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Preface

This volume contains the proceedings of the 14th International Symposium on Spatial
and Temporal Databases (SSTD). Included are research contributions in the area of
spatial and temporal data management and related computer science domains presented
at SSTD 2015 in Hong Kong, China. The symposium brought together, for three days,
researchers, practitioners, and developers for the presentation and discussion of current
research on concepts, tools, and techniques related to spatial and temporal databases.

SSTD 2015 was the 14th in a series of biannual events. Previous symposia were held
in Santa Barbara (1989), Zurich (1991), Singapore (1993), Portland (1995), Berlin
(1997), Hong Kong (1999), Los Angeles (2001), Santorini, Greece (2003), Angra dos
Reis (2005), Boston (2007), Aalborg (2009), Minneapolis (2011), and Munich (2013).
Before 2001, the series was devoted solely to spatial database management, and was
called The International Symposium on Spatial Databases. Starting in 2001, the scope
was extended in order to also integrate the temporal dimension and accommodate spatial
and temporal database management issues, owing to the increasing importance of
research that considers spatial and temporal dimensions of data as complementary
challenges.

This year the symposium received 64 submissions from authors in 27 different
countries, which were reviewed by at least three of the 53 Program Committee
members, helped by 89 external reviewers. At the end of a thorough process of reviews
and discussions, 24 submissions were accepted for presentation at the symposium.
SSTD 2015 also continued several innovative topics that were successfully introduced
in previous events. We also formed a Best Paper Committee including eight committee
members to select the best paper for SSTD 2015. In addition to the research paper
track, the conference hosted a demonstration and vision/challenge track. Demonstra-
tions and vision/challenge papers were solicited by separate calls for papers. While
proposals for demonstrations had to illustrate running systems that showcase the
applicability of interesting and solid research, the vision/challenge submissions had to
discuss novel ideas that are likely to guide research in the near future and/or challenge
prevailing assumptions. The submissions to the demo and vision/challenge track
(12 demonstration submissions and two vision/challenge papers submissions) were
evaluated by dedicated Program Committees, recruited by the demonstrations
co-chairs, and eight demos were selected for the conference program.

We were very fortunate to have had two well-accomplished researchers from aca-
demia and industry as keynote speakers opening the first two days of the conference:
Prof. Dimitris Papadias (The Hong Kong University of Science and Technology) gave
a presentation on “Query Processing in Geo-Social Networks” and Jim Steiner (Oracle)
talked about “Emerging Geospatial Trends: The Convergence of Technologies.” Both
are very attractive and timely topics, from the academic and industrial points of view.

The success of SSTD 2015 was the result of a team effort. Special thanks go to many
people for their dedication and hard work, in particular to the local organizers, publicity



chairs, proceedings chair, and webmasters. Naturally, we owe our gratitude to more
people, and in particular we would like to thank the authors, irrespectively of whether
their submissions were accepted or not, for supporting the symposium series and for
sustaining the high quality of the submissions. Last but most definitely not least, we are
very grateful to the members of the Program Committees (and the external reviewers)
for their thorough and timely reviews.

Finally, these proceedings reflect the state of the art in the domain of spatiotemporal
data management, and as such we believe they form a strong contribution to the related
body of research and literature.

June 2015 Christophe Claramunt
Raymond Chi-Wing Wong

Markus Schneider
Li Xiong

Ki-Joune Li
Cyrus Shahabi
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RICC: Fast Reachability Query Processing
on Large Spatiotemporal Datasets

Elena V. Strzheletska(B) and Vassilis J. Tsotras

University of California, Riverside, USA
{elenas,tsotras}@cs.ucr.edu

Abstract. Spatiotemporal reachability queries arise naturally when
determining how diseases, information, physical items can propagate
through a collection of moving objects; such queries are significant for
many important domains like epidemiology, public health, security mon-
itoring, surveillance, and social networks. While traditional reachability
queries have been studied in graphs extensively, what makes spatiotem-
poral reachability queries different and challenging is that the associ-
ated graph is dynamic and space-time dependent. As the spatiotemporal
dataset becomes very large over time, a solution needs to be I/O-efficient.
Previous work assumes an ‘instant exchange’ scenario (where informa-
tion can be instantly transferred and retransmitted between objects),
which may not be the case in many real world applications. In this paper
we propose the RICC (Reachability Index Construction by Contraction)
approach for processing spatiotemporal reachability queries without the
instant exchange assumption. We tested our algorithm on two types of
realistic datasets using queries of various temporal lengths and different
types (with single and multiple sources and targets). The results of our
experiments show that RICC can be efficiently used for answering a wide
range of spatiotemporal reachability queries on disk-resident datasets.

1 Introduction

Reachability queries are significant for many important domains such as epi-
demiology, public health, social networks, security monitoring, and surveillance.
The last two application areas involve performing reachability queries on spa-
tiotemporal datasets, which are the main interest of this paper. Such datasets
may, for instance, contain information about locations of a set of moving objects
collected during some period of time.

Two objects Oi and Oj have a contact at time tk (denoted as < Oi, Oj , tk >),
if they are within some threshold distance dcont from each other at that time
instant [24]. During the encounter, the proximity between Oi and Oj gives
them an opportunity to exchange physical items or information (perhaps wire-
lessly), or a virus. As they move through the network, Oi and Oj may encounter
other objects, and participate in further exchanges. This pattern permits mov-
ing objects to function as couriers, allowing two objects that remain far apart to
nonetheless communicate with each other via intermediaries. A spatiotemporal
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-22363-6 1
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Fig. 1. (a) Positions and contacts between a set of moving objects during the time
interval [0, 2]; (b) Constructing a supergraph by combining the contact graphs with
the object trajectories.

reachability query determines whether two given objects OS and OT could have
communicated (possibly through other objects), within a given time interval. An
example appears in Fig. 1(a), where four moving objects are shown at consecu-
tive time instants. Lines between objects denote contacts at those time instants.
For example, objects O1 and O2 are in contact at times t = 0 and t = 2. Note,
that objects O1 and O3 never contacted each other explicitly, however O3 is
reachable from O1 within the time interval [0, 1] through object O2 (O1 could
pass information to O2 at time t = 0, and O2 could pass it to O3 at time t = 1).

The time to exchange information (or physical items etc.) between objects
affects the problem solution and it is application specific. We consider two types
of delays that may occur during an exchange: processing delay and transfer delay.
After two objects had a contact, the contacted object may have to spend some
time to process the received information (processing delay) before being able
to exchange it again; consider for example repackaging the physical item at
the receiver object before resending. In other applications, for the transfer of
information to occur (transfer delay), two objects are required to stay within
the contact distance for some period of time; we call such elongated contact a
meeting. An example appears if two cars exchange messages through bluetooth
and thus have to travel closely together for some time.

Thus we may consider the reachability problem with no delays, one kind of
delay (processing or transfer) as well as with both types of delays. To distinguish
among the various scenarios we use P to denote the existence of processing delay
and T for transfer delay; their absence will be denoted by P̄ and T̄ respectively.
If no delays are present (i.e., P̄ T̄ ) the exchange is considered (almost) instan-
taneous. This scenario (we will call it ‘instant exchange’) is assumed in [24].
Consider Fig. 1(a) where at time t = 1 a chain of contacts occurs: object O2

contacts O3, and O3 contacts O4. Assuming instantaneous exchanges, at this
time instant information can travel from O2 to its immediate contacts, and at
the same time to all the current contacts of its contacts, etc., resulting in object
O4 been reached by O2 during just one time instant t = 1. As another example,
consider the case PT̄ , that is, with processing delay (i.e., an object receiving
information at time t may not immediately retransmit it) and no transfer delay
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Fig. 2. Contact graphs for a set of moving objects during time interval [0, 2].

(i.e. a simple contact is enough to transfer the information). In Fig. 1(a), at time
t = 1, object O2 contacts object O3, and O3 contacts O4, but information from
O2 does not reach O4 at that time instant.

A trajectory of a moving object Oi is a sequence of pairs (lj , tj), where lj is
the location of object Oi at time tj . We assume that time is discrete, described
as a sequence of time instants (t1, t2, ..., ti, ...) and the interval between two
consecutive time instants is constant (denoted as Δt). Moreover, each object
reports its location at each time instant. We further assume that all contacts
between objects are identified by looking at their location records (that is, Δt is
small enough that we do not miss any contact between consecutive time instants).

Consider the PT̄ reachability scenario: for simplicity we assume that the
processing delay is Δt, and after a contact occurs, retransmission starts at the
next time instant (our solution can be easily modified to consider the case
where the processing delay is a multiple of Δt). The goal of a reachability
query Q: {OS , OT , I}, is to determine whether object OT (target) is reachable
from object OS(source) during time interval I = [ts, tf ], or in other words if
there exists a chain of subsequent contacts < OS , Oi1, t1 >, < Oi1, Oi2, t2 >,
... ,< Oim, OT , tk >, with ts ≤ t1 < t2... < tk ≤ tf . Moreover, if such a chain
exists, we would like to find the earliest time instant when OT was reached (this
can have implications on the application: try to control the spread of the disease
fast, or identify the shortest time that information traveled through a network).

Note again how the answer to a reachability query depends on the transfer
requirements. Consider the example in Fig. 2: here the collection of five moving
objects is observed during three time instants. Let I = [t0, t2]. The answer to
the query {O1, O4, I} under the P̄ T̄ scenario is t = 0. Under the PT̄ scenario,
the answer is t = 2. Another query, {O1, O5, I} will be answered with t = 0 in
the first case, however, for the second case, the answer is t = ∞. In general, the
set of objects, reached by some object Oi during I under the P̄ T̄ scenario is a
superset of the set of objects reached under the PT̄ case.

The traditional graph reachability problem examines whether a path exists
between two vertices of a static graph, such as a road network. Spatiotemporal
reachability is more complex, since even the underlying graph is determined by
the time-varying relationships between the positions of objects traversing the
road network. Moreover, the contact distance dcont is a parameter, and not an
edge of a static graph. One could reduce spatiotemporal reachability into static
graph reachability by combining the contact graphs with the object trajectories
into a supergraph (by adding an edge connecting two consecutive occurrences of
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each object). This appears in Fig. 1(b) where dotted edges connect consecutive
object positions. However this approach will be inefficient as the supergraph is
very large and does not exploit the spatiotemporal properties of the dataset.

There are two naive approaches that could be used to answer a reachability
query on a small spatiotemporal dataset. The first approach (no-preprocessing)
is to traverse the dataset at query time, from the beginning to the end of the
query time interval, collecting all the objects that were reached by the source,
and checking whether the target is among the collected objects (in which case
the search can be stopped before the end of the interval is reached). If not, the
search proceeds, etc. The second approach (precompute-all) is to precompute
and store the reachability between every pair of objects for each possible time
interval in advance. Both approaches are infeasible for our problem size, since
they would require either too much time or space.

Since we consider large sets of moving objects over long periods of time, the
trajectory data cannot fit in main memory; hence the solution must be I/O effi-
cient. The first disk-based solution for the spatiotemporal reachability problem
with no delays (P̄ T̄ ) was recently given by [24]. In this paper, we first develop
the RICC (Reachability Index Construction by Contraction) algorithm for the
PT̄ reachability problem; we then show how it can be extended to work with no
processing but transfer delays (P̄ T ). We also discuss how the PT problem (i.e.,
with both types of delays) can be solved by a simple modification of P̄ T .

RICC balances preprocessing time, storage consumption, and query perfor-
mance time. Its preprocessing consists of several steps: the contact network con-
struction, the reachability network construction, and the contact and reachability
index construction. For the reachability network construction, we utilize the path
contraction idea, introduced in Contraction Hierarchies (CH) [10]. A contraction
replaces a path between two nodes of a graph with a (shortcut) edge, which pre-
serves the distance between these nodes. Methods based on CH are currently the
fastest known approaches for answering shortest path queries on road networks
[9,10]. However, there are two major differences between our problem and com-
puting shortest paths on road networks. CH gains its speed up from creating a
hierarchy of nodes on the basis of their importance for the given road network,
while in the spatiotemporal reachability problem, there is no preference between
the graph nodes. In addition, road networks are typically static graphs, while
our environment is dynamic. We thus created our version of path contraction,
which decreases the size of the spatiotemporal reachability network, and thus
reduces the space search, and consequently the reachability query time.

Figure 3(a) represents the supergraph G1 constructed on time interval
I = [t0, t2) for the contact graphs in Fig. 1, under the ‘instant exchange’ assump-
tion (P̄ T̄ ). At time t = 1 object O2 can pass the information to the object O3,
which then can pass it further to O4 during the same time instant. The super-
graph G′

1 in Fig. 3(b) is constructed using the same contact graphs but under
the ‘no instant exchange’ assumption. To disallow the ‘instant exchange’ in G′

1,
for each pair of contacting objects Oi and Oj at time tk, we remove edges that
represent contacts between them. Next, we connect Oi at time tk with Oj at



Fast Reachability Query Processing on Large Spatiotemporal Datasets 7

Fig. 3. (a) G1 is the supergraph under the P̄ T̄ assumption; (b) DAG G′
1 is the super-

graph under the PT̄ assumption; (c) the reachability graph G2 constructed from G′
1

for interval I = [t0, t2).

time tk+1, and vice versa. The resulting graph G′
1 satisfies the required condi-

tion: in G′
1 at time t = 1 object O2 can pass the information to O3, but O3

cannot retransmit it to O4 at the same time instant. Finally Fig. 3(c) represents
the reachability graph G2, obtained from G′

1 by contracting reachability paths
and replacing them with new shortcut edges (and thus G2 is a much smaller
graph than G′

1 while maintaining the same reachability properties).
The rest of the paper is organized as follows: Sect. 2 presents related work

while Sect. 3 introduces the RICC algorithm, its index construction and reacha-
bility query processing. In Sect. 4, we evaluate the performance of RICC using
large spatiotemporal datasets representing objects moving on a real road net-
work (created by the Brinkhoff generator [3]) as well objects moving freely on
a 2-dimensional plane (based on the random waypoint model). Finally, Sect. 5
provides conclusions and future work.

2 Related Work

Static Graph Reachability. There are many approaches that have been
proposed for the static graph reachability problem and their performance lies
between the two naive approaches mentioned in the previous section. They are
categorized in [14] as using: (i) transitive closure compression, (ii) hop label-
ing, and (iii) refined online search. The first category encompasses methods that
compute and compress a transitive closure. Examples include interval label-
ing [1], dual labeling [28], chain decomposition, tree cover, etc. The next category
includes hop labeling methods: 2-hop cover [7], 3-hop cover [15] and path-top [4].
For instance, in the 2-hop approach a node u in a graph G is assigned a label,
which consists of two sets of nodes: a set Lin that contains nodes that can
reach u, and a set Lout of those nodes that can be reached by u. Then a node
v is reachable from u if and only if Lin and Lout have a non-empty intersec-
tion. Representatives from the third category include GRAIL [30], which uses
indexing based on randomized multiple interval labeling, and PReaCH [19], that
applies the Contraction Hierarchies technique [10] to the reachability problem
and utilizes topological levels from GRAIL. GRAIL and PReaCH outperform
other reachability methods on large static graphs.
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Shortest Paths on Road Networks. In our model, the reachability question
is equivalent to a shortest path query in a supergraph with edges of weight 1 for
consecutive object positions and edges of weight 0 for contacts, with the restric-
tion that a path should not contain two consecutive 0-weight edges in a row.
Contraction Hierarchies [10] represent the state-of-the-art for solving shortest
path problems on road networks. The preprocessing of CH consists of assigning
an order to each node in the road network, and then contracting the nodes in that
order, introducing shortcut edges to preserve the shortest path weight for any
two nodes in the graph. A shortest path query is being answered by perform-
ing a Dijkstra search in the resulted contracted graph. Nevertheless, directly
applying CH would not be efficient for our reachability problem. CH benefits
from creating a hierarchy of nodes on the basis of their importance for the given
road network, while in the spatiotemporal reachability problem, there is no node
preference between the graph nodes. Algorithm PReaCH [19] discussed above,
applies CH on the static reachability problem (and thus does not exploit the
spatiotemporal properties of data).

Evolving Graphs. Evolving graphs (social, citation, biological networks, etc.)
have recently experienced high popularity and received increased interest in the
research community. In [17], the DeltaGraph is introduced, an external hierarchi-
cal index structure that enables efficient storing and retrieving of historical graph
snapshots. For large dynamic graphs, [33] constructs a reachability index, based
on a combination of labeling, ordering, and updating techniques. The work in [25]
utilizes graph reachability labeling methods to develop techniques for analyzing
temporal distance and reachability of temporal graphs. Information, stored in
such datasets, is of a different nature, if compared with spatiotemporal data.
Our problem is complicated by the need to compute the contacts between the
objects, while such contacts are already available in evolving graph applications.
In addition, out data has spatial properties, which is usually not the case in the
analysis, for example, of social and citation networks.

Spatiotemporal Databases. Spatiotemporal Access Methods. There has been a
large number of works on spatiotemporal access methods; these typically involve
some variation on hierarchical trees [6,8,11,18,23,27,31,32], or some form of a
grid-based structure [22,29] or indexing in parametric space [2,5,21]. A recent
survey appears in [20]. Nevertheless, existing spatiotemporal indexes typically
support traditional range and nearest neighbor queries and not the reachability
queries we examine here.

Complex Queries on Spatiotemporal Datasets. Recent work has focused on query-
ing/identifying the behavior of moving objects. Various methods have been
developed for determining patterns and similar behavior of a group of objects
during a particular time interval. Examples include discovering moving clus-
ters [12,16], flock patterns [26], and convoy queries [13]. Recently, [24] pro-
vided the first disk-based solutions for the spatiotemporal reachability problem,
namely ReachGrid and ReachGraph. These are indexes on the contact dataset
that enable faster query times. In ReachGrid, during query processing only
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a necessary portion of the contact network which is required for reachability
evaluation is constructed and traversed. In ReachGraph, the reachability at dif-
ferent scales is precomputed and then reused at query time. Among the two
approaches, ReachGraph is superior (and showed that it also greatly outper-
forms traditional graph reachability solutions like GRAIL [30]). However, what
enables ReachGraph is the assumption that a contact between two objects can
be instantaneous, and thus during one time instance, a chain of contacts may
occur. Conceptually, this ‘instant exchange’ assumption, allows ReachGraph to
be smaller in size (the new graph uses a single vertex for all objects that could
be contacted at a given time instant) and thus reduce query time. On the other
hand, ReachGrid does not require the ‘instant exchange’ assumption and is com-
pared with our proposed methods through experimentation.

3 RICC

We proceed with the description of RICC. First we describe the preprocessing
needed to maintain the contact and reachability networks and the indexing used
to enable fast query time. Then the query processing algorithm is introduced.

3.1 Preprocessing

We start the preprocessing by dividing the entire time interval covered by the
dataset into a number of non-overlapping subintervals, which we call time blocks;
each of the created time blocks contains the information about the locations of
all objects during the corresponding time interval. We call the number of time
instants in each time block the contraction parameter C. Next, we partition the
area covered by the dataset into spatial blocks (or grid cells), such that each cell
is inscribed into a square with a side no greater than the contact distance dcont.

For each time block, our algorithm performs several steps: multiple contact
graph construction, reachability graph construction, and contact and reachabil-
ity index construction. During the preprocessing, each time block is read into
main memory only once, and all work on a block could be done as soon as the
data for this particular block is collected.

Contact Graph Construction. For this step, we need to materialize a contact
graph for each time instant. To efficiently find all contacts between the objects
during a given time instant, we start with partitioning the set of all objects that
are active during this time instant into subsets on the basis of their location,
and according to the area partitioning described above. Due to the size of each
grid cell, all contacts of object O are located either in the same cell with O,
or in adjacent cells. We can start, for example, with the left bottom cell of the
grid, find all contacts between the objects in this cell, then all contacts between
objects in this cell and objects in all adjacent cells. Further, we move to the next
cell and proceed until all cells are visited.

After all contacts are found, a contact graph for this time instant is con-
structed: each object is represented by a vertex, and each contact between two
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Fig. 4. (a) Supergraph; (b) Path contraction between O
(0)
1 and O

(2)
3 ; (c) Non-trivial

reachability graph on interval I = [t0, t2) (contraction parameter C = 2).

objects - by an edge. Subsequently, when a contact graph is constructed for each
time instant of the block, the information is recorded in the file Contacts as
described later. First, all data about contacts between all the objects during
each time instant of a block is collected. The set of the objects is being parti-
tioned on the basis of their location at the first time instant of the block. This
time, the size of the grid G (we will call it a grid resolution as in [24]), is much
larger, than for the previous partition.(In the Experiments section we describe
how to find a good value for G empirically.) Next, objects are sorted according to
the order of cells that they belong to. Further, in this order, information about
the contacts of each object during the time block, is sequentially written on disk
into the file Contacts. A record for each object contains its contacts at each time
instant of the block in time order. An example of the Contacts file appears in
Fig. 5.

Reachability Graph Construction. To construct the reachability graph on
one time block of the dataset, we start with creating a directed supergraph by
collecting contact graphs for each time instant of a block (in time order) and
connecting them by introducing an edge for each two consecutive occurrences of
each object. Figure 4(a), shows a supergraph, constructed on a time block with
contraction parameter C = 2 from two contact graphs given in Fig. 1(a). The
next step is to contract the reachability graph. Let O

(i)
k denote an occurrence of

object Ok during an i-th time instant of a block.

Theorem 1. Let Gs be a supergraph constructed over a time block B. There
exists a path in Gs from O

(0)
k to O

(C−1)
l , if and only if, O

(C−1)
l is reachable by

O
(0)
k during B.

It follows, that to capture all reachability cases during a block, we need to
answer, whether there is a path between every pair of vertices O

(0)
k and O

(C−1)
l

in the supergraph constructed for that block. A path non-trivial if k �= l. Next,
we consider that any instance of object Ok is reachable from its later instance
(there is a trivial path from O

(i)
k to O

(j)
k for i ≤ j), and will not record it.

If there is a non-trivial path in Gs between O
(0)
k and O

(C−1)
l , we contract this

path, and replace it with an edge. In Fig. 4(a), there is a path between O
(0)
1 and

O
(2)
3 , thus O3 is reachable from O1 during this block. This path can be contracted,
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Fig. 5. Two-level index on files Contacts and Reached.

and replaced by a shortcut edge as in Fig. 4(b). We can effectively find all the
paths by using multi-source BFS from each object O

(0)
k in Gs. Figure 4(c) depicts

the final reachability graph. Upon construction of the reachability graph for a
given block, all reachability information is written sequentially into file Reached
in the same object order as for the contact graphs (Fig. 5).

Contact and Reachability Index Construction. To efficiently retrieve infor-
mation from disk, we use a two-level index, constructed on the files Contacts
and Reached. An example of this index appears in Fig. 5. The first level
(TimeBlockIndex), is ordered by time block number: each record consists of
the time block number, and two pointers to disk pages in the second level
indexes, namely the ContactsIndex and the ReachedIndex. Each record in the
ContactsIndex is comprised of an object id and a pointer to the page in the file
Contacts, which contains, which objects and when were contacted by this object
during the given time block. Each record in the ReachedIndex is composed of
object id and a pointer to the page in the file Reached, which contains, which
objects were reached by this object during the given time block. The order of
objects in each page of the ContactsIndex and ReachedIndex is the same as
in Contacts and Reached respectively. Note that in Fig. 5 with the exception of
the Time Block Index, the time block numbers (left columns) are depicted for
clarity (i.e., they are not part of the index).

3.2 Query Processing

Consider a query (OS , OT , I), where OS is the source object, OT is the tar-
get object, and time interval I = [ts, tf ]. Before processing this query, we need
to identify the time blocks that ts and tf belong to. Suppose, ts ∈ Bs, and
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tf ∈ Bf+1. Using the TimeBlockIndex, we can identify the starting posi-
tions of each block Bi (such that Bs ≤ Bi ≤ Bf ) in the ContactsIndex and
ReachedIndex. In most cases, the second level indexes, ContactsIndex and
ReachedIndex, are accessed at most once per block, before accessing data related
to contacts and reachability respectively. Let Sreached denote the set of objects
that have been reached so far. Initially, Sreached contains only one element, the
source object OS . As the query proceeds, new elements are included into this
set, and as soon as OT is added to it (or the end of the last block is reached),
the query processing terminates, as either the target, or the end of the query
interval is reached.

Straightforward Query Processing. After Sreached is initialized with OS , a
straightforward approach would be to start query processing from file Contacts.
We discover objects that were in contact with OS at time ts, and add them to
Sreached. The process has to be repeated, however now the contacts need to be
found for each object that belongs to the updated Sreached at time ts+1. We
proceed this way until the last time instant of the block Bs is processed. The
next step is to find block Bs+1 in file Reached, determine all objects that could
be reached by each object from Sreached, and update Sreached. The algorithm
iterates through these steps in Reached until either Bf−1-st block is processed,
or the target is reached. Finally, the process returns to file Contacts. If OT has
not been reached, the remaining query interval that belongs to block Bf needs
to be checked. On the other hand, if OT was reached during or before Bf−1-st
block, then the last block, processed in Reached has to be traversed in Contacts
once again, to determine the exact time of the contact, when target was reached.

Optimized Query Processing. At the beginning and at the end of the query,
when processing information from Contacts, new objects are added to Sreached

at each time instant. This leads to an increase of disk accesses as parts of file
Contacts that cover the first and the last blocks may be read multiple times
(in the worst case, C times, where C is the contraction parameter). This can be
avoided if query processing begins from reading file ReachedIndex.

Theorem 2. Let I and I ′ be two time intervals such that I ⊆ I ′. If OT is
reachable from OS during I, then OT is reachable from OS during I ′ as well.
Also, if OT is not reachable from OS during I ′, then OT is not reachable from
OS during I.

The optimized query processing algorithm (Algorithm1) starts from the
ReachedIndex (from the page, pointed by the TimeBlockIndex), and attempts
to find a record for the source object (it will start at Bs and continue until either
some record is found, or the end of the interval reached). If such record is found,
it points to the page in Reached, from where we can determine all objects, that
were reached by OS during the current time block. However, if the current block
is the first block of the query, and ts is not the first time instant of this block,
caution is needed, as (according to the theorem above) the set of objects, reached
by OS during Bs is the superset of the set of objects, reached by OS from ts
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Algorithm 1. Reachability query processing
1: procedure Query Processing(OS , OT , I)
2: SReached = {OS}, tReached = ∞
3: find Bs and Bf , Bcur = Bs

4: CInd = readT imeBlockIndex(Bs, Bf ) � Find position of each Bi in
5: RInd = readT imeBlockIndex(Bs, Bf ) � ContactsIndex and ReachedIndex
6: while (OT /∈ SReached and Bcur �= Bf+1) do
7: RpageIDs = {∅} � RpageIDs - list of pages to be read from Reached
8: while (RpageIDs = {∅} and Bcur �= Bf+1) do
9: RpageIDs = readReachedIndex(Rind, SReached)

10: Bcur + +
11: Stemp = {∅} � Stemp is the set of objects, reached during the block
12: Stemp = findReached(RPageIDs, SReached, Bcur)
13: if (Bcur = Bs or Bcur = Bf or OT ∈ SReached) then
14: CpageIDs = {∅} � CpageIDs - list of pages to be read from Contacts
15: CpageIDs = readContactsIndex(Cind, SReached, Stemp)
16: Snew = filterContacts(CPageIDs, SReached, Stemp)
17: SReached = SReached ∪ Snew

18: if (OT ∈ SReached) then
19: update tReached

20: else(SReached = SReached ∪ Stemp)
21: Bcur + +
22: return tReached � If tReached = ∞, then the target has not been reached

to the end of Bs. Hence, we need to traverse Contacts to make sure that we
filtered all the objects that do not satisfy the time condition (the only time they
were reached by the source was before the beginning of the query). After the set
Sreached is finalized, the algorithm switches to file Reached again, and proceeds
as in the previous version, with the exception of the last time block. Suppose, we
arrived at the end of Bf−1, collected all objects that were reached so far, but OT

was not among them. Now, we continue in Reached, and record all objects that
were reached during Bf . If the target is not one of them, the query processing
is completed. However, if OT was reached during Bf , and tf is not the last time
instant of this block, then (again, it follows from the theorem above) we have to
return into Contacts, and confirm that the target was reached before the end
of the query interval. Although this algorithm may read from Contacts at the
beginning and/or at the end of the query, just like the straightforward query
processing, the major difference is that in this case, we read a time block (or
rather its portions) only once, thus minimizing the number of I/Os.

3.3 Reachability with Transfer Delays

We now consider the reachability scenario using transfer delays. This scenario is
challenging because transferring information between two objects requires that
they remain in contact for some time (we call this a meeting). It is thus important
to identify when the transfer starts, i.e., when the first contact occurs. To simplify
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Fig. 6. Reachability with meetings: (a) Sliding window covers time instants t0, t1, t2;
(b) Sliding window covers time instants t1, t2, t3. Meeting are shown with gray
rectangles.

the problem we first consider no processing delays (i.e. P̄ T ). Let λt be the time
duration required to transfer information between two objects. We say that two
objects Oi and Oj have a meeting if they had been within the threshold distance
dcont from each other for at least λt. Assuming that object Oi was carrying some
information, object Oj will be considered ‘reached’ itself after λt from the start
of the meeting (and can thus be able to retransmit this information). Below we
show, how RICC can be extended to work with meetings.

To identify when the first contact between two objects occurs, we remove
the assumption that contacts can be identified only at reported time instants.
The only assumption we need is that between two consecutive location records
objects move linearly. Let dmax denote the largest distance that can be covered
by any object during time Δt. We call two objects Oi and Oj ‘candidate contacts’
at time tk, if they are within the distance dcc = 2dmax + dcont from each other
at that time instant. If two objects are not candidate contacts at tk, they cannot
have a contact during the interval [tk, tk+1).

Again, to find the contacts, we partition the area covered by the dataset
into spatial blocks (grid cells). However, this time the size of the cell has to
be dcc. During the contact graph construction phase, as opposed to identifying
all contacts, we find all candidate contacts at each time instant. Next, for each
pair of candidate contacts, we need to verify, whether the contact between them
occurred, and if yes, what was the length of their meeting. To perform such a
filtering of candidates, we can utilize a sliding time window of size p, i.e., a set
of snapshots of all the moving objects taken at p consecutive time instants. For
example, for p = 3 a window wi will cover time instants ti, ti+1, and ti+2. The
length of the window p can be calculated as follows: p =

⌈
λt

Δt + 1
⌉
.

Consider a sliding window that starts at tk. Since it is assumed that between
two consecutive location records objects move linearly, it is easy to verify whether
two candidate contacts at tk had a contact during [tk, tk+1), and find the time
of the contact tc. Now, using a line-sweep algorithm, we find the length of each
meeting by “sweeping the line” from tk to tk+p−1. If we confirm that there was
a meeting between Oi (the ‘carrier’) and Oj , Oj is considered to be ‘reached’ at
tc + λt. The rest of the preprocessing as well as the query processing is similar
to those, described for the RICC.
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We should point out that the approach considered above for the P̄ T reach-
ability, can be easily modified to solve the PT reachability problem. Object
Oj , that was reached at tc + λ in the P̄ T scenario, cannot start retransmission
immediately under the PT scenario due to the processing delay λp. Instead, Oj

is ready to start the exchange at tc + λt + λp. It is also easy to modify the PT
algorithm to solve a general PT̄ reachability problem (without the assumption
that contacts can be identified only at reported time instants). After all con-
tacts are found, we simply omit the meeting verification portion. As a result,
with some modifications, RICC can solve all three problems that involve delays.

4 Experiments

4.1 Dataset Description

We tested the proposed algorithm on two types of realistic datasets. Three of
the datasets were created by the Brinkhoff data generator [3], which gener-
ates traces of objects, moving on real road networks. For our experiments we
chose the San Francisco Bay area road network, which covers an area of about
30000 km2. Three datasets contain the information about 1000, 2000, and 4000
moving (within the speed limit) vehicles respectively; the location of each vehicle
was recorded every 5 seconds and collected during a four month period (a total
of 2, 040, 000 time instants). Further, we assume that wireless communication is
held via the Dedicated Short-Range Communications protocol (DSRC), which
can afford contacts for up to 300 m. Thus, for the experiments on these datasets
dcont = 300 m. We will refer to these sets as the Moving Vehicle datasets (or
MV1,MV2, and MV4 for sets of 1000, 2000, and 4000 objects respectively).

For the second type of datasets, we created our own data generator, which
utilizes the popular random waypoint model, frequently used for modeling move-
ments of mobile users. According to this model, each user chooses the direction,
speed (between 1.5m/s and 4m/s), and duration of the next trip, then com-
pletes it, after which chooses the parameters for the next trip, and so on. The
three generated sets simulate the movements of 10000, 20000, and 40000 individ-
uals respectively, whose location is recorded every 6 seconds for a period of one
month (432,000 time instants total), and cover the area of 100 km2 each. These
sets will be referred to as Random Waypoint datasets (or RW1, RW2, and RW4

for sets of 10000, 20000, and 40000 objects respectively). We perform two sets
of experiments on these datasets. For the first, we presume the communication
over a Bluetooth connection and a contact distance of dcont = 25 m. For the
second set of experiments, we assume that the individuals have to transfer a
physical item in order for the contact to occur, and set a contact distance to be
dcont = 2 m. The size of each dataset is given in Table 1(a).

Since we consider disk-resident datasets, the performance is evaluated using
the number of disk accesses (I/Os) for query processing. The ratio of a sequential
I/O to a random I/O is system dependent; for our experiments this ratio is
20:1 [24]. In the rest, the total number of I/Os reports the equivalent number of
random I/Os (that is, we assume that 20 sequential I/Os are equal to 1 random,
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Table 1. (a) Size of datasets and indexes, and (b) System specifications

OS Linux 2.6

Disk Size 3TB, 7200 RPM

CPU 3.3 GHz

RAM 16 GB 

Page Size 4096 B

(a)   Size of datasets and indexes                                         (b) System specifications       

Dataset
Size of 
Dataset 

(GB)

Index Size (GB)

RICC ReachGrid

MV1 54 17 54

MV2 107 56 100

MV4 213 175 194

RW1 97 31 99

RW2 194 120 197

RW4 387 419 392

Table 2. Parameter optimization on dataset MV1

Contraction Parameter (Time instants)

Grid
Resolution
(Thousand 

km)

20 40 60 80

20 9295 5884 5162 5779

40 9277 5876 5192 5738

60 9278 5874 5127 5656

80 9260 5815 5146 5413

and calculate the total number of I/Os using this ratio). The specifications for
the system used for the experiments are given in Table 1(b).

4.2 Parameter Optimization

The query performance of RICC depends on two parameters: the contraction
parameter C and the grid resolution G, both of which are dataset dependent. To
tune these parameters we used a subset of the dataset (of size 10%). In general,
if data is time-wise homogeneous across a dataset, any portion of it could be
used, while if data differs according to some pattern - day/night, rush hour, etc.,
a sample that reflects the pattern should be created. We tested the performance
of RICC using a set of 300 queries (the length of each query was picked uniformly
at random between 100 and 500 time instants), and found the pair (C,G), which
minimized the number of I/Os. The results of the parameter tuning experiments
for dataset MV1 are shown in Table 2; based on these results for the rest of the
experiments involving MV1 we pick (C,G) = (60, 60) (the values for the other
datasets were picked in a similar way).

4.3 Preprocessing and Indexing

Preprocessing Time. The preprocessing time depends on the size of a dataset,
as well as on the contraction parameter. During the parameter optimization
phase, if there are cases where several pairs of parameters (C,G), give approx-
imately the same query performance, we choose the pair with the smaller con-
traction parameter C as this leads to less preprocessing.

The preprocessing time for our datasets ranged from 90 min (for the Moving
Vehicles, 1000 objects dataset) to 43 h (for the Random Walk, 40000 objects
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Fig. 7. Query performance evaluation for one-to-one queries; MV datasets

Fig. 8. Query performance evaluation for one-to-one queries; RW datasets

dataset and dcont = 25 m). Taking into account the preprocessing speed, as
well as the fact, that during the preprocessing each time block of data is read
(consequently) into main memory only once, we conclude, that RICC can be
applied for processing spatiotemporal data streams.)

Index Size. Fast reachability algorithms often suffer from large index size.
The smallest query time is achieved when the transitive closure is precomputed
(which however requires space that is quadratic on the graph size). Nevertheless,
RICC can achieve very good query performance while its index size is relatively
small as it can be seen from Table 1(a). This is because instead of transitive
closure we precompute reachability for small portions of the graph.

4.4 Query Processing

For the query processing performance evaluation, we ran different sets of 300
queries on each of the preprocessed datasets. Further we implemented the Reach-
Grid for the PT̄ reachability, and optimized its parameters as described in [24].

One-to-One Queries. We first consider one-to-one queries {Os, Ot, I}, (one
source and one target). For the MV and RW (with dcont = 25 m) datasets
we created three sets of queries, with query lengths of 100, 300, and 500 time
instances respectively, and evaluated the performance of RICC and ReachGrid
by counting the number of I/Os. The results of these experiments are depicted
in Figs. 7 and 8. On all instances, our approach outperforms ReachGrid. This
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Fig. 9. (a) Scaling, (b) long interval queries, and (c) multisource queries

improvement is because ReachGrid visits each object in a cell while RICC focuses
on precomputed meetings. As the query length increases the number of objects
to be checked by ReachGrid increases rapidly. Thus the biggest advantage over
ReachGrid (up to 5x improvement) is reached for the longest queries on the
smallest datasets (MV1, RW1 which have smallest number of meetings).

Scaling. The next set of tests is used to analyze the dependence of the RICC
performance on the query length. When starting processing a query we need to
retrieve few objects from the disk. If the query specifies a large time interval,
more objects become carriers, which in turn (depending on the efficiency of
an algorithm) may affect the query performance. We tested our algorithm on
the MV1 dataset, with five sets of queries, with time intervals ranging from 50
to 1600 instants respectively (after 1600 time instants all objects in the MV1

dataset were reached). As can be seen from Fig. 9(a), while RICC uses a similar
number of disk accesses as ReachGrid for the smallest length queries, it achieves
much better query performance for the longer ones (up to 6.5 times for the 1600
interval). Further, RICC scales well with the size of the query length.

Many-to-Many Queries. We proceed with the experimental results for many-
to-many queries (i.e., queries with several sources and/or several targets). First
we note that Single Source Multitarget Queries have the same performance
as one-to-one queries. Let (Os, {OT1 , OT2}, I) be a query with the set of tar-
gets {OT1 , OT2}. Then the time to answer this query t = max(tQ1, tQ2), and
NIO = max(N1

IO, N2
IO) (where tQi

is the time when and if the target ti was
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reached (or the end of query interval otherwise), and N i
IO is the number I/Os,

needed to answer the query (OS , OTi
, I)).

More interesting are the Multisource Queries. In this case if an algorithm
strongly utilizes a spatial locality for index construction, its performance should
decrease when executing queries with more than one source. In the worst case
(when sources are very far from each other), the number of I/Os of a query
({OS1 , OS2}, OT , I) becomes NIO = N1

IO1
+ N2

IO2
. For these experiments we

used the MV and RW (dcont = 25 m) datasets; as we can see from Fig. 9(c),
with the increase of the number of sources, the gap between the number of I/Os
of RICC and ReachGrid, becomes larger.

Long Interval Queries. For the last set of experiments we used the RW1

dataset with dcont = 2 m. Since the contact distance is much smaller than previ-
ously, the average contact degree becomes smaller, which in turn leads to longer
average time for two objects to reach each other. We start with queries that are
1000 time instants long. We extended the query length up to 8000 time instants
(which for this dataset makes about 95 % objects reachable by the end of the
query interval). For these experiments, we were not able to optimize the para-
meters and complete the preprocessing for ReachGrid, since its query processing
was very slow (ReachGrid does not scale well under the given scenario). As it
can be seen from Fig. 9(b), RICC can be effectively used for long interval queries
as well (it scales almost linear with the query length).

5 Conclusions

We proposed the RICC algorithm for efficient spatiotemporal reachability query
processing (without the instant exchange assumption) on large disk-resident
datasets. We tested our algorithm on two types of realistic datasets and differ-
ent types of queries. RICC outperformed the previous known algorithm (Reach-
Grid) on all experiments. In addition, our algorithm shows good performance
for many-to-many queries, while also scaling well. We are currently examining
aggregation-based reachability queries.
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Abstract. Shortest-path computation is a well-studied problem in algo-
rithmic theory. An aspect that has only recently attracted attention is the
use of databases in combination with graph algorithms to compute dis-
tance queries on large graphs. To this end, we propose a novel, efficient,
pure-SQL framework for answering exact distance queries on large-scale
graphs, implemented entirely on an open-source database system. Our
COLD framework (COmpressed Labels on the Database) may answer
multiple distance queries (vertex-to-vertex, one-to-many, kNN, RkNN)
not handled by previous methods, rendering it a complete solution for
a variety of practical applications in large-scale graphs. Experimental
results will show that COLD outperforms previous approaches (includ-
ing popular graph databases) in terms of query time and efficiency, while
requiring significantly less storage space than previous methods.

1 Introduction

Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf. [9]
for the most recent overview) the emergence of social networks has generated
massive unweighted graphs of interconnected entities. On such networks, the
distance between two vertices is an indication of the closeness of their entities,
i.e., for finding users closely related to each other or extracting information about
existing communities within the social media users. Although we may always use
a breadth first search (BFS) to calculate the distance between any two vertices
on such graphs, that approach cannot facilitate fast-enough queries on main
memory or be easily adapted to secondary storage solutions.

Moreover, most of the excellent preprocessing techniques available for road
networks cannot be adapted to large-scale graphs, such as social or collaboration
networks. So far, the most promising approach for this type of graphs builds on
the 2-hop labeling or hub labeling (HL) algorithm [12,23], in which we store a
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 22–39, 2015.
DOI: 10.1007/978-3-319-22363-6 2
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two-part label L(v) for every vertex v: a forward label Lf (v) and a backward label
Lb(v). These labels are then used to very fast answer vertex-to-vertex shortest-
path queries. This technique has been adapted successfully to road networks
[2–4,15] and quite recently has also been extended to undirected, unweighted
graphs [5,14,25]. The HL method has also been applied for one-to-many, many-
to-many and kNN queries in road networks [16,17] and kNN and RkNN queries
in the context of social networks in [21].

Although hub labeling is an extremely efficient shortest-path computation
method using main memory, there are very few works that try to replicate those
algorithms for secondary storage. HLDB [18] stores the calculated hub labels for
continental road networks in a commercial database system and translates the
typical HL distance query between two vertices to plain SQL commands. More-
over, it showed how to efficiently answer kNN queries and k-best via points, again
by means of SQL queries. Recently, HopDB [25] proposed a customized solution
that utilizes secondary storage also during preprocessing. Unfortunately, both
methods have their shortcomings. HLDB has only been tested on road networks
and consequently small labels sizes (<100). Its speed would seriously degrade
for large-scale graphs due to the much larger label size. HopDB answers only
vertex-to-vertex queries and is a customized C++ solution that cannot be used
with existing database systems and, hence, has limited practical applicability.

This work presents a database framework that may service multiple distance
queries on massive large-scale graphs. Our pure-SQL COLD framework (COm-
pressed Labels on the Database) can answer multiple exact distance queries
(point-to-point, kNN) in addition to RkNN and one-to-many queries not han-
dled by previous methods, rendering it a complete database solution for a variety
of practical massive, large-scale graph problems. Our extensive experimentation
will show that COLD outperforms previous solutions, including specialized graph
databases, on all aspects (including query performance and memory require-
ments), while servicing a larger variety of distance queries. In addition, COLD is
implemented using a popular, open-source database engine with no third-party
extensions and, thus, our results are easily reproducible by anyone.

The outline of the remainder of this work is as follows. Section 2 presents
related work. Section 3 describes the novel COLD framework and its implemen-
tation details. Experiments establishing the benefits of COLD are provided in
Sect. 4. Finally, Sect. 5 gives conclusions and directions for future work.

2 Related Work

Throughout thisworkweuseundirected, unweightedgraphsG(V,E) (whereV rep-
resents vertices andE arcs).Ak-NearestNeighbor (kNN)query seeks thek-nearest
neighbors to an input vertex q. The RkNN query (also referred as the monochro-
matic RkNN query), given a query point q and a set of objects P , retrieves all the
objects that have q as one of their k-nearest neighbors according to a given dis-
tance functiondist(). Ingraphnetworks,dist(s, t) corresponds to theminimumnet-
work distance between the two objects. Formally RkNN(q) = {p ∈ P : dist(p, q)
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≤ dist(p, pk)} where pk is the k-Nearest Neighbor (kNN) of p. Throughout this
work, we assume that objects are located on vertices and we always refer to snap-
shot kNN and RkNN queries on graphs, i.e., objects are not moving. Also, similarly
to previous works, the term object density D refers to the ratio |P |/|V |, where P is
a set of objects in the graph and |V | is the total number of vertices. Although, there
is extensive literature focusing on kNN and RkNN queries in Euclidean space, since
ourwork focuses on graphswewill only describe relatedwork focusing on the latter.

Regarding road networks and kNN queries, G-tree [33] is a balanced tree
structure, constructed by recursively partitioning the road network into sub-
networks. Unfortunately, this method cannot scale for continental road networks,
since it requires several hours for its preprocessing. Moreover, it requires a target
selection phase to index which tree-nodes contain objects (requiring few seconds)
and thus, cannot be used for moving objects. Recently, the work of [17] expanded
the graph-separators CRP algorithm of [13] to handle kNN queries on road
networks. Unfortunately, (i) CRP also requires a target selection phase and thus,
cannot be applied to moving objects and (ii) it may only perform well for objects
near the query location. Hence, this solution is also not optimal. The latest work
for kNN queries on road networks is the SALT framework [22] which may be
used to answer multiple distance queries on road networks, including vertex-
to-vertex (v2v), single source (one-to-all, range, one-to-many) and kNN queries.
This work expands the graph-separators GRASP algorithms of [20] and the ALT-
SIMD adaptation [19] of the ALT algorithm and offers very fast preprocessing
time and excellent query times. For kNN queries, SALT does not require a target
selection phase and hence it may be used for either static or moving objects.

For RkNN queries on road networks, the work of [30] uses Network Voronoi
cells (i.e., the set of vertices and arcs that are closer to the generator object) to
answer RkNN queries. This work has only been tested on a relatively small
network (110K arcs) and all precomputed information is stored in a data-
base. Despite the fact that the preprocessing stage for computing the Network
Voronoi cells is quite costly, the queries’ executions times range from 1.5 s for
D = 0.05 and k = 1, up to 32 s for k = 20, rendering this solution impracti-
cal for real-time scenarios. Up until recently, the only work dealing with other
graph classes (besides road networks) is [32], although it has only been tested on
sparse networks, e.g., road networks, grid networks (max degree 10), p2p graphs
(avg degree 4) and a very small, sparse co-authorship graph (4K nodes). In this
work, the conducted experiments for values of k > 1 refer only to road networks,
therefore the scalability of this work for denser graphs and larger values of k is
questionable. Recently, Borutta et al. [10] extended this work for time-dependent
road networks, but presented results were not very encouraging. The larger road
network tested had 50 k nodes (queries require more than 1 s for k = 1) and for
a network of 10 k nodes and k = 8, RkNN queries take more than 0.3 s (without
even adding the I/O cost). In a nutshell, all existing contributions and methods
have not been tested on dense, large-scale graphs, cannot scale for increasing
k values and their performance highly depends on the object density D.
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Our work builds upon the 2-hop labeling or Hub Labeling (HL) algorithm
of [12,23] in which, preprocessing stores at every vertex v a forward Lf (v)
and a backward label Lb(v). The forward label Lf (v) is a sequence of pairs
(u, dist(v, u)), with u∈V . Likewise, the backward label Lb(v) contains pairs
(w, dist(w, v)). Vertices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and t, the set Lf (s) ∩ Lb(t)
must contain at least one hub that is on the shortest s − t path. For undi-
rected graphs Lb(v) = Lf (v). To find the network distance dist(s, t) between
two vertices s and t, a HL query must find the hub v ∈ Lf (s) ∩ Lb(t) that min-
imizes the sum dist(s, v) + dist(v, t). By sorting the pairs in each label by hub,
this takes linear time by employing a coordinated sweep over both labels. The
HL technique has been successfully adapted for road networks in [2–4,15]. In
the case of large-scale graphs, the Pruned Landmark Labeling (PLL) algorithm
of [5] produces a minimal labeling for a specified vertex ordering. In this work,
vertices are ordered by degree, whereas the work of [14] improves the suggested
vertex ordering and the storage of the hub labels for maximum compression.
The HL method has also been used for one-to-many, many-to-many and kNN
queries on road networks in [16] and [17] respectively. Our latest work [21] pro-
posed ReHub, a novel main-memory algorithm that extends the Hub Labeling
approach to efficiently handle RkNN queries. The main advantage of the ReHub
algorithm is the separation between its costlier offline phase, which runs only
once for a specific set of objects and a very fast online phase which depends on
the query vertex q. Still, even the costlier offline phase hardly needs more than
1 s, whereas the online phase requires usually less than 1ms, making ReHub the
only RkNN algorithm fast enough for real-time applications and big, large-scale
graphs.

Regarding secondary-storage solutions, Jiang et al. [25] propose their HopDB
algorithm that suggest an efficient HL index construction when the given graphs
and the corresponding index are too big to fit into main memory. The work of [1]
introduced the HLDB system, which answers distance and kNN queries in road
networks entirely within a database by storing the hub labels in database tables
and translating the corresponding HL queries to SQL commands. Throughout
this work, we will compare our proposed COLD framework to HLDB, since to the
best of our knowledge, it is the only framework that may answer exact distance
queries entirely within a database. Moreover, within the COLD framework we
also adapt our ReHub main-memory algorithm into a database context, so that
its online phase may be translated to fast and optimized SQL queries.

3 Contribution

This section presents the COLD (COmpressed Labels on the Database) database
framework. COLD can answer multiple distance queries (vertex-to-vertex, kNN,
RkNN and one-to-many) for large-scale graphs using SQL commands. Since
COLD builds on HLDB [1] and ReHub [21], we will follow the notation and
running example presented there, for highlighting the necessary concepts and
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Fig. 1. A sample Graph G

Table 1. The created hub-labels for the sample
graph G of Fig. 1

Vertex Hub Labels (h,d)

0 (0,0)

1 (0,1), (1,0)

2 (0,1), (2,0)

3 (0,1), (3,0)

4 (0,1), (4,0)

5 (0,2), (1,1), (5,0)

6 (0,2), (1,1), (6,0)

7 (0,2), (1,1), (7,0)

8 (0,2), (2,1), (8,0)

9 (0,2), (3,1), (9,0)

10 (0,2), (4,1), (10,0)

11 (0,3), (1,2), (5,1), (11,0)

12 (0,3), (1,2), (6,1), (12,0)

13 (0,3), (1,2), (7,1), (13,0)

challenges for adapting those previous works, (i) in the context of large-scale
graphs for [1] and (ii) within the boundaries of a relational database manage-
ment system (RDBMS) for [21]. To this end, we chose PostgreSQL [29] for our
implementation, given that it is a popular, open-source RDBMS. Although we
use some PostgreSQL-specific data-types and SQL extensions, we do not use any
third-party extensions but only features included in its standard installation.

3.1 Implementation

The COLD framework assumes that we have a correct hub labeling (HL) frame-
work that generates hub-labels for the undirected, unweighted graphs we wish
to query. Although COLD will work with any correct HL algorithm, in this
work we use the [6] implementation of the PLL algorithm of [5] to generate
the necessary labels. To highlight the results of this process, the labels for the
undirected, unweighted graph G of Fig. 1 are shown in Table 1. Throughout this
work, we will refer to those labels as the forward labels. The forward label L(v)
for a vertex v is an array of pairs (u, dist(v, u) sorted by hub u. Since our work
also focuses on snapshot kNN and RkNN queries, there also some objects P∈V
that do not change over time. For our specific running example we assume that
P = {4, 10, 12} and thus, we highlight the respective entries of Table 1.

Vertex-to-Vertex (v2v) Queries. To find the network distance dist(s, t)
between two vertices s and t, a HL query must find the hub v ∈ L(s)∩L(t)
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Table 2. The forward table used
in HLDB for the sample graph G

v hub dist

. . . . . . . . .

2 0 1

2 2 0

. . . . . . . . .

7 0 2

7 1 1

7 7 0

. . . . . . . . .

Table 3. The forwcold table used
for COLD for the sample graph G

v hubs dists

. . . . . . . . .

2 {0, 2} {1, 0}
. . . . . . . . .

7 {0, 1, 7} {2, 1, 0}
. . . . . . . . .

Code 1.1. V2v query for HLDB

1 SELECT MIN(n1.dist+n2.dist)

2 FROM forward n1, forward n2

3 WHERE n1.v = s

4 AND n2.v = t

5 AND n1.hub = n2.hub;

Code 1.2. V2v query for COLD

1 SELECT MIN(n1.d+n2.d) FROM

2 /* Expand hubs , dists arrays */

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = s) n1,

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = t) n2

9 WHERE n1.hub=n2.hub;

that minimizes the sum dist(s, v) + dist(v, t). For our sample graph G, the min-
imum distance between e.g., vertices 2 and 7 is d(2, 7) = 3, using the hub 0.
To translate this HL query into SQL commands, in HLDB [1] forward labels
are stored in a database table denoted forward where the labels of vertex v are
stored as triples of the form (v, hub, dist(v, hub)) (see Table 2). The table forward
has the combination of (v, hub) as the primary key and is clustered according
to those columns, so that “all rows corresponding to the same label are stored
together to minimize random accesses to the database” [1]. Then we can find the
distances between any two vertices s and t by the SQL query of Code 1.1.

Although the HLDB vertex-to-vertex (v2v) query is very simple, there is one
major drawback. For such a query, HLDB has to fetch from secondary storage
the subset of |L(s)| + |L(t)| rows with common hubs. Although this is prac-
tical for road networks where the forward labels have less than 100 hubs per
vertex [3], it cannot scale for large-scale graphs where the forward labels have
thousand of hubs per vertex. Moreover, on such graphs the forward DB table
and the corresponding primary key index will become too large, which is also an
important disadvantage. To this end, we take advantage of the fact that Post-
greSQL features an array data type that allows columns of a DB table to be
defined as variable-length arrays. Hence, in COLD we store hubs and distances
for a vertex (both ordered by hub) as arrays in two separate columns (i.e., hubs
and dists) in a single row. The resulting forwcold compressed DB table is shown
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in Table 3. This approach not only emulates exactly how labels are stored on
main-memory for fast v2v queries but also has considerable advantages: (i) The
forwcold DB table has exactly |V | rows (ii) The forwcold DB table has the col-
umn v as primary key without needing a composite key. This alone facilitates
faster queries. Moreover the size of the corresponding index will be much smaller.
In fact, our experimentation will show that the primary-key index for forwcold
may be > 4, 400× smaller than the index size of HLDB. (iii) For a v2v query,
COLD needs to access exactly two rows, regardless of the sizes of |L(s)| and
|L(t)|. This way, we efficiently minimized the secondary-storage utilization, even
working inside a database. The resulting SQL query for COLD is shown in Code
1.2. There we exploit the fact that PostgreSQL “guarantees that parallel unnest-
ing” for hubs and distances for each nested query “will be in sync”, i.e., each
pair (hub, dist) is expanded correctly since for the same v the respective arrays
have the same number of elements1.

Additional Queries Overview. For answeringmore complex (kNN,RkNNand
one-to-many) distance queries on a HL framework for a set of objects P , we need
to build some additional data structures from the forward labels (for undirected
graphs). Then to answer the respective query we only need to combine the forward
labels L(q) of query vertex q, with the respective data structure explained in the
following. Those data structures are summarized in Table 4.

Table 4. Necessary data structures for the sample graph G, P = {4, 10, 12} and one-
to-many, kNN and RkNN queries

Hub Backward Labels kNN Backward RkNN Backward Obj kNN Result (k=1)

(to-many) [16] Labels (k=2) [1] Labels (k=1) [21] (Obj., dist) [21]

0 (4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3) 4 (10,1)

1 (12,2) (12,2) (12,2)

4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1) 10 (4,1)

6 (12,1) (12,1) (12,1)

10 (10,0) (10,0) (10,0) 12 (4,4)

12 (12,0) (12,0) (12,0)

For answering one-to-many queries, i.e., calculate distances between a source
vertex q and all objects in P , we need to build the backward labels-to-many by
basically ordering the forward labels of the objects by hub [16] and then by
distance for the same hub. For kNN queries we only need to keep at most the
k-best pairs (of smallest distances) per hub from the backward labels-to-many to
create the kNN backward labels [1]. In our specific example, the kNN backward
labels for k = 2 and hub 0, do not contain the pair (12, 3). Finally, for RkNN
queries, we must first calculate the kNN Results (i.e., the NN of the object 4 is the
object 10 with distance 1) and then we build the RkNN backward labels, based
1 http://stackoverflow.com/a/23838131.

http://stackoverflow.com/a/23838131
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on the observation that “we need to access those pairs from the backward labels-
to-many to a specific object, if and only if those distances are equal or smaller
than the distance of the kNN of this object” [21]. In our specific example, the
RkNN backward labels for k = 1 and hub 0, do not contain the pair (10,2) since
the NN of object 10 (the object 4) is within distance 1. Although for our small
graph the differences between the individual data structures seem minimal, for
larger graphs those differences become very prominent. This was also showcased
by the theoretical analysis provided in [21] which showed that backward labels-
to-many will have on average D · |HL| pairs, the kNN backward labels have at
most k · |V | pairs and the RkNN backward labels have on average ε · D · |HL|
pairs where ε may be < 0.01 for specific datasets and experimental settings.
Moreover, Efentakis et al. [21] have shown how these additional data structures
may be constructed from the forward labels in main-memory, requiring less than
few seconds, even for the larger tested datasets.

kNN Queries. To translate the HL kNN query into SQL, HLDB stores kNN
backward labels in a separate DB table denoted knntab that stores triples of the
form (hub, dist, obj) (see Table 5). The respective table knntab has the combina-
tion of (hub, dist, obj) as a composite primary key and is clustered according to
those columns. Note that in HLDB, we cannot use the combination of (hub, dist)
as a primary key, because especially in large scale graphs we will have a lot of
distance ties even for k-entries for the same hub. Then we can can answer a kNN
query from vertex q by the SQL query of Code 1.3. Again, the kNN HLDB query
has the same drawbacks as before, i.e., it has to retrieve |L(q)| rows from forward
and k · |L(q)| rows from knntab tables, for a total of (k+1) · |L(q)| rows retrieved
from secondary storage. Moreover in a database, it makes sense to create one
large knntab table for the maximum value kmax of k (e.g., for k = 16) that may
be serviced by the DB framework and that same table will be used for all kNN
queries up to k = kmax. In that case, the HLDB framework will have to retrieve
(kmax + 1) · |L(q)| rows for every kNN query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB table
(Table 6) that has the columns (hub, dist, objs), whereas objects are grouped
and ordered per hub and distance (the column objs is an array). Although
for our sample graph G, the DB tables knntab and knncold seem identical,
COLD’s method offers several advantages: (i) We can now use the combination
of (hub, dist) as a primary key, which makes the respective index significantly

Table 5. The knntab table used
in HLDB for the sample graph G,
k = 2 and P = {4, 10, 12}

hub dist obj

0 1 4

0 2 10

1 2 12

. . . . . . . . .

Table 6. The knntab table used
in COLD for the sample graph G,
k = 2 and P = {4, 10, 12}

hub dist objs

0 1 {4}
0 2 {10}
1 2 {12}

. . . . . . . . .
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smaller and faster and (ii) In case of many distance ties (common to large-scale
graphs) and one large knncold DB table that services all kNN queries for val-
ues of k up to the maximum value kmax, we only need to fetch the first k-objs
entries (i.e., objs[1:k]) per hub and dist, which makes the later sorting faster
(see Code 1.4).

Code 1.3. kNN query for HLDB

1 SELECT MIN(n1.dist+n2.dist),

2 n2.obj FROM

3 forward n1 , knntab n2

4 WHERE n1.v = q

5 AND n1.hub = n2.hub

6 GROUP BY n2.obj

7 ORDER BY MIN(n1.dist+n2.dist)

8 LIMIT k;

Code 1.4. kNN query for COLD

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = q) n1 ,

6 /* k-entries per hub ,dist */

7 (SELECT hub , dist ,objs [1:k]

8 FROM knncold) n2

9 WHERE n1.hub=n2.hub

10 GROUP BY obj

11 ORDER BY MIN(n1.d+n2.dist)

12 LIMIT k;

One-to-Many Queries. Similar to how COLD handles kNN queries, for one-
to-many queries, COLD stores the backward labels-to-many in a new objcold
DB table that has an identical format to knncold, i.e., it has three columns
(hub, dist, objs) whereas objects are grouped and ordered per hub and distance.
Objcold also uses the combination of (hub, dist) as a primary key. The resulting
one-to-many query (Code 1.5) is quite similar to COLD’s kNN query, but (i) it
operates on the larger objcold DB table (ii) It does not have the ORDER BY ...
LIMIT k clause and (iii) We use the entire objs array per hub and distance
instead of objs[1:k]. Note that HLDB cannot possibly support such queries
because it will need to retrieve on average |L(q)| rows from the forward table
and a total of |L(q)| · D · (|HL|/|V |) [21] rows from the corresponding objlab
table, which will be prohibitively slow for very large datasets.

Table 7. The knnres
table used in COLD
for RkNN queries,
the sample graph G,
k = 1 and P =
{4, 10, 12}

obj dists objs
4 {1} {10}

10 {1} {4}
12 {4} {4}

RkNN Queries. For RkNN queries, COLD stores the
RkNN backward labels in a separate revcold DB table
that has an identical format to previous knncold and obj-
cold DB tables, i.e., three columns (hub, dist, objs) where
objects are grouped and ordered per hub and distance
and the combination of (hub, dist) used as a primary key.
COLD also stores the kNN Results, i.e., the kNN of all
objects in another knnres DB table that has the format
(obj, dists, objs, ) where obj is the primary key and objs
and dists are arrays (both ordered by distance) (Table 7).
Therefore the kNN of object p is the objs[k] within dis-
tance dists[k] of the respective row for p. Again it makes
sense to build a knnres DB table for a max value of kmax

that may service RkNN queries for varying values of k. As a result, during the
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Code 1.5. One-to-many COLD query

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold

6 WHERE v = q) n1 ,

7 objcold n2

8 WHERE n1.hub=n2.hub

9 GROUP BY obj;

Code 1.6. RkNN query for COLD

1 SELECT n3.id2 ,n3.dist FROM

2 /* n3 subquery is a modified

3 one -many -query to revcold */

4 (SELECT MIN(n1.d+n2.dist) AS d3 ,

5 UNNEST(objs) AS obj FROM

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = q) n1 ,

9 revcold n2

10 WHERE n1.hub=n2.hub

11 GROUP BY obj

12 ORDER BY obj ,MIN(n1.d+n2.dist)

13 ) n3 ,

14 /* Join with knnres table */

15 (SELECT obj , dists[k] AS dist

16 FROM knnres) n4

17 WHERE n3.obj=n4.obj

18 AND n3.d3 <=n4.dist

19 ORDER BY n3.obj;

RkNN COLD query, we will have to use an additional JOIN between the revcold
and knnres DB tables. The resulting query is shown in Code 1.6.

We see that even the more complex RkNN query in COLD requires just a
few lines of SQL code that will work on any recent PostgreSQL version without
any need of third-party extensions or specialized index structures. In fact, all
DB tables in COLD, use only standard B-tree primary key indexes, without
any modifications. To satisfy this strict requirement, we effectively compressed
the index sizes by grouping rows per vertex (forcold table) or object (knnres
table), or by hub and distance for knncold, objcold and rknncold. And although
we used PostgreSQL specific SQL extensions for expanding the stored arrays,
latest versions of other databases (e.g., Oracle) support similar array data-types.
Hence, it would be quite easy to port COLD to other database vendors as well.

This section detailed the COLD framework in terms of design and imple-
mentation. COLD can answer multiple distance queries (v2v, kNN, RkNN and
one-to-many) based on data stored in an off-the-shelf relational database. We
also presented the actual queries used and the way the necessary data struc-
tures are stored within the database, so that our results are easily reproducible.
Although we focused on query efficiency, it is important to note that once we
create the forcold table, all the adjoining DB tables within COLD may also
be created using SQL commands (resulting queries were omitted due to space
restrictions). This fact also shows that COLD is truly a pure-SQL framework for
servicing multiple distance queries on large-scale graphs. We also provided the
necessary theoretical details as to why the COLD framework will outperform
existing solutions. This will be further quantified in the following section.
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4 Experimental Evaluation

To assess the performance of COLD on various large-scale graphs, we conducted
experiments on a workstation with a 4-core Intel i7-4771 processor clocked at
3.5G Hz and 32 Gb of RAM, running Ubuntu 14.04. We compare our COLD
framework with a custom implementation of HLDB in PostgreSQL and with
Neo4j, a well-known, popular graph database.

