [7]. RTR has shown [8] to be able to generate high quality
solutions for large-scale delivery locations for static network. However, we dis-
cover that RTR has two major drawbacks. First, like other Operation Research
(OR) approaches, RTR relies on the time consuming data-preparation step. In
addition, we further identify that the blind evaluation of neighborhood solution
dominates the search process of RTR.

To address the above two issues, we propose a Spatial-Search-Based Local
Search (SSBLS) framework (Sect. 3.3) which incorporates on-the-fly shortest
path computation (Sect. 3.5) into the local search framework. To avoid the unnec-
essary search of the solution space, we adaptively choose more promising delivery
locations and move operators (Sect. 3.4). Note that our proposed improvements
can be easily adopted into other local search based algorithms which iteratively
generates and improves the neighborhood solutions.

Towards Fast and Accurate Solutions to Vehicle Routing 123

3.1 Local Search Based Approach

Local search is a popular framework which is proven to provide a high-quality
solution for VRP. Local search starts from an initial solution and iteratively
moves to one of the neighborhood solutions based on heuristics. Typically, a
local search algorithm is developed by the following general framework:

• Step 1: choose an initial solution. (Initial solution)
• Step 2: generate one or more neighborhood solutions by applying operators to

the current solution. (Neighborhood generation)
• Step 3: select one solution to continue using heuristic, e.g., the first, the best

or arbitrary one. (Acceptance criteria)
• Step 4: if the stop condition is not satisfied, e.g., the solution is not considered

as optimal, then goto Step2, else stop. (Stop condition)

In general, the initial solution is generated based on some heuristic methods
(e.g., Clarke-wright heuristic [9]), consequently a local move procedure is used
to generate neighborhood solution. The definition of local move is as follows:

Definition 5 (Local Move). Local move is the process of generating a new
solution by removing k edges in the current solution and replacing them with
other k edges.

Local move is performed by applying one operator at a time to the existing solu-
tion. In this paper, we use three basic operators studied in [7], i.e., One-Point (OP),
Two-Point (TP) and Two-Opt (TO), because the combination of these operators is
enough to generate high-quality solution for large scale delivery locations. Specif-
ically, each operator uses three parameters to complete the local move. Given a
current solution S, a selected location vx, and one of its neighboring location vy,
OP (S, vx, vy) moves vx to the new position after vy(i.e., vx is visited after vy),
TP (S, vx, vy) swaps the positions of vx, vy in S; and finally TO(S, vx, vy) removes
the two edges e(vx, v′

x), e(vy, v′
y) inS by replacing themwith e(vx, vy) and e(v′

x, v′
y).

Figure 1 shows the process of applying One-Point operator to a solution S
which contains two routes r1 and r2. After applying OP (S, vj , va), point vj in r2
is relocated to the position after va in r1, thus generating a new neighborhood
solution which contains r′

1 and r′
2. In this way, the three edges e(vi, vj), e(vj , vk)

and e(va, vb) in S are replaced by e(vi, vk), e(va, vj) and e(vj , vb). Once the neigh-
borhood solution is generated, the algorithm checks its feasibility by evaluating
its cost and decides whether to choose this solution to continue.

a
j

b c

i k l

a
j

b c

i k l

Before

After depot

delivery
point

r1

r2

r1'

r2'

S

S’

ta tb

tktj

ta tb’

tk’tj’ti

ti

Fig. 1. Neighborhood solution generation through One-Point Move

124 Y. Li et al.

3.2 Baseline Approach: RTR

RTR follows local search framework: (1) An initial feasible solution S is gener-
ated using the classicClarke-Wright heuristic [9], (2)The neighborhood generation
and improvement over S is shown in Algorithm 1. The algorithm interleaves with
two search procedures: record-to-record and downhill search. The major difference
between the two search procedures is that: for record-to-record search, when we
apply one operator op to one location vi, a non-improving solution with a small
range of deviation to the current best solution is allowed to jump out of the local
optimal (lines 13–14); on the other hand, only the improved solution is accepted
for the downhill search. In terms of acceptance criteria, RTR uses the first-accept
standard, i.e., whenever a better solution is found, the local search for the current
location vi is stopped and we move to the next location (lines 9–11). (3) RTR stops
whennobetter solution canbe found afterK continuous executions ofAlgorithm 1.

