
Uncertain Voronoi Cell Computation
Based on Space Decomposition

Tobias Emrich1, Klaus Arthur Schmid1(B), Andreas Züfle1,
Matthias Renz1, and Reynold Cheng2

1 Institute for Informatics, Ludwig-Maximilians-Universität München,
München, Germany

{emrich,schmid,zuefle,renz}@dbs.ifi.lmu.de
2 Department of Computer Science, University of Hong Kong, Hong Kong, China

ckcheng@cs.hku.hk

Abstract. The problem of computing Voronoi cells for spatial objects
whose locations are not certain has been recently studied. In this work,
we propose a new approach to compute Voronoi cells for the case of
objects having rectangular uncertainty regions. Since exact computation
of Voronoi cells is hard, we propose an approximate solution. The main
idea of this solution is to apply hierarchical access methods for both
data and object space. Our space index is used to efficiently find spatial
regions which must (not) be inside a Voronoi cell. Our object index
is used to efficiently identify Delauny relations, i.e., data objects which
affect the shape of a Voronoi cell. We develop three algorithms to explore
index structures and show that the approach that descends both index
structures in parallel yields fast query processing times. Our experiments
show that we are able to approximate uncertain Voronoi cells much more
effectively than the state-of-the-art, and at the same time, improve run-
time performance.

1 Introduction

The extensive use of social media, s.a. smartphones, and social networks produce
a huge flood of geo-spatial and geo-spatio-temporal data. This data allows to
assess information about the current positions of mobile entities, such as friends
in social networks, unoccupied cabs in a taxi application, or the current position
of users in augmented reality games. However, our ability to unearth valuable
knowledge from large sets of spatial and spatio-temporal data is often impaired
by the quality of the data.

– Data may be imprecise, due to measurement errors, for instance in applica-
tions using sensor measurements such as location-based services.

– Data records can be obsolete. For example, ties of friendship bind and break
over time, without necessarily reflecting such changes in a social network; in
location-based services, users may update their location infrequently, due to
bad connectivity or to preserve battery.

c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 98–116, 2015.
DOI: 10.1007/978-3-319-22363-6 6



Uncertain Voronoi Cell Computation Based on Space Decomposition 99

Fig. 1. Uncertain Voronoi cells.

– Data can be obtained from unreliable sources, such as crowd-sourcing appli-
cations, where data is obtained from individual users, which may incur inac-
curate or plain wrong data, deliberately or due to human error.

– To prevent privacy threats and to protect user anonymity, users often consent
to relay just a cloaked indication of their whereabouts [1] abstracted as an
uncertainty region enclosing (but apparently not centered at) their current
position.

Simply ignoring these notions of imprecise, obsolete, unreliable and cloaked data,
thus pretending that the data is accurate, current, reliable and correct is a com-
mon source of false decision making. The research challenge in handling uncer-
tainty in spatial and spatio-temporal data is to obtain reliable results despite the
presence of uncertainty. In this work, we revisit the problem of reliably answering
nearest-neighbor queries in uncertain data. The problem of finding the closest
uncertain object, which has applications such as taxi-customer matching, has
gained much attention in recent years [2–5]. Following a common approach in
uncertain data management, these approaches assume that uncertain objects are
represented by rectangular or circular uncertainty regions, which are guaranteed
to enclose the true (but unknown) position of the respective spatial objects. Fol-
lowing the approach of [6], we carry the concept of Voronoi cells to uncertain
data. The idea of [6] is to approximate the possible Voronoi cell V(O) of an
object O, which is defined as the space where a query point q can possibly have
O as its nearest neighbor. Applications for possible Voronoi cells include geo-
location-based services, such as taxi assignments: The possible Voronoi cell of
an individual taxi cab c covers the space of a city where customers may possibly
have c as their nearest taxi. In such an application, as we see in taxi-GPS data
sets such as the T-drive dataset [7,8], the GPS position c(t) of a cab c at a time
t may be highly obsolete, due to infrequent GPS updates. Models to infer the



100 T. Emrich et al.

uncertainty region of a mobile object on a road network given past observations
have been given in the literature [9].

As an example of a possible Voronoi cell, consider Fig. 1(a), where rectangles
correspond to the uncertainty regions of objects. The highlighted region corre-
sponds to the subspace V(A), for which it holds that any point q ∈ V(A) may
possibly have object A as its nearest neighbor, i.e., the possible Voronoi cell of
A. Finding this region, which is the goal of this paper, is not a trivial task: The
shape of V(A) is a non-convex region which is bounded by hyperbolic curves.
As explained in [3,6,10], an exact construction of V(A) requires an exponential
amount of time. For this reason, an approximate technique for deriving possible
Voronoi cells was given in [6]. We propose a new solution for this problem, which
extends the existing solution of [6] by the following aspects:

– Unlike previous solutions, our approach offers full index support, indexing the
object space using an R∗-tree [11] and indexing the data space using a kd-trie
[12].

– Rather than approximating the Voronoi cell V(o) by a single rectangle ([6]), we
use a set of kd-trie partitions, which allows much higher approximation quality.
This gain in approximation quality not only improves query times, as our
experiments show, but can also be used to gain a detailed visual exploration
of possible Voronoi cells.