We use the same network graphs as our previous work of [21] that are taken
from the Stanford Large Network Dataset Collection [26] and the 10th Dimacs
Implementation Challenge website [8]. All graphs are undirected, unweighted
and strongly connected. We used collaboration graphs (DBLP, Citeseer1, Cite-
seer2) [24], social networks (Facebook [28], Slashdot1 and Slashdot2 [27]), net-
works with ground-truth communities (Amazon, Youtube) [31], web graphs
(Notre Dame) [7] and location-based social networks (Gowalla) [11]. The graphs’
average degree is between 3 and 37 and the PLL algorithm creates 26 − 4, 457
labels per vertex, requiring 0.03 − 5, 946 s for the hub labels’ construction
(see Table 8).

Table 8. Networks graphs statistics

Graph | V | | E | Avg degr | HL | / | V | PLL Preproc. Time (s)

Facebook 4,039 88,234 22 26 0.03

NotreDame 325,729 1,090,108 3 55 6

Gowalla 196,591 950,327 5 100 13

Youtube 1,134,890 2,987,624 3 167 123

Slashdot1 77,360 469,180 6 204 11

Slashdot2 82,168 504,230 6 216 13

Citeseer1 268,495 1,156,647 4 408 110

Amazon 334,863 925,872 3 689 230

DBLP 540,486 15,245,729 28 3,628 5,720

Citeseer2 434,102 16,036,720 37 4,457 5,946

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64 bit with rea-
sonable settings (8192 Mb shared buffers, 64 Mb temp buffers). We also used
Neo4j Server v2.1.5. The Neo4j queries were formulated using Cypher, Neo4j’s
declarative query language and we report query times as they were returned by
the server. Although Cypher may theoretically facilitate one-to-many queries
(besides vertex-to-vertex), testing Neo4j with our datasets and the same num-
ber of target vertices we tested COLD with, resulted in a “java.lang.Stack
OverflowError”. Providing the server with additional resources2 had no positive
effect and thus there are no results for one-to-many queries and Neo4j.
2 http://neo4j.com/developer/guide-performance-tuning/.

http://neo4j.com/developer/guide-performance-tuning/
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We conducted experiments belonging to four query types: (i) vertex-to-vertex,
(ii) kNN, (iii) RkNN and (iv) one-to-many. For each experiment, we used 10,000
random start vertices, reporting the average running time. Before each exper-
iment, we restart the PostgreSQL and Neo4j servers for clearing their internal
cache and we also clear the operating system’s cache for accurate benchmarking.
All charts are plotted in logarithmic scale.

4.1 Performance on HDD

In our first round of experiments, we ran experiments on an HDD, specifically a
SATA3 Seagate Barracude ST3000DM001 7200rpm with 64Mb cache.

Vertex-to-vertex. Fig. 2(a) shows results for vertex-to-vertex (v2v) queries
for COLD, HLDB and Neo4j. Results show that COLD is consistently 2 - 20.7×
faster than HLDB, with this difference amplified for the Citeseer1, Amazon and
Youtube datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also
9 - 143× (for the Gowalla dataset) faster than Neo4j, which exhibits stable
performance for all datasets, but is slower from both COLD and HLDB. For all
datasets, COLD requires less than 9ms for answering v2v queries.

Figure 2(b) shows the difference in memory size for the DB tables for-
cold (COLD) and forward (HLDB) and their respective primary-key (PK)
indexes. Results show that the size of the PK index in COLD is 3, 600 - 4, 444×
smaller than for HLDB (for DBLP and Citeseer2 respectively). As expected, the
difference in index sizes is almost identical to the |HL|/|V | ratio, since forcold
table has |V | rows and forward has |HL| rows. Likewise, the corresponding tables
are 131 - 188× smaller for COLD. Thus, the techniques used for compressing
the forward labels in COLD clearly achieve a considerable reduction in memory
size, rendering our proposed framework suitable for real-world scenarios.

(a) Vertex-to-vertex query times (b) Memory size’s difference be-
tween COLD and HLDB

Fig. 2. Experiments on HDD for vertex-to-vertex

kNN. Fig. 3(a) shows the speedup of COLD compared to HLDB in the case
of kNN queries for D = 0.01 and k = {1, 2, 4, 8, 16}. As described in Sect. 3.1,
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we have created two DB tables for each framework (COLD, HLDB), one for
kmax = 4 and one for kmax = 16. Then the DB table for kmax = 4 is used
for answering kNN queries for k = 1, k = 2 and k = 4 and the kNN table for
kmax = 16 is used for answering kNN queries for k = 8 and k = 16. Results
show that for k = 1, COLD is 5 - 19× faster for the five largest datasets (Ama-
zon, Citeseer,Citeseer2, DBLP. Youtube) and although this speedup degrades for
larger values of k, COLD remains consistently 2 - 10× faster even for k = 16. For
the smaller datasets, performance between COLD and HLDB is quite similar,
with COLD performing better on Facebook and Gowalla, while HLDB performs
only marginally better for Slashdot1, Slashdot2 and Notredame. In all cases,
COLD answers kNN queries for all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of COLD
vs HLDB for varying values of D. For each value for D, we have build separate
versions of knntab (HLDB) and knncold (COLD) DB tables for D · |V | objects
selected at random from each dataset and kmax = 4. Figure 3(b) shows results
for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Again, for the five largest
datasets COLD is consistently 3.4 - 23.4× faster than HLDB, whereas even for
the smaller datasets, COLD is consistently 8.6 - 11.5× faster than HLDB for the
largest value of D (for D = 0.1). Moreover, COLD may answer kNN queries for
k = 4 on all datasets and all values of D in less than 14ms.
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Fig. 3. kNN Experiments on HDD for COLD and HLDB

RkNN. For RkNN experiments, we only report COLD’s performance, since
there is no other SQL framework that supports these queries. In out first exper-
iment, we report the performance of COLD for D = 0.01 and k = {1, 2, 4, 8, 16}.
For all those queries we have built one version of the knnres DB table for
kmax = 16 (see Sect. 3.1) and 3 separate revcold tables for kmax = {1, 4, 16}.
As expected, for RkNN queries and k = 1 we use the revcold table built for
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(a) COLD RkNN query times for
D = 0.01 and varying values of k

(b) COLD RkNN query times for k =
1 and varying values of D

Fig. 4. RkNN Experiments on HDD for COLD

kmax = 1, for k = 2, k = 4 we use the revcold table built for kmax = 4 and for
k = 8, k = 16 we use the revcold table built for kmax = 16. Figure 4(a) presents
the results. In all cases, COLD provides excellent query times that are below
20ms for k = 1 in all datasets and never exceed 82 ms even for k = 16.

In our second set of RkNN experiments, we assess the performance of COLD
for varying values of D. Figure 4(b) presents results for k = 1 (as this is the
typical case for RkNN queries) and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Results
show that although COLD’s performance degrades for larger values of D, RkNN
query times are below 49ms for all datasets and values of D, with the exception
of Youtube and D = 0.1 (109.3ms). Thus, COLD offers excellent and stable
performance in RkNN queries for all all datasets and tested values of k and D.

One-to-Many . Again, COLD is the only SQL framework that supports one-to-
many queries. Figure 5(a) presents the corresponding results for varying values of
D (D = {0.001, 0.005, 0.01, 0.05, 0.1}). COLD answers such queries in less than a
second for all datasets and values of D, except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio) that require 5601ms and 4170ms respec-
tively, for D = 0.1. For such high values of D, the one-to-many query reaches
the complexity of an one-to-all query and as expected, it cannot be any faster
on a secondary storage device. Note that even specialized graph databases like
Neo4j cannot support this type of queries for more than a 1,000 target objects,
whereas COLD answers one-to-many queries to 110,000 target objects in the
Youtube dataset in 401ms with a simple SQL query.

4.2 Performance on SSD

Having established the performance characteristics of COLD in the HDD, in our
second round of experiments, we repeat some of the previous experiments, using
a SSD to measure the impact of the secondary-storage device type to results.
The SSD used is a SATA3 Crucial CT512MX100SSD1 MX100 512 GB 2.5”.
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(a) One-to-Many experiments for
COLD varying values of D

(b) COLD One-to-Many HDD vs
SSD

Fig. 5. One-to-many experiments for COLD

Fig. 6. SSD vertex-to-vertex

Vertex-to-vertex. Although the usage of
SSD favors HLDB more than COLD (see
Fig. 6), COLD is consistently 1.6 - 3.2× faster
than HLDB (except Facebook, the smallest of
datasets). The SSD has almost no impact on
Neo4j and thus, COLD is now 11-171× faster
than Neo4j on all datasets. Note, than on the
SSD, COLD requires less than 0.9ms for all
datasets and v2v queries, except the Citeseer2
and DBLP datasets (those with the highest

|HL|/|V | ratio). But even then, vertex-to-vertex queries still require less than
2.6ms for COLD.

kNN. Fig. 7(a) shows the performance speedup of COLD compared to HLDB
in the case of kNN queries running on the SSD, for D = 0.01 and varying value
of k. Again, although the SSD lowers the performance gap between COLD and
HLDB, COLD is still faster on all datasets (except Facebook). In fact, COLD is
2.6 - 6.75× faster than HLDB for the high |HL|/|V | ratio datasets (Citeseer2,
HLDB) requiring less than 24.6ms even for k = 16.

RkNN. Fig. 7(b) presents the results of the RkNN query time performance
on COLD for D = 0.01 and varying value of k. Results show that SSD usage
accelerates COLD by only 20 % at most, which clearly demonstrates that COLD
effectively minimized secondary storage utilization and thus adding a better
secondary-storage medium provides minimal benefits for RkNN queries.

One-to-Many. Finally, Fig. 5(b) compares one-to-many queries on HDD and
SSD for COLD. Again, the SSD usage accelerates COLD by only 2- 30 %, which
further confirms the optimal secondary storage utilization of COLD.

4.3 Summary

Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, including
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query performance, memory size and scalability. Using HDDs, COLD is 2−−21×
faster for vertex-to-vertex queries and 5 − −19× faster for kNN queries and the
largest datasets. Using SSDs, COLD is 1.6−−3.2× faster than HLDB for vertex-
to-vertex and up to 6.75× faster for kNN queries. COLD also requires up to
4, 444× less storage space (indexes) and up to 188× less storage space (DB
tables) used for storing forward labels. Even specialized graph databases like
Neo4j are outperformed by COLD, which is up to 143× faster. Most importantly
COLD may service additional (RkNN, one-to-many) queries, not handled by any
other previous secondary-storage solutions, while providing excellent query times
and optimal secondary-storage utilization even on standard hard drives.

5 Conclusions

This work presented COLD, a novel SQL framework for answering various exact
distance queries for large-scale graphs on a database. Our results showed that
COLD outperforms existing solutions (including specialized graph databases)
on all levels, including query performance, secondary storage utilization and
scalability. Moreover, COLD also answers RkNN and one-to-many queries, not
handled by previous methods. This establishes COLD as a competitive database-
driven framework for querying large-scale graphs. The paper gives the design and
implementation details of COLD using a popular, open-source database system
along with the actual SQL queries used in our implementation. This should allow
for a simple replication of our results and encourage other researchers to expand
the COLD framework towards handling more complex queries and test-cases.
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Abstract. Computing cost-optimal paths in network data is an impor-
tant task in many application areas like transportation networks, com-
puter networks, or social graphs. In many cases, the cost of an edge can
be described by various cost criteria. For example, in a road network
possible cost criteria are distance, time, ascent, energy consumption or
toll fees. In such a multicriteria network, path optimality can be defined
in various ways. In particular, optimality might be defined as a combi-
nation of the given cost factors. To avoid finding a suitable combination
function, methods like path skyline queries return all potentially opti-
mal paths. To compute alternative paths in larger networks, most effi-
cient algorithms rely on lower bound cost estimations to approximate the
remaining costs from an arbitrary node to the specified target. In this
paper, we introduce ParetoPrep, a new method for efficient lower bound
computation which can be used as a preprocessing step in multiple algo-
rithms for computing path alternatives. ParetoPrep requires less time
and visits less nodes in the network than state-of-the-art preprocessing
steps. Our experiments show that path skyline and linear path skyline
computation can be significantly accelareted by ParetoPrep.

1 Introduction

In recent years, querying network data has become more and more important in
many application areas like transportation systems, the world wide web, com-
puter networks, or social graphs. One of the most important tasks in network
data is computing cost-optimal paths between nodes. Especially in transporta-
tion and computer networks finding cost-optimal paths is essential for optimizing
the movement of objects or information. Optimal paths can depend on multiple
cost criteria. We refer to such networks, which consider more than one cost cri-
terion, as multicriteria networks. In road networks, for example, possible criteria
are travel time, distance, toll fees, environmental hazards, or energy consump-
tion. In computer networks, typical cost criteria are bandwidth, rental cost, and
current traffic. To describe the connections of people in a social graph, telephone
calls, mails, meetings are aspects which can be transformed into cost criteria.
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 40–58, 2015.
DOI: 10.1007/978-3-319-22363-6 3
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In order to compute a cost-optimal path in a multicriteria network, it is
necessary to specify which type of cost should be minimized. This optimization
criterion can either be one of the underlying cost criteria or a combination of
these criteria, e.g., a weighted sum. Given that any monotone combination of
cost values leads to a valid optimality criterion, there is an infinite number of
possible cost values. One might be able to anticipate user preferences in some
applications, but existing works in this area still rely on the set of skyline paths
when recommending suitable path alternatives, e.g., [2,10]. Therefore, the estab-
lished approach of presenting results to the user is to compute a set of alternative
paths which allows the user to evaluate the trade-off between the cost criteria.

The most general set of optimal paths is the set of pareto optimal paths or
path skylines [9,13]. This set contains all paths optimal under any monotone
combination function. Since this set is typically rather large, newer approaches
like the so-called linear path skyline [16,17] restrict the allowed combination
function to linear combinations. The difference between the conventional and
the linear path skyline is illustrated in Fig. 1.

The state-of-the-art algorithms for computing path skylines employ multi-
criteria lower bound estimations to approximate the minimum costs which have
to be spent to travel from a given node n to a target node t. This way it is
possible to compute the best-case cost vector for any path containing n and
ending at t. The general idea is analoguos to the concept of the A∗ search for
shortest path computation: If even the shortest possible path, a straight line
with Euclidean distance, is longer than the current best result, the current node
can be discarded from the search. Although there are algorithms which do not
employ lower bounds (e.g., BRSC in [13]), their use is restricted to small graphs
which can be visited entirely, making these algorithms infeasible in most cases.

Considering multiple and arbitrary cost criteria requires lower bound approx-
imations for all cost criteria. One solution is precalcu ating general bounds, as
done by a reference node embedding [7,13]. However, these bounds have several
drawbacks. First, the approximation quality is often insufficient for the majority
of queries. Second, they typically require a lot of memory compared to the size
of the network. And finally, in dynamic networks – where edge costs vary over
time – the approximation may lose its bounding properties.

Alternatively, [4] conducts a Dijkstra search from the target node to all other
nodes in the network w.r.t. each cost criterion. The obtainted lower bounds are
query-specific and, thus, exact for the given target. However, this kind of pre-
processing has to be done at query time. For d cost criteria this step is performed
d times, and for each node d lower bounds have to be stored. Although the pre-
processing effort is large, the optimality of the bounds for the given task, often
leads to an significant speed-up when performing the actual path computation.
In fact, the results of our experiments demonstrate that this method clearly
outperforms the use of a reference node embedding for computing path skylines
with more than two criteria.

Tackling all of the above problems, we introduce ParetoPrep: A new algo-
rithm for computing all single-criterion shortest paths for arbitrary cost criteria



42 M. Shekelyan et al.

in a multicriteria network. ParetoPrep computes the same optimal lower bounds
as [4] for given start and target nodes. However, ParetoPrep requires only a
single instead of d graph traversals. Furthermore, the visited part of the graph
is significantly smaller than with the approach described in [4]. To show that
ParetoPrep is a valid preprocessing step for the path skyline algorithms men-
tioned above ([9,13,16,17,19]), we show that all nodes contained in any pareto
optimal path between the given start and target nodes are visited. Consequently,
any node which is not visited by ParetoPrep can be excluded when searching
for a cost optimal path w.r.t. any monotone combination function. ParetoPrep
reduces processing time, memory consumption, the visited portion of the graph
and the number of graph traversals when computing optimal lower bounds. This
means, ParetoPrep is a valid and highly efficient preprocessing step for any of
the above algorithms, as it yields optimal lower bounds for the computation of
all pareto optimal paths.

An additional use of ParetoPrep is to simultaneously compute multiple opti-
mal paths for a given set of cost criteria or combinations of these cost criteria.
This is possible, because the computed lower bounds correspond to the exact cost
of the optimal path to the target node w.r.t. each of the original cost criteria. Of
course, it is possible to consider combined cost criteria (e.g., 0.3· distance +0.6·
travel time +0.1· traffic lights) as additional basic cost criteria. Given an arbi-
trary number of such combined criteria, ParetoPrep computes all cost-optimal
paths in a single traversal.

The rest of the paper is organized as follows: In Sect. 2, we present related
work in the area of path skylines and lower bound computation in multicrite-
ria networks. Section 3 provides basic notations and concepts. Furthermore, we
illustrate the use of point-to-point lower bound computation when computing
path skylines. Our new algorithm ParetoPrep is presented in Sect. 4. Addition-
ally, the section contains formal proofs concerning correctness and termination of
ParetoPrep. Section 5 describes the results of our experiments, comparing Pare-
toPrep to state-of-the-art lower bounds for 2 path skyline algorithms. The paper
concludes with a summary and directions for future work in Sect. 6.

2 Related Work

In this section we review existing works on (linear) path skylines. We focus not
on algorithmical details but the application and use of lower bounds, stressing
that performance depends crucially on tight lower bounds. Also, we will survey
the state-of-the-art methods for lower bound computation and point out their
shortcomings.

In the database community, the task of computing a path skyline between
two nodes in a multicriteria network is referred to as path (or route) skyline
query in [13]. Synonymously, the path skyline is sometimes referred to as the set
of all pareto optimal paths. In Operations Research, the problem is known as
the multiobjective shortest path problem. The result set in any case are those
paths which have cost vectors that are, mathematically speaking, optimal under
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(b) Illustration of a linear skyline.

Fig. 1. The linear skyline holds a subset of the elements of the conventional skyline.

some monotone cost function. Surveys on existing solutions to this problem can
be found in [5,6,18,20]. Early on, [11] proved that the size of the path skyline
may increase exponentially with the number of hops between start and target
node, and that the problem therefore is NP-hard. More recently, [15] showed that
the number of paths is in practice feasibly low when using strongly correlated
cost criteria. Another way of coping with the great number of skyline paths was
presented in [17] and extended in [16]. Instead of all paths which are optimal
under some monotone cost function, the result set here consists of all paths which
are optimal under a linear cost function. This is a restriction of the result set,
referred to as linear path skyline. Both sets are visualized in Fig. 1.

Various algorithms have been proposed to solving linear and especially con-
ventional path skyline queries. Going into detail on all methods presented in the
above papers would go beyond the scope of this work. We will restrict ourself to
noting that the state-of-the-art algorithms either rely on some kind of labeling
algorithm or a sequence of target-oriented path searches. Labeling algorithms
label nodes with the cost vectors of assembled paths ending at that node. They
begin at the start node and follow its outgoing edges. In each iteration all pre-
viously assembled paths that may be part of a skyline path are extended. The
algorithm terminates once all assembled paths were either extended or pruned.
The labeling algorithm for skyline computation that we choose for evaluation
purposes is ARSC [13]. Contrary to extending all paths by one edge at a time
is the concept of sequentially computing full paths. For such an algorithm to
terminate in reasonable time, it is essential to efficiently explore the exponential
space of possible results. This means, path searches must be directed, either pro-
ducing a new result or excluding the existence of results in a particular search
direction. LSCH [16] proceeds this way when computing the linear path skyline.

What both algorithmic concepts have in common, is their reliance on lower
bound cost estimations. Either to prune branches of the search tree (nonpromis-
ing paths which have not yet reached the target) or to direct the search towards
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the target. Without lower bounds, either approach becomes infeasible even for
networks of moderate size and only two cost criteria. Thus handling networks of
state-size with three or more criteria requires the use of lower bounds.

The way lower bound cost estimations help directing a path search towards
its target, is relatively straightforward. Lower bounds underestimate the cost
from a node to the target. When computing the path from start to target, in
every iteration, the most promising edge can be chosen based on the lower bound
of its end node. This directs the search, in an A∗-manner, towards its target.

We compare to two state-of-the-art methods for computing lower bounds.
The first is the precomputation of bounds based on a so-called reference node
embedding (RNE), as presented in [13]. A number of uniformly distributed refer-
ence nodes is chosen, and all cost-optimal paths between all pairs of these nodes
are computed. Note that this procedure is independent of start and target node
and can therefore be executed prior to any query. Based on the cost differences of
these paths, lower bounds are computed. Of course, a reference node embedding
only yields optimal lower bounds for some queries. Furthermore, the memory
consumption is rather large and any precomputed information has to be checked
for validity in case of dynamically changing edge costs.

The other prevalent method ([9,16]) was introduced by Tung and Chew [4].
The authors propose to perform a reversed single-source all-target Dijkstra search
for each cost criterion to find the costs of the shortest paths from all other nodes
in the graph to the target node. Note that this procedure is not independent of the
query input and must be performed at query time. We will refer to this approach
as Multi-Dijkstra (MD). Despite the overhead at query time, the superior pruning
power in many cases reduces the runtime of path computation to a degree which
compensates for the additional effort. A major shortcoming of MD is that it has to
process the full graph for every cost criterion. For large graphs, which cannot be
held in main memory, this method is unsuitable.

Let us note that in the case of two cost criteria, special properties of (linear)
path skylines may be used for further speed-up. We would like to stress that
this is only applicable to the case of two cost criteria and that we focus on non-
trivial multicriteria networks with a higher number of cost criteria. Hence, we
will not go into detail on methods which are limited to the two-dimensional case
([1,11,12,14,17]), but refer the interested reader to these works.

3 Preliminaries

A multicriteria network is represented by a directed weighted graph G(V, E , C)
comprising a set of nodes V and a set of directed edges E ∈ V × V. Each edge
(n,m) ∈ E is labeled with a cost vector cost(n,m) ∈ C ⊂ R

d
+ which consists

of the costs for traversing edge (n,m) w.r.t. each of the d cost criteria. If there
exists an edge (n,m) then n and m are neighboring nodes and (n,m) shall be
called an outgoing edge of n and an incoming edge of m.

A sequence of consecutive edges connecting two nodes s and t, for instance,
w = ((s, n1), (n1, n2), . . . , (nk, t)), is called a way from s to t. If w does not visit
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any node twice it is called a path. The cost of a path p for each cost criterion i
is the sum of its individual edge costs:

cost(p)i =
∑

(n,m)∈p

cost(n,m)i

A monotone cost function is a function f : R
d :→ R for which the following

property holds: For cost vectors a, b ∈ R
d
+ where ai ≤ bi for some 1 ≤ i ≤ d,

f(a) ≤ f(b) holds.
A cost vector a ∈ R

d
+ dominates a cost vector b ∈ R

d
+, denoted a ≺dom b, iff

a has a smaller cost value than b in at least one dimension i and b does not have
a smaller cost value than a in any dimension j:

∃i∈{1,...,d} : ai < bi ∧ �j∈{1,...,d} : aj > bj ⇔ a ≺dom b

Note that there is a unique cost vector associated with each path. We therefore
say a path dominates another path, if the cost vector of the former dominates
the cost vector of the latter. Note that for any monotone cost function f(·),
a ≺dom b ⇒ f(a) ≤ f(b).

Paths (more precisely: their cost vectors) which are not dominated by any
other path are called nondominated or pareto optimal. The set of nondominated
paths includes are all paths which are optimal under some monotone cost func-
tion. This set is called path (or route) skyline [3]. In [16,17] this concept was
extended in the following way: Instead of computing the paths which are opti-
mal under monotone cost functions, it can be of greater interest to compute the
paths which are optimal under linear cost functions. This set is called the linear
skyline (see Fig. 1).

3.1 Multicriteria Lower Bounds

The task we examine in this paper is to derive lower bounds lb(s, t) for cost
vectors cost(p), where p is a path from node s to node t in a multicriteria
network. Formally, a lower bound for two nodes a and b is defined as follows:

Definition 1 (Lower Bound Costs). Let a and b be nodes, and let c(·) be
an arbitrary cost criterion. If for the real value lbc(a, b) holds lbc(a, b) ≤ c(p)
for any path p connecting a and b, then it is called a lower bound for c w.r.t. a
and b. A vector consisting of lower bounds of all cost criteria w.r.t. a and b is
denoted as lb(a, b) and referred to as lower bound (cost) vector.

A lower bound cost vector contains a lower bound for each of the cost criteria.
Thus, for an arbitrary path p connecting nodes a and b, f(lb(a, b)) < f(cost(p))
holds for any monotone cost function f(·). Or, in words, the image of a lower
bound cost vector (w.r.t. a and b) under a monotone cost function is also a lower
bound for the costs of all paths between a and b. The lower bounding property
is therefore invariant under monotone cost functions.

We will refer to a lower bound vector lb(s, t) as optimal iff ∀ 1 ≤ i ≤ d :
∃ p = ((s, n1), . . . , (nk, t)) where lbi(s, t) = cost(p)i.
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The bounds computed by Multi-Dijktstra and ParetoPrep are optimal. How-
ever, they are query-specific, i.e., only bounds for the cost to reach the target
node t are available. Furthermore, since any node is a potential target node, it
is not feasible to precompute these bounds, and both methods usually compute
bounds at query time. Let us note that the lower bounds provided by a reference
node embedding are not specific to a particular query. However, they are usually
not optimal. As will be shown in the experiments, for more than two cost crite-
ria and larger distances between start and target, optimal bounds compensate
for the additional overhead. In the following, we will explain how lower bounds
are employed in algorithms for finding cost optimal and pareto optimal paths in
multicriteria networks.

3.2 Lower Bounds in Multicriteria Path Search

Computing an optimal query-specific bound includes computing the cost-optimal
path from s to t w.r.t. all given cost criteria. Thus, if all cost criteria or com-
bination functions are known in advance, in order to compute the wanted path
alternatives, it suffices to compute optimal lower bounds. In other words, the
lower bound method can be used to compute the set of alternatives and no
other algorithm is necessary. Of course, the used algorithm has to provide a
method to reconstruct these optimal paths as well as to determine their cost.
Both algorithms, Multi-Dijkstra and ParetoPrep, provide this possibility. If the
desired combination functions are not known in advance, computing (linear) path
skylines is recommended, in order to compute all paths potentially of interest.

For computing linear path skylines in general multicriteria networks (d ≥ 2),
LSCH [16] is currently the most efficient algorithm. The method successively
constructs a linear skyline as part of a convex hull in the cost space. In each step
of the algorithm, LSCH determines a linear combination function and searches
the cost-optimal path w.r.t. this monotone combination. If lower bounds are
available, these searches can be done using A∗-search. Recall that a lower bound
vector induces a lower cost value under all monotone combination functions.
Thus, LSCH may exploit a given multicriteria lower bound to accelerate these
searches. In this setting, query-specific lower bounds indeed make sense, because
the algorithm performs multiple A∗-searches between the same two nodes s and
t where each search employs a different cost combination. Note that the bounds
are not necessarily optimal anymore when using a combination function to derive
the cost values. However, the quality of the bounds usually still outperforms the
quality of non-query-specific lower bounds.

Another area of application of multicriteria lower bounds is the computation
of path skylines. The most advanced path skyline approaches are label correcting
methods like ARSC [13] which we will sketch in the following to explain the
necessity of high quality lower bounds. ARSC computes all pareto optimal paths
between two nodes s and t in a single graph traversal. To do this efficiently, ARSC
employs two ways of pruning the search space. The first is local domination:
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Definition 2 (Local Domination). Let p and q be two paths starting at s
and ending at t. Iff cost(p) ≺dom cost(q) holds, we refer to q as dominated by
p, denoted by p ≺dom q. Correspondingly, q is referred to as nondominated iff
� p = ((s, n1), . . . , (nk, t)) : cost(p) ≺dom cost(q).

For any path q = ((n1, n2), . . . , (nl−1, nl)), any subsequence of edges
p = ((ni, ni+1), . . . , (nk−1, nk)) is called a subpath of q. As a direct consequence
of the following lemma, we may prune any dominated path and all of its possible
extensions. This fact constitutes the first domination check referred to as local
domination check.

Lemma 1 (Local Domination Check). Any subpath of a nondominated path
is nondominated (w.r.t. its start and target node).

A proof for this lemma can be found in [13]. ARSC maintains a local skyline
of paths for each visited node n. Thus, a path is only extended if it is part
of local skyline of its end node n. Though local pruning helps to prevent the
extension of large amounts of paths, it is not capable of restricting the search
to a limited section of the network. To direct this extension towards the target,
ARSC employs a second pruning method which relies on lower bounds, being
referred to as global domination:

Definition 3 (Global Domination). Given a start node s and a destination
node t, an arbitrary path p is called globally dominated iff it is a subpath of a
dominated path q between s and t. Respectively, any subpath p of a nondominated
path q between s and t is called globally nondominated.

Thus, any path p between s and some node n can be excluded from further
expansion if there does not exist an extension of p ending an target t which is
part of the skyline.

To detect global domination as early as possible, high-quality lower bounds
can be used to check for global domination:

Lemma 2 (Global Domination Check). Let p be a path from node n to node
m and q be a path from the start node s to the target node t. If cost(q) ≺dom

lb(s, n) + cost(p) + lb(m, t), then p is globally dominated.

Proof. The cost vector lb(s, n) + cost(p) + lb(m, t) is a lower bound cost of all
paths from s to t via p. If this lower bound cost is dominated by the cost of a
path from s to t, there is no nondominated path from s to t via p.

ARSC can employ global domination checks as early as the first skyline
path is known. This reveals an additional benefit of using query-specific lower
bounds. As mentioned before, precomputing optimal bounds includes computing
the single-criterion optimal paths for all given cost criteria. These paths are
obviously part of the skyline. Thus, when using query-specific bounds, ARSC
can use global domination upon initialization.
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Fig. 2. Exemplary output of ParetoPrep given a start node s and a target node t. The
indicated paths {s, a, b, c, t} and {s, a, d, t} are the shortest paths for the first and the
second criterion, respectively. The vectors next to each node are the computed lower
bound costs lb of reaching t from the respective nodes.

A final remark on query-specific bounds is that the number of nodes for which
a lower bound is required is limited. In general, it is only necessary to provide esti-
mations for all nodes which are part of any pareto optimal path from s to t. This
observation is based on the property that the path skyline is the super set of all
potentially optimal paths. Thus, any search algorithm reaching a node outside of
this area can prune the respective path.

4 Multicriteria Lower Bound Computation

The idea of ParetoPrep is to compute all single-criterion shortest paths between s
and t within a single graph traversal. As will be shown later on, there cannot be a
node which is part of a skyline path and not visited during this graph traversal.
Thus, ParetoPrep is correct in the sense that it visits all nodes required for
computing a path skyline.

4.1 ParetoPrep

The goal of a precomputation step like Multi-Dijkstra (MD), the reference node
embedding (RNE), or ParetoPrep is to compute the minimum costs from an
arbitrary node n to the given target node t for each of the cost criteria. These
bounds are computed at or prior to query time and are used by the subsequent
path search. ParetoPrep computes all shortest paths for all cost criteria within a
single graph traversal. This approach yields major improvements. While ensuring
optimal bounds, it is possible to reduce the number of times a node is visited.
For example, if the shortest path for two cost criteria ends with the same edge,
both shortest paths will be found by processing the same node. The pseudocode
of ParetoPrep is provided in Algorithm 1, an exemplary output and execution
of the algorithm are shown in Figs. 2 and 3, respectively.

ParetoPrep maintains a set of open nodes open and a set S of paths from s to t.
Each visited node n has an entry consisting of two elements {lb(n, t), succi(n)}.
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Fig. 3. Exemplary execution of ParetoPrep. Active node of iteration is underlined.
After Iteration 2 path through [s, n1, t] with costs [3,4], after iteration 3 path through
[s, n1, n2, t] with costs [3,6] is constructed. ParetoPrep terminates upon iteration 4.

The cost vectors lb(n, t) : V → R
d
+ are the lower bound costs of all paths from n

to t, through which n was previously reached in ParetoPrep. Upon termination of
the algorithm, n is reached by all globally nondominated paths from n to t. The
edges succi(n) : V × N → E are the first edges of the currently shortest path from
n to t for criterion i. These successor edges are used to reconstruct current shortest
paths from s to t. An entry of an unvisited node n is assumed to be lb(n, t)i = ∞,
succi(n) = ∅. lb(t, t)i is always zero because the lower bound cost of reaching t
from t are zero.

The first step of the algorithm is the initialization. The open set is created,
and the target node t is added to the open set. The second step is node selection.
In each iteration, an open node n is selected and removed from the open set.
To reduce the number of nodes which have to be visited twice, the nodes closest
to t should be visited first. To achieve this, each node is ranked by the linear
sum of its cost vector, and the node with the smallest value is selected first. The
third step is a check if the selected node has to be extended. If lb(s, n)+lb(n, t) is
dominated by the costs of a known path, step 4 and 5 are skipped. The cost vector
lb(s, n) is the lower bound cost of all globally nondominated paths from s to n.
If no such information is available lb(s, n) = 0. The fourth step is the extension
of the selected node. The cost of each neighboring node m in dimension i is set
to the minumum of lb(m, t)i and lb(n, t)i + cost(m,n)i, where (m,n) is an edge
from m to n. For each criterion i in which c(m)i is changed, the i-th predecessor
edge succi(m) is set to (m,n). If lb(m, t) was changed and m is not the start
node s, m is added to the set of open nodes. The fifth step is the construction
of paths from s to t. This only happens if lb(s, t) was modified in the previous
step. For each modified cost criteria the currently shortest path from s to t is
constructed. The paths are constructed by following succi of nodes, similarly to
how paths are reconstructed in Dijkstra’s algorithm. The pseudocode is provided
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Fig. 4. Comparison of search areas for a routing task from Augsburg (s) to Munich
(t) with two cost criteria. The illustration compares thesearch are of ARSC without
precomputed bounds to that of ARSC with ParetoPrep-bounds. It is easily observed
that the label correcting search considers almost no dominated paths when using the
information provided by ParetoPrep.

in Algorithm 2. The sixth step is termination. If after an iteration there are no
more open nodes the algorithm terminates, otherwise the algorithm continues
with step 2. Upon termination, S contains a shortest path from s to t for each
criterion, and lb maps each node which is possibly part of a skyline path from s
to t onto its lowerboundcosts of reaching t.

4.2 Correctness and Termination

In this section, we prove that ParetoPrep does indeed visit the portion of the
graph which is necessary to compute a path skyline and thus, all nodes which
are potentially visited by any cost-optimal path. More precisely, we will show
that every node which is part of a nondominated path from start to target is
visited (Fig. 4).

Definition 4. Let R(n) be all paths through which ParetoPrep reached a node
n. For every n �= t, we initialize R(n) = ∅. In each iteration, every neighbor
m of the selected node n is reached through the edge connecting the two nodes
R(m) = R(m) ∪ {

p extended with (m,n) | p ∈ R(n)
}
.

Note that in this case (m,n) becomes the first edge of the path extended
with (m,n). This is because ParetoPrep follows incoming edges, moving back-
ward from the target node. For the rest of this section, when we speak of
(non)domination, we mean global (non)domination.

Lemma 3. At the end of each iteration, lb(n, t) equals the minimal costs of all
paths through which n was reached, i.e., lb(n, t)i = minp∈R(n) cost(p)i

Proof. The statement obviously holds for the target node. Now, assume a
selected node n is expanded by an edge (m,n). Let i be the index of an
arbitrary criterion. The lower bound value of the i-th criterion is set to
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//step 1: initialization

S ← ∅ and open ← {t}
while open �= ∅ do

//step 2: node selection

select n with minimal lower bound sum from open and remove from set;
//step 3: global domination

if S ≺dom lb(n, t) + lb(s, n) then
skip step 4 and 5

//step 4: node expansion

foreach incoming edge (m,n) of n do
foreach criterion i do

if lb(n, t)i + cost(m,n)i < lb(m, t)i then
lb(m, t)i ← lb(n, t)i + cost(m,n)i
succi(m) ← (m,n)
open ← open ∪ {m}

//step 5: path construction

if lb(s, t) was modified in step 4 then
foreach modified component i of lb(s, t) do

p ← constructpath(s, t, succi, i)
S ← S ∪ {p}
remove paths dominated by p from S

Algorithm 1.. Pseudocode of ParetoPrep

min{lb(m, t)i, lb(n, t)i + cost(m,n)i} (see Algorithm 1). By the above defini-
tion this is exactly the minimal cost of each path through which m is reached.
Note that if m was previously unvisited, its cost vector is ∞. Concludingly, the
statement holds.

Lemma 4. If a node is reached by a nondominated path, it is expanded.

Proof. ParetoPrep expands every node m with two exceptions: (1) if global
domination holds in Step 3, or (2) if the m is not added to the open set in
Step 4 (cf. Algorithm 1). Of course, if m is reached through a nondominated
path, global domination does not hold. Hence, the node is expanded, unless
lb(n, t)i+cost(m,n)i ≥ lb(m, t)i for all of the criteria. If m was previously unvis-
ited, lb(m, t)i = ∞. Therefore, m must have been visited, and if m is reached by
a nondominated path, then lb(n, t)i + cost(m,n)i < lb(m, t)i must hold at some
point. This means, m is added to the open set and expanded subsequently. This
proves the statement.

Lemma 5. Upon termination, each node n which is part of a nondominated
path from s to t was reached. Furthermore, the node n is reached through each
nondominated path from n to t.
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Data: s, t, succi, i
Result: Current shortest path from s to t for criterion i
m ← s
p ← new empty path
while m �= t do

(m,n) ← succi(m)
p ← p extended with (m,n)
m ← n

return p

Algorithm 2.. Pseudocode of ParetoPrep’s path construction routine

Proof. Let p be an arbitrary nondominated path from n to t. If no such path
exists for n, then n is not contained in any nondominated paths from s to t.
Let K be the number of nodes through which p passes. Let p(k) be the k-th
node through which p passes. Let p(j, k) be a subpath of p which starts at p(j)

and ends at p(k). If the claim were incorrect, there would exist some k-th node
p(k), k < K, which would not be reached. This implies one of the two cases:

(1) p(k+1) was reached by p(k+1, K), but not expanded afterwards
(2) p(k+1) was not reached

Since p(k+1,K) is a subpath of the nondominated path p and thereby nondom-
inated itself, it must be expanded by Lemma 4 which contradicts (1). (2) is
the inductive shifting of the original statement that p(k) was not reached. This
implies two cases, as above. The first one is contradicted as before, the sec-
ond one is again the inductive shifting. Following the chain of induction, we get
p(K) = t was not reached which is contradicted by the empty path starting at t.
Concludingly, n is reached by all nondominated paths from n to t.

The above lemmas prove that ParetoPrep is sufficient for path skyline com-
putation, i.e., every node that is possibly part of a skyline path is indeed visited.
In addition, let us state precisely, what the values of the lower bound costs are
and how they are related to single-criterion shortest paths.

Claim. Let n be a node contained in a nondominated path from s to t. The cost
vector lb(n, t) equals the lower bound costs of all nondominated paths from n to t.
Furthermore, a shortest path from s to t for each criterion is found.

Proof. The first statement follows directly from Lemmas 3 and 5. If n is con-
tained in a nondominated path from s to t, n is reached through all nondom-
inated paths from n to t. Hence, lb(n, t) equals the lower bound costs of all
nondominated paths from n to t. Now, let us investigate the special case of the
start node s. The single-criterion shortest paths are obviously a subset of the
nondominated paths. Hence, s is reached by all single-criterion shortest paths
which are reconstructed in Step 5 of Algorithm 1.

Finally, let us note that ParetoPrep always terminates if executed on finite
graphs. This is due to the fact that each previously visited node n is expanded
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Fig. 5. Computation time (seconds) and percentage of visited nodes (of all nodes in
the graph) of the query-dependent preprocessing steps PP and MD for the settings
muc and bav.

if at least one criterion of lb(n, t) has been lowered. Once a node is reached by
the shortest paths for each criterion, it will not be expanded anymore. From a
finite number of nodes follows a finite number of paths between nodes which in
turn implies that ParetoPrep performs a finite number of iterations.

This concludes our section on the properties and the correctness of Pare-
toPrep. In the following, we will explore the efficiency and performance of our
approach.

5 Experiments

We evaluate ParetoPrep (PP) on settings based on the real world road net-
work of the state of Bavaria, Germany, with 1 023 561 nodes and 2 418 437 edges,
extracted from OpenStreetMap1 (OSM) using the MARiO framework [8]. All
experiments were conducted on a work station with an Intel i7 CPU (3.4 GHz)
and 32 GB RAM, running Windows 8. Different algorithms are tested on the
same randomly generated scenario before comparing results. Runtime evalua-
tions are based on Java’s nanotime clock and performed for each algorithm
individually.

First, we compare the query-dependent preprocessing steps PP and Multi-
Dijkstra (MD) in terms of computation time. Given a start and target pair, we
evaluate how long the preprocessing step takes. Second, for PP, MD, and the
reference node embedding (RNE), we investigate the quality of the respective
bounds, i.e., we evaluate the actual performance gain for different algorithms. For
RNE, we select 9 reference nodes on a uniform grid over the map and assume that
there is no overhead for loading the embedding. In a first subsetting, we examine
how the path skyline algorithm ARSC benefits from the bounds provided by PP,
MD and RNE. Given the information of the respective preprocessing step and a
start and target pair, we take the runtime of the algorithm as a measure for the
quality of the bounds. In a second subsetting, we analyze how the linear path
skyline algorithm LSCH benefits from the bounds, again in terms of runtime.
1 http://www.openstreetmap.org/.

http://www.openstreetmap.org/
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Fig. 6. Average computation time (seconds) of ARSC and LSCH given the precom-
puted bounds by the respective methods, evaluated on the bav scenario.

Finally, we evaluate PP as a means for single-criterion shortest path computation
for given cost criteria. In a network with four criteria, PP can be used to compute
the shortest paths w.r.t. given weightings of the criteria or, even simpler, to
compute the shortest paths w.r.t. each of the criteria, as produced by four distinct
Dijkstra searches. We compare PP to these multiple single-source single-target
Dijkstra searches w.r.t. runtime and visited part of the graph. Note that in order
to compensate runtime effects in the virtual machine, runtime is measured by
performing each task five times and taking the minimum of these runs.

We evaluate the above scenarios on two settings based in Bavaria, Germany.
The first one is rather local and set in Munich, capitol of Bavaria, routing from
one of the 25 district centers to another, amounting to

(
25
2

)
= 300 pairs in total.

We refer to this setting as muc. The other setting is – relative to the graph –
rather global, routing from one of the 5 major cities in Bavaria to all others,
amounting to

(
5
2

)
= 10 pairs in total. We refer to this setting as bav. The cost

criteria used are distance (dist), travel time (tt), ascent (asc), penalized travel
time (ttpen), and energy expenditure (ener). The basic travel time estimate (tt)
assumes travel speeds equal to the speed limits and no delays at crossings. The
penalized travel time estimate (ttpen) assumes additional 30 s for each traffic
light. The energy expenditure estimate (ener) assumes that 0.2 kWh are lost
on friction per kilometer, which is a rough estimate derived from typical bat-
tery capacities of electric cars and their respective ranges. For each ascended
kilometer 4 kWh are added to the energy usage, which is derived from the
increase in potential energy from ascending 1 000 meters with a 1 500 kg vehicle:
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Fig. 7. Computation time (seconds) and visited nodes when computing all k singlecri-
terion shortest paths with PP and k Dijkstra searches.

1 000 m · 1 500 kg · 9.81m
s2 · 1 kWh

3.6·106 J = 4.0875 kWh. For each descended kilome-
ter 2 kWh are subtracted from the energy loss and negative energy loss values
are corrected to zero. The employed formula for the energy loss in kWh for a
road segment from n to m with length len(n,m), ascent asc(n,m) and descent
desc(n,m) in kilometers is max(0, 0.2 · len(n,m)+4 · asc(n,m)− 2 ·desc(n,m)),
where ascent and descent are derived from OSM data. Let us stress that in
order to validate the efficiency of the proposed approach, the cost criteria are
not required to be realistcally modeled; we do not claim so for tt, ttpen, ener.
We performed queries using the following selection of criteria: 2: dist+tt, 3:

dist+tt+asc, 4: dist+tt+asc+ttpen, 5: dist+tt+asc+ttpen+ener.
Figure 5 compares the preprocessing times of the query-dependent methods

PP and MD. It shows the computation time in seconds when varying the number
of cost criteria for both settings, muc and bav. We observe that PP always out-
performs MD; independent of the number of cost criteria, PP is always around
two orders of magnitude faster than MD, hardly ever exceeding 100 ms of com-
putation time. This is especially remarkable, seeing as PP computes optimal
bounds. A major reason for this behavior can be observed in the right figure:
PP only visits a very restricted part of the graph, yet – as shown before – the
necessary part of the graph to compute all pareto optimal path. For the muc
setting, it only visits at most 6 % of the network and even for examples with
large distances (bav) between start and target, ParetoPrep needs to visit only
about half of all nodes.
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The impact of the bound quality can be observed in Fig. 6. The bounds com-
puted by PP accelerate both algorithms significantly. While LSCH is evaluated
for the same cost criteria as above, ARSC is evaluated for two and three cost
criteria only, as it becomes infeasibly slow for more dimensions. Note that this
is a drawback of the algorithm itself, not the bound quality. Of course, the sig-
nificant discrepancies in runtime are due to algorithmic details and the different
result sets (ARSC computes the path skyline, LSCH only computes the linear
path skyline). For both algorithms holds that RNE yields slightly faster run-
times in the two-dimensional case, but it rapidly degenerates with increasing
dimensionality. Overall, the bounds computed by PP yield an ARSC speed-up
between five times and two orders of magnitude for both scenarios. A similar
acceleration is achieved for LSCH. It should be noted that even in the highly
complex scenarios with five cost criteria, PP allows for unprecendent runtimes
when computing linear skylines. Executing an ARSC search with RNE on more
than three cost criteria is infeasibly slow due to the subpar quality of the bounds.

As mentioned above, PP computes optimal paths w.r.t. all d cost criteria.
In the following, we want to compare this task to d separate single-source single-
target Dijkstra searches. Note that this not the same procedure as MD which
performs all-source single-target searches and cannot terminate upon arrival at
the source. Figure 7 visualizes calculation time and number of visited nodes
for both approaches and scenarios. Remarkably, although PP visits significantly
more nodes, it is faster than the separate Dijkstra searches for the muc scenario.
However, when the discrepancy regarding the number of visited nodes becomes
too large – as in the bav scenario – PP is marginally slower than the Dijk-
stra approach. Of course, PP visits more nodes than separate Dijkstra searches
because it visits all nodes relevant to any skyline path, as proven in Lemma 5.
In contrast, the nodes visited by the Dijkstra searches will in general not suffice
to build the path skyline. Hence, considering the additional information which
PP acquires during its single graph traversal, the overall calculation time is
unrivaled.

6 Conclusion

A multicriteria network is a graph where each edge has a vector of traversal costs,
e.g., travel time, distance, toll fees, ascension in road networks. Therefore, there
might exist multiple optimal paths between two nodes of the network. To find a
set of path alternatives, path skyline queries compute all paths optimal under an
arbitrary monotone combination function. As an alternative, linear path skyline
queries restrict the result set to paths optimal under a linear combination func-
tion. In general, algorithms for computing alternative paths in large multicriteria
networks employ lower bound estimations of the cost for reaching the target from
a given node for each cost criterion. To generate these bounds, the established
method [4] runs a all-source single-target Dijkstra search for each of the d cost
criteria. For networks with more than two cost criteria, this requires d separate
all-source searches, each visiting the whole network. In this paper, we present
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ParetoPrep as an alternative method for lower bound computation when search-
ing for optimal path alternatives. ParetoPrep computes optimal lower bounds
for all criteria in a single graph traversal. Furthermore, ParetoPrep only visits a
very limited part of the graph, which further accelerates the computation. Thus,
ParetoPrep can be used in arbitrarily large networks where visiting all nodes
would cause an infeasible overhead. To show that ParetoPrep still visits enough
nodes to support optimal path queries, we prove that any node on a pareto
optimal path is visited and bounded by ParetoPrep. Hence, ParetoPrep is an
efficient preprocessing step for all algorithms computing multiple paths between
a pair of nodes w.r.t. varying cost functions. In our experiments, we show that
ParetoPrep considerably reduces query times and the visited part of the network
for the state-of-the-art path computation algorithms ARSC [13] and LSCH [16].
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Abstract. Given a set of users U , a set of facilities F , and a query
facility q, a reverse nearest neighbors (RNN) query retrieves every user
u for which q is its closest facility. Since q is the closest facility of u,
the user u is said to be influenced by q. In this paper, we propose a
relaxed definition of influence where a user u is said to be influenced by
not only its closest facility but also every other facility that is almost as
close to u as its closest facility is. Based on this definition of influence,
we propose relaxed reverse nearest neighbors (RRNN) queries. Formally,
given a value of x > 1, an RRNN query q returns every user u for which
dist(u, q) ≤ x × NNDist(u) where NNDist(u) denotes the distance
between a user u and its nearest facility. Based on effective pruning
techniques and several non-trivial observations, we propose an efficient
RRNN query processing algorithm. Our extensive experimental study
conducted on several real and synthetic data sets demonstrates that our
algorithm is several orders of magnitude better than a näıve algorithm
as well as a significantly improved version of the näıve algorithm.

1 Introduction

People usually prefer the facilities in their vicinity. Hence, they are influenced by
nearby facilities. A reverse nearest neighbors (RNN) query [1–4] aims at finding
every user that is influenced by a query facility q. Formally, given a set of users
U , a set of facilities F and a query facility q, an RNN query returns every user
u ∈ U for which the query facility q is its closest facility. The set containing
RNNs, denoted as RNN(q), is also called the influence set of q.

Consider the example of Fig. 1 that shows four McDonald’s restaurants (f1
to f4) and three users (u1 to u3). In the context of RNN queries, the users u2 and
u3 are both influenced by f1 because f1 is their closest McDonald’s. Therefore,
u2 and u3 are the RNNs of f1, i.e., RNN(f1) = {u2, u3}. Similarly, it can be
confirmed that RNN(f2) = ∅, RNN(f3) = ∅, RNN(f4) = {u1}.

A reverse k nearest neighbors (RkNN) query [5–10] is a natural extension
of the RNN query and uses a relaxed notion of influence. Specifically, in the
context of an RkNN query, a user u is considered to be influenced by its k closest
facilities. Hence, an RkNN query q returns every user u ∈ U for which q is among
its k closest facilities. In the example of Fig. 1, assuming k = 2, R2NN(f2) =
{u1, u2, u3} because f2 is one of the two closest facilities for all of the three users.
Similarly, R2NN(f1) = {u2, u3}, R2NN(f3) = ∅ and R2NN(f4) = {u1}.

c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 61–79, 2015.
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Fig. 1. Illustration of the reverse nearest neighbor query and its variants

RkNN queries have numerous applications [1] in location based services,
resource allocation, profile-based management, decision support etc. Consider
the example of a supermarket. The people for which this supermarket is one of
the k closest supermarkets are its potential customers and may be influenced by
targeted marketing or special deals. Due to its significance, RNN queries and its
variants have received significant research attention in the past decade (see [6]
for a survey).

In this paper, we propose an alternative definition of influence and propose a
variant of RNN queries called relaxed reverse nearest neighbors (RRNN) query.
This definition is motivated by our observation that an RkNN query may not
properly capture the notion of influence as explained below.

1.1 Motivation

Consider the example of a person living in a suburban area (e.g., u2 in Fig. 1)
who does not have any McDonald’s nearby. Her nearest McDonald’s is f1 which
is say 30 Km from her location. In the context of R2NN query, u2 is influenced
by f1 and f2 – her two nearest facilities. However, we argue that it is also
influenced by f3 because a user who needs to travel a minimum of 30 Km to
visit a McDonald’s may also be willing to travel to a McDonald’s store 31 Km
far from her location.

Similarly, consider the example of another person living in a suburb (e.g.,
u1 in Fig. 1) who has only one McDonald’s nearby (f4) assuming that all other
McDonald’s (e.g., f1 to f3) are in downtown area and are quite far. In the context
of R2NN queries, the user u1 is considered to be influenced by both f4 and f2
because these are her two closest facilities. However, we argue that the user u1

is only influenced by f4 because the other facilities are significantly farther than
dist(u1, f4), e.g., a user who has a McDonald’s within 1 Km is not very likely to
visit a McDonald’s that is say 30 Km from her location.

As shown above, the definition of influence used in RkNN queries considers
only the relative ordering of the facilities based on their distances from u and
ignores the actual distances of the facilities from u. Motivated by this, in this
paper, we propose a relaxed reverse nearest neighbors (RRNN) query that relaxes
the definition of influence using a parameter x (called the x factor in this paper)
and considers the relative distances between the users and the facilities.
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Definition 1. Let NNdist(u) denote the distance between u and its nearest
facility. Given a value of x > 1, a user u is said to be influenced by a facility f ,
if dist(u, f) ≤ x × NNdist(u).

Relaxed Reverse Nearest Neighbors (RRNN) Query. Given a value of x >
1, an RRNN query q returns every user u for which dist(u, q) ≤ x × NNdist(u),
i.e., return every user u that is influenced by q according to Definition 1. The set
of RRNNs of a query q is denoted as RRNNx(q). Note that an RRNN query is the
same as an RNN query if x = 1.

In the example of Fig. 1, assuming x = 1.2, RRNN of f2 are the users u2

and u3, i.e., RRNN1.2(f2) = {u2, u3}. Similarly, RRNN1.2(f1) = {u2, u3},
RRNN1.2(f3) = {u2} and RRNN1.2(f4) = {u1}.

Remark. RkNN queries and RRNN queries assume that the distance is the main
factor influencing a user. This assumption holds in many real world scenarios.
For instance, the users looking for nearby fuel stations are usually not concerned
about price (or even rating) because all fuel stations have similar price (or even
the same price because, in some countries, the fuel prices are regulated by the
government). Similarly, users interested in McDonald’s restaurants are mainly
influenced by the distance because other attributes such as price, menu, and
ratings are the same for all stores. Nevertheless, in the case where the users
are influenced by other attributes, reverse top-k queries [11,12] can be used to
compute the influence using a scoring function involving multiple attributes such
as distance, price, and rating. This is a different line of research and is not within
the scope of this paper.

1.2 Contributions

We make the following contributions in this paper.

1. We complement the RkNN queries by proposing a new definition of influence
that uses the x factor to provide more meaningful results by considering the
relative distances between the users and the facilities.

2. As we show in Sect. 3, the pruning techniques used to solve RkNN queries
cannot be applied or extended for RRNN queries. This is mainly because,
in our problem settings, a facility f may not be able to prune the users
that are quite far from f (see Sect. 3 for details). Based on several non-
trivial observations, we propose efficient pruning techniques that are proven
to be tight, i.e., given a facility f used for pruning, the pruning techniques
guarantee to prune every point that can be pruned by f . We then propose
an efficient algorithm that utilizes these pruning techniques to efficiently
compute the RRNNs.

3. We conduct an extensive experimental study on three real data sets and sev-
eral synthetic data sets to show the effectiveness of our proposed techniques.
Since existing techniques cannot be extended to answer RRNN queries, we
compare our algorithm with a näıve algorithm (called RQ) as well as a signif-
icantly improved version of RQ (called IRQ). The experimental results show
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that our algorithm is several orders of magnitude better than both of the
competitors. Furthermore, we note that the results of an RRNN query are
the same as the RkNN (k = 1) query when x is quite close to 1. Therefore,
we also compare our algorithm (by setting x = 1 + 10−0.6) with the most
notable RNN algorithms. Although our algorithm solves a more challenging
version of the problem, our experiments show that it performs reasonably
well compared to RNN algorithms.

The rest of the paper is organized as follows. We present the problem defini-
tion and an overview of the related work in Sect. 2. The pruning techniques are
discussed in Sect. 3. Section 4 describes our algorithm to solve RRNN queries.
An extensive experimental study is provided in Sect. 5 followed by conclusions
and directions for future work in Sect. 6.

2 Preliminaries

2.1 Problem Definition

Similar to RkNN queries, RRNN queries can also be classified into bichromatic
RRNN queries and monochromatic RRNN queries.

Bichromatic RRNN Query. Given a set of users U , a set of facilities F ,
a query facility q (which may or may not be in F ), and a value of x > 1,
a bichromatic RRNN query returns every user u ∈ U for which dist(u, q) ≤
x×NNdist(u) where NNDist(u) denotes the distance between u and its nearest
facility in F .

Monochromatic RRNN Query. Given a set of facilities F , a query facility q
(which may or may not be in F ), and a value of x > 1, a monochromatic RRNN
query returns every facility f ∈ F for which dist(f, q) ≤ x × NNdist(f) where
NNDist(f) denotes the distance between f and its nearest facility in {F − f}.

In Fig. 1, the monochromatic RRNNs of f2 (assuming x = 1.5) are f1 and f3.
Monochromatic queries aim at finding the facilities that are influenced by the
query facility. Consider a set of police stations. For a given police station q, a
monochromatic query returns the police stations for which q is a nearby police
station. Such police stations may seek assistance (e.g., extra policemen) from q
in case of an emergency event.

Although our techniques can be easily applied to monochromatic RRNN
queries, in this paper, we focus on bichromatic RRNN queries because the bichro-
matic version has more applications in real world scenarios. Similar to the exist-
ing work on RNN queries, we assume that both the facility and user data sets
are indexed by R*-tree [13]. The R*-tree that indexes the set of facilities (resp.
users) is called facility (resp. user) R*-tree. Since most of the applications of the
RNN query and its variants are in location-based services, similar to the existing
RNN algorithms [6], the focus of this paper is on two dimensional location data.
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2.2 Related Work

The RkNN query has been extensively studied [2–5,7–10,14–19] ever since it was
introduced in [1]. Below, we briefly describe two widely used pruning strategies.

Half-Space Based Pruning [5]. A perpendicular bisector between a facility f
and a query q divides the whole space into two halves. Let Hf :q denote the half-
space that contains f and Hq:f be the half-space that contains q. A user u that
lies in Hf :q cannot be the RNN of q because dist(u, f) < dist(u, q). Consider
the example of Fig. 2, where the half-space Ha:q is the shaded area. The users
u1 and u2 cannot be the RNN of q because they lie in Ha:q. This observation
can be extended for RkNN queries. Specifically, a user u cannot be the RkNN
of q if it lies in at least k such half-spaces. In Fig. 2, assuming k = 2, the user u2

cannot be R2NN of q because it lies in Ha:q and Hb:q. In other words, the area
Ha:q ∩ Hb:q (the dark shaded area) can be pruned.

Six-Regions Based Pruning [2]. In six-regions based pruning approach, the
space around q is divided into six equal regions of 60◦ each (see P1 to P6 in Fig. 3).
Let dki be the distance between q and its k-th nearest facility in a partition Pi.
It can be proved that a user u lying in a partition Pi cannot be the RkNN of
q if dist(u, q) > dki . Based on this observation, the k-th nearest facility in each
partition Pi is found and the distance dki is used to prune the search space. For
instance, in Fig. 3, the shaded area can be pruned if k = 1, i.e., the users u1 and
u2 are pruned.

Fig. 2. Half-space pruning Fig. 3. Six-regions prun-
ing

Fig. 4. Challenges

It has been shown [5] that the half-space based approach prunes more area
than the six-regions based pruning. However, the advantage of the six-regions
based pruning is that it is computationally less expensive. Six-region [2] and
Slice [10] are the most notable algorithms that use six-regions based pruning
whereas TPL [5], FINCH [20], InfZone [8,21], and TPL++ [6] are some of the
remarkable algorithms that employ half-space based pruning. The details of these
algorithms can be found in a recent survey paper [6].

To the best of our knowledge, none of the existing algorithms can be applied
or trivially extended to answer RRNN queries studied in this paper. The idea of



66 A. Hidayat et al.

relative distances has been discussed in [22] in the context of k nearest neighbors
queries. However, this is a survey study and a solution was not proposed.

3 Pruning Techniques

Given a facility f , a user u cannot be the RRNN of q if dist(u, q) > x×dist(u, f).
In such case, we say that the facility f prunes the user u. In this section, we will
present the pruning techniques that use a facility f or an MBR of the facility
R*-tree to prune the users. First, we highlight the challenges.

3.1 Challenges

Existing pruning techniques cannot be applied or extended for the RRNN queries
due to the unique challenges involved. For instance, the algorithms to solve
RkNN queries can prune most of the search space by considering only the nearby
facilities surrounding q. Consider the example of Fig. 4 where the six-regions
approach finds the nearest facility to the query q in each of the six partitions
and the shaded area can be pruned.

However, in the case of RRNN queries, the nearby facilities surrounding the
query q are not sufficient to prune a large part of the search space. Assuming
x = 2, in partition P3 (see Fig. 4), while the user u1 can be pruned by f the
user u2 cannot be pruned by f . In other words, the users that are further from
a facility f are less likely to be pruned by it.

In Fig. 4, assuming x = 2, the six shaded circles show the maximum possible
area that can be pruned by the six facilities a to f (the details on how to compute
the circles will be presented later). Note that the facilities that are close to q
prune a smaller area as compared to the farther facilities. Hence, the algorithm
needs to access not only nearby facilities but also farther facilities to prune a
large part of the search space. Also, note that RRNN queries are more challenging
because the maximum area that can be pruned is significantly smaller.

In Sect. 3.2, we present the pruning techniques that prune the space using
a data point, i.e. a facility f . In Sect. 3.3, we present the techniques to prune
the space using an MBR of the facility R*-tree. Efficient implementation of the
pruning techniques is discussed in Sect. 3.4.

3.2 Pruning Using a Facility Point

Before we present our non-trivial pruning technique, we present the definition
of a pruning circle.

Definition 2 (Pruning circle). Given a query q, a multiplication factor x > 1
and a point p, the pruning circle of p (denoted as Cp) is a circle centered at c

with radius r where r = x·dist(q,p)
x2−1 and c is on the line passing through q and p

such that dist(q, c) > dist(p, c) and dist(q, c) = x2·dist(q,p)
x2−1 .
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Consider the example of Fig. 5 that shows the pruning circle Cf of a facility
f assuming x = 2. The centre of c is located on the line passing through q and f

such that dist(q, c) = 4·dist(q,f)
3 , dist(q, c) > dist(f, c) and radius r = 2·dist(q,f)

3 .
The condition dist(q, c) > dist(f, c) ensures that c lies towards f on the line
passing through q and f , i.e., f lies between the points c and q as shown in
Fig. 5. Next, we introduce our first pruning rule in Lemma 1.

Lemma 1. Every user u that lies in the pruning circle Cf of a facility f cannot
be the RRNN of q, i.e., dist(u, q) > x × dist(u, f).

Proof. Given two points v and w, we use vw to denote dist(v, w). Consider the
example of Fig. 5. Since u is inside the circle Cf , uc < r. Assume that uc = n · r
where 0 ≤ n < 1. Since r = x·qf

x2−1 , we have uc = n · r = n · x·qf
x2−1 .

Fig. 5. Lemma 1 Fig. 6. Lemma 3 Fig. 7. Pruning using MBR

Considering the triangle �quc, qu =
√

(qc)2 + (uc)2 − 2 · uc · qc · cos θ. Since
uc = n · x·qf

x2−1 and qc = x2.qf
x2−1 , we have

qu =

√

(
x2 · qf

x2 − 1
)2 + n2(

x · qf

x2 − 1
)2 − 2n(

x · qf

x2 − 1
)(

x2 · qf

x2 − 1
) · cos θ

=

√

(
x · qf

x2 − 1
)2(x2 + n2 − 2 · x · n · cos θ)

= (
x · qf

x2 − 1
)
√

x2 + n2 − 2xn cos θ

(1)

Similarly considering �fcu, fu =
√

(fc)2 + (uc)2 − 2 · uc · fc · cos θ. Since

fc = qc − qf and qc = x2.qf
x2−1 , we get fc = qf

x2−1 . We can obtain the value of fu

by replacing the values of fc and uc.
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fu =

√

(
qf

x2 − 1
)2 + n2(

x · qf

x2 − 1
)2 − 2 · n(

x · qf

x2 − 1
) · (

qf

x2 − 1
) · cos θ

= (
qf

x2 − 1
)
√

1 + n2x2 − 2nx cos θ

(2)

Note that the user u can be pruned if dist(u, q) > x × dist(u, f). Therefore,
we need to show qu − x · fu > 0. The left side of this inequality can be obtained
using the values of qu and fu from Eqs. (1) and (2), respectively.

qu − x · fu =
x.qf

x2 − 1
(
√

x2 + n2 − 2xn cos θ −
√

1 + x2n2 − 2xn cos θ ) (3)

Since x > 1, ( x.qf
x2−1 ) is always positive. Hence, we just need to prove that

(
√

x2 + n2 − 2xn cos θ − √
1 + x2n2 − 2xn cos θ > 0. In other words, we need to

show (
√

x2 + n2 − 2xn cos θ >
√

1 + x2n2 − 2xn cos θ. Note that both sides of
this inequality are positive (otherwise qu and fu in Eqs. (1) and (2) would be
negative which is not possible). Hence, we can take the square of both sides
resulting in x2 + n2 − 2xn cos θ > 1 + x2n2 − 2xn cos θ which implies that we
need to prove (x2 + n2 − x2n2 − 1) > 0. This inequality can be simplified as
(x2−1)(1−n2) > 0. Since x > 1 and n < 1, it is easy to see that (x2−1)(1−n2) >
0 which completes the proof. �	

Note that although the pruning technique itself is non-trivial, applying this
pruning rule is not expensive, i.e., to check whether a user u can be pruned or
not, we only need to compute its distance from the centre c and compare it with
the radius r. Next, we show that this pruning rule is tight in the sense that any
user u′ that lies outside Cf is guaranteed not to be pruned by the facility f .