Algorithm 1. GenerateNeighborhood(GT , S)
Input: time-dependent graph GT , the current solution S, and the deviation
1: for each search procedure (i.e., record-to-record and downhill) do
2: for each operator op in operators do
3: for each location vi in S do
4: for each location vj in neighbors of vi do
5: S′ ← op(S, vi, vj)
6: cost(S′) ← eval(S′)
7: if cost(S′) < cost(Sbest) then
8: Sbest ← S′ // store S′ with the smallest value
9: if cost(S′) < cost(S) then

10: S ← S’
11: break
12: // record-to-record search continues, downhill search stops here
13: if record-to-record search And Sbest ≤ cost(S) + deviation then
14: S ← Sbest

Although RTR is one of the best choices for large-scale VRP, it is inefficient
for Time-dependent road networks where each edge has different (time-varying)
costs for each time instance throughout the day. In the following, we analyze
the bottleneck in this search process. As shown in Algorithm 1, during each
search procedure (record-to-record and downhill), each operator is applied to
each delivery location of each route, which means that the algorithm needs to
generate and evaluate all these newly generated solutions to determine whether
to accept it or not. In addition, with RTR, all other delivery locations are treated
as the neighbors of one delivery location (line 4). Clearly such exhaustive search
dominates the running time of RTR algorithm because the number of generate-
and-evaluate process grows exponentially with the size. Moreover, compared to
static road networks, the evaluation of neighborhood solution with TD road
network is more time consuming (line 6). This is because changing the edges in

Towards Fast and Accurate Solutions to Vehicle Routing 125

a route due to operators could lead to different arrival times of the corresponding
delivery locations, which in turn changes the weight of the following edges.

To illustrate, consider Fig. 1, in static case, the total travel cost of the new
solution S′ can be calculated using the following equation:

c(S′) = c(r′
1) + c(r′

2) = c(r1) + Δc(r1) + c(r2) + Δc(r2)

Δc(r1) and Δc(r2) are calculated via the following equation:

Δc(r1) = −c(va, vb) + c(va, vj) + c(vj , vb), Δc(r2) = c(vi, vk) − c(vi, vj) − c(vj , vk)

where c(vi, vj) represents the static travel cost between delivery locations vi and
vj , and c(r) represent the static cost of route r.

In the static case, the evaluation involves five delivery locations (i.e., va, vb,
vi, vj , vk) and can be calculated in constant time when the cost matrix is given.
However, in TD case, because the arrival times of delivery location vj and vk
are changing, the arrival times for the following delivery locations (e.g., vc and
vl) are also changing which result in re-calculating the cost of the whole path.

3.3 Spatial-Search-Based Local Search Framework

By analyzing RTR, we find that two processes dominant its total running time
and make RTR less practical for the new delivery application: (1) the neighbor-
hood generation and evaluation process. (2) the data-preparation process which
computes the travel cost between each pair of nodes at each time interval.

The above observations lead us to the road map of how to improve the
efficiency of RTR while maintain the high accuracy. As shown in Fig. 2, we aim
to eliminate the data preparation process as well as reduce the evaluation time1.

Efficiency

Reduce
Evaluation

Time

Eliminate
Data Preparation

On Demand
Calculation

(Section 3.5)

Reduce
Cost of each
Evaluation

Reduce
Evaluation

Restrict
Neighbor Size

Adaptive
Location/Operator

Selection
(Section 3.4)

Fig. 2. Methods to improve efficiency

1 Reducing the computation cost of each evaluation usually depends more on the prob-
lem setting, for example a method that utilizes time window constraints and dynamic
programming to reduce evaluation cost was proposed in [6] for the TDVRPTW prob-
lem. In this paper, we work on a general TDVRP setting and thus focus on reducing
the number of evaluations.

126 Y. Li et al.

Algorithm 2. Framework of SSBLS algorithm
1: iter ← 0, cmin ← maxval
2: S ← initialSolution()
3: while stop condition is not satisfied do
4: for each search procedure (i.e., record-to-record and downhill) do
5: op ← selectOperator()
6: vi ← selectLocation()
7: for each location vj in neighbors of vi do
8: iter ← iter + 1
9: if iter mod I = 0 then

10: updateWeight()
11: S′ ← op(S, vi, vj)
12: c ← onDemandEval(S′)
13: if c < cmin then
14: S ← S′

15: cmin ← min(cmin, c)
16: break
17: return S

Towards this end, we propose a Spatial-Search-Based Local Search (SSBLS)
framework, which is shown in Algorithm2.