– Our experiments further show that our provided index support for both data
and space enables the scaling of uncertain Voronoi cell computation to large
databases.

2 Related Work

The problem of answering nearest neighbor queries on uncertain data generally
involves two steps: A filter approach and a refinement step. In the filter step,
a (possibly small) set of objects is returned that contains all objects having a
non-zero probability of being the result object. In the refinement step, the exact
probability of each candidate object is computed. The refinement step is the
main research topic of [13–15], showing how to compute exact probabilities of
an object to be the nearest neighbor of a query object, given the probability
density functions of objects. In contrast, other existing work focuses on the filter
step, applying spatial filter steps in order to identify object that are guaranteed
to have a zero probability to be the result object [3,5,6]. In this work, we focus
on the filter step, i.e., the step of finding objects having a non-zero probability
to be the nearest neighbor of an object using Voronoi-cells.

The idea of using Voronoi diagrams to answer nearest neighbor (NN) queries
over points has been widely studied [16] . In this context, Voronoi diagrams
have been used to support nearest neighbor queries in geo-spatial applications
[17], location-based services [18,19], in spatial data streams [20] and in distrib-
uted spatial environments [21] as well as in spatial network environments [22].
To support nearest neighbor queries on uncertain data, initial approaches have
been presented in [2,13]. However, in these work, only the database objects are



Uncertain Voronoi Cell Computation Based on Space Decomposition 101

assumed to be uncertain, whereas the query object is assumed to be a point. In [3]
a solution to compute possible Voronoi-cells for the case of circular uncertainty
regions has been presented. This exact approach has exponential construction
and storage cost. Due to this computational drawback, an approximate solution
was presented in [6]. The aim of this approach is to approximate the true (but
unknown) possible Voronoi-cell V(O) of an uncertain object O using two rec-
tangle: A single conservative rectangle h(O) which is guaranteed to completely
contain V(O), and a single progressive rectangle l(O) which is guaranteed to be
completely contained by V(O). These two approximation rectangles are obtained
by iteratively expanding the progressive rectangle l(O), and iteratively shrinking
the conservative rectangle h(O). However, considering examples such as shown
in Fig. 1, it is evident that such approximations may be rather inaccurate. Thus,
h(O) may cover a large body of space not belonging to V(O), while l(O) may
miss a large body of V(O), even in the case where h(O) is the smallest conser-
vative bounding rectangle and l(O) is the largest progressive bounded rectan-
gle.1 Furthermore, an approach for nearest neighbor search on moving uncertain
objects has been presented in [4]. A problem common to [3] and [4] is that
their solutions are customized for 2D data, making extensive use of intersection
and rotation operations of 2D hyperbolic curves. Our approach, as well as the
approach of [6] is applicable to arbitrary dimensionality. In comparison to [6],
the main contribution of this work is that we can accurately approximate an
arbitrarily shaped possible Voronoi-cell, rather than using a single rectangular
approximation only. This allows to answer nearest-neighbor queries more effi-
ciently, since less candidates have to be checked, and it allows to more precisely
illustrate the Voronoi-region of an uncertain object.

3 Problem Definition

Figure 1(b) shows how the possible Voronoi cell V(U) of an uncertain object U is
defined. Each shaded region in Fig. 1(b) corresponds to a pruning region SA(U),
i.e., the smallest region such that for any q ∈ SA(U), object A must be closer to
q than U . Formally,

Definition 1 (Nearest Neighbor Pruning Region). Let D = {O1, ..., ON}
be an uncertain database where each object Oi ∈ D is represented by a rectangular
uncertainty region in Rd. Let dist(., .) denote any Lp norm.2 For any A,B ∈ D,
we define the nearest neighbor pruning region where any point must be closer to
A than to B as follows:

SA(B) := {q ∈ Rd : maxDist(q,A) < minDist(q,B)},

where maxDist(q,A) and minDist(q,B) denote the maximum and minimum dis-
tance between a point q and a rectangle A or B, respectively, as defined in [23].
1 The later case can not be guaranteed by the approach of [6] due to the numeric

nature of their approach.
2 We use Euclidean distance in all examples and illustrations, but any Lp norm can

be applied.



102 T. Emrich et al.

Table 1. Table of notations.

Notation Meaning Notation Meaning

D The database S = Rd d-dimensional data space

U ∈ D an uncertain object V(U) possible Voronoi cell of U

ID Hierarchical data index IS Hierarchical space index

G d-dimensional grid gi ∈ G Rectangular grid cell

SA(B) ⊆ Rd The region where object A dominates object B

Dom(A,B,R) Predicate that is true iff rectangle R is fully contained SA(B).

Can be evaluated efficiently [24].

PDom(A,B,R) Predicate that is true iff rectangle R intersects SA(B).

Can be evaluated efficiently [24].

h ⊆ Rd Rectangular Space Index Entry obtained from IS :

Partition of Space for which we want to decide if it belongs to V(U)

e ⊆ Rd Rectangular Data Index Entry obtained from ID:

Spatial approximation of a set of data objects if e is non-leaf entry,

Uncertainty region of a single data object if e is a leaf entry.

