
Efficient Point-Based Trajectory Search

Shuyao Qi1(B), Panagiotis Bouros2, Dimitris Sacharidis3, and Nikos Mamoulis1

1 Department of Computer Science, The University of Hong Kong, Hong Kong, China
{syqi2,nikos}@cs.hku.hk

2 Department of Computer Science, Humboldt-Universität zu Berlin,
Berlin, Germany

bourospa@informatik.hu-berlin.de
3 Faculty of Informatics, Technische Universität Wien, Wien, Austria

dimitris@ec.tuwien.ac.at

Abstract. Trajectory data capture the traveling history of moving
objects such as people or vehicles. With the proliferation of GPS and
tracking technology, huge volumes of trajectories are rapidly generated
and collected. Under this, applications such as route recommendation
and traveling behavior mining call for efficient trajectory retrieval. In
this paper, we first focus on distance-based trajectory search; given a
collection of trajectories and a set query points, the goal is to retrieve
the top-k trajectories that pass as close as possible to all query points.
We advance the state-of-the-art by combining existing approaches to a
hybrid method and also proposing an alternative, more efficient range-
based approach. Second, we propose and study the practical variant
of bounded distance-based search, which takes into account the tem-
poral characteristics of the searched trajectories. Through an extensive
experimental analysis with real trajectory data, we show that our range-
based approach outperforms previous methods by at least one order of
magnitude.

1 Introduction

The proliferation of GPS and tracking technology has brought to availability
huge volumes of trajectories from real moving objects such as mobile phone
users, vehicles and animals. Searching such a collection of trajectories finds
several applications, including route recommendation, behavior mining, and in
transportation systems [1,2]. Different from conventional retrieval tasks which
identify similar trajectories to a given one or those crossing a specific spatial
region, in this paper we focus on point-based search, which retrieves trajectories
based on given points. In particular, taking as input a set of query points Q
(e.g., a particular set of POIs), the distance-based trajectory search studied in
[3,4] retrieves the trajectories that pass as close as possible to all query points.
Specifically, the distance of a trajectory t to Q is computed by summing up, for
each query point q ∈ Q, its distance to the nearest point in t.
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Consider for instance a collection of touristic trajectories; a travel agency
issues a distance-based query to survey or recommend popular routes that pass
close to specific sightseeing attractions. As another example, query set Q could
contain traffic congestion points; in this case, the traffic department seeks to
discover the causes of the congestion by analyzing the trajectories that pass
near the points in Q. In the context of surveillance and security applications, Q
may contain locations of crime scenes, and hence the police department issues
a distance-based query to investigate the correlation of these crime locations by
identifying suspects who moved close to all of them.

Contributions. This paper tackles two problems under the point-based tra-
jectory search. First, we thoroughly study the efficient evaluation of distance-
based trajectory search. We review in detail existing algorithms IKNN [3] and
GH/QE [4]. These methods follow a candidate generation and refinement para-
digm, and invoke a nearest neighbor (NN) search centered at each query point to
examine the trajectories in ascending order of their distance to Q. By analyzing
the pros and cons of these methods, we design a hybrid NN-based algorithm
which consistently outperforms IKNN and GH/QE by over an order of magnitude.
Going one step further, we tackle the inherent shortcomings of the NN-based
approach itself, namely (a) the increased I/O cost due to independently running
multiple NN searches and (b) the increased CPU cost for continuously maintain-
ing a priority queue for each NN search. We propose a novel spatial range-based
approach, which is up to 2 times faster than our hybrid algorithm.

Second, we observe that the distance-based search ranks trajectories solely on
how close they pass to the query points in Q, ignoring however other qualitative
characteristics of the retrieved results. To fill this gap, we introduce a practi-
cal variant of distance-based trajectory search, which also takes into account
the temporal aspect of the trajectories. Specifically, this bounded distance-based
search filters out non-interesting trajectories, whose points closest to Q span a
time interval greater than a user-defined threshold.

Outline. The rest of the paper is organized as follows. Section 2 formally defines
the distance-based and bounded distance-based trajectory search while Sects.
3 and 4 address their efficient evaluation. Then, Sect. 5 discusses problem variants
where (a) the trajectories are ranked both on their distance to the query points
and the time interval they span, and (b) Q is a sequence of query points, instead
of a set. Section 6 presents our experimental analysis. Finally, Sect. 7 outlines
related work, while Sect. 8 concludes the paper.