Lemma 2. Given a facility f and a user u′ that lies on or outside its pruning
circle Cf , then dist(u′, q) ≤ x × dist(u′, f), i.e. u′ cannot be pruned by f .

Proof. Consider the user u′ in Fig. 5. Since u′ is on or outside the pruning circle,
it satisfies u′c = n · r, where n ≥ 1. The proof is similar to the proof of Lemma 1
except that we need to show that u′q − x.fu′ ≤ 0, i.e., we need to show (x2 −
1)(1 − n2) ≤ 0 which is obvious given that x > 1 and n ≥ 1. �	

Note that the pruning circle Cf is larger if dist(q, f) is larger which implies
that the facilities that are farther from the query prune larger area. For instance,
in Fig. 6, the pruning circle Cb is bigger than the pruning circle Ca.

3.3 Pruning Using the Nodes of Facility R*-tree

In this section, we present our techniques to prune the search space using the
intermediate or leaf nodes of the facility R*-tree. These pruning techniques
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reduce the I/O cost of the algorithm because the algorithm may prune the
search space using a node of the R*-tree instead of accessing the facilities in its
sub-tree.

A node of the facility R*-tree is represented by a minimum bounding rec-
tangle (MBR) that encloses all the facilities in its sub-tree. Without accessing
the contents of the node, we cannot know the locations of the facilities inside it
except that each side of the MBR contains at least one facility. We utilize this
information to devise our pruning techniques. Specifically, we use all four sides
of the MBR and use each side (i.e., line segment) to prune the search space.
Lemma 3 presents the pruning rule and Fig. 6 provides an illustration.

Lemma 3. Given a query q, a multiplication factor x > 1, and a line ab rep-
resenting a side of an MBR, a user u cannot be the RRNN of q if it lies inside
both of the pruning circles Ca and Cb, i.e., u can be pruned if u lies in Ca ∩ Cb.

Proof. Let maxdist(p, ab) denote the maximum distance between a point p and
a line ab. Note that maxdist(u, ab) = max(dist(u, a), dist(u, b)). Since u lies
in both Ca and Cb, dist(u, q) > x × dist(u, a) and dist(u, q) > x × dist(u, b)
(according to Lemma 1). In other words, dist(u, q) > x × maxdist(u, ab). Since
there is at least one facility f on the line ab, dist(u, f) ≤ maxdist(u, ab). Hence,
dist(u, q) > x × dist(u, f) which implies that the user u can be pruned. �	

In Fig. 6, the shaded area can be pruned by using the line ab. he next lemma
shows that this pruning rule is also tight.

Lemma 4. Given a line ab such that the only information we have is that there
is at least one facility f on ab, a user u cannot be pruned if it lies outside either
Ca or Cb.

Proof. Without the loss of generality, assume that u lies outside Ca. Now assume
that there is exactly one facility f on the line ab and it lies at the end point a.
Since f lies on a, Ca = Cf which implies that u is outside Cf . Hence, u cannot
be pruned by f (Lemma 2). �	

To prune the search space using an MBR, we apply Lemma 3 on each of side
si of the MBR. Specifically, a user u can be pruned if, for any side si of the
MBR, u lies in both of the pruning circles of the end points of si. Consider the
example of Fig. 7 where an MBR abcd is shown along with the pruning circles
of the corners of the MBR (see Ca to Cd). Let Ai denote the area pruned by a
side si of the MBR. In Fig. 7, the shaded area can be pruned which corresponds
to ∪4

i=1Ai where A1 = Ca ∩Cb, A2 = Cb ∩Cc, A3 = Cc ∩Cd, and A4 = Cd ∩Ca.

3.4 Implementation of the Pruning Techniques

In the previous sections, we discussed how to prune the search space using a
facility point or an MBR of the facility R*-tree. In this section, we discuss how
to efficiently and effectively implement the pruning techniques.
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Assume that we have a set of facilities and MBRs to be used for pruning
the search space. Let Ai denote the area pruned by a facility point or a side
of an MBR. Let A = {Ai, · · · , An} be the total area that can be pruned by
using the set of facilities and MBRs. In this section, we present Algorithm 1
that efficiently checks whether an entry e of user R*-tree (i.e., a point or an
MBR) can be pruned by A or not, i.e., whether e lies inside A or not. Before
we discuss the details of Algorithm 1, we describe how to prune a user MBR e
using a single pruning area Ai ∈ A. Since e is an MBR, it is possible that e only
partially lies in Ai. Ideally, we should be able to prune the part of the MBR that
lies inside Ai. In our algorithm, we process the MBR e such that the area that
lies inside Ai is trimmed. Below are the details on how to do this.

Case 1: Ai corresponds to the area pruned by a facility. Consider the example of
Fig. 8 where Ai corresponds to the circle Ca. Note that only a part of the rec-
tangle R lies in the circle. In such case, we conservatively approximate the area
that can be pruned. Specifically, we use a function TrimEntry(Ca, R) that trims
the MBR R using a circle Ca and returns Ra that corresponds to the minimum
bounding rectangle of the part of R that lies outside Ca, i.e., Ra cannot be
pruned by Ca. In Fig. 8, Ra is the shaded area. In Fig. 9, Rb (the light shaded
area) is returned by TrimEntry(Cb, R). The function TrimEntry(Ca, R) can be
implemented as follows. Let I be the set of intersection points between a circle
Ca and a rectangle R. Let C be the corners of R that lie outside Ca. The trimmed
entry Ra is the minimum bounding rectangle enclosing the points in I ∪ C.

Fig. 8. Trimming an MBR Fig. 9. Pruning an entry Fig. 10. Observations 1 & 2

Case 2: Ai corresponds to the area pruned by a side of an MBR. Consider the
example of Fig. 9 where Ai corresponds to the area pruned by a line ab, i.e.,
Ai = Ca ∩ Cb. In this case, we find the part of the MBR R that cannot be
pruned by Ai as follows. Let Ra = TrimEntry(Ca, R) (see the dark shaded area)
and Rb = TrimEntry(Cb, R) (see the light dotted area) in Fig. 9. The unpruned
part of R is the minimum bounding rectangle enclosing both Ra and Rb, e.g.,
Rt shown in thick broken lines in Fig. 9 cannot be pruned by Ca ∩ Cb.

Algorithm 1 shows the details of how to prune an entry e using a set of
pruned areas A. The output of the algorithm is the part of e that cannot be
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Algorithm 1. PruneEntry(e,A)
Input: e: the entry to be pruned, A: the set of pruned areas
Output: Return the part of e that cannot be pruned by A
1: for each Ai ∈ A do
2: if Ai is related to a facility f then
3: R ← TrimEntry(Cf ,e)
4: else if Ai is related to a line ab then
5: Ra ← TrimEntry(Ca,e)
6: Rb ← TrimEntry(Cb,e)
7: R ← minimum bounding rectangle enclosing both Ra and Rb

8: e ← R
9: if e is empty then

10: return φ
11: return e

pruned by A. Each entry Ai is iteratively accessed from A and the entry e is
trimmed using the details described earlier (lines 2 to line 7). The trimmed part
R is assigned to e which is to be further trimmed in the next iteration (line 8).
At any stage, if e is empty, the algorithm terminates by returning φ (line 10)
which indicates that the whole entry e can be pruned by A. When all entries Ai

in A have been accessed, the algorithm returns e.
We remark that although the trimming significantly improves the I/O cost

(2 to 3 times) of the algorithm, the overall CPU time is also increased due to
the overhead of trimming. This must be taken into consideration when making
the decision on whether to use trimming or not, e.g., the trimming should not
be used if the main focus is to optimize CPU cost.

Improving Algorithm 1. Note that Algorithm 1 accesses every entry Ai ∈ A
regardless of whether Ai can prune a part of e or not. Now, we discuss how
to improve the efficiency of Algorithm 1 by ignoring the entries Ai that cannot
prune e. Similar to six-regions approach [2] and Slice [10], we divide the whole
space around q in t equally sized partitions, e.g., see the partitions P1 to P6 in
Fig. 10. Our technique is based on the following two simple observations.

Observation 1. Let P be the set of partitions overlapped by a pruned area Ai.
An entry e can be pruned by Ai only if e overlaps with at least one partition
in P. Consider the example of Fig. 10 where the area Ai is shown shaded and
overlaps with partitions P3 and P4. Since the entry e1 does not overlap with P3

or P4, it cannot be pruned by Ai.

Observation 2. Let Ai.max and Ai.min denote the maximum and minimum dis-
tances between q and the pruned area Ai, respectively. Figure 10 shows Ai.max =
dist(q, a) and Ai.min = dist(q, b). We remark that Ai.max and Ai.min can be
computed following the ideas presented in [23,24]. Note that an entry e can-
not be pruned by Ai if mindist(q, e) > Ai.max or maxdist(q, e) < Ai.min. For
instance, the entry e2 cannot be pruned by Ai because mindist(q, e2) > Ai.max.
Similarly, the entry e3 cannot be pruned because maxdist(q, e3) < Ai.min.
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Let Ai.interval denote an interval from Ai.min to Ai.max and e.interval
denote an interval from mindist(q, e) to maxdist(q, e). Observation 2 shows that
an entry e can be pruned by Ai only if e.interval overlaps with Ai.interval.
We use an interval tree [25] to efficiently retrieve every Ai for which Ai.interval
overlaps with e.interval. Specifically, for each partition Pi, we maintain an inter-
val tree Ti that contains Aj .interval for every Aj ∈ A that overlaps with Pi.
To check whether an entry e (that overlaps with a partition Pi) can be pruned by
A, we issue an interval query on Ti with input interval e.interval. Let Ae denote
the set containing every area Aj returned by the interval query e.interval. In
Algorithm 1, we use Ae instead of A. Note that the cost of interval query is
O(m + log n) where n is the number of intervals stored in the interval tree and
m is the number of intervals that overlap with the input interval.

4 Algorithm

Our algorithm consists of three phases namely pruning, filtering and verification.
In the pruning phase, we use the facility R*-tree to prune the search space, i.e.,
compute A. In the filtering phase, the users that lie in the pruned space are
pruned and the remaining users are inserted in a candidate list called Lcnd.
Finally, in the verification phase, each candidate user u ∈ Lcnd is verified to
check whether it is a RRNN of q or not.

Pruning Phase. Algorithm 2 presents the details of the pruning phase. The
algorithm initializes a heap h with the root of the facility R*-tree. The entries
are iteratively de-heaped from the heap and are processed as follows. If a de-
heaped entry e is pruned (i.e., the entry e′ returned by Algorithm 1 is empty),
we ignore it (lines 5 and 6). Otherwise, we process it as follows.

Algorithm 2. Pruning
Input: facility R*-tree, and a query q
Output: The set of pruned areas A
1: A ← φ
2: insert root of facility R-tree in a h
3: while h is not empty do
4: de-heap an entry e
5: e′ ← PruneEntry(e, A) � Algorithm 1
6: if e′ �= φ then � e is not pruned
7: if e is an intermediate or leaf node then
8: for each side ab of e do
9: create Ai = Ca ∩ Cb and insert in A

10: for each child c of e do
11: if c overlaps with e′ then insert c in the heap
12: else � e is a facility point
13: create Ai = Ce and insert in A
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Algorithm 3. Filtering
Input: user R*-tree, query q, and A
Output: a list of candidates Lcnd

1: Lcnd ← φ
2: insert root of user R*-tree in a stack S
3: while S is not empty do
4: retrieve top entry e from S
5: e′ ← PruneEntry(e, A) � Algorithm 1
6: if e′ �= φ then � e is not pruned
7: if e is an intermediate or leaf node then
8: for each child c of e do
9: if c overlaps with e′ then insert c in stack S

10: else � e is a user
11: insert e in Lcnd

If e is an intermediate or leaf node of the R*-tree, for each side of e, we create
a pruning area Ai and insert it in A (line 9). We also insert its children in the
heap h. Note that a child c of e that does not overlap with e′ can be pruned
because it lies in the pruned area. Hence, only the children that overlap with e′

are inserted in the heap (line 11). If e is a facility point, we create the pruning
circle Ce and add it to A (line 13). The algorithm terminates when the heap
becomes empty.

Filtering Phase. Algorithm 3 describes the filtering phase. A stack S is initial-
ized with the root entry of the user R*-tree. Each entry e is iteratively retrieved
from S and processed as follows. If e can be pruned by A, it is ignored (lines 5
and 6). Otherwise, if it is an intermediate or leaf node, its children that overlap
with e′ are inserted in the stack (line 9). If e is a user, it is inserted in Lcnd

(line 11). The algorithm stops when the stack S becomes empty.

Verification Phase. In the verification phase, each candidate user u ∈ Lcnd is
verified as follows. Note that a user u is a RRNN if and only if there is no facility
f for which dist(u, f) < dist(u,q)

x . A circular boolean range query is issued with
centre at u and radius r = dist(u,q)

x that returns true if and only if there exists a
facility in the circle. The boolean range query is conducted on the facility R*-tree
as in previous works [7] and u is reported as an answer if it returns false.

5 Experiments

5.1 Experimental Setup

To the best of our knowledge, there is no prior algorithm to solve RRNN queries.
We consider a näıve algorithm (RQ) and make reasonable efforts to devise a
significantly improved version of RQ, as explained below.

Range Query (RQ). For each user u, a boolean range query with range
dist(u, q)/x is issued on the facility R*-tree (as described in the verification
phase above).
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Improved Range Query (IRQ). Note that an intermediate or leaf node entry
eu of the user R*-tree cannot contain any RRNN if there exists at least one
facility f such that mindist(eu, q) > x × maxdist(eu, f), i.e., eu can be pruned.
Based on this, to check whether eu can be pruned or not, we use a function
isPruned(eu) that is implemented as follows. The facility R*-tree is traversed
in ascending order of maxdist(eu, ef ) where ef denotes an entry in the facil-
ity R*-tree. The entry eu is pruned as soon as we find an entry ef for which
mindist(eu, q) > x × maxdist(eu, ef ). To further improve the I/O and CPU
cost of isPruned(eu), we do not access the sub-tree of a facility entry ef if
mindist(eu, q) < x × mindist(eu, ef ) because no child of ef can prune eu.

The IRQ algorithm is the same as Algorithm 3 except that (1) “if isPruned(e)
then” replaces lines 5 and 6 of Algorithm 3; and (2) at line 11, the user is reported
as an answer instead of inserting it in Lcnd. Note that IRQ does not have a pruning
and verification phase because it merges all these phases in one algorithm. In our
experiments, we observed that the performance of IRQ can be further improved
if isPruned(eu) is only applied to leaf entries of the user R*-tree. This is because
the intermediate nodes are highly unlikely to be pruned and result in un-necessary
I/O. We included this optimization in IRQ.

All algorithms were implemented in C++ and experiments were run on Intel
Core I 5 2.3 GHz PC with 8 GB memory running on Debian Linux. Experimental
settings are quite similar to the existing work [6]. Specifically, we use the same
real data sets containing 175, 812 points from North America (called NA data
set hereafter), 2.6 million points from Los Angeles (LA) and 25.8 million points
from California (CA). We also generate several synthetic data sets containing
1, 000 to 20 million points following normal distributions. The default real data
set is LA containing 2.6 million points. Unless mentioned otherwise, each data
set is randomly divided into two sets of almost equal size, one corresponding to
the facilities and the other to the users. The page size of each R*-Tree [13] is
set to 4, 096 Bytes. We randomly select 100 points from the facility data set and
treat them as query points. The cost reported in the experiments correspond to
the average cost of a single RRNN query. We vary the value of x from 1.1 to 4
and the default value is 1.5.

5.2 Evaluating Performance

Effect of Buffers. All three algorithms need to traverse facility R*-tree every
time a boolean range query is issued to verify a candidate user. Hence, the buffers
may reduce the I/O cost. We study the effect of the number of buffers on each
algorithm. Each buffer page can hold one node of the R*-tree and we use random
eviction strategy. In Fig. 11, we report the I/O cost of each algorithm on LA data
set for different number of buffers. As expected, the I/O cost of each algorithm
decreases with the increase in number of buffers. Note that IRQ is up to two
orders of magnitude better than RQ and our algorithm is up to three orders
of magnitude better than IRQ. Similar to [6], we use 100 buffer pages for each
algorithm in the rest of the experiments.
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Fig. 12. Effect of the x factor (LA data set)

Effect of the x Factor. In Fig. 12, we study the effect of the x factor on
the three algorithms. Specifically, Fig. 12(a) shows the CPU cost and Fig. 12(b)
shows the I/O cost of the three algorithms for varying values of x. In terms of
both CPU and I/O cost, our algorithm is up to three orders of magnitude better
than IRQ and up to four orders of magnitude better than RQ. The cost of our
algorithm and IRQ is higher for larger x factor because the pruning area shrinks
as the x factor increases which results in a larger number of candidates and
RRNNs. Note that the cost of RQ is not significantly affected by the x factor
mainly because it needs to verify every user regardless of the value of x.

Effect of Data Set Size. In Fig. 13(a) and (b), we study the effect of data set
size on the performance of the three algorithms. Specifically, we conduct experi-
ments on three real data sets: NA (175, 000 points), LA (2.6 million points) and
CA (25.8 million points). Our algorithm outperforms the other two algorithms
and the gap between the three algorithms increases as the data set size increases
(please note that log-scale is used in both figures). For example, Fig. 13(a) shows
that our algorithm is around 25 times faster than IRQ on NA data set and 330
times faster on CA data set. Similarly, Fig. 13(b) shows that the I/O cost of
our algorithm is around 12 times lower than IRQ for NA data set and almost
430 times lower for CA data set. Also, as expected the cost of each algorithm
increases as the data set size increases. This is mainly because the size of each
R*-tree increases and more entries are required to be processed.
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Fig. 13. Performance comparison on different real data sets



76 A. Hidayat et al.

Since our algorithm is up to several orders of magnitude better than the other
algorithms, in the rest of the experiments, we focus on analysing the behavior of
our algorithm and omit the cost of the other algorithms for better illustration.

Effect of Relative Data Size. In the previous experiments, each data set
contained almost the same number of users and facilities. Next, we analyse the
performance of our algorithm where the number of users and the number of
facilities are different. Specifically, in Fig. 14 we vary the number of facilities
from 1000 to 1 million and the number of users is fixed to 100K. The sets of
facilities and users are generated using normal distribution. Figure 14(a) and (b)
show the CPU and I/O cost of our algorithm, respectively. Figure 14(c) shows
the number of candidates, number of RRNNs and the number of entries (facility
points and MBRs) used for pruning.
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Fig. 14. Effect of varying the number of facilities (100 K users)

Figure 14(a) shows that the CPU cost of our algorithm is larger if the number
of facilities is too small or too large as compared to the number of users. The
reason is as follows. When the number of facilities is too small (e.g., 1, 000),
the total area that can be pruned is smaller due to the lower density of the
facilities. This results in a larger number of candidates and RRNNs (as shown
in Fig. 14(c)). Hence, the verification cost of the algorithm is larger as shown
in Fig. 14(a). On the other hand, when the number of facilities is too large
(e.g., 1 million), the pruning phase is the dominant cost of the algorithm. This
is because the algorithm needs to access a larger number of entries to prune the
search space (see Fig. 14(c)).

Figure 14(b) shows the I/O cost of our algorithm. When the number of facil-
ities is too small, the I/O cost of the filtering phase is larger because the area
that can be pruned is smaller due to the lower density of facilities data set. The
I/O cost of pruning phase increases as the number of facilities increases. This is
because the size of facility R*-tree increases and more entries are required to be
accessed to prune the search space.

In Fig. 15, we vary the number of users from 1, 000 to 1 million and fix the
number of facilities to 100K. Figure 15(a) shows that the CPU cost of the algo-
rithm increases as the number of users increases. This is because the filtering
and verification cost of the algorithm increases for larger set of users, e.g., the
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Fig. 16. Comparison with state-of-the-art RNN algorithms

number of candidate users and RRNNs increases (as shown in Fig. 15(c)). Simi-
larly, Fig. 15(b) shows that the I/O cost of the algorithm also increases for larger
number of users. This is because the filtering requires traversing a larger user
R*-tree which results in requiring to access more nodes of the users.

Figure 15(c) also shows the effectiveness of the proposed pruning techniques.
Note that the number of candidates is much smaller as compared to the total
number of users. Furthermore, almost 65% of the candidates are the relaxed
reverse nearest neighbors. We remark that the verification I/O cost of our algo-
rithm is negligible mainly because most of the nodes accessed during verification
are already present in the buffer (from pruning phase or the previously issued
boolean range queries).

Efficiency Compared with RNN Algorithms. As stated earlier, there is
no previous algorithm to solve RRNN queries and the existing algorithms to
solve RNN queries cannot be trivially extended. Although we made significant
efforts to devise the second competitor IRQ, our algorithm is up to three orders of
magnitude better than it. In the absence of a well-known competitor, readers may
find it harder to evaluate the efficiency of an algorithm. Therefore, we compare
our algorithm with the most well-known RNN algorithms, namely Slice [10],
InfZone [8], TPL [5], FINCH [20] and six-regions [2]. For our algorithm, we set
x = 1 + 10−6 because we note that the results of an RRNN query is the same
as those of an RNN query if x is very close to 1.

Figure 16 shows that the performance of our algorithm is comparable to the
most popular RNN algorithms which shows the effectiveness of the techniques



78 A. Hidayat et al.

proposed in this paper. We remark that this experiment is conducted only to
demonstrate that our algorithm is efficient and it should not be used to draw any
conclusion regarding the superiority of our algorithm over any other algorithm
and vice versa. This is because our algorithm solves an inherently different and
arguably more challenging problem.

6 Conclusions and Future Work

In this paper, we propose a variant of RNN queries called relaxed reverse nearest
neighbors (RRNN) queries. An RRNN query relaxes the definition of influence
using the relative distances between the users and the facilities. RRNN queries
are motivated by our observation that RkNN queries may be unable to properly
capture the notion of influence. We propose an efficient algorithm based on
several efficient and effective pruning techniques and non-trivial observations.
The pruning techniques are proved to be tight. The extensive experimental study
demonstrates that our algorithm is several orders of magnitude better than the
competitors.

There are several interesting directions for future work. For example, it will
be interesting to study the relaxed version of reverse top-k queries by using the
idea of relative scores, i.e., return every user for whom the query product is
almost as good as her most preferred product. Also, continuous RRNN queries
for moving objects is another interesting research direction, e.g., continuously
report the drivers for which my fuel station is an RRNN. RRNN queries for
other distance metrics such as road network distances also need to be explored.

Acknowledgments. The research of Muhammad Aamir Cheema is supported by
ARC DE130101002 and DP130103405.

References

1. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD, pp. 201–212 (2000)

2. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: ACM SIGMOD Workshop, pp. 44–53 (2000)

3. Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest
neighbor queries on uncertain data. IEEE Trans. Knowl. Data Eng. 22, 550–564
(2010)

4. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets
in frequently updated databases. In: PVLDB, pp. 99–108 (2001)

5. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality.
In: PVLDB, pp. 744–755 (2004)

6. Yang, S., Cheema, M.A., Lin, X., Wang, W.: Reverse k nearest neighbors query
processing: experiments and analysis. In: PVLDB, pp. 605–616 (2015)

7. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: FINCH: evaluating reverse k-nearest-
neighbor queries on location data. In: PVLDB, pp. 1056–1067 (2008)



Relaxed Reverse Nearest Neighbors Queries 79

8. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently processing
reverse k nearest neighbors queries. In: ICDE, pp. 577–588 (2011)

9. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest
neighbors queries in euclidean space and in spatial networks. VLDB J. 21, 69–95
(2012)

10. Yang, S., Cheema, M.A., Lin, X., Zhang, Y.: SLICE: reviving regions-based pruning
for reverse k nearest neighbors queries. In: ICDE, pp. 760–771 (2014)

11. Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørv̊ag, K.: Reverse top-k queries. In:
ICDE, pp. 365–376 (2010)

12. Cheema, M.A., Shen, Z., Lin, X., Zhang, W.: A unified framework for efficiently
processing ranking related queries. In: EDBT, pp. 427–438 (2014)

13. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, Atlantic City, NJ,
23–25 May, pp. 322–331 (1990)
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bor search in dynamic and general metric databases. In: EDBT, pp. 886–897 (2009)

17. Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with voronoi diagrams for efficient
processing of spatial nearest neighbor queries. PVLDB 3(1), 1231–1242 (2010)

18. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: an effi-
cient technique to continuously monitoring reverse knn. In: PVLDB, pp. 1138–1149
(2009)

19. Bernecker, T., Emrich, T., Kriegel, H.P., Renz, M., Züfle, S.Z.A.: Efficient proba-
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Abstract. Density query is a very useful query type that informs users
about highly concentrated/dense regions, such as a traffic jam, so as to
reschedule their travel plans to save time. However, existing products
and research work on density queries still have several limitations which,
if can be resolved, will bring more significant benefits to our society. For
example, we identify an important problem that has never been studied
before. That is none of the existing works on traffic prediction consider
the influence of the predicted dense regions on the subsequent traffic
flow. Specifically, if road A is estimated to be congested at timestamp
t1, the prediction of the condition on other roads after t1 should con-
sider the traffic blocked by road A. In this paper, we formally model
such influence between multiple density queries and propose an efficient
query algorithm. We conducted extensive experiments and the results
demonstrate both the effectiveness and efficiency of our approach.

1 Introduction

Sitting in road traffic congestion is obviously not a pleasant experience for a trav-
eler. The impacts of traffic congestions indeed expand beyond the inconvenience
and include environmental, economical, and safety issues [2,18]. This work aims
to find solutions to traffic congestion problems by leveraging mobile devices and
their popularity among the community.

Some common strategies related to relieving the traffic congestion problem
include providing current traffic information (like Google Maps) [4,9,23] or mod-
eling future traffic conditions with past data [17,20,21]. However, these existing
approaches still have several limitations which, if can be resolved, will bring more
significant benefits to our society. Specifically, such limitations include the fol-
lowing. First, existing approaches that provide only current traffic information
do not offer many options for a driver. Because, based on current information, it
may already be too late for some vehicles very close to the traffic congestion to
divert to a new route. Therefore, several research works [13] have been proposed
to predict traffic conditions with mobile object database queries. Unfortunately,
most of them simplify the problem by considering objects moving on Euclid-
ean space rather than under road-network constraints, making them hard to
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 80–97, 2015.
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Fig. 1. An example of traffic influence effect

be directly adopted in real scenarios. Very few works predict traffic conditions
under the road-network constraints. The most recent one is the Predictive Line
Query (PLQ) [11]. However, PLQ only returns predicted traffic information of
a user specified road. It would not be able to identify all possible dense regions
(i.e., traffic congestions) automatically.

Besides the aforementioned limitations, there is another important issue that
has been neglected by all existing works on predictive density queries, which is
the influence of a predicted dense region on the subsequent traffic flow. Specif-
ically, if road A is forecasted to be congested at timestamp t, the prediction of
the condition on other roads after t should consider the traffic being blocked
by road A during the period of congestion. To have a better understanding,
let us consider a more concrete example shown in Fig. 1. In Fig. 1, the left-
most diagram shows the positions and moving directions of vehicles (denoted as
black points) at timestamp t0. Without considering traffic influence, a density
query will predict a dense road segment DS1 (highlighted by the rectangle) at
timestamp t1 and then another two (DS2 and DS3) at timestamp t2 (say 5 min
later). However, if observed carefully, vehicles stopped by the congestion at DS1

are unlikely to travel to DS2 since traffic would not be clear within 5 min. As a
result, DS2 may not have any congestion at all at timestamp t2. This scenario
explains that predicting dense areas on a given timestamp could be inaccurate
unless the influence of former possible dense areas are taken into consideration.
Our goal is to model such influence (as shown by the gray area) and provide
more realistic traffic prediction.



82 L. Heendaliya et al.

In this paper, we define a new type of query, called Influence-aware Predictive
Density (IPD) Queries. Our proposed IPD query has the following three key
features that are unseen in prior works: (i) it automatically identifies and reports
all possible dense areas, in terms of road segments, considering the underlying
road network; (ii) it provides predicted traffic density information, which users
will find more practical than the current density information; (iii) it accounts
for the influence of dense regions on other nearby dense regions to produce more
accurate traffic estimation. To efficiently answer the IPD queries, we propose
a three-phase query algorithm along with several heuristics to further prune
the search space. We have conducted experiments using real road maps and
the experimental results demonstrate both effectiveness and efficiency of our
approach.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 formally defines the density query problem. Section 4 presents the query
algorithm. Section 5 reports the experimental results and Sect. 6 concludes the
paper.

2 Related Work

Generally speaking, a density query aims to retrieve all regions with a density
(i.e., the number of moving objects per square unit) that exceeds a given thresh-
old. It is worth noting that the density query is different from the range query
in that the input to the range query is the location of a query region, whereas
the input to the density query is the density threshold and the size (but not the
location) of the dense region. The remainder of this section discusses the past
work on the density query problem and its solutions.

Existing works on density queries can be roughly classified into two cate-
gories: (i) density queries in Euclidean space; (ii) density queries in road net-
works. Most of existing works on density queries mainly consider objects moving
freely in Euclidean space. The first work is by Hadjieleftheriou et al. [16] who
proposed two versions of density queries: Snapshot Density Queries (SDQ) and
Period Density Queries (PDQ). The SDQ identifies dense regions for a specific
time instance in the future, while the PDQ identifies dense regions in a time
interval. In their approach, the entire space is divided into a grid of equal-sized
cells, and density regions are reported in terms of cells. Such approach ignores
possible dense regions located in the middle of multiple cells and causes a so-
called answer loss problem as pointed out by Jensen et al. in [13]. To resolve the
answer loss problem, Jensen et al. [13] redefined the density query and propose
a two-phase query algorithm to predict dense regions that can be located any-
where and are not constrained to partitioning cells. Unlike previous works where
the dense regions are square shaped, Ni and Ravishankar [19] define a pointwise
dense regions (PDR) that allows the dense region to be of any shape and any
size. They also partition the space into grid while their search algorithm ensures
that a 4-cell block is searched each time and hence also avoids the answer loss
problem. All the aforementioned query algorithms consider the snapshot version
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of the density query. The algorithms proposed in [10,22] support the continuous
density queries. Similar to the snapshot queries, the continuous density queries
also take the density threshold and size of the dense region as input. In order to
continuously identify dense regions, the algorithm repeatedly divides the entire
space into quadrants until the quadrant is no larger than the given size of the
dense region. Then, each quadrant is labeled as either dense or not. This is the
main limitation of such an approach.

In addition to the aforementioned density query algorithms, to which move-
ments are considered in the Euclidean space, very few works [15] have been
conducted on density queries restricting the movements to road networks. One
such work is by Lai et al. [15] who propose the Effective Road-Network Den-
sity Query (e-RNDQ). The definition of density under road network constraint is
now the number of moving objects per road segment rather than per square unit.
Furthermore, the distance between any two neighboring objects in a dense road
segment should not exceed the given distance threshold. This condition prevents
skewed object distribution in a query result. Lai et al. propose a clustering-based
algorithm to obtain the query results. The main limitation is that they only iden-
tify dense road segment at current timestamp but do not support any predictive
queries.

In summary, our work is different from existing works in the following aspects:
(i) it is the first time that the traffic influence is considered during multiple dense
region exploration; (ii) it is the first work, to the best of our knowledge, that
supports predictive density queries on road networks.

3 Problem Statement

Without loss of generality, we consider uni-directional or bi-directional roads
with separate lanes for each direction. In other words, it is assumed that the
high traffic density of one direction does not affect the traffic on the other direc-
tion. Under this assumption, in what follows we formally define our proposed
Influence-aware Predictive Density Query.

Definition 1. [Density] The density of a road segment r is the number of objects
per unit length (e.g., meter) per lane on the road, represented as DS(r) =

N
m·len(r) , where N is the number of objects on road r, len(r) is the length of
road r, and m is the number of lanes.

Definition 2. [Dense Road Segment] Given a density threshold ρ, the road seg-
ment r is dense if the density(r) at time t is greater than the threshold ρ.

We now proceed to define a new concept, namely mutually independent dense
road segments, which is the base of the influence-aware predictive density query.

Definition 3. [Mutually Independent Dense Road Segments] Given any two
dense road segments Ra and Rb with occurrence time ta and tb (ta < tb) respec-
tively, Ra and Rb are mutually independent of each other if one of the following
conditions is satisfied:
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1. tb − ta > σ, where σ is the threshold that describes the typical time taken to
clear a traffic jam;

2. For any o ∈ Oa, Dist(o,Rb) > vmax ·(tb−ta), where Oa is the set of objects on
road Ra at time ta, Dist(o,Rb) computes the shortest road-network distance
between object o and the closer end of road Rb, and vmax is the maximum
moving speed of objects.

The definition of mutually independent dense road segments aims to ensure
that objects that contribute to the density of one road segment will not affect
the density computation of another road. Specifically, the first condition checks
if the occurrence of dense regions are far enough apart in terms of time that
objects stuck on road Ra may already be freed when computing the density for
road Rb. The second condition avoids considering any subsequent dense road
segment caused by the similar set of objects that recently contributed to a dense
road segment. For example, consider an object o passes by road Ra at ta and
then Rb at tb. If Ra is predicted as a dense road segment at ta, we should not
consider o when computing the density of road Rb at tb since o has stuck or been
slowed down by the traffic congestion.

Definition 4. [Influence-aware Predictive Density (IPD) Query] Given a
road map G, a density threshold ρ and a time window tmax, an IPD
query computes a list of predicted mutually independent dense road segments
{DS1,DS2,DS3, ...,DSn}, where the occurrence times t1 ≤ t2 ≤ t3 ≤ · · · ≤
tn(tn ≤ tmax); ti is the occurrence time of DSi.

It is worth noting that dense road segments caused by the moving objects
that have already been accounted for in antecedent dense road segment are
excluded from further consideration in IPD queries. In other words, only the
earliest occurring dense road segment of a chain of dense segments is considered
each time.

4 Influence-Aware Predictive Density Query Algorithm

In this section, we first introduce the data structure that is utilized to support the
influence-aware predictive density (IPD) queries and then elaborate the query
algorithm.

4.1 Data Structure

To answer IPD queries, we need indexing structures to manage the information
of objects moving on road networks. There have been several such kind of indexes
such as IMORS [14], ANR-tree [6], R-TPR±-tree [8], and TPRuv [7]. Here, we
employ the most recent one, the RD-tree [12], which is also our prior work.
Although our main contribution of this work lies in the query algorithm (in
Sect. 4.2) and not the data structure, we briefly introduce the data structure
here to facilitate a better understanding of the whole algorithm.
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Fig. 2. The RD-tree

The RD-tree indexes two types of data: road-network information and object
location information. The road network is represented as a graph G = (V, E),
where V is the set of vertices and E is the set of edges. Each edge e = {v1,v2} ∈ E
represents a road segment in the network where v1,v2 ∈ V ; v1 and v2 are
starting and ending nodes of the road segment, respectively. Furthermore, each
road segment is associated with two parameters: l and s, where l is the length
of the edge and s is the maximum possible speed on that edge.

A moving object O is represented by the tuple {oid, xt, yt, o
t
e, o

t+1
e , otv, ogd, t},

where oid is the unique object ID, xt and yt are the coordinates of the moving
object at the latest update timestamp t, ote is the current road segment that
the object is on, ot+1

e is the next road segment that the object is headed to,
otv is the object’s velocity (or speed), and ogd is the object’s travel destination.
It is assumed that most moving objects are willing to disclose their tentative
traveling destinations to the service provider (server) in order to obtain high-
quality services, albeit their destinations may change during the trip.

Figure 2 illustrates the overall structure of the RD-tree. The RD-tree is com-
posed of an R*-tree [3] and a set of hash tables. The road-network informa-
tion is indexed by the R*-tree. Each entry in the non-leaf node is in the form
of (node MBR, child ptr), where node MBR is the MBR (Minimum Bound-
ing Rectangle) covering the MBRs of all entries in its children pointed to by
the child ptr. Leaf nodes in R*-tree pointing to hash tables represent moving
objects on each road segment. Each entry in the leaf node is in the form of
(edge MBR, obj ptr), where edge MBR is the MBR of a road segment and
obj ptr links to a hash table storing objects moving on this edge. Each hash
table has an Nd hash bucket, where Nd is the number of traveling directions.
Each bucket has two linked lists that provide a finer grouping for objects based
on their traveling directions. Moving objects with similar traveling directions
are hashed to the same hash bucket and stored in one of the sorted linked lists
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maintained in that hash bucket. Moreover, for easy update, each object also has
a pointer directly linked to the edge that it is currently moving on. The details
of the construction of the RD-tree can be found in [12].

In addition to the RD-tree, we also maintain a two-dimensional histogram
that comprises of square-shaped cells covering the considered space. Each cell
maintains the counts of moving objects that may cross the cell within the time
period [tnow; tnow + H] for equally calibrated timestamps. Here H is the horizon
– the time window in which the prediction is valid. The histogram is initialized
according to the moving object’s estimated traveling path.

4.2 Query Algorithm

Influence-aware predictive density (IPD) queries aim to identify all dense road
segments that may occur at different timestamps in the near future and also do
not influence each other as defined in Sect. 3. The query algorithm consists of
three phases: filtering, refinement, and refreshing.

The Filtering Phase. The filtering phase utilizes the histogram to quickly
identify potential grid cells that may contain dense road segments. Recall that
the histogram stores the estimated number of objects in the corresponding cell at
each timestamp starting from the current timestamp. When considering whether
a cell may contain a dense road segment, we do not simply use the original count
of objects in the cell, as in previous works. Instead, we consider the adjusted cell
density (Definition 5) in order to take into account the road topology. Specifically,
the adjusted cell density estimates the average number of objects per unit length
of road segments. For example, if a cell contains very few roads but a large
number of objects, it is very likely that the cell contains a dense road segment.
For time efficiency, the adjusted cell density can be generated along with the
computation of the count of objects when building the histogram. For storage
efficiency, the histogram can be compressed similarly as that in [13].

Definition 5. [Adjusted Cell Density] Let N t
c be the number of objects in cell c

at timestamp t, and ltc be the total length of road segments in cell c. The adjusted
cell density ACDt

c is computed as follows:

ACDt
c =

N t
c

ltc

The filtering phase starts checking the adjusted cell density of each cell at the
earliest timestamp stored in the histogram. If a cell’s density is above a thresh-
old ρc, the cell will be inserted to a priority queue to be sent to the refinement
phase. The challenging issue here is to determine the proper value of the thresh-
old ρc. If we simply set ρc to the same value as the density threshold ρ given
by the query issuer, we may miss the dense road segment that spans multiple
non-dense cells and have many false negatives. If we set ρc to a very low value,
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we will not miss the dense road segment but the filtering phase will lose the prun-
ing power and keep too many non-dense cells for further examination, which in
turn will increase the overall query cost. Therefore, we model this effect using
the following linear regression function. The goal is to identify the best value of
ρc that balances both the query cost and the number of false negatives. Specif-
ically, in Eq. 1, Costq and FN are the estimated query cost and false negatives
for a given ρc, α is a weight value, and Costmax is the query cost to retrieve
all objects in the entire space. Here, Costq is the estimated cost of the second
refinement phase which is determined by the number of queries on cells in the
queue. The lower the ρc, the fewer the cells to be further examined and lower
Costq. Costmax is used to normalize the value of the first part of the equation
to the range of 0 and 1, so that it is comparable to the false negatives. FN
is estimated using the number of road segments spanning cells. The goal is to
minimize the “Penalty” to determine ρc.

Penalty(ρc) = α · Costq
Costmax

+ (1 − α) · FN (1)

After all cells at the same timestamp are considered, we move to the next
timestamp and the same filtering process continues until all timestamps in the
histogram have been examined. The final priority queue will have a list of cells
ordered in an ascending order of the timestamps. Cells at the same timestamp
are ordered by descending density.

More importantly, each cell c in the queue also maintains a list of influenced
cells whose priority is lower than its own, along with the number of vehicles
coming from the cell c to the influenced cell. This list will later be used to
quickly prune non-dense cells as discussed in the refreshing phase.

The Refinement Phase. The refinement phase takes a further look at the
candidate dense cells obtained from the filtering phase to see whether these cells
actually contain dense road segments. The refinement phase starts from the
highest prioritized candidate cell from the priority queue and moves to the next
highest prioritized cell of the same timestamp, and so on. After all candidate
cells at the same timestamp are examined, the refreshing phase (Sect. 4.2) will
be activated in which the entries in the queue and their priority will be updated.
Then the highest prioritized cell from the updated queue is selected and sent back
to the refinement phase. The iteration between the refinement and refreshing
continues until the priority queue is empty. In what follows, we elaborate the
three main steps taken during the refinement.

The first step is to find the road segments containing the objects that may
pass by the candidate cell at the timestamp td (as stored in the priority queue)
when this cell may be dense. Note that these road segments may not be the
road segments located in the candidate cell. This is because we are predicting
future dense road segments, and objects on road segments outside the candidate
cell at current timestamp may enter this cell at a future timestamp. In order to
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identify these related road segments, we perform a square-shaped ring query on
the RD-tree as shown in Fig. 3, where the square shaped ring is represented by
the shaded area between solid-line squares. The dimension of the square-shaped
ring is determined according to the road network information. Specifically, the
lengths innerL and outerL are the distances to the closest and the farthest
objects that may be able to enter the candidate cell according to the road speed
limits.

innerL =
cell width

2
+ Dist(speedmin · (td − tc)) (2)

outerL =
cell width

2
+ Dist(speedmax · (td − tc)). (3)

Fig. 3. Squared shaped ring query

The second step is to retrieve objects in the relevant hash bucket of each road
segment found by the previous step. Recall that each road segment is associate
with multiple buckets containing objects traveling towards different destinations.
Intuitively, if an object is not heading toward the candidate cell, we do not need
to retrieve it. To determine which bucket needs to be checked, we consider the
relevancy of the object’s traveling angle and the candidate cell as shown in
Fig. 4. The Fig. 4 illustrates two cases where the number of hash buckets is 8
and different distances to the candidate cell (due to the difference in times when
the density is computed for: ta and tb > ta). As shown in the figure, the number
of hash buckets selected to examine candidate cell A’s density is 3 (hash bucket
1, 2, and 3) where that for candidate cell B is only two (bucket 0 and 1). The
use of bucket selection helps improve the overall query performance by pruning
irrelevant objects for further consideration.

Since objects returned from the second step may still contain objects that do
not contribute to any dense road segment, the final refinement step is to compute
the exact traveling routes of these candidate objects and then identify the truly
dense road segments. Specifically, each road segment in the candidate cell is
associated with a counter. For each candidate object’s path, we increase the
counter of the road segment passed by the object by one. This ensures that each
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Fig. 4. Two examples of modified hash bucket selection

path is examined only once. After analyzing all the candidate objects’ routes,
the road segments with count above the density threshold will be reported.

The Refreshing Phase. The refreshing phase aims to compute quarantine
areas of identified dense road segments. Since objects occurring on one dense
road segment are impossible to occur on another at the same time, it is not
necessary to run refreshing phase after each identified road segment. Instead,
the refreshing runs after all the dense road segments have been identified for
each timestamp considered to improve efficiency. It consists two main steps: (i)
compute quarantine areas; (ii) rejuvenate the priority queue.

Fig. 5. Influenced road segments in the quarantine area of road AB

A quarantine area is defined for each identified dense road segment within the
same timestamp. The area contains the dense road segments and the segments
that the congestion would propagated to. Figure 5 shows an example of the
quarantine area regarding a dense road segment AB at time ta. The dashed-
lined road segments are the road segments that will be affected by AB. More
specifically, the road segments in the quarantine area contain objects stuck in
AB at time ta for the computation of their density at a near future timestamp
tb when the traffic may not be cleared. Therefore, the computation of density
of road segments in the quarantine area should ignore the objects stuck in AB.
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(a) Original Priority Queue (b) Updated Pri-
ority Queue

Fig. 6. Updated queue

The objects on the road segments in the quarantine area are disregard from
subsequent dense area identification. The formal definition of quarantine area is
given by Definition 6, where the value of n is determined based on the typical
time that a traffic congestion can be cleared.

Definition 6. [Quarantine Area] Given a road network G(V, E) and a set of dense
road segments S; where S ⊂ E. The quarantine area of S is a set of road segments,
Q =

⋃
i∈|S|(Si ∪ Sn

i ). Here Sn
i is the n -hop adjacent edges of ith edge in S.

The second step of the refreshing is to rejuvenate the priority queue by dis-
carding cells influenced by the identified dense road segment. This step leverages
the influence cell list associated with each cell in the priority queue. Specifically,
for each cell c that contains the identified dense road segment at the timestamp
considered, we update the adjusted density for the cells that overlap with the
quarantine area of cell c by decreasing the corresponding number of objects stuck
in c. Figure 6 shows an example. Suppose that after the refinement phase, we
know that cell A contains dense road segments while cell C does not. Since cell
C has no dense road segments in it, there is no need to update its entry in the
priority queue. As for cell A, it influences two cells B and D. Cell B contains two
objects that will travel from cell A. Since the objects in cell A are stopped due to
the high density of cell A, the total number of expected objects in cell B would
be decreased, and the new adjusted density of cell B becomes 15/7 = 2.1. Simi-
larly, cell D’s new density is 1.8. Assuming that the cell D’s density is now below
the density threshold ρc, it would be removed from the priority queue for sub-
sequent computations. In this way, the refreshing phase helps avoid unnecessary
computations.

5 Performance Study

In this section, we evaluate the performance of our proposed influence-aware
predictive density (IPD) query algorithm by varying a number of parameters
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on different datasets. Since the IPD query is the only approach that predicts
dense road segments under road network constraints, we compare it with a
baseline approach which simply examines each object’s shortest path at different
timestamps to directly compute the dense road segments. The baseline approach
also implements the concept of quarantine area by discarding the objects on iden-
tified dense road segments from subsequent computation. Both algorithms were
implemented and tested on a 2.40 GHz Intel R©Xeon R©E5620 CPU desktop with
11 Gigabytes of memory. The page size is 4 K bytes. The RD-tree implementa-
tion of RD-tree in our approach is the same as that in [12]1. The internal nodes
of a tree are pinned in a LRU buffer of 50 pages.

Table 1. Statistics of the road maps

State Land area Number of road segments Average road segment length

IA 55,857 3392 356

AZ 66,455 4935 383

WA 113,594 1442 628

CA 155,779 8062 225

The datasets used for testing are generated by the commonly adopted
Brinkhoff generator [5]. The generator was fed with four different US state maps:
IA, WA, AZ, and CA. The states differ in total land area, number of road seg-
ments, and average road segment length, which results in different mobile object
distributions. The statistics of the chosen states are given in Table 1. The number
of moving objects in each dataset ranges from 10 K to 100 K. Average traveling
time of each data set is 60 min. The chosen input parameters and their values
are presented in Table 2 with the default value in bold. The efficiency and effec-
tiveness are measured in terms of the average I/O cost (i.e., the number of page
accesses) and the number of identified dense road segments from current time
to the query life (i.e., the predictive time window), respectively.

5.1 Effect of Number of Moving Objects

In the first round of experiments, we evaluate the query performance by varying
the number of moving objects from 10 K to 100 K while keeping other parameters
as default (in Table 2). As shown in Fig. 7(a), it is expected that the query cost
increases with the number of moving objects since more data need to be retrieved
from disk and examined. Our IPD query algorithm significantly outperforms the
baseline approach and the performance gap increases with the number of moving
objects. This can be attributed to our proposed filtering algorithm and bucket
selection algorithm that help reduce the number of objects to be examined and
1 RD-tree adopts its R*-tree simulator from [1].
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Table 2. Parameters and their values

Parameters Values

Number of mobile objects 10K, 20 K, . . . , 50K, . . . , 100 K

Road network topology IA, AZ, WA, CA

Predictive time window (minutes) 10, 20, 30, 50

Cell density threshold (ρc) 0.05, 0.1, 0.15, . . . , 1

Road density threshold (ρ) 0.2, 0.4, 0.6, 0.8,1

Grid size (d) 10, 20,30, 40, 50

Vehicles equipped with the system 25%, 50 %, 75 %, 100%

Timestamp interval (minutes) 5

(a) I/O cost (b) Number of Dense Road Segments

Fig. 7. Effect of the number of moving objects

the refreshing phase that further prunes the candidate cells which have been
influenced by the identified road segments.

Figure 7(b) compares the number of dense road segments found by the two
approaches. From the figure, we can observe that our IPD query reports fewer
number of dense road segments than the baseline approach. This is expected as
discussed in Sect. 4.2. Specifically, we adopt a cell density threshold in the filter-
ing phase. Higher ρc will prune more cells and yield better query performance
but may introduce false negatives. Fortunately, we also observe that the percent-
age of such difference becomes smaller for bigger datasets. In a small dataset,
such effect is more severe since missing one object may make a road segment to
be non-dense easily. In the next experiment, we will take a closer look at how
the cell density threshold affect the performance.

5.2 Effect of Cell Density Threshold

We now study the effect of cell density threshold ρc. Recall that ρc is used to
prune those cells that are highly unlikely to contain dense road segments. As
aforementioned, higher ρc may yield fewer number of candidate cells to be fur-
ther examined and hence reduce query cost. However, it is possible that when
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(a) I/O cost (b) Number of Dense Road Segments

Fig. 8. Effect of the cell density threshold

ρc is high, the cells with low density and contain part of a dense road segment
(i.e., a dense road segment that spans multiple cells) may be left out, result-
ing in false negatives. Figure 8 reports the experimental results when varying
the cell density threshold from 0.05 to 1. As expected, the query cost of our
approach decreases quickly when the cell density threshold increases. Meanwhile
the number of missing dense road segments increases. In order to minimize false
negatives, we adopt the cell density threshold as 0.05 in our experiments.

5.3 Effect of Road Density Threshold

In this set of experiments, we study the effect of the road density threshold given
by the query. The results are shown in Fig. 9. We can observe that our IPD algo-
rithm again outperforms the baseline approach in terms of query efficiency and
identified similar number of dense road segments in all cases. Moreover, we also
observe that the query cost of our IPD algorithm increases with the road density
threshold while the baseline approach has constant performance. This is because
the baseline approach always checks all objects’ travel paths when computing the
density of road segments. In our approach, the higher the road density thresh-
old, the fewer the number of dense road segments. Correspondingly, there will
be fewer number of quarantine areas and fewer number of objects that can be
pruned.

5.4 Effect of Cell Size

We proceed to study the effect of the cell size. As shown in Fig. 10, the cell size
does not affect the baseline approach since the baseline approach does not utilize
cells for pruning. As for our IPD algorithm, it achieves better performance when
the cell size is small. This is probably because the adjusted density of smaller cells
is more useful for determining whether there is a potential dense road segment.
When the area of a cell is large, the road topology in the single cell becomes more
complex and the pruning becomes less effective. On the other hand, when the
cell is large, there is fewer chances to have dense road segments across multiple
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(a) I/O cost (b) Number of Dense Road Segments

Fig. 9. Effect of the road density threshold

(a) I/O cost (b) Number of Dense Road Segments

Fig. 10. Effect of the cell size

cells and hence it helps reduce false negatives. In our experiments, we choose the
cell size to be 30 as it balances both performance and accuracy.

5.5 Effect of Predictive Time Window

The effect of predictive time window was also studied. The results are shown in
Fig. 11. It also shows the efficiency of the IPD algorithm. In fact, the IPD has

(a) I/O cost (b) Number of Dense Road Segments

Fig. 11. Effect of the predictive time window
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lower page accesses compared to that of the baseline algorithm. The IPD shows
an increase in the page accesses for longer predictive window lengths. This can
be expected as the area covered by the square-ring is also increased. The IPD
exhibits fewer unidentified road segments. In fact, the number of unidentified
dense road segments increases when the predictive time window is lengthier. It
is again due to relaxation of the cell threshold.

5.6 Effect of Road Network Topology

This round of experiments evaluate the effect of the road topology on the query
performance. As shown in Fig. 12, our approach always achieves better query
efficiency than the baseline approach when different road maps are considered.
In addition, the results also indicate that the map topology does affect the
performance. In general, maps with fewer roads across multiple cells tend to
yield better performance. Moreover, we also observe that the numbers of dense
road segments identified by the two approaches demonstrate the same trend,
which proves the effectiveness of our approach.

(a) I/O cost (b) Number of Dense Road Segments

Fig. 12. Effect of the road network topology

5.7 Effect of Percentage of Vehicles Equipped with the System

In the last set of experiments, we aim to examine an interesting and realistic sce-
nario when not all vehicles subscribe to traffic prediction services. That means,
the system will estimate the traffic based on a subset of vehicles. It is expected
the fewer the number of vehicles equipped with the system, the less accurate the
traffic prediction will be. To compensate for the missed information, we adjust
the system parameters by lowering both the cell density threshold and road seg-
ment density threshold. For example, given a density threshold ρ = 1, we set ρc
= 0.0375 and ρ′ = 0.75. Our findings are reported in Fig. 13, where “Adjusted
IPD” refers to the approach with adjusted new threshold. We can observe that
the adjusted IPD has similar query cost as the original one but much better
accuracy in terms of the number of dense road segments being identified.
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(a) I/O cost (b) Number of Dense Road Segments

Fig. 13. Effect of the percentage of vehicles equipped with the system

6 Conclusion

In this paper, we define a new type of density query, namely Influence-aware
Predictive Density (IPD) queries, with the goal to take into account the impact
of a traffic congestion on the traffic flow, i.e., objects stuck in the traffic con-
gestion should not be counted into the subsequent traffic prediction before the
traffic is cleared. To the best of our knowledge, it is the first time that traf-
fic influence is considered for predicting potential traffic congestions under the
road network constraints. We propose an efficient query algorithm that lever-
ages multiple pruning techniques. Our experimental results have demonstrated
both the efficiency and effectiveness of our approach compared with the baseline
approach.

References

1. Achtert, E., Kriegel, H.-P., Schubert, E., Zimek, A.: Interactive data mining with
3d-parallel-coordinate-trees. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data (2013)

2. Barth, M., Boriboonsomsin, K.: Real-world carbon dioxide impacts of traffic con-
gestion. Transport. Res. Rec. J. Transport. Res. Board 2058, 163–171 (2008)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles (1990)

4. Bok, K.S., Yoon, H.W., Seo, D.M., Kim, M.H., Yoo, J.S.: Indexing of continuously
moving objects on road networks. IEICE Trans. Inf. Syst. E91–D, 2061–2061
(2008)

5. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6, 153–180 (2004)

6. Chen, J.-D., Meng, X.-F.: Indexing future trajectories of moving objects in a con-
strained network. J. Comput. Sci. Technol. 22(2), 245–251 (2007)

7. Fan, P., Li, G., Yuan, L., Li, Y.: Vague continuous K-nearest neighbor queries over
moving objects with uncertain velocity in road networks. Inf. Syst. 37(1), 13–32
(2012)



Influence-Aware Predictive Density Queries 97

8. Feng, J., Lu, J., Zhu, Y., Mukai, N., Watanabe, T.: Indexing of moving objects
on road network using composite structure. In: Apolloni, B., Howlett, R.J., Jain,
L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 1097–1104. Springer,
Heidelberg (2007)

9. Feng, J., Lu, J., Zhu, Y., Watanabe, T.: Index method for tracking network-
constrained moving objects. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES
2008, Part II. LNCS (LNAI), vol. 5178, pp. 551–558. Springer, Heidelberg (2008)

10. Hao, X., Meng, X., Xu, J.: Continuous density queries for moving objects. In:
Proceedings of the Seventh ACM International Workshop on Data Engineering for
Wireless and Mobile Access, MobiDE 2008 (2008)

11. Heendaliya, L., Lin, D., Hurson, A.: Continuous predictive line queries for on-
the-go traffic estimation. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H.,
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Abstract. The problem of computing Voronoi cells for spatial objects
whose locations are not certain has been recently studied. In this work,
we propose a new approach to compute Voronoi cells for the case of
objects having rectangular uncertainty regions. Since exact computation
of Voronoi cells is hard, we propose an approximate solution. The main
idea of this solution is to apply hierarchical access methods for both
data and object space. Our space index is used to efficiently find spatial
regions which must (not) be inside a Voronoi cell. Our object index
is used to efficiently identify Delauny relations, i.e., data objects which
affect the shape of a Voronoi cell. We develop three algorithms to explore
index structures and show that the approach that descends both index
structures in parallel yields fast query processing times. Our experiments
show that we are able to approximate uncertain Voronoi cells much more
effectively than the state-of-the-art, and at the same time, improve run-
time performance.

1 Introduction

The extensive use of social media, s.a. smartphones, and social networks produce
a huge flood of geo-spatial and geo-spatio-temporal data. This data allows to
assess information about the current positions of mobile entities, such as friends
in social networks, unoccupied cabs in a taxi application, or the current position
of users in augmented reality games. However, our ability to unearth valuable
knowledge from large sets of spatial and spatio-temporal data is often impaired
by the quality of the data.

– Data may be imprecise, due to measurement errors, for instance in applica-
tions using sensor measurements such as location-based services.

– Data records can be obsolete. For example, ties of friendship bind and break
over time, without necessarily reflecting such changes in a social network; in
location-based services, users may update their location infrequently, due to
bad connectivity or to preserve battery.

c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 98–116, 2015.
DOI: 10.1007/978-3-319-22363-6 6
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Fig. 1. Uncertain Voronoi cells.

– Data can be obtained from unreliable sources, such as crowd-sourcing appli-
cations, where data is obtained from individual users, which may incur inac-
curate or plain wrong data, deliberately or due to human error.

– To prevent privacy threats and to protect user anonymity, users often consent
to relay just a cloaked indication of their whereabouts [1] abstracted as an
uncertainty region enclosing (but apparently not centered at) their current
position.

Simply ignoring these notions of imprecise, obsolete, unreliable and cloaked data,
thus pretending that the data is accurate, current, reliable and correct is a com-
mon source of false decision making. The research challenge in handling uncer-
tainty in spatial and spatio-temporal data is to obtain reliable results despite the
presence of uncertainty. In this work, we revisit the problem of reliably answering
nearest-neighbor queries in uncertain data. The problem of finding the closest
uncertain object, which has applications such as taxi-customer matching, has
gained much attention in recent years [2–5]. Following a common approach in
uncertain data management, these approaches assume that uncertain objects are
represented by rectangular or circular uncertainty regions, which are guaranteed
to enclose the true (but unknown) position of the respective spatial objects. Fol-
lowing the approach of [6], we carry the concept of Voronoi cells to uncertain
data. The idea of [6] is to approximate the possible Voronoi cell V(O) of an
object O, which is defined as the space where a query point q can possibly have
O as its nearest neighbor. Applications for possible Voronoi cells include geo-
location-based services, such as taxi assignments: The possible Voronoi cell of
an individual taxi cab c covers the space of a city where customers may possibly
have c as their nearest taxi. In such an application, as we see in taxi-GPS data
sets such as the T-drive dataset [7,8], the GPS position c(t) of a cab c at a time
t may be highly obsolete, due to infrequent GPS updates. Models to infer the
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uncertainty region of a mobile object on a road network given past observations
have been given in the literature [9].

As an example of a possible Voronoi cell, consider Fig. 1(a), where rectangles
correspond to the uncertainty regions of objects. The highlighted region corre-
sponds to the subspace V(A), for which it holds that any point q ∈ V(A) may
possibly have object A as its nearest neighbor, i.e., the possible Voronoi cell of
A. Finding this region, which is the goal of this paper, is not a trivial task: The
shape of V(A) is a non-convex region which is bounded by hyperbolic curves.
As explained in [3,6,10], an exact construction of V(A) requires an exponential
amount of time. For this reason, an approximate technique for deriving possible
Voronoi cells was given in [6]. We propose a new solution for this problem, which
extends the existing solution of [6] by the following aspects:

– Unlike previous solutions, our approach offers full index support, indexing the
object space using an R∗-tree [11] and indexing the data space using a kd-trie
[12].

– Rather than approximating the Voronoi cell V(o) by a single rectangle ([6]), we
use a set of kd-trie partitions, which allows much higher approximation quality.
This gain in approximation quality not only improves query times, as our
experiments show, but can also be used to gain a detailed visual exploration
of possible Voronoi cells.

– Our experiments further show that our provided index support for both data
and space enables the scaling of uncertain Voronoi cell computation to large
databases.

2 Related Work

The problem of answering nearest neighbor queries on uncertain data generally
involves two steps: A filter approach and a refinement step. In the filter step,
a (possibly small) set of objects is returned that contains all objects having a
non-zero probability of being the result object. In the refinement step, the exact
probability of each candidate object is computed. The refinement step is the
main research topic of [13–15], showing how to compute exact probabilities of
an object to be the nearest neighbor of a query object, given the probability
density functions of objects. In contrast, other existing work focuses on the filter
step, applying spatial filter steps in order to identify object that are guaranteed
to have a zero probability to be the result object [3,5,6]. In this work, we focus
on the filter step, i.e., the step of finding objects having a non-zero probability
to be the nearest neighbor of an object using Voronoi-cells.

The idea of using Voronoi diagrams to answer nearest neighbor (NN) queries
over points has been widely studied [16] . In this context, Voronoi diagrams
have been used to support nearest neighbor queries in geo-spatial applications
[17], location-based services [18,19], in spatial data streams [20] and in distrib-
uted spatial environments [21] as well as in spatial network environments [22].
To support nearest neighbor queries on uncertain data, initial approaches have
been presented in [2,13]. However, in these work, only the database objects are
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assumed to be uncertain, whereas the query object is assumed to be a point. In [3]
a solution to compute possible Voronoi-cells for the case of circular uncertainty
regions has been presented. This exact approach has exponential construction
and storage cost. Due to this computational drawback, an approximate solution
was presented in [6]. The aim of this approach is to approximate the true (but
unknown) possible Voronoi-cell V(O) of an uncertain object O using two rec-
tangle: A single conservative rectangle h(O) which is guaranteed to completely
contain V(O), and a single progressive rectangle l(O) which is guaranteed to be
completely contained by V(O). These two approximation rectangles are obtained
by iteratively expanding the progressive rectangle l(O), and iteratively shrinking
the conservative rectangle h(O). However, considering examples such as shown
in Fig. 1, it is evident that such approximations may be rather inaccurate. Thus,
h(O) may cover a large body of space not belonging to V(O), while l(O) may
miss a large body of V(O), even in the case where h(O) is the smallest conser-
vative bounding rectangle and l(O) is the largest progressive bounded rectan-
gle.1 Furthermore, an approach for nearest neighbor search on moving uncertain
objects has been presented in [4]. A problem common to [3] and [4] is that
their solutions are customized for 2D data, making extensive use of intersection
and rotation operations of 2D hyperbolic curves. Our approach, as well as the
approach of [6] is applicable to arbitrary dimensionality. In comparison to [6],
the main contribution of this work is that we can accurately approximate an
arbitrarily shaped possible Voronoi-cell, rather than using a single rectangular
approximation only. This allows to answer nearest-neighbor queries more effi-
ciently, since less candidates have to be checked, and it allows to more precisely
illustrate the Voronoi-region of an uncertain object.

3 Problem Definition

Figure 1(b) shows how the possible Voronoi cell V(U) of an uncertain object U is
defined. Each shaded region in Fig. 1(b) corresponds to a pruning region SA(U),
i.e., the smallest region such that for any q ∈ SA(U), object A must be closer to
q than U . Formally,

Definition 1 (Nearest Neighbor Pruning Region). Let D = {O1, ..., ON}
be an uncertain database where each object Oi ∈ D is represented by a rectangular
uncertainty region in Rd. Let dist(., .) denote any Lp norm.2 For any A,B ∈ D,
we define the nearest neighbor pruning region where any point must be closer to
A than to B as follows:

SA(B) := {q ∈ Rd : maxDist(q,A) < minDist(q,B)},

where maxDist(q,A) and minDist(q,B) denote the maximum and minimum dis-
tance between a point q and a rectangle A or B, respectively, as defined in [23].
1 The later case can not be guaranteed by the approach of [6] due to the numeric

nature of their approach.
2 We use Euclidean distance in all examples and illustrations, but any Lp norm can

be applied.
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Table 1. Table of notations.