Fig. 1(b) shows five nearest neighbor pruning regions SO1(U), ..., SO5(U) as
shaded regions. Using Definition 1, we can now define the possible Voronoi cell
V(U) of an object U as the space that does not intersect any nearest neighbor
pruning region associated with U , formally:

Definition 2 (Possible Voronoi Cell). Let U ∈ D be an uncertain object.
Then the possible Voronoi cell V(U) is defined as

V(U) = Rd \
⋃

O∈D\{U}
SO(U).

In Fig. 1(b), the white (i.e., non-shaded) region corresponds to the Voronoi cell
V(U). The problem tackled in this paper is to compute V(U) for a given object
U ∈ D efficiently.

4 Spatial Domination Revisited

The concept of spatial domination and efficient techniques to verify it were
introduced in [24]. Spatial domination describes the spatial relation of three
rectangles to each other. Since the spatial domination can also be utilized for
the computation of uncertain voronoi cells, we briefly want to review the concept.
Notations used throughout this paper are explained in Table 1.

Definition 3 (Spatial Domination). Let A,B,R ⊆ Rd be rectangles in a
d-dimensional space and dist() be a distance function defined on that space.



Uncertain Voronoi Cell Computation Based on Space Decomposition 103

The rectangle A dominates B w.r.t. R iff for all points r ∈ R it holds that every
point a ∈ A is closer to r than any point b ∈ B, i.e.

Dom(A,B,R) ⇔ ∀r ∈ R,∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r)

Informally speaking, Dom(A,B,R) is thus true if A is “certainly” closer to
R than B. In addition the concept of partial spatial domination was introduced.

Definition 4 (Partial Spatial Domination). Let A,B,R ⊆ Rd be rectangles
in a d-dimensional space and dist() be a distance function defined on that space.
The rectangle A dominates B partially w.r.t. R , denoted by PDom(A, B, R) if A
dominates B for some, but not all r ∈ R, i.e.

PDom(A,B,R) ⇔ (∃r ∈ R : ∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r))∧
(∃r ∈ R : (∃a ∈ A,∃b ∈ B : dist(a, r) ≤ dist(b, r))∧

(∃a ∈ A,∃b ∈ B : dist(a, r) ≥ dist(b, r))).

In [5] it was shown that spatial domination can be utilized when the rectangles
conservatively approximate uncertain objects. In this case Dom(A, B, R) means
P(“R is closer to A than to B”) = 1 and PDom(A, B, R) means 0 ≤ P(“R is
closer to A than to B”) ≤ 1. Using the Dom()- and the PDom()-function it is
thus possible to decide the location of a rectangle w.r.t. the uncertain bisector
of two uncertain objects. The uncertain bisector between two uncertain objects
A and B (conservatively approximated by rectangles) defines three spaces: In
SA(B) = {s ∈ S : Dom(A,B, {s})} all objects are certainly closer to A than to
B, in SB(A) = {s ∈ S : Dom(B,A, {s})} object are certainly closer to B than
to A and in the space in between no certain decision can be made. This relation
is shown in Fig. 2. We are thus able to decide where the rectangle R is located
w.r.t. the bisector SB(A) and SA(B) of A and B respectively by performing the
Dom() and the PDom() function [24]. The following six cases are defined using
a function DomCase(A,B,R) as follows.

Definition 5 (Domination Cases). Let A and B be rectangles. For any rec-
tangle R, one of the following cases holds:

Case 1: R is fully contained in SA(B) iff Dom(A,B,R);
Case 2:R intersectsSA(B) but notSB(A) iffPDom(A,B,R)∧¬PDom(B,A,R);
Case 3: R intersects neither SA(B) nor SB(A) iff

¬Dom(A,B,R) ∧ ¬PDom(A,B,R) ∧ ¬PDom(B,A,R)¬Dom(B,A,R);
Case 4: R intersects S(B) but not S(A) iff ¬PDom(A,B,R)∧PDom(B,A,R);
Case 5: R is fully contained in S(B) iff Dom(B,A,R);
Case 6: R intersects both S(A) and S(B) iff PDom(A,B,R)∧PDom(B,A,R);

Figure 2 depicts all possible cases. Here, each rectangle Ri corresponds to Case
i in Definition 5. Note that the materialization of the pruning regions SA(B)
and SB(A) is a hard problem [6]. Nevertheless, the function DomCase(A,B,R)
allows to efficiently decide between the six possible domination cases defined
above. In the next section we will show how to use these relations in order to
compute uncertain Voronoi cells.



104 T. Emrich et al.

A
B

R5

R4

R3

R2

R1

R6SA(B)

SB(A)

Fig. 2. Domination relation

5 Possible-Voronoi Cell Approximation

Computing the possible-Voronoi cell is a daunting task for two reasons: First,
it is challenging to find the objects in the database that have an effect on its
shape. Second, the representation of the cell is hard since it consists of many
linear and parabolic parts that grow exponentially with the dimensionality. This
section will present four algorithms that apply the concept of spatial domination
to efficiently approximate the possible-Voronoi cell V(U) of an object U as tight
as possible. The first, naive, algorithm divides the space into equi-distant grid
cells and labels the cells according to their membership to the possible-Voronoi
cell. The second algorithm, additionally uses an R*-tree to index the data objects
to avoid exploration of irrelevant objects. The third algorithm uses a kd-trie to
index the grid cells, in order to identify large regions of space which can not be
part of V(U) or which must be part of V(U). The fourth algorithm uses both a kd-
trie to index the space and an R-tree to index the data. For the later algorithm,
the main challenge is to smartly descend both hierarchical index structures in
parallel, to minimize the computational overhead.