2 Problem Definition

Let T be a collection of trajectories. A trajectory in T is defined as a sequence of
spatio-temporal points {p1, . . . , pn}, each represented by a 〈latitude, longitude,
timestamp〉 triple. The input of point-based trajectory search over collection T
is a set of m spatial query points Q = {q1, . . . , qm}. Given a query point qj ∈ Q
and a trajectory ti ∈ T , we define the 〈p∗

ij , qj〉 matching pair based on the
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(a) Trajectory and query points (b) span-dist plot of trajectories

Fig. 1. Distance-based trajectory search with 4 trajectories, T = {t1, . . . , t4}, and
3 query points, Q = {q1, . . . , q3}; t1, t2 is the result to 2-DTS(T, Q), while t2, t3 the
result to 2-BDTS(T, Q, τ)

nearest to qj point p∗
ij of trajectory ti, i.e., p∗

ij = arg minp∈ti
dist(p, qj), where

dist(·, ·) denotes the distance (e.g., Euclidean) between two points in space. We
then define the distance of a trajectory to Q based on the matching pairs for
every query point qj as:

dist(ti, Q) =
∑

qj∈Q

dist(p∗
ij , qj) (1)

Consider the example in Fig. 1(a), where query points are represented as
diamonds, and trajectory points as circles; filled circles indicate matched points
of the trajectory to query points. For trajectory t1, point p∗

11 is its closest point
to query point q1, and hence 〈p∗

11, q1〉 represents a matching pair. The other
matched trajectory points of t1 are p∗

12 and p∗
13. Note that it is possible for a

trajectory point to be matched with multiple query points. This is the case with
trajectory t3, where p∗

32 is the closest point to both q1 and q2, i.e., p∗
31 ≡ p∗

32.
We now formally define the distance-based trajectory search problem [3,4].

Problem 1 (Distance-based Trajectory Search). Given a collection of tra-
jectories T and a set of query points Q, the k-Distance-based Trajectory Search,
denoted by k-DTS(T,Q), retrieves a subset of k trajectories R ⊆ T such that for
each t ∈ R and t′ ∈ T � R, dist(t,Q) ≤ dist(t′, Q) holds.

Returning to the example of Fig. 1(a), trajectory t1 has the lowest distance to
Q, followed by t2, t3 and t4; hence, the result to 2-DTS(T,Q) is t1, t2.

Next, we introduce a novel point-based trajectory search problem by also
taking into account the temporal aspect of the trajectories. Let P ∗

i be the set of
all matching pairs for a trajectory ti, sorted ascending on the timestamp of the
involved trajectory points. We define the span of trajectory ti with respect to
Q, denoted by span(ti, Q), as the length of the time interval between the first
and the last pair in P ∗

i , or equivalently:

span(ti, Q) = max
qx,qy∈Q

(timestamp(p∗
ix) − timestamp(p∗

iy)) (2)
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Intuitively, span(ti, Q) equals the total time needed to reach as close as possible
to all query points in Q, following trajectory ti.

Problem 2 (Bounded Distance-based Trajectory Search). Given a col-
lection of trajectories T, a set of query points Q and a span threshold τ ,
the k-Bounded Distance-based Trajectory Search, denoted by k-BDTS(T,Q,τ),
retrieves the subset of k trajectories R ⊆ T such that:

– for each t ∈ R, span(t,Q) ≤ τ holds, and
– for each t′ ∈ T � R with span(t′,Q) ≤ τ , dist(t,Q) ≤ dist(t′,Q) holds.

Returning to Fig. 1(a), assume for simplicity that trajectory points are
reported in fixed time intervals. As a result, the span of a trajectory is pro-
portional to the number of its points from the first to the last matched point
(excluding the first). For example, span(t1, Q) = 4 as there are 4 points from p∗

11

and up to p∗
13. Similarly, we obtain the spans of t2, t3, t4 as 2, 1, 2, respectively.

Figure 1(b) plots the trajectories in the span-dist plane. DTS ignores the span
values and simply returns the trajectories with the lowest dist coordinate. In
contrast, BDTS introduces a threshold, e.g., τ = 3, on the span of the trajec-
tories, depicted as the dashed vertical line. Trajectories to the right of this line,
i.e., t1, do not qualify as BDTS results. Therefore, the result of 2-BDTS is t2,
t3, i.e., the trajectories with the 2 lowest distances among those left of the line.
Notice that BDTS may not return the trajectory with the lowest distance to Q
if its span exceeds the threshold; e.g., t1 in Fig. 1.

Depending on the application, one may consider alternative definitions for
point-based trajectory search that take into account both the distance and the
span metrics. We briefly overview one of them in Sect. 5, where we also discuss
trajectory search given a sequence of query points, instead of a set.

3 Distance-Based Trajectory Search

We first discuss trajectory search based on the distance to a set of query points.
Section 3.1 revisits existing work, while Sects. 3.2 and 3.3 present our NN-based
and spatial range-based methods, respectively.