SSBLS starts with an initial solution which is generated using the Clarke-
Wright algorithm (line 2). During each search procedure (record-to-record and
downhill search), in order to generate the neighborhood solution, it adaptively
selects an operator op and a delivery location vi (lines 5–6) based on their weights
(See Sect. 3.4). Subsequently, the algorithm applies the selected operator to the
delivery location vi and iterates through the neighborhood solution (lines 7–16).
The newly generated solution S′ is evaluated via our on-demand shortest path
calculation procedure (See Sect. 3.5), and thus the algorithm determines whether
to accept S′. If a solution is accepted, the current best record r and the solution
S are updated accordingly (lines 14–15). The weights of delivery locations and
operators are updated based on whether they yield a better neighborhood solu-
tion in every I iterations (lines 9–10). Consequently, the algorithms repeats this
process until the stop condition is satisfied. In this paper, we use the same stop
condition as RTR, i.e., the maximum number failure to find a better solution. To
save space, we omit the specific steps for record-to-record search in Algorithm 2,
which is the same as those listed in Algorithm 1.

3.4 Adaptive Point and Operator Selection

A straightforward method to improve the efficiency is to restrict the number
of candidate neighbors of a delivery location. This is because when applying
operators to one specific location (line 4 in Algorithm1), RTR treats all other
delivery locations as the neighbor of that location. Therefore, to reduce the num-
ber of evaluations, we can only apply operators to a fixed number of its nearest
neighbors (rather than all other delivery locations) for a delivery location [7].

Towards Fast and Accurate Solutions to Vehicle Routing 127

Besides restricting the neighborhood size, we further propose a novel app-
roach to reduce the number of evaluations. The intuition of our algorithm is that
not all delivery locations and operators are equally important in order to gener-
ate the new neighborhood solutions. Towards this end, we first define“Effective
Local Move” and explain some observations based on the empirical study on real-
world dataset with 100 delivery locations on Los Angeles road network. Similar
observations exists for larger datasets (see more details in Sect. 4).

Definition 6 (Effective Local Move). Effective local move is defined as the
local move whose corresponding solution is accepted by the algorithm based on
variable criterion, e.g., down-hill, simulate-annealing.

Observation 1. Only very small portion of local moves will become effective
local move, most of the new solutions generated by local moves are not effective
and hence not be accepted.

In the process of local search, we record the number of evaluated local moves
and the number of resulted effective moves. Table 1 shows the statistic of three
types of local moves. We observe that only 0.21% of the local moves become effec-
tive, i.e., the corresponding solutions are accepted by the algorithm. Because a
large portion of the evaluation is useless, our idea to reduce the number of eval-
uations is via selectively evaluating the promising moves. Intuitively, some oper-
ators (e.g., One-Point) are more suited for one type of instance while others are
best suited for another type of instance. In addition, instead of using the same
sequence to iterate operators and customers in Algorithm 1, we believe that alter-
nating between different customers (operators) makes the heuristic more robust.
In the following, we discuss how to decide on the promising delivery locations
and operators.

Table 1. Local move statistics

Local move # Evaluated moves # Effective moves Percentage

One-Point Move 30300856 83071 0.27 %

Two-Point Move 27774218 25504 0.09 %

Two-Opt Move 30275671 78683 0.26 %

Total 88350745 187258 0.21 %

Promising Delivery Locations and Weights Assignment. Figure 3 shows
the distribution of the effectiveness of each delivery location. The effectiveness
is measured by the percentage of local move that leads to the effective local
move via applying operators to one specific delivery location. From Fig. 3, we
observe that some delivery locations are much more effective than the remaining
locations (e.g., the effectiveness of the top 1 delivery location is at least 20 times
higher than the least effective point), which leads us to the following observation
and define the promising delivery locations.

128 Y. Li et al.

0 %

0.5 %

1 %

1.5 %

2 %

2.5 %

3 %

3.5 %

 0 20 40 60 80 100

E
ffe

ct
iv

en
es

s

Delivery locations

Fig. 3. Distribution of the effectiveness of delivery locations (x-axis is ordered by the
effectiveness)

Observation 2. Delivery locations are not equally effective in generating better
result. In other words, applying operators on some delivery locations are more
likely to generate a solution with lower travel cost than others.