5.1 Naive Solution

A straightforward way of computing V(U) is to apply an equi-distant
d-dimensional grid to partition the data space. For each cell gi we decide weather
it belongs to V(U) or not.



Uncertain Voronoi Cell Computation Based on Space Decomposition 105

Fig. 3. Illustration of the Naive approach.

Algorithm. The algorithm takes as input the target object U , D and a grid
G covering the space of D. We iterate over all grid cells g ∈ G and in order to
decide whether gi is part of the UV cell of U , domination against all objects
O ∈ D \ U has to be checked. All possible cases of domination of a grid-cell g
are depicted in Fig. 3(a). To determine if a grid-cell is (i) completely outside of
V(U) or (ii) completely inside V(U) or (iii) a boarder cell, we can apply the six
cases of Definition 5 as follows:

(i) If ∃O ∈ D \U : Dom(O,U, gi) then gi is not part of V(U). This corresponds
to Case 5 of Definition 5 and cell g5 in Fig. 3(a).

(ii) Otherwise, if ∃O ∈ D : PDom(O,U, gi) then at least a small part of gi can
be part of V(U). This case corresponds to the cases of cells g4 and g6 in
Fig. 3(a), i.e., Case 4 or Case 6 of Definition 5.

(iii) Otherwise we can conclude that gi can be completely contained in V(U),
since for database object, U , it holds that g corresponds to one of the remain-
ing cases Case 1, Case 2 and Case 3 of cells g1, g2 or g3, respectively, as
shown in Fig. 3(a)

The set of all grid cells satisfying (iii) define a lower bound of V(U), and all
grids cells satisfying (ii) or (iii) define an upper bound of V(U). An exemplary
result of this approach for a small database of uncertain objects is depicted in
Fig. 3(b). Here, the space grid is shown, where (i) unfilled cells are guaranteed to
be outside of V(U), (ii) black cells are guaranteed to be on the border of V(U)
and (iii) blue cells are guaranteed to be inside V(U). In the next subsection,
we show how we can obtain this result in a more efficient way. Thus note that
the algorithms presented in the following subsections compute the same result
approximation, but in a more efficient way.



106 T. Emrich et al.

5.2 Indexing D
Obviously, checking an object U against all uncertain objects O ∈ D is very
expensive. Instead, we can use an MBR based index structure ID (such as an
R*-Tree) to organize the objects hierarchically.

Algorithm. The algorithm takes as input the target object U , ID and a grid
covering the space of ID. For each grid cell gi the algorithm traverses the entries e
of ID in a best first manner [25] according to MinDist(e, U). Note that the entry
e can be a single uncertain object (i.e., a leaf-entry) or an intermediate node that
conservatively approximates multiple uncertain objects. Since we assume that our
data index uses rectangular approximations, we can then apply Definition 5 to
decide which index entries have to be accessed. For reference, the following cases
are shown in Fig. 3(a). Keep in mind that in this case, the entries e are data index
entries, which may be intermediate entries representing multiple data objects.

Case 1: Dom(U, e, g1): e and none of its children can exclude g1 from the UV-
cell V(U). Thus, e don’t has to be resolved and g1 can be part of V(U).

Case 2: PDom(U, e, g2): same as case 1.

Case 3: ¬PDom(U, e, g3) ∧ ¬PDom(e, U, g3): As long as e is not a leaf entry
(an object), there might exist a child of e which excludes g3 from the UV-cell,
thus e has to be resolved. If e is a leaf entry g3 is labeled as candidate for being
part of V(U)

Case 4: PDom(e, U, g4): same as case 3.

Case 5: Dom(e, U, g5): g5 (and all child nodes of g5) cannot be part of V(U).

Case 6: PDom(U, e, g6) ∧ PDom(e, U, g6): same as case 1.

5.3 Indexing S
Instead of indexing the data objects one could also think of indexing the space
containing the grid cells. We propose to use a tree based index structure (denoted
as IS to organize the data space (e.g. Quadtree, kd-trie). For each entry h ∈ IS
it can be checked if it is part of the UV cell of U .

Algorithm. The algorithm takes as input the target object U , IS , maxdepth
and a list of all data objects O ∈ D. The entries h ∈ IS are traversed in a depth-
first manner. For each entry h we check all O ∈ D to decide if the traversal has
to go deeper (to the children of h) or its subtree can be discarded for further
processing. The parameter maxdepth defines the maximum depth that IS is
traversed. Thus the larger maxdepth, the finer the granularity of the UV-cell
approximation.

We can again distinguish the same cases as in Sect. 5.1:

1. If ∃O ∈ D : Dom(O,U, h) (Case 5) then h is not part of the UV cell of U
and it does not have to be resolved further.



Uncertain Voronoi Cell Computation Based on Space Decomposition 107

Fig. 4. Cases of domination for a data index entry e.