3.1 Existing Methods

Methods IKNN [3] and GH/QE [4] have previously tackled distance-based tra-
jectory search. Note that in [3] the problem was defined with respect to the
similarity of a trajectory ti to the set of query points Q, defined as sim(ti, Q) =∑

qj∈Q e−dist(p∗
ij ,qj). In what follows, we describe the straightforward adaptation

of the IKNN algorithm for the distance metric of Eq. (1) (which was also used
in [4]). The adaptation of GH/QE and our methods (Sects. 3.2 and 3.3) to the
similarity metric of [3] is also straightforward and therefore, omitted. Moreover,
the relative performance of all methods is identical independent of the metric
used.
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Algorithm 1. IKNN
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, k-th distance upper bound UBk, distance lower bound LB

1 initialize C ← ∅, UBk ← ∞ and LB ← 0;
2 while UBk > LB do
3 for each qj ∈ Q do
4 δj-NN(qj) ← the next δj nearest trajectory points to qj ;
5 update C with δj-NN(qj);
6 update UBk and LB � Equations (3) and (4)

7 R ← RefineDTS(k, T, Q, C);
8 return R;

All existing methods adopt a candidate generation and refinement evaluation
paradigm. During the first phase, a set of candidate trajectories is determined
by incrementally retrieving the nearest trajectory points to the query points
in Q. For this purpose, the methods utilize a single R-tree to index all trajectory
points. A candidate trajectory t is called a full match if the matching pairs of
t to all query points in Q have been identified; otherwise, t is a partial match.
As soon as the candidate set is guaranteed to include the final results (even as
partial matches), candidate generation is terminated, and the refinement phase
is then employed to identify and output the results.

The IKNNAlgorithm. Note that the IKNN algorithm comes in two flavors; in
the following, we consider the one based on best-first search, as it was shown in
[3] to be both faster and require fewer I/O operations. Algorithm 1 shows the
pseudocode of IKNN . During candidate generation (Lines 2–6), the algorithm
iterates over the points of Q in a round robin manner. For each query point qj ,
the (next) batch of nearest to qj trajectory points is retrieved using the R-tree
index, in Line 4. The nearest neighbor search retrieves a different number of
trajectory points δj per query point qj , in order to expedite the termination
of this first phase (details in [3]). Based on the newly identified matching pairs
that involve qj , the set of candidates C is then updated in Line 5 by either
adding new partial matches or filling an empty slot for existing. For each partial
match ti in C, IKNN computes an upper bound of its distance to Q by setting
the distance of ti to every unmatched query point equal to the diameter of the
space (maximum possible distance between two points):1

dist(ti, Q) =
∑

qj∈Qi

dist(p∗
ij , qj) + |Q � Qi| · DIAM, (3)

where set Qi ⊆ Q contains all the query points already matched to a point in
trajectory ti. We denote by UBk the k-th smallest among the distance bounds
for the trajectories in C. In addition, IKNN computes a lower bound LB of the
distance to Q for all unseen trajectories (i.e., those not contained in C), by
aggregating the distance of the farthest (retrieved so far) trajectory point to
each query point in Q. Formally:
1 Under the similarity-based definition of DTS in [3], IKNN sets empty “slots” to 0.
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Algorithm 2. GH
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H

1 initialize C ← ∅ and H ← ∅;
2 while C contains less than k full matches do
3 pop 〈pij , qi〉 from H � Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;

6 R ← RefineDTS(k, T, Q, C);
7 return R;

Algorithm 3. QE
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H, distance lower bound LB

1 initialize C ← ∅, H ← ∅ and LB ← 0;
2 while C contains less than k full matches with dist(·, Q) ≥ LB do
3 pop 〈pij , qi〉 from H � Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;
6 complete the most promising partial matches in C � Equation (5)
7 update LB � Equation (6)

8 R ← RefineDTS(k, T, Q, C);
9 return R;

LB =
∑

qj∈Q

dist(pδ
j , qj) (4)

where pδ
j is the last trajectory point returned by the NN search centered at qj .

The candidate generation phase of IKNN terminates when UBk ≤ LB; in this
case, none of the unseen trajectories can have smaller distance to Q compared
to the candidates in C. Last, IKNN invokes RefineDTS to produce the results.
Briefly, the function examines candidates in ascending order of a lower bound
on their distance, retrieving them from disk to compute dist(·, Q) (details in [3]).

The GH/QE Algorithms. Different from IKNN , the methods in [4] retrieve tra-
jectory points in ascending order of the distance to their closest query point.
Specifically, a global heap H is used to retrieve at each iteration the globally
nearest trajectory point pij to some query point qj , and then, to update candi-
date set C, accordingly. Algorithm 2 shows the pseudocode of GH. The candidate
generation phase of GH is terminated as soon as set C contains k full matches
(proof of correctness in [4]). Note that these full matches are not necessary among
the final results identified in Line 6 during the refinement phase.

In practice, the order imposed by global heap H cannot guarantee a good per-
formance unless both trajectory and query points are uniformly distributed in
space. For instance, if a particular query point is very close to many trajectories,
GH will generate a large number of partial matches with only that slot filled. Con-
sequently, it will take longer to produce the k full matches needed to terminate
the generation phase, and at the same time a large number of candidates would
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have to be refined. A similar problem occurs when a query point is located away
from the trajectories.