To capture the effectiveness of the delivery locations, we assign weight wi to
each delivery location vi (initially they have the same weights), and a delivery
location is selected with probability that is proportional to its weight. Moreover,
we adjust the weight of a delivery location in the search process based on its
performance in the previous iterations, i.e., the better it performs, the more
likely its weight will be increased.

Specifically, we divide the whole local search process into separate parts, each
part contains I iterations. Suppose we are in the kth part of the search process,
the weight of one delivery location in the (k + 1)th part is updated once we
completed the I iteration in the kth part by the following equation (line 10 in
Algorithm 2):

wk+1
i = (1 − η)wk

i + η
λk
i

Λk
i

(1)

where Λk
i is the total number of local moves that involves delivery location vi

during the kth part, λk
i is the corresponding total number of effective local moves

that involves vi during the kth part, and η is learning rate which captures the
trade-off about how much we should rely on the performance of the kth part
or the previous (k − 1) parts. If η = 0, the weight only relies on the previous
(k − 1) parts of the search process, otherwise if η = 1, the weight only relies on
the performance on the kth part of search. Usually, 0 < η < 1, and parameter
tunning is required to get the best performance.

Once we have assign weights to each delivery location, the probability that
one delivery location is chosen to generate the neighborhood solution is calcu-
lated in the following equation:

Prob(vi) =
wi∑N
j=1 wj

(2)

where N is the number of delivery locations, wi the weight of vi.

Towards Fast and Accurate Solutions to Vehicle Routing 129

Similar to the delivery locations, operators are also not equally effective.
Therefore, we apply a similar idea to the operators. Because of the space limi-
tation, we omit the details here.

3.5 Eliminating Data-Preparation

When dealing with vehicle routing problem, existing OR based methods assume
that the travel costs between each pair of delivery locations are calculated in
advance, or can be calculated in O(1) time (e.g., in Euclidean space). Usually,
the calculated travel cost is stored in a matrix-like structure (referred as cost
matrix).

Although the cost matrix can be calculated in static cases, it is far more time-
consuming to do this precomputation in time-dependent road network. This is
because it has to calculate the time-dependent travel costs between every point
pair in each time interval. This process involves O(TN2) time-dependent shortest
path calculation, where T is the number of time intervals, N is the number of
delivery locations. Note that the shortest path calculation in time-dependent
road network is costly [4].

Table 2. Percentage of accessed cells in cost matrix

Locations 100 200 500 1000

Accessed cell 25.73 % 12.70 % 6.48 % 4.12 %

Observation 3. Most of the precomputed travel cost is not required.

To analyze the effectiveness of the data preparation step, we record the num-
ber of cells in cost matrix that is accessed by the algorithm for at least once. If
the algorithm used the travel cost from location vi to location vj at the t-th time
interval. then the corresponding cell, e.g., cost[i][j][t], will be accessed. Table 2
shows the percentage of accessed cells in the cost matrix (neighbor size σ = 40)
with different number of delivery locations. As shown in Table 2, most of the
cells in the cost matrix have never been accessed. For example, less than 5 %
of the cells in the matrix are accessed when the number of delivery locations is
1000. This could be explained via the following reasons:

• Most of the effective local moves are those applied to a delivery location and its
nearby locations, which means that the shortest path is only required between
a location and some of its close neighbors.

• For a certain pair of delivery locations, only a small portion of the time inter-
vals is accessed. For example, suppose the vehicle departs from depot at t0,
and the minimum travel time between the depot vd and a delivery location vi
is c(vd, vi, t0), then it is possible that the time-dependent travel cost between
vd and vi with start time earlier than t0 + c(vd, vi, t0) are not accessed. This is
because the path from depot to vi which bypasses other delivery location may
yield a later arrival time than the path which directly passes the location vd.

130 Y. Li et al.

Algorithm 3. onDemandEval(S)

Input: Solution S = (ri)
k
i=1, ri = (vij)

|ri|
j=1

1: c ← 0
2: for each route ri in S do
3: if isChanged(ri) then
4: t ← t0
5: for each vij in ri do
6: if isCached(vij , vij+1 , t) then
7: ce ← c(vij , vij+1 , t)
8: else
9: ce ← TDSPAndCache(vij , vij+1 , t, σ)