Notation Meaning Notation Meaning

D The database S = Rd d-dimensional data space

U ∈ D an uncertain object V(U) possible Voronoi cell of U

ID Hierarchical data index IS Hierarchical space index

G d-dimensional grid gi ∈ G Rectangular grid cell

SA(B) ⊆ Rd The region where object A dominates object B

Dom(A,B,R) Predicate that is true iff rectangle R is fully contained SA(B).

Can be evaluated efficiently [24].

PDom(A,B,R) Predicate that is true iff rectangle R intersects SA(B).

Can be evaluated efficiently [24].

h ⊆ Rd Rectangular Space Index Entry obtained from IS :

Partition of Space for which we want to decide if it belongs to V(U)

e ⊆ Rd Rectangular Data Index Entry obtained from ID:

Spatial approximation of a set of data objects if e is non-leaf entry,

Uncertainty region of a single data object if e is a leaf entry.

Fig. 1(b) shows five nearest neighbor pruning regions SO1(U), ..., SO5(U) as
shaded regions. Using Definition 1, we can now define the possible Voronoi cell
V(U) of an object U as the space that does not intersect any nearest neighbor
pruning region associated with U , formally:

Definition 2 (Possible Voronoi Cell). Let U ∈ D be an uncertain object.
Then the possible Voronoi cell V(U) is defined as

V(U) = Rd \
⋃

O∈D\{U}
SO(U).

In Fig. 1(b), the white (i.e., non-shaded) region corresponds to the Voronoi cell
V(U). The problem tackled in this paper is to compute V(U) for a given object
U ∈ D efficiently.

4 Spatial Domination Revisited

The concept of spatial domination and efficient techniques to verify it were
introduced in [24]. Spatial domination describes the spatial relation of three
rectangles to each other. Since the spatial domination can also be utilized for
the computation of uncertain voronoi cells, we briefly want to review the concept.
Notations used throughout this paper are explained in Table 1.

Definition 3 (Spatial Domination). Let A,B,R ⊆ Rd be rectangles in a
d-dimensional space and dist() be a distance function defined on that space.
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The rectangle A dominates B w.r.t. R iff for all points r ∈ R it holds that every
point a ∈ A is closer to r than any point b ∈ B, i.e.

Dom(A,B,R) ⇔ ∀r ∈ R,∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r)

Informally speaking, Dom(A,B,R) is thus true if A is “certainly” closer to
R than B. In addition the concept of partial spatial domination was introduced.

Definition 4 (Partial Spatial Domination). Let A,B,R ⊆ Rd be rectangles
in a d-dimensional space and dist() be a distance function defined on that space.
The rectangle A dominates B partially w.r.t. R , denoted by PDom(A, B, R) if A
dominates B for some, but not all r ∈ R, i.e.

PDom(A,B,R) ⇔ (∃r ∈ R : ∀a ∈ A,∀b ∈ B : dist(a, r) < dist(b, r))∧
(∃r ∈ R : (∃a ∈ A,∃b ∈ B : dist(a, r) ≤ dist(b, r))∧

(∃a ∈ A,∃b ∈ B : dist(a, r) ≥ dist(b, r))).

In [5] it was shown that spatial domination can be utilized when the rectangles
conservatively approximate uncertain objects. In this case Dom(A, B, R) means
P(“R is closer to A than to B”) = 1 and PDom(A, B, R) means 0 ≤ P(“R is
closer to A than to B”) ≤ 1. Using the Dom()- and the PDom()-function it is
thus possible to decide the location of a rectangle w.r.t. the uncertain bisector
of two uncertain objects. The uncertain bisector between two uncertain objects
A and B (conservatively approximated by rectangles) defines three spaces: In
SA(B) = {s ∈ S : Dom(A,B, {s})} all objects are certainly closer to A than to
B, in SB(A) = {s ∈ S : Dom(B,A, {s})} object are certainly closer to B than
to A and in the space in between no certain decision can be made. This relation
is shown in Fig. 2. We are thus able to decide where the rectangle R is located
w.r.t. the bisector SB(A) and SA(B) of A and B respectively by performing the
Dom() and the PDom() function [24]. The following six cases are defined using
a function DomCase(A,B,R) as follows.

Definition 5 (Domination Cases). Let A and B be rectangles. For any rec-
tangle R, one of the following cases holds:

Case 1: R is fully contained in SA(B) iff Dom(A,B,R);
Case 2:R intersectsSA(B) but notSB(A) iffPDom(A,B,R)∧¬PDom(B,A,R);
Case 3: R intersects neither SA(B) nor SB(A) iff

¬Dom(A,B,R) ∧ ¬PDom(A,B,R) ∧ ¬PDom(B,A,R)¬Dom(B,A,R);
Case 4: R intersects S(B) but not S(A) iff ¬PDom(A,B,R)∧PDom(B,A,R);
Case 5: R is fully contained in S(B) iff Dom(B,A,R);
Case 6: R intersects both S(A) and S(B) iff PDom(A,B,R)∧PDom(B,A,R);

Figure 2 depicts all possible cases. Here, each rectangle Ri corresponds to Case
i in Definition 5. Note that the materialization of the pruning regions SA(B)
and SB(A) is a hard problem [6]. Nevertheless, the function DomCase(A,B,R)
allows to efficiently decide between the six possible domination cases defined
above. In the next section we will show how to use these relations in order to
compute uncertain Voronoi cells.
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A
B

R5

R4

R3

R2

R1

R6SA(B)

SB(A)

Fig. 2. Domination relation

5 Possible-Voronoi Cell Approximation

Computing the possible-Voronoi cell is a daunting task for two reasons: First,
it is challenging to find the objects in the database that have an effect on its
shape. Second, the representation of the cell is hard since it consists of many
linear and parabolic parts that grow exponentially with the dimensionality. This
section will present four algorithms that apply the concept of spatial domination
to efficiently approximate the possible-Voronoi cell V(U) of an object U as tight
as possible. The first, naive, algorithm divides the space into equi-distant grid
cells and labels the cells according to their membership to the possible-Voronoi
cell. The second algorithm, additionally uses an R*-tree to index the data objects
to avoid exploration of irrelevant objects. The third algorithm uses a kd-trie to
index the grid cells, in order to identify large regions of space which can not be
part of V(U) or which must be part of V(U). The fourth algorithm uses both a kd-
trie to index the space and an R-tree to index the data. For the later algorithm,
the main challenge is to smartly descend both hierarchical index structures in
parallel, to minimize the computational overhead.

5.1 Naive Solution

A straightforward way of computing V(U) is to apply an equi-distant
d-dimensional grid to partition the data space. For each cell gi we decide weather
it belongs to V(U) or not.
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Fig. 3. Illustration of the Naive approach.

Algorithm. The algorithm takes as input the target object U , D and a grid
G covering the space of D. We iterate over all grid cells g ∈ G and in order to
decide whether gi is part of the UV cell of U , domination against all objects
O ∈ D \ U has to be checked. All possible cases of domination of a grid-cell g
are depicted in Fig. 3(a). To determine if a grid-cell is (i) completely outside of
V(U) or (ii) completely inside V(U) or (iii) a boarder cell, we can apply the six
cases of Definition 5 as follows:

(i) If ∃O ∈ D \U : Dom(O,U, gi) then gi is not part of V(U). This corresponds
to Case 5 of Definition 5 and cell g5 in Fig. 3(a).

(ii) Otherwise, if ∃O ∈ D : PDom(O,U, gi) then at least a small part of gi can
be part of V(U). This case corresponds to the cases of cells g4 and g6 in
Fig. 3(a), i.e., Case 4 or Case 6 of Definition 5.

(iii) Otherwise we can conclude that gi can be completely contained in V(U),
since for database object, U , it holds that g corresponds to one of the remain-
ing cases Case 1, Case 2 and Case 3 of cells g1, g2 or g3, respectively, as
shown in Fig. 3(a)

The set of all grid cells satisfying (iii) define a lower bound of V(U), and all
grids cells satisfying (ii) or (iii) define an upper bound of V(U). An exemplary
result of this approach for a small database of uncertain objects is depicted in
Fig. 3(b). Here, the space grid is shown, where (i) unfilled cells are guaranteed to
be outside of V(U), (ii) black cells are guaranteed to be on the border of V(U)
and (iii) blue cells are guaranteed to be inside V(U). In the next subsection,
we show how we can obtain this result in a more efficient way. Thus note that
the algorithms presented in the following subsections compute the same result
approximation, but in a more efficient way.
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5.2 Indexing D
Obviously, checking an object U against all uncertain objects O ∈ D is very
expensive. Instead, we can use an MBR based index structure ID (such as an
R*-Tree) to organize the objects hierarchically.

Algorithm. The algorithm takes as input the target object U , ID and a grid
covering the space of ID. For each grid cell gi the algorithm traverses the entries e
of ID in a best first manner [25] according to MinDist(e, U). Note that the entry
e can be a single uncertain object (i.e., a leaf-entry) or an intermediate node that
conservatively approximates multiple uncertain objects. Since we assume that our
data index uses rectangular approximations, we can then apply Definition 5 to
decide which index entries have to be accessed. For reference, the following cases
are shown in Fig. 3(a). Keep in mind that in this case, the entries e are data index
entries, which may be intermediate entries representing multiple data objects.

Case 1: Dom(U, e, g1): e and none of its children can exclude g1 from the UV-
cell V(U). Thus, e don’t has to be resolved and g1 can be part of V(U).

Case 2: PDom(U, e, g2): same as case 1.

Case 3: ¬PDom(U, e, g3) ∧ ¬PDom(e, U, g3): As long as e is not a leaf entry
(an object), there might exist a child of e which excludes g3 from the UV-cell,
thus e has to be resolved. If e is a leaf entry g3 is labeled as candidate for being
part of V(U)

Case 4: PDom(e, U, g4): same as case 3.

Case 5: Dom(e, U, g5): g5 (and all child nodes of g5) cannot be part of V(U).

Case 6: PDom(U, e, g6) ∧ PDom(e, U, g6): same as case 1.

5.3 Indexing S
Instead of indexing the data objects one could also think of indexing the space
containing the grid cells. We propose to use a tree based index structure (denoted
as IS to organize the data space (e.g. Quadtree, kd-trie). For each entry h ∈ IS
it can be checked if it is part of the UV cell of U .

Algorithm. The algorithm takes as input the target object U , IS , maxdepth
and a list of all data objects O ∈ D. The entries h ∈ IS are traversed in a depth-
first manner. For each entry h we check all O ∈ D to decide if the traversal has
to go deeper (to the children of h) or its subtree can be discarded for further
processing. The parameter maxdepth defines the maximum depth that IS is
traversed. Thus the larger maxdepth, the finer the granularity of the UV-cell
approximation.

We can again distinguish the same cases as in Sect. 5.1:

1. If ∃O ∈ D : Dom(O,U, h) (Case 5) then h is not part of the UV cell of U
and it does not have to be resolved further.
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Fig. 4. Cases of domination for a data index entry e.

2. Otherwise if ∃O ∈ D : PDom(O,U, h) (Case 4 or Case 6) then at least a
small part of h can be part of the UV cell of U . Thus we have to resolve h
further. If h is on the maxdepth-level we label it as candidate to be part of
V(U).

3. Otherwise (Cases 1–3) we can conclude that h can be completely contained
in the UV cell of U . In this case we label h as candidate to be part of V(U)
and don’t have to resolve it, even if h is not on the maxdepth-level.

5.4 Indexing D and S
It seems apparent to combine the ideas of Sects. 5.2 and 5.3 and utilize both
index structures (ID and IS) to boost the performance. The non trivial task is
the definition of a traversal order to minimize necessary operations.

Prelude. Our approach is basically a depth-first traversal of IS . Additionally
we define ASD to be the active set of entries of the index D. Each entry h ∈ IS
has its own active set and passes it on to its children (always removing irrelevant
entries e ∈ ASD). ASD contains all entries of D which have already been seen
and not yet resolved during the traversal of the algorithm. For each entry h ∈ IS
we first try to identify one of the two following properties (cf Fig. 4):

Case 5: ∃e ∈ ASD : Dom(e, U, h) ⇒ h is not part of the UV cell of U .
Case 1: ∀e ∈ ASD : Dom(U, e, h) ⇒ h can be part of V(U) .

If neither of the two conditions hold, either the current entry h or an entry
e ∈ ASD has to be resolved. Here we propose the following heuristics:

Case 2: PDom(U, e, h) ⇒ resolve e or h depending on which one covers more
space.
Intuition: uncertain area becomes small if both constructing objects are small



108 T. Emrich et al.

Algorithm 1. UV-Cell computation
Require: U ,ID,IS
1: ASD = windowQuery*(U ,ID)
2: UVCellCheck(U ,IS .root,ASD)

Case 3: ¬PDom(U, e, h) ∧ ¬PDom(e, U, h) ⇒ resolve e.
Intuition: Resolving h can not yield any new information, since any child of
h must also yield Case 3.

Case 4: PDom(e, U, h) ⇒ resolve h if we find another data entry for which
Case 4 holds (for this space entry h). Otherwise resolve e or h depending on
which one covers more space. If e is a leaf entry only resolve h.
Intuition: If more than one data entry constructs Case 4, chances are good
that large portions of h can be decided.

Case 6: PDom(U, e, h) ∧ PDom(e, U, h) ⇒ resolve h. (cf Fig. 4, case 6)
Intuition: Resolving e can not yield any new information

Clearly, at one point there may be multiple data entries in the activate set of
a space node h, which may yield different cases. It may be smart to prioritize
the refinement of some data entries. In a nutshell, a data entry should be chosen
which maximizes the chance that we can guarantee that h is not part of V(U).
We propose to choose an entry e according to the following priority schema:

1. directory entries are prioritized over leaf entries.
2. prioritize cases in order 5, 4, 6, 3, 2, 1.
3. prioritize entries according to mindist to query

For ease of presentation of our algorithm, we define the function maxprio(U ∈
D, h ∈ IS , E ⊆ ID) which maps an uncertain object U , a space region h and a set
of data index entries E to the object which has the highest priority corresponding
to the heuristics above.

Algorithm 1: Takes as parameters the object U for which the UV-cell is to be
computed; the database D indexed by an R∗-tree ID; and the Quadtree/KD-
trie IS indexing the space. The idea of Algorithm 1 is to build an initial
active set ASD that is reasonable for all space partitions hi ∈ IS to come
during query processing. For this we perform a window-query-like operation.
windowQuery*(U ,ID) basically performs a window query on ID, but discards
entries e ∈ D that fall in the window (since these entries cannot help to decide
the borders of V(U)). The result are now all entries e ∈ ID that have been seen
during the window-query but have not been resolved. This set is then used as an
initial active set(denoted as ASD) in the recursive Algorithm 2 which is initiated
by Algorithm 1.

Algorithm 2: This algorithm requires the uncertain object U for which the
UV-cell is being computed, one region of the result space h(initially the root of
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Algorithm 2. UVCellCheck
Require: U ,h,ASD
1: emax //entry with maximum priority
2: for all e ∈ ASD do
3: if Dom(e, U, h) then
4: h is not part of UVCell
5: return
6: else if Dom(U, e, h) then
7: ASD = ASD \ e
8: else
9: emax = maxprio(emax, e)

10: end if
11: end for
12: if ASD is empty then
13: h is part of UVCell
14: return
15: end if
16: if case(emax, U, h) != 6 then
17: ASD = ASD \ emax ∪ emax.children
18: end if
19: //redundant calculations can be reduced in the following
20: if case(emax, U, h) = 4 or 6 &&¬ maxdepth then
21: for all hc ∈ h.children do
22: UVCellCheck(U ,hc,ASD.clone())
23: end for
24: else
25: UVCellCheck(U ,h,ASD)
26: end if

the kd-tree), and the active set ASD containing a set of ID-entries. The algorithm
works as follows:

– In a loop (lines 2–11)the algorithm first searches for the entry e defining the
most prioritized case (8–10). Of course we can stop further consideration of h
if we find an entry e which defines case 5 (lines 3–5). On the other hand side
if an entry e defines case 1, it can never disqualify the current h thus can be
excluded from ASD (lines 6–7).

– In lines 12–14 we check if all entries in the active set ASD have been pruned.
If that is the case, no object may possible prune h and thus h must be a true
hit, i.e. fully contained in the Voronoi cell.

– Now we decide whether we want to refine emax or h, depending on the case
(c.f. Fig. 4 and Definition 5).

Case 4: there is a chance that refining h may allow child entries of h to be pruned,
and refining emax may allow child entries of emax to prune all of h. Therefore,
we refine both entries in this case.

Case 6: refining e cannot possibly allow us to prune h. However, refining h may
allow us to either prune children of h or to return children of h as true hits.
Thus we refine h.
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Fig. 5. Example of refinement

Case 3: no children of h can possibly be pruned.3 Thus we split emax, which may
allow h to be pruned.

Case 2: we refine h.

– Finally, space index entries h which must be completely contained in V(U) are
identified as entries having only Cases 1–3 in their active set. Computation
breaks if this is the case. After splitting the objects according to the rules
above. We recursively restart the algorithm with the new objects.

Figure 5 illustrates in which manner the algorithm resolves entries of ID and
IS . The figures shows all pages and objects of ID which have been seen during
the computation of the possible Voronoi-cell V(U) of the green objects U . Refined
data objects are represented by filled red rectangles and refined directory nodes are
3 recall that if eD

max corresponds to case 3, then there exists no R∗-entry such that
case 4 holds.
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represented by unfilled red rectangles. Furthermore, refined entries of IS are shown
as (i) unfilled black rectangles if they are guaranteed to be fully outside of V(U), (ii)
as black rectangles if on the border ofV(U), and (iii) as blue rectangles if completely
inside V(U). We can observe that in areas far away from the UV cell, IS is resolved
coarse whereas at the border of the cell it is resolved at very fine granularity. The
entries of ID are also only resolved around the UV cell. Note that although the
number of resolved objects seems large, most of the objects are only needed for
a small fraction of the computations, especially on coarser levels of IS . Finally,
note that a nice side effect of this computation is that we obtain a tight superset
of the (uncertain-) delaunay neighbors of U . This can be achieved by memorizing
the objects O for which Case 4 or Cast 6 (see Definition 5) holds.

6 Experiments

Our experimental evaluation investigates algorithm behaviour w.r.t. maximum
kd-trie depth, database size, object extent and dimension. Extent is a parameter
to control the size of the uncertain objects (object MBR) and corresponds to the
maximum extent of an object in one dimension. Experiments use synthetically
generated datasets as well as an excerpt from the T-Drive trajectory dataset
[7,8] which we modified to fit the scope. We implemented all approaches in the
ELKI framework [26], which also provided an R-tree implementation.

Dataspace is always normalized to [0,1] per dimension. In synthetic data,
objects are uniformly distributed over space with a randomly assigned side length
between 0 and maximum extent. Data points from the real world dataset were
sampled as a single snapshot of the world, on the afternoon of February 2nd,
2008. Therefore, one data point corresponds to the position of one taxicab within
the city of Beijing, China. After removing some outliers, this dataset contains
890 separate entities. To suit our application of location obfuscation, sample
locations were randomized using a Gaussian distribution based on this object’s
location. A single sample from this distribution is then set as center of the
object’s new MBR, with its extent set to 6σ of this object’s Gaussian (3 to each
direction). On said city scale, an extent of 0.01 would equal an area of 100 m
side length.

Table 2. Default settings.

Parameter default value Notation Algorithm

Dimension 2 DI Data index traversal (Sect. 5.2)

db size 1000 SI Space index traversal (Sect. 5.3)

extent 0.01 DSI Data & Space Index traversal (Sect. 5.4)

tree depth 14 SR Single rectangle (Implementation of [6])

Table 2 denotes input parameters and their default settings, as well as an
explanation of our algorithm notation. If not otherwise specified, the following
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experiments use these input values. Those setups focusing on approximation
quality use DSI exemplarily for all algorithms from Sects. 5.2–5.4, since result
quality is the same. Naturally, our real world dataset T-Drive has inherent values
that override parameters, namely dimension and size of database. The standard
depth of 14 refers to a maximum of 14 splits in our index structure, corre-
sponding to 16384(= 214) individual grid cells. Applied to a city scale of 10 by
10 kilometers, each grid cell side would measure some 78 m. As the proposed
approach is later scaled up to a depth of 22, grid cells correspond to an area of
only 4.8 by 4.8 meters, which on a city scale is extremely precise.

6.1 Approximation Quality

Our first evaluation explores how well the generated bounds approximate a cell.
For this, we set the tree depth for our implementation to various levels between
5 and 22, corresponding to the number of splits. Evidently, smaller grid cells can
more closely follow the outline of a UV-cell.

Figure 6 visualizes how upper and lower bounds converge with higher tree
granularities. The dark blue line refers to the upper bound of DSI, the orange
line to its lower bound, each represented by the total volume of their cells. The
hatched space in between the two lines refers to the range in which the true cell
volume must be located. As a point of reference, upper and lower bounds from
the Single Rectangle (SR) approach have also been denoted in the same graphic,
with the area shaded in grey corresponding to the approximation error. Since
SR does not use an index, its results remain unchanged for all tree granularities.

Fig. 6. Approximation quality for DSI and SR

Performance was tested on different datasets. Figure 6(a) represents average
results for runs on synthetic data, while Fig. 6(b) contains the results for our real
world dataset. While overall performance is fairly comparable, DSI provides a
usable lower bound remarkably early, with as little as 8 tree splits necessary to
outperform SR. SR itself shows fairly similar behaviour on both datasets, with
results looking even more similar than they are due to logarithmic scale.
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6.2 Algorithmic Runtime

Runtime experiments were conducted while modifying database population and
dimensionality, between our three different traversal approaches compared to
SR as well as for DSI alone to cover larger ranges of database size (others
have been excluded due to their worse performance). Although the taxi dataset
is not applicable here since we modify parameters that are inherent to specific
datasets, the semantics still stand: inserting more objects into a database of the
same geometric expansion could represent offering more taxis for hire in a city,
hence changing the nearest neighbor situation in most of the places. Therefore,
the maximum object extent remained unchanged for all database sizes, since
obfuscation of one’s location is independent of the world’s object density.

Fig. 7. A runtime comparison for all algorithms over different sizes of DB

In Fig. 7, run times to calculate one UV -cell are denoted over different data-
base sizes. Figure 7(a) contains results for the approaches Dataindex Traversal
(DI), Spaceindex traversal (SI), Data and Space Index Traversal (DSI) and SR.
Note how DI shows a relatively constant, high runtime since for each query,
every grid cell gi is explored, independently of database population. SR starts
off better, but since it features pairwise comparisons without the use of an index,
it does not scale well for higher numbers ob database objects. SI clearly shows
how such an index improves performance drastically, but also scales up rather
fast. DSI also increases in runtime for higher dimensional datasets, but at gener-
ally much lower absolute values than the other approaches. Also, DSI increases
at a lower rate. This is because the combined approach of data and space index
allows for early pruning of large portions of the database.

As query performance generally deteriorates for larger datasets (or remains
at high values in the case of DI), further scaling experiments were conducted
using DSI only. Figure 7(b) shows the results of database populations from 10 K
to 15 Million objects. To avoid gross overlapping of objects, object extent has
been lowered to 0.001 for these runs. The left axis again refers to the average
time to perform one UV-cell calculation, which corresponds to the blue data
line. We observe a slightly superlinear scaling, confirming our theoretical obser-
vations that (i) adding more objects leads to linearly more intersections with
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Voronoi cells, which are at least as big as U , and (ii) a linear increase in object
count causes logarithmic tree index growth. This results in a combined log-linear
growth in runtime.

The right scale denotes average page views during cell calculation, with the
orange line referring to pages of the data index, and the green line for pages
of the space index. Note that data index exploration roughly follows runtime
development, while the space index is used less for larger databases. This is
easily explained by a constant tree depth, resulting in a constant resolution of
space. With a higher database population, the likelyhood of all relevant objects
being enclosed in a small space increases.

6.3 Effect of Data Dimensions

Although the trivial case of a two-dimensional world is most intuitive for most
applications mentioned before, all approaches can manage high-dimensional
datasets as well. The main limitation here is keeping the approximation error
low in all dimensions at once, as well as computational complexity.

Figure 8 displays performance of all approaches for multi-dimensional
datasets. As runtime and memory usage of SR do not scale well for more than
five data dimensions, experiments excluded this approach for higher dimension-
alities than 5. An evaluation of runtime as shown in Fig. 8(a) shows constant
increase for all approaches. The relative steepness of increase is due to the
growing inefficiency of pruning methods in high dimensions, which deteriorates
searches toward a linear scan, which itself has quadratic complexity.

Approximation quality for higer dimensions is shown in Fig. 8(b). As men-
tioned before, fitting a bound to a more and more complex object leaves much
room for approximation error. Therefore, volumes of upper and lower bounds
diverge more for higher dimensions. Displayed here are bounds for SR up to
dimension 5 (grey) and two different settings of our DSI approach, once with
a depth of 14 (blue) and a depth of 20 (orange). As expected, a higher depth
allows for more tree splits per dimension and thus a better approximation.

Fig. 8. A comparison for increasing data dimensions.
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6.4 Conclusions

In this work, we proposed an index-supported approach to approximate the shape
of a possible Voronoi-cell to support nearest neighbor queries on uncertain data.
Our approache uses an R∗-tree as a hierarchical access method to efficiently find
the set of uncertain objects that influence the possible Voronoi-cell of an uncertain
object U , i.e., the set of Delauny-neighbors of U . In addition, we propose to use a
kd-trie as a hierarchical accessmethod to identify regions of spacewhichmust (not)
be part of a Voronoi-cell. Compared to the state-of-the-art of computing uncertain
Voronoi-cells, our approach allows for much higher approximation quality, since
our result approximation consists of a set of rectangular kd-trie nodes, rather than
a single bounding rectangle. As future work, we want to extend our ideas to find
certain Voronoi-cells, that is regions, where a query object has a probability of one
of having some object U as its nearest neighbor. Furthermore, we want to extend
our solution to the case of k’th-order Voronoi-cells to support k-nearest neighbor
queries.Even in the case of certaindata,k’th-orderVoronoi-cells becomecomplexly
shaped, having a representation complexity exponential in k. However, since we
are using space approximation techniques, rather than computing exact bounds,
we can avoid this computational drawback.
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Abstract. The delivery and courier services are entering a period
of rapid change due to the recent technological advancements,
E-commerce competition and crowdsourcing business models. These
revolutions impose new challenges to the well studied vehicle routing
problem by demanding (a) more ad-hoc and near real time computa-
tion - as opposed to nightly batch jobs - of delivery routes for large num-
ber of delivery locations, and (b) the ability to deal with the dynamism
due to the changing traffic conditions on road networks. In this paper,
we study the Time-Dependent Vehicle Routing Problem (TDVRP) that
enables both efficient and accurate solutions for large number of delivery
locations on real world road network. Previous Operation Research (OR)
approaches are not suitable to address the aforementioned new challenges
in delivery business because they all rely on a time-consuming a priori
data-preparation phase (i.e., the computation of a cost matrix between
every pair of delivery locations at each time interval). Instead, we pro-
pose a spatial-search-based framework that utilizes an on-the-fly shortest
path computation eliminating the OR data-preparation phase. To further
improve the efficiency, we adaptively choose the more promising deliv-
ery locations and operators to reduce unnecessary search of the solution
space. Our experiments with real road networks and real traffic data and
delivery locations show that our algorithm can solve a TDVRP instance
with 1000 delivery locations within 20min, which is 8 times faster than
the state-of-the-art approach, while achieving similar accuracy.

1 Introduction

The vehicle routing problem (VRP) aims to find a set of routes at a minimal cost
(e.g., total distance or travel time) for a set of geographically dispersed delivery
locations which are assigned to a fleet of delivery vehicles. Each location is visited
only once, by only one vehicle, and each vehicle has a limited capacity. VRP
is an NP-hard combinatorial optimization problem. Exact algorithms based on
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 119–136, 2015.
DOI: 10.1007/978-3-319-22363-6 7



120 Y. Li et al.

branch-and-bound or dynamic programming are slow and only capable of solving
relatively small instances (e.g., less than 30 delivery locations), thus heuristics
are mainly used in practice.

While VRP and its variations (e.g., VRP with time windows and VRP with
multiple depots) have been extensively studied in the literature [1], in recent
years we are witnessing a renewed interest to this problem due to two very impor-
tant transformations. First, the traffic data at a very high resolution have become
available that can significantly enhance the accuracy of the routes assigned to
delivery vehicles and can consequently result in considerable benefit. For exam-
ple, according to UPS [2] the company can save $50 million a year if the average
daily travel distance of its drivers can be reduced by one mile, which is typically
less than 1 % of the daily travel distance of a delivery vehicle. Second, due to the
increasing popularity of on-line shopping (i.e., E-commerce), there is a growing
need for fast delivery to very large number of customers; to the point that some
E-commerce companies (e.g., Google Express [3]) are developing their own pro-
prietary delivery solutions to stay ahead of the competition. This is because the
existing solutions provided by the major delivery companies (e.g., FedEx and
UPS) assume that the delivery orders (and their locations) are known (at least
a day) in advance. It is also not hard to envision an Uber-type application for
deliveries in near-future, democratizing the delivery business.

These two transformations have challenged the traditional approaches to
VRP. The basis of all the traditional approaches are to utilize some sort of
Operation Research (OR) technique (e.g., integer programming) to solve VRP.
Consequently, as an input to all these approaches, a pairwise distance matrix
is required, which contains the distances between every two delivery locations.
Without the dynamism resulting from traffic data and in the world where deliv-
ery plans were prepared the night before for a small number of delivery locations,
creating such a matrix a priori was acceptable. However, considering travel-time
as the “distance”, different time intervals in the day require different distance
matrices (due to traffic congestions), which increases the complexity of prepar-
ing the input for the OR approaches. The increase in the complexity along with
more delivery locations and less time to prepare the delivery plans render the
OR data-preparation phase impractical.

Therefore, in this paper, we take a completely different approach to solve VRP
by utilizing the lessons learned from the field of spatial-databases. First, consid-
ering the vehicle routing problem in time-dependent road networks, we compute
network distance (i.e., travel-time) on-the-fly utilizing a time-dependent shortest
path technique from the spatial-database literature [4]. Note that although some
OR-based approaches are developed for the Time-Dependent version of VRP [5,6]
(called TDVRP hereafter), they still rely on the time-consuming data preparation
phase. In fact, the complexity of that phase becomes even worse because now it
requires the computation of the pairwise distance matrix for each and every time
interval in a day. We, however, completely eliminate the data preparation phase by
on-demand calculation of shortest path between two delivery locations and at the
same time caching the partial results from the expansion of shortest path compu-
tation for future use. As a byproduct, our proposed approach could start finding
the solutions as soon as the delivery requests are received.
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Second, we improve another phase in the OR approach known as local search,
by exploiting the spatial information of the locations in the search. In particular,
the local search starts from an initial solution and iteratively moves to new solu-
tion by selecting from a neighborhood of the current solution through “the move
operators”. The main bottleneck of the local search is that it needs large number
of iterations to find neighborhood solutions and this number grows exponentially
with the number of delivery locations. We observe that local search relies on
blind evaluation of delivery locations and move operators towards finding neigh-
borhood solutions in which they treat each delivery locations and operators
equally. However, we argue that not all delivery locations are equally impor-
tant: some delivery locations are more promising to generate the effective neigh-
borhood solutions and hence we assign weights to each delivery location. The
delivery locations with higher weights are more likely to be chosen and their
weights are adjusted adaptively based on their previous performance. A simi-
lar idea applies to the operators: operators with higher weights are more likely
to be applied. Consequently, our algorithm leverages a spatially guided search
by selecting promising delivery locations and operators first, which significantly
reduces the running time while generating high-quality solution.

We conducted extensive experiments on real world road network of Los Ange-
les with real traffic data. Experimental results show that (1) by leveraging the
real time-dependent traffic pattern, we can reduce the travel cost of routes by
7 % on average with respect to its static counterparts, and (2) our algorithm can
solve TDVRP with 1000 delivery locations within 20 min, which is 8 times faster
than the state-of-the-art approach, while achieving similar accuracy.

The remainder of this paper is organized as follows. In Sect. 2, we formally
define our Vehicle Routing Problem in Time-dependent road network. In Sect. 3,
we present our spatial-search-based framework to solve this problem. Experiment
results are reported in Sect. 4. In Sect. 5, we review the related work and Sect. 6
concludes the paper.

2 Problem Definition

In this section, we formally define the vehicle routing problem in time-dependent
road networks. We model the road network as a time-dependent weighted graph
where the non-negative weights are time-dependent travel times (i.e., positive
piece-wise linear functions of time) between the nodes.

Definition 1 (Time-dependent Graph). A Time-dependent Graph (GT ) is
defined as GT = (V,E), where V and E represent set of nodes and edges, respec-
tively. For every edge e(vi, vj), there is a cost function c(vi, vj , t) which specifies
the travel cost from vi to vj at time t.

Definition 2 (Time-dependent Travel Cost). Let {s = v1, v2, · · · , vk = d}
represents a path which contains a sequence of nodes where e(vi, vi+1) ∈ E and
i = 1, · · · , k − 1. Given a GT , a path (s, d) from source s to destination d, and a
departure-time at the source ts, the time-dependent travel cost TT (s � d, ts) is
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the time it takes to travel along the path. Since the travel time of an edge varies
depends on the arrival time to that edge (i.e., arrival dependency), the travel
time is computed as follows:

TT (s � d, ts) =
k−1∑

i=1

c(vi, vi+1, ti)

where t1 = ts, ti+1 = ti + c(vi, vi+1, ti), i = 1, · · · k.

Definition 3 (Time-dependent Shortest Path). Given a GT , s, d and ts,
the time-dependent shortest path TDSP(s, d, ts) is a path with the minimum
travel-time among all paths from s to d starting at time ts.

Definition 4 (Vehicle Routing Problem in Time-dependent Road Net-
work). Given a time-dependent graph GT , a depot vd ∈ V , a start time ts, k
delivery vehicles with capacity C, and a set of delivery locations Vc ⊂ V , each
delivery location vi ∈ Vc has a demand of di, TDVRP aims to find k routes with
the minimum total time-dependent travel cost subject to the following constraints:

• all routes start and end at the depot;
• each delivery location in Vc is visited exactly once by exactly one vehicle;
• the total demands of delivery locations in a route must not exceed C;

Note that the input TD road network Gt could have more than 100 thousand
nodes and edges, the delivery locations are a small subset of nodes in the given
road network and the travel time between each delivery location is not known
in advance. This is different with the typical input of VRP, which requires a
pairwise cost matrix between each pair of delivery locations per instance.

3 Proposed Algorithm

In this section, we first investigate one state-of-the-art local search based algo-
rithm termed RTR [7]. RTR has shown [8] to be able to generate high quality
solutions for large-scale delivery locations for static network. However, we dis-
cover that RTR has two major drawbacks. First, like other Operation Research
(OR) approaches, RTR relies on the time consuming data-preparation step. In
addition, we further identify that the blind evaluation of neighborhood solution
dominates the search process of RTR.

To address the above two issues, we propose a Spatial-Search-Based Local
Search (SSBLS) framework (Sect. 3.3) which incorporates on-the-fly shortest
path computation (Sect. 3.5) into the local search framework. To avoid the unnec-
essary search of the solution space, we adaptively choose more promising delivery
locations and move operators (Sect. 3.4). Note that our proposed improvements
can be easily adopted into other local search based algorithms which iteratively
generates and improves the neighborhood solutions.
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3.1 Local Search Based Approach

Local search is a popular framework which is proven to provide a high-quality
solution for VRP. Local search starts from an initial solution and iteratively
moves to one of the neighborhood solutions based on heuristics. Typically, a
local search algorithm is developed by the following general framework:

• Step 1: choose an initial solution. (Initial solution)
• Step 2: generate one or more neighborhood solutions by applying operators to

the current solution. (Neighborhood generation)
• Step 3: select one solution to continue using heuristic, e.g., the first, the best

or arbitrary one. (Acceptance criteria)
• Step 4: if the stop condition is not satisfied, e.g., the solution is not considered

as optimal, then goto Step2, else stop. (Stop condition)

In general, the initial solution is generated based on some heuristic methods
(e.g., Clarke-wright heuristic [9]), consequently a local move procedure is used
to generate neighborhood solution. The definition of local move is as follows:

Definition 5 (Local Move). Local move is the process of generating a new
solution by removing k edges in the current solution and replacing them with
other k edges.

Local move is performed by applying one operator at a time to the existing solu-
tion. In this paper, we use three basic operators studied in [7], i.e., One-Point (OP),
Two-Point (TP) and Two-Opt (TO), because the combination of these operators is
enough to generate high-quality solution for large scale delivery locations. Specif-
ically, each operator uses three parameters to complete the local move. Given a
current solution S, a selected location vx, and one of its neighboring location vy,
OP (S, vx, vy) moves vx to the new position after vy(i.e., vx is visited after vy),
TP (S, vx, vy) swaps the positions of vx, vy in S; and finally TO(S, vx, vy) removes
the two edges e(vx, v′

x), e(vy, v′
y) inS by replacing themwith e(vx, vy) and e(v′

x, v′
y).

Figure 1 shows the process of applying One-Point operator to a solution S
which contains two routes r1 and r2. After applying OP (S, vj , va), point vj in r2
is relocated to the position after va in r1, thus generating a new neighborhood
solution which contains r′

1 and r′
2. In this way, the three edges e(vi, vj), e(vj , vk)

and e(va, vb) in S are replaced by e(vi, vk), e(va, vj) and e(vj , vb). Once the neigh-
borhood solution is generated, the algorithm checks its feasibility by evaluating
its cost and decides whether to choose this solution to continue.
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Fig. 1. Neighborhood solution generation through One-Point Move
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3.2 Baseline Approach: RTR

RTR follows local search framework: (1) An initial feasible solution S is gener-
ated using the classicClarke-Wright heuristic [9], (2)The neighborhood generation
and improvement over S is shown in Algorithm 1. The algorithm interleaves with
two search procedures: record-to-record and downhill search. The major difference
between the two search procedures is that: for record-to-record search, when we
apply one operator op to one location vi, a non-improving solution with a small
range of deviation to the current best solution is allowed to jump out of the local
optimal (lines 13–14); on the other hand, only the improved solution is accepted
for the downhill search. In terms of acceptance criteria, RTR uses the first-accept
standard, i.e., whenever a better solution is found, the local search for the current
location vi is stopped and we move to the next location (lines 9–11). (3) RTR stops
whennobetter solution canbe found afterK continuous executions ofAlgorithm 1.

Algorithm 1. GenerateNeighborhood(GT , S)
Input: time-dependent graph GT , the current solution S, and the deviation
1: for each search procedure (i.e., record-to-record and downhill) do
2: for each operator op in operators do
3: for each location vi in S do
4: for each location vj in neighbors of vi do
5: S′ ← op(S, vi, vj)
6: cost(S′) ← eval(S′)
7: if cost(S′) < cost(Sbest) then
8: Sbest ← S′ // store S′ with the smallest value
9: if cost(S′) < cost(S) then

10: S ← S’
11: break
12: // record-to-record search continues, downhill search stops here
13: if record-to-record search And Sbest ≤ cost(S) + deviation then
14: S ← Sbest

Although RTR is one of the best choices for large-scale VRP, it is inefficient
for Time-dependent road networks where each edge has different (time-varying)
costs for each time instance throughout the day. In the following, we analyze
the bottleneck in this search process. As shown in Algorithm 1, during each
search procedure (record-to-record and downhill), each operator is applied to
each delivery location of each route, which means that the algorithm needs to
generate and evaluate all these newly generated solutions to determine whether
to accept it or not. In addition, with RTR, all other delivery locations are treated
as the neighbors of one delivery location (line 4). Clearly such exhaustive search
dominates the running time of RTR algorithm because the number of generate-
and-evaluate process grows exponentially with the size. Moreover, compared to
static road networks, the evaluation of neighborhood solution with TD road
network is more time consuming (line 6). This is because changing the edges in
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a route due to operators could lead to different arrival times of the corresponding
delivery locations, which in turn changes the weight of the following edges.

To illustrate, consider Fig. 1, in static case, the total travel cost of the new
solution S′ can be calculated using the following equation:

c(S′) = c(r′
1) + c(r′

2) = c(r1) + Δc(r1) + c(r2) + Δc(r2)

Δc(r1) and Δc(r2) are calculated via the following equation:

Δc(r1) = −c(va, vb) + c(va, vj) + c(vj , vb), Δc(r2) = c(vi, vk) − c(vi, vj) − c(vj , vk)

where c(vi, vj) represents the static travel cost between delivery locations vi and
vj , and c(r) represent the static cost of route r.

In the static case, the evaluation involves five delivery locations (i.e., va, vb,
vi, vj , vk) and can be calculated in constant time when the cost matrix is given.
However, in TD case, because the arrival times of delivery location vj and vk
are changing, the arrival times for the following delivery locations (e.g., vc and
vl) are also changing which result in re-calculating the cost of the whole path.

3.3 Spatial-Search-Based Local Search Framework

By analyzing RTR, we find that two processes dominant its total running time
and make RTR less practical for the new delivery application: (1) the neighbor-
hood generation and evaluation process. (2) the data-preparation process which
computes the travel cost between each pair of nodes at each time interval.

The above observations lead us to the road map of how to improve the
efficiency of RTR while maintain the high accuracy. As shown in Fig. 2, we aim
to eliminate the data preparation process as well as reduce the evaluation time1.
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On Demand
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(Section 3.5)

Reduce
Cost of each 
Evaluation

Reduce
# Evaluation

Restrict
Neighbor Size

Adaptive 
Location/Operator

Selection
(Section 3.4) 

Fig. 2. Methods to improve efficiency

1 Reducing the computation cost of each evaluation usually depends more on the prob-
lem setting, for example a method that utilizes time window constraints and dynamic
programming to reduce evaluation cost was proposed in [6] for the TDVRPTW prob-
lem. In this paper, we work on a general TDVRP setting and thus focus on reducing
the number of evaluations.
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Algorithm 2. Framework of SSBLS algorithm
1: iter ← 0, cmin ← maxval
2: S ← initialSolution()
3: while stop condition is not satisfied do
4: for each search procedure (i.e., record-to-record and downhill) do
5: op ← selectOperator()
6: vi ← selectLocation()
7: for each location vj in neighbors of vi do
8: iter ← iter + 1
9: if iter mod I = 0 then

10: updateWeight()
11: S′ ← op(S, vi, vj)
12: c ← onDemandEval(S′)
13: if c < cmin then
14: S ← S′

15: cmin ← min(cmin, c)
16: break
17: return S

Towards this end, we propose a Spatial-Search-Based Local Search (SSBLS)
framework, which is shown in Algorithm2.

SSBLS starts with an initial solution which is generated using the Clarke-
Wright algorithm (line 2). During each search procedure (record-to-record and
downhill search), in order to generate the neighborhood solution, it adaptively
selects an operator op and a delivery location vi (lines 5–6) based on their weights
(See Sect. 3.4). Subsequently, the algorithm applies the selected operator to the
delivery location vi and iterates through the neighborhood solution (lines 7–16).
The newly generated solution S′ is evaluated via our on-demand shortest path
calculation procedure (See Sect. 3.5), and thus the algorithm determines whether
to accept S′. If a solution is accepted, the current best record r and the solution
S are updated accordingly (lines 14–15). The weights of delivery locations and
operators are updated based on whether they yield a better neighborhood solu-
tion in every I iterations (lines 9–10). Consequently, the algorithms repeats this
process until the stop condition is satisfied. In this paper, we use the same stop
condition as RTR, i.e., the maximum number failure to find a better solution. To
save space, we omit the specific steps for record-to-record search in Algorithm 2,
which is the same as those listed in Algorithm 1.

3.4 Adaptive Point and Operator Selection

A straightforward method to improve the efficiency is to restrict the number
of candidate neighbors of a delivery location. This is because when applying
operators to one specific location (line 4 in Algorithm1), RTR treats all other
delivery locations as the neighbor of that location. Therefore, to reduce the num-
ber of evaluations, we can only apply operators to a fixed number of its nearest
neighbors (rather than all other delivery locations) for a delivery location [7].
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Besides restricting the neighborhood size, we further propose a novel app-
roach to reduce the number of evaluations. The intuition of our algorithm is that
not all delivery locations and operators are equally important in order to gener-
ate the new neighborhood solutions. Towards this end, we first define“Effective
Local Move” and explain some observations based on the empirical study on real-
world dataset with 100 delivery locations on Los Angeles road network. Similar
observations exists for larger datasets (see more details in Sect. 4).

Definition 6 (Effective Local Move). Effective local move is defined as the
local move whose corresponding solution is accepted by the algorithm based on
variable criterion, e.g., down-hill, simulate-annealing.

Observation 1. Only very small portion of local moves will become effective
local move, most of the new solutions generated by local moves are not effective
and hence not be accepted.

In the process of local search, we record the number of evaluated local moves
and the number of resulted effective moves. Table 1 shows the statistic of three
types of local moves. We observe that only 0.21% of the local moves become effec-
tive, i.e., the corresponding solutions are accepted by the algorithm. Because a
large portion of the evaluation is useless, our idea to reduce the number of eval-
uations is via selectively evaluating the promising moves. Intuitively, some oper-
ators (e.g., One-Point) are more suited for one type of instance while others are
best suited for another type of instance. In addition, instead of using the same
sequence to iterate operators and customers in Algorithm 1, we believe that alter-
nating between different customers (operators) makes the heuristic more robust.
In the following, we discuss how to decide on the promising delivery locations
and operators.

Table 1. Local move statistics

Local move # Evaluated moves # Effective moves Percentage

One-Point Move 30300856 83071 0.27 %

Two-Point Move 27774218 25504 0.09 %

Two-Opt Move 30275671 78683 0.26 %

Total 88350745 187258 0.21 %

Promising Delivery Locations and Weights Assignment. Figure 3 shows
the distribution of the effectiveness of each delivery location. The effectiveness
is measured by the percentage of local move that leads to the effective local
move via applying operators to one specific delivery location. From Fig. 3, we
observe that some delivery locations are much more effective than the remaining
locations (e.g., the effectiveness of the top 1 delivery location is at least 20 times
higher than the least effective point), which leads us to the following observation
and define the promising delivery locations.
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Observation 2. Delivery locations are not equally effective in generating better
result. In other words, applying operators on some delivery locations are more
likely to generate a solution with lower travel cost than others.

To capture the effectiveness of the delivery locations, we assign weight wi to
each delivery location vi (initially they have the same weights), and a delivery
location is selected with probability that is proportional to its weight. Moreover,
we adjust the weight of a delivery location in the search process based on its
performance in the previous iterations, i.e., the better it performs, the more
likely its weight will be increased.

Specifically, we divide the whole local search process into separate parts, each
part contains I iterations. Suppose we are in the kth part of the search process,
the weight of one delivery location in the (k + 1)th part is updated once we
completed the I iteration in the kth part by the following equation (line 10 in
Algorithm 2):

wk+1
i = (1 − η)wk

i + η
λk
i

Λk
i

(1)

where Λk
i is the total number of local moves that involves delivery location vi

during the kth part, λk
i is the corresponding total number of effective local moves

that involves vi during the kth part, and η is learning rate which captures the
trade-off about how much we should rely on the performance of the kth part
or the previous (k − 1) parts. If η = 0, the weight only relies on the previous
(k − 1) parts of the search process, otherwise if η = 1, the weight only relies on
the performance on the kth part of search. Usually, 0 < η < 1, and parameter
tunning is required to get the best performance.

Once we have assign weights to each delivery location, the probability that
one delivery location is chosen to generate the neighborhood solution is calcu-
lated in the following equation:

Prob(vi) =
wi

∑N
j=1 wj

(2)

where N is the number of delivery locations, wi the weight of vi.
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Similar to the delivery locations, operators are also not equally effective.
Therefore, we apply a similar idea to the operators. Because of the space limi-
tation, we omit the details here.

3.5 Eliminating Data-Preparation

When dealing with vehicle routing problem, existing OR based methods assume
that the travel costs between each pair of delivery locations are calculated in
advance, or can be calculated in O(1) time (e.g., in Euclidean space). Usually,
the calculated travel cost is stored in a matrix-like structure (referred as cost
matrix ).

Although the cost matrix can be calculated in static cases, it is far more time-
consuming to do this precomputation in time-dependent road network. This is
because it has to calculate the time-dependent travel costs between every point
pair in each time interval. This process involves O(TN2) time-dependent shortest
path calculation, where T is the number of time intervals, N is the number of
delivery locations. Note that the shortest path calculation in time-dependent
road network is costly [4].

Table 2. Percentage of accessed cells in cost matrix

# Locations 100 200 500 1000

Accessed cell 25.73 % 12.70 % 6.48 % 4.12 %

Observation 3. Most of the precomputed travel cost is not required.

To analyze the effectiveness of the data preparation step, we record the num-
ber of cells in cost matrix that is accessed by the algorithm for at least once. If
the algorithm used the travel cost from location vi to location vj at the t-th time
interval. then the corresponding cell, e.g., cost[i][j][t], will be accessed. Table 2
shows the percentage of accessed cells in the cost matrix (neighbor size σ = 40)
with different number of delivery locations. As shown in Table 2, most of the
cells in the cost matrix have never been accessed. For example, less than 5 %
of the cells in the matrix are accessed when the number of delivery locations is
1000. This could be explained via the following reasons:

• Most of the effective local moves are those applied to a delivery location and its
nearby locations, which means that the shortest path is only required between
a location and some of its close neighbors.

• For a certain pair of delivery locations, only a small portion of the time inter-
vals is accessed. For example, suppose the vehicle departs from depot at t0,
and the minimum travel time between the depot vd and a delivery location vi
is c(vd, vi, t0), then it is possible that the time-dependent travel cost between
vd and vi with start time earlier than t0 + c(vd, vi, t0) are not accessed. This is
because the path from depot to vi which bypasses other delivery location may
yield a later arrival time than the path which directly passes the location vd.
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Algorithm 3. onDemandEval(S)

Input: Solution S = (ri)
k
i=1, ri = (vij )

|ri|
j=1

1: c ← 0
2: for each route ri in S do
3: if isChanged(ri) then
4: t ← t0
5: for each vij in ri do
6: if isCached(vij , vij+1 , t) then
7: ce ← c(vij , vij+1 , t)
8: else
9: ce ← TDSPAndCache(vij , vij+1 , t, σ)

10: c ← c + ce, t ← t + ce
11: else
12: c ← c + getCost(ri)
13: return c

Based on the above observation, we argue that data preparation process can
be eliminated and replaced by an on-demand calculation strategy. The main idea
is to compute shortest path only when it is needed, and at the same time the
partial results are cached from the expansion of shortest path computation for
future usage. Algorithm3 shows our proposed on-demand-calculation approach
to evaluate the routes of a candidate solution. When one route of the solution is
changing, we recalculate the travel cost from the beginning of this route (lines
4–10). In this process, if the travel cost between two delivery locations vi and
vj during a time interval is not cached previously, function TDSPAndCache is
called on-the-fly to calculate the travel cost (line 9). Meanwhile, the travel cost
from vi to its σ nearest neighbors is also calculated and cached through the
expansion of vi because these neighbors are usually close to the current delivery
location and caching them could facilitate the future search process. We use the
time-dependent incremental network expansion algorithm described in [10].

4 Experimental Evaluation

4.1 Experimental Settings

Datasets. The experiments are conducted in Los Angeles(LA) road network
dataset which contains 111,532 vertices and 183,945 edges. The time-varying edge
patterns(i.e., time-dependent edge weights) of LA road network are generated
from the sensor dataset we have been collecting in the past three years: we split
the day time into 60 intervals from 6am to 9pm, and for each interval we assign
the aggregated sensor data travel times to the corresponding network segment. In
terms of the delivery locations, they are obtained from a delivery company in Los
Angeles, each delivery locations corresponds to a node in the LA road network.
We generate 40 test cases from these real delivery locations, which contains 100,
200, 500 and 1000 delivery locations separately, each has 10 test cases2.
2 Note that in operation research literatures, even an instance with 500 delivery loca-

tions is considered large. Algorithms are usually tested on much smaller instances.
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Baseline Approaches. We compare our proposed algorithm with the following
algorithms:

• Sweep: a cluster-first and route-second approach [11].
• Clarke-Wright : a saving heuristic based approach [9] that is widely used in

most industries.
• TDRTR: we extend RTR to support time-dependent road network. Specifi-

cally, we pre-compute the cost matrix and evaluate the travel cost using time-
dependent edge weights.

Accuracy Evaluation Method. For accuracy comparison, TDRTR is treated
as the benchmark as it usually generates the best result.Thus, we compute the
gap between the travel time from the current solution and the solution returned
by TDRTR. Formally, for a problem instance, suppose the travel time of a solu-
tion generated by another algorithm (e.g., Sweep) is c′, and the travel time of
the solution generated by TDRTR is c, then the gap ε = c′−c

c .
Smaller gap means smaller travel cost and thus yields higher accuracy. Note

that the value of gap can be negative, because sometimes an algorithm could
achieve better solution than TDRTR.

Configuration. We first compare our proposed algorithm(SSBLS) with Sweep,
Clarke-Wright and TDRTR. For SSBLS, we use the parameters σ and η which
produces the best solution tuned in the experiment. To show the effectiveness
of using time-dependent road network, we also apply RTR in the static road
network and evaluate the retrieved solution on the time-dependent road network.
The steps are listed as follows: (1) generate a static road network by averaging the
travel cost of each edge during the day. (2) run RTR in the generated averaged
static road network, and generate a routing plan. (3) evaluate the travel cost of
the routing plan in the time-dependent road network.

We then vary the neighbor size σ, and the learning rate η in the adap-
tive delivery location and operator selection process. All algorithms were imple-
mented using Java, and all the experiments were performed on a Linux machine
with 3.5 GHz CPU and 16 GB RAM.

4.2 Comparisons of Different Algorithms

Figure 4 shows the accuracy comparison between algorithms with respect to num-
ber of delivery locations. As illustrated, SSBLS achieves a similar accuracy with
TDRTR and performs better than RTR. In general, local search based algorithms
(e.g., SSBLS, TDRTR and RTR) are much more accurate than Sweep and Clarke-
Wright. For example, SSBLS is 15 % to 27 % more accurate than Sweep or Clarke-
Wright algorithm. In addition, with increasing number of delivery locations, the
benefit tends to grow larger.

At the same time, with comparing RTR with TDRTR, we observe that time-
dependent road network based apoproach can save 6 % to 8 % travel cost. This is
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because in real world road network, the travel cost between two delivery locations
may be quite different during rush hours and non-rush hours. Failing to consider
traffic information leads to congestion, and thus larger travel cost.

Figure 5 shows the comparison of efficiency between different algorithms. We
also show the precomputation (i.e., data preparation) time for TDRTR. As clas-
sic heuristics are much faster, and they can generate a feasible schedule within
1 min even for more than 1000 delivery locations. However, these heuristic algo-
rithms suffer from low accuracy, which makes them less promising in practice.
Although SSBLS is less efficient than Sweep and Clarke-Wright, SSBLS is much
more faster than TDRTR. For example, SSBLS solves a problem instance with
1000 delivery locations in 20 min, which is 8 times faster than TDRTR. This is
because (1) data preparation step is eliminated in SSBLS, which takes more than
half of the total running time for TDRTR, as shown in Fig. 5, (2) SSBLS prefers
to choose promising delivery locations and operators to generate neighborhood
solution, thus reduce the unnecessary search of the solution space.

Note that although RTR is less accurate than SSBLS, RTR is a little faster
than SSBLS. This is mainly because RTR is performed in the static road network.
Compared to the time-dependent road network, (1) data preparation process in
static road network is much faster, i.e., the number of interval is only 1 rather
than 60, (2) travel cost evaluation in static network is also much faster.

In summary, considering the balance between accuracy and efficiency, SSBLS
is best suitable for fast delivery with large scale delivery locations.

4.3 Effect of Neighbor Size

Figures 6 and 7 show the effect of neighbor size σ in terms of efficiency and
accuracy when the number of delivery locations N are 100 and 500. For N = 100,
σ ∈ [10, 100] , and for N = 500, σ ∈ [10, 500]. We use the number of evaluations
to describe the relative speed. Generally, with decreasing σ, the algorithm tends
to be more efficient but less accurate. For example, by setting σ = 10, the
number of evaluated moves is reduced to 10 % compared with the case where
σ = 100, however it suffers from a considerable drop of accuracy. In the following
experiment, we set σ = 40 to balance accuracy and efficiency.
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Table 3. Effect of adaptive delivery location selection (σ = 40, N = 100)

η – 0 0.01 0.02 0.04 0.1 0.2 0.4 1

#Evaluated moves (M) 79.6 72.3 43.7 42.1 37.5 65.6 73.4 54.6 49.9

Gap (%) 0.91 0.92 0.87 0.78 0.98 1.36 1.4 1.45 1.8

4.4 Effect of Adaptive Delivery Location Selection

Table 3 shows the effect of adaptive delivery location selection. “–” means adap-
tive delivery location selection is not used. With increasing η, the accuracy first
increases and then decreases. Thus, parameter tuning is required to achieve a
good result. In addition, using adaptive delivery location selection also increases
the efficiency. We use the number of evaluated moves to compare the relative
efficiency of using different value of η. With adaptive delivery location selection,
the algorithm prefers to conduct local moves on promising delivery locations,
thus it is more likely to generate a better neighbor solution and reach the (local)
optimal solution with less number of iterations. From Table 3, we find that by
setting the learning rate η = 0.02, the algorithm reduces the number of evalu-
ated moves to half while achieves a better accuracy compared with treating all
the delivery locations with equal importance.

4.5 Effect of Adaptive Operator Selection

Table 4 shows the performance of different operator selection strategy. The num-
ber of evaluations describe the relative speed, and the gap represents the accu-
racy. In this set of experiment three operators are used: i.e., One-Point(OP),
Two-Point(TP) and Two-Opt(TO). We compare the performance of using dif-
ferent operators, “X” in the cell means one corresponding operator is used.

As shown in Table 4, different operator strategies result in different efficiency
and accuracy. Generally, the more operators we use, the more accurate results
and the more number of evaluations will be conducted. However, by adaptively
selecting operators in the local search process, the algorithm manages to be
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Table 4. Effect of adaptive operator selection (σ = 40, N = 100)

OP TP TO Adaptive # Evaluated moves (M) Gap(%)

X 17.6 2.99

X 15.9 3.06

X 29.7 4.62

X X 53.4 1.91

X X 32.9 1.27

X X 54.8 1.61

X X X 79.6 0.91

X X X X 26.3 0.91

3 times faster than using all three operators, while not compromising the accu-
racy. This is because by applying promising operators, i.e. those who have good
performance in the previous iterations, the algorithm is more likely to generate a
better neighborhood solution, thus quickly reaching a (local) optimal, i.e., meet
the stop condition with less number of evaluations.

5 Related Work

Vehicle Routing Problem (VRP) [1] is a well studied combinatorial optimization
problem with different variants such as vehicle routing problem with time win-
dows (VRPTW) [6,12], the capacitated vehicle routing problem (CVRP) [13].
Recently, the delivery and courier services are entering a period of rapid change
enabled by recent technologies. On-time and fast delivery is becoming a signifi-
cant differentiator for both delivery and E-commerce companies (e.g., Amazon),
and hence same-day delivery or even 2-hour delivery become increasingly popu-
lar. To enable this new type of delivery, the efficiency and the accuracy are two of
the most important factors. Previous methods focus either on efficiency or qual-
ity, but not both. Among the heuristic algorithms on the VRP problem, there
are two main categories: classic heuristics and meta-heuristics. Classic heuris-
tics (e.g., Clarke-Wright [9], Sweep algorithms [14]) emphasize more on quickly
obtaining a feasible solution: for example, Clarke-Wright algorithm starts with
an initial solution where each route only contains one delivery location, it con-
tinuously merges two routes into one route which generates the largest savings
whenever it is feasible. The drawback with classic heuristics is that the solution
could exists more than 20 % deviation with the best-known solution. This means
that even in a small delivery instance with around 30 delivery locations, the solu-
tion calculated by classic heuristics could take 1 hour more delivery time than
the best solution. In contrast, meta-heuristics perform a more thorough search
of the solution space and hence gain more in solution quality but at the expense
of speed. For example, even for a small delivery instance with around 100 deliv-
ery locations, some meta-heuristics [1] take more than one hour to calculate a
routing plan with gap of less than 1 % with the best solution. In addition, this
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time usually increases exponentially when the number of delivery locations grows
larger (e.g., more than 500 delivery locations), which is quite common in the real
applications [7]. Compared with previous methods, our SSBLS algorithm strikes
a balance between the accuracy and efficiency through restricting the neighbor
size and adaptively selecting the delivery locations and local search operators.

Previous approaches mainly assume that the problem instance is defined on
a complete directed graph. However, in practice, most of the VRPs take place
on real road networks. Although, it is possible to transform a VRP instance
on a road network into an instance on a complete directed graph, it involves
large amount of shortest path computation [15,16]. The problem becomes even
more challenging when dealing with real world time-dependent road network.
Previous works on time dependent VRP [17,18] mainly use the synthetic time-
varying edge weights in which they assume for each delivery pair, there exists a
few fixed number (e.g., 3 or 4) of time intervals and the travel time between the
delivery locations at each time interval is a constant, thus they could pre-compute
a distance matrix for each delivery pair at every time interval. However, the real
world time-dependent road network has a much larger number of time intervals
(e.g., 60), and the travel cost between a pair of delivery locations at certain
time interval is not known in advance, which usually requires a costly shortest
path computation on road network. In [4,10], a time-dependent bidirectional
A* shortest path algorithm is proposed, which builds indexes and calculates
tight bound in the A* search process based on the lower/upper bound graph.
Even with these optimization, shortest path computation on time-dependent
road network takes several hundred milliseconds on Los Angeles road network.
Moreover, in the on-line delivery business, the requests may not be known in
advance, which also prohibits the pre-computation of the distance matrix for
each delivery problem. In this paper, we eliminate the data-preparation step
via an on-demand calculation procedure, which significantly reduces the total
running time of the algorithm.

6 Conclusion

In this paper, we studied the problem of Vehicle Routing in time-dependent
road network. To enable fast and accurate results, we proposed a new local search
framework, which eliminates the time-consuming data-preparation step required
by the Operation Research methods via an on-demand-calculation strategy from
the field of spatial databases. We further improved the efficiency by leveraging a
guided search process to reduce the unnecessary exploration of the solution space.
Our experiments with real-world dataset verified that our algorithm strikes a
good balance between efficiency and accuracy, which makes it practical for the
future delivery business in large-scale and dynamic environment.
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Abstract. Emerging spatial crowdsourcing platforms enable the work-
ers (i.e., crowd) to complete spatial crowdsourcing tasks (like taking pho-
tos, conducting citizen journalism) that are associated with rewards and
tagged with both time and location features. In this paper, we study
the problem of online recommending an optimal route for a crowdsourc-
ing worker, such that he can (i) reach his destination on time and (ii)
receive the maximum reward from tasks along the route. We show that
no optimal online algorithm exists in this problem. Therefore, we propose
several heuristics, and powerful pruning rules to speed up our methods.
Experimental results on real datasets show that our proposed heuristics
are very efficient, and return routes that contain 82–91 % of the optimal
reward.

1 Introduction

Spatial crowdsourcing platforms1,2 publish crowdsourcing tasks that are associ-
ated with rewards and tagged with spatial / temporal attributes (e.g., location,
release time and deadline). To complete a task, a worker must reach the task’s
location before its deadline. Popular tasks include taking photos, reporting activ-
ities / accidents, and verifying data on-site, etc.

Regarding the matching between tasks and workers, existing approaches on
spatial crowdsourcing can be divided into: (i) the server-centric mode [15,16],
where the server assigns tasks to workers based on their reported locations /
regions, or (ii) the worker-centric mode [3,7,10], where the server publishes its
tasks and let workers to choose any task freely. In this paper, we adopt the
worker-centric mode as it protects the location privacy of the worker [10] and
enables the worker to choose tasks autonomously from different crowdsourcing
platforms which he has registered in.

The closest work to ours is the maximum task scheduling (MTS) problem [10].
It returns a route that covers the maximum number of tasks (in a worker’s spec-
ified region, e.g., his city). Since [10] considers the MTS problem at a snapshot,
it would not update the worker’s route when new tasks arrive. We illustrate it in

The research is partly supported by grant GRF 152201/14E from Hong Kong RGC.
1 www.clickworker.com/en/mobile-crowdsourcing.
2 features.en.softonic.com/mobile-crowdsourcing-does-it-work.

c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 137–156, 2015.
DOI: 10.1007/978-3-319-22363-6 8
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(a) snapshot route by MTS [10] (b) online route by our method

Fig. 1. Route recommendation for the worker: each task pi with [release time - deadline]

Fig. 1a. Assume that we use the Manhattan distance and each grid takes a time
unit to travel. Each task pi is tagged with its release time and deadline. Suppose
that the worker starts from s at time 0. The MTS route is s → p1 → p2. The
solution in [10] would not update the route when new tasks are released (e.g.,
p3, p4).