2. Otherwise if ∃O ∈ D : PDom(O,U, h) (Case 4 or Case 6) then at least a
small part of h can be part of the UV cell of U . Thus we have to resolve h
further. If h is on the maxdepth-level we label it as candidate to be part of
V(U).

3. Otherwise (Cases 1–3) we can conclude that h can be completely contained
in the UV cell of U . In this case we label h as candidate to be part of V(U)
and don’t have to resolve it, even if h is not on the maxdepth-level.

5.4 Indexing D and S
It seems apparent to combine the ideas of Sects. 5.2 and 5.3 and utilize both
index structures (ID and IS) to boost the performance. The non trivial task is
the definition of a traversal order to minimize necessary operations.

Prelude. Our approach is basically a depth-first traversal of IS . Additionally
we define ASD to be the active set of entries of the index D. Each entry h ∈ IS
has its own active set and passes it on to its children (always removing irrelevant
entries e ∈ ASD). ASD contains all entries of D which have already been seen
and not yet resolved during the traversal of the algorithm. For each entry h ∈ IS
we first try to identify one of the two following properties (cf Fig. 4):

Case 5: ∃e ∈ ASD : Dom(e, U, h) ⇒ h is not part of the UV cell of U .
Case 1: ∀e ∈ ASD : Dom(U, e, h) ⇒ h can be part of V(U) .

If neither of the two conditions hold, either the current entry h or an entry
e ∈ ASD has to be resolved. Here we propose the following heuristics:

Case 2: PDom(U, e, h) ⇒ resolve e or h depending on which one covers more
space.
Intuition: uncertain area becomes small if both constructing objects are small



108 T. Emrich et al.

Algorithm 1. UV-Cell computation
Require: U ,ID,IS
1: ASD = windowQuery*(U ,ID)
2: UVCellCheck(U ,IS .root,ASD)

Case 3: ¬PDom(U, e, h) ∧ ¬PDom(e, U, h) ⇒ resolve e.
Intuition: Resolving h can not yield any new information, since any child of
h must also yield Case 3.

Case 4: PDom(e, U, h) ⇒ resolve h if we find another data entry for which
Case 4 holds (for this space entry h). Otherwise resolve e or h depending on
which one covers more space. If e is a leaf entry only resolve h.
Intuition: If more than one data entry constructs Case 4, chances are good
that large portions of h can be decided.

Case 6: PDom(U, e, h) ∧ PDom(e, U, h) ⇒ resolve h. (cf Fig. 4, case 6)
Intuition: Resolving e can not yield any new information

Clearly, at one point there may be multiple data entries in the activate set of
a space node h, which may yield different cases. It may be smart to prioritize
the refinement of some data entries. In a nutshell, a data entry should be chosen
which maximizes the chance that we can guarantee that h is not part of V(U).
We propose to choose an entry e according to the following priority schema:

1. directory entries are prioritized over leaf entries.
2. prioritize cases in order 5, 4, 6, 3, 2, 1.
3. prioritize entries according to mindist to query

For ease of presentation of our algorithm, we define the function maxprio(U ∈
D, h ∈ IS , E ⊆ ID) which maps an uncertain object U , a space region h and a set
of data index entries E to the object which has the highest priority corresponding
to the heuristics above.

Algorithm 1: Takes as parameters the object U for which the UV-cell is to be
computed; the database D indexed by an R∗-tree ID; and the Quadtree/KD-
trie IS indexing the space. The idea of Algorithm 1 is to build an initial
active set ASD that is reasonable for all space partitions hi ∈ IS to come
during query processing. For this we perform a window-query-like operation.
windowQuery*(U ,ID) basically performs a window query on ID, but discards
entries e ∈ D that fall in the window (since these entries cannot help to decide
the borders of V(U)). The result are now all entries e ∈ ID that have been seen
during the window-query but have not been resolved. This set is then used as an
initial active set(denoted as ASD) in the recursive Algorithm 2 which is initiated
by Algorithm 1.

Algorithm 2: This algorithm requires the uncertain object U for which the
UV-cell is being computed, one region of the result space h(initially the root of



Uncertain Voronoi Cell Computation Based on Space Decomposition 109

Algorithm 2. UVCellCheck
Require: U ,h,ASD
1: emax //entry with maximum priority
2: for all e ∈ ASD do
3: if Dom(e, U, h) then
4: h is not part of UVCell
5: return
6: else if Dom(U, e, h) then
7: ASD = ASD \ e
8: else
9: emax = maxprio(emax, e)

10: end if
11: end for
12: if ASD is empty then
13: h is part of UVCell
14: return
15: end if
16: if case(emax, U, h) != 6 then
17: ASD = ASD \ emax ∪ emax.children
18: end if
19: //redundant calculations can be reduced in the following
20: if case(emax, U, h) = 4 or 6 &&¬ maxdepth then
21: for all hc ∈ h.children do
22: UVCellCheck(U ,hc,ASD.clone())
23: end for
24: else
25: UVCellCheck(U ,h,ASD)
26: end if

the kd-tree), and the active set ASD containing a set of ID-entries. The algorithm
works as follows:

– In a loop (lines 2–11)the algorithm first searches for the entry e defining the
most prioritized case (8–10). Of course we can stop further consideration of h
if we find an entry e which defines case 5 (lines 3–5). On the other hand side
if an entry e defines case 1, it can never disqualify the current h thus can be
excluded from ASD (lines 6–7).