To address these issues, Tang et al. [4] proposed an extension to GH termed QE,
which periodically fills the empty slots for the partially matched trajectories with
the highest potential of becoming results. These are then retrieved from disk,
and their actual distance is computed. A trajectory has high potential if it has
(i) few empty slots and (ii) small distance in each filled slot with respect to the
next point to be retrieved for that slot. These factors are captured respectively
by the denominator and enumerator of the following equation:

potential(ti) =

∑
qj∈Qi

(
dist(pH

j , qj) − dist(p∗
ij , qi)

)

|Q � Qi| (5)

where set Qi ⊆ Q contains all the query points already matched to a point in ti,
pH

j is the next nearest trajectory point to qj contained in heap H and p∗
ij is the

nearest to qj point in trajectory ti.
Algorithm 3 shows the pseudocode of QE. The candidate generation phase

of QE terminates when candidate set C contains k full matches (similar to GH),
provided however that their distance to Q is smaller than the distance of all
unseen trajectories (Line 2) (proof of correctness in [4]). To determine this, QE
computes in Line 7, a lower bound LB of the distance for the unseen trajectories
(similar to IKNN ) by aggregating the distance of the next nearest trajectory point
to every query point, i.e., the contents of heap H:

LB =
∑

qj∈Q

dist(pH
j , qj) (6)

3.2 A Hybrid NN-based Approach

The DTS problem can be viewed as a top-k query [5,6]. For each query point qj ,
consider a sorted trajectory list Tj , where each trajectory is ranked according
to its distance to the query point. Then, the objective is to determine the top-k
trajectories that have the highest aggregate score, i.e., distance, among the lists.
However, as these lists are not given in advance and constructing them is costly,
the goal is to progressively materialize them, until the result is guaranteed to be
among the already seen trajectories.

Following the top-k query processing terminology, a sorted access on list Tj

corresponds to the retrieval of the next nearest trajectory to query point qj ,
which in turn may involve multiple trajectory point NN retrievals. In contrast, a
random access for trajectory ti on list Tj corresponds to the retrieval of ti from
disk and the computation of its distance to qj ; in practice, once ti is retrieved,
its distance to all query points can be computed at negligible additional cost.

Methods IKNN , GH and QE employ various ideas from top-k query processing
(an overview of this field is presented in Sect. 7). Particularly, IKNN performs
only sorted accesses and prioritizes them in a manner similar to Stream−Combine
[7]. Similarly, GH performs only sorted accessses but follows an unconventional
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strategy for prioritizing them, which explains its poor performance on our tests
in Sect. 6. On the other hand, QE additionally performs random accesses following
a strategy similar to the CA algorithm [5] to select which trajectory to retrieve.

In the following, we present the NNA algorithm, which combines the strengths
of IKNN and QE. In short, it builds upon the Quick−Combine top-k algorithm
[8] performing both sorted and random accesses to generate the candidate set.
NNA has the following features. First, similar to IKNN , the algorithm retrieves in
a round robin manner, batches of nearest trajectory points to each query point
in Q. This addresses the weaknesses of GH when dealing with non-uniformly dis-
tributed data. Second, after performing the nearest neighbor search centered at
each query point, NNA fills the slots of the trajectories with the highest poten-
tial according to Eq. (5), similar to QE. Finally, NNA employs the termination
condition of IKNN for the candidate generation phase. In practice, NNA extends
Algorithm 1 by completing the most promising partial matches in C (similar to
QE), between Lines 5 and 6. Hence, it is able to compute tighter bounds com-
pared to IKNN and thus terminate the generation phase earlier. In addition, it
produces fewer candidates than IKNN , reducing the cost of the refinement phase.

3.3 A Spatial Range-Based Approach

We identify two shortcomings of all the NN-based methods previously described.
First, each NN search is implemented independently, which means that R-tree
nodes and trajectory points may be accessed multiple (up to |Q|) times, which
increases the total I/O cost. Second, each NN search is associated with a priority
queue, whose continuous maintenance increases the total CPU cost.

Our novel Spatial Range-based algorithm, denoted by SRA, addresses both
these shortcomings. Similar to the NN-based approaches, it follows a generation
and refinement paradigm. However, to generate the candidate set, it issues a
spatial range search of expanding radius centered at each query point in Q. All
searches operate on a common set N of R-tree nodes, which avoids accessing
nodes more than once and hence saves I/O operations. Moreover, set N needs
not be sorted according to any distance, eliminating costly priority queue main-
tenance tasks. The range-based search for each query point qj is associated with
current radius rj , and is also assigned a maximum radius θj . As the algorithm
progresses, current radius rj increases while maximum radius θj decreases. Can-
didate generation terminates as soon as rj > θj for some query point qj .

Algorithm 4 shows the pseudocode of SRA. In Lines 2–4, SRA initializes the
current and maximum radius for each query point. For the latter, an upper bound
UBk to the k-th smallest distance to Q is computed. In particular, SRA invokes a
sum-aggregate nearest neighbor (sum-ANN) procedure [9] retrieving trajectory
points in ascending order of

∑
qj∈Q dist(·, qj). Assuming that this procedure

retrieves point pi of trajectory ti, the sum-aggregate value is an upper bound to
the distance of ti, i.e., dist(ti) ≤ ∑

qj∈Q dist(pi, qj). Hence, once points from k
distinct trajectories have been retrieved, SRA can determine a value for UBk.