In this paper, we wish to support two extra requirements compared to [10]:
(R1) update the worker’s route online with respect to newly released tasks and
(R2) align with the worker’s trip, i.e., reaching a destination before expected
time. It is important to support R1 in order to assign a worker as many tasks
as possible. New spatial crowdsourcing tasks are indeed being released contin-
uously in real systems3. We also consider the requirement R2 as the worker
may have planned his own activities, e.g., reaching a specified destination by an
expected time [17]. Such worker is willing to take crowdsourcing tasks along his
trip provided that he can arrive at his destination on time.

To this end, we study the online route recommendation problem for spatial
crowdsourcing workers, by taking requirements R1 and R2 into consideration.
Figure 1b illustrates the route recommended by our method. Suppose that the
worker starts from s at time 0 and plans to arrive at home (5, 0) at time 8. At
time 0, the worker is recommended to take the task p2. When new tasks are
released (e.g., p3, p4), the worker is recommended to take them. In summary,
our recommended route is s → p2 → p3 → p4 → d, which covers 3 tasks and
reaches the destination d on time.

To the best of our knowledge, this paper is the first on tackling the online
route recommendation problem for spatial crowdsourcing workers with destina-
tion and arrival time constraints. We contribute the followings:

– We show that no algorithm can achieve a non-zero competitive ratio [2] in
our online problem, meaning that the number of tasks found by any online
algorithm may be arbitrarily small compared to the optimal offline solution.

– We propose two categories of heuristics (GetNextTask and Re-Route) that offer
trade-offs between the response time and the number of tasks. GetNextTask
greedily selects the next task to complete so it incurs a short response time.

3 www.clickworker.com/en/clickworkerjob, www.lionbridge.com.

www.clickworker.com/en/clickworkerjob
www.lionbridge.com
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On the other hand, Re-Route produces a route with more tasks as it conducts
a complete search to update the optimal route with respect to newly released
tasks.

– We further propose pruning rules to reduce the response time of Re-Route.

Experiments on real datasets show that our methods take less than 1 s to update
the route, and return routes that contain 82–91 % of the optimal number of tasks.

The remainder of this paper is organized as follows. We formally define our
problem in Sect. 2. Then, we illustrate our proposed heuristics in Sect. 3 and
present optimization techniques in Sect. 4. In Sect. 5, we test the performance of
our proposed techniques on both real and synthetic datasets. Section 6 highlights
the related work. Finally, we conclude our paper in Sect. 7.

2 Problem Statement

We first introduce some terminology and then define our problem formally.

Definition 1 (Task p). We denote a task by psid,kid = (loc, [t−p , t+p ]), where
loc is the task’s location, t−p , t+p are the release time and deadline of the task,
respectively. The subscripts sid and kid denote the task’s server ID and task ID,
respectively. A worker may complete p and collect the reward4 if he can reach
p.loc before t+p .

Definition 2 (Query q). We denote a query q by q = (s, d, [t−q , t+q ]). s and d
are the worker’s start and destination locations, respectively. t−q and t+q are the
start time from s and expected arrival time at d, respectively.

Definition 3 (Travel Time τ). We denote the travel time as τ(v, u)= dist(v,u)
speedq

,
where dist(v, u) is the distance5 between v and u, and speedq is the (constant)
travel speed of the worker for q. τ(R) denotes the travel time along a route R
(via vertices on R).

With the above terminology, we are ready to define our problem formally
below.

Problem 1 (Oriented Online Route Recommendation (OnlineRR)). Let a worker’s
query be q = (s, d, [t−q , t+q ]). OnlineRR aims to find a route such that it covers the
maximum number of tasks and the worker can arrive at d by t+q . It may update
the route according to the worker’s live location and the new tasks released by
crowdsourcing servers.

4 The reward of a task can be collected by the same worker for only once. Similar
to [10], we assume that each task has a unit reward and can be completed immedi-
ately.

5 Our method can be applied to any distance function provided that it satisfies the tri-
angle inequality, such as Euclidean distance, Manhattan distance, and road network
distance.
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Fig. 2. System architecture

We adopt the system architecture as depicted in Fig. 2. Spatial crowdsourcing
servers publish new spatial crowdsourcing tasks. A worker may install our route
recommender on his mobile device (smartphone). The route recommender is
responsible for: (i) collecting task information from different servers continuously,
(ii) recommending / updating a route based on the worker’s current location and
available tasks.

3 Online Route Recommendation

First, we prove in Sect. 3.1 that no online algorithm can achieve a non-zero
competitive ratio in OnlineRR. Then, we propose two categories of heuristic
approaches for OnlineRR in Sects. 3.2 and 3.3.

3.1 Competitive Analysis

We use the competitive ratio [2] to measure the performance of online algo-
rithms. Since OnlineRR is a maximization problem, the competitive ratio CR is
defined as:

CR = min
e∈E

count(Ralg(e))
count(Ropt(e))

(1)

where E denotes the set of all problem instances, Ralg(e) is the route recom-
mended by an online algorithm alg for instance e, Ropt(e) is the optimal route
Ropt for instance e (cf. Definition 4), and count(R∗(e)) means the number of
tasks on R∗(e).

Definition 4 (Optimal route Ropt(e)for OnlineRR). Given a problem instance
e, we denote its optimal route by Ropt(e), which is obtained under assumption that
the information of all tasks are known in advance (even before their release times).

We show our competitive analysis below. It applies to any online algorithm,
including both deterministic algorithms and randomized algorithms.

Theorem 1. No online algorithm has a non-zero competitive ratio for OnlineRR.

Proof. Since CR = mine∈E
count(Ralg(e))
count(Ropt(e))

, it suffices to find a specific instance
(i.e., the adversary) that makes CR as low as possible. Without loss of generality,
in the following proof, we consider only locations on the positive half line [0,+∞).
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Fig. 3. At time m = 3, adversaries release tasks p2≤i≤n+1 with [release time - deadline]

For the query, we set t−q = 0, s = 0, t+q = 10, d = 7. Assume that speedq = 1,
that is τe(v, u) = |v − u|. We simply denote a task p by (p.loc, [t−p , t+p ]).

At time 0, the adversary releases a task p1 = (3, [0, 3]). At time m = 3,
the adversary will check the worker’s current location (say x), and then decides
to further release n tasks accordingly. There are two cases: (1) x = 0, or (2)
x > 0. We show that the adversary can release those n tasks to make CR
arbitrarily small.

Case 1: x = 0. In this case, the adversary will release tasks p2≤i≤n+1 = (2, [3, 4])
(see Fig. 3a). The worker cannot complete these tasks, since he cannot reach them
before their deadlines, and thus count(Ralg) = 0. But if all tasks are known in
advance, the worker can wait at position 2 until all tasks are released and finish
them on time m = 3. In this case, the competitive ratio is: CR = 0/n = 0.

Case 2: x > 0. In this case, the adversary would release n tasks p2≤i≤n+1 =
(0, [m,∞]) (see Fig. 3b). As m + x + d > m + d = 10 = t+q , the worker cannot
proceed to position 0 at time m; otherwise, he cannot reach d before t+q . So,
the worker can finish at most the task p1 only if he moves directly to m at
time 0. However, if all tasks are known in advance, the worker could stay at 0
until time m = 3 to finish tasks p2≤i≤n+1, and thus count(Ropt) = n. Therefore,
CR ≤ 1/n → 0 because n can be an arbitrary large value.

3.2 Greedy Task Approach

In this section, we present a greedy approach that incurs low response times.
The greedy approach works as follows. Initially, it calls GetNextTask (cf. Algo-

rithm 1) to find the first task for the worker. Given the set of available6 tasks P
and the worker’s location snow at current time tnow, GetNextTask greedily selects
the task with the highest score ψp. Upon reaching the chosen task, GetNextTask
is involved to get the next task repeatedly until reaching d.

Due to the tasks’ deadlines and the worker’s expected arrivial time (cf. Def-
initions 1, 2), the worker may complete a task p if: (i) he can reach p.loc before
t+p , and (ii) he can reach d no later than t+q . Therefore, we call a task to be
feasible if it satisfies:

τ(snow, p) + τ(p, d) ≤ t+q − tnow and tnow + τ(snow, p) ≤ t+p (2)

6 Available tasks are tasks released before the current time tnow.
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Algorithm 1. Get next best task
algorithm GetNextTask (Query q = (snow, d, [tnow, t+q ]), Set of available tasks P )

1: Cand ← compute the set of feasible tasks from P � apply Equation 2
2: if Cand �= ∅ then
3: pnext ← choose p ∈ Cand with best score ψp � ψp is a heuristic function
4: Return pnext

5: else
6: Apply policy Pstay or Pgo until Cand �= ∅ or tnow + τ(snow, d) = t+q

If there is no feasible task for q, the worker may stay or move based on
a predefined policy (cf. Line 6 in Algorithm 1). In the policy Pgo, the worker
simply moves towards the destination d. In the policy Pstay, the worker waits
at snow until tnow + τ(snow, d) = t+q . When new feasible tasks are released, we
resume the search and invoke GetNextTask to obtain the next task.

We illustrate several heuristics for computing the score ψp. Figure 4a shows
the map of tasks which are labeled with release times and deadlines, and Fig. 4b
shows the result route of each heuristic. In this example, we use the query q =
(s, d, [0, 10]), the policy Pstay, and the Manhattan distance.

Nearest Neighbor Heuristic (G-NN). It chooses the nearest feasible task to
the worker’s current location snow, and thus setting ψp = τ(snow, p). In Fig. 4,
G-NN produces the route 〈s, p7, p5, d〉.
Earliest Deadline Heuristic (G-ED). It chooses the task with the earliest dead-
line, and thus setting ψp = t+p . In Fig. 4, G-ED recommends the route 〈s, p7, p5, d〉.

Fig. 4. Example of query q = (s, d, [0, 10]) in OnlineRR (using Manhattan Distance)
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Fig. 5. Feasible candidates search space for Euclidean distance metric

Maximum Candidate Space Heuristic (G-MCS). It chooses the task p that
can maximize the search space of feasible tasks (Eq. 2) in future. The search
space in future is obtained under the assumption that p is just completed. The
space shape differs for different distance metrics, but we can use a general app-
roach Monte Carlo [20] to compare it. If a specific distance metric is used, then
the exact candidate space size can be calculated. Take Euclidean distance for
example, the space size is the area of the ellipse shown in Fig. 5a, and thus we can
calculate the score ψp using equations in Fig. 5b for Euclidean distance metric.

We illustrate how G-MCS works in Fig. 4. At time 0, the feasible tasks are
p1, p2, p3, p7. Since p1 has the highest score (ψp1), p1 is chosen to be visited.
When the worker reaches p1, a new task p4 is released while p7 expires, so the
set of feasible tasks becomes {p2, p3, p4}. Then p4 is chosen as it has the highest
score (ψp4). Upon reaching p4, the algorithm selects p6 as it has the best score
among {p3, p6, p8}. After completing task p6, there are no more feasible tasks.
After waiting for two more time units, the worker moves toward d. In summary,
G-MCS obtains the route 〈s, p1, p4, p6, d〉.

3.3 Complete Search for Route Approach

In this section, we present a complete search approach that tends to find more
tasks than the heuristics in Sect. 3.2.

Specifically, we formulate the following SnapshotRR problem, which takes the
current query and the set of available tasks as input. Then, we solve SnapshotRR
by enumerating all possible routes and obtain the one with the maximum number
of tasks.

Problem 2 (Snapshot Route Recommendation (SnapshotRR)). Given a query q =
(snow, d, [tnow, t+q ]) at the current snapshot tnow, SnapshotRR aims to find a route
such that it covers the maximum number of tasks and the worker can arrive at
d by t+q .

We illustrate this approach for the query q = (s, d, [0, 10]) in Fig. 4. At time 0,
we apply Eq. 2 and obtain the set of feasible tasks: P = {p1, p2, p3, p7}. Figure 4c
shows all possible routes (known at time 0). The optimal route at time 0 is
〈s, p1, p2, p3, d〉.
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We propose a simple optimization to solve SnapshotRR in Algorithm 2. At
Line 3, we check whether there exists a new feasible task p (that was not available
in the previous call of Algorithm 2). If such p exists, we must solve SnapshotRR
again. Otherwise, the best route remains the same as in the previous call, so we
need not solve SnapshotRR again.

Algorithm 2. Complete search the result route
algorithm Re-Route (Query q = (snow, d, [tnow, t+q ]), Set of available tasks P )

1: Let Pprev be the set of available tasks in the previous call
2: if P �= ∅ then
3: if ∃p ∈ P − Pprev such that p is feasible then � Equation 2
4: R ← Solve SnapshotRR(q, P ) � conduct complete search
5: else
6: Apply policy Pstay or Pgo until P �= ∅ or tnow + τ(snow, d) = t+q

We proceed to illustrate how Re-Route works in the example in Fig. 4. At time
0, Re-Route computes the route R0 = 〈s, p1, p2, p3, d〉, and then the worker moves
along R0 to p1. Upon reaching p1, a new feasible task p4 is found, so Re-Route
re-calculates the route as R1 = 〈p1, p2, p3, d〉. When the worker reaches p2, a new
feasible task p8 is found, so Re-Route updates the route to R2 = 〈p2, p3, p8, d〉.
After reaching p8, a new task p9 is found but it is not feasible. Thus, Re-Route
would not computes the route again (cf. Line 3 in Algorithm 2). Eventually,
the worker moves to d. In summary, the actual route traveled by the worker is:
〈s, p1, p2, p3, p8, d〉. It covers more tasks than other heuristics (cf. Figure 4b).

Since it is expensive to solve SnapshotRR by enumerating all possible routes,
we will present optimizations to solve SnapshotRR efficiently in Sect. 4.

4 Optimization for SnapshotRR

We adapt the bi-directional search algorithm for the Orienteering Problem with
Time Windows (OPTW) problem [19] to solve our problem. For brevity in dis-
cussion, we use q = (s, d, [t−q , t+q ]) instead of q = (snow, d, [tnow, t+q ]). We will
conduct bi-directional search for SnapshotRR in three steps:

Step 1: Search sub-routes in the forward direction (from s) and store them in
−→
IR

Step 2: Search sub-routes in the backward direction (from d) and store them in
←−
IR

Step 3: Join sub-routes between
−→
IR and

←−
IR

According to Pruning Rule 1, the bi-directional search can reduce the search
space. However, the method in [19] does not exploit spatial properties in our
problem. In this section, we develop more effective pruning rules to accelerate
bi-directional search on SnapshotRR.

Pruning Rule 1 (Half travel time bound property proved in [19]). In
the forward (or backward) route searching from vertex s (or d), only routes R
with τ(R) ≤ τmax/2 are maintained and extended, where τmax = t+q − t−q .
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4.1 Forward Search and Backward Search

In this section, we elaborate the forward search (Step 1) and discuss adaptations
for the backward search (Step 2) at the end. In the following discussion, we use
R instead of

−→
R to represent a sub-route found in forward search (which will be

stored in
−→
IR) for simplicity.

We first introduce the sub-route concept and its extension operation. Then,
we propose a pruning rule and a search strategy to speedup the computation.
In the following, we denote the set of vertices as V = P ∪ {s, d}, where P is the
set of available tasks.

Sub-route Extension.
We denote a path from s to v ∈ V as a sub-route Rv, which contains four

attributes Rv = (τ(Rv), BRv
, CRv

, v).

– τ(Rv) represents the travel time along Rv (i.e., from s to v).
– BRv

stores a sequence of tasks visited before on the sub-route Rv. We denote
the profit of Rv as |BRv

| because all tasks have the same reward.
– CRv

is a set of candidate vertices (that are feasible for visiting in future), and
its calculation is discussed in Eq. 5.

During route search, for each vertex v, we store all sub-routes of the form Rv

into a set IRv. In addition, we only consider feasible routes. Recall that τ(Rv)
represents the travel time (along Rv) from s to v. According to Eq. 2, a sub-route
Rv is said to be feasible if:

τ(Rv) ≤ t+v − t−q and τ(Rv) ≤ t+q − t−q (3)

where t+v is the deadline for vertex v when v is a task, or ∞ when v ∈ {s, d}.
For each vertex u ∈ CRv

, we can extend Rv with an arc (v, u) to form a
new sub-route Ru. The component of Ru = (τ(Ru), BRu

, CRu
, u) is calculated

as follows:

BRu
← 〈BRv

, v〉 and τ(Ru) ← τ(Rv) + τe(v, u) (4)

The set CRu
contains each candidate vertex p that satisfies:

(5)

which involve the constraints in Eq. 4 (♣), Eq. 3 (♠), triangle inequality (♥), the
constraint that each task can be visited only once (♦), the worker’s arrival time
t+q ( ) and Pruning Rule 1 ( ).

We illustrate sub-route extension in Fig. 6. Assume that q = (s, d, [0, 10]) and
P = {p1, p2, · · · , p7}. We consider Manhattan distance in this example. First,
we compute the candidate set of s. By Pruning Rule 1, we only consider tasks
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within 10/2 = 5 units from s (i.e., tasks in the dotted diamond in Fig. 6). Thus,
tasks p3, p7 are not feasible. The tasks p4 and p5 are not feasible as they violate
constraints on the task’s deadline and the worker’s arrival time, respectively.
Thus, we obtain the candidate set of s as Cs = {p1, p2, p6}, and compute the
sub-route for s as Rs = (0, ∅, Cs, s). Next, we append arcs (s, p1), (s, p2), (s, p6)
into Rs to generate three new sub-routes: R1 = (1, 〈p1〉, {p2, p6}, p1), R2 =
(3, 〈p2〉, {p6}, p2), R6 = (5, 〈p6〉, ∅, p6).

p7

s

d

p3

p6

[0-10]

[0-10]

[0-10]

p5

[0-10]

[0-2]
p4

p2
[0-10]

p1
[0-10]

0 1 2 3 4 5 6
0

1

2

3

4

x

y

Fig. 6. Example query q = (s, d, [0, 10]) for SnapshotRR problem (using Manhattan
distance)

Dominate Test Pruning.
We develop the following pruning rule to further reduce the search space.

Pruning Rule 2 (Dominating Pruning). Let Rv = (τ(R), BRv
, CRv

, v) and
R′

v = (τ(R′
v), BR′

v
, CR′

v
, v) be two feasible routes associated with v. We can prune

R′
v if:

τ(Rv) ≤ τ(R′
v) and |CR′

v
∩ BRv

| ≤ |BRv
| − |BR′

v
|

Proof. Among all full routes with R′
v as the prefix, let R′

opt = 〈s,BR′
v
, R′

tail, d〉
be the maximum reward route. With the given condition τ(Rv) ≤ τ(R′

v), after
traveling along Rv, we can still follow all tasks in R′

tail and arrive at d by t+q .
There exists a route Rexist = 〈s,BRv

, Rtail, d〉 where Rtail = R′
tail −BRv

. Rexist

ensures that the reward of each task is gained at most once as BRv
and Rtail

have no common tasks.
Since R′

tail ⊆ CR′
v
, we have |R′

tail| = |Rtail|+ |R′
tail ∩BRv

| ≤ |Rtail|+ |CR′
v
∩

BRv
|.

By combining the above with the given condition |CR′
v
∩BRv

| ≤ |BRv
|−|BR′

v
|,

we derive: |BRv
| + |Rtail| ≥ |BR′

v
| + |CR′

v
∩ BRv

| + |Rtail| ≥ |BR′
v
| + |R′

tail|. As
the reward of Rexist (extended from Rv) is greater than or equal to that of R′

opt

(extended from R′
v), we can prune the subroute R′

v.

Search Strategy.
Our strategy is to identify sub-routes with better reward values in order to

utilize pruning rule 2. To do so, we introduce the concept of upper bound reward:
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Definition 5 (Vertex upper bound reward $+v ). Given a sub-route Rv =
(τ(Rv), BRv

, CRv
, v), we define its upper bound reward as $+Rv

= |BRv
| + |CRv

|.
The upper bound reward of vertex v ∈ V is defined as: $+v = max{$+Rv

| Rv ∈ −→
IRv}.

Initially, we begin the search from a sub-route at s. We iteratively extend sub-
routes found so far and apply pruning rule 2 to discard unpromising sub-routes.
During the search, we employ a heap H to process vertices in descending order
of $+v .

Table 1. Forward space search

Iteration Selected Vertex Extended Route R Modified IR Heap H

1 s (0, ∅, {p1, p2, p6}, s)
−−→
IRp1 = {(1, 〈p1〉, {p2, p6}, p1)} (p1, 3)
−−→
IRp2 = {(3, 〈p2〉, {p6}, p2)} (p2, 2)
−−→
IRp6 = {(5, 〈p6〉, ∅, p6)} (p6, 1)

2 p1 (1, 〈p1〉, {p2, p6}, p1)
−−→
IRp2 = {(3, 〈p1, p2〉, {p6}, p2)} (p2, 3)
−−→
IRp6 = {(5, 〈p1, p6〉, ∅, p6)} (p6, 2)

3 p2 (3, 〈p1, p2〉, {p6}, p2)
−−→
IRp6 = {(5, 〈p1, p2, p6〉, ∅, p6)} (p6, 3)

4 p6 ∅ ∅ ∅
−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2), (1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)

We illustrate this method on the example in Fig. 6 and show the running
steps in Table 1. Iteration 1 corresponds to the extension of the sub-route Rs at
s, which we have discussed before. We obtain three new subroutes R1, R2, R6,
insert them in their corresponding route sets

−→
IRp, and also enheap p1, p2, p6 into

H. In each subsequent iteration, we deheap the vertex v ∈ H with the largest
$+v , and extend its sub-routes Rv in the descending order of |BRv

|.
In iteration 2, we generate a new sub-route (3, 〈p1, p2〉, {p6}, p2) and apply

Pruning Rule 2 to discard the previous subroute at p2, i.e., (3, 〈p2〉, {p6}, p2).
Similarly, the previous sub-routes for p6: (5, 〈p6〉, ∅, p6) and (5, 〈p1, p6〉, ∅, p6) are
pruned in iterations 2 and 3, respectively.

The forward search terminates when H becomes empty, i.e., no sub-routes
can be extended. It returns the set

−→
IR of all surviving sub-routes.

Algorithm 3 illustrates the pseudo code of route search in forward direction.
It is self-explanatory and summarizes what we have discussed above.

Backward Search. Route space search in backward direction is similar to that
in forward direction. The pruning rules, searching strategies, and dominating
testing discussed for forward search can be modified for backward search directly.

4.2 Route Join

In this section, we elaborate on how to join sub-routes obtained in the for-
ward search and the backward search. Let

−→
Rv = (τ(

−→
Rv), B−→

Rv
, C−→

Rv
, v) and

←−
Ru = (τ(

←−
Ru), B←−

Ru
, C←−

Ru
, u) be two sub-routes in the forward and the backward

directions, respectively. They are feasible to be joined if:
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Algorithm 3. Forward search
function RouteSearchFW(Query q = (s, d, [t−

q , t+q ]), Vertex set V = P ∪ {s, d})
�

Initialization
1: Create an empty set

−→
IRv for each vertex v ∈ V to store sub-routes associated with

v
2: Calculate the candidate vertex set Cs of s � Equation 5

3:
−→
IRs ← {(0, ∅, Cs, s)}

4: Create a max-heap H ← {(s, |Cs|)} to store vertices whose routes will be extended

� Repeatedly generate feasible sub-routes

5: while H �= ∅ do
6: (v, v.ub) ← Extract-Max(H) � Searching strategy

7: Sort routes R ∈ −→
IRv in the descending order of |BR| � Searching strategy

8: for all Rv ∈ −→
IRv do

9: for all u ∈ CRv do
10: Ru ← Extend(Rv, q, u) � Equation 4, 5 Pruning Rule 1

11: RemoveDominate(
−→
IRu, Ru) � Pruning Rule 2

12: if Ru ∈ −→
IRu then � Ru not pruned

13: if (u, u.ub) /∈ H then
14: Insert (u, $+

Ru
) into H

15: else
16: u.ub ← max{u.ub, $+

Ru
}

17: Return
−→
IR ← all routes in each nonempty

−→
IRv

τ(
−→
Rv) + τ(v, u) ≤ u.t+p and τ(

−→
Rv) + τ(

←−
Ru) + τ(v, u) ≤ t+q − t−q

B−→
Rv

∩ B←−
Ru

= ∅ (6)

We denote the joined route as Rjoin = 〈s,B−→
Rv

, rev(B←−
Ru

), d〉, where rev(B←−
Ru

)
refers to a list of vertices in B←−

Ru
but in the reversed order. Its reward is:

|B−→
Rv

| + |B←−
Ru

|.
We develop two optimization techniques to accelerate the join procedure.

First, we apply pruning rule 3 to skip the feasible checking (cf. Eq. 6) for pairs
of sub-routes. Second, we sort sub-routes in the descending order of their |BR|.
This helps us find a tigher $best earlier, and in turn boosts the power of Pruning
Rule 3.

Pruning Rule 3 (Reward bound pruning). Let $best be the maximum reward
on all joined routes found so far. If |B−→

R
| + |B←−

R
| ≤ $best, then we need not join

−→
R

and
←−
R .

Continuing with the example in Fig. 6, we illustrate the join procedure in
Table 2. First, we sort forward sub-routes

−→
R ∈ −→

IR and backward sub-routes
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←−
R ∈ ←−

IR in descending order of |BR|. For each pair of
−→
R and

←−
R , if it survives

Pruning Rule 3, then we conduct feasible checking and then join the pair. After
joining the forward sub-route

−→
R = (5, 〈p1, p2, p6〉, ∅, p6) with the backward sub-

route
←−
R =(2, 〈p7, p3〉, {p6}, p3), we update $best to 5. All remaining pairs are

pruned according to Pruning Rule 3. The best route (known at this snapshot)
is 〈s, p1, p2, p6, p3, p7, d〉.

Table 2. Route join

sub-routes sorted in the descending order of |BR|
−→
IR (5, 〈p1, p2, p6〉, ∅, p6), (3, 〈p1, p2〉, {p6}, p2), (1, 〈p1〉, {p2, p6}, p1), (0, ∅, {p1, p2, p6}, s)
←−
IR (5, 〈p7, p3, p6〉, ∅, p6), (2, 〈p7, p3〉, {p6}, p3), (1, 〈p7〉, {p3, p6}, p7), (0, ∅, {p3, p6, p7}, d)
route join iterations

iteration candidate join pairs join result $best

−→
R

←−
R Rjoin

1 (5, 〈p1, p2, p6〉, ∅, p6) (5, 〈p7, p3, p6〉, ∅, p6) not feasible (Eq. 6) 0

2 (5, 〈p1, p2, p6〉, ∅, p6) (2, 〈p7, p3〉, {p6}, p3) R = 〈s, p1, p2, p6, p3, p7, d〉 5

· · · · · · · · · skipped (Pruning Rule 3) 5

optimal route for this snapshot R = 〈s, p1, p2, p6, p3, p7, d〉

5 Experiment

This section studies the effectiveness and efficiency of our proposed methods on
both real and synthetic datasets.

5.1 Experimental Setting

We first introduce the datasets used in experiments, and then describe the per-
formance measures for algorithms.

Datasets.

Real Datasets. Similar to [10], we obtain real check-in data in Foursquare7 and
convert them to crowdsourcing tasks in our problem. Specifically, we collect
check-in data for New York city (NYC) and Los Angeles County (LA) in a month
(September 2012). For each day in that month, we use all check-in items within a
90-minute duration. We take check-in items at the same location as a single
task, set its release time and deadline to the earliest and the latest check-in
time respectively8. We measure the travel time τ(v, u) as the Euclidean distance
between two locations divided by the average speed. We use a walking speed
6 km/h for NYC (whose map size 789 km2 is small), and use a driving speed
60 km/h for LA (whose map size 10,570 km2 is large).

Synthetic Datasets. As NYC and LA have similar result trends (see Fig. 7), we
use the map domain of LA to generate synthetic datasets. For each synthetic
7 https://foursquare.com/.
8 For each location with only one check-in item (say, at time t), we choose its deadline

randomly in [t, t+q ], where t+q refers to the query’s deadline.

https://foursquare.com/
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Table 3. Experiment parameters

Parameter Default Range

total number of tasks 100 20, 50, 100, 200, 500

t+q − t−
q [minutes] 90 30, 60, 90, 120, 150

Gaussian x 0.1 0.05, 0.1, 0.25, 0.5

task, we randomly choose its release time t−p randomly in [t−q , t+q ] and then
choose its deadline t+p in range [t−p , t+q ], as we consider queries of the form
q = (s, d, [t−q , t+q ]) in our experiments. We generate two types of datasets. In
each uniform dataset (UNI), task locations are randomly chosen within the map
domain. In each Gaussian dataset (GAU), task locations are generated based on
four Gaussian bells, with the standard deviation of Gaussian bell as x times
of the map domain length. The parameter values for the number of tasks and
Gaussian standard deviation x are shown in Table 3.

Platform and Performance Measures. We implemented our methods (G-
NN, G-MCS, G-ED, Re-Route) in C++, and conducted experiments on an Ubuntu
11.10 machine with a 3.4 GHz Intel Core i7-3770 processor and 16 GB RAM.

We use queries of the form q = (s, d, [t−q , t+q ]), where t+q − t−q = 90 min by
default. We randomly choose s, d in the map domain such that τ(s, d) = 45 min.
The parameter values for t+q − t−q are given in Table 3.

In each experiment, we run a set Q of 50 queries and report (i) the quality
ratio for Q, and (ii) the average response time per call of a method. Specifically,
we define the quality ratio of a method as:

quality ratio =
1

|Q| ·
∑

q∈Q

count(Rmethod(q))
count(Ropt(q))

where q is a query inQ,Rmethod(q) is the route for q found by ourmethod,Ropt(q) is
the optimal route for q found by an offline method that knows all tasks in advance9.

We have tested the effects of policies Pstay and Pgo (cf. Section 3.2) on our
methods. For the same method, the quality ratios between Pstay and Pgo differ
only by 0.01 − 0.02. Thus, we take the default policy in our methods as Pstay.

5.2 An Experiment on Real Datasets

We plot the performance of methods on real datasets (LA and NYC) on each
day from Sep/21/2012 to Sep/30/2012 in Fig. 7. Within the query period, LA
and NYC contain 60 and 40 tasks on average, respectively. The optimal routes

9 As mentioned in Definition 4, Ropt(q) is obtained with assumption that all tasks’ infor-
mation are known in advance at time t−

q . With this assumption, OnlineRR becomes a
special case of SnapshotRR where tasks can have release time larger than t−

q and the
approach for SnapshotRR can be used to find Ropt(q) then.
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Fig. 7. Performance on real datasets

Ropt in LA and NYC cover 10 and 5 tasks on average, respectively. Figure 7a,c
show the quality ratio of the methods on NYC and LA, respectively. Re-Route
outperforms other methods and achieves 0.82–0.91 quality. G-MCS is the second
best and obtains 0.70–0.84 quality. Although Re-Route incurs higher response
time, it takes less than 1 s per call, as depicted in Fig. 7b,d. We consider such
time acceptable for crowdsourcing workers. For example, for the LA dataset,
Re-Route is called for 10 times (on average) during the query period (90 min).
Observe that the time per call (1 s) is negligible compared to the average travel
time between two tasks (90/10 = 9 min).

5.3 Scalability Experiments on Synthetic Datasets

Effect of Task Distribution. Figure 8 depicts the performance of methods on
GAU datasets with standard deviation x and on a UNI dataset. As illustrated in
Table 4a, a more skewed dataset (i.e., with smaller x) leads to an optimal route
with higher reward because tasks in the same cluster are close together. Since
our methods can also find routes with higher reward on a more skewed dataset,
the quality ratio does not vary much (See Fig. 8a). Re-Route again outperforms
other methods on the quality ratio. On the other hand, a more skewed dataset
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Fig. 9. Effect of the Total Number of Tasks

Table 4. Reward on the optimal route

Task distribution Gaussian Uniform

Parameter values (a) standard deviation x (b) total number of tasks (c) query period t+q − t−
q

0.05, 0.1, 0.25, 0.5 20, 50, 100, 200, 500 30, 60, 90, 120, 150

Reward of Ropt 12.57, 9.39, 6.84, 4.72 1.7, 3.14, 5.26, 7.94, 13.2 1.62, 3.26, 5.26, 6.92, 8.92

induces more feasible candidate tasks in Re-Route, and thus it incurs higher
response time. Nevertheless, Re-Route takes at most around 1 s per call in Fig. 8b,
which is acceptable for crowdsourcing workers.

Since the trend on quality is consistent across different task distributions, we
only use UNI datasets in the remaining experiments.

Effect of Total Number of Tasks. When the total number of tasks increases,
both the optimal route (cf. Table 4b) and our methods’ routes would cover more
tasks. Thus, the quality ratio is independent of the total number of tasks, as
shown in Fig. 9a. The response time of Re-Route increases slightly with the total
number of tasks (see Fig. 9b), but it is still within 0.1 s per call.
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Fig. 10. Effect of the query period t+q − t−
q

Effect of the Query Period t+q −t−q . As the query period t+q −t−q widens, more
tasks become feasible and thus the optimal route contains more tasks, as shown
in Table 4c. We plot the performance of the methods with respect to t+q − t−q in
Fig. 10. The quality ratio is independent of t+q − t−q as our methods are also able
to find routes with more tasks. The response time per call in Re-Route remains
acceptable.

Effect of Pruning Rules on Re-Route. We proceed to test the effect of opti-
mization techniques (cf. Sect. 4) on the response time per call of Re-Route.
We consider two variations of Re-Route: (i) DISABLE applies only pruning
rule 1 (in Ref. [19]), and (ii) ENABLE applies all three pruning rules in Sect. 4.

As DISABLE is very slow, we scale down the total number of tasks in this
experiment, and terminate it if it takes more than 300 s per call. We show the
response time per call of DISABLE and ENABLE on both UNI and GAU datasets
in Fig. 11. Observe that ENABLE runs much faster than DISABLE, implying that
our pruning rules are able to shrink the search space significantly.
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6 Related Work

Spatial crowdsourcing is an emerging topic in crowdsourcing research. Existing
researches are divided into the server-centricmode [9,15,16,18,22] and theworker-
centric mode [3,7,10]. We focus on the latter one as discussed in the introduction.
However, [3,7] do not consider the influence of the worker’s travel time, which is
critical in our OnlineRR problem. The closest work to ours is [10], which selects
a route with the maximum number of tasks for a worker. However, [10] does not
discuss how to update a route with respect to online task arrivals. Also, it does not
consider the worker’s destination and deadline.

Our OnlineRR problem is related to the orienteering problem [13,23]. The ori-
enteering problem is a variant of the selective traveling salesman problem [11],
where (i) not all requests need to be completed, and (ii) the cost is the sum of the
total travel time and the penalty of rejected requests. The orienteering problem
is well studied [13,23], but only several works [5,8,12,19] consider the Orien-
teering Problems with each request having a Time Window (OPTW). Those
works focus on the offline scenario but not the online scenario. While there exist
approximation algorithms for OPTW offline [5,8,12], OnlineRR is an online prob-
lem and does not permit any online algorithm to achieve a non-zero competitive
ratio.

Righini et al. [19] propose an exact bi-directional search algorithm for OPTW,
which can be adapted to solve our SnapshotRR problem. Unlike our solution, this
algorithm does not exploit spatial properties to prune unpromising sub-routes.
In Sect. 4, we have developed two pruning rules and a search strategy that are
specific for SnapshotRR.

Other related route planning problems include the trip planning problem [17]
and the optimal sequenced route problem [21]. They require finding the shortest
route that passes through specific types of points-of-interests. On the other hand,
our problem needs to maximize the number of tasks on a route subject to the
tasks’ deadlines and the worker’s deadline.

OnlineRR problem is also related to online traveling salesman problem (OL-
TSP) [4,14]. Few works have studied OL-TSP with each request having a dead-
line [6,24]. While OL-TSP aims to minimize the travel distance, our OnlineRR
problem aims to maximize the number of tasks on a route. Moreover, the above
works on OL-TSP do not consider the worker’s destination and deadline. Finally,
our problem is similar to an online job-scheduling problem whose tasks have depen-
dent setup costs [1]. However, this problem does not exploit the spatial properties
as in OnlineRR.

7 Conclusion

In this paper, we study the oriented online route recommendation (OnlineRR)
problem for spatial crowdsourcing task workers. We prove that no online algo-
rithm can achieve a non-zero competitive ratio for OnlineRR. Then we propose
several heuristics for OnlineRR and optimizations to speedup the computation.
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According to our experimental findings, Re-Route produces routes with the high-
est quality (0.82–0.91) in acceptable response time per call (0.1–1 s), whereas
G-MCS returns routes with the second highest quality (0.70–0.84) at real-time
(below 1 ms). Workers preferring to save smartphone battery power may choose
G-MCS as it has less computation cost. OnlineRR will be extended to consider
the task diversity and task novelty in the future.
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Abstract. Directions and paths, as commonly provided by navigation
systems, are usually derived considering absolute metrics, e.g., finding
the shortest or the fastest path within an underlying road network. With
the aid of Volunteered Geographic Information (VGI), i.e., geo-spatial
information contained in user generated content, we aim at obtaining
paths that do not only minimize distance but also lead through more
popular areas. Based on the importance of landmarks in Geographic
Information Science and in human cognition, we extract a certain kind
of VGI, namely spatial relations that define closeness (nearby, next to)
between pairs of points of interest (POIs), and quantify them follow-
ing a probabilistic framework. Subsequently, using Bayesian inference we
obtain a crowd-based closeness confidence score between pairs of POIs.
We apply this measure to the corresponding road network based on an
altered cost function which does not exclusively rely on distance but also
takes crowdsourced geo-spatial information into account. Finally, we pro-
pose two routing algorithms on the enriched road network. To evaluate
our approach, we use Flickr photo data as a ground truth for popular-
ity. Our experimental results – based on real world datasets – show that
the paths computed w.r.t. our alternative cost function yield competitive
solutions in terms of path length while also providing more “popular”
paths, making routing easier and more informative for the user.

1 Introduction

User generated content has benefited many scientific disciplines by providing a
wealth of new data. Technological progress, especially smartphones and GPS
receivers, has facilitated contributing to the plethora of available information.
OpenStreetMap1 constitutes the standard example and reference in the area
of VGI. Authoring geo-spatial information typically implies coordinate-based,
1 https://www.openstreetmap.org/.
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quantitative data. Contributing quantitative data requires specialized applica-
tions (often part of social media platforms) and/or specialized knowledge, as is
the case of OpenStreetMap (OSM).

The broad mass of users contributing content, however, are much more
comfortable using qualitative information. People typically do not use geo-
coordinates to describe their spatial motion, for instance when traveling or roam-
ing. Instead, they use qualitative information in the form of toponyms (land-
marks) and spatial relationships (“near”, “next to”, “close by”, etc.). Hence,
there is an abundance of geo-spatial information (freely) available on the Inter-
net, e.g., in travel blogs, largely unused. In contrast to quantitative information,
which is mathematically measurable, qualitative information is based on per-
sonal cognition. Therefore, accumulated and processed qualitative information
may better represent the human way of thinking.

This is of particular interest when considering the “routing problem” (equiv-
alent to “path computation”). Traditional routing queries use directions from
systems that only take inherent cost measure of the underlying road network
into account, e.g., distance or travel time. In human interaction, such informa-
tion is usually enhanced with qualitative information (e.g. “the street next to the
church”, “the bridge North of the Eiffel tower”). Combining traditional routing
algorithms with crowdsourced geo-spatial references we aim to more properly
represent human perception while keeping it mathematically measurable.

Fig. 1. Shortest (continuous) and alternative
paths (dot dashed and dotted) alongside POIs
in the city of Paris. This result is an output of
some of the algorithms presented in this paper.

In [1], the authors analyze the
important role of landmarks for
the representation of geographic
space in human mind, i.e., peo-
ple tend to describe their position
in space based on landmarks and
relations between them. Based
on this fact, in this work, we
enrich a road network with infor-
mation about spatial relations
between pairs of Points of Inter-
est (POIs) extracted from user
generated data (travel blog data).
Using these relations, we obtain
routes that are easier to interpret
and follow, possibly rather resem-
bling a route that a person would
provide.

As an example, consider the
routing scenario in Fig. 1 which is
set in the city of Paris, France.
The continuous line represents the
conventional shortest path from
starting point “Gare du Nord” to the target at “Quai de la Rapée” while the
dot dashed and dotted lines represent alternative paths computed by the algo-
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rithms introduced in this paper. The triangles in this example denote touristic
landmarks and sights. For instance, the dot dashed path on the bottom right
passing through recognizable locations such as “Place de la République”, “Cirque
d’hiver” and “la Bastille”, as proposed by our algorithms, is considerably easier
to describe and follow, and might yield more interesting sights for tourists than
the shortest path.

The major challenge in this contribution is the extraction of crowdsourced
geo-spatial information from textual data and the enrichment of an existing
road network with this information. The enriched road network is subsequently
used to provide paths between a given start and target that satisfy the claim of
higher popularity (which is formally introduced in Sect. 3), while only incurring
a minor additional spatial distance. In addition to this main application, we note
that our techniques can furthermore be used to automatically provide interest-
ing touristic routes in any place where information about POIs is available. The
transition from textual information to routing in networks is not at all straight-
forward, therefore we employ and develop various methods from different angles
of computing science. In a pre-processing step, we first mine VGI from user
generated texts, by employing Natural Language Processing (NLP) methods in
order to determine spatial entities (POIs) and spatial relations between them (see
Sect. 2). Furthermore, due to the inherent uncertainty of crowdsourced data, we
employ probability distributions to quantitatively model spatial relations mined
from the text (see Sect. 2.2). Having this information available, we propose and
approach for “popular” path computation. To summarize, our contributions are
as follows:

– We introduce a Bayesian inference-based transition from the modeled spatial
relations to spatial closeness confidence measurements according to the crowd
(see Sect. 3.1).

– We define a new cost criterion which is used to enrich an underlying road
network with the aforementioned confidence measurements (see Sect. 3.2).

– We extend our previously presented road network enrichment approach (see
[2]) with a skyline-based road network enrichment approach.

– Finally, we propose two algorithms which use the enriched road network to
compute actual paths (see Sect. 4).

2 Pre-processing: Spatial Relation Extraction
and Modeling

This section highlights our approach on qualitative data extraction from texts
and presents a probabilistic approach for representing spatial relationships based
on distance and orientation features. Key ingredients of our approach are NLP
methods for information extraction from texts and algorithms that train prob-
abilistic models, which are required due to the inherent uncertainty of crowd-
sourced data. Our discussion below includes a short description of NLP tools we
use to extract spatial relations between POIs, the features we used to model spa-
tial relations as probability distributions, and a short analysis of the modeling
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approach used in [3]. These models are necessary to assess the quality of spatial
relations extracted from text which will be used in Sect. 3.2 for the enrichment
of the underlying road network.

2.1 Spatial Relation Extraction from Texts

In this work, we choose travel blogs as a rich source for (crowdsourced) geo-
spatial data. This selection is based on the fact that people tend to describe
their experiences in relation to their trips and places they have visited, which
results in “spatial” narratives. To gather such data, we use classical Web crawling
techniques and compile a database consisting of 250,000 texts, obtained from 20
travel blogs.

Obtaining qualitative spatial relations from text involves the detection of
(i) POIs (or toponyms) and (ii) spatial relationships linking the POIs. The
employed approach involves geoparsing, i.e., the detection of candidate phrases,
and geocoding, i.e., linking the phrases to actual coordinate information.

For the relation extraction task we follow the approach used in [4] where a
Natural Language Processing Toolkit (NLTK) (cf. [5]) based spatial relation
extraction approach is presented. NLTK is a leading platform for analyzing
raw natural language data. The search for spatial relations in texts results into
triplets of the form (Pi, Rk, Pj), where pi and pj are named entities (landmarks)
and Rk is the spatial relation that intervenes between Pi and Pj . Following this
path, we managed to extract 500,000 POIs from the aforementioned travel blog
text corpus. For the geocoding of the POIs, we rely on the GeoNames2 geograph-
ical gazetteer data, which contains over 10 million POI names worldwide and
their coordinates. This procedure associates (whenever possible) POIs extracted
from travel blogs with geographical coordinates. Using the GeoNames gazetteer
we were able to geocode about 480,000 out of the 500,000 extracted POIs and
to end up with about 600,000 triplets of the form (Pi, Rk, Pj) worldwide.

For our experiments we want to focus on regions with high triplet density in
order to get meaningful results. Therefore, we focus on the cities of Paris and
New York. The triplets we extracted for each of these two cities define what we
call Spatial Relationship Graph, i.e., a spatial graph in which nodes represent
POIs and edges are spatial relationships between them. Let us point out that
for the scope of this work, i.e., a combination of short and enriched routes,
we only consider distance and topological relations that denote closeness (near,
close, next to, at, in etc.). The use of relations that denote direction, e.g., North,
South etc., or remoteness, e.g., away from, far from etc., is an open direction for
future work.

2.2 Modeling Spatial Relations

Feature Extraction In order to train probabilistic models, we need informative
features. We model each spatial relation in terms of distance and orientation as

2 http://www.geonames.org/.

http://www.geonames.org/
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presented in [3]. Therefore, we extract occurrences of a spatial relation (such
as “near”) from travel blogs. For each occurrence, we create a two-dimensional
spatial feature vector D = (Dd,Do)ᵀ where Dd denotes the distance and Do

denotes the orientation between Pi and Pj . Specifically, assuming a projected
(Cartesian) coordinate system, the distance between two POIs Pi and Pj is
computed as the Euclidean metric between the two respective coordinates. The
orientation is established as the counterclockwise rotation of the x-axis, centered
at point Pj , to point Pi. This way, we end up with a set of two-dimensional feature
vectors Drel = {D1,D2, . . . , Dn} for each spatial relation. We will use the set of
two-dimensional feature vectors in order to train a probabilistic model for each
spatial relation.

Probabilistic Modeling. As described in [3], by using a set of two-dimensional
feature vectors for each spatial relation such as “near” or “into”, we can train
Gaussian Mixture Models (GMMs), which have been extensively used in many
classification and general machine learning problems [6].

In general, a GMM is a weighted sum of M -component Gaussian densities
as p(d|λ) =

∑M
i=1 wig(d;μi, Σi) where d is a l-dimensional data vector (in our

case l = 2), wi are the mixture weights, and g(d;μi, Σi) is a Gaussian density
function with mean vector μi ∈ R

l and covariance matrix Σi ∈ R
l×l. To fully

characterize the probability density function p(d|λ), one requires the mean vec-
tors, the covariance matrices and the mixture weights. These parameters are
collectively represented as λ = {wi, μi, Σi} for i = 1, . . . , M .

Let R = {R1, . . . , Rn} denote the set of all spatial relations that we take
into account. In our setting, each relation Rk is modeled under a probabilis-
tic framework by a 2-dimensional GMM, trained on each relation’s set of two-
dimensional feature vectors Drel. For the parameter estimation of each GMM,
we use Expectation Maximization (EM) [7]. EM enables us to update the para-
meters of a given M-component mixture with respect to a feature vector set
Drel = {D1, . . . , Dm} with 1 ≤ j ≤ m and Dj ∈ R

l, such that the log-likelihood
L =

∑m
j=1 log(p(Dj |λ)) increases with each re-estimation step, i.e., EM re-

estimates model parameters λ until convergence. Further details on modeling
spatial relations under a probabilistic framework are given in [3].

This procedure results in a trained GMM of the form pk(D|λ), for each spatial
relation Rk, 1 ≤ k ≤ n. Given a distance and orientation vector, we can use this
model to estimate the probability that a particular relation exists. Based on this
information, by bayesian inference we derive a closeness score for pairs of POIs.
This procedure is described in the next section.

3 Road Network Enrichment

In this section, we describe our approach to enrich an actual road network with
crowdsourced geo-spatial information. Our discussion below includes a descrip-
tion of how we transform a Spatial Relationship Graph, as presented in Sect. 2.1,
into a weighted graph, and how we use the edge weights of the weighted graph
in order to modify the edge costs of a real road network.
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3.1 From Relationship to Weighted Graphs

As presented in Sect. 2, the spatial relation extraction procedure results in a
relationship graph between POIs. A simple example of such a graph is shown in
Fig. 2. In general, let P = {P1, . . . , Pm} denote the set of nodes representing the
POIs, and let R = {R1, . . . , Rn} denote the pre-defined set of spatial closeness
relations, represented by spatial NLP expressions like “next to” or “close by”.

Furthermore, let Ri,j ⊆ R denote the set of relations extracted from the
text between two distinct nodes Pi and Pj . Note that Rk denotes an abstract
relation, while Ri,j denotes a set of occurrences of relations between a pair of
nodes. Let Di,j denote the spatial feature vector (distance and orientation),
between two distinct POIs Pi and Pj (as presented in Sect. 2.2). Finally, let
D :=

⋃
i�=j∧Ri,j �=∅ Di,j denote the set of all spatial feature vectors between all

pairs of POIs which have non-empty sets of relations.
We want to estimate the posterior probability of a class Rk ∈ Ri,j based

on the spatial feature data Di,j between two POIs Pi and Pj . This is given by
Eq. 1. Here, p(Di,j |Rk) denotes the likelihood of Di,j given relation Rk based
on the trained GMM (presented as p(D|λ) Sect. 2.2), while P (Rk) denotes the
prior probability of relation Rk given only the observed relations Ri,j .

P (Rk|Di,j) =
p(Di,j |Rk)P (Rk)
n∑

l=1

p(Di,j |Rl)P (Rl)
(1)

In a traditional classification problem the spatial relation Rk between a pair of
POIs would be classified to the spatial relation model with the highest posterior.
In contrast to this approach, we consider each posterior probability P (Rk|Di,j)
as a measure of confidence of the existence of relation Rk between Pi and Pj .
Remember that all the relations we consider reflect terms of spatial closeness.

Fig. 2. Simple relationship graph. Nodes represent POIs and each edge represents the
set of relations Ri,j through which its adjacent nodes Pi and Pj are connected. Each
of these sets is mapped onto the closeness score Wi,j , turning the relationship into a
weighted graph.
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We combine all these posteriors into one measure which we refer to as closeness
score Wi,j of the pair of POIs Pi and Pj , defined in Eq. 2.

Wi,j =
1

|R| ·
|Ri,j |∑

i=1

P (Rk|Di,j)
maxk{P (Rk|D)} (2)

Here, we sum all the posteriors P (Rk|Di,j) normalized by the maximum pos-
terior of each relation in the relationship graph and we normalize the summation
by the total number of spatial relations in the relationship graph. This is done
for all pairs Pi, Pj where Ri,j �= ∅. We refer to these pairs as close since at
least one of our relations, reflecting closeness, exists. As is illustrated in Fig. 2,
assigning the respective weights Wi,j to the edges of the relationship graph, we
obtain a weighted graph. Note that Wi,j ∈ [0, 1] but typically 0 < Wi,j � 1. In
Sect. 5 the influence of Wi,j on the results is examined, in particular, different
scalings are tested. In this weighted relationship graph, denoted by H∗, there
exists a vertex for each POI and an edge (Pi, Pj) (equipped with weights Wi,j

and Euclidean distances dij) for each pair of POIs Pi, Pj that are close in the
above sense (Ri,j �= ∅).

3.2 From Weighted Graphs to Road Network Enrichment

Now that we have extracted and statistically condensed the crowdsourced data
into a closeness score, we need to apply the obtained closeness scores to the
underlying network. We have investigated several strategies and have decided
upon a compromise between simplicity and effectiveness. We will present two
road network enrichment approaches and we propose two algorithms on rout-
ing with enriched graphs. The first enrichment approach, also analyzed in our
previous work in [2], is based on Djikstra shortest path computation while the
second is based on Skyline path computation.

Initially, let G = (V,E, d) denote the graph representing the underlying road
network, i.e., the vertices v ∈ V correspond to crossroads, dead ends, etc., the
edges e ∈ E = V × V represent roads connecting vertices. Furthermore, let
d : E → R

+
0 denote the function which maps every edge onto its distance. We

assume that P ⊆ V , i.e., each POI is also a vertex in the graph. This is only a
minor constraint since we can easily map each POI to each nearest node on the
graph or introduce pseudo-nodes. Our two enrichment methods are described
below.

Djikstra Shortest Path Approach. For each pair of spatially connected POIs,
Pi, Pj , we compute the shortest path connecting Pi and Pj in G, which we denote
by r(i, j). We then define a new cost function c : E → R

+
0 which modifies the

previous cost d(e) of an edge as follows:

c(e) = d(e) ·
∏

e∈r(i,j)

(1 − αWi,j) (3)
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where e ∈ r(i, j) iff e is an edge within the shortest path from Pi to Pj and where
α ∈ [0, 1] is a weight scaling factor to control the balance between the spatial
distance d(e) and the modification caused by the closeness score Wi,j . In the
case of α = 0, we obtain the unadapted edge weight c(e) = d(e). Summarizing,
the more shortest paths between POI pairs run through e, the lower its adjusted
cost c(e). The reason for enriching the shortest paths is that they represent the
most intuitive connections between any two points in a road network.

We now define the enriched graph G∗ = (V,E, c). It consists of the original
vertices and edges and is equipped with the new cost function which implies the
re-weighting of edges. Any path computation algorithm in G∗ (e.g. a Dijkstra
search) therefore favors edges which are part of shortest paths between POIs
which are close according to the crowd. When computing the cost of a path
on G∗, as before, we sum the respective edge weights which now differ from
the original edge weights (due to the altered cost function). We refer to this
procedure of incorporating the crowdsourced information as D-enrich.

Path Skyline Approach. One shortcoming of D-enrich is the assumption
that the crowd unanimously favors exactly one path to connect a pair of POIs
Pi and Pj , namely the shortest path. Especially in multicriteria networks which
comprise of a set of cost criteria, e.g., travel time, energy consumption, road
tolls, optimality is usually defined as a personal trade-off between the given
criteria. For example: How much additional time has to be spent to avoid a toll
road? However, defining this trade-off numerically as a vector of preferences is
not reasonable, and even if it would be, finding the personally preferred trade-
offs for all users is in general not possible. Therefore, the best practice is to
present a set of alternative paths to the user. The most established and very
comprehensive set of alternative paths is the so-called path skyline [8]. This set
contains all paths which are non-dominated in the following sense: The cost
vector u dominates a cost vector v, denoted u ≺dom v, if u has a smaller cost
value than v in at least one dimension i and v does not have a smaller cost value
than u in any dimension j. Hence, the path skyline comprises all paths which are
optimal under some monotone combination function of the cost criteria. Hence,
the path skyline contains all optimal paths for all possible trade-offs between
the cost criteria.

To enrich our road network, we compute the path skyline (w.r.t. distance and
travel time) as proposed in [9] between each pair of spatially connected POIs Pi

and Pj in G, denoted by s(i, j). Although the paths contained in s(i, j) differ
from one another, they often share some edges. Simply following each path for
enrichment might unnecessarily favor edges contained in many skyline paths.
Therefore, we adjust the weights of edges independent of the number of skyline
paths in which they occur. Let Si,j ⊂ E denote the set of all distinct edges which
are part of at least one skyline path from Pi to Pj . Analogously to D-enrich, we
define the cost function c : E → R

+
0 to modify the original cost d(e) of an edge,

as before. While the adjusted cost function is the same as before (see Eq. 3), the
set of edges with adjusted costs is a superset, i.e., Si,j ⊇ r(i, j).
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We now define the enriched graph G∗∗ = (V,E, c). It consists of the origi-
nal vertices and edges equipped with the altered cost function reflecting a re-
weighting of edges contained in skyline paths. Any path computation algorithm
in G∗∗ (e.g. a Dijkstra search) therefore favors edges which are part of the Sky-
line paths between POIs which are close according to the crowd. We refer to this
procedure of incorporating the crowdsourced information as S-enrich.

3.3 Influence of Adjusted Costs

In order to measure the influence of the adjusted cost values along a computed
path p = (e1, . . . , er) on an enriched graph (G∗or G∗∗), we introduce the enrich-
ment ratio (ER) function er.

er(p) =
1

d(p)

r∑

i=1

c(ei) (4)

Here, d(·) and c(·) are as in the previous two sections. By normalizing with
the total length of the path, we are able to compare the spatial connectivity
of paths independent of length as well as start and target nodes. Here, a lower
ratio implies higher closeness score values along the edges of the path. If none
of the edges of a path is part of any shortest or skyline path between POIs, its
enrichment ratio is 1, while the (highly unlikely) optimal enrichment ratio is 0.
On the enriched graphs G∗ and G∗∗ we may now define our path computation
algorithms.

4 Path Computation on Enriched Graphs

Now that we have a measure quantifying the enrichment of a path, we investigate
the effect of D-enrich and S-enrich on the actual path computation. For this
purpose, we present two approaches which make use of the enriched network
and the weighted relationship graph H∗ (Sect. 3.1). In Sect. 5 they are compared
to the conventional shortest paths within the original graph, as obtained with
Dijkstra’s algorithm, which we denote by Dij-G.

Note that for the evaluation procedure, all paths in this paper are computed
by Dijkstra’s algorithm because our main focus is not the routing itself but
the incorporation of textual information into existing road networks. If desired,
speed-up techniques, such as preprocessing steps and/or other search algorithms,
could easily be employed.

Our first approach, given start and target nodes, executes a Dijkstra search
in the enriched road network graph G∗ or G∗∗ w.r.t. the adjusted cost function.
Depending on the enrichment used, D-enrich or S-enrich, we refer to the first
algorithm as Dij-G∗or Dij-G∗∗, respectively.

Our second approach, uses the enriched road network graphs G∗ or G∗∗ as
well as the weighted relationship graph H∗. Given start and target nodes within
the enriched graph (G∗or G∗∗), entry and exit nodes within H∗ are determined.
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Subsequently, we route within H∗, i.e., from POI to POI, again using Dijkstra’s
algorithm. Depending on the enrichment used, D-enrich or S-enrich, we refer to
the second approach we want to present as Dij-H∗ or Dij-H∗∗, respectively. Note
that in both cases we use the same graph H∗, but we refer to the S-enrich case
as Dij-H∗∗ in order to differentiate the two methods.

All approaches, return paths connecting start and target. But while Dij-
G computes the shortest path in the original graph G, all the approaches com-
pute the shortest paths in the enriched graphs w.r.t. the adjusted cost function
c. By construction of c, it favors edges which are part of the Dijkstra shortest
paths or the skyline paths, between close POIs. Dij-H∗ and Dij-H∗∗ in contrast,
do not only favor these edges, but are restricted to them. Having found entry
and exit nodes within H∗, Dij-H∗ and Dij-H∗∗ hop from POI to POI in direction
of the target. Hence, Dij-G, Dij-G∗, Dij-G∗∗, Dij-H∗, Dij-H∗∗ in that order, rep-
resent an increasing binding to the extracted relations. Dij-G is not bound to the
relations at all, while Dij-G∗ and Dij-G∗∗ (by the adjusted cost function) favors
“relation-edges”, and Dij-H∗ and Dij-H∗∗ are strictly bound to the relations and
the graph formed by them.

Let us formalize Dij-H∗ (Dij-H∗∗ can be formalized in the same way). Given
start and target node in G∗ (or G∗∗ for the Dij-H∗∗ case), it first determines
the so-called entry and exit nodes to and from H∗. However, to exclude POIs
which would imply a significant detour, we restrict the set of valid POIs, i.e.,
we restrict the search to a subgraph of H∗, denoted as h∗. Figure 3 illustrates
our computationally inexpensive implementation of a query ellipse that allows
for some deviation in the middle of the path as well as for minor initial and final
detours.

Start End

1.4d

1.6d

d

Fig. 3. Restriction of relationship graph H∗

to a subgraph h∗, in order to avoid implausi-
ble detours. The green dots represent POIs,
i.e., nodes of H∗ which are also in h∗, the
blue ones are left out (color figure online).

The pseudo-code for the second
approach is given in Algorithm1.
Here, we present only the Dij-H∗

case, since Dij-H∗∗ works in the same
way by utilizing the G∗∗ graph. After
selecting the valid set of POIs (Step
2), entry and exit nodes to and from
H∗ are determined, i.e., the clos-
est POIs to start and target node,
respectively (Steps 4 and 5). Entry
and exist nodes connect the road net-
work G∗ to the relationship graph
H∗. Subsequently, the shortest path
in h∗ from entry to exit node is
computed using Dijkstra’s algorithm
w.r.t. the Euclidean distance (Step
5). Note that a shortest path within
H∗ is a sequence of POIs. We there-
fore map this sequence onto G∗ by computing the shortest paths between the con-
secutive pairs of POIs in G∗ w.r.t. the adjusted cost function (Step 8). Also, we
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Algorithm 1. Dij-H∗

Input: Enriched Graph G∗, Spatial Relationaship Graph H∗, start s, target t
Output: Path p between s and t

1 begin
2 h∗ ← subgraph of H∗ in bounding ellipse
3 p ← empty path
4 Pentry ← select POI P ∈ h∗ closest to s
5 Pexit ← select POI P ∈ h∗ closest to t
6 ph ← Dijkstra(h∗, Pentry, Pexit)

7 predecessor ← s
8 foreach POI P on path ph do
9 v ← select node v ∈ G∗ representing P

10 p.Append(Dijkstra(G∗, predecessor, v))
11 predecessor ← v

12 end
13 p.Append(Dijkstra(G∗, last, t))

14 return p

15 end

compute the shortest paths in G∗ from start to entry node and exit to target
node. Concatenating these paths (start to entry, POI to POI, exit to target), we
return a full path.

5 Experimental Evaluation

In this section, we want to investigate the effect and impact of the network
enrichment. We compare the results of the conventional Dijkstra search, Dij-G,
to the results of Dij-G∗ and Dij-H∗, which use the Djikstra shortest path enriched
(D-enrich) graph G∗, and the results of Dij-G∗∗ and Dij-H∗∗, which use the
skyline path enriched (S-enrich) graph G∗∗. All approaches are evaluated on real
world datasets. Besides comparing the computed path w.r.t. their enrichment
ratio (ER) and length (as presented in Sect. 3.2), we introduce a measure of
popularity based on Flickr data, which is explained in the following section.
All the text processing parts were implemented in Python while modeling parts
were implemented in Matlab. Network enrichment and path computation tasks
were conducted using the Java-based MARiO Framework [10] on an Intel(R)
Core(TM) i7-3770 CPU at 3.40 GHz and 32 GB RAM running Linux (64 bit).

5.1 Enrichment Ratio, Distance and Popularity Evaluation

Our experiments are set in two cities, Paris and New York. These regions have
comparatively high density of spatial relations, Flickr photo data, and OSM
data, which accounts for an exact representation of the road networks. As men-
tioned before, we compare the output of Dij-G, Dij-G∗, Dij-H∗, Dij-G∗∗ and
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Table 1. Statistics for the weighted relationship graphs, Flickr datasets and road
networks of Paris and New York respectively.

Relationship Graph (H∗) Flickr Road Network (G)

Dataset # POI Pairs # Relations # Photos # Max Photos per Vertex # Vertices # Edges

Paris 400 2K 400K 100 550K 300K

New York 300 1.5K 90K 200 220K 120K

Dij-H∗∗ w.r.t. to the paths they return, more precisely, w.r.t. ER and length
of these paths. Since ER is a measure introduced in this paper, we use Flickr
data as an independent ground truth. We are aware that to cognitive aspects
(like the importance of sights or the value of landmarks) there is no absolute
truth. However, in order to be able to draw comparisons, we presume that if the
dataset is large enough, the bias can be neglected. We use a geotagged Flickr
photo dataset, provided by the authors in [11], to assign a number of photos
to each vertex of the underlying road network. The number of Flickr photos
assigned to each vertex is referred to popularity. In our settings, every photo
which is within the 20-meter radius of a vertex, contributes to the popularity
of that vertex. The popularity of a path is computed by the summation of all
popularity values along this path.

The sizes of the weighted relationship graphs H∗, road network and Flickr
photo data for both cities are shown in Table 1. Regarding the weighted rela-
tionship graphs, we provide the number of unique POI pairs extracted from
the travel blog corpus and the number of spatial (closeness) relations extracted
between them, as was presented in Sect. 2. Regarding Flickr data, we provide
the total number of geotagged photos in each city and the maximum number of
photos assigned to one vertex of the road network. Finally, regarding the road
network, we provide the total number of edges and vertices. Note that although
the datasets differ in terms of density (w.r.t. to relations and Flickr photos), our
algorithms provide similar results.

We present two experimental settings: In Setting (i) we examine the influence
of different scalings of the closeness score Wi,j in terms of enrichment ratio, path
length increase (distance) and popularity. Setting (ii) investigates the influence
of the path length, i.e., the distance between start and target is varied, again
in terms of enrichment ratio, path length increase (distance) and popularity. In
both settings we present the ER performance of the algorithms separately from
their performance in terms of distance and popularity as ER is a measure that
mainly proves that our network enrichment approach works properly, i.e., ER
should increase with the increase of the influence of Wi,j on the network and the
increase of the path length. Hence, based on our own measure (ER) we validate
that the proposed approach works properly.

In Setting (i), for 100 randomly chosen pairs of start and target nodes the
respective shortest paths within the actual road network are computed using
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Fig. 4. (a), (b) show ER increase for algorithms Dij-G∗ and Dij-H∗for Paris dataset
for Settings i and ii respectively. (c), (d) show ER increase for algorithms Dij-G∗ and
Dij-H∗for New York dataset for Settings i and ii respectively.