– In lines 12–14 we check if all entries in the active set ASD have been pruned.
If that is the case, no object may possible prune h and thus h must be a true
hit, i.e. fully contained in the Voronoi cell.

– Now we decide whether we want to refine emax or h, depending on the case
(c.f. Fig. 4 and Definition 5).

Case 4: there is a chance that refining h may allow child entries of h to be pruned,
and refining emax may allow child entries of emax to prune all of h. Therefore,
we refine both entries in this case.

Case 6: refining e cannot possibly allow us to prune h. However, refining h may
allow us to either prune children of h or to return children of h as true hits.
Thus we refine h.



110 T. Emrich et al.

Fig. 5. Example of refinement

Case 3: no children of h can possibly be pruned.3 Thus we split emax, which may
allow h to be pruned.

Case 2: we refine h.

– Finally, space index entries h which must be completely contained in V(U) are
identified as entries having only Cases 1–3 in their active set. Computation
breaks if this is the case. After splitting the objects according to the rules
above. We recursively restart the algorithm with the new objects.

Figure 5 illustrates in which manner the algorithm resolves entries of ID and
IS . The figures shows all pages and objects of ID which have been seen during
the computation of the possible Voronoi-cell V(U) of the green objects U . Refined
data objects are represented by filled red rectangles and refined directory nodes are
3 recall that if eD

max corresponds to case 3, then there exists no R∗-entry such that
case 4 holds.



Uncertain Voronoi Cell Computation Based on Space Decomposition 111

represented by unfilled red rectangles. Furthermore, refined entries of IS are shown
as (i) unfilled black rectangles if they are guaranteed to be fully outside of V(U), (ii)
as black rectangles if on the border ofV(U), and (iii) as blue rectangles if completely
inside V(U). We can observe that in areas far away from the UV cell, IS is resolved
coarse whereas at the border of the cell it is resolved at very fine granularity. The
entries of ID are also only resolved around the UV cell. Note that although the
number of resolved objects seems large, most of the objects are only needed for
a small fraction of the computations, especially on coarser levels of IS . Finally,
note that a nice side effect of this computation is that we obtain a tight superset
of the (uncertain-) delaunay neighbors of U . This can be achieved by memorizing
the objects O for which Case 4 or Cast 6 (see Definition 5) holds.

6 Experiments

Our experimental evaluation investigates algorithm behaviour w.r.t. maximum
kd-trie depth, database size, object extent and dimension. Extent is a parameter
to control the size of the uncertain objects (object MBR) and corresponds to the
maximum extent of an object in one dimension. Experiments use synthetically
generated datasets as well as an excerpt from the T-Drive trajectory dataset
[7,8] which we modified to fit the scope. We implemented all approaches in the
ELKI framework [26], which also provided an R-tree implementation.

Dataspace is always normalized to [0,1] per dimension. In synthetic data,
objects are uniformly distributed over space with a randomly assigned side length
between 0 and maximum extent. Data points from the real world dataset were
sampled as a single snapshot of the world, on the afternoon of February 2nd,
2008. Therefore, one data point corresponds to the position of one taxicab within
the city of Beijing, China. After removing some outliers, this dataset contains
890 separate entities. To suit our application of location obfuscation, sample
locations were randomized using a Gaussian distribution based on this object’s
location. A single sample from this distribution is then set as center of the
object’s new MBR, with its extent set to 6σ of this object’s Gaussian (3 to each
direction). On said city scale, an extent of 0.01 would equal an area of 100 m
side length.

Table 2. Default settings.

Parameter default value Notation Algorithm

Dimension 2 DI Data index traversal (Sect. 5.2)

db size 1000 SI Space index traversal (Sect. 5.3)

extent 0.01 DSI Data & Space Index traversal (Sect. 5.4)

tree depth 14 SR Single rectangle (Implementation of [6])

Table 2 denotes input parameters and their default settings, as well as an
explanation of our algorithm notation. If not otherwise specified, the following



112 T. Emrich et al.

experiments use these input values. Those setups focusing on approximation
quality use DSI exemplarily for all algorithms from Sects. 5.2–5.4, since result
quality is the same. Naturally, our real world dataset T-Drive has inherent values
that override parameters, namely dimension and size of database. The standard
depth of 14 refers to a maximum of 14 splits in our index structure, corre-
sponding to 16384(= 214) individual grid cells. Applied to a city scale of 10 by
10 kilometers, each grid cell side would measure some 78 m. As the proposed
approach is later scaled up to a depth of 22, grid cells correspond to an area of
only 4.8 by 4.8 meters, which on a city scale is extremely precise.

6.1 Approximation Quality

Our first evaluation explores how well the generated bounds approximate a cell.
For this, we set the tree depth for our implementation to various levels between
5 and 22, corresponding to the number of splits. Evidently, smaller grid cells can
more closely follow the outline of a UV-cell.