During the candidate generation phase in Lines 5–13, SRA first selects the
query point qc ∈ Q with the fewest retrieved points so far, and increases its
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Algorithm 4. SRA
Input : collection of trajectories T , set of query points Q, number of results k
Output : top-k list of trajectories R
Variables : candidate set C, k-th distance upper bound UBk, current ri and maximum θi

search radius for each qi ∈ Q, set of R-tree nodes N
1 initialize C ← ∅ and N ← R-tree root node;
2 compute UBk invoking a sum-ANN(T, Q);
3 for each qj ∈ Q do
4 initialize rj ← 0 and θj ← UBk;

5 while rj ≤ θj for all qj ∈ Q do
6 select current qc;
7 rc ← rc + ξ � Increase rc to expand search around qc

8 expand from N all nodes that intersect with the disc of radius rc centered at qc;
9 S ← trajectory points within spatial range rc found during expansion;

10 update C with S;
11 update UBk � Equation (7)
12 for each qj ∈ Q do
13 update θj ← UBk −∑q�∈Q�{qj} r� � Reduce maximum radius

14 R ← RefineDTS(k, T, Q, C);
15 return R;

radius by a fixed ξ2, so that each location retrieves more or less the same number
of points. Then, it extends the range search centered at qc to new radius rc. In
particular, all nodes in N that intersect with the search frontier are expanded,
i.e., replaced by their children (Line 8). During the expansion, all trajectory
points within the frontier are collected in set S (Line 9). Upon completion of the
expansion, set N contains no R-tree node or point within rc distance to qc, or
with distance to qc greater than θc, and N will be re-used in further iterations.

After the expansion, SRA uses the newly seen trajectory points in S to prop-
erly update candidate set C. Note that for each trajectory ti in C, SRA keeps |Q|
slots storing the closest trajectory points ti.pj seen so far to each query point
qj . A slot is marked matched if the corresponding matching pair has been deter-
mined, i.e., when ti.pj ≡ p∗

ij . SRA in Line 10 performs the following tasks for
each point px in S; let ti be the trajectory px belongs to. For each slot qj that is
not matched, SRA checks whether px is closer to qj than ti.pj , and updates the
slot with px if true. If the slot for the current query point qc was among those
examined, it is marked as matched. The benefits of this update strategy are
twofold. First, it guarantees that no matching trajectory point will be missed,
even though SRA does not access px again (removed from N) for qj �= qc. At the
same time, it also helps to derive a tighter upper bound for the distance of ti:

dist(ti, Q) =
∑

qj∈Qi

dist(p∗
ij , qj) +

∑

qj∈Q�Qi

dist(ti.pj , qj). (7)

Compared to Eq. (3) utilized by IKNN and NNA, Eq. (7) computes a tighter bound
on unmatched slots. Based on these bounds, a tighter value for UBk can be
established (Line 11).

2 In the future, we plan to investigate variable ξj values based on current radius rj
and the trajectory point density around qj , inspired by determining δj value in [3].
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Algorithm 5. INCREMENTAL
Input : collection of trajectories T , set of query points Q, span threshold τ , number

of results k
Output : result set R
Variables : candidate set C, number of intermediate results λ

1 initialize C ← ∅, R ← ∅ and λ ← 0;
2 while |R| < k do
3 increase λ by k − |R|;
4 C ← next candidate set of λ-DTS(T, Q);
5 R ← R ∪ RefineBDTS(k, T, Q, C, τ);

6 return R;

To better explain the procedure in Line 10, we use the example of Fig. 1(a)
for k = 2. SRA has just started and thus C is empty. Assume that the current
query point is qc = q1, and let r1 = 0 + ξ be the radius of the shaded disk
depicted in the figure. As a result, set S in Line 9 contains trajectory points
{p∗

21, p
∗
22, p

∗
41}. Moreover, candidate set C contains t2 and t4. For trajectory t2,

p∗
21 is settled as the matching point to q1 because dist(p∗

21, q1) < dist(p∗
22, q1)

and no unseen point of t2 can be closer. On the other hand, the matching points
to q2, q3 cannot be yet determined, but we can use p∗

21 and p∗
22 to bound t2’s

distances to q2 and q3. Therefore, the slots for t2 become 〈p∗
21, p

∗
22, p

∗
21〉, where

bold indicates a matched slot. Moreover, an upper bound to the distance of t2 is
determined as dist(t2, Q) = dist(p∗

21, q1) + dist(p∗
22, q2) + dist(p∗

21, q3). Similarly,
we obtain the slots for t4 as 〈p∗

41, p
∗
41, p

∗
41〉.

As a last step, SRA updates the maximum radius for all query points with
respect to the new UBk in Lines 12–13. Observe that SRA’s termination condition
for candidate generation is essentially identical to that of IKNN . Any trajectory
not in the candidate set C must have distance to each qj at least θj , and thus
distance at least equal to LB =

∑
qj∈Q θj . The termination condition of Line 5,

rj > θj for some qj , and the update of θj , imply that, when candidate generation
concludes, UBk ≤ LB.