Dijkstra’s algorithm, Dij-G. Continuing, for the same start and target pairs, we
run Dij-G∗, Dij-H∗, Dij-G∗∗ and Dij-H∗∗. Subsequently, for each pair the differ-
ence w.r.t. ER, distance and popularity is computed, and finally averaged over
all pairs. We require the distance between start and target nodes to be at least
30 % and at most 50 % of the Euclidean extent of the network (approximately
6 km to 10 km), in order to exclude paths which start and end in the outskirts
of the city (where there are few to no POIs). Figure 4 ((a), (c)) show the influ-
ence of the closeness score Wi,j on ER for the datasets of Paris and New York
respectively. As we increase the impact of Wi,j , we observe an increase of ER
for all four cases in comparison to Dij-G in both datasets. For the Paris dataset,
the increase in ER is in the range of 80 % to 250 % for the Dij-G∗ and Dij-G∗∗,
with the latter performing better, and in the range of 250 % to 620 % for Dij-H∗

and Dij-H∗∗ with the latter performing better. For the New York dataset, the
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increase in ER is in the range of 20 % to 80 % for the Dij-G∗ and Dij-G∗∗, with
the latter performing better, and in the range of 80 % to 150 % for Dij-H∗ and
Dij-H∗∗, with the latter performing better.

Fig. 5. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗and
Dij-H∗for Paris dataset for experimental Setting i. (b), (d) show Distance and Flickr
popularity increase for algorithms Dij-G∗and Dij-H∗for Paris dataset for experimental
Setting ii.

Moreover, the first column of Figs. 5 and 6 ((a), (c)) shows the influence of
weight scaling factor Wi,j on distance and popularity. As we increase Wi,j from
0.2 to 1.0, we observe an increase of distance and popularity for both cases in
comparison to Dij-G in both datasets. The increase among all datasets, in terms
of path length is in the range of 3 % to 16 % for Dij-G∗ and Dij-G∗∗, and in
the range of 7 % to 38 % for Dij-H∗ and Dij-H∗∗. Additionally, the increase in
popularity is in the range of 30 % to 120 % for Dij-G∗ and Dij-G∗∗, and in the
range of 40 % to 160 % for Dij-H∗ and Dij-H∗∗.
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It is clear that Dij-G∗ and Dij-G∗∗ always perform better than Dij-H∗ and
Dij-H∗∗ in terms of path length increase, but Dij-H∗and Dij-H∗∗perform always
better in terms of ER and popularity. This is because Dij-H∗and Dij-H∗∗ route
directly through the POIs, causing greater detours, but passing along highly
weighted parts of the enriched graphs (G∗or G∗∗), which mostly coincide with
dense Flickr photo regions. Moreover, it is clear that S-enrich always performs
better than D-enrich, in terms of ER and popularity with a very short increase,
of about 2–3 % in path length. This validates that skyline enrichment provides
competitive paths in terms of distance (minorincrease) and popularity (signifi-
cant increase).

Continuing, in Setting (ii) we vary the distance between and target, relative
to the extent of the whole network. We consider five different distance brackets
of shortest paths in the original graph G, the first one ranging from 10 % to 20 %,
the last one ranging from 50 % to 60 % of the extent of the whole network. For 100
randomly chosen pairs of start and target nodes (within the respective distance
bracket) paths with Dij-G, Dij-G∗, Dij-G∗∗, Dij-H∗ and Dij-H∗∗ are computed.
As before, for each pair the difference w.r.t. ER, distance and popularity is
computed and averaged over all pairs. Figure 4 ((b), (d)) show the increase of
ER as we proceed through the distance brackets for both datasets. The second
column of Figs. 5 and 6 ((b), (d)) show the results in terms of distance and
popularity increase. As we proceed through the distance brackets, we observe
an increase of the distance and popularity for all cases in comparison to Dij-G
in both datasets. The increase among all datasets, in terms of path length, is
in the range of 3 % to 18 % for Dij-G∗ and Dij-G∗∗, and in the range of 5 % to
30 % for Dij-H∗ and Dij-H∗∗. Finally, the increase in terms of popularity is in
the range of 10 % to 70 % for Dij-G∗ and Dij-G∗∗, and in the range of 30 % to
140 % for Dij-H∗ and Dij-H∗∗. As in our previous experimental setting, it is clear
that Dij-G∗ and Dij-H∗ always perform slightly better (only 2–3 %) in terms of
path length increase, while Dij-G∗∗ and Dij-H∗ always outperform Dij-G∗ and
Dij-H∗ in terms of enrichment ratio and popularity. This underlines the validaty
of S-enrich, as it provides significantly more popular paths while only incurring
minor detours (2–3 % in terms of path length).

Here, we may conclude that both D-enrich and S-enrich approaches show
convincing results. Both cases yield significant increase in terms of ER as well
as in terms of the independent Flickr-based measure popularity, while increasing
path length only slightly. In the best case, ER increase amounts to almost 700 %
while popularity increase amounts to almost 160 % (in comparison to the con-
ventional shortest paths, as computed by Dij-G ), while the worst case increase
in path length is about 38 % with most cases being less than 10 %. Overall, D-
enrich works slightly (2–3 %) better in terms of path length while the S-enrich is
always significantly better (more than 10 % in most of the cases) in terms of pop-
ularity scores. Consequently, we can claim that spatial relations, extracted from
crowdsourced information, can indeed be used to enrich actual road networks
and define an alternative kind of routing which reflects what people perceive as
“close”.
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Fig. 6. (a), (c) show Distance and Flickr popularity increase for algorithms Dij-G∗ and
Dij-H∗ for New York dataset for experimental Setting i. (b), (d) show Distance and
Flickr popularity increase for algorithms Dij-G∗ and Dij-H∗ for New York dataset for
experimental Setting ii.

Finally, Fig. 7 illustrates the trade-off (mean distance and popularity increase
overall experiments) that we take by deviating from the shortest path in order to
obtain more interesting paths. This figure shows the relative increase in distance
and popularity of the paths returned by our proposed approaches, compared
to the baseline approach Dij-G. Here, we use letter D to refer to the distance
increase while we use letter P to refer to popularity increase. For both datasets,
we can observe that by road network enrichment we can obtain a significant
increase in popularity of up to 120% for the meager price of no more than 25%
additional distance incurred in both experimental settings. With the proposed
S-enrich approach we achieve to significantly increase popularity while keeping
the distance increase almost in the same levels with the D-enrich approach.
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Fig. 7. Trade-off between distance and popularity increase of paths

6 Related Work

Research areas relevant to this work include: (i) qualitative routing and (ii)
mining of semantic information from moving object trajectories and trajectory
enrichment with extracted semantic information. In what follows, we discuss
previous work in both of these areas.

While finding shortest paths in road networks is a thoroughly explored
research area, qualitative routing has hardly been explored. Nevertheless, pro-
viding meaningful routing directions in road networks is a research topic of
great importance. In various real world scenarios, the shortest path may not be
the ideal choice for providing directions in written or spoken form, for instance
when in an unfamiliar neighborhood, or in cases of emergency. Rather, it is often
more preferable to offer “simple” directions that are easy to memorize, explain,
understand and follow. However, there exist cases where the simplest route is
considerably longer than the shortest. The authors in [12] and [13] try to tackle
the problem of efficient routing by using cost functions that trade off between
minimizing the length of a provided path while also minimizing the number
of turns on the provided path. The major shortcoming of these approaches is
that they focus almost exclusively on road network data without taking into
account any kind of qualitative information, i.e., information coming from the
user. Opposed to that, we try to approach the problem of efficient routing by
integrating spatial knowledge coming from the crowd thus enriching an actual
road network.

The discovery of semantic places through the analysis of raw trajectory data
has been investigated thorougly over the course of the last years. The authors in
[14–16] provide solutions for the semantic place recognition problem and catego-
rize the extracted POIs into pre-defined types. Moreover, the concept of “seman-
tic behavior” has recently been introduced. This refers to the use of semantic
abstractions of the raw mobility data, including not only geometric patterns but
also knowledge extracted jointly from the mobility data as well as the underlying
geographic and application domains in order to understand the actual behaviour
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of moving users. Several approaches like [17,21] have been introduced the last
decade. The core contribution of these articles lies in the development of a seman-
tic approach that progressively transforms the raw mobility data into semantic
trajectories enriched with POIs, segmentations and annotations. Finally, recent
work [22], can extract and transform the aforementioned semantic information
into a text description in the form of a diary. The major drawback of these
approaches is that they do not intergrate the extracted semantic information
into the road network. Instead, they use the extracted information only on spe-
cific trajectories. In our contribution, we analyze crowdsourced data in order to
extract semantic spatial information and intergrate it into an actual road net-
work. This will enable us to provide routes that are near-optimal w.r.t. distance
while spatially more popular according to the crowd.

7 Conclusions and Outlook

In this work we presented new approaches to computing knowledge-enriched
paths within road networks. We incorporated novel methods to extract spatial
relations between pairs of POIs, such as “near” or “close by”, from crowdsourced
textual data, namely travel blogs. We quantified the extracted relations using
probabilistic models to handle the inherent uncertainty of user-generated con-
tent. Based on these models, we proposed a new cost function to enrich real world
road networks, based on Djikstra and skyline path computation. The new cost
function reflects the closeness aspect according to the crowd. In contrast to exist-
ing approaches, we did not enrich previously computed paths with semantical
information, but the entire network. Continuingly, two routing algorithms were
presented taking this closeness aspect into account. Finally, we evaluated our
ideas on two real world road network datasets, i.e., Paris, France, and New York
City, USA. We used metadata from geotagged Flickr photos as a ground truth to
support our initial goal of providing more popular paths. All our approaches per-
formed very well by providing slightly longer paths but with significantly higher
values of popularity. For future work, we are researching alternative methods
for aggregating all categories of spatial relations. Furthermore, we would like to
investigate ways to suggest the popular path descriptions to the user based on
the POIs they will encounter underway.
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Abstract. Trajectory data capture the traveling history of moving
objects such as people or vehicles. With the proliferation of GPS and
tracking technology, huge volumes of trajectories are rapidly generated
and collected. Under this, applications such as route recommendation
and traveling behavior mining call for efficient trajectory retrieval. In
this paper, we first focus on distance-based trajectory search; given a
collection of trajectories and a set query points, the goal is to retrieve
the top-k trajectories that pass as close as possible to all query points.
We advance the state-of-the-art by combining existing approaches to a
hybrid method and also proposing an alternative, more efficient range-
based approach. Second, we propose and study the practical variant
of bounded distance-based search, which takes into account the tem-
poral characteristics of the searched trajectories. Through an extensive
experimental analysis with real trajectory data, we show that our range-
based approach outperforms previous methods by at least one order of
magnitude.

1 Introduction

The proliferation of GPS and tracking technology has brought to availability
huge volumes of trajectories from real moving objects such as mobile phone
users, vehicles and animals. Searching such a collection of trajectories finds
several applications, including route recommendation, behavior mining, and in
transportation systems [1,2]. Different from conventional retrieval tasks which
identify similar trajectories to a given one or those crossing a specific spatial
region, in this paper we focus on point-based search, which retrieves trajectories
based on given points. In particular, taking as input a set of query points Q
(e.g., a particular set of POIs), the distance-based trajectory search studied in
[3,4] retrieves the trajectories that pass as close as possible to all query points.
Specifically, the distance of a trajectory t to Q is computed by summing up, for
each query point q ∈ Q, its distance to the nearest point in t.
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Consider for instance a collection of touristic trajectories; a travel agency
issues a distance-based query to survey or recommend popular routes that pass
close to specific sightseeing attractions. As another example, query set Q could
contain traffic congestion points; in this case, the traffic department seeks to
discover the causes of the congestion by analyzing the trajectories that pass
near the points in Q. In the context of surveillance and security applications, Q
may contain locations of crime scenes, and hence the police department issues
a distance-based query to investigate the correlation of these crime locations by
identifying suspects who moved close to all of them.

Contributions. This paper tackles two problems under the point-based tra-
jectory search. First, we thoroughly study the efficient evaluation of distance-
based trajectory search. We review in detail existing algorithms IKNN [3] and
GH/QE [4]. These methods follow a candidate generation and refinement para-
digm, and invoke a nearest neighbor (NN) search centered at each query point to
examine the trajectories in ascending order of their distance to Q. By analyzing
the pros and cons of these methods, we design a hybrid NN-based algorithm
which consistently outperforms IKNN and GH/QE by over an order of magnitude.
Going one step further, we tackle the inherent shortcomings of the NN-based
approach itself, namely (a) the increased I/O cost due to independently running
multiple NN searches and (b) the increased CPU cost for continuously maintain-
ing a priority queue for each NN search. We propose a novel spatial range-based
approach, which is up to 2 times faster than our hybrid algorithm.

Second, we observe that the distance-based search ranks trajectories solely on
how close they pass to the query points in Q, ignoring however other qualitative
characteristics of the retrieved results. To fill this gap, we introduce a practi-
cal variant of distance-based trajectory search, which also takes into account
the temporal aspect of the trajectories. Specifically, this bounded distance-based
search filters out non-interesting trajectories, whose points closest to Q span a
time interval greater than a user-defined threshold.

Outline. The rest of the paper is organized as follows. Section 2 formally defines
the distance-based and bounded distance-based trajectory search while Sects.
3 and 4 address their efficient evaluation. Then, Sect. 5 discusses problem variants
where (a) the trajectories are ranked both on their distance to the query points
and the time interval they span, and (b) Q is a sequence of query points, instead
of a set. Section 6 presents our experimental analysis. Finally, Sect. 7 outlines
related work, while Sect. 8 concludes the paper.

2 Problem Definition

Let T be a collection of trajectories. A trajectory in T is defined as a sequence of
spatio-temporal points {p1, . . . , pn}, each represented by a 〈latitude, longitude,
timestamp〉 triple. The input of point-based trajectory search over collection T
is a set of m spatial query points Q = {q1, . . . , qm}. Given a query point qj ∈ Q
and a trajectory ti ∈ T , we define the 〈p∗

ij , qj〉 matching pair based on the



Efficient Point-Based Trajectory Search 181

t1

t2

t3

t4

q1

q2

q3

p∗
11 p∗

12

p∗
13

p∗
22

p∗
23

p∗
41

p∗
42

p∗
43

p∗
32

p∗
33

p∗
21

span

d
is

t

τ

t1

t3

t2

t4

(a) Trajectory and query points (b) span-dist plot of trajectories

Fig. 1. Distance-based trajectory search with 4 trajectories, T = {t1, . . . , t4}, and
3 query points, Q = {q1, . . . , q3}; t1, t2 is the result to 2-DTS(T, Q), while t2, t3 the
result to 2-BDTS(T, Q, τ)

nearest to qj point p∗
ij of trajectory ti, i.e., p∗

ij = arg minp∈ti
dist(p, qj), where

dist(·, ·) denotes the distance (e.g., Euclidean) between two points in space. We
then define the distance of a trajectory to Q based on the matching pairs for
every query point qj as:

dist(ti, Q) =
∑

qj∈Q

dist(p∗
ij , qj) (1)

Consider the example in Fig. 1(a), where query points are represented as
diamonds, and trajectory points as circles; filled circles indicate matched points
of the trajectory to query points. For trajectory t1, point p∗

11 is its closest point
to query point q1, and hence 〈p∗

11, q1〉 represents a matching pair. The other
matched trajectory points of t1 are p∗

12 and p∗
13. Note that it is possible for a

trajectory point to be matched with multiple query points. This is the case with
trajectory t3, where p∗

32 is the closest point to both q1 and q2, i.e., p∗
31 ≡ p∗

32.
We now formally define the distance-based trajectory search problem [3,4].

Problem 1 (Distance-based Trajectory Search). Given a collection of tra-
jectories T and a set of query points Q, the k-Distance-based Trajectory Search,
denoted by k-DTS(T,Q), retrieves a subset of k trajectories R ⊆ T such that for
each t ∈ R and t′ ∈ T � R, dist(t,Q) ≤ dist(t′, Q) holds.

Returning to the example of Fig. 1(a), trajectory t1 has the lowest distance to
Q, followed by t2, t3 and t4; hence, the result to 2-DTS(T,Q) is t1, t2.

Next, we introduce a novel point-based trajectory search problem by also
taking into account the temporal aspect of the trajectories. Let P ∗

i be the set of
all matching pairs for a trajectory ti, sorted ascending on the timestamp of the
involved trajectory points. We define the span of trajectory ti with respect to
Q, denoted by span(ti, Q), as the length of the time interval between the first
and the last pair in P ∗

i , or equivalently:

span(ti, Q) = max
qx,qy∈Q

(timestamp(p∗
ix) − timestamp(p∗

iy)) (2)
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Intuitively, span(ti, Q) equals the total time needed to reach as close as possible
to all query points in Q, following trajectory ti.

Problem 2 (Bounded Distance-based Trajectory Search). Given a col-
lection of trajectories T, a set of query points Q and a span threshold τ ,
the k-Bounded Distance-based Trajectory Search, denoted by k-BDTS(T,Q,τ),
retrieves the subset of k trajectories R ⊆ T such that:

– for each t ∈ R, span(t,Q) ≤ τ holds, and
– for each t′ ∈ T � R with span(t′,Q) ≤ τ , dist(t,Q) ≤ dist(t′,Q) holds.

Returning to Fig. 1(a), assume for simplicity that trajectory points are
reported in fixed time intervals. As a result, the span of a trajectory is pro-
portional to the number of its points from the first to the last matched point
(excluding the first). For example, span(t1, Q) = 4 as there are 4 points from p∗

11

and up to p∗
13. Similarly, we obtain the spans of t2, t3, t4 as 2, 1, 2, respectively.

Figure 1(b) plots the trajectories in the span-dist plane. DTS ignores the span
values and simply returns the trajectories with the lowest dist coordinate. In
contrast, BDTS introduces a threshold, e.g., τ = 3, on the span of the trajec-
tories, depicted as the dashed vertical line. Trajectories to the right of this line,
i.e., t1, do not qualify as BDTS results. Therefore, the result of 2-BDTS is t2,
t3, i.e., the trajectories with the 2 lowest distances among those left of the line.
Notice that BDTS may not return the trajectory with the lowest distance to Q
if its span exceeds the threshold; e.g., t1 in Fig. 1.

Depending on the application, one may consider alternative definitions for
point-based trajectory search that take into account both the distance and the
span metrics. We briefly overview one of them in Sect. 5, where we also discuss
trajectory search given a sequence of query points, instead of a set.

3 Distance-Based Trajectory Search

We first discuss trajectory search based on the distance to a set of query points.
Section 3.1 revisits existing work, while Sects. 3.2 and 3.3 present our NN-based
and spatial range-based methods, respectively.

3.1 Existing Methods

Methods IKNN [3] and GH/QE [4] have previously tackled distance-based tra-
jectory search. Note that in [3] the problem was defined with respect to the
similarity of a trajectory ti to the set of query points Q, defined as sim(ti, Q) =∑

qj∈Q e−dist(p∗
ij ,qj). In what follows, we describe the straightforward adaptation

of the IKNN algorithm for the distance metric of Eq. (1) (which was also used
in [4]). The adaptation of GH/QE and our methods (Sects. 3.2 and 3.3) to the
similarity metric of [3] is also straightforward and therefore, omitted. Moreover,
the relative performance of all methods is identical independent of the metric
used.
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Algorithm 1. IKNN
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, k-th distance upper bound UBk, distance lower bound LB

1 initialize C ← ∅, UBk ← ∞ and LB ← 0;
2 while UBk > LB do
3 for each qj ∈ Q do
4 δj-NN(qj) ← the next δj nearest trajectory points to qj ;
5 update C with δj-NN(qj);
6 update UBk and LB � Equations (3) and (4)

7 R ← RefineDTS(k, T, Q, C);
8 return R;

All existing methods adopt a candidate generation and refinement evaluation
paradigm. During the first phase, a set of candidate trajectories is determined
by incrementally retrieving the nearest trajectory points to the query points
in Q. For this purpose, the methods utilize a single R-tree to index all trajectory
points. A candidate trajectory t is called a full match if the matching pairs of
t to all query points in Q have been identified; otherwise, t is a partial match.
As soon as the candidate set is guaranteed to include the final results (even as
partial matches), candidate generation is terminated, and the refinement phase
is then employed to identify and output the results.

The IKNNAlgorithm. Note that the IKNN algorithm comes in two flavors; in
the following, we consider the one based on best-first search, as it was shown in
[3] to be both faster and require fewer I/O operations. Algorithm 1 shows the
pseudocode of IKNN . During candidate generation (Lines 2–6), the algorithm
iterates over the points of Q in a round robin manner. For each query point qj ,
the (next) batch of nearest to qj trajectory points is retrieved using the R-tree
index, in Line 4. The nearest neighbor search retrieves a different number of
trajectory points δj per query point qj , in order to expedite the termination
of this first phase (details in [3]). Based on the newly identified matching pairs
that involve qj , the set of candidates C is then updated in Line 5 by either
adding new partial matches or filling an empty slot for existing. For each partial
match ti in C, IKNN computes an upper bound of its distance to Q by setting
the distance of ti to every unmatched query point equal to the diameter of the
space (maximum possible distance between two points):1

dist(ti, Q) =
∑

qj∈Qi

dist(p∗
ij , qj) + |Q � Qi| · DIAM, (3)

where set Qi ⊆ Q contains all the query points already matched to a point in
trajectory ti. We denote by UBk the k-th smallest among the distance bounds
for the trajectories in C. In addition, IKNN computes a lower bound LB of the
distance to Q for all unseen trajectories (i.e., those not contained in C), by
aggregating the distance of the farthest (retrieved so far) trajectory point to
each query point in Q. Formally:
1 Under the similarity-based definition of DTS in [3], IKNN sets empty “slots” to 0.
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Algorithm 2. GH
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H

1 initialize C ← ∅ and H ← ∅;
2 while C contains less than k full matches do
3 pop 〈pij , qi〉 from H � Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;

6 R ← RefineDTS(k, T, Q, C);
7 return R;

Algorithm 3. QE
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H, distance lower bound LB

1 initialize C ← ∅, H ← ∅ and LB ← 0;
2 while C contains less than k full matches with dist(·, Q) ≥ LB do
3 pop 〈pij , qi〉 from H � Get the globally nearest trajectory point to some query point
4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;
6 complete the most promising partial matches in C � Equation (5)
7 update LB � Equation (6)

8 R ← RefineDTS(k, T, Q, C);
9 return R;

LB =
∑

qj∈Q

dist(pδ
j , qj) (4)

where pδ
j is the last trajectory point returned by the NN search centered at qj .

The candidate generation phase of IKNN terminates when UBk ≤ LB; in this
case, none of the unseen trajectories can have smaller distance to Q compared
to the candidates in C. Last, IKNN invokes RefineDTS to produce the results.
Briefly, the function examines candidates in ascending order of a lower bound
on their distance, retrieving them from disk to compute dist(·, Q) (details in [3]).

The GH/QE Algorithms. Different from IKNN , the methods in [4] retrieve tra-
jectory points in ascending order of the distance to their closest query point.
Specifically, a global heap H is used to retrieve at each iteration the globally
nearest trajectory point pij to some query point qj , and then, to update candi-
date set C, accordingly. Algorithm 2 shows the pseudocode of GH. The candidate
generation phase of GH is terminated as soon as set C contains k full matches
(proof of correctness in [4]). Note that these full matches are not necessary among
the final results identified in Line 6 during the refinement phase.

In practice, the order imposed by global heap H cannot guarantee a good per-
formance unless both trajectory and query points are uniformly distributed in
space. For instance, if a particular query point is very close to many trajectories,
GH will generate a large number of partial matches with only that slot filled. Con-
sequently, it will take longer to produce the k full matches needed to terminate
the generation phase, and at the same time a large number of candidates would
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have to be refined. A similar problem occurs when a query point is located away
from the trajectories.

To address these issues, Tang et al. [4] proposed an extension to GH termed QE,
which periodically fills the empty slots for the partially matched trajectories with
the highest potential of becoming results. These are then retrieved from disk,
and their actual distance is computed. A trajectory has high potential if it has
(i) few empty slots and (ii) small distance in each filled slot with respect to the
next point to be retrieved for that slot. These factors are captured respectively
by the denominator and enumerator of the following equation:

potential(ti) =

∑
qj∈Qi

(
dist(pH

j , qj) − dist(p∗
ij , qi)

)

|Q � Qi| (5)

where set Qi ⊆ Q contains all the query points already matched to a point in ti,
pH

j is the next nearest trajectory point to qj contained in heap H and p∗
ij is the

nearest to qj point in trajectory ti.
Algorithm 3 shows the pseudocode of QE. The candidate generation phase

of QE terminates when candidate set C contains k full matches (similar to GH),
provided however that their distance to Q is smaller than the distance of all
unseen trajectories (Line 2) (proof of correctness in [4]). To determine this, QE
computes in Line 7, a lower bound LB of the distance for the unseen trajectories
(similar to IKNN ) by aggregating the distance of the next nearest trajectory point
to every query point, i.e., the contents of heap H:

LB =
∑

qj∈Q

dist(pH
j , qj) (6)

3.2 A Hybrid NN-based Approach

The DTS problem can be viewed as a top-k query [5,6]. For each query point qj ,
consider a sorted trajectory list Tj , where each trajectory is ranked according
to its distance to the query point. Then, the objective is to determine the top-k
trajectories that have the highest aggregate score, i.e., distance, among the lists.
However, as these lists are not given in advance and constructing them is costly,
the goal is to progressively materialize them, until the result is guaranteed to be
among the already seen trajectories.

Following the top-k query processing terminology, a sorted access on list Tj

corresponds to the retrieval of the next nearest trajectory to query point qj ,
which in turn may involve multiple trajectory point NN retrievals. In contrast, a
random access for trajectory ti on list Tj corresponds to the retrieval of ti from
disk and the computation of its distance to qj ; in practice, once ti is retrieved,
its distance to all query points can be computed at negligible additional cost.

Methods IKNN , GH and QE employ various ideas from top-k query processing
(an overview of this field is presented in Sect. 7). Particularly, IKNN performs
only sorted accesses and prioritizes them in a manner similar to Stream−Combine
[7]. Similarly, GH performs only sorted accessses but follows an unconventional
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strategy for prioritizing them, which explains its poor performance on our tests
in Sect. 6. On the other hand, QE additionally performs random accesses following
a strategy similar to the CA algorithm [5] to select which trajectory to retrieve.

In the following, we present the NNA algorithm, which combines the strengths
of IKNN and QE. In short, it builds upon the Quick−Combine top-k algorithm
[8] performing both sorted and random accesses to generate the candidate set.
NNA has the following features. First, similar to IKNN , the algorithm retrieves in
a round robin manner, batches of nearest trajectory points to each query point
in Q. This addresses the weaknesses of GH when dealing with non-uniformly dis-
tributed data. Second, after performing the nearest neighbor search centered at
each query point, NNA fills the slots of the trajectories with the highest poten-
tial according to Eq. (5), similar to QE. Finally, NNA employs the termination
condition of IKNN for the candidate generation phase. In practice, NNA extends
Algorithm 1 by completing the most promising partial matches in C (similar to
QE), between Lines 5 and 6. Hence, it is able to compute tighter bounds com-
pared to IKNN and thus terminate the generation phase earlier. In addition, it
produces fewer candidates than IKNN , reducing the cost of the refinement phase.

3.3 A Spatial Range-Based Approach

We identify two shortcomings of all the NN-based methods previously described.
First, each NN search is implemented independently, which means that R-tree
nodes and trajectory points may be accessed multiple (up to |Q|) times, which
increases the total I/O cost. Second, each NN search is associated with a priority
queue, whose continuous maintenance increases the total CPU cost.

Our novel Spatial Range-based algorithm, denoted by SRA, addresses both
these shortcomings. Similar to the NN-based approaches, it follows a generation
and refinement paradigm. However, to generate the candidate set, it issues a
spatial range search of expanding radius centered at each query point in Q. All
searches operate on a common set N of R-tree nodes, which avoids accessing
nodes more than once and hence saves I/O operations. Moreover, set N needs
not be sorted according to any distance, eliminating costly priority queue main-
tenance tasks. The range-based search for each query point qj is associated with
current radius rj , and is also assigned a maximum radius θj . As the algorithm
progresses, current radius rj increases while maximum radius θj decreases. Can-
didate generation terminates as soon as rj > θj for some query point qj .

Algorithm 4 shows the pseudocode of SRA. In Lines 2–4, SRA initializes the
current and maximum radius for each query point. For the latter, an upper bound
UBk to the k-th smallest distance to Q is computed. In particular, SRA invokes a
sum-aggregate nearest neighbor (sum-ANN) procedure [9] retrieving trajectory
points in ascending order of

∑
qj∈Q dist(·, qj). Assuming that this procedure

retrieves point pi of trajectory ti, the sum-aggregate value is an upper bound to
the distance of ti, i.e., dist(ti) ≤ ∑

qj∈Q dist(pi, qj). Hence, once points from k
distinct trajectories have been retrieved, SRA can determine a value for UBk.

During the candidate generation phase in Lines 5–13, SRA first selects the
query point qc ∈ Q with the fewest retrieved points so far, and increases its
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Algorithm 4. SRA
Input : collection of trajectories T , set of query points Q, number of results k
Output : top-k list of trajectories R
Variables : candidate set C, k-th distance upper bound UBk, current ri and maximum θi

search radius for each qi ∈ Q, set of R-tree nodes N
1 initialize C ← ∅ and N ← R-tree root node;
2 compute UBk invoking a sum-ANN(T, Q);
3 for each qj ∈ Q do
4 initialize rj ← 0 and θj ← UBk;

5 while rj ≤ θj for all qj ∈ Q do
6 select current qc;
7 rc ← rc + ξ � Increase rc to expand search around qc

8 expand from N all nodes that intersect with the disc of radius rc centered at qc;
9 S ← trajectory points within spatial range rc found during expansion;

10 update C with S;
11 update UBk � Equation (7)
12 for each qj ∈ Q do
13 update θj ← UBk −∑q�∈Q�{qj} r� � Reduce maximum radius

14 R ← RefineDTS(k, T, Q, C);
15 return R;

radius by a fixed ξ2, so that each location retrieves more or less the same number
of points. Then, it extends the range search centered at qc to new radius rc. In
particular, all nodes in N that intersect with the search frontier are expanded,
i.e., replaced by their children (Line 8). During the expansion, all trajectory
points within the frontier are collected in set S (Line 9). Upon completion of the
expansion, set N contains no R-tree node or point within rc distance to qc, or
with distance to qc greater than θc, and N will be re-used in further iterations.

After the expansion, SRA uses the newly seen trajectory points in S to prop-
erly update candidate set C. Note that for each trajectory ti in C, SRA keeps |Q|
slots storing the closest trajectory points ti.pj seen so far to each query point
qj . A slot is marked matched if the corresponding matching pair has been deter-
mined, i.e., when ti.pj ≡ p∗

ij . SRA in Line 10 performs the following tasks for
each point px in S; let ti be the trajectory px belongs to. For each slot qj that is
not matched, SRA checks whether px is closer to qj than ti.pj , and updates the
slot with px if true. If the slot for the current query point qc was among those
examined, it is marked as matched. The benefits of this update strategy are
twofold. First, it guarantees that no matching trajectory point will be missed,
even though SRA does not access px again (removed from N) for qj �= qc. At the
same time, it also helps to derive a tighter upper bound for the distance of ti:

dist(ti, Q) =
∑

qj∈Qi

dist(p∗
ij , qj) +

∑

qj∈Q�Qi

dist(ti.pj , qj). (7)

Compared to Eq. (3) utilized by IKNN and NNA, Eq. (7) computes a tighter bound
on unmatched slots. Based on these bounds, a tighter value for UBk can be
established (Line 11).

2 In the future, we plan to investigate variable ξj values based on current radius rj
and the trajectory point density around qj , inspired by determining δj value in [3].
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Algorithm 5. INCREMENTAL
Input : collection of trajectories T , set of query points Q, span threshold τ , number

of results k
Output : result set R
Variables : candidate set C, number of intermediate results λ

1 initialize C ← ∅, R ← ∅ and λ ← 0;
2 while |R| < k do
3 increase λ by k − |R|;
4 C ← next candidate set of λ-DTS(T, Q);
5 R ← R ∪ RefineBDTS(k, T, Q, C, τ);

6 return R;

To better explain the procedure in Line 10, we use the example of Fig. 1(a)
for k = 2. SRA has just started and thus C is empty. Assume that the current
query point is qc = q1, and let r1 = 0 + ξ be the radius of the shaded disk
depicted in the figure. As a result, set S in Line 9 contains trajectory points
{p∗

21, p
∗
22, p

∗
41}. Moreover, candidate set C contains t2 and t4. For trajectory t2,

p∗
21 is settled as the matching point to q1 because dist(p∗

21, q1) < dist(p∗
22, q1)

and no unseen point of t2 can be closer. On the other hand, the matching points
to q2, q3 cannot be yet determined, but we can use p∗

21 and p∗
22 to bound t2’s

distances to q2 and q3. Therefore, the slots for t2 become 〈p∗
21, p∗

22, p
∗
21〉, where

bold indicates a matched slot. Moreover, an upper bound to the distance of t2 is
determined as dist(t2, Q) = dist(p∗

21, q1) + dist(p∗
22, q2) + dist(p∗

21, q3). Similarly,
we obtain the slots for t4 as 〈p∗

41, p∗
41, p

∗
41〉.

As a last step, SRA updates the maximum radius for all query points with
respect to the new UBk in Lines 12–13. Observe that SRA’s termination condition
for candidate generation is essentially identical to that of IKNN . Any trajectory
not in the candidate set C must have distance to each qj at least θj , and thus
distance at least equal to LB =

∑
qj∈Q θj . The termination condition of Line 5,

rj > θj for some qj , and the update of θj , imply that, when candidate generation
concludes, UBk ≤ LB.

Finally, the performance of SRA can be enhanced following the key idea of
QE to further improve the dist(tj , Q) bound and therefore, UBk. We denote this
extension to the SRA algorithm by SRA+. Specifically, in between Lines 10 and
11 in Algorithm 4, SRA+ fills the empty slots of the trajectories in C with the
highest potential as computed using Eq. (5).

4 Bounded Distance-Based Trajectory Search

We next address the bounded distance-based trajectory search. Recall from
Sect. 2 that k-BDTS(T,Q, τ) is equivalent to a k-DTS(T ′, Q) distance-based
query over the subset T ′ ⊆ T containing only trajectories with span(·, Q) ≤ τ .
However, as span(t,Q) can be computed only after all the matching pairs of
a trajectory t to Q are identified, the major challenge is to limit the number
of invalid partial matches generated, i.e., those with the span(·, Q) > τ . In the
following, we address this issue in two alternative ways.
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The idea behind the incremental approach, denoted as INCREMENTAL, is to
progressively construct the result set R by utilizing the generation phase of a
DTS method as a “black” box. Algorithm 5 illustrates INCREMENTAL; note that
any of the algorithms in Sect. 3 can be used as the underlying DTS method. At
each round, INCREMENTAL asks for the missing k−|R| trajectories to complete the
result set R in Lines 3–4. For this purpose, a λ-DTS(T,Q) search is processed,
with the λ value been increased at each round by k − |R|; during the first round
λ = k. Each time λ is updated in Line 3, the DTS method in Line 4 does not
run from scratch. It continues the candidate generation using a new termination
condition with respect to the updated λ in order to expand candidate set C.
Last, in Line 5, RefineBDTS examines the new candidates to update result set R
by computing their dist(·, Q) and eliminating trajectories with span(·, Q) > τ .

Intuitively, INCREMENTAL takes a conservative approach to bounded distance-
based trajectory search. As it is unable to predict which partial matches could
provide a valid trajectory (full match) with span(·, Q) ≤ τ , a refinement phase
is needed to “clean” the candidate set. Hence, INCREMENTAL may involve several
rounds of generation and refinement phases. To address these issues, we pro-
pose the ONE−PASS approach which involves a single generation and refinement
round. The idea is again to build upon a DTS method but by extending its can-
didate generation phase in two ways. First, for each partial match ti in candidate
set C, ONE−PASS computes a lower bound of span(ti, Q) based on the points of
ti matching the current subset of query points Qi ⊂ Q, as follows:

span(ti, Q) =

{
0, if |Qi| = 1
span(ti, Qi), otherwise

(8)

Every partial match with span(·, Q) > τ can be safely pruned. Second, the
original termination is triggered only after candidate set C contains at least
k valid full matches, i.e., with span(·, Q) ≤ τ . This is because the k-th upper
bound UBk of existing candidates can be computed only through full matches.
For example, candidate generation of ONE−PASS based on SRA+ terminates as
soon as at least k valid full matches are identified and rj > θj holds for some
query point qj .

5 Discussion

We discuss alternative definitions and variants to the point-based search prob-
lems introduced in Sect. 2.

Distance and Span-based Trajectory Search. Although taking into account
their temporal span, the bounded distance-based search still ranks the trajecto-
ries solely on their distance to the query points in Q. As an alternative, we may
rank the results with respect to a linear combination of the span-dist metrics:

f(t,Q) = α · dist(t,Q) + (1 − α) · span(t,Q) (9)
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where α weights the importance of each metric. With Eq. (9), we introduce the
k-Distance & Span-based Trajectory Search, denoted by k-DSTS(T,Q) which
returns the subset of k trajectories R ⊆ T with the lowest f(·, Q) value.

All methods discussed in Sect. 3 can be extended for k-DSTS(T,Q) by replac-
ing dist(·, Q) with f(·, Q). Note that the upper bound f(t,Q) of a partial match
t can be computed by setting span(t,Q) equal to the total duration of the trajec-
tory t. In contrast, as no matching pairs are identified for the unseen trajectories,
the lower bound LB or the θj values are defined similar to the DTS methods,
i.e., essentially setting the lower bound of span to zero. In Sect. 6.4, we experi-
mentally investigate the efficient evaluation of DSTS.

Order-aware Trajectory Search. Similar to [3], we also consider a variation of
the trajectory search when a visiting order is imposed for the query points. In this
variation, the matched trajectory point p∗

ij to query point qj , is not necessarily
the nearest to qj point of trajectory ti. Consider for example trajectory t2 in
Fig. 1. The depicted p∗

22, p∗
21, p∗

23 for DTS cannot be the matched points in the
q1 → q2 → q3 order-aware DTS, as they violate the visiting order. Instead, the
matched points that preserve the imposed visiting order are p∗

22, p∗
22, p∗

23, where
p∗
22 is matched with q1 although dist(p∗

22, q1) > dist(p∗
21, q1). The distance of a

trajectory to sequence Q is recursively defined as follows:

disto(t,Q) =

⎧
⎪⎨

⎪⎩

min

{
disto(t, T (Q)) + dist(H(t), H(Q)) − DIAM

disto(T (t), Q)
if t �= ∅, Q �= ∅

|Q| · DIAM if t = ∅

0 if Q = ∅

(10)

where H(S) is the first point (head) in a sequence S, T (S) indicates the tail of S
after removing H(S), ∅ denotes the empty sequence, and DIAM represents the
diameter of the space. The distance can be computed by straightforward dynamic
programming [3]. To derive an upper bound on a partial matched trajectory ti,
we consider only the subsequence Qi of Q that contains the matched query
points, i.e., disto(ti, Q) = disto(ti, Qi). For order-aware BDTS, distance and
its upper bound are the same as in order-aware DTS. Note, however that the
lower bound on span (Equation (8)) does not apply as the matching are not yet
finalized. For order-aware DSTS evaluation, fo(t,Q) and its upper bound are
defined in a similar manner to order-aware DTS. In Sect. 6, we experimentally
investigate the order-aware variants of all three trajectory search problems.

6 Experimental Analysis

We evaluate our methods for point-based trajectory search. All algorithms were
implemented in C++ and the tests run on a machine with Intel Core i7-3770
3.40 GHz and 16 GB main memory running Ubuntu Linux.

6.1 Setup

We conducted our analysis using real-world trajectories from the GeoLife Project
[10–12]. The collection contains 17,166 trajectories with 19 m points in Beijing,
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Table 1. POIs in Beijing

Category Cardinality

Restaurants 51,971

Hotels 10,620

Pharmacies 6,963

Schools 6,618

Banks 6,057

Police stations 2,509

Supermarkets 2,356

Gas stations 1,916

Post offices 1,125

Table 2. Experimental parameters (default values
in bold)

Description Parameter Values

Number of results k 1, 5, 10, 50, 100

Number of query points |Q| 2, 4, 6, 8, 10

Span threshold ratio τ/τmin 1, 1.5, 2, 2.5, 3

Linear combination factor α 0, 0.25, 0.5, 0.75, 1

recording a broad range of outdoor movement. To generate our query sets, we
considered around 90 k points of interest (POIs) of various types, located inside
the same area covered by the trajectories (see Table 1 for details). A query set Q
is formed by randomly selecting a combination of |Q| types and a particular POI
from each type. We assess the performance of all involved methods measuring
their CPU and I/O cost, and the number of candidates they generate over 1,000
distinct query sets Q, while varying (i) the number of returned trajectories k and
(ii) the number of query points |Q|. In case of BDTS queries, we additionally
vary the span threshold via the τ/τmin ratio, where τmin is the minimum possible
time required to travel among the query points in Q at a constant velocity of
50 km/h. Finally, for DSTS queries, we also vary the weight factor α of Eq. (9).
Table 2 summarizes all parameters involved in our study.

6.2 Distance-Based Trajectory Search

Figure 2 reports the CPU cost, the I/O cost and the number of generated candi-
dates for the DTS methods. As expected the processing cost of all methods goes
up as the values of k and |Q| increase. The tests clearly show that SRA+ is overall
the most efficient evaluation method. We also make the following observations.

First, we observe that IKNN always outperforms GH/QE; note that this is the
first time the methods from [3,4] are compared. Naturally, GH comes as the least
efficient method; due to the examination order imposed by global heap H, the
algorithm is unable to cope with the skewed distribution of the real-world data.
QE manages to overcome the shortcomings of GH by completing the empty slots
of the most promising candidates. Yet, compared to IKNN , QE is less efficient
due to its weak termination condition for the generation phase; recall that at
least k full matches are needed for this purpose which also results in generating
a larger number of candidates, as shown in Fig. 2(c) and (f). The advantage of
IKNN over GH/QE justifies our decision to build the hybrid NNA method upon the
round robin-based candidate generation of IKNN which retrieves nearest neighbor
points in batches, and its powerful threshold-based termination condition. NNA is
indeed the most efficient NN-based method, in fact with an order of magnitude
improvement over IKNN and GH/QE on both CPU and I/O cost. Finally, Fig. 2
clearly shows the advantage of the spatial range-based evaluation approach over
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Fig. 2. Performance comparison for Distance-based Trajectory Search
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Fig. 3. Performance comparison for Distance-based Trajectory Search (order-aware)

the NN-based one. SRA is always faster while incurring fewer disk page accesses
than IKNN , and in a similar manner, SRA+ outperforms NNA.

We also experimented with the order-aware variant of DTS. Figure 3 depicts
similar results to Fig. 2; the spatial range-based evaluation approach is again
superior to the NN-based and overall, SRA+ is the most efficient method.



Efficient Point-Based Trajectory Search 193

Nevertheless, it is important to notice that the advantage of completing the
most proposing candidates is smaller compared to Fig. 2, in terms of the CPU
cost. Specifically, observe how close is the running time of GH to QE, of IKNN to
NNA and of SRA to SRA+, in Fig. 3(a) and (d). This is expected as completing
partial matches employs dynamic programming to compute disto(·, Q).

6.3 Bounded Distance-Based Trajectory Search

Next, we investigate the evaluation of BDTS queries while varying the k, |Q|
and τ/τmin parameters. Based on the findings of the previous section, we use the
SRA+ algorithm as the underlying DTS method. Note that due to lack of space we
omit results for the order-aware variant of BDTS; the results however are similar.
Figure 4 clearly shows that ONE−PASS outperforms INCREMENTAL in all cases. As
expected, the conservative approach of INCREMENTAL generates a larger number
of candidates by performing multiple rounds of generation and refinement which
results in both higher running time and more disk page accesses. Last, notice
that the evaluation of BDTS becomes less expensive for both methods while
increasing τ/τmin, as the number of invalid candidates progressively drops.

6.4 Distance and Span-Based Trajectory Search

Finally, we study the evaluation of DSTS queries. For this experiment, we
extended the most dominant method from [3,4], i.e., IKNN , and our methods NNA,
SRA and SRA+ following the discussion in Sect. 5. The results in Fig. 5 demon-
strate, similar to the DTS case, the advantage of both the spatial range-based
approach and the SRA+ algorithm which is overall the most efficient evaluation
method. Due to lack space, we again omit the figure for the order-aware variant
of DSTS as the results are identical to Fig. 5.

7 Related Work

Apart from the studies [3,4] for distance-based search on trajectories detailed in
Sect. 3.1, our work is also related to top-k and nearest neighbor queries.

Top-k Queries. Consider a collection of objects, each having a number of scor-
ing attributes, e.g., rankings. Given an aggregate function γ (e.g., SUM) on these
scoring attributes, a top-k query returns the k objects with the highest aggre-
gated score. To evaluate such a query, a sorted list for each attribute ai organizes
the objects in decreasing order of their value to ai; requests for random accesses
of an attribute value based on object identifiers may be also possible. Ilyas et al.
overviews top-k queries in [6] providing a categorization of the proposed meth-
ods. Specifically, when both sorted and random accesses are possible, the TA/CA
[5] and Quick−Combine [8] algorithms can be applied. TA retrieves objects from the
sorted lists in a round-robin fashion while a priority queue to organizes the best
k objects so far. Based on the last seen attribute values, the algorithm defines an
upper score bound for the unseen objects, and terminates if current k-th high-
est aggregate score is higher than this threshold. TA assumes that the costs of the
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Fig. 4. Performance comparison for Bounded Distance-based Trajectory Search

two different access methods are the same. As an alternative, CA defines a ratio
between these costs to control the number of random accesses, which in practice
are usually more expensive than sorted accesses. Hence, the algorithm periodi-
cally performs random accesses to collect unknown values for the most “promis-
ing” objects. Last, the idea behind Quick−Combine is to favor accesses from the
sorted lists of attributes which significantly influence the overall scores and the ter-
mination threshold. In contrast, when only sorted accesses are possible, the NRA [5]
and Stream−Combine [7] algorithms can be applied. Intuitively, Stream−Combine
operates similar to Quick−Combine without performing any random accesses. In
Sect. 3.1, we discuss how the methods in [3,4] build upon previous work on top-k
queries to address distance-based search on trajectories.

Nearest Neighbor Queries. There is an enormous amount of work on the
nearest neighbor (NN) query (also known as similarity search), which returns
the object that has the smallest distance to a given query point; k-NN queries
output the k nearest objects in ascending distance. Roussopoulos et al. proposed
a depth-first approach to k-NN query in [13] while Hjaltason et al. enhanced the
evaluation with a best-first search strategy in [14]. An overview of index-based
approaches can be found in [15]; efficient methods for metric spaces, e.g., [16],
and high-dimensional data, e.g., [17], have also been proposed.
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Fig. 5. Performance comparison for Distance and Span-based Trajectory Search

For a set of query points, the aggregate nearest neighbor (ANN) query [9]
retrieves the object that minimizes an aggregate distance to the query points.
As an example, for the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times, ANN outputs the
location that minimizes the time necessary for all users to meet. In case of the
SUM function and Euclidean distances, the optimal location is also known as
the Fermat-Weber point, for which no formula for the coordinates exists.

8 Conclusions

In this paper, we studied the efficient evaluation of point-based trajectory search.
After revisiting the existing methods (IKNN and GH/QE), which examine the
trajectories in ascending order of their distance to the queries points, we devised
a hybrid algorithm which outperforms them by a wide margin. Then, we pro-
posed a spatial range-based approach; our experiments on real-world trajectories
showed that this approach outperforms any NN-based method. Besides improv-
ing the performance of distance-based search, we also introduced and investi-
gated the evaluation of a practical variant for point-based trajectory search,



196 S. Qi et al.

which also takes into account the temporal aspect of the trajectories. As a direc-
tion for future work, we plan to consider additional types of annotated data on
the trajectories in point-based search, such as textual and social information.
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Abstract. The widespread availability of 3D city models enables us to
answer a wide range of spatial visibility queries in the presence of obsta-
cles (e.g., buildings). Example queries include “what is the best position
for placing a billboard in a city?” or “which hotel gives the best view of the
city skyline?”. These queries require computing and differentiating the
visibility of a target object from each viewpoint of the surrounding spe.
A recent approach models the visibility of a fixed target object from the
surrounding area with a visibility color map (VCM ), where each point
in the space is assigned a color value denoting the visibility measure of
the target. In the proposed VCM, a viewpoint is simply discarded (i.e.,
considered as non-visible) if an obstacle even slightly blocks the view
of the target from the viewpoint, which restricts its applicability for a
wide range of applications. To alleviate this limitation, in this paper, we
propose a scalable, efficient and comprehensive solution to construct a
VCM for a fixed target that considers the partial visibility of the target
from viewpoints. More importantly, our proposed data structures for the
fixed target support incremental updates of the VCM if the target moves
to near-by positions. Our experimental results show that our approach
is orders of magnitude faster than the straightforward approach.

1 Introduction

3D city models are increasingly available through popular mapping services such
as Google Maps, Google Earth and OpenStreetMap. We envision that these 3D
datasets will provide a new platform for answering many real-life user queries,
e.g., visibility queries in the presence of 3D obstacles, that form the basis of a
large class of location based applications. For example, an advertisement com-
pany may want to check the visibility of its billboard from the surrounding areas
before deciding on billboard’s position; a tourist may want to check visibility of
beautiful city skylines from available apartments; and a security company may
want to find the suitable positions for surveillance cameras.

All of the above applications require computing and differentiating the vis-
ibility of (from) a target object from (of) the surrounding area. For example,
c© Springer International Publishing Switzerland 2015
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a target billboard may be more visible from one location than another due to
different factors such as distance, viewing angle and obstacles. Also, a billboard
may be seen from many viewpoints but is readable only from viewpoints closer
to the target. Thus, our target applications require modeling the visibility as
a continuous notion, i.e., one needs to compute the visibility of the target for
every viewpoint in the space. In this paper, we propose efficient techniques to
compute the visibility of a target object from the surrounding continuous space,
which we call a visibility color map (VCM ).

A VCM is a surface color map, where every viewpoint in a 3D space is
assigned a color value denoting the visibility measure of the target from that
viewpoint. In a recent work [1], Choudhury et al. proposed a technique to com-
pute a VCM for a fixed target. Two major limitations of this technique are as
follows: (i) They do not take the partial visibility into account, i.e., a viewpoint
is simply discarded (i.e., considered as non-visible) if an obstacle even slightly
blocks the view of the target from that viewpoint. For example, if only a small
part of a billboard cannot be seen from a viewpoint, the viewpoint is declared as
non-visible, though a major part of the billboard is readable from the viewpoint.
Moreover, in a real 3D city environment, since many viewpoints are partially
obstructed due to huge number of obstacles, only a small portion of the view-
points surrounding the target constitute the VCM, which is not desirable for
real life applications. (ii) They do not consider the case of a moving target, and
thus a slight change of the target’s position invalidates the entire VCM.

There is no straightforward way to incorporate the partial visibility and mov-
ing target into the existing technique due to the following reasons. First, since
the proposed technique in [1] uses simple tangents between extreme points of
an obstacle and the target, it cannot be converted to assess the partial visibil-
ity while computing the VCM. In this paper, we take the partial visibility into
account, which is the correct form of the VCM for a fixed target and is a much
harder problem with wider acceptability than [1]. Second, if the position of the
target changes, the entire VCM needs to be reconstructed as the proposed data
structure in [1] does not support incremental updates of the VCM.

To alleviate the above limitations, in this paper, we propose an efficient
technique to construct the VCM for both fixed and moving target using real
datasets comprising a large number of obstacles. One key idea of our approach
is to identify the potentially visible set (PVS ) of obstacles from the large obstacle
set, by removing obstacles that cannot affect the construction of the VCM. To
find the PVS, we adopt the concept of projection from computer graphics [2]
and make it scalable and workable for a large number of obstacles indexed using
an R-tree [3] in the database. After finding the PVS, we determine the visibility
states of several boundary points on the target by considering the occlusion effect
of the obstacles. The visibility state of a boundary point on the target represents
which cells are (not) visible. Finally, we add the effects of distance and angle
between the target and each cell to compute the visibility of every cell.

To extend the above approach for a moving target, we rely on a pre-
computation based idea that assumes an extended buffer area around the target
and computes the PVS and visibility states for the extended region. Once the
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target moves to a near-by position, our proposed data structure is incrementally
updated to generate the VCM for the new target position.

We have evaluated the performance of our solution with both real and syn-
thetic 3D datasets. The experimental results show that our approach is on aver-
age 106 times faster than the straightforward approach.

In summary, we make the following contributions:

– We devise an effective algorithm to construct the VCM for a fixed target in
the presence of a large set of obstacles considering the partial visibility of the
target.

– We propose an efficient way to reconstruct the VCM for a moving target.
– We conduct experiments with real 3D datasets to demonstrate the effective-

ness and efficiency of our solution.

2 Related Works

The notion of visibility is fundamental to various fields including computational
geometry, computer graphics, urban planning, architecture and spatial data-
bases. In this section we briefly discuss existing works on visibility.

2.1 Visibility in Computational Geometry and Computer Graphics

Visibility computation in computational geometry involves determining visibility
graphs [4] and visibility polygons [5,6]. In computer graphics, a visibility map is
a graph describing a view of the scene including its topology. Various methods
for constructing a visibility map for a fixed [7–9] and moving [10] viewpoint have
been developed. In all the above approaches, visibility is defined from a point
source and consequently a binary notion, i.e. a point in the space is declared as
either visible or non-visible from the viewpoint.

Visibility of/from an extended region, i.e. from-region visibility, was studied
by Kim et al. [11]. His method determines the subset of the whole space which is
completely visible from a region, but does not handle the case of partial visibility.
Works done by Durand et al. [2] and Koltun et al. [12,13] focus on determining
the set of obstacles visible from an extended region. However, they do not provide
any measure of the visibility of the region from the space.

2.2 Visibility in Urban Planning and Architecture

Visibility related problems are actively studied in the fields of urban planning
and architecture. Relevant contributions include [14,15]. These approaches treat
visibility as a binary notion and are only applicable to cases where the number
of obstacles is small enough to fit into the main memory. Urban planners and
architects make use of software systems to visualize and render 3D data, such
as Google Sketchup [16], AutoCAD [17] and Maya [18]. These softwares do not
provide any functionality for quantifying visibility of a 3D object. By incorpo-
rating our techniques to construct the VCM, these applications can be equipped
to answer many realistic visibility queries which require quantification of the
visibility of an extended target object.
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2.3 Visibility in Spatial Queries

Visibility problems studied in context of spatial databases include nearest neigh-
bor queries [19–21] and maximum visibility queries [22,23]. The variants of near-
est neighbor queries find the nearest object in an obstructed scene from a single
query point or all points on a line segment, where results are ranked according
to the distances from the query point. Maximum visibility query finds a subset
of query points that provides the best view of an extended target.

Construction of the VCM for the entire space for a fixed position of the
target object is studied by Choudhury et. al. [1]. But they do not handle the
case of partial visibility and their solution is not applicable for a moving target
as we outline in the introduction. In this paper, we devise a method to construct
the VCM of the entire dataspace for a moving target, which also handles the
case of partial visibility in the presence of a large set of obstacles.

3 Problem Formulation

To construct a VCM, we need to produce a color map of the dataspace where
each point in the space is assigned a value that corresponds to the visibility
measure of the target from that point. We formally define the VCM as follows:

Definition 1 VCM. Given a d-dimensional dataspace Rd (d=2 or 3) and a set
O of obstacles in the dataspace, the VCM is a color map, where for each point p
in Rd, there exists a visibility color vp in [0,1]. The color vp corresponds to the
visibility of a given target object T from p. Here, higher value of vp corresponds
to higher visibility of T from p and vice versa.

In an earlier attempt [1] to construct the VCM for a fixed target, a point
gets a nonzero color if the target is entirely visible from that point. However,
the target can be partially visible from a point because of obstruction by the
obstacles. In this paper, while assigning visibility color to a point, we consider
the case of partial visibility by determining what portion of the target is visible
from that point.

We also address the problem of reconstructing the VCM efficiently as the
position of the target changes, i.e., for a moving target. Let V CMp denote the
VCM when the target is at position p. We formulate a method to incrementally
reconstruct V CMp′ efficiently for all p′ ∈ P , where P is the set of all candidate
positions.

4 Preliminaries

In this section we discuss some basic ideas on which our solution is built upon.
First we describe the factors affecting the visibility and then we discuss the
partitioning scheme of the dataspace that we have used in our solution. The
examples illustrated in this section are in 2D, which can be easily extended for
a 3D scenario.
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4.1 Factors Affecting Visibility Color

For a particular position of the target, the visibility measure (or, color), vp,
of a viewpoint p is obtained by considering two different visibility measures:
orientation based visibility, vor

p , and obstruction based visibility, vob
p . Both of

these values are in the range of [0,1]. After computing vor
p and vob

p , we can
estimate the visibility measure of a viewpoint p as vp = vor

p * vob
p .

Orientation based visibility captures the effect of both distance and the angle
between the target T and the viewpoint, and is measured as the visual angle [24].
The visual angle, αp, is the imposed angle by T at p as shown in Fig. 1(a).

To compute the obstruction based visibility measure, vob
p , for a viewpoint p,

we consider a number of equally spaced boundary points on the surface of T .
Let BT

p be the set of boundary points which are visible from a point p in the
absence of obstacles and BO

p be the set of boundary points which are visible from
p in the presence of all obstacles. Then vob

p = |BO
p |/|BT

p |. Here, the notation |.|
stands for cardinality of a set.

Fig. 1. (a) Factors affecting visibility color of point p around target T . (b) A sample
partitioning of space. First 3 equidistant stripes are shown in different shades of gray.

In the scenario described in Fig. 1(a), there are 8 boundary points
b1, b2, . . . , b8 on target T in a 2D space and the obstacle set O contains one
obstacle, o. Here BT

p = {b3, b4, b5, b6, b7}, BO
p = {b5, b6, b7} and vob

p = 3/5 = 0.6.
Thus, vob

p measures what portion of the target T is visible from p.

4.2 Partitioning into Cells

The d-dimensional data-space Rd consists of infinitely many points and assigning
a visibility color, vp, to each viewpoint p in Rd is a prohibitively expensive task.
To address this problem, we partition the whole space into a finite number
of equi-visible cells as proposed by Choudhury et al. [1], and assign a single
visibility color to each cell. The visibility color of cell c is denoted by vc. Each
cell is constructed in a way so that the deviation in visibility of T from the
viewpoints inside a cell, measured as visual angle, is not visually perceivable.
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To find equi-visible cells, we first partition the space based on distance and
then based on the angle between the target and the viewpoints. All the view-
points having a distance between di−1 and di from the target, where 0 < i ≤ k
and k is a positive integer, constitute the ith equidistant stripe, which is denoted
by Si. Here k is the number of equidistant stripes. Then each equidistant stripe
is further divided into cells based on the angle between the viewpoints and the
target. The detailed process of the partitioning is described in [1]. For simplicity,
we consider each cell as a rectangular region as shown in Fig. 1(b).

5 A Straightforward Approach

In this section, we present a straightforward approach to construct the VCM for
a fixed target. Let us consider a cell c with midpoint p. To determine visibility
color, vc, of c, we need to know the number of boundary points, which are visible
from p in the presence of obstacles. To determine the visibility between p and a
boundary point b, we check the line segment joining b and p against all obstacles.
If no obstacle intersects that line segment, b is visible from p. Otherwise b is not
visible from p. Finally we incorporate the effect of the distance and angle between
p and the target. This straightforward process is expensive both in terms of I/O
and computation, and not suitable for a moving target.

6 Our Approach

To construct the VCM for a target, we have to assess the occlusion effect of the
obstacles. One of the main challenges to construct the VCM for a target is to deal
with the huge obstacle set. Our strategy is to significantly reduce the number of
obstacles by discarding those obstacles that do not affect the calculation of the
VCM. This reduced obstacle set is called the potentially visible set, (PVS ). To
determine the PVS, we adopt a projection based idea of computer graphics [2]
and propose additional adjustments to determine the occlusion effect of a large
set of obstacles. We store the obstacles in an R-tree and perform a plane sweep
algorithm to determine the combined occlusion effect of multiple obstacles. The
process of determining the PVS is described in Sect. 6.1.

After determining the PVS, the next challenge is to efficiently compute the
view of the target from each cell of the partitioned of dataspace. The visibility
measure of each cell has two components: (i) orientation based visibility mea-
sure, which can be computed using simple equations as described in Sect. 4.1,
(ii) obstruction based visibility measure, which needs to consider what portion of
the target is visible from the cell in the presence of obstacles. As the next step of
our algorithm, we determine the visibility states, indicating which cells are visible
from a particular boundary point of the target (Sect. 6.2). Visibility states of all
boundary points are then combined to measure the obstruction based visibility
measure of each cell (Sect. 6.3). To compute the VCM for a fixed target, orienta-
tion and obstruction based visibility values are combined to obtain the visibility
color value for every cell (Sect. 6.4). In Sect. 6.5, we discuss the construction of
the VCM for a moving target.
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6.1 Determining PVS

In this section, we formulate a methodology to prune out those obstacles which
do not affect the calculation of the V CM . Thus we obtain a reduced set of
obstacles, which we call the potentially visible set (PVS ). To efficiently determine
the PVS, we index all obstacles in an R-tree [3]. An R-tree consists of a hierarchy
of minimum bounding rectangles (MBRs), where each MBR corresponds to a
tree node and bounds all the MBRs in its sub-tree. Data objects (obstacles, in
our case) are stored in leaf nodes. Before going to the details of determining
PVS, we first discuss some terminologies related to visibility and projection.

Definition 2 Target-Obstacle Visibility. Given a target T and a set of
obstacles O, T and an obstacle o ∈ O are defined to be visible to each other
if and only if there exists a pair of points pT on T and po on o such that no
obstacle o′ ∈ O and o′ �= o, intersects or touches the line segment joining pT
and po.

Visibility between the target and an obstacle is bidirectional, i.e., if the target
is visible from a particular obstacle o, then o is visible from the target and vice
versa. An obstacle cannot affect the computation of the VCM if it is not visible
from the target. So we can ignore the obstacles which are not visible from the
target and obtain a reduced set of obstacles, the PVS, which we denote by Ov.

To determine the PVS, we adopt a projection based idea proposed by Durand
et al. [2]. This work employs a conservative occlusion culling technique combining
occlusion effects of multiple obstacles on the target visibility. A plane sweep in
each principal axis direction is performed to identify obstacles that are not visible
from the target. We add further modifications to this approach so that it fits
our purpose of dealing with a large obstacle set indexed in an R-tree.

Preliminaries of Projection. In this section we describe several key concepts
regarding projection. For ease of explanation, we have assumed 2D scenario with
axis aligned rectangular target and obstacles. However, our approach is applica-
ble to any convex target and obstacles in 2D and 3D spaces. We also assume
that the field of view (FOV) is 90 degree centering the positive X direction.
Other directions along the principal axes can be treated similarly. In subsequent
sections, we treat an R-tree node (i.e., an MBR) or an obstacle as an object.

First, we define the near distance and the far distance. The near distance
and the far distance of an object are respectively the smallest and the largest of
the x ordinate values of all points of the object. We denote the near distance and
the far distance of an object o, by on and of respectively. Now we discuss the
idea of projection of an object [2]. The projection of an object is computed on a
projection plane in 3D (or, projection line in 2D) with respect to the target. If the
projection plane is in between the target and the object, then the projection of
the object is the union of all views from any point of the target. If the projection
plane is in the opposite side of the object from the target then the projection
of the object is the intersection of all views from any point of the target. The
projection of an object o, on the projection line x = l, is denoted by P l

o.



204 I.E. Rabban et al.

Now we describe the concepts of aggregated projection and re-projection. We
denote the aggregated projection at the projection line x = l, by Al. Al reflects
the combined occluding effect of all obstacles with far distances less than or
equal to l, i.e., obstacles which are entirely in front of the sweep line x = l. As
a result, Al consists of several disjoint projections on x = l.

Fig. 2. Bold segments stand for aggregated projections.

The process of computing the aggregated projection is as follows. Initially, we
set the aggregated projection as null, Ainit = ∅. Then we incrementally update
the aggregated projection as we encounter obstacles in the increasing order of
their far distance.

Suppose we know the aggregated projection on line x = lp, Alp , and we want
to calculate Aln , where lp < ln. (Here subscripts p and n stand for previous and
next respectively.) If no obstacle has far distance between lp and ln, then we
obtain Aln by re-projecting Alp on the projection line x = ln. Re-projecting an
aggregated projection onto another projection plane involves projecting each
disjoint projection of the aggregated projection separately onto the destina-
tion plane. Now assume that there is an obstacle o, with far distance l, where
lp < l ≤ ln. In such cases, first we calculate the union of P l

o and the re-projection
of Alp on x = l and then re-project this combined projection on x = ln. This
method demonstrates that the aggregated projection needs to be recalculated
only at the far distances of the obstacles.