Figure 6 visualizes how upper and lower bounds converge with higher tree
granularities. The dark blue line refers to the upper bound of DSI, the orange
line to its lower bound, each represented by the total volume of their cells. The
hatched space in between the two lines refers to the range in which the true cell
volume must be located. As a point of reference, upper and lower bounds from
the Single Rectangle (SR) approach have also been denoted in the same graphic,
with the area shaded in grey corresponding to the approximation error. Since
SR does not use an index, its results remain unchanged for all tree granularities.

Fig. 6. Approximation quality for DSI and SR

Performance was tested on different datasets. Figure 6(a) represents average
results for runs on synthetic data, while Fig. 6(b) contains the results for our real
world dataset. While overall performance is fairly comparable, DSI provides a
usable lower bound remarkably early, with as little as 8 tree splits necessary to
outperform SR. SR itself shows fairly similar behaviour on both datasets, with
results looking even more similar than they are due to logarithmic scale.



Uncertain Voronoi Cell Computation Based on Space Decomposition 113

6.2 Algorithmic Runtime

Runtime experiments were conducted while modifying database population and
dimensionality, between our three different traversal approaches compared to
SR as well as for DSI alone to cover larger ranges of database size (others
have been excluded due to their worse performance). Although the taxi dataset
is not applicable here since we modify parameters that are inherent to specific
datasets, the semantics still stand: inserting more objects into a database of the
same geometric expansion could represent offering more taxis for hire in a city,
hence changing the nearest neighbor situation in most of the places. Therefore,
the maximum object extent remained unchanged for all database sizes, since
obfuscation of one’s location is independent of the world’s object density.

Fig. 7. A runtime comparison for all algorithms over different sizes of DB

In Fig. 7, run times to calculate one UV -cell are denoted over different data-
base sizes. Figure 7(a) contains results for the approaches Dataindex Traversal
(DI), Spaceindex traversal (SI), Data and Space Index Traversal (DSI) and SR.
Note how DI shows a relatively constant, high runtime since for each query,
every grid cell gi is explored, independently of database population. SR starts
off better, but since it features pairwise comparisons without the use of an index,
it does not scale well for higher numbers ob database objects. SI clearly shows
how such an index improves performance drastically, but also scales up rather
fast. DSI also increases in runtime for higher dimensional datasets, but at gener-
ally much lower absolute values than the other approaches. Also, DSI increases
at a lower rate. This is because the combined approach of data and space index
allows for early pruning of large portions of the database.

As query performance generally deteriorates for larger datasets (or remains
at high values in the case of DI), further scaling experiments were conducted
using DSI only. Figure 7(b) shows the results of database populations from 10 K
to 15 Million objects. To avoid gross overlapping of objects, object extent has
been lowered to 0.001 for these runs. The left axis again refers to the average
time to perform one UV-cell calculation, which corresponds to the blue data
line. We observe a slightly superlinear scaling, confirming our theoretical obser-
vations that (i) adding more objects leads to linearly more intersections with



114 T. Emrich et al.

Voronoi cells, which are at least as big as U , and (ii) a linear increase in object
count causes logarithmic tree index growth. This results in a combined log-linear
growth in runtime.

The right scale denotes average page views during cell calculation, with the
orange line referring to pages of the data index, and the green line for pages
of the space index. Note that data index exploration roughly follows runtime
development, while the space index is used less for larger databases. This is
easily explained by a constant tree depth, resulting in a constant resolution of
space. With a higher database population, the likelyhood of all relevant objects
being enclosed in a small space increases.

6.3 Effect of Data Dimensions

Although the trivial case of a two-dimensional world is most intuitive for most
applications mentioned before, all approaches can manage high-dimensional
datasets as well. The main limitation here is keeping the approximation error
low in all dimensions at once, as well as computational complexity.

Figure 8 displays performance of all approaches for multi-dimensional
datasets. As runtime and memory usage of SR do not scale well for more than
five data dimensions, experiments excluded this approach for higher dimension-
alities than 5. An evaluation of runtime as shown in Fig. 8(a) shows constant
increase for all approaches. The relative steepness of increase is due to the
growing inefficiency of pruning methods in high dimensions, which deteriorates
searches toward a linear scan, which itself has quadratic complexity.

Approximation quality for higer dimensions is shown in Fig. 8(b). As men-
tioned before, fitting a bound to a more and more complex object leaves much
room for approximation error. Therefore, volumes of upper and lower bounds
diverge more for higher dimensions. Displayed here are bounds for SR up to
dimension 5 (grey) and two different settings of our DSI approach, once with
a depth of 14 (blue) and a depth of 20 (orange). As expected, a higher depth
allows for more tree splits per dimension and thus a better approximation.

Fig. 8. A comparison for increasing data dimensions.