10: c ← c + ce, t ← t + ce
11: else
12: c ← c + getCost(ri)
13: return c

Based on the above observation, we argue that data preparation process can
be eliminated and replaced by an on-demand calculation strategy. The main idea
is to compute shortest path only when it is needed, and at the same time the
partial results are cached from the expansion of shortest path computation for
future usage. Algorithm3 shows our proposed on-demand-calculation approach
to evaluate the routes of a candidate solution. When one route of the solution is
changing, we recalculate the travel cost from the beginning of this route (lines
4–10). In this process, if the travel cost between two delivery locations vi and
vj during a time interval is not cached previously, function TDSPAndCache is
called on-the-fly to calculate the travel cost (line 9). Meanwhile, the travel cost
from vi to its σ nearest neighbors is also calculated and cached through the
expansion of vi because these neighbors are usually close to the current delivery
location and caching them could facilitate the future search process. We use the
time-dependent incremental network expansion algorithm described in [10].

4 Experimental Evaluation

4.1 Experimental Settings

Datasets. The experiments are conducted in Los Angeles(LA) road network
dataset which contains 111,532 vertices and 183,945 edges. The time-varying edge
patterns(i.e., time-dependent edge weights) of LA road network are generated
from the sensor dataset we have been collecting in the past three years: we split
the day time into 60 intervals from 6am to 9pm, and for each interval we assign
the aggregated sensor data travel times to the corresponding network segment. In
terms of the delivery locations, they are obtained from a delivery company in Los
Angeles, each delivery locations corresponds to a node in the LA road network.
We generate 40 test cases from these real delivery locations, which contains 100,
200, 500 and 1000 delivery locations separately, each has 10 test cases2.
2 Note that in operation research literatures, even an instance with 500 delivery loca-

tions is considered large. Algorithms are usually tested on much smaller instances.

Towards Fast and Accurate Solutions to Vehicle Routing 131

Baseline Approaches. We compare our proposed algorithm with the following
algorithms:

• Sweep: a cluster-first and route-second approach [11].
• Clarke-Wright : a saving heuristic based approach [9] that is widely used in

most industries.
• TDRTR: we extend RTR to support time-dependent road network. Specifi-

cally, we pre-compute the cost matrix and evaluate the travel cost using time-
dependent edge weights.

Accuracy Evaluation Method. For accuracy comparison, TDRTR is treated
as the benchmark as it usually generates the best result.Thus, we compute the
gap between the travel time from the current solution and the solution returned
by TDRTR. Formally, for a problem instance, suppose the travel time of a solu-
tion generated by another algorithm (e.g., Sweep) is c′, and the travel time of
the solution generated by TDRTR is c, then the gap ε = c′−c

c .
Smaller gap means smaller travel cost and thus yields higher accuracy. Note

that the value of gap can be negative, because sometimes an algorithm could
achieve better solution than TDRTR.

Configuration. We first compare our proposed algorithm(SSBLS) with Sweep,
Clarke-Wright and TDRTR. For SSBLS, we use the parameters σ and η which
produces the best solution tuned in the experiment. To show the effectiveness
of using time-dependent road network, we also apply RTR in the static road
network and evaluate the retrieved solution on the time-dependent road network.
The steps are listed as follows: (1) generate a static road network by averaging the
travel cost of each edge during the day. (2) run RTR in the generated averaged
static road network, and generate a routing plan. (3) evaluate the travel cost of
the routing plan in the time-dependent road network.

We then vary the neighbor size σ, and the learning rate η in the adap-
tive delivery location and operator selection process. All algorithms were imple-
mented using Java, and all the experiments were performed on a Linux machine
with 3.5 GHz CPU and 16 GB RAM.

4.2 Comparisons of Different Algorithms

Figure 4 shows the accuracy comparison between algorithms with respect to num-
ber of delivery locations. As illustrated, SSBLS achieves a similar accuracy with
TDRTR and performs better than RTR. In general, local search based algorithms
(e.g., SSBLS, TDRTR and RTR) are much more accurate than Sweep and Clarke-
Wright. For example, SSBLS is 15 % to 27 % more accurate than Sweep or Clarke-
Wright algorithm. In addition, with increasing number of delivery locations, the
benefit tends to grow larger.

At the same time, with comparing RTR with TDRTR, we observe that time-
dependent road network based apoproach can save 6 % to 8 % travel cost. This is

132 Y. Li et al.

-5

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900 1000

G
ap

(%
)

Number of delivery locations

Sweep
Clarke-Wright

RTR
SSBLS

Fig. 4. Accuracy comparison

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

R
un

in
g

T
im

e
(m

in
)

Number of delivery locations

Sweep
Clarke-Wright

Precomputation
RTR

TDRTR
SSBLS

Fig. 5. Efficiency comparison

because in real world road network, the travel cost between two delivery locations
may be quite different during rush hours and non-rush hours. Failing to consider
traffic information leads to congestion, and thus larger travel cost.