The process of calculating aggregated projections is simulated in Fig. 2. Let,
l1, l3 and l4 be the near distances of o1, o2 and o3 respectively, and l2, l5 and l6
be the far distances of o1, o2 and o3 respectively. In the figure, projection line
x = li is marked as Li. Initially, Ainit = ∅. We encounter the first far distance
at x = l2. As a result, Al2 is P l2

o1 . On x = l5, the re-projection of Al2 on x = l5
is AC and P l5

o2 is BD. The union of AC and BD is AD. Thus, Al5 is {AD}. At
x = l6, the re-projection of Al5 on x = l6 and P l6

o3 are disjoint. Thus, Al6 consists
of two disjoint segments as shown in Fig. 2.
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Algorithm 1. determinePVS(R,T )
1 begin
2 Ov, Ainit, Q ←− ∅;
3 Q.push(R.root);
4 while Q �= ∅ do
5 o ←− Q.pop();
6 if o is entirely outside FOV then
7 continue;

8 l ←− on;
9 determine Al;

10 if Al completely spans FOV then
11 break;

12 if P l
o ⊆ Al then

13 continue;

14 if o is an MBR then
15 for c ∈ o.children() do
16 Q.push(c);

17 else
18 Ov.push(o);

19 return Ov

The Algorithm. In this section, we formally describe the process of deter-
mining the PVS in the algorithm determinePVS. We retrieve objects from the
R-tree in non-decreasing order of near distance (Fig. 3 shows an example R-tree
for 8 obstacles in a 2D space). This retrieval process can be visualized as a line
sweep over the 2D plane. A projection line (sweep line) perpendicular to the
X axis is moved towards the positive X direction. Suppose it enters an object,
o, at position x = l, i.e., on = l. Then the aggregated projection on the projec-
tion line x = l, Al, is calculated, which reflects the combined occlusion effect
of all obstacles entirely in front of the sweep line. If the projection of o on the
sweep line, P l

o, is a subset of Al, then o is occluded by the obstacles in front of o,
and consequently o is discarded (Lines 12–13). o is also discarded if o is entirely
outside the field of view (Lines 6–7). If o cannot be discarded, we either declare
o as a potentially visible obstacle (in case o is an obstacle, Lines 17–18) or mark
o’s children for later consideration (in case o is an MBR, Lines 14–16). The algo-
rithm terminates when there are no more objects to process or the aggregated
projection completely spans the FOV (Lines 10–11). Note that an obstacle, o,
is discarded only if o is certainly not visible from the target, otherwise, o is
considered as potentially visible.

In the algorithm determinePVS, movement of the sweep line is implemented
by a priority queue, Q, which holds objects, i.e. MBRs and obstacles, in non-
decreasing order of near distance. Other variables hold their usual meaning.
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Fig. 3. The PVS computation with an R-tree. Near distance of obstacle oi is li and
the sweep line x = li is represented by Li. The bold segments on the Lis identify Ali .

In Line 9, we determine the aggregated projection at the current sweep line
position, which can be calculated efficiently by considering only those obstacles
that have far distances between the previous and current sweep line positions.

In Fig. 3, we present a simulation of the algorithm determinePVS. At pro-
jection line L1, Al1 is null. As a result, o1 is added to Ov. On L2, P l2

o2 is not a
subset of Al2 and o2 is declared as potentially visible. Similar is the case with
o3 and o4. o5 is entirely outside the field of view, and consequently discarded.
o6 is rejected because, at L6, P l6

o6 is a subset of Al6 . The projection of the MBR,
R4 on L8 is a subset of Ad8 . As a result, R4, along with o7 and o8, is discarded.
Finally, the algorithm returns the set {o1, o2, o3, o4} as the PVS.

6.2 Determining Visibility State of a Point

The visibility State of a point, b, on the target indicates which cells in the par-
tition are visible from b and which cells are not. The process of determining
visibility state of b is equivalent to assigning a boolean value to each cell in
the partition indicating whether or not the cell is visible from b. As mentioned
before, to construct the VCM, we need to determine the visibility states of all
the boundary points. In this section, we describe how to determine visibility
state of a particular boundary point, b, assuming that the field of view along the
positive X direction.

A cell c and a point b is visible to each other if and only if the line segment
joining b and the midpoint of c is intersected or touched by no obstacle. We
observe that the midpoints of cells in a particular equidistant stripe are situated
on a straight line perpendicular to the X axis. The line joining the midpoints
of the cells of Si is called the ith midway line, and denoted by Mi. Recall from
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Fig. 4. (a) Aggregated near projections (bold segments) on successive mid-way lines
(dotted lines). (b) Visibility state of b. Non-visible cells are darkened.

Sect. 4.2 that Si stands for the ith equidistant stripe. Let the equation of the line
Mi be x = mi.

As the midway lines are vertically aligned, we can reuse the idea of the
projection based strategy, constructed in Sect. 6.1, for determining the occlusion
effect of obstacles around the point b. Let us first consider the point b as the target
(i.e., a point target) and the PVS, returned by the algorithm determinePVS, as
the set of obstacles. For each midway line Mi, where i = 1, 2, . . . , k, we calculate
the occlusion effect of all obstacles situated partially (as we explain shortly)
or entirely in front of Mi. We declare a cell as not visible from b, if the cell’s
midpoint is occluded and vice versa.

To accurately measure the visibility state of a point, we consider the occlusion
effect of an obstacle at projection lines after the near distance of the obstacle.
Thus we ensure that when the projection line is between the near distance and
far distance of an obstacle, the occlusion effect of the portion of the obstacle
in front of the projection line is taken into account. If the occlusion effect of
all obstacles situated partially or entirely in front of the projection line is taken
into account, the combined projection is defined as aggregated near projection.
Aggregated near projection at projection line x = l is denoted by An

l .
To determine the visibility state of a boundary point, aggregated near pro-

jections are determined on successive midway lines considering Ov as the set
of obstacles. In Fig. 4, a sample scenario is illustrated, where visibility state of
a boundary point b is determined in the presence of an obstacle, o. Figure 4(a)
shows the aggregated near projections on consecutive midway lines and Fig. 4(b)
marks the cells which are declared as non-visible from b, i.e., those cells which
have midpoints on the aggregated near projections.
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6.3 Visibility State of a Target

In the previous section, we compute the visibility state of a point on the target.
In this section, we will combine the visibility states of all boundary points on
the target to find the obstruction based visibility measure of the target from all
equi-visible cells of the partitioned dataspace.

Fig. 5. Combining the visibility states of a particular equidistant stripe of 3 boundary
points. Lighter shade of gray on the leftmost stripe corresponds to better view of T .

Let us consider three boundary points b1, b2, and b3 on the positive X
direction of the target T as shown in Fig. 5. We need to compute the visibil-
ity states of all cells on the positive X direction in the presence of an obstacle o.
Figure 5(a), (b) and (c) show visibility states of a particular equidistant stripe
for boundary points b1, b2 and b3, respectively. We can see that 5, 4, and 3 cells
of the equidistant stripe are not visible from boundary points b1 (Fig. 5(a)), b2
(Fig. 5(b)), and b3 (Fig. 5(c)), respectively. If we combine these three visibility
states, we obtain the obstruction based visibility measures of all cells on the
equidistant stripe. Figure 5(d) shows the cells and corresponding numbers indi-
cating how many boundary points are visible from those cells, which indicate
the obstruction based visibility measure for the VCM.

6.4 VCM for a Fixed Target

Based on the above constructs, we summarize the process of VCM construction
for a fixed target as follows. First, we divide the dataspace into a set of equi-
visible cells. Second, for each cell c, we compute the orientation based visibility
measure vor

c based on the distance and angular placement of c’s midpoint with
respect to the target. Third, we compute the potentially visible set (PVS ), Ov,
by the projection based line-sweep along every axis-parallel direction. Fourth,
we compute the visibility states of all the boundary points on the target by
considering the occlusion effect of Ov on target visibility. Fifth, for each cell c,
we compute the obstruction based visibility measure, vob

c , as |BO
c |/|BT

c |, where
BT

c is the set of boundary points that are visible from c in the absence of obstacles
and BO

c is the set of boundary points that are visible from c in the presence of
obstacles. Finally, we estimate the visibility measure or the color value vc of each
cell c as vor

c * vob
c , which constitutes the VCM for the target.
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6.5 VCM for a Moving Target

In this section, we discuss our solution to construct the VCM for a moving
target. The key concept of extending our method for a moving target is to pre-
compute the PVS and visibility states for an extended buffer area around the
target, and then incrementally update the VCM when the target moves to a
near-by position. Thus we can avoid a large amount of repetitive computation
and obtain the desired efficiency to construct the VCM for a moving target. Note
that performing the pre-computation for an extended region around the target
is consistent with realistic application scenarios, e.g., while placing a billboard, a
user may want to check its visibility from the surrounding space. Our proposed
method enables him to choose the right placement by constructing the VCM on-
the-fly for different near-by positions of the billboard. In this paper, we consider
a rectangular region that encloses the target as the buffer area. Defining the
buffer region more meaningfully is in the scope of our future work.

We name the extended buffer region around the target as a super target,
Ts and consider a number of equally spaced points in Ts as candidate points.
We follow two pre-computation steps involving the super target and candidate
points: (i) determine the PVS for Ts, and (ii) compute visibility states of all the
candidate points by considering the PVS as the obstacle set.

After the pre-computation steps, we can construct the VCM by combining
the visibility states of those candidate points that lie on the boundary of the
target. When the target moves to a position inside the super target, we add the
effects of visibility states of the new candidate points and remove the effects of
candidate points that do not belong to the new target. We assume that the target
is moved to a discrete position defined by a set of candidate points. However,
if the target moves to a position where its boundary points do not superimpose
with the candidate points, we approximate the given position of the target to
the nearest discrete position defined by the candidate points, and construct the
VCM accordingly. If a target moves outside the super target area, we need to
calculate the new PVS and visibility states of the new candidate points.

The speedup in the construction of the VCM for a moving target comes from
two sources. First, we calculate the PVS only once. If the target is entirely inside
the super target, we can use the reduced obstacle set determined in Step (i) as the
PVS. Second, one candidate point can be used to approximate targets at many
positions. Consequently, we do not need to repeat the process of determining
the PVS and the visibility states for any near-by positions of the target. Thus
the cost of the preprocessing steps is amortized over all subsequent runs of the
process for different positions of the target inside the super target.

7 Experimental Evaluation

We evaluate the performance of our proposed algorithm for constructing the
VCM with real and synthetic datasets. At first, we compare our approach to
construct the VCM for a fixed target with the exact straightforward approach
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presented in Sect. 5. Then we evaluate the efficiency of our approach for con-
structing the VCM for a moving target. The algorithms are implemented in
C++ and the experiments are conducted on a core i5 2.40 GHz PC with 3GB
RAM, running Microsoft Windows 7.

7.1 Experimental Setup

We conduct experiments for two real 3D datasets: (1) British1 dataset, represent-
ing 5985 data objects obtained from British ordnance survey2 and (2) Boston3

dataset, representing 130,043 data objects in Boston downtown. We also conduct
experiments using synthetic datasets. We vary the synthetic dataset size using
both Uniform and Zipf distributions of the obstacles. In all datasets, objects
are represented as 3D rectangles that are used as obstacles in our experiments.
All obstacles are indexed by an R-tree, with the disk page size fixed at 1KB. We
vary several parameters to evaluate our solution. The range and default value of
each parameter are listed in Table 1.

Table 1. Parameters

Parameter Range Default

Dataset Real, Synthetic Real

Angular Resolution 0.5, 1, 2, 4, 8 2

Number of Boundary Points 32, 42, 52, 62, 72 42

Length of Target 15, 30, 60, 120, 240 60

Dataset Size (Synthetic) 5K, 10K, 15K, 20K, 25K

7.2 Performance Evaluation

We compare our approach to construct the VCM with the exact straightforward
approach described in Sect. 5. The results of our approach deviate slightly from
the results of the exact method, because we have used an approximation for
ease of implementation. Recall from Sect. 6.2 that while determining the visi-
bility states, we calculated the aggregated near projections to correctly assess
the occlusion effect of an obstacle, i.e. we consider the portion of the obstacles
partially or completely in front of the projection lines. But in our implementa-
tion, we have calculated the projection of each obstacle at its’ near distance. We
have treated this projection as the occlusion effect of the obstacle and removed
the obstacle from further consideration. To formulate the error incurred by this
approximation, let ve

c denote the visibility color of cell c determined by the exact
1 http://www.citygml.org/index.php?id=1539.
2 http://www.ordnancesurvey.co.uk/oswebsite/indexA.html.
3 http://www.bostonredevelopmentauthority.org.

http://www.citygml.org/index.php?id=1539
http://www.ordnancesurvey.co.uk/oswebsite/indexA.html
http://www.bostonredevelopmentauthority.org
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approach and va
c denote the visibility color of cell c determined by our imple-

mentation. Then the error is given by the following formula:
error =

∑
c∈C |ve

c−va
c |

|C|
The performance metrics used in our experiments include: (i) total processing
time, (ii) I/O cost, i.e. the number of nodes retrieved from the R-tree, and (iii)
error incurred by the approximation. For each experiment, we have evaluated
the results for 20 random positions of the target and reported the average.

Fig. 6. Effect of dataset size on I/O performance.

7.3 Performance for Fixed Target

To evaluate the performance of our approach to construct the VCM for a fixed
target, we vary the size of the target, dataset size, angular resolution and the
number of boundary points independently and determine the total processing
time, I/O cost and the incurred error. When one parameter is varied, the other
parameters are kept at their default values.

Effect of Dataset Size. In this experiment we vary the dataset size from 5 K to
25 K using both Uniform and ZipF distributions and compare the performance of
our solution with the straightforward exact approach. Table 2 shows the effect of
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dataset size on total processing time and error. Our approach runs approximately
105 to 106 times faster than the straightforward approach. The rate of error is
quite low and does not change significantly with varying dataset size. The total
processing time, reduction time, PVS size and I/O cost of our approach is shown
graphically in Fig. 6 to analyze the I/O performance of our solution. We see that
reduction time is dominating the total processing time in both datasets.

Table 2. Effect of dataset size on total processing time (in seconds) and Error

Distribution Uniform ZipF

Approach Our Naive Error(%) Our Naive Error(%)

5K 354.3 3.4e+7 2.66 28.3 4.1e+7 2.16

10K 431.5 9.6e+7 4.98 67.9 1.6e+8 3.21

15K 519.7 1.9e+8 3.50 111.1 2.9e+8 4.46

20K 528.5 2.8e+8 4.37 161.9 3.6e+8 4.23

25K 869.4 3.4e+8 4.40 219.5 4.2e+8 4.26

Increasing the dataset size results in an increase in reduction time and the size
of the PVS, which in turn increase the cost of determining the visibility states.
As a result, the total processing time and I/O cost rise with increasing dataset
sizes. The experimental results are in accordance with the above reasoning.

Effect of Target Size, Angular Resolution and Number of Boundary
Points. According to our experiments, as the size of the target increases, the
total processing time and I/O cost of our approach increase. The reason is, as
the size of the target increases, the number of obstacles visible from the target
also increases. As a result, the size of PVS grows with an increase in target size.
Consequently, the total processing time and the I/O cost increase.

We find that the total processing time is inversely proportional to angular
resolution or cell size. The reduction time does not depend on angular resolution.
But the computational overhead of determining visibility states and combining
the results decrease with increasing angular resolution. This is because the num-
ber of equidistant stripes decreases as the angular resolution increases.

Our experiments reveal that with an increase in number of boundary points,
total processing time increases and the error decreases. Total processing time
increases, because the cost of determining the visibility states is proportional
to the number of boundary points. The decrease in error occurs, because with
higher number of boundary points, we can obtain a more accurate measure of
what portion of the target is visible from each cell.

In the above cases, our solution runs 105 to 107 times faster than the exact
straightforward approach and the error rate varies from 3 % to 7 %, which is
negligible. The experimental results are not shown in details for brevity.
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7.4 Performance for Moving Target

To assess the efficiency of our solution for constructing the VCM for a moving
target, we vary the ratio of the lengths of an edge of the super target and the
target from 2 to 5. We determine the average total processing time for all discrete
positions of the target inside the super target in two ways. First we separately
run the process of constructing the VCM for a fixed target as described in
Sect. 6.4 for each discrete position of the target inside the super target and take
the average processing time, which we call fixed target average cost. Then we
apply the method described in Sect. 6.5 to construct the VCM for all discrete
positions inside the super target and determine the average processing time by
amortizing the cost of the preprocessing steps over all discrete positions. This is
called moving target average cost.

Fig. 7. Performance for moving target.

The experimental results in Fig. 7 illustrate that our pre-computation based
solution for constructing the VCM for a moving target runs 10 to 100 times faster
on average than the approach described in Sect. 6.4. As the size of the target with
respect to the super target decreases, the number of discrete positions for the
target inside the super target increases. As a result, the cost of the preprocessing
steps becomes negligible in average and the moving target average cost becomes
much smaller than the fixed target average cost.

8 Conclusion

In this paper, we have proposed an efficient and scalable technique to compute
the visibility color map (VCM ) that forms the basis of many real-life visibility
queries in 2D and 3D spaces. The VCM quantifies the visibility of (from) a
target object from (of) each viewpoint of the surrounding space and assigns
colors accordingly in the presence of obstacles. Our plane-sweep based solution
finds the VCM in three phases: finding the potentially visible obstacle set (PVS )
from a large set of obstacles, determining the occlusion effects of obstacles in the
PVS, and finally adding the effects of distance and angle between the target and
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each cell of the partitioned dataspace. Our solution works for both fixed and
moving target, and handles the partial visibility of the target. When the target
moves to a near-by position, our proposed data structure can be incrementally
updated to generate the VCM on-the-fly. Experiments with real and synthetic
3D datasets demonstrate that for a fixed target, our approach outperforms the
straightforward approach by 5–6 orders of magnitude in terms of total processing
time. Our solution to calculate the VCM for a moving target runs 10 to 100 times
faster than our solution for a fixed target.
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Abstract. Indexing moving objects has been extensively studied in the
past decades. Moving objects, such as vehicles and mobile device users,
usually exhibit some patterns on their velocities, which can be utilized
for velocity-based partitioning to improve performance of the indexes.
Existing velocity-based partitioning techniques rely on some kinds of
heuristics rather than analytically calculate the optimal solution. In this
paper, we propose a novel speed partitioning technique based on a for-
mal analysis over speed values of the moving objects. We first formulate
the optimal speed partitioning problem based on search space expansion
analysis and then compute the optimal solution using dynamic program-
ming. We then build the partitioned indexing system where queries are
duplicated and processed in each index partition. Extensive experiments
demonstrate that our method dramatically improves the performance
of indexes for moving objects and outperforms other state-of-the-art
velocity-based partitioning approaches.

1 Introduction

Over the past few decades, the rapid and continuous development of positioning
techniques, such as GPS and cell tower triangulation, has enabled information
to be captured about continuous moving objects, such as vehicles and mobile
device users. Location-based services (LBSs) and location-dependent queries have
become popular in modern human society [15]. Techniques for managing data-
bases containing large numbers of moving objects and processing predictive
queries [14,21] have been extensively studied and are becoming increasingly
important in order to support many emerging applications including real-time
ride sharing (e.g. Uber) and location based crowd sourcing (e.g. Waze).

By storing timestamped locations, traditional database management systems
(DBMSs) can directly represent moving objects [11]. However, this approach
is impractical because most applications require high update rates in order to
maintain the stored locations of the moving objects up to date. Therefore, motion
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 216–234, 2015.
DOI: 10.1007/978-3-319-22363-6 12
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functions are used instead, which significantly reduce the number of updates, for
moving object databases (MODs) [10,20]. Moreover, motion functions enable
MODs to perform predictive spatio-temproal queries [14,21] that retrieve near
future locations of the moving objects.

Indexes are used to improve query performance of MODs. Due to high update
rate in real world applications, not only query performance but also update
overhead must be considered while indexing MODs. Indexes for MODs in the
literature can be categorized into tree-based indexes (e.g. [4,5,8,9,14,19,21,22,
24]) and grid-based indexes (e.g. [13,16–18]). Typical tree-based indexes are
balanced, i.e. the number of indexed objects within each leaf node is about the
same. Therefore query performance of such structures can be estimated by the
number of nodes accessed when processing a query [21]. The query performance
of grid-based indexes depend on different factors, as the grid cells might contain
quite different number of objects. In this work, we consider only tree-based
indexes and leave grid-based ones for future work.

In most real world applications, moving objects usually exhibit particu-
lar patterns on velocities (including speed values and directions). Therefore,
velocity-based partitioning can be applied to the indexes to improve perfor-
mances of the indexes. Zhang et al. [23] proposed the first idea of velocity-based
partitioning for indexing moving objects. In their method, they first find k veloc-
ity seeds which maximize the velocity minimum bounding rectangle (VMBR),
then partition the moving objects by assigning them to the nearest seed. In
this way, the moving objects are partitioned into k parts and the VMBR for
each part is minimized. Nguyen et al. [12] proposed another velocity-based par-
titioning technique that partitions the indexes based on directions of the moving
objects. This method partitions the moving objects based on their distance to
the so-called dominant velocity axes (DVAs) in the velocity domain.

Speed values of the moving objects are always characterized by both the
nature of the moving objects and the environment. For example, walking speeds
for human beings range from 0 mph to 4 mph; driving speeds for vehicles in city
road networks range from 0 mph to 100 mph; cruising speeds for airplanes usually
range from 500 mph to 600 mph. Moreover, in most city road networks, speed
values of the vehicles are also characterized by the categories of the roads. For
example, most vehicles drive between 50–80 mph on highways, and 20–40 mph
on street ways or even slower when the roads are busy. Such distributions of
speed values of the moving objects can have significant impacts on query per-
formances of the indexes. Query performances of typical tree-based indexes for
MODs can be estimated by the average number of node accesses [21]. However,
high speed moving objects will significantly enlarge the spatial areas of the index
nodes containing them, which will likely incur unnecessary accesses to the low
speed ones within the same nodes while processing queries. Thus partitioning the
indexes by speed values of the moving objects can significantly improve query
performance. Moreover, partitioning will reduce the number of objects in each
index partition, which also helps accelerate update operations.

Contributions. Motivated by above observations, we propose the novel speed
partitioning technique. The proposed method first computes the optimal points
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(ranges) for speed partitioning. Then an optional second-level partitioning, based
on directions of the moving objects, is performed within each speed partition.
Note that the distributions of locations and speeds might change as time elapses
that leads to changes of the optimal speed partitioning. Our proposed system
can handle these changes through periodical partition update routines. Moreover,
the speed partitioning technique is generic and can be applied with various tree-
based indexes. Contributions of this paper can be summarized as follows:

– We propose a novel method for estimating the search space expansion which
can be used as a generic cost metric to estimate query performance of tree-
based indexes for MODs.

– We propose the novel speed partitioning technique which minimizes search
space expansion of the indexes using dynamic programming.

– Extensive experiments show that our proposed approach prominently
improves update and query performance of two state-of-the-art MOD indexes
(the Bx-tree and the TPR�-tree) and outperforms other state-of-the-art
velocity-based partitioning techniques.

The remainder of this paper is organized as follows. In Sect. 2 we review the
related works about tree-based indexes for MODs and velocity-based partitioning
techniques. In Sect. 3, we introduce the concept of search space expansion and,
based on which, we formulate the optimal speed partitioning problem. In Sect. 4,
we present the speed partitioning technique and the partitioned indexing system.
Experimental studies are presented in Sect. 5. In Sect. 6, we conclude this paper
and discuss some future work.

2 Related Work

In this section, we introduce some related work about tree-based indexes for
MODs that are used in this paper as well as the state-of-the-art velocity-based
partitioning techniques.

2.1 The TPR/TPR�-tree

Saltenis et al. [14] proposed the TPR-tree (short for Time-Parameterized R-tree)
that augments the R�-tree [1] (a variant of the R-tree [7]), with velocities to index
moving objects with motion functions. Specifically, an object in the TPR-tree is
indexed by its time-parametrized position with respect to its velocity vector. A
node in the TPR-tree is represented by a minimum bounding rectangle (MBR)
and the velocity on each side of the MBR which bounds all moving objects
contained in the corresponding MBR at any time in the future. The TPR-tree
uses time-parameterized metrics when choosing the target nodes for insertion
and deletion. The time-parameterized metric is calculated as

∫ tl+H

tl
A(t)dt, where

A(t) is the metric used in the original R-trees. H is the horizon (the lifetime of
the node) and tl is the time of an insertion or the index creation time.
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The TPR-tree uses a step-wise greedy strategy to choose the MBR where a
new object is inserted. Since the objects are moving as time passes, the over-
laps between MBRs become larger, which eventually makes the step-wise greedy
strategy ineffective. Tao et al. proposed the TPR�-tree [21] that uses the same
data structure as the TPR-tree with optimized insertion and deletion operations,
which significantly reduce the overlaps between MBRs.

2.2 The Bx-tree

The Bx-tree, proposed by Jensen et al. [8], is the first indexing approach based
on B+-tree. The Bx-tree uses space-filling curves, such as Z-curves and Hilbert
curves, to map the d-dimensional locations into scalars that can be indexed by
B+-trees. The time axis is partitioned into intervals of duration Δtmu, which
is the maximum duration in-between two updates of any object location. Each
such interval is further partitioned into n equal-length phases and each phase
is associated with a label timestamp. Instead of indexing the object locations at
their update timestamps, the Bx-tree indexes the locations at the nearest future
label timestamp. After each Δtmu/n timestamps, one phase expires and another
is generated. This rotation mechanism is essential to preserve the location prox-
imity of the objects.

(a) Index node (b) Search space expansion

Fig. 1. Search space expansion of an index node

2.3 Velocity-Based Partitioning

Velocity-based partitioning techniques, which utilize the velocity information
from a global perspective, are used to further improve the query performance of
MOD indexes. Intuitively, velocity-based partitioning can improve query perfor-
mance because search space expansion (defined as the enlargement of the index
nodes) [12] of the partitioned indexes considerably decreases in some scenarios.

Zhang et al. [23] firstly defined the VMBRs which represent the minimal
rectangles in the velocity domain that bound the velocity vectors of all moving
objects and proposed the partitioning method that minimizes the VMBRs within
each partition. At the first step of this method, given the number of partitions
k, the velocity vectors of exactly k moving objects that form largest VMBR
are selected as seeds for the k partitions. Then each object is assigned to the
partition with minimum VMBR increase. This method has some limitations.
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Firstly, it is difficult to determine the number of partitions k. Secondly, the
partitioning might be far from optimum since this method relies on very simple
heuristics and does not perform any analysis on search space expansion.

Thi et al. [12] proposed the partitioning technique based on DVAs in the
velocity domain. They applied principal component analysis and K-means clus-
tering on the velocities of the moving objects to find k-1 DVAs. Then the velocity
domain is partitioned into k partitions according to the DVAs, one partition for
each DVA plus one outlier partition. Each moving object is assigned to the near-
est DVA partition if the distance between its velocity vector and the DVA is
smaller than a threshold, otherwise it will be assigned to the outlier partition.
Through this partitioning method, the velocity domain is reduced to nearly
1-dimensional parts, which dramatically reduces the search space expansion.
However, this method still requires the number of partitions k as a parameter.
Moreover, the performance of this method will significantly reduce if the velocity
domain has no effective DVAs.

3 The Optimization Problem

In this section, we introduce the notion of search space expansion which can be
used as a generic cost metric to estimate query performance of tree-based indexes
for MODs. We then present the method for computing search space expansion
and formulate the optimal speed partitioning problem.

3.1 Search Space Expansion

Figure 1(a) shows a typical example of how the geometry area of an index node
expands. In this figure, the moving objects are originally located in a square
area (the inner one) and move in arbitrary directions. At some future time,
the objects will spread in a larger square area (the outer one). We model the
expansion of the node as a trapezoid prism where the top base is the original area
and the bottom base is the future area of the node. Figure 1(b) illustrates such
a trapezoid prism of the node in Fig. 1(a). The volume of the trapezoid prism
corresponding to an index node is called the search space expansion of this node.
The sum of search space expansions of all index nodes is called the search space
expansion of the index. A formal definition of search space expansion is given in
Definition 1.

Definition 1. Search space expansion. Given any node in an MOD index I, its
area at time t is S(t). The search space expansion of the node from time 0 to any
future time th is ν(th) =

∫ th

0
S(t)dt. The search space expansion of the index is

the sum of the search space expansions of all nodes: V (th) =
∑

∀node∈I ν(th)

If queries are randomly generated in the predefined space domain, nodes with
larger search space expansions have higher probabilities to be accessed to answer
the queries [21]. Consequently, indexes with smaller search space expansion enjoy
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better query performance. Thus we wish to find a partitioning strategy that
minimizes the search space expansion of the indexes, i.e. the volumes of all
trapezoidal prisms, in order to minimize query costs.

We propose the speed partitioning technique which partitions the indexes
based on speed values of the moving objects. Since the moving objects are sepa-
rated based on their speed values, thus fast growing nodes for high speed objects
will not affect those for low speed objects. Therefore the search space expansion
of an index will be dramatically reduced if we conduct appropriate partitioning
on speed values. In the next subsection, we will discuss how to achieve the opti-
mal index partitioning based on speed values. Note that in our analysis, we only
consider the search space expansions of leaf nodes, because in most scenarios the
number of leaf nodes significantly exceeds that of internal nodes.

3.2 The Optimal Speed Partitioning

Our speed partitioning technique is based on solving the optimal speed parti-
tioning problem, thus is different from and more generic than all state-of-the-art
velocity-based partitioning techniques [12,23] that rely on some kinds of heuris-
tics. We now formalize the optimal speed partitioning problem that minimizes
search space expansion.

Denote O = {o1, o2, · · · , oN} as the set of moving objects and denote the
speed of object ol as vol

. Let Ω = {v1, v2, . . . , vq} represent the speed domain,
where v1 < v2 < · · · < vq. Thus for all ol ∈ O, we have vol

∈ Ω. We note that in
most applications the speed domain can be easily discretized into finite number
of different speed values. Let v0 = v1−ε, where ε is a positive number and ε → 0.
v0 is a dummy speed used for simplifying notations. Let Ω+ = Ω

⋃{v0}.
Now let Δ = {δ0, δ1, · · · , δk}, 1 ≤ δi ≤ q, where δ0 = 0 and δk = q. Therefore

Δ partitions the speed domain into k (non-overlapping) parts, denoted as Ωi =
(vδi−1 , vδi

], 1 ≤ i ≤ k. We say Δ is a partitioning on Ω. Meanwhile, O is
partitioned accordingly into k parts: Pi(1 ≤ i ≤ k), where Pi = {ol : vol

∈
(vδi−1 , vδi

]}. We denote Ii as the corresponding indexing tree, such as the Bx-
tree or the TPR�-tree, for Pi. Note that k is automatically computed rather than
an input of our method.

Our goal is to find the optimal partitioning, denoted as Δ�, that minimizes
the overall search space expansion of all index partitions. We can achieve this
goal by solving the following minimization problem:

Δ� = arg min
Δ

{vδ0 < vδ1 < · · · < vδk
: V (th)} (1)

where V (th) =
∑

0<i≤k Vi(th) represents the overall search space expansion of
all index partitions and Vi(th) the search space expansion of partition Ii. th is
the maximum predict time for the predictive queries [14,21]. Without loss of
generality, we present next how to compute Vi(th).

According to Definition 1, in order to compute Vi(th), we first need to com-
pute the search space expansion of every single index node in Ii which requires
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1) the initial node area, and 2) the expanding speed of each node. We present
the approach to compute Vi(th) step by step in the following paragraphs.

Generate Uniform Regions. In most real world applications, the moving
objects may not be uniformly distributed. Thus before calculating the search
space expansion, we first divide the space domain into subregions such that the
moving objects in Pi are (close to) uniformly distributed within each subregion.
Uniformity will not only significantly reduce the complexity of calculation but
also help obtain more accurate estimations. We will introduce a quad tree based
method to find the uniform subregions in Sect. 4. We denote the set of uniform
subregions of Pi as Ri = {Ri1, Ri2, . . . , Rimi

}.

Compute Initial Node Area. Now we compute the initial areas of the nodes
within subregion Rij , where 0 < j ≤ mi. Without loss of generality, we assume
Rij to be a square area with side length of Dij . We also consider the index
nodes as square shaped with expected side length of dij and let c represent
the expected number of objects in each node. c is determined by the storage
size of each node which is a parameter in our method. Since moving objects

are uniformly distributed in Rij , we have d2
ij

c ∝ D2
ij

Nij
where Nij represents the

number of objects in Rij . Thus dij can be estimated as dij = Dij

√
c

Nij
.

Compute Expanding Speed. Next we introduce the method for estimating
expanding speeds of the index nodes in Rij . Since we make no assumptions on
the patterns of the moving objects’ directions, we consider that the objects in
each node travel at arbitrary directions. Thus every single node expands with
equal speed in all directions while the expanding speed is the maximum speed
value of the moving objects in the corresponding node.

Let Hiju represent the number of moving objects in Rij whose speed values
fall in the range (vδi−1 , vu], where vu ∈ Ω and δi−1 < u ≤ δi, formally

Hiju = |ol ∈ Rij : vδi−1 < vol
≤ vu| (2)

Since the speed values of the moving objects are independent given a certain
speed distribution, expanding speed of any node in Rij is vu with the probability

p(i, j, u) =

(
Hiju−Hijδi−1

c

) − (
Hij(u−1)−Hijδi−1

c

)

(
Nij

c

) (3)

where
(
a
b

)
is a combination number.

Compute Search Space Expansion. For each speed partition, we can apply
a second-level (direction-based) partitioning into 4 quadrants as illustrated in
Fig. 2 if it further improves search space expansion. Hence we compute the search
space expansion of Rij both with and without the second-level partitioning and
select whichever achieves smaller value. When no second-level partitioning is
performed, the search space expansion of a single node in Rij can be calculated by

ν1(th) = ν(th, vu) =
∫ th

0

(dij + 2vut)2 dt (4)
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When the second-level partitioning is further applied, we compute the search
space expansion for each quadrant. Expected side length of the nodes in the
quadrant partitions is 2d and the search space expansion is calculated by

ν2(th) = ν(th, vu) =
∫ th

0

(2dij + vut)2 dt (5)

Therefore, the expected search space expansion of all nodes in Rij can be calcu-
lated by

Vij(th) =
[
Nij

c

] ∑

vu∈Ω,δi−1<u≤δi

ν(th)p(i, j, u) (6)

where
[

Nij

c

]
computes the total number of nodes in Rij and ν(th) represents the

minimum of ν1(th) and ν2(th). Finally, the overall search space expansion V (th)
is calculated by

V (th) =
∑

1≤j≤k

∑

0<j≤mi

Vij(th) (7)
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Fig. 2. Speed partitioning
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Fig. 3. System architecture of SP

4 The Partitioned Indexing System

Based on the above analysis on search space expansion, we propose the speed
partitioning technique (SP) for indexing moving objects. Figure 3 illustrates the
system architecture of SP. SP uses a centralized indexing system consisting of
three parts: the speed analyzer, the index controller, and the partitioned indexes.
The speed analyzer receives data from the moving objects and computes the
optimal speed partitioning. The index controller then creates the correspond-
ing partitioned indexes. Once receiving queries from users, the index controller
duplicates the queries and push them to the index partitions. After all index par-
titions finish processing the queries, the index controller collects and integrates
the query results and sends them back to users. We will discuss more details of
SP in the remainder of this section.
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Algorithm 1. merge(Q)
input : Q: a set of quad tree nodes
output: R: a set of uniform subregions
/* check the uniformity of the current nodes */

1 if ∀Qj ∈ Q, Qj is uniform then
2 add the region of Q to R;
3 else

/* explore the child nodes */

4 for i ← 0 to 3 do
5 foreach Qj ∈ Q do
6 CQj ← Qj .child[i];

7 merge(CQ);

4.1 The Optimal Speed Partitioning

In this subsection, we discuss how to find the optimal speed partitioning through
dynamic programming. Let Λ�

r , 0 < r ≤ q, be a sequence (λ0, λ1, · · · , λr) where
vλi

∈ Ω� and 0 = λ0 < λ1 ≤ · · · ≤ λr−1 ≤ λr = r. The set of distinct values in
Λ�

r form the optimal partitioning of the sub speed domain of (v0, vr], denoted as
Δ�

r . Thus our goal is to find Δ�
q .

In order to compute Δ�
q using dynamic programming, we need to maintain

two arrays V� and T
�, where V �

r and T �
r (the rth values of V� and T

�) store the
search space expansion of Δ�

r and the rth value (λ�
r−1) in Λ�

r , respectively. V �
r

and T �
r can be computed by Eqs. (8) and (9), respectively.

V �
r =

{
0 r = 0
min

0≤s<r
{V �

s + V(vs,vr]} 0 < r ≤ q (8)

T �
r = arg min

0≤s<r
{V �

s + V(vs,vr]}, 0 < r ≤ q (9)

where V(vs,vr] is the search space expansion of partition P(vs,vr] and P(vs,vr] =
{ol : vol

∈ (vs, vr]}. Note that we define V �
0 = 0 in order to simplify denotations.

Next we discuss how to compute V(vs,vr], for all (vs, vr] ⊂ Ω.
In order to compute V(vs,vr] using Eq. (7), we first need to generate the uni-

form subregions mentioned in Sect. 3. We propose a quad tree [6] based method

Fig. 4. An example of merge
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to generate the uniform subregions for every P(vs,vr]. We first divide the objects
into q layers, where moving objects within the same layer have same speed val-
ues (represented by the average speed value in each layer). Each layer is divided
into square subregions using a quad tree such that the objects in each subre-
gion are uniformly distributed. We use χ2-test (significance level 5 %) to test
the uniformity of each subregion. We also fix 5 as the maximum depth of the
quad trees. In order to generate the uniform subregions for P(vs,vr], we need to
combine the corresponding layers, layer s + 1 through r. We choose the most
fine grained division when the divisions of different layers conflict, thus objects
in the subregions of the combined layer always contain uniformly distributed
objects. Figure 4(left) shows an example of such layers, where there are 3 dif-
ferent speed values v1, v2, v3 and the objects in the 3 layers are represented as
squares, diamonds, and dots, respectively. Figure 4(right) shows the result of the
merge operation.

Algorithm 1 shows the pseudo code for the merge operation. This is a recur-
sive algorithm which takes a set of r − s quad tree nodes (one node for each
layer) as input. If objects within all the current nodes are uniformly distributed,
we add the (square) spatial region represented by the quad tree nodes into the
result set (lines 1–2). Otherwise, we recursively explore the 4 child nodes (each
2-dimensional quad tree node has 4 child nodes) at the next level of the quad
trees (lines 3–7). Note that the input nodes will always locate at the same posi-
tions in the corresponding quad trees for all recursive calls, since we set the root
nodes of the quad trees as input of the initial call.

In order to find the optimal partitioning Δ�
q , we need to compute V �

r for
each r (0 < r ≤ q). As shown in Eqs. (8) and (9), we iteratively find the best s
which leads to the optimal partitioning on (v0, vr] and stores it as T �

r . During the
computation for V �

r , we can use previously computed optimal results on (v0, vs],
i.e. the values of V �

s for each s (0 ≤ s < r). Finally, we can obtain the optimal
partitioning on (v0, vq] by tracking backwards the values in T

�, i.e. each λi ∈ Λ�
q

(0 ≤ i ≤ q) can be computed by

λi =

⎧
⎨

⎩

0 i = 0
T �

λi+1
0 < i < q

q i = q
(10)

Algorithm 2 shows the pseudo code of our dynamic programming based algo-
rithm to solve the optimal speed partitioning problem. Algorithm2 first creates
the quad trees for uniform subregion generation (line 1). Then the search space
expansions of partition P(vs,vr], for all (vs, vr], are calculated (lines 2–3). Then
dynamic programming is used to compute the values of V �

r and T �
r based on

Eqs. (8) and (9) (lines 4–11). Finally, λ0 through λq are computed from T
�

using Eq. (10) (lines 12–15). Note that we compute the search space expansion
(line 3) both with and without the second-level partitioning as described in
Sect. 3 and store the smaller value as V(vs,vr]. The corresponding speed partition
in the final result is further partitioned into four sub-partitions (one for each
quadrant in the velocity domain) if it achieves smaller search space expansion.
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Algorithm 2. Find the optimal speed partitioning
1 Create quad trees;

/* Pre-compute search space expansion for partition P(vs,vr ] using

Equation (7) */

2 foreach (vs, vr] ∈ Ω do
3 V(vs,vr ] ← the search space expansion of P(vs,vr ];

/* Iteratively compute V �
r and T �

r using Equation (8) and (9) */

4 V �
0 ← 0;

5 for r ← 1 to q do
6 min ← inf ;
7 for s ← 0 to r − 1 do
8 if V �

s + V(vs,vr ] < min then
9 min ← V �

s + V(vs,vr ];
10 T �

r ← s;

11 V �
r ← min;

/* Compute the final results using Equation (10) */

12 λq ← q;
13 for i ← q − 1 to 1 do
14 λi ← T �

λi+1
;

15 λ0 ← 0;

Figure 2 shows an example of the output of our algorithm. Actually, high speed
partitions are more likely to be further partitioned into quadrants since direction
has more impact on high speed partitions. The time complexity of Algorithm2
is analyzed as follows.

Complexity Analysis. Execution time of Algorithm 2 consists of three parts:
(1) creating the quad trees takes O(N) time; (2) pre-computing the search space
expansions for each sub speed domain takes O(q2) time; and (3) the dynamic
programming part also takes O(q2) time. Thus the total time complexity of
Algorithm 2 is O(N + q2). Note that the analysis relies on the condition that
maximum depth of the quad trees is fixed, as mentioned earlier in this section.

4.2 Index Update

Index update of our system consists of two parts: object update and partition
update. Object update corresponds to status (e.g. location and velocity) updates
of the moving objects, which is essential to keep the objects’ locations up-to-date.
When a moving object updates its status, the index controller will determine
whether it should be inserted into a different partition based on its current
velocity. Then the object will be either deleted from its previous partition and
inserted into the new one or simply updated in the previous partition. Note that
each index partition contains only a portion of the moving objects, thus object
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update in the partitioned indexes takes less CPU time than that in the original
index without partitioning.

Partition update corresponds to changes of the optimal speed partitioning.
Since the objects are continuously moving, both their location and speed dis-
tributions might change over time. Thus we need to re-compute the uniform
subregions as well as the optimal speed partitioning when necessary. We simply
conduct partition updates periodically with cycle time customized according to
the dataset. For example, in city road networks, location and speed distribu-
tions of the vehicles might be different between rush hours and regular hours,
for which we can use hourly partition update routines.

4.3 Query Processing

In this work, we consider predictive time-slice queries [14,21] which retrieve
tentative future locations of the moving objects. We evaluate both predictive
range queries and predictive k nearest neighbor (kNN) queries in the experiments
(Sect. 5). Specifically, a predictive range query is associated with two coordinates
(bottom-left point and upper-right point of the range query window), while a
predictive kNN query is associated with a coordinate (center of the kNN query)
and kNN-k. Both of the two kinds of queries are associated with a query predict
(future) time, which indicates that the queries are performed on the objects’
predicted locations at that time.

Query processing for SP is straightforward. The original queries are dupli-
cated (with modifications if necessary) and processed within each partition either
concurrently or sequentially. In order to compare the performance between par-
titioned indexes and their unpartitioned counterparts, in this paper, we con-
duct the duplicated queries sequentially. Within each index partition, queries
are performed using the algorithm associated with the basic indexing structure
(e.g. the Bx-tree or the TPR�-tree).

5 Experimental Study

In this section, we conduct extensive experiments to evaluate the performance
of our speed partitioning technique with both main memory indexes and disk
indexes. Both simulated traffic data and real world GPS tracking data are used
in the experiments. We evaluate both update throughput (average number of
updates performed in a second) and query response time. Query response time
consists of I/O latency and CPU time for disk indexes while only CPU time for
main memory indexes.

We use the Bx-tree and the TPR�-tree as the basic indexing structures. We
compare our approach of speed partitioning (SP-Bx and SP-TPR�) with the
state-of-the-art approaches of DVA-based partitioning [12] (dVP-Bx and dVP-
TPR�) and VMBR-based partitioning [23] (mVP-Bx and mVP-TPR�) as well
as the baseline approaches (Bx and TPR�). We set the number of partitions k in
DVA and VMBR-based partitioning techniques as 3 and 5, respectively, which is
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(a) Part of Seoul
road network

(b) Part of London
road network

(c) Part of Boston
road network

(d) Part of Shen-
zhen road network

Fig. 5. City road networks for traffic simulation

Table 1. Experimental settings

Parameter Setting

Space domain (m×m) 10,000×10,000

Number of objects 100K, 200K, . . . , 500K

Query window size (m×m) 200×200, 400×400, . . . , 1000×1000

kNN - k 10, 20, 30, . . . , 50

Query predict time (ts) 0, 30, 60, . . . ,120

Node size (byte) 1K, 2K, 4K,· · · , 16K

datasets SEO, LD, BOS, SZ

consistent with the experimental settings in the original papers. All algorithms
are implemented with C++ language and all experiments are performed with
2.93 GHz Intel Xeon CPU and 1TB RAM in CentOS Linux. The experimental
settings are displayed in Table 1 where the default settings are boldfaced.

5.1 Datasets

In this subsection, we introduce datasets used in the experiments. Figure 5 shows
city road networks corresponding to the datasets in the experiments.

Simulated Traffic Data. The simulation of city traffic consists of two parts:
road network generation and traffic generation. City road networks are generated
from the XML map data downloaded from http://www.openstreetmap.org. Our
traffic generator is based on the digital representation of real road networks
and the network-based moving object generator of Brinkhoff [2]. A road is a
polyline consisting of a sequence of connected line segments. The initial location
of a moving object is randomly selected on the road segments. The object then
moves along this segment in either direction until reaching crossroads, where it
has a 25 % chance to stop for several seconds due to the traffic and then continues
moving along another randomly selected connected segment.

http://www.openstreetmap.org
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Fig. 8. Varying datasets

We assume speed values of the moving vehicles in each road segment follow
a random variable X and X ∼ N (μ, σ2), where N is the normal distribution,
μ and σ are set according to categories of the road segments. We divide the
road segments into three categories: (C1) freeways/motorways with fastest traf-
fic, (C2) primary roads with secondary fastest traffic, and (C3) street ways or
residential roads with slowest traffic. We randomly select the normal distribution
parameter μ from a range in terms of m/s for each category: (C1) [25, 40], (C2)
[5, 25], (C3) [0, 15]. We set σ=10 m/s for all road segments.

GPS Tracking Data. The SZ dataset contains 100 K trajectories of taxis within
the urban area of Shenzhen, China. Each trajectory contains a sequence of GPS
tracking data with timestamps in a single day. The trajectories are not sampled
with equal time intervals and the smallest sampling interval is 15 s. The dataset
can be accessed at http://mathcs.emory.edu/aims/spindex/taxi.dat.zip.

http://mathcs.emory.edu/aims/spindex/taxi.dat.zip
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Note that we generate 2 min traffic data for the simulated datasets, where
the distributions of locations and speeds do not change. On the other hand, the
SZ dataset has a much longer time span, thus is used to evaluated the temporal
factor that leads to distribution changes on locations and speeds.

5.2 Experimental Results

Firstly, we show the execution time of Algorithm 2, which is the main overhead
for partition updates, with different number of objects (N) and number of speed
values (q). Figure 6 shows the results, which are consistent with the complexity
analysis for Algorithm2 in Sect. 4. We find that the execution time is less then
2 second in all settings. Thus the overhead for partition update is reasonably
small. We set q equal 50 for the remaining experiments.

Next we compare the performances between disk indexes and main mem-
ory indexes. Figure 7(a) through Fig. 7(c) show results on throughput, range
query response time and kNN query response time, respectively. We can see
that SP outperforms other methods for both disk and main memory indexes with
both Bx-trees and TPR�-trees. Moreover, we found that main memory indexes
enjoy much better performance than disk indexes on both throughput and query
response time. In the remaining experiments, we report only the results of main
memory indexes since we have limited space.

Next we compare the experimental results across three simulated traffic
datasets (SEO, LD, and BOS), which are summarized in Fig. 8. We can see that
SP enjoys better performance than other velocity-based partitioning methods as
well as the non-partitioning counterparts on a variety of datasets (road networks
from Asian, European, and American cities). This is because, as shown in Fig. 5,
road networks for large space domain (10,000×10,000 m2) usually implies no
explicit velocity seeds or DVAs which are used in VMBR-based partitioning and
DVA-based partitioning techniques, respectively. Moreover, Boston road network
has more high speed roads than other city road networks thus nodes in the corre-
sponding indexes expand faster, which makes the BOS dataset has higher query
costs than other datasets.

In the next experiment, we vary the number of moving objects from 100 K to
500K. Figure 9 shows the results about throughput, range query and kNN query.
We can see that when the number of objects increases, throughput decreases,
query response time increases for both range queries and kNN queries. Moreover,
Bx-trees enjoy higher throughput due to the simple update process of B+-tree
but lower query utility due to the “false hits” caused by the space-filling curves
[8,22]. On the contrary, TPR�-trees have more complicated update operations
which makes query more efficient at a sacrifice of throughput. Finally, SP indexes
consistently outperform other indexes in all settings.

Next we vary the node size from 1 KB to 16 KB. Figure 10(a) through
Fig. (c) show the experimental results. Generally speaking, performance
decreases when node size increases, since index nodes with larger sizes require
more maintaining and retrieving efforts. However, query performance of Bx-trees
is not significantly affected by node size. This is because nodes of Bx-trees store
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Fig. 9. Varying number of objects
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Fig. 10. Varying node size
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Fig. 11. Varying query parameters

the values computed from space-filling curves, which makes the spatial areas
of Bx-tree nodes insensitive to their storage sizes. Note that the experimental
results are different from both those for disk indexes, where disk I/O latency
dominates the performance [3], and those for main memory indexes with sec-
ondary index on object IDs, which enables constant time locating the objects
for updates [16]. Finally, SP significantly outperforms other methods in this
experiment.

Next we study the impact of query parameters including query predict time,
range query window size and kNN-k. The experimental results are summarized in
Fig. 11. Figure 11(a) and (b) show the results about range queries while Fig. 11(c)
and (d) show those about kNN queries. We can conclude from the figures that,
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generally speaking, TPR�-trees perform better than Bx-trees and SP outper-
forms other methods. Moreover, SP gains more advantages when query predict
time, query window size, and kNN-k increase.

Finally, we present the results on the real world dataset SZ, which contains
information of the taxis in a day long period. Since the distributions of loca-
tions and speeds might change during the experiment time, we perform parti-
tion updates every 1 hour. The experimental results are summarized in Fig. 12.
We can see that query costs are lowest at early morning, since most cities have
least volume of traffic during that time period. We also find that query costs
raise at noon and night. This is because the taxis drive faster resulting in higher
expanding speeds of the index nodes. The variation of throughput during the
day is relatively small. Again, SP significantly and consistently outperforms other
partitioning methods and their unpartitioned counterparts.
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Fig. 12. Varying hour of the day

6 Conclusions and Future Work

In this paper, we proposed a novel and generic speed partitioning technique
(SP) for indexing moving objects and implemented SP with the state-of-the-art
indexing structures including the Bx-tree and the TPR�-tree. We empirically
evaluated the performance of SP through extensive experiments on both simu-
lated traffic data and real world GPS tracking data.

There are several future works which can further improve the performance
of SP. Firstly, seeking more accurate estimations on search space expansion can
always help finetune the optimal partitioning. Secondly, analytic methods such
as kernel density estimation (KDE), instead of empirical methods, can be used to
estimate the speed distribution. Moreover, sophisticated partition update algo-
rithms might further improve performance in highly dynamic scenarios, where
the distributions of locations and speeds change frequently. Finally, we will
extend our method to grid-based indexing structures.
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Abstract. The Singular Value Decomposition (SVD) is a matrix decom-
position technique that has been successfully applied for the recovery of
blocks of missing values in time series. In order to perform an accurate
block recovery, SVD requires the use of highly correlated time series.
However, using lowly correlated time series that exhibit shape and/or
trend similarities could increase the recovery accuracy. Thus, the latter
time series could also be exploited by including them in the recovery
process.

In this paper, we compare the accuracy of the Centroid Decomposi-
tion (CD) against SVD for the recovery of blocks of missing values using
highly and lowly correlated time series. We show that the CD technique
better exploits the trend and shape similarity to lowly correlated time
series and yields a better recovery accuracy. We run experiments on real
world hydrological and synthetic time series to validate our results.

1 Introduction

In real world applications sensors are used to measure time series data of dif-
ferent types, which are then collected, processed and stored in central stations.
In the hydrological field, for instance, weather stations collect measurements
that describe meteorological phenomena, e.g., temperature, humidity, air pres-
sure, precipitation, etc. These time series contain blocks of missing values due to
many reasons, e.g., sensor failure, power outage, sensor to central server trans-
mission problem, etc. In order to recover these missing values, existing recovery
techniques use the (base) time series that contains the missing values in addition
to highly correlated (reference) time series. However, these recovery techniques
can not learn from the trend and shape similarity of lowly correlated reference
time series. Thus, the latter are not included in the recovery process.

The Foehn, for instance, is a warm wind that reaches weather stations at
different time points. This environmental phenomenon yields time series with
shape and trend similarities, but shifted in time. For example, the Foehn yields
shifted temperature time series with similar shapes, e.g., peaks that contain
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similar spikes. These shifted time series are lowly correlated. It is of interest to
benefit from Foehn based time series and include them, in addition to the highly
correlated time series, in the recovery process. In this paper, we consider the
category of lowly correlated reference time series, e.g., Fohen based time series,
that exhibit shape and/or trend similarities to the base time series.

Matrix decomposition techniques decompose an input matrix into the prod-
uct of k matrices where k ∈ [2, 3]. The truncated Singular Value Decomposition
(SVD) has been successfully applied to recover missing values in time series [1].
The truncated SVD performs a decorrelation of vectors and subsequently an
unweighted relative reduction of the Mean Squared Error (MSE) to the refer-
ence time series. The unweighted MSE reduction yields a recovery that ignores
the correlation difference between the input time series. Thus, this recovery tech-
nique is not suitable to apply in case of using highly and lowly correlated refer-
ence time series (cf. Sect. 5). To the best of our knowledge, there does not exist
any technique that introduces different weights in the decomposition process of
SVD. In [2–4] fast approximations of the truncated SVD have been proposed.
Similarly to SVD, the latter approximations perform a decorrelation of vectors
and thus, produce an unweighted MSE relative reduction.

In this work, we are interested in the case of using highly and lowly correlated
time series for the recovery of blocks of missing values. Intuitively, in such cases,
an accurate recovery technique should give different weights to the used time
series. In contrast of the truncated SVD, the truncated Centroid Decomposition
(CD) technique gives a weight proportional to the correlation between the base
and the reference time series (cf. Sect. 5). Consequently, the obtained recovery
produces a relative reduction of the MSE to the highly correlated reference time
series more than to the lowly correlated one yielding a block recovery better
than the one produced by the truncated SVD. We assume that the lowly corre-
lated time series that exhibit trend and/or shape similarity are given as input.
Searching for these time series is beyond the scope of this paper.

The main contributions of this paper are:

– We prove that CD technique produces correlated output vectors while SVD
technique produces uncorrelated output vectors.

– We empirically show that CD performs a weighted MSE relative reduction
that is proportional to the correlation of the input time series. The resulting
recovery of missing values takes into account the correlation difference between
the input time series.

– We empirically show that SVD performs an unweighted MSE relative reduc-
tion. The resulting recovery of missing values ignores the correlation difference
between the input time series.

– We present the results of an experimental evaluation of the recovery accuracy
of the CD and SVD techniques. The iterated truncated CD produces a bet-
ter recovery accuracy in case of using a similar number of highly and lowly
correlated time series.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 describes the recovery process using SVD and CD techniques. Section 4
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defines the unweighted recovery and the correlation based recovery respectively
performed by SVD and CD. Section 5 reports the evaluation results. Section 6
concludes the paper and points to future work.

2 Related Work

The Singular Value Decomposition (SVD) is a commonly used matrix decompo-
sition technique. It computes the singular values with their corresponding right
and left singular vectors. The truncated SVD, which is computed out of SVD by
nullifying the smallest singular values, has been extensively used in many fields,
e.g., compression, noise reduction, etc. Khayati et al. [1] applied the truncated
SVD for the recovery of missing values in time series. The basic idea is as fol-
lows: the truncated SVD is iteratively applied to a matrix that has as columns
the time series for which the missing values have been initialized through linear
interpolation. The iterative process refines only the initialized missing values and
terminates when the difference between the updated values before and after the
refinement is smaller than a small threshold value, e.g., 10−5. The Mean Squared
Error (MSE), between the real values and the recovered ones, is used to evaluate
the recovery accuracy [5].

The Centroid Decomposition (CD) is a matrix decomposition technique that
decomposes an input matrix into the product of two matrices. Chu et al. [6]
introduce an algorithm that computes the CD of an input matrix in quadratic
run time, but requires the construction of a correlation square matrix that has a
quadratic space complexity. Khayati et al. [7] propose an algorithm to compute
the CD out of the input matrix using a weight vector instead of the construction
of the correlation matrix. They prove the correctness of the proposed solution.
The space complexity is thus reduced from quadratic to linear while keeping the
same run time complexity.

The Semi Discrete Decomposition (SDD) [8] is a matrix decomposition tech-
nique that decomposes an input matrix into three matrices such that their prod-
uct approximates the input matrix, i.e., X ≈ X′ · D · YT . The resulting D is
a diagonal matrix and the values of X′ and Y are restricted to belong to the
set {−1, 0, 1}. The truncated SDD has been used as clustering method [9]. The
non-zero elements of the matrix obtained from the product dii×X ′

∗i ·Y T
∗i are the

elements of the input matrix X which have the closest values and thus can be
clustered together. Due to the set restriction of the elements of X′ and Y, the
application of SDD for the recovery of blocks of missing values does not produce
accurate results.

In addition to matrix decomposition techniques, matrix factorization tech-
niques have been also applied for the recovery of missing values. The latter tech-
niques start from k random matrices in order to approximate the input matrix.
Stochastic Gradient Descent (SGD) [10] is a matrix factorization technique that
approximates an input matrix X by the product of two matrices P and Q, i.e.,
X ≈ P · Q. SGD iteratively minimizes an error function by computing the gra-
dient. At each iteration, the gradient is computed using random sample square
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blocks of the input matrix. The accuracy of the gradient increases with the
size and the number of the used blocks [11]. Thus, using an input matrix with
high number of rows and columns yields an accurate gradient’s computation and
subsequently a good approximation of the input matrix. In [12], SGD has been
successfully applied to predict ratings in recommender systems for a matrix of
items as rows and users as columns. Balzano et al. [13] propose an SGD-based
solution, called GROUSE, for the recovery of blocks of missing values in an input
matrix. GROUSE performs an accurate recovery for matrices of a high number
of rows and columns. The recovery accuracy of the proposed solution deterio-
rates if the number of columns is much smaller than the number of rows such as
in the hydrology field where the number of time series is much smaller than the
number of observations.

3 Preliminaries

3.1 Notation

Bold upper-case letters refer to matrices, regular font upper-case letters to vec-
tors (rows and columns of matrices) and lower-case letters to elements of vec-
tors/matrices. For example, X is a matrix, XT is the transpose of X, Xi∗ is the
i-th row of X, X∗i is the i-th column of X and xij is the j-th element of Xi∗.

In multiplication operations we use the sign × for scalar multiplication and
the sign · otherwise. The symbol ‖‖ refers to the l-2 norm of a vector. Assume
X = [x1, . . . , xn], then ‖X‖ =

√∑n
i (xi)2.

3.2 Background

Time Series. A time series Xi∗ = {(t1, v1), (t2, v2), . . . , (tn, vn)} is a set of n
temporal values vi ordered with respect to their timestamps ti. We consider time
series that have the same granularity of values. Thus, we omit the timestamps
and we write time series using only their ordered values, e.g., time series
X1∗ = {(1, 4), (2, 5), (3, 1)} is written as X1∗ = {4, 5, 1}. Time series are inserted
as columns of the input matrix X.

Pearson Correlation Coefficient. Given two vectors X and Y of equal
length n, with respective averages x̄ and ȳ, the Pearson correlation coefficient is
defined as,

r(X,Y ) =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

The absolute value of r ranges between 0 and 1 where r ∈ [0.7, 1] stands for
highly correlated vectors. The value of r is undefined if all xi (and/or yi) are
equal.
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Initialization Strategy. The missing values of each time series are initialized
as a preprocessing step before the application of the recovery process. A missing
value is initialized with a linear interpolation between the predecessor and the
successor values. If the missing value occurs as the first or the last elements
of the time series, we use the nearest neighbor initialization. Thus, the missing
values of a time series X∗1 are initialized as follows:

(ti, vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ti, v) if (s(ti), ) �∈ X∗1,
(p(ti), v) ∈ X∗1

[2pt](ti, v) if (p(ti), ) �∈ X∗1,
(s(ti), v) ∈ X∗1

[2pt](ti,
(ti−p(ti))(s(vi)−p(vi))

s(ti)−p(ti)
+ s(vi))

otherwise

where p(ti) = max{tj | (tj , ) ∈ X∗1 ∧ tj < ti} is the predecessor of timestamp
ti in X∗1 and s(ti) = min{tj | (tj , ) ∈ X∗1 ∧ tj > ti} is the successor timestamp
of ti in X∗1. Similarly, p(vi) = {vj | (tj , ) ∈ X∗1 ∧ tj = p(ti)} is the predecessor
of value vi in X∗1 and s(vi) = {tj | (tj , ) ∈ X∗1 ∧ tj = s(ti)} is the successor
value of vi in X∗1.

3.3 Matrix Decomposition

Singular Value Decomposition. The Singular Value Decomposition (SVD)
is a matrix decomposition technique that decomposes an n × m matrix,
X = [X∗1| . . . |X∗m], into an n × p matrix, U, a p × m matrix, Σ, and an m × m
matrix V, i.e.,

X = U · Σ · VT (2)

=
p∑

i=1

σi × U∗i · (V∗i)T ,

where p = min(n,m), the columns of U and V are respectively called left and
right singular vectors, and Σ is a matrix whose diagonal elements, σi, are called
singular values and are arranged in decreasing order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.
The obtained columns of U are orthogonal to each other, i.e., U∗1 ⊥ U∗2 ⊥ . . . ⊥
U∗p. Similarly, the columns of VT are orthogonal to each other. In order to
guarantee the orthogonality of columns of respectively U and V, SVD requires
the use of the same input matrix [14]. Since SVD decomposition is performed
based on the same input matrix X, we refer to SVD as a flat decomposition
method.

Figure 1 illustrates the SVD decomposition of an input matrix X.

Centroid Decomposition. The Centroid Decomposition (CD) is a matrix
decomposition technique that decomposes an n×m matrix, X = [X∗1| . . . |X∗m],
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X =

⎡
⎣ 4 0

2 1
3 2

⎤
⎦; SVD(X) =

⎡
⎣ 0.725 0.307

0.333 0.627
0.603 0.716

⎤
⎦

︸ ︷︷ ︸
U

,

[
5.445 0

0 2.086

]
︸ ︷︷ ︸

Σ

,

[
0.987 0.16
0.16 0.987

]
︸ ︷︷ ︸

V

such that

X =

⎡
⎣ 0.725 0.307

0.333 0.627
0.603 0.716

⎤
⎦

︸ ︷︷ ︸
U

×
[

5.445 0
0 2.086

]
︸ ︷︷ ︸

Σ

×
[

0.987 0.16
0.16 0.987

]
︸ ︷︷ ︸

VT

Fig. 1. Example of Singular Value Decomposition.

into an n × m loading matrix, L, and an m × m relevance matrix, R, i.e.,

X = L · RT =
m∑

i=1

L∗i·(R∗i)T , (3)

where ‖L∗1‖ > ‖L∗2‖ > . . . > ‖L∗m‖ ≥ 0. Figure 2 illustrates the CD of
matrix X.

X =

⎡
⎣ 4 0

2 1
3 2

⎤
⎦; CD(X) =

⎡
⎣ 3.977 −0.43

1.878 1.214
3.202 1.658

⎤
⎦

︸ ︷︷ ︸
L

,

[
0.994 0.11
0.11 0.994

]
︸ ︷︷ ︸

R

such that

X =

⎡
⎣ 4 0

2 1
3 2

⎤
⎦ =

⎡
⎣ 3.977 −0.43

1.878 1.214
3.202 1.658

⎤
⎦

︸ ︷︷ ︸
L

×
[

0.994 0.11
0.11 0.994

]
︸ ︷︷ ︸

RT

Fig. 2. Example of Centroid Decomposition.

The CD technique applies an iterative process to compute matrices L and R.
At each iteration i, the input matrix X is updated by subtracting the product
L∗i · RT

∗i from it. The columns of L (and R) are not orthogonal to each other.
Since CD decomposition is performed by hierarchically updating X, we refer to
CD as a hierarchical decomposition method.
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Chu et al. [6] prove that the decomposition performed by CD best approxi-
mates the one produced by SVD, i.e., L approximates the product U · Σ and R
approximates V.