Uncertain Voronoi Cell Computation Based on Space Decomposition 115

6.4 Conclusions

In this work, we proposed an index-supported approach to approximate the shape
of a possible Voronoi-cell to support nearest neighbor queries on uncertain data.
Our approache uses an R∗-tree as a hierarchical access method to efficiently find
the set of uncertain objects that influence the possible Voronoi-cell of an uncertain
object U , i.e., the set of Delauny-neighbors of U . In addition, we propose to use a
kd-trie as a hierarchical accessmethod to identify regions of spacewhichmust (not)
be part of a Voronoi-cell. Compared to the state-of-the-art of computing uncertain
Voronoi-cells, our approach allows for much higher approximation quality, since
our result approximation consists of a set of rectangular kd-trie nodes, rather than
a single bounding rectangle. As future work, we want to extend our ideas to find
certain Voronoi-cells, that is regions, where a query object has a probability of one
of having some object U as its nearest neighbor. Furthermore, we want to extend
our solution to the case of k’th-order Voronoi-cells to support k-nearest neighbor
queries.Even in the case of certaindata,k’th-orderVoronoi-cells becomecomplexly
shaped, having a representation complexity exponential in k. However, since we
are using space approximation techniques, rather than computing exact bounds,
we can avoid this computational drawback.

Acknowledgements. Part of the research leading to these results has received funding
from the Deutsche Forschungsgemeinschaft (DFG) under grant number RE 266/5-1 and
from the DAAD supported by BMBF under grant number 57055388. Reynold Cheng was
supported by the Research Grants Council of Hong Kong (RGC Project (HKU 711110)).

References

1. Chow, C.Y., Mokbel, M.F., Aref, W.G.: Casper*: query processing for location
services without compromising privacy. ACM TODS 34(4), 24 (2009)

2. Beskales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the top-k probable
nearest neighbors in uncertain databases. VLDB Endow. 1(1), 326–339 (2008)

3. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram
for uncertain data. In: ICDE, pp. 796–807. IEEE (2010)

4. Ali, M.E., Tanin, E., Zhang, R., Kotagiri, R.: Probabilistic voronoi diagrams for
probabilistic moving nearest neighbor queries. DKE 75, 1–33 (2012)

5. Bernecker, T., Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: A
novel probabilistic pruning approach to speed up similarity queries in uncertain
databases. In: Proceedings of the ICDE, pp. 339–350 (2011)

6. Zhang, P., Cheng, R., Mamoulis, N., Renz, M., Zufle, A., Tang, Y., Emrich, T.:
Voronoi-based nearest neighbor search for multi-dimensional uncertain databases.
In: ICDE, pp. 158–169. IEEE (2013)

7. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108 (2010)

8. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: SIGKDD, pp. 316–324 (2011)

9. Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Züfle, A.: Querying uncertain
spatio-temporal data. In: ICDE, pp. 354–365. IEEE (2012)



116 T. Emrich et al.

10. Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Incremental
reverse nearest neighbor ranking in vector spaces. In: Mamoulis, N., Seidl, T.,
Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 265–
282. Springer, Heidelberg (2009)

11. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles, vol. 19. ACM (1990)

12. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching.
In: ACM SIGACT-SIGMOD, pp. 181–190. ACM (1984)

13. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. In: IEEE TKDE (2004)

14. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. VLDB Endow. 2(1), 502–513 (2009)

15. Bernecker, T., Kriegel, H.P., Mamoulis, N., Renz, M., Zuefle, A.: Scalable proba-
bilistic similarity ranking in uncertain databases. TKDE 22(9), 1234–1246 (2010)

16. Aurenhammer, F.: Voronoi diagrams-a survey of a fundamental geometric data
structure. ACM CSUR 23(3), 345–405 (1991)

17. Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with Voronoi diagrams for efficient
processing of spatial nearest neighbor queries. VLDB Endow. 3(1–2), 1231–1242
(2010)

18. Zheng, B., Xu, J., Lee, W.C., Lee, L.: Grid-partition index: a hybrid method for
nearest-neighbor queries in wireless location-based services. VLDB J. 15(1), 21–39
(2006)

19. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-Diagram: a query-dependent
approach to moving kNN queries. VLDB Endow. 1(1), 1095–1106 (2008)

20. Sharifzadeh, M., Shahabi, C.: Approximate Voronoi cell computation on spatial
data streams. VLDB J. 18(1), 57–75 (2009)

21. Akdogan, A., Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Voronoi-based
geospatial query processing with mapreduce. In: IEEE CloudCom, pp. 9–16 IEEE
(2010)

22. Kolahdouzan, M., Shahabi, C.: Voronoi-based K nearest neighbor search for spatial
network databases. In: VLDB Endowment, pp. 840–851 (2004)

23. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: ACM SIG-
MOD, vol, 24, pp. 71–79 ACM (1995)

24. Emrich, T., Kriegel, H.P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning:
On optimal pruning of MBRs. In: Proceedings of the SIGMOD, pp. 39–50 (2010)

25. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Proceedings of the
SSD, pp. 83–95 (1995)

26. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining
with 3D-parallel-coordinate-trees. In: Proceedings of the SIGMOD, pp. 1009–1012
(2013)


	Uncertain Voronoi Cell Computation Based on Space Decomposition
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Spatial Domination Revisited
	5 Possible-Voronoi Cell Approximation
	5.1 Naive Solution
	5.2 Indexing D
	5.3 Indexing S
	5.4 Indexing D and S

	6 Experiments
	6.1 Approximation Quality
	6.2 Algorithmic Runtime
	6.3 Effect of Data Dimensions
	6.4 Conclusions

	References