Figure 5 shows the comparison of efficiency between different algorithms. We
also show the precomputation (i.e., data preparation) time for TDRTR. As clas-
sic heuristics are much faster, and they can generate a feasible schedule within
1 min even for more than 1000 delivery locations. However, these heuristic algo-
rithms suffer from low accuracy, which makes them less promising in practice.
Although SSBLS is less efficient than Sweep and Clarke-Wright, SSBLS is much
more faster than TDRTR. For example, SSBLS solves a problem instance with
1000 delivery locations in 20 min, which is 8 times faster than TDRTR. This is
because (1) data preparation step is eliminated in SSBLS, which takes more than
half of the total running time for TDRTR, as shown in Fig. 5, (2) SSBLS prefers
to choose promising delivery locations and operators to generate neighborhood
solution, thus reduce the unnecessary search of the solution space.

Note that although RTR is less accurate than SSBLS, RTR is a little faster
than SSBLS. This is mainly because RTR is performed in the static road network.
Compared to the time-dependent road network, (1) data preparation process in
static road network is much faster, i.e., the number of interval is only 1 rather
than 60, (2) travel cost evaluation in static network is also much faster.

In summary, considering the balance between accuracy and efficiency, SSBLS
is best suitable for fast delivery with large scale delivery locations.

4.3 Effect of Neighbor Size

Figures 6 and 7 show the effect of neighbor size σ in terms of efficiency and
accuracy when the number of delivery locations N are 100 and 500. For N = 100,
σ ∈ [10, 100] , and for N = 500, σ ∈ [10, 500]. We use the number of evaluations
to describe the relative speed. Generally, with decreasing σ, the algorithm tends
to be more efficient but less accurate. For example, by setting σ = 10, the
number of evaluated moves is reduced to 10 % compared with the case where
σ = 100, however it suffers from a considerable drop of accuracy. In the following
experiment, we set σ = 40 to balance accuracy and efficiency.

Towards Fast and Accurate Solutions to Vehicle Routing 133

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350 400 450 500

E

va
lu

at
ed

 m
ov

es
(M

)

Neighbor size

Points = 100
Points = 500

Fig. 6. Neighbor size v.s. efficiency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300 350 400 450 500

G
ap

(%
)

Neighbor size

Points = 100
Points = 500

Fig. 7. Neighbor size v.s. accuracy

Table 3. Effect of adaptive delivery location selection (σ = 40, N = 100)

η – 0 0.01 0.02 0.04 0.1 0.2 0.4 1

#Evaluated moves (M) 79.6 72.3 43.7 42.1 37.5 65.6 73.4 54.6 49.9

Gap (%) 0.91 0.92 0.87 0.78 0.98 1.36 1.4 1.45 1.8

4.4 Effect of Adaptive Delivery Location Selection

Table 3 shows the effect of adaptive delivery location selection. “–” means adap-
tive delivery location selection is not used. With increasing η, the accuracy first
increases and then decreases. Thus, parameter tuning is required to achieve a
good result. In addition, using adaptive delivery location selection also increases
the efficiency. We use the number of evaluated moves to compare the relative
efficiency of using different value of η. With adaptive delivery location selection,
the algorithm prefers to conduct local moves on promising delivery locations,
thus it is more likely to generate a better neighbor solution and reach the (local)
optimal solution with less number of iterations. From Table 3, we find that by
setting the learning rate η = 0.02, the algorithm reduces the number of evalu-
ated moves to half while achieves a better accuracy compared with treating all
the delivery locations with equal importance.

4.5 Effect of Adaptive Operator Selection

Table 4 shows the performance of different operator selection strategy. The num-
ber of evaluations describe the relative speed, and the gap represents the accu-
racy. In this set of experiment three operators are used: i.e., One-Point(OP),
Two-Point(TP) and Two-Opt(TO). We compare the performance of using dif-
ferent operators, “X” in the cell means one corresponding operator is used.