Finally, the performance of SRA can be enhanced following the key idea of
QE to further improve the dist(tj , Q) bound and therefore, UBk. We denote this
extension to the SRA algorithm by SRA+. Specifically, in between Lines 10 and
11 in Algorithm 4, SRA+ fills the empty slots of the trajectories in C with the
highest potential as computed using Eq. (5).

4 Bounded Distance-Based Trajectory Search

We next address the bounded distance-based trajectory search. Recall from
Sect. 2 that k-BDTS(T,Q, τ) is equivalent to a k-DTS(T ′, Q) distance-based
query over the subset T ′ ⊆ T containing only trajectories with span(·, Q) ≤ τ .
However, as span(t,Q) can be computed only after all the matching pairs of
a trajectory t to Q are identified, the major challenge is to limit the number
of invalid partial matches generated, i.e., those with the span(·, Q) > τ . In the
following, we address this issue in two alternative ways.
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The idea behind the incremental approach, denoted as INCREMENTAL, is to
progressively construct the result set R by utilizing the generation phase of a
DTS method as a “black” box. Algorithm 5 illustrates INCREMENTAL; note that
any of the algorithms in Sect. 3 can be used as the underlying DTS method. At
each round, INCREMENTAL asks for the missing k−|R| trajectories to complete the
result set R in Lines 3–4. For this purpose, a λ-DTS(T,Q) search is processed,
with the λ value been increased at each round by k − |R|; during the first round
λ = k. Each time λ is updated in Line 3, the DTS method in Line 4 does not
run from scratch. It continues the candidate generation using a new termination
condition with respect to the updated λ in order to expand candidate set C.
Last, in Line 5, RefineBDTS examines the new candidates to update result set R
by computing their dist(·, Q) and eliminating trajectories with span(·, Q) > τ .

Intuitively, INCREMENTAL takes a conservative approach to bounded distance-
based trajectory search. As it is unable to predict which partial matches could
provide a valid trajectory (full match) with span(·, Q) ≤ τ , a refinement phase
is needed to “clean” the candidate set. Hence, INCREMENTAL may involve several
rounds of generation and refinement phases. To address these issues, we pro-
pose the ONE−PASS approach which involves a single generation and refinement
round. The idea is again to build upon a DTS method but by extending its can-
didate generation phase in two ways. First, for each partial match ti in candidate
set C, ONE−PASS computes a lower bound of span(ti, Q) based on the points of
ti matching the current subset of query points Qi ⊂ Q, as follows:

span(ti, Q) =

{
0, if |Qi| = 1
span(ti, Qi), otherwise

(8)

Every partial match with span(·, Q) > τ can be safely pruned. Second, the
original termination is triggered only after candidate set C contains at least
k valid full matches, i.e., with span(·, Q) ≤ τ . This is because the k-th upper
bound UBk of existing candidates can be computed only through full matches.
For example, candidate generation of ONE−PASS based on SRA+ terminates as
soon as at least k valid full matches are identified and rj > θj holds for some
query point qj .

5 Discussion

We discuss alternative definitions and variants to the point-based search prob-
lems introduced in Sect. 2.

Distance and Span-based Trajectory Search. Although taking into account
their temporal span, the bounded distance-based search still ranks the trajecto-
ries solely on their distance to the query points in Q. As an alternative, we may
rank the results with respect to a linear combination of the span-dist metrics:

f(t,Q) = α · dist(t,Q) + (1 − α) · span(t,Q) (9)
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where α weights the importance of each metric. With Eq. (9), we introduce the
k-Distance & Span-based Trajectory Search, denoted by k-DSTS(T,Q) which
returns the subset of k trajectories R ⊆ T with the lowest f(·, Q) value.

All methods discussed in Sect. 3 can be extended for k-DSTS(T,Q) by replac-
ing dist(·, Q) with f(·, Q). Note that the upper bound f(t,Q) of a partial match
t can be computed by setting span(t,Q) equal to the total duration of the trajec-
tory t. In contrast, as no matching pairs are identified for the unseen trajectories,
the lower bound LB or the θj values are defined similar to the DTS methods,
i.e., essentially setting the lower bound of span to zero. In Sect. 6.4, we experi-
mentally investigate the efficient evaluation of DSTS.