As shown in Table 4, different operator strategies result in different efficiency
and accuracy. Generally, the more operators we use, the more accurate results
and the more number of evaluations will be conducted. However, by adaptively
selecting operators in the local search process, the algorithm manages to be

134 Y. Li et al.

Table 4. Effect of adaptive operator selection (σ = 40, N = 100)

OP TP TO Adaptive # Evaluated moves (M) Gap(%)

X 17.6 2.99

X 15.9 3.06

X 29.7 4.62

X X 53.4 1.91

X X 32.9 1.27

X X 54.8 1.61

X X X 79.6 0.91

X X X X 26.3 0.91

3 times faster than using all three operators, while not compromising the accu-
racy. This is because by applying promising operators, i.e. those who have good
performance in the previous iterations, the algorithm is more likely to generate a
better neighborhood solution, thus quickly reaching a (local) optimal, i.e., meet
the stop condition with less number of evaluations.

5 Related Work

Vehicle Routing Problem (VRP) [1] is a well studied combinatorial optimization
problem with different variants such as vehicle routing problem with time win-
dows (VRPTW) [6,12], the capacitated vehicle routing problem (CVRP) [13].
Recently, the delivery and courier services are entering a period of rapid change
enabled by recent technologies. On-time and fast delivery is becoming a signifi-
cant differentiator for both delivery and E-commerce companies (e.g., Amazon),
and hence same-day delivery or even 2-hour delivery become increasingly popu-
lar. To enable this new type of delivery, the efficiency and the accuracy are two of
the most important factors. Previous methods focus either on efficiency or qual-
ity, but not both. Among the heuristic algorithms on the VRP problem, there
are two main categories: classic heuristics and meta-heuristics. Classic heuris-
tics (e.g., Clarke-Wright [9], Sweep algorithms [14]) emphasize more on quickly
obtaining a feasible solution: for example, Clarke-Wright algorithm starts with
an initial solution where each route only contains one delivery location, it con-
tinuously merges two routes into one route which generates the largest savings
whenever it is feasible. The drawback with classic heuristics is that the solution
could exists more than 20 % deviation with the best-known solution. This means
that even in a small delivery instance with around 30 delivery locations, the solu-
tion calculated by classic heuristics could take 1 hour more delivery time than
the best solution. In contrast, meta-heuristics perform a more thorough search
of the solution space and hence gain more in solution quality but at the expense
of speed. For example, even for a small delivery instance with around 100 deliv-
ery locations, some meta-heuristics [1] take more than one hour to calculate a
routing plan with gap of less than 1 % with the best solution. In addition, this

Towards Fast and Accurate Solutions to Vehicle Routing 135

time usually increases exponentially when the number of delivery locations grows
larger (e.g., more than 500 delivery locations), which is quite common in the real
applications [7]. Compared with previous methods, our SSBLS algorithm strikes
a balance between the accuracy and efficiency through restricting the neighbor
size and adaptively selecting the delivery locations and local search operators.

Previous approaches mainly assume that the problem instance is defined on
a complete directed graph. However, in practice, most of the VRPs take place
on real road networks. Although, it is possible to transform a VRP instance
on a road network into an instance on a complete directed graph, it involves
large amount of shortest path computation [15,16]. The problem becomes even
more challenging when dealing with real world time-dependent road network.
Previous works on time dependent VRP [17,18] mainly use the synthetic time-
varying edge weights in which they assume for each delivery pair, there exists a
few fixed number (e.g., 3 or 4) of time intervals and the travel time between the
delivery locations at each time interval is a constant, thus they could pre-compute
a distance matrix for each delivery pair at every time interval. However, the real
world time-dependent road network has a much larger number of time intervals
(e.g., 60), and the travel cost between a pair of delivery locations at certain
time interval is not known in advance, which usually requires a costly shortest
path computation on road network. In [4,10], a time-dependent bidirectional
A* shortest path algorithm is proposed, which builds indexes and calculates
tight bound in the A* search process based on the lower/upper bound graph.
Even with these optimization, shortest path computation on time-dependent
road network takes several hundred milliseconds on Los Angeles road network.
Moreover, in the on-line delivery business, the requests may not be known in
advance, which also prohibits the pre-computation of the distance matrix for
each delivery problem. In this paper, we eliminate the data-preparation step
via an on-demand calculation procedure, which significantly reduces the total
running time of the algorithm.

6 Conclusion

In this paper, we studied the problem of Vehicle Routing in time-dependent
road network. To enable fast and accurate results, we proposed a new local search
framework, which eliminates the time-consuming data-preparation step required
by the Operation Research methods via an on-demand-calculation strategy from
the field of spatial databases. We further improved the efficiency by leveraging a
guided search process to reduce the unnecessary exploration of the solution space.
Our experiments with real-world dataset verified that our algorithm strikes a
good balance between efficiency and accuracy, which makes it practical for the
future delivery business in large-scale and dynamic environment.

Acknowledgements. This research has been funded in part by NSF grants IIS-
1115153 and IIS-1320149, the USC Integrated Media Systems Center (IMSC),
METRANS Transportation Center under grants from Caltrans, and unrestricted

136 Y. Li et al.

cash gifts from Oracle. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of any of the sponsors such as the National Science Foundation.

References

1. Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F.: A guide to
vehicle routing heuristics. J. Oper. Res. Soc. 53(5), 512–522 (2002)

2. The Wall Street Journal: At UPS, the algorithm is the driver (2015). http://www.
wsj.com/articles/at-ups-the-algorithm-is-the-driver-1424136536

3. Google Express. https://www.google.com/shopping/express/
4. Demiryurek, U., Banaei-Kashani, F., Shahabi, C., Ranganathan, A.: Online com-

putation of fastest path in time-dependent spatial networks. In: Pfoser, D., Tao,
Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.)
SSTD 2011. LNCS, vol. 6849, pp. 92–111. Springer, Heidelberg (2011)

5. Malandraki, C., Daskin, M.S.: Time dependent vehicle routing problems: formula-
tions, properties and heuristic algorithms. Transp. Sci. 26(3), 185–200 (1992)

6. Hashimoto, H., Yagiura, M., Ibaraki, T.: An iterated local search algorithm for the
time-dependent vehicle routing problem with time windows. Discrete Optim. 5(2),
434–456 (2008)

7. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems,
algorithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

8. Groer, C.: Parallel and serial algorithms for vehicle routing problems. ProQuest
(2008)

9. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12, 568–581 (1964)

10. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient K-nearest neighbor
search in time-dependent spatial networks. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 432–449. Springer,
Heidelberg (2010)

11. Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.: Classical and modern heuris-
tics for the vehicle routing problem. Int. Trans. Oper. Res. 7(4–5), 285–300 (2000)

12. Potvin, J.Y., Kervahut, T., Garcia, B.L., Rousseau, J.M.: The vehicle routing prob-
lem with time windows part I: tabu search. INFORMS J. Comput. 8(2), 158–164
(1996)

13. Baldacci, R., Hadjiconstantinou, E., Mingozzi, A.: An exact algorithm for the
capacitated vehicle routing problem based on a two-commodity network flow for-
mulation. Oper. Res. 52(5), 723–738 (2004)

14. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem.
Oper. Res. 22(2), 340–349 (1974)

15. Longo, H., de Aragão, M.P., Uchoa, E.: Solving capacitated arc routing problems
using a transformation to the CVRP. Comput. Oper. Res. 33(6), 1823–1837 (2006)

16. Letchford, A.N., Nasiri, S.D., Oukil, A.: Pricing routines for vehicle routing with
time windows on road networks. Comput. Oper. Res. 51, 331–337 (2014)

17. Ichoua, S., Gendreau, M., Potvin, J.Y.: Vehicle dispatching with time-dependent
travel times. Eur. J. Oper. Res. 144, 379–396 (2003)

18. Kok, A., Hans, E., Schutten, J.: Vehicle routing under time-dependent travel times:
the impact of congestion avoidance. Comput. Oper. Res. 39(5), 910–918 (2012)

http://www.wsj.com/articles/at-ups-the-algorithm-is-the-driver-1424136536
http://www.wsj.com/articles/at-ups-the-algorithm-is-the-driver-1424136536
https://www.google.com/shopping/express/

	Towards Fast and Accurate Solutions to Vehicle Routing in a Large-Scale and Dynamic Environment
	1 Introduction
	2 Problem Definition
	3 Proposed Algorithm
	3.1 Local Search Based Approach
	3.2 Baseline Approach: RTR
	3.3 Spatial-Search-Based Local Search Framework
	3.4 Adaptive Point and Operator Selection
	3.5 Eliminating Data-Preparation

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Comparisons of Different Algorithms
	4.3 Effect of Neighbor Size
	4.4 Effect of Adaptive Delivery Location Selection
	4.5 Effect of Adaptive Operator Selection

	5 Related Work
	6 Conclusion
	References