Order-aware Trajectory Search. Similar to [3], we also consider a variation of
the trajectory search when a visiting order is imposed for the query points. In this
variation, the matched trajectory point p∗

ij to query point qj , is not necessarily
the nearest to qj point of trajectory ti. Consider for example trajectory t2 in
Fig. 1. The depicted p∗

22, p∗
21, p∗

23 for DTS cannot be the matched points in the
q1 → q2 → q3 order-aware DTS, as they violate the visiting order. Instead, the
matched points that preserve the imposed visiting order are p∗

22, p∗
22, p∗

23, where
p∗
22 is matched with q1 although dist(p∗

22, q1) > dist(p∗
21, q1). The distance of a

trajectory to sequence Q is recursively defined as follows:

disto(t,Q) =

⎧
⎪⎨

⎪⎩

min

{
disto(t, T (Q)) + dist(H(t), H(Q)) − DIAM

disto(T (t), Q)
if t �= ∅, Q �= ∅

|Q| · DIAM if t = ∅

0 if Q = ∅

(10)

where H(S) is the first point (head) in a sequence S, T (S) indicates the tail of S
after removing H(S), ∅ denotes the empty sequence, and DIAM represents the
diameter of the space. The distance can be computed by straightforward dynamic
programming [3]. To derive an upper bound on a partial matched trajectory ti,
we consider only the subsequence Qi of Q that contains the matched query
points, i.e., disto(ti, Q) = disto(ti, Qi). For order-aware BDTS, distance and
its upper bound are the same as in order-aware DTS. Note, however that the
lower bound on span (Equation (8)) does not apply as the matching are not yet
finalized. For order-aware DSTS evaluation, fo(t,Q) and its upper bound are
defined in a similar manner to order-aware DTS. In Sect. 6, we experimentally
investigate the order-aware variants of all three trajectory search problems.

6 Experimental Analysis

We evaluate our methods for point-based trajectory search. All algorithms were
implemented in C++ and the tests run on a machine with Intel Core i7-3770
3.40 GHz and 16 GB main memory running Ubuntu Linux.

6.1 Setup

We conducted our analysis using real-world trajectories from the GeoLife Project
[10–12]. The collection contains 17,166 trajectories with 19 m points in Beijing,
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Table 1. POIs in Beijing

Category Cardinality

Restaurants 51,971

Hotels 10,620

Pharmacies 6,963

Schools 6,618

Banks 6,057

Police stations 2,509

Supermarkets 2,356

Gas stations 1,916

Post offices 1,125

Table 2. Experimental parameters (default values
in bold)

Description Parameter Values

Number of results k 1, 5, 10, 50, 100

Number of query points |Q| 2, 4, 6, 8, 10

Span threshold ratio τ/τmin 1, 1.5, 2, 2.5, 3

Linear combination factor α 0, 0.25, 0.5, 0.75, 1

recording a broad range of outdoor movement. To generate our query sets, we
considered around 90 k points of interest (POIs) of various types, located inside
the same area covered by the trajectories (see Table 1 for details). A query set Q
is formed by randomly selecting a combination of |Q| types and a particular POI
from each type. We assess the performance of all involved methods measuring
their CPU and I/O cost, and the number of candidates they generate over 1,000
distinct query sets Q, while varying (i) the number of returned trajectories k and
(ii) the number of query points |Q|. In case of BDTS queries, we additionally
vary the span threshold via the τ/τmin ratio, where τmin is the minimum possible
time required to travel among the query points in Q at a constant velocity of
50 km/h. Finally, for DSTS queries, we also vary the weight factor α of Eq. (9).
Table 2 summarizes all parameters involved in our study.

6.2 Distance-Based Trajectory Search

Figure 2 reports the CPU cost, the I/O cost and the number of generated candi-
dates for the DTS methods. As expected the processing cost of all methods goes
up as the values of k and |Q| increase. The tests clearly show that SRA+ is overall
the most efficient evaluation method. We also make the following observations.

First, we observe that IKNN always outperforms GH/QE; note that this is the
first time the methods from [3,4] are compared. Naturally, GH comes as the least
efficient method; due to the examination order imposed by global heap H, the
algorithm is unable to cope with the skewed distribution of the real-world data.
QE manages to overcome the shortcomings of GH by completing the empty slots
of the most promising candidates. Yet, compared to IKNN , QE is less efficient
due to its weak termination condition for the generation phase; recall that at
least k full matches are needed for this purpose which also results in generating
a larger number of candidates, as shown in Fig. 2(c) and (f). The advantage of
IKNN over GH/QE justifies our decision to build the hybrid NNA method upon the
round robin-based candidate generation of IKNN which retrieves nearest neighbor
points in batches, and its powerful threshold-based termination condition. NNA is
indeed the most efficient NN-based method, in fact with an order of magnitude
improvement over IKNN and GH/QE on both CPU and I/O cost. Finally, Fig. 2
clearly shows the advantage of the spatial range-based evaluation approach over
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Fig. 2. Performance comparison for Distance-based Trajectory Search
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Fig. 3. Performance comparison for Distance-based Trajectory Search (order-aware)

the NN-based one. SRA is always faster while incurring fewer disk page accesses
than IKNN , and in a similar manner, SRA+ outperforms NNA.

We also experimented with the order-aware variant of DTS. Figure 3 depicts
similar results to Fig. 2; the spatial range-based evaluation approach is again
superior to the NN-based and overall, SRA+ is the most efficient method.
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Nevertheless, it is important to notice that the advantage of completing the
most proposing candidates is smaller compared to Fig. 2, in terms of the CPU
cost. Specifically, observe how close is the running time of GH to QE, of IKNN to
NNA and of SRA to SRA+, in Fig. 3(a) and (d). This is expected as completing
partial matches employs dynamic programming to compute disto(·, Q).

6.3 Bounded Distance-Based Trajectory Search

Next, we investigate the evaluation of BDTS queries while varying the k, |Q|
and τ/τmin parameters. Based on the findings of the previous section, we use the
SRA+ algorithm as the underlying DTS method. Note that due to lack of space we
omit results for the order-aware variant of BDTS; the results however are similar.
Figure 4 clearly shows that ONE−PASS outperforms INCREMENTAL in all cases. As
expected, the conservative approach of INCREMENTAL generates a larger number
of candidates by performing multiple rounds of generation and refinement which
results in both higher running time and more disk page accesses. Last, notice
that the evaluation of BDTS becomes less expensive for both methods while
increasing τ/τmin, as the number of invalid candidates progressively drops.

6.4 Distance and Span-Based Trajectory Search

Finally, we study the evaluation of DSTS queries. For this experiment, we
extended the most dominant method from [3,4], i.e., IKNN , and our methods NNA,
SRA and SRA+ following the discussion in Sect. 5. The results in Fig. 5 demon-
strate, similar to the DTS case, the advantage of both the spatial range-based
approach and the SRA+ algorithm which is overall the most efficient evaluation
method. Due to lack space, we again omit the figure for the order-aware variant
of DSTS as the results are identical to Fig. 5.

7 Related Work

Apart from the studies [3,4] for distance-based search on trajectories detailed in
Sect. 3.1, our work is also related to top-k and nearest neighbor queries.

Top-k Queries. Consider a collection of objects, each having a number of scor-
ing attributes, e.g., rankings. Given an aggregate function γ (e.g., SUM) on these
scoring attributes, a top-k query returns the k objects with the highest aggre-
gated score. To evaluate such a query, a sorted list for each attribute ai organizes
the objects in decreasing order of their value to ai; requests for random accesses
of an attribute value based on object identifiers may be also possible. Ilyas et al.
overviews top-k queries in [6] providing a categorization of the proposed meth-
ods. Specifically, when both sorted and random accesses are possible, the TA/CA
[5] and Quick−Combine [8] algorithms can be applied. TA retrieves objects from the
sorted lists in a round-robin fashion while a priority queue to organizes the best
k objects so far. Based on the last seen attribute values, the algorithm defines an
upper score bound for the unseen objects, and terminates if current k-th high-
est aggregate score is higher than this threshold. TA assumes that the costs of the
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Fig. 4. Performance comparison for Bounded Distance-based Trajectory Search

two different access methods are the same. As an alternative, CA defines a ratio
between these costs to control the number of random accesses, which in practice
are usually more expensive than sorted accesses. Hence, the algorithm periodi-
cally performs random accesses to collect unknown values for the most “promis-
ing” objects. Last, the idea behind Quick−Combine is to favor accesses from the
sorted lists of attributes which significantly influence the overall scores and the ter-
mination threshold. In contrast, when only sorted accesses are possible, the NRA [5]
and Stream−Combine [7] algorithms can be applied. Intuitively, Stream−Combine
operates similar to Quick−Combine without performing any random accesses. In
Sect. 3.1, we discuss how the methods in [3,4] build upon previous work on top-k
queries to address distance-based search on trajectories.

Nearest Neighbor Queries. There is an enormous amount of work on the
nearest neighbor (NN) query (also known as similarity search), which returns
the object that has the smallest distance to a given query point; k-NN queries
output the k nearest objects in ascending distance. Roussopoulos et al. proposed
a depth-first approach to k-NN query in [13] while Hjaltason et al. enhanced the
evaluation with a best-first search strategy in [14]. An overview of index-based
approaches can be found in [15]; efficient methods for metric spaces, e.g., [16],
and high-dimensional data, e.g., [17], have also been proposed.
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Fig. 5. Performance comparison for Distance and Span-based Trajectory Search

For a set of query points, the aggregate nearest neighbor (ANN) query [9]
retrieves the object that minimizes an aggregate distance to the query points.
As an example, for the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times, ANN outputs the
location that minimizes the time necessary for all users to meet. In case of the
SUM function and Euclidean distances, the optimal location is also known as
the Fermat-Weber point, for which no formula for the coordinates exists.

8 Conclusions

In this paper, we studied the efficient evaluation of point-based trajectory search.
After revisiting the existing methods (IKNN and GH/QE), which examine the
trajectories in ascending order of their distance to the queries points, we devised
a hybrid algorithm which outperforms them by a wide margin. Then, we pro-
posed a spatial range-based approach; our experiments on real-world trajectories
showed that this approach outperforms any NN-based method. Besides improv-
ing the performance of distance-based search, we also introduced and investi-
gated the evaluation of a practical variant for point-based trajectory search,
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which also takes into account the temporal aspect of the trajectories. As a direc-
tion for future work, we plan to consider additional types of annotated data on
the trajectories in point-based search, such as textual and social information.
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