Truncation. The truncated SVD computes a matrix Xk out of the SVD of X.
It takes only the k first columns of U and V and the k largest elements of Σ
such that k < p, i.e.,

Xk =
k∑

i=1

σi × U∗i · (V∗i)T . (4)

Equation (4) is equivalent to Xk = U · Σk · VT where Σk is obtained by
setting the r − k smallest (non zero) singular values of Σ to 0. Let rank p be the
maximal number of linearly independent rows or columns of X. Then, among
all matrices with rank k < p, Xk is proven to be the optimal approximation to
the input matrix X in the Frobenius norm [15].

The truncated CD computes a matrix Xk out of the CD of X by setting to
0 the m − k (non zero) last columns of L, with k < m, in order to respectively
get Lk and Xk = Lk · RT .

4 Decomposition Comparison

In this section, we compare the decomposition produced by the truncated SVD
against the one produced by the truncated CD using the Mean Squared Error
(MSE = 1

k

∑k
i=1(x̃i − xi)2; initialized value xi; recovered value x̃i; number of

missing observations k) between the initialized values and the recovered ones.

4.1 Recovery Process

Algorithm 1 describes the pseudo code of function RecM() that applies truncated
SVD and truncated CD to recover missing values. The algorithm takes an input
matrix X where the missing values have been initialized, and returns a matrix X̃
with recovered values. Different initialization techniques would lead to the same
result but with a higher number of iteration [7]. RecM() iteratively replaces
the initialized missing values by the result of the truncation of a given matrix
decomposition technique. The algorithm terminates if the difference in Frobenius
norm (‖X − X̃‖F =

√∑n
i=1

∑m
j=1(xij − x̃ij)2; xij : element of X; x̃ij : element

of X̃) between the matrix before the update of missing values, X, and the one
after, X̃, is less than a small threshold value, e.g., ε = 10−5.

In what follows we describe the recovery properties using respectively SVD
and CD. We assume the case where the correlation ranking between time series
does not change over the entire history, i.e., the most correlated reference time
series has the highest correlation value to the base time series all over the entire
history. In case where the correlation ranking changes over the history, then a
segmentation of the time series has to be applied.
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Algorithm 1. RecM(X, n, m, Tm
j )

Input: n × m matrix X; set of missing time stamps Tm
j in X∗j

Output: n × m matrix ˜X of recovered values

1 repeat

2 ˜X = X ;
// Apply truncated SVD or truncated CD

3 Xk =Truncate(˜X);
// Update missing values

4 foreach t ∈ Tm
j do

5 xtj = wtj ;
// wtj element of Xk

6 until ‖X − ˜X‖F < ε;

7 return ˜X

4.2 SVD Recovery

Lemma 1. Given an input matrix X of m correlated columns. SVD(X) pro-
duces non correlated vectors.

Proof 1. By definition of SVD, we have that U∗1 ⊥ U∗2 ⊥ . . . ⊥ U∗p. This
implies that the pairwise dot product of columns of U is equal to 0 and thus,
∀a, b ∈ [1, p] ∧ a �= b, we get (U∗a)T · U∗b = 0. Using the fact that all input time
series have been normalized to have mean equal to 0 (cf. Sect. 5), we assume u
and u′ to be the i-th elements of respectively U∗a and U∗b, and get from Eq. (1)
the following

r(U∗a, U∗b) =
∑n

i=1(ui × u′
i)

√∑n
i=1(ui − ū)2

√∑n
i=1(u

′
i − ū′)2

=
(U∗a)T · U∗b

√∑n
i=1(ui − ū)2

√∑n
i=1(u

′
i − ū′)2

= 0

As a result, the pairwise correlation between all columns of U is equal to 0.
The previous property holds also for the columns of VT .

Definition 1 (Unweighted Recovery). Let X be an input matrix that con-
tains a base time series B and k > 2 reference time series each with a correlation
ri to B. An unweighted recovery of B produces a similar relative reduction of
the MSE between B and the reference time series.

Proposition 1. Assume an n × m matrix X = [B,R1, . . . , Rm−1]. A trun-
cated matrix decomposition of X that produces uncorrelated vectors performs
an unweighted recovery of B.
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Based on Lemma 1 and Proposition 1, we get that the truncated SVD per-
forms an unweighted recovery.

Example 1. Let’s take the example of a matrix X = [B,R1, R2] where initial-
ized missing values are marked in bold.

X =

⎡

⎢
⎢
⎣

−4 1 3
−1 3 −1

2 6 6
5 5 3

⎤

⎥
⎥
⎦

R1 is a highly correlated reference time series to B with r(B,R1)= 0.88
and R2 is a lowly correlated reference time series to B with r(B,R2) = 0.32.
The computation of the MSE before the recovery gives MSE(B,R1) = 16 and
MSE(B,R2) = 8.

The following matrix X̃ = [B̃, R1, R2] is an example of an SVD based recovery
of B.

X̃ =

⎡

⎢
⎢
⎣

−4 1 3
0 3 −1
4 6 6
5 5 3

⎤

⎥
⎥
⎦

The computation of the MSE after the recovery gives MSE(B̃, R1) = 6.5
and MSE(B̃, R2) = 2.5. The percentage of the MSE relative reduction between
B and R1 is red(R1) = 16−6.5

16 × 100 = 60%. Similarly, the percentage of the
MSE relative reduction between B and R2 is red(R2) = 69%. As a result, we
have red(R1) ≈ red(R2).

4.3 CD Recovery

Lemma 2. Given an input matrix X of m correlated columns. CD(X) produces
correlated vectors.

Proof 2. This proof follows directly from the proof of Lemma1. On the contrary
of SVD, the columns of L and RT computed by the truncated CD are not orthog-
onal and thus, the pairwise dot product and consequently the pairwise correlation
values are different from 0.

Definition 2 (Correlation Weighted Recovery). Let X be an input matrix
that contains a base time series B and k > 2 reference time series each with
a correlation ri to B. A correlation weighted recovery of B performs a relative
reduction of the MSE between B and the reference time series proportionally to
|ri|.
Proposition 2. Assume an n × m matrix X = [B,R1, . . . , Rm−1]. A truncated
matrix decomposition of X that produces correlated vectors performs a correlation
weighted recovery of B.
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Based on Lemma 2 and Proposition 2 we get that the truncated CD performs
a correlation weighted recovery.

Example 2. Let’s take the example of a matrix X = [B,R1, R2] used in Exam-
ple 1. The following matrix X̃ = [B̃, R1, R2] is an example of a CD based recovery
of B.

X̃ =

⎡

⎢
⎢
⎣

−4 1 3
2 3 −1
5 6 6
5 5 3

⎤

⎥
⎥
⎦

The computation of the MSE after the recovery gives MSE(B̃, R1) = 1 and
MSE(B̃, R2) = 5. The percentage of the MSE relative reduction between B and
R1 is red(R1) = 94%. The percentage of the MSE relative reduction between B
and R2 is red(R2) = 37.5%. As a result, we have red(R1) 
 red(R2).

4.4 Complexity

We compare the runtime and space complexity of CD based recovery against
SVD based recovery. We use the algorithm that computes the exact decomposi-
tion for each technique.

Run Time. Consider an input matrix X with n rows and m columns. The
number of arithmetic operations to compute SVD of X, using Golub and Reinsch
algorithm [14], is 4n2m + 8mn2 + 9m3. The number of arithmetic operations to
compute CD of X is 2pnm where p is the number of iterations [7]. At each
iteration of CD, the input matrix is subtracted yielding an updated matrix that
contains negative elements. Thus, the value of p depends on the distribution of
the minus sign across the updated matrix. In practice, the value of p ranges
between n

2 and n
3 (cf. Sect. 5.5).

Space. SVD technique requires the storage of nm values of X, nm values of U,
m values of Σ and m2 values of V. Additionally, SVD has to transform X to a
bidiagonal matrix using Householder reduction [16] which requires the storage
of three additional matrices, i.e., the first matrix contains nm values and the
two others contain m2 values each. The total number values stored by SVD is
thus equal to m(3n + 3m + 1) values. CD technique requires the storage of nm
values of X, nm values of L and m2 values of R. No data structure other than
the input and the two output matrices is stored. Thus, the total number values
stored by CD is equal to m(2n + m) values.

5 Experiments

The experiments are performed using real world datasets that describe hydro-
logical time series where each tuple records a timestamp and a value of a specific
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(b) Iterated truncated SVD.

Fig. 3. MSE relative reduction of CD and SVD using highly and lowly correlated time
series: case 1.

observation. Hydrological time series with shifted peaks and/or valleys are lowly
correlated. Our first set of time series, HYD1, contains 200 time series of six years
length each, where measurements are recorded every five minutes. The second
set of time series we refer to, SBR2, contains 120 time series of twelve years
length each, where measurements are recorded every 30 min. The hydrological
time series have been normalized with the z-score normalization technique [17].
We consider hydrological time series where the correlation ranking does not
change all over the history. We use also synthetic time series, where the correla-
tion is constant all over the entire history. To measure the recovery accuracy, we
compute the Mean Squared Error (MSE) between the original and the recovered
blocks (cf. Sect. 4).

5.1 Recovery Using Real World TS

MSE Relative Reduction. In this experiment we compute the MSE relative
reduction between a base time series B and two reference time series. In Fig. 3
we choose one highly and one lowly correlated reference time series with the
respective correlation values r(B,R1) = 0.83 and r(B,R2) = 0.18. The result
of this experiment shows that the iterated truncated CD produces a correlation
weighted recovery that reduces the relative MSE more to the highly correlated
time series than the lowly correlated time series. The iterated truncated SVD
performs an unweighted recovery that produces an almost equal reduction of the
relative MSE to both reference time series.

In Fig. 4 we consider one highly correlated reference time series with a cor-
relation value r(B,R1) = 0.76. We add also a lowly correlated time series with
a correlation value r(B,R2) = 0.62 that is higher than the one used in the
experiment of Fig. 3. As expected, the MSE relative reduction of the iterated
truncated CD is slightly higher to R1 than to R2. The MSE relative reduction
of the iterated truncated SVD remains similar to both reference time series.
1 The data was kindly provided by HydroloGIS (http://www.hydrologis.edu).
2 The data was kindly provided by Südtiroler Beratungsring (http://www.

beratungsring.org).

http://www.hydrologis.edu
http://www.beratungsring.org
http://www.beratungsring.org
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(b) Iterated truncated SVD.

Fig. 4. MSE relative reduction of CD and SVD using highly and lowly correlated time
series: case 2.

Recovery Accuracy. In this section we compare the recovery accuracy of the
iterated truncated SVD against the iterated truncated CD using highly and
lowly correlated time series.

In the experiment of Fig. 5, we use three temperature time series from HYD
measured respectively in Aria Borgo (B), Ponte Adige (R1) and Aria La Villa
(R2) in the region of South Tyrol, Italy. B is highly correlated to R1 with
r(B,R1) = 0.75. B is lowly correlated to R2 with r(B,R2) = 0.32. However, the
peaks of B and R2 exhibit shape similarity, i.e., the peaks contain similar spikes.
The time shift is caused by the Foehn phenomenon (cf. Sect. 1). We drop from
the base time series, B, a block for ts ∈ [45, 95] and recover it using two reference
time series, R1 and R2. The result of this experiment shows that the iterated
truncated CD gives a weight to the reference time series proportional to their
correlation with B, yielding a good block recovery accuracy, i.e., the amplitude
and the shape of the missing block are accurately recovered. On the contrary, the
iterated truncated SVD performs a block recovery that gives the same weight to
both time series R1 and R2 at a time yielding a bad block recovery accuracy.

Figure 6 shows the MSE for removed blocks of values of increasing length from
a base time series: starting from the middle of a block we increase the length of
the removed block in both directions and we compute the MSE for each block.
We run the experiment on five different base time series from HYD and we take
the average of the MSE. For each run we use, in addition to the base time series,
one highly correlated and one lowly correlated time series. As expected, the
iterative truncated CD learns from the highly and lowly correlated time series
at a time and thus, produces a small recovery error that slightly increases with
the length of the missing block to recover. However, the recovery accuracy of the
iterated truncated SVD considerably deteriorates with the length of the missing
block to recover.

Impact of the Time Shift. In Fig. 7 we evaluate the impact of a varying time
shift, denoted as s, on the recovery accuracy of the iterated truncated CD and
the iterated truncated SVD. We show that for a high value of time shift, the
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Fig. 5. Recovery using highly and lowly correlated hydrological TS.

two techniques produce similar block recoveries. In Fig. 7(a) we take three time
series from SBR measured respectively in Kaltern (B), Kollman (R1) and Ritten
(R2) in the region of South Tyrol, Italy. The peaks of B and R2 have a similar
shape, but with a time shift. We drop one peak from B, we shift backwards R2

with a value s and we compute the MSE recovery accuracy. The result of the
experiment shows that starting from s = 30, the iterated truncated CD is not
able anymore to exploit the lowly correlated time series and produces a block
recovery similar to the one produced by the iterated truncated SVD.

5.2 Recovery Using Synthetic TS

For the following experiments, we consider a time series sin(t) that has a small
valley at each of the peaks, denoted as B, from which we drop a block of values
for t ∈ [70, 110] that we recover using both techniques.

Recovery Accuracy. In Fig. 8 we add to B one highly correlated time series
−0.5 ∗ sin(t) denoted as R1 such that r(B,R1) = 0.84. We add also a lowly
correlated time series by shifting B and we denote it as R2 such that r(B,R2) =
0.16. As expected, by giving a higher weight to R2, the iterated truncated CD is
able to perform a good recovery of the shape and the amplitude of the missing
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Fig. 7. Impact of varying time shift

block. The iterated truncated SVD fails to recover the shape and the amplitude
of the missing block.

Impact of Number of Input Time Series. In Fig. 9 we evaluate the robust-
ness of the recovery produced by both techniques using a varying number of
highly and lowly correlated time series. In Fig. 9(a) we take B from the exper-
iment of Fig. 8 and one highly correlated time series with r = 0.9 to which we
add a varying number of lowly correlated time series, by shifting B, such that
r ∈ [0.2, 0.6]. The latter time series are added in the decreasing order of their
correlation. This experiment shows that for p1 < 4, the iterated truncated CD
is able to use the most correlated time series yielding a smaller MSE than the
iterated truncated SVD. For p1 ≥ 4, the MSE of both techniques converges
towards similar value. In the experiment of Fig. 9(b) we take B and one lowly
correlated time series with r = 0.2 to which we add a varying number of highly
correlated time series such that r ∈ [0.7, 0.9]. The latter time series are added in
the increasing order of their correlation. In the presence of one lowly correlated
time series, the iterated truncated SVD requires at least three additional highly
correlated time series in order to reach the same MSE as one of the iterated
truncated CD.

The experiment of Fig. 9 shows that, for a close number of highly and
lowly correlated time series, the correlation weighted recovery helps the iterated
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Fig. 8. Recovery using highly and lowly correlated synthetic TS.

truncated CD to produce a better recovery than the one produced by the iter-
ated truncated SVD. Otherwise, the two techniques produce similar recovery
of missing values. However, the iterated truncated CD technique is computa-
tionally more efficient than the iterated truncated SVD, i.e., CD is linear with
the number of input time series while SVD is cubic with the number of input
time series.
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5.3 Comparison with SGD Based Recovery

In the experiment of Fig. 10 we compare the accuracy recovery of the iterated
truncated CD and the iterated truncated SVD against GROUSE [12] for the
recovery of 20 missing values. We use an increasing number of segments of time
series of different correlations from the same type where each contains 200 values.
The result of this experiment shows that the iterated truncated CD produces
a more accurate block recovery in the case where the length of the input time
series is bigger than their number. However, the recovery accuracy produced by
GROUSE outperforms the one produced by the iterated truncated CD and the
iterated truncated SVD as the number of time series approaches the number
of observations (cf. Sect. 2). This is explained by the fact that the segments
have different correlation values and GROUSE selects only blocks out of these
segments. In real world applications such as hydrology, the length of time series
is much bigger than their number and thus, CD based recovery outperforms
GROUSE recovery.

5.4 Approximation Accuracy

Figure 11 compares the approximation accuracy of the iterated truncated CD
and the iterated truncated SVD to the input matrix. We use the Frobenius norm
between the input matrix and the one obtained after the decomposition as an
approximation error (cf. Sect. 4.1). The input matrix contains 10 columns where
each one is a time series from HYD. This experiment shows that by updating
all values of the input matrix at a time (and not only the missing ones), the two
techniques perform similar approximation accuracy. The same result holds for
different values of the truncation parameter k.

5.5 Number of Iterations of CD

In the experiment of Fig. 12 we consider three temperature time series from
HYD : a base time series, one highly correlated reference time series and one
lowly correlated time series. We compute the number of iterations p required
by the CD technique with an increasing number of rows n. The result of this
experiment shows that p ranges between n

2 and n
3 .
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6 Conclusion

In this paper, we compare the CD and SVD techniques for the recovery of missing
values using time series with mixed correlation values. We empirically show that
CD produces a weighted relative reduction of MSE that is proportional to the
correlation of the input time series, while SVD produces an unweighted relative
reduction of MSE. Our experiments on real world hydrological and synthetic
time series also show that the iterated truncated CD performs a better recovery
in case of similar number of highly and lowly correlated time series.

In future work, it would be of interest to compare the segmentation tech-
niques that are applied in the case where the correlation ranking varies along
the time series history. Another promising direction is to refine the definition of
highly and lowly correlated time series.
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Abstract. This work addresses the problem of efficient detection and fix-
ing of inconsistencies in spatio-temporal databases. In contrast to tradi-
tional database settings, where integrity constraints pertain to explicitly
stored values and values defined via views and aggregates, spatio-temporal
data may exhibit other types of constraint violations that cannot be tied
to stored or aggregated values. The main reason is that spatio-temporal
phenomena are continuous but their database representations are discrete.
Thus, the constraints are semantic in nature, as opposed to being depen-
dent on the actual stored data. We give a general definition of semantic
constraints of a trajectory database and define rules to repair violations
of these constraints. In order to minimize the distortion of the state of the
database, we aim at minimizing the changes needed for repairing viola-
tions of such semantic constraints. Towards this goal, we define a measure
of dissimilarity between the initial database and its repaired state. Also, to
minimize dissimilarity, we propose several simple rules of space- and time-
distortion that shift inconsistent observations in space and time to remove
inconsistencies. Our evaluation shows that these rules often run into local
minima, and thus may not be able to repair a database. To remedy this
problem, we propose a hybrid approach that chooses between several pos-
sible space and time distortions. We show that a greedy approach which
always chooses the locally best repair may still run into local minima and
propose a simulated-annealing approach that combines greedy and ran-
dom repairs to avoid these local minima.

1 Introduction

By the end of 2014, there were nearly 7 billion mobile subscriptions world-
wide [1]. This fact, along with miniaturization of computing and sensing devices
and GPS and RFID technologies, has provided a foundation for generating
extremely large volumes of location-in-time data: petabytes of location-based
(i.e., spatio-temporal) data are generated every day [11]. The management of
(location, time) information about mobile entities is essential for a variety of
application domains, ranging from navigation and efficient traffic management to
emergency/disaster rescue management, environmental monitoring, fly-through
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 255–273, 2015.
DOI: 10.1007/978-3-319-22363-6 14
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visualization, and various military applications (e.g., radar data, troops track-
ing) [14]. Essentially, every application requiring some form of Location Based
Services (LBS) [16] needs efficient techniques for storage, retrieval and query
processing of spatio-temporal data—topics studied in the field of Moving Objects
Databases (MOD) [10].

Physical factors, such as the imprecision of sensing devices and communi-
cation links, often cause location data to be inaccurate and noisy. In addition
to this problem—even with perfect sampling accuracy—the data intended to
capture a continuous motion can be represented only at discrete time-instances.
Moreover, data records can be obsolete as users may update their location infre-
quently, e.g., due to bad connectivity or to preserve battery power. Thus, one
has to cater to the uncertainty as a natural factor when considering the repre-
sentation of spatio-temporal data (cf. [6]). A complementary observation is that
data sources may be various heterogeneous devices: roadside-sensors, weather
stations, satellite imagery, (mobile) weather radar, crowd sourced observations,
ground and aerial LIDAR—to name but a few. Having multiple sources may
yield not only cause type-mismatch issue, but also generate conflicting loca-
tion information about the same object and cause problems in reconciling the
data [18]. Complementary to uncertainty, the above contexts may cause other
types of semantic inconsistencies that have not been addressed so far. Namely,
a user posing a continuous k-Nearest Neighbor (k-NN) query, may be presented
with an answer containing two (or more) vehicles that “have collided.” This is
an example of violating the following basic semantic constraint: “two objects
cannot be at the same place at the same time.” Such a violation may be due
to imprecise location-samples. Also, it often arises from the use of interpolation
(linear, Bezier, etc.) in-between observed samples [9].

The main objective this work is to provide techniques detecting and fixing’
such inconsistencies. The focus of this paper is not on removing the inherent
uncertainty, which follows from the imprecision of location detection and can be
an additional cause of inconsistencies. Rather, we aim at repairing the “symp-
toms” of the “inevitable uncertainty”. As an example, the interpolation of GPS
signals may lead to the consequence of having a trajectory of a given car going
through a lake. Fixing this problem by having the trajectory going around the
lake may still yield the wrong trajectory, as the true trajectory may look differ-
ent. Hence, while we cannot claim to have alleviated the root-causes for errors
in spatio-temporal databases, we take a first step towards fixing the symptoms
based on semantic constraints. Clearly, a method for database repairs should
aim at minimizing the distortion between the original database and the repaired
database. The main contribution of this work can be summarized as follows:

– We identify and formalize the problem of semantic inconsistencies in spatio-
temporal data. This formalization identifies a wide class of problems, that
have been largely neglected in the moving object and trajectory database
literature.

– Since the problem of finding an optimal database repair is NP-hard, we pro-
pose a number of heuristics to repair a spatio-temporal database, which are
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organized into three general categories of solution, including time-distortion,
space-distortion and hybrid approaches.

– We present experimental observations quantifying different trade-offs among
the proposed methods.
The rest of this paper is organized as follows. Section 2 presents a review

related work. In Sect. 3, we formalize the problem of Moving Object Database
(MOD) inconsistencies along with metrics to measure the quality of a database
repair. Section 5 gives the details of the proposed algorithmic solutions and the
experimental observations are presented in Sect. 6. Finally, in Sect. 7, we conclude
the paper and outline directions for future work.

2 Related Work

We now overview the literature on several different topics related to the prob-
lems addressed in this paper. However, as we will argue, although each body of
work has yielded interesting and relevant results, none has addressed the specific
problems tackled by our work, nor has provided a readily applicable “tool-chain.”

Relational Database Repairs: Traditional database approaches repair
[3,4,17] the identified inconsistencies by removing objects or by changing
attribute values. Such approaches however, can not be applied directly to spatio-
temporal data. Arbitrarily changing a (location, time) pair is likely to yield new
inconsistencies, as the changed trajectory may reach an unreachable state, or
may have an unrealistically high speed in the repaired version of the database.
The main challenge in spatio-temporal data is to incorporate repair rules to span
a space of semantically meaningful repairs.

Probabilistic Spatio-Temporal Database Repairs: The recently published
approach of [12] aims at repairing probabilistic spatio-temporal databases as
defined in [13]. In this setting, each mobile object is assigned a set of spatial
regions and a probability interval defining the likelihood to be within this region.
In an interpretation of such a database, the probability of a region must be within
its interval and the probabilities of all regions of an object must sum up to
one. Such a database is inconsistent if no interpretation exists. The approach
of [12] shows how to minimally change probability intervals in order to obtain
an interpretation. The problem setting in this work can not be extended to
trajectory databases.

A recent approach presented in [8] models the motion of a spatio-temporal
object by a stochastic process, such that each possible world is indeed associated
with a probability. Constraints such as “Object x must not be in state s at time t”
can be incorporated into this model by adapting the corresponding probabilities.
More complex constraints, such as inter-object constraints that prohibit objects
from being at in same state at the same time, can not be incorporated into such
models as easily.

Linear Temporal Logic: Our problem of removing inconsistencies from a tra-
jectory database can be cast in the realm of temporal logic. For instance, using
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Propositional Linear Temporal Logic (LTL) [7], a trajectory T = s1, s2, ..., s|T |
can be described using the eventually operator � by �s1 � s2... � s|T |. Semanti-
cally, this LTL formulation induces a trajectory where eventually state s1 must
be visited after any number of intermediate states, then s2 must eventually be
visited after possible more intermediate states and so on. Further constraints
can be formulated, e.g. to constrain the database such that no two objects may
be at the same location at the same time, by applying the always operator �
to express the rule ∀T1, T2 ∈ D, t ∈ T : �T1(t) �= T2(t). Using logical solvers for
LTL [15], we can efficiently find an interpretation1 for each trajectory such that
all constraints are satisfied, if any such interpretation exists. While LTL allows
to formulate any semantic constraint, the main problem of LTL is that, being a
logic rather than a function, it does not allow to find any optimal solution. Thus,
LTL allows to check if there exists a model that satisfies all given constraints,
which any way of formulating a cost function that can be optimized. In most
applications, the problem of finding such a model is trivia. For example, the solu-
tion of using a serial schedule, which avoids any inconsistency between objects by
simple removing any temporal overlap between trajectories, does always work.

While the solution based on serially scheduling each trajectory is valid, it
is prohibitively expensive, since “repaired” trajectories may be extensively dis-
torted in time. We are looking for a solution which minimizes the changes to the
database performed by the repair.

3 Problem Definition

This section presents the details of the novel types of inconsistencies and desir-
able properties of (methodologies for) enforcing the semantic constraints in a
given MOD.

A spatio-temporal database DST stores triples (oid, location, time), where
oid ∈ {o1, ..., oN} is a unique object identifier, location ∈ S is a spatial position in
space and time ∈ T is a point in time. Semantically, each such triple corresponds
to the location of object oi at some time. In D, an object can be described by
a function troi

: T → S that maps each point in time to a location in space2

S; this function is called trajectory. The corresponding trajectory database is
denoted as D = {tro1 , ..., troN

}.
Assuming that the location of an object oi is known for any point in time

is unrealistic as the location of object oi can only be determined at discrete
time-instants. The frequency of location-samplings is also bounded by physical
constraints, such as the availability of a GPS signal. Between discrete obser-
vations, the position of a moving object has to be estimated via some type of
a dead reckoning. These estimations are based on incomplete information, and
thus, may be imprecise.
1 In LTL, an interpretation is a Kripke structure which, in our case, maps each tra-

jectory and each point in time to a state.
2 Most often the Euclidian 2D space is considered, however, extension to 3 (or higher)

dimensions as well as road-network constraints have been commonly considered in
the literature.
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3.1 Spatio-Temporal Constraints

The violation of a constraint in a trajectory database D indicates that D con-
tains erroneous trajectories, possibly incurred due to faulty dead reckoning, or
due to deficiency of measuring devices used to capture trajectories. Since we are
considering historical data, we lack the option of improving the available infor-
mation, e.g., by requesting the objects to give a more accurate position update.
Since the cause for the inconsistency cannot be removed, the only viable app-
roach is to repair the trajectories in order to mitigate the symptoms of this lack
of information.

In contrast to traditional database settings, where integrity constraints per-
tain to explicitly stored values and values defined via views and aggregates,
spatio-temporal data may exhibit other types of constraint violations that cannot
be tied to stored or aggregated values. The main reason is that spatio-temporal
phenomena are continuous but their database representations are discrete. Thus,
the constraints are semantic in nature, as opposed to being dependent on the
actual stored data.

Definition 1. Let C be a set of constraints. A database D is said to satisfy C,
noted as D � C, if all constraints are satisfied in D. If D � C, then D is said to
be inconsistent.

Loosely speaking, a spatio-temporal constraint can be thought of as any rule
describing some semantic constraint related to the trajectories in D. A con-
straint c ∈ C may pertain to an individual object. An example of such an Object
Constraint is the constraint “An object must not enter a specified area R on
Sunday between 2am and 5am.” This constraint can be formally expressed as

∀(tro ∈ D),∀(t ∈ [Sunday 2am,Sunday 5am]) : tro(t) �∈ R.

In contrast, some constraints may be defined between trajectories, such as
“two objects must not be in the same place at the same time” which can be
expressed as

∀(troi
, troj

, i �= j),∀t : troi
(t) �= troj

(t).

In practice, constraints involving more than one object lead to hard optimiza-
tion problems, as a single repair of one trajectory may have a large number of
consequences on the constraints involving other objects. Section 4 will show that
such constraints lead to NP-hard optimization problems. Since we are consider-
ing the general case, we will be considering such hard inter-object constraints in
our experimental evaluation in Sect. 6.

3.2 Database Repair Rules

In this work, we will propose a number of trajectory database repair rules. These
rules define for a given trajectory T ∈ D the set of possible repairs T R. Before we
propose these rules in Sect. 5, we first formally define the purpose of a repair rule.
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Definition 2 (Trajectory Database Repair Rule). Let D denote the set of
all possible trajectory databases. A trajectory database repair rule R : D �→ D∗

is a function, which maps a trajectory database D to a set of possible repairs.

As an example, a repair rule R may allow to simply remove a trajectory from
D. This repair rule can be specified by

R(D) = {D′|D′ ⊂ D}.

Definition 3 (Database Repair). Let D be a trajectory database inconsistent
with respect to a set of semantic constraints C and let R be a set of repair rules.
Let DR ∈ R∗(D) be a trajectory database derived by iteratively applying repair
rules R ∈ R to D. If DR |= C holds, then the trajectory database DR is called a
database repair of D.

In many cases, such as the aforementioned exemplary repair rule that allows
to discard trajectories, one trivial way of obtaining a database repair DR which
satisfies all given constraints c ∈ C is, for example, the empty database DR = {}.
Given the lack of any actual trajectory, it trivially satisfies many constraints.
Hence, strictly speaking, the challenge is not only to find just any database
repair, but to find a database repair having the minimal difference from the
initial database D.

Definition 4 (Minimal Database Repair). Let D be a trajectory database
inconsistent with respect to a set of semantic constraints C. Let dist(D,DR) be
a dissimilarity function between databases. A minimal repair DR

min is defined as

DR
min = argMinDR∈DR,DR|=C

dist(D,DR),

where DR represents the set of all possible repairs of D.

The goal of this work is to efficiently compute, for a given trajectory database D
and a set of semantic constraints C, a minimal repair DR

min of D. This problem
falls into the class of constraint satisfaction problems and we show in Sect. 4 that
it is NP-hard. We will relax the problem to find heuristic solutions that yield a
database repair having sufficiently low dissimilarity to the initial database.

3.3 Quality of a Repair

To measure the quality of a repair, a dissimilarity function dist(D,DR) is needed.
In accordance with Definition 4, this function will be minimized. Thus, this func-
tion defines the semantic of a “good” database repair, which is expected to min-
imize the total number of changes of the database D, and should guarantee that
changes are divided fairly over all trajectories. To measure the total dissimilar-
ity between D and DR, we can simply aggregate the dissimilarity of individual
trajectories:

dist(D,DR) =
∑

T∈D
dist(T, TR),
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where dist(T, TR) is a dissimilarity function defined on trajectories such as aver-
age Euclidean-distance or edit distance. In addition, changes in DR should be
divided fairly among trajectories, in order to avoid starvation of single trajecto-
ries in the repaired database. Such fairness can be enforced as follows

dist(D,DR) =
∑

T∈D
g(dist(T, TR)),

where g(x) is a function that monotonically increases in R
+, such as the square

function, to take into account the distances of individual trajectories.
In the remainder of this work, we propose solutions to remove inconsistencies

from a trajectory database D. For this purpose, in Sect. 4, we provide a for-
mal proof of the NP-hardness of fixing inconsistencies in a trajectory database.
Heuristic solutions are presented in Sect. 5. In Sect. 6, we perform an experimen-
tal analysis of the quality of these solutions on real data sets, evaluating both
run-time and quality of the resulting repair.

4 Complexity Analysis

In the following, we show that the problem of finding the optimal repair DR of
a trajectory database D is generally hard. For this purpose, we show that the
simpler problem of finding any repair is already NP-complete.

Lemma 1. Given a trajectory database D, a set of constraints C and a set of
repair actions A, the problem of deciding whether there exists a repair DR which
is derived from D using rules in A, such that DR |= C is NP-complete.

Proof. Let D be a database of arbitrary trajectories, and let A be repair action
such that for each trajectory Ti ∈ D there exists exactly one possible repair.
For each Ti ∈ D, let pi denote the unrepaired trajectory Ti, and let � pi denote
the repaired trajectory which is derived by applying the only possible repair in
A to Ti. Furthermore, let C be a set of inter-object constraints such that each
constraint cs,t ∈ C requires that at least one object must be in state s at time
t. Let cs,t(D, A) ⊆ ⋂

1≤i≤N{pi, � pi} denote the set of all possible trajectories
that satisfy constraint cs,t, i.e., all possible trajectories that are located in state
s at time t. Since each constraint ss,t requires at least one trajectory to be in
state s at time t, the constraint ss,t can be rewritten as the disjunction of all
trajectories satisfying this constraint:

cs,t =
∨

p∈cs,t(D,A)

p.

This boolean formula returns true if and only if the constraint cs,t is satisfied.
For all constraints to be satisfied, the conjunction of all these disjunctions yields
the following boolean formula:

∧

cs,t∈C

∨

p∈cs,t(D,A)

p.
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This formula returns true, if and only if, for a given database repair DR ∈
{p1, � p1} × {pN , � pN} satisfies all constraints in C. Consequently, the problem of
finding a valid repair of D is equivalent to the satisfiability problem of the above
boolean formula. This satisfiability problem, known as k-SAT, is known to be
NP-complete. 
�
Due to the hard nature of the problem, will omit an exact algorithm to find an
optimal database repair, i.e., a repair that minimizes the amount of database
distortion. It should be noted that such an algorithm can be specified using
integer linear programming, yet such a solution may have unbearable run-times
even for toy databases. Instead, in the next section, we will propose approximate
algorithms, which return a database repair DR which may not be minimal in
terms of distortion of the original database D, or which may fail to satisfy some
constraints.

5 Algorithms

Before discussing our algorithmic solutions for spatio-temporal database repairs
in Sect. 5.2, we specify the following components in Sect. 5.1:

1. Spatio-temporal constraints and techniques for their detection
2. Allowed repair rules
3. Dissimilarity function to measure the quality of a database repair

5.1 Component Specifications

Spatio-Temporal Constraints. There are several alternatives for spatio-
temporal constraints. In this paper, we consider the following very general con-
straint: “Two objects must not be within a threshold of ε meters of each other
at any time.” This constraint is formally expressed as follows:

∀(troi
, troj

, i �= j),∀t : dist(troi
(t), troj

(t)) > ε.

This constraint is able to ensure that objects with a spatial extent of ε never
occupy the same space at the same time, or that objects do not get too close to
each other.

As the next step, it is important to be able to quickly find violations of the
above constraint in the database. To detect these violations, we use a spatio-
temporal R∗-tree to index the set S of all trajectory segments defined by two
successive GPS signals of the same object, using time as a third dimension. Each
trajectory segment s is minimally bounded by a rectangle �(s) and added to
the tree. Thus, each leaf of this R∗-tree is a single rectangle pointing to the
exact representation of the approximated trajectory segment. To find all initial
collisions, we perform a similarity-join [5] joining the indexed database with itself
(ignoring identity) and using ε as the similarity threshold that is only applied on
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the spatial dimensions (and not on the time). The result is a set of intersection
pairs (s, c) where s and c are segments of two different trajectories.

Once the initial collisions have been found, future collisions caused by data-
base repairs can be found very efficiently, by querying against the tree only
segments that have been changed by a repair.

Repair Rules. In our problem setting (Sect. 3), a database repair is still unspec-
ified. In the following, we focus on the manipulation of the vertices of the tra-
jectories in order to obtain a countable number of possible repairs. To identify
the vertex to be repaired to remedy a constraint violation, we always consider
the vertex closest to the violation point of both corresponding trajectories. The
vertex can then be manipulated in one of the following ways:

– Time domain: The manipulation of a vertex v back in time implies that the
movement from the previous vertex to v is slowed down and the movement
from v to its subsequent vertex is sped up. The manipulation of v forward
in time has the opposite effect. Note that the time manipulation of a vertex
is constrained by its predecessor and its successor. Manipulating the time
of v beyond the times of its predecessor or its successor yields anomalous
movement in the spatial domain.

– Spatial domain: Manipulating the spatial position of a trajectory vertex has
also impact on the speed of the movement.

– Time and spatial domains: Obviously, the spatial and temporal manipula-
tion can be combined. A special case of spatio-temporal manipulation is the
manipulation of v along the spatio-temporal path to its predecessor or its
successor.

Based on these observations, we define the following three rules named after
the cardinality of the set provided. Throughout this section, the input to a rule
is the repair triple vp, v, vf , where v is the vertex to repair, vp is the predecessor
of v, and vf is the successor of v in the trajectory. Furthermore, a vertex v is
characterized by the triple (v.t, v.x, v.y) representing the time, the x position
and the y position of v, respectively.

Definition 5 (Two-Rule). Given repair triple vp, v, vf , the Two-Rule returns
two vertices v′

1 and v′
2, where

v′
1 =

vp + v

2
v′
2 =

vf + v

2
(1)

Note that the two vertices returned by the Two-Rule are located in time and
space half the way forward and backward around vertex v.
The Four-Rule adds temporal repairs.

Definition 6 (Four-Rule). Given repair triple vp, v, vf and time distortion
Δt, the Four-Rule returns the two vertices returned by the Two-Rule plus the
two vertices v′

3 and v′
4, where

v′
3 = (v.t − Δt, v.x, v.y)

v′
4 = (v.t + Δt, v.x, v.y) (2)
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(a) Two-Rule (b) Four-Rule

(c) Ten-Rule (d) Ten-Rule

Fig. 1. Repair rules

ensuring that v.t − Δt ≥ vp.t and v.t + Δt ≤ vf .t

The Ten-Rule adds eight absolute spatial distortions.

Definition 7 (Ten-Rule). Given repair triple vp, v, vf , time distortion Δt, and
space distortion Δs, the Ten-Rule returns the following ten vertices:

v′
3 = (v.t − Δt, v.x, v.y),v′

4 = (v.t + Δt, v.x, v.y),
v′
5 = (v.t, v.x − Δs, v.y),v′

6 = (v.t, v.x + Δs, v.y),
v′
7 = (v.t, v.x, v.y − Δs),v′

8 = (v.t, v.x, v.y + Δs), (3)
v′
9 = (v.t, v.x − Δs, v.y − Δs),v′

10 = (v.t, v.x + Δs, v.y + Δs),
v′
11 = (v.t, v.x − Δs, v.y + Δs),v′

12 = (v.t, v.x + Δs, v.y − Δs)

ensuring that v.t − Δt ≥ vp.t and v.t + Δt ≤ vf .t
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Figure 1 gives an overview of these three rules, where we show in 1(a) the shift
on the segment and we show in 1(b) the additional time shift. Figures 1(c) and
1(d) show all ten options, while the Southwest option was chosen in Fig. 1(d).
The effectiveness of these rules will be evaluated later on, but obviously the Ten-
Rule should perform best, as it offers the most possibilities and so the algorithms
will typically choose one of the ten vertices output by the Ten-Rule as the best
repair. Besides that, the Two-Rule and Four-Rule are again working relative to
the surrounding vertices which brings the already discussed disadvantages.

Quality Measure. As the cause of a constraint violation is unknown, the only
sensible approach is to limit the changes to the database as much as possible.
Accordingly, the quality of a repair is assessed by the magnitude of its effect on
D. A heuristic solution will generally generate a number of possible solutions,
one of which will be chosen as the best one after a finite amount of processing
time. For this purpose, a quality-measurement function dist(D,DR) for repairs
is used for ranking.

dist(D,DR) =
∑

i∈[1,|D|]
dist(tri, tr

R
i ). (4)

For the purpose of measuring the distance between the original trajectories
and the repaired trajectories, we propose the following three dissimilarity func-
tions.

The first function, disteuclid, intuitively yields the spatial difference of two
trajectories.

disteuclid(tr, trR) =
∑

i∈[1,|tr|]

(
(viφ

− vR
iφ

)2 + (viλ
− vR

iλ
)2 + (vit

− vR
it

)2
) 1

2
. (5)

Utilizing weights for every dimension (wφ, wλ, wt) it is easy to provide a
Weighted Euclidean Distance function that takes into account the weighting of
the time in contrast to the spatial dimensions.

distweighted(tr, tr
R) =

∑

i∈[1,|tr|]

(
wφ(viφ

− vR
iφ
)2 + wλ(viλ

− vR
iλ
)2 + wt(vit − vR

it
)2
) 1

2
. (6)

Finally, in order to provide an alternative to the Euclidean Distance, the
third function is based on the Maximum Distance:

distmax(tr, trR) =
∑

i∈[1,|tr|]
max{(viφ

− vR
iφ

), (viλ
− vR

iλ
), (vit

− vR
it

)}. (7)

In order to improve efficiency, the implementation of the above dissimilarity
functions does not compute the complete dist(D,DR) after every repair step,
but rather compares only trajectories that have been changed during the repair
step and sums up the differences for every repair step.
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5.2 Generate Database Repairs

The components outlined above can be combined to create an algorithm to
generate a database repair. As finding a minimal database repair is NP-hard
(Sect. 4), any resulting algorithm should employ heuristics to find a good (but
not necessarily optimal) repair.

We have identified the following paradigms as possible approaches: Random,
Greedy, and Simulated Annealing.

In our description of these algorithms we use the following functions:

– c : D → V returns the set of vertices that are part of any conflict in D.
– Rv : D → D is the repair function R (as defined in Sect. 3), but limited to

manipulations of the conflicting vertex v.

Random. The simplest approach does not try to choose a good repair function
at all. Instead it applies a random instance of a set of possible repair functions
to a random conflicting vertex in the database. See Algorithm1 for a detailed
description.

Algorithm 1. Random(D, R)
1: while c(D) �= ∅ do
2: V ← c(D)
3: v ← rnd(V )
4: R ← rnd(R)
5: D ← Rv(D)
6: end while

Applying a random repair function does not necessarily reduce the number
of conflicts. As a consequence, the algorithm might not converge on a solution.

Greedy. The more sophisticated Greedy algorithm uses the number of remain-
ing constraints after applying each function to make a better choice. The Random
algorithm’s weak spot is its unguided choice of repair function. The Greedy algo-
rithm considers only the local improvement of each repair. The repair yielding
the lowest number of remaining constraint violations is picked and applied to D.
See Algorithm 2 for details.

Compared to the Random algorithm, Greedy’s locally optimal repairs yield
a much faster convergence on a (possibly local) optimum. However, the increase
of complexity leads to an increase in runtime. To find a repair that is closer
to the minimal database repair, an algorithm must avoid the local minimum
Greedy is prone to converge on. The following algorithm addresses this problem
by combining random and greedy elements.
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Algorithm 2. Greedy(D, R)
1: while c(D) �= ∅ do
2: V ← c(D)
3: v ← V [0]
4: Ropt ← argminR∈R ‖R(D)‖
5: D ← Ropt(D)
6: end while

Simulated Annealing. The deterministic nature of greedy algorithms makes
them prone to local minima. For this reason, algorithm Greedy presented above is
likely to return a valid database quickly, but this result is unlikely to be minimal
(or close to minimal). To increase the likelihood of finding a global minimum,
we now describe an algorithm based on simulated annealing. See Algorithm 3
for a detailed description.

Algorithm 3. SA(D, R)
1: δ = 1
2: while c(D) �= ∅ do
3: if random(]0; 1]) < δ then
4: D ← Random(D, R)
5: else
6: D ← Greedy(D, R)
7: end if
8: δ ← δ − Δδ

9: end while

By consolidating the Random and Greedy algorithms we counter the overly
deterministic nature of greedy algorithms by introducing some randomness in a
directed way. This algorithm avoids local minima by initially choosing random
repairs, then trying to improve on the best random result using more and more
greedy approaches. In each iteration, this algorithm first decides to either per-
form a Random repair or a Greedy repair with increasing bias toward greediness.
In the first iteration, the probability δ of performing a Greedy repair is zero. In
each subsequent iteration, this probability increases by a parameter Δδ ∈ [0, 1].

The Simulated Annealing algorithm is expected to be slower than the Greedy
algorithm, but more flexible and able to find a more global minimum. Compared
to the Random algorithm, Simulated Annealing is faster and more directed. This
claim will be evaluated in the following.

6 Experiments

The experimental evaluation presented in this section was conducted using a
desktop computer having an Intel i7-870 CPU at 2.93 GHz and 8 GB of RAM.
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Table 1. Abbreviations for experiments

tdra Absolute Time-Distortion Repair tdrr Relative Time-Distortion Repair

ldraAbsolute Location-Distortion Repair ldrr Relative Location-Distortion Repair

ra Random gr Greedy

sa Simulated Annealing 2 Two-Repair-Rules

4 Four-Repair-Rules 10 Ten-Repair-Rules

The spatio-temporal dataset that we are using consists of workout GPS data,
i.e., running and hiking GPS-traces obtained from Endomondo (https://www.
endomondo.com). For each GPS-position of a workout a trajectory is stored in
D using linear interpolation, which is the main source of inconsistencies. The
service is most popular in Scandinavia, so most workouts are located in cities
there. The dataset we used was from the area of Copenhagen, which has a number
of vertices between 2567 and 652854. In a data cleaning step, we removed: (1)
trajectories that do not have an absolute time-stamp, to avoid having a huge
number of runners at the beginning of time; (2) outlier GPS signals yielding
a run-speed of more than 50 km per hour. The constraint is that two objects
must not be closer than ε to each other, where ε is a parameter that we can
vary in order to alter the number of inconsistencies, called collisions. Unless
otherwise specified, the default value is ε = 3 m. In this evaluation, we use four
straightforward algorithms as a baseline. These four algorithms randomly pick
a conflicting GPS-signal p that is adjacent to a conflicting trajectory segment.
The, p is distorted by (i) moving its time-stamp one second towards the time
of the next GPS-signal (Absolute Time-Distortion), or (ii) by moving its time-
stamp half-way to the time of the next GPS-signal, or (iii) moving its location one
meter towards the location of the next GPS-signal, or (iv) by moving its location
half-way to the location of the next GPS-signal. Table 1 lists the various repair
heuristics that we presented in Sect. 5 and shows the respective abbreviations
that we will use in the following evaluation.

6.1 Collision Detection

In Sect. 5.1 we describe how we can find collisions in a trajectory database. This
is performed by querying individual trajectory segments at an R∗-tree. For our
experiments, we use the R∗-tree implementation of the ELKI-framework [2]. The
average time required for a single intersection query, depends on the capacity of
the R∗-tree. For leaf capacities of 10, 100, and 1000, we measured an average query
time of 0.1283, 0.3390, and 7.2444, respectively. We are using a leaf capacity of 10 in
the following. Figure 2(a) shows the total time required to find all initial collisions,
which requires a large number of intersection queries. The number of collisions is
also influenced by the intersection pipe radius ε, and Fig. 2(a) illustrates the effect
on the Endomondo dataset. It is notable that the time required to find collisions
seems independent of ε. This is attributed to the fact that even for a ε of 50 m, the
number of collision candidates that have to be evaluated is too small to significantly

https://www.endomondo.com
https://www.endomondo.com
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(a) Number of collisions (b) Overall Run-Times

Fig. 2. Runtime experiments

impact the run-time. Thus, the vast majority of time is lost in the collision candi-
date generation step.

Figure 2(b) shows the time required to repair the found collisions. In each
iteration of each algorithm, three steps are required: (i) Repairing a collision,
(ii) then updating the index with the new distorted trajectory, and (iii) finding
new collisions involving the distorted trajectory. The times required for these
three steps are shown in Fig. 2(b). We note that despite the use of an efficient
index structure, the time needed to repair two colliding trajectories lasts only a
fraction of the time needed to find the collision and update/move the trajectory.

6.2 Run Time

The time to repair a collision is further shown in Table 2, along with the number
of repair iterations – which varies depending on the heuristic used (likely that the
collision has not been fixed, or new collisions may have been incurred). In Table 2,
stars next to run-times imply that in at least one case, the repair algorithm did
not terminate. Non-terminating cases are ignored for the computation of run-
times in this experiments. We can make the following observations: We see that
purely time distorting heuristics (tdra and tdrr) and purely location distorting
heuristics (ldra and ldrr) are able to repair a database quickly. However, due to
the simple rules that these approaches follow, they are unable to handle some
cases which may occur in trajectory databases.

– In the case of relative repairs (tdrr and ldrr) this is caused be the fact that if
two trajectory segments completely falls into their ε-range, then no distortion
on these segments can yield a successful repair.

– In the case of absolute repairs (tdra and ldra), some special cases can not be
handled. For instance, in the case where two trajectories remain at the same
location for multiple GPS-signals: in this case GPS-signals are shifted, but
the likelihood of reaching a state where all signals are collision free becomes
minimal.
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Table 2. Runtime of all algorithms

Algorithm Time to repair # Repairs t/#rep

GR4 16.294 342 0.047643

GR10 51.181 330 0.155094

GR2 10.522 429 0.024527

ldra 0.198∗ 341 0.000581

ldrr 20.92∗ 1341 0.015600

RA4 0.557 545 0.001022

RA10 0.503 519 0.000969

RA2 0.898 684 0.001313

SA4 16.046 343 0.046781

SA10 47.673 332 0.143593

SA2 11.708 464 0.025233

tdra 18.02∗ 5506 0.003273

tdrr 17.823∗ 1340 0.013301

When omitting the cases where these approaches do not terminate, we note that
the fastest repair is achieved by the ldra heuristics, which distort observed GPS-
signals in space. Furthermore, we can see that among the heuristics to choose a
possible repair, the Random-heuristics (RA2, RA4, RA10) perform best, which
is expected as these heuristics are not required to make any expensive greedy
probing steps. The Greedy (GR2, GR4, GR10) and the Simulated Annealing
(SA2, SA4, SA10) require approximately the same time to apply their repairs,
but require significantly more time than the pure random approach. Finally,
we can see that an increase of the number of repair rules does not affect the
random approach, since the time to pick a rule at random can be neglected. For
the Simulated Annealing and Greedy approaches, the run-time increases sub-
linearly in the number of repair rules: Firstly, each greedy-step requires probing
all possible repair rules to pick the most promising one. Yet, this greedy choice
is rewarded by reducing the number of total repair iterations that are required
to fix the database, thus lowering the run-time.

6.3 Experiments on Quality of Repair

In Sect. 5.1 we established three different dissimilarity functions. The results
of the experiments are shown in Fig. 3. The larger the dissimilarity, the lower
the quality of the corresponding repair. The Euclidean and Maximum Distances
almost always return the same values, as in most cases, a single trajectory is
distorted at one segment only. For the Euclidean distance, we set the weights
to (1, 1, 0.5) in order to weight the location stronger, because the domain of
latitude and longitude is smaller than the time domain of a workout in seconds.
At first glance, it appears that the purely time distorting heuristics (tdra and
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Fig. 3. Quality of repairs.

tdrr) and purely location distorting heuristics (ldra and ldrr) seem to yield a
nearly perfect repair quality. However, this conclusion is misleading, since for this
experiment, we were not able to consider the cases where ldra, ldrr, tdra and
tdrr do not terminate. These cases however, are the interesting and hard cases,
where the most distortion is required to repair the database. Despite this bias,
which arises from the fact that ldra, ldrr, tdra and tdrr can not repair some
collisions, we decided to keep the quality experiments for completeness. Another
important observation that we can make in Fig. 3, is that for the repair quality
of approaches utilizing several repair rules (Random, Greedy and Simulated
Annealing), the repair quality improves significantly as the number of possible
repair rules increases. In particular, the approach that allows to dodge collisions
by distorting space in one of eight directions or by distorting time in one of two
directions (the ten-repair-rule case) achieves an extremely high repair quality.
When we compare the three heuristics to choose a repair rule, we see that the
random heuristic performs by far the worst, thus leading to a large number of
needless distortions. The greedy heuristic and the simulated annealing heuristic
show comparable results. In fact, the simulated annealing approach yields a
better quality in some cases. This is possible, as our greedy approach only selects
the locally best next repair rule, which may not lead to the global best repair. In
contrast, the simulated annealing allows to initially do quick random decisions
to get rid of the majority of collisions, and then fix the remaining ones by using
greedy decisions.

To summarize, our initial proposed repair rules using only spatial distortion
(ldra and ldrr) and our proposed repair rules using only time distortion (tdra
and tdrr) are not able to repair complex inconsistencies. Nevertheless, these
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approaches are easily implemented and have low run-times, such that these
approaches might find applications in cases where a few remaining inconsis-
tencies can be tolerated. Regarding our proposed repair rules, we saw that the
random heuristic is able to achieve the fastest run-time, but incurs a repair-error
that may not be tolerable in practice. The greedy approach has the worst run-
time, which is attributed to the fact that in every iteration all possible repair
rules are tested to choose the locally best. The simulated annealing approach
yields a good trade-off, achieving a repair quality comparable to the quality of
the greedy approach, while being much faster. Furthermore, we saw a trade-off
between run-time and repair quality in the number of repair rules: a larger num-
ber of repair rules leads to a (sub-linear) increase in run-times but also to a
(drastic) improvement of repair quality. Clearly, a proper choice of repair rules
is highly domain specific, depending on the types of inconsistencies that are
repaired, and depends on the time-constraints given to the algorithm.

7 Conclusions

In this work, we have formalized a category of problems that has been largely
neglected in moving object literature – repairing inconsistencies in historical
trajectory databases. This is an important problem since such databases are
inherently uncertain for a number of reasons and, in addition, attempt to capture
continuous phenomena via discrete values. We have shown that this problem is
NP-hard, such that we aim at finding heuristics that find a good repair rather
than finding the optimal repair. For this purpose, we presented a number of initial
solutions, including a time-distortion algorithm, a space-distortion algorithm, as
well as a set of generic algorithms that apply pre-defined repair rules, including
a random algorithm, a greedy algorithm and a simulated annealing algorithm.
Our experimental setting is aimed at one specific type of inconsistency, namely
collisions. The results show that the simple approaches fail to find any repair at
all. In contrast, our proposed repair-rule based solutions are able to find a good
repair in acceptable time. We believe that this work will spur many challenges in
identifying different domain-properties and corresponding heuristics to speed up
the “fixings” for different constraints. While finding an optimal repair is a hard
problem, we feel that a combination of the techniques presented in this work, as
well as the consideration of new ideas, may yield a new solution that combines
the best these worlds.

The problem of fixing inconsistencies in moving objects database becomes
even more challenging when moving regions are involved. The removal of incon-
sistencies in such setting may have the potential of existing prediction models
that are used in geo-sciences. Addressing the context of mobile regions is one part
of our future work. We are also planning to investigate the trade-offs between
fixing the inconsistencies in the data vs. fixing inconsistencies in the (answers
to) pending queries – which can be challenging in the context of streaming (loca-
tion,time) data. Another challenge that we plan to address is to investigate the
impact – and efficient removal – of the inconsistencies in various spatio-temporal
data mining tasks.
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Abstract. The Best-start-time Lagrangian Shortest Path (BLSP) prob-
lem requires choosing the start time that yields the shortest path in a
time-dependent graph. The inputs to the problem are a spatio-temporal
network, an origin, o, a destination, d, and a discrete interval of possible
start times. The solution is a path, P , and a start time, t, such that the
total time taken to travel along P , starting at t, is no greater than the
time taken to travel along any path from o to d, if we start in the given
interval. The problem is important when the traveler is flexible about
the start time, but would like to select a start time that minimizes the
travel time. Its computational challenges arise from the large number of
start time instants, and the manner in which the length of the shortest
lagrangian path can vary from one start time instant to the next. Ear-
lier work focused largely on finding the shortest path for a single start
time. Researchers recently considered the BLSP problem, and proposed
an approach based on finding the shortest lagrangian path for each start
time, and then picking the best. Such an approach performs redundant
evaluation of common sub-expressions, because time is explored in a
sequential manner. We present an algorithm, BESTIMES, and propose
an implementation that uses a Temporally Expanded priority queue.
Our algorithm is built on the idea of “spatio-temporal opportunism”,
which allows us to navigate both space and time simultaneously in a
non-sequential manner and appropriately combine sub-paths. Theoret-
ical analysis and experiments on real data show that there is a well-
defined range of inputs over which this approach performs significantly
better than previous approaches.

1 Introduction

Given a spatio-temporal (ST ) network, an origin(o), a destination(d), and a
start-time interval, [Ts . . . Tf ], the Best-start-time Lagrangian Shortest Paths
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 274–291, 2015.
DOI: 10.1007/978-3-319-22363-6 15
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problem (BLSP) determines a path, P , and a start time t, t ∈[Ts . . . Tf ], such
that for all paths from o to d, that leave o during the interval [Ts . . . Tf ], P has
the least travel time. BLSP tells us the best start time, i.e., the time at which we
must start so that the total travel time is minimized, and also the path along
which we must travel in order to attain this travel time.

Problem Example: The following example illustrates how the Lagrangian
Shortest Path can vary with start time, in a time-dependent network. Figure 1(a)
shows a spatio-temporal network, with nine possible start times. Our objective
is to find the time instant at which we should leave O in order to minimize the
travel time for reaching D.

X

Y

Z

W

[4 4 4 5 5 5 6 6 6]

D

[5 4 3 3 3 5 5 5 6] [4 5 5 5 4 3 3 3 4]

[6 6 5 5 4 3 3 3 6]

[3 3 4 4 5 5 5 4 3]

[4 4 3 3 3 4 5 5 5]

O

[5 5 5 5 6 8 7 6 6]

(a)
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8 14 (O−Y−Z−D)

10(O−W−D)
10(O−W−D)

11(O−X−Z−D)

   9(O−Y−Z−D)
   9(O−Y−Z−D)
   9(O−Y−Z−D)

10(O−X−Z−D)
10(O−X−Z−D)

(b)

Fig. 1. Problem example: lagrangian shortest paths for different start times

Associated with each edge is a vector that lists the travel times for all possible
start times. The edge (X,Z) has the vector [4 5 5 5 4 3 3 3 4]. The first value in
the vector is 4, which means that if we start from X at time instant 0, it takes us
4 time steps to reach Z. The next three values are 5, which means that if we start
at time instants 1, 2, or 3, it takes us 5 time steps to reach Z. To compute the
length of a lagrangian path, consider the path O − W − D, when we start from
O at time instant 0. The first value in each vector corresponds to time instant
0, and this value for edge (O,W ) is 4. This means that we if we leave from O at
time instant 0, we reach W at time instant 4. We then traverse the edge (W,D)
starting at time instant 4. The vector for (W,D) is [5 5 5 5 6 8 7 6 6], and the
fifth value (which corresponds to a time instant of 4) in this vector is 6. Thus it
will take us 6 time steps to traverse (W,D), and the total time to reach D along
this path is 10 time steps. As it turns out, this is in fact the shortest lagrangian
path from O to D, starting at time instant 0.

Figure 1(b) shows the shortest paths from O to D for each start time. As
we can see, both the path length and the path vary with the start time. Here,
the best start times are 5, 6 or 7, when the path O − Y − Z − D has length 9.
It should be noted that not only does the shortest path change from one time
instant to the next, but the length of a given path can change significantly as
well. For instance, the length of path O − Y − Z − D is 9 if we start at time
instant 7, and 14 if we start at time instant 8.
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Application Domain: Determining the shortest paths is important in many
applications related to air travel, road travel, and other spatio-temporal networks
[13]. Several examples can be found in the literature that show how the length
of the shortest path between two points varies with time in a travel network
[11,12,16]. Figure 2 shows the speed profiles for a particular highway segment in
our dataset over a period of 30 days. As can be seen, the speed varies with the
time of day.

Fig. 2. Speed profiles for one highway seg-
ment

The problem becomes more inter-
esting in the context of multi-modal
networks, which involve several modes
of transport [19,23]. Studies have
shown that accounting for the time
dependent nature of the network [10,
23,24] can yield significant savings.

Challenges: The difficulty of the
BLSP problem stems from two fac-
tors: a large number of start times,
and edge-traversal times can vary
independent of each other. The large
number of start times means that the naive approach of traversing the entire
network for each start time is computationally expensive. The variation implies
that redundant segments of the traversal cannot be identified using purely
local computation. In addition, we have to deal with the challenge of non-
stationarity, which appears in all routing problems in spatio-temporal networks.
Non-stationarity refers to the fact that the ranking of alternate paths between
any particular source and destination pair in the network is not stationary. In
other words, the optimal path between a source and destination for one start
time may not be optimal for other start times.

Look at time
sequentially

Look at time

BLSP Problem

instant separately (SPTAG)

1. Label−correcting approach(BEST). 
2. Use label−setting for each

Our approach: pick the start

     opportunistically 

time(s) that show the best promise
and combine optimal sub−paths

Fig. 3. Related work.

Related work and their
limitations: Time-dependent
networks have been exten-
sively modeled and studied to
solve a wide variety of prob-
lems [8,20,21]. A significant
body of research exists for the
problem of finding the short-
est lagrangian path for a single
start time. The problem was
first posed in [6], and a label correcting algorithm was proposed. More recently,
a variety of techniques such as A� search [11], bi-directional search [22], use of
landmarks [2], use of arc-flags [4], and hierarchical partitioning [17] have been
applied to obtain faster algorithms for computing the shortest path in a time-
dependent networks. A survey and a systematic analysis of such techniques can
be found in [3].
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The problem of finding the best start time in a time-dependent network was
first considered by George et. al. [15]. They proposed an algorithm, BEST, which
uses a label-correcting approach to find the shortest path for each start time in
the interval, and then picks the best solution. Their research also evaluated the
performance of an algorithm for finding the shortest path for a single start time.
This algorithm, named SPTAG, used a label-setting approach. We can also use
the label-setting approach to solve BLSP by trying out SPTAG for every instant
in the given start-time interval. However, applying this method for each of a
possibly large number of start times is expected to be computationally expensive.
As part of this research we have done a comparison between all three approaches.
Figure 3 shows the relationship between these approaches as applicable to the
BLSP problem.

Contributions: This paper proposes the concepts of spatio-temporally oppor-
tunistic algorithms and temporally expanded priority queues. These concepts
allow for a simultaneous exploration of both the spatial and temporal dimen-
sions of time-dependent networks in a non-sequential manner. We apply these
to design a spatio-temporal search algorithm, BESTIMES, for finding the Best
Lagrangian Shortest Path and the best start time in a time-dependent travel
network. The correctness of BESTIMES is proved and theoretical bounds on its
complexity are established. The algorithm is experimentally evaluated using real
data sets [1], and the results are compared against earlier approaches. Exper-
imental results correlate well with our analysis, and show that the proposed
algorithm outperforms earlier approaches for a well-defined range of inputs.

Scope: The scope of our research is limited to evaluating the performance of
our algorithm, as compared to previous approaches for the BLSP problem. We
restrict ourselves to the discrete time domain. We do not explore any other
techniques such as bi-directional search or network partitioning [3].

Outline: The rest of the paper is organized as follows. Section 2 presents a
formal problem definition and briefly reviews some basic concepts. Section 3 gives
a formal description of the algorithm with a sample trace. In Sect. 4, we prove
the correctness and analyze the complexity of our algorithm. Section 5 describes
the results of our experimental evaluation. Section 6 presents a discussion of
these results and some issues related to the use of specialized data structures for
time-dependent algorithms. Section 7 concludes the paper.

2 Problem Definition and Basic Concepts

The Model Being Used: There are two models commonly used to represent
a time-dependent travel network [16]: the Time Expanded Graph, or TEG, and
The Time Aggregated Graph, or TAG. Both models are built around the notion
of a finite time sequence, T , of all possible time instants. The TEG has a vertex
for each node at every time instant. Thus, corresponding to node u, we have
vertices (u, 0), (u, 1), (u, 2),. . ., (u, TL − 1), where TL is the length of the time
sequence. Suppose it takes five time steps to travel from node u to node v, if we
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leave u at time instant 3. The TEG then contains and edge from vertex (u, 3)
to vertex (v, 8). The TAG provides a more compact notation. Associated with
each edge is a vector of length TL, which gives the travel time corresponding
to each start time. It was shown in [15] that the TAG model provided better
performance than the TEG model for traversal algorithms. We will therefore
use the TAG model throughout this paper. An example of a TAG was seen in
Fig. 1(a).

Problem Definition:
Inputs:

(a) Spatio-temporal(ST) network G = (V,E), where V is the set of vertices,
and E is the set of edges;

(b) An origin o and a destination d o, d ∈ V ;
(c) A discrete time interval, Tin = [Ts . . . Tf ] over which best start time for the

path between o and d is to be determined;
(d) The network has an associated edge cost function, denoted as len, and

len(u, v, t) represents the time taken to traverse (u, v), if we start from u at
time instant t. The cost of an edge represents the time required to travel on
that edge. The cost function of an edge repeats after every T time instances,
i.e., len(u, v, t) equals len(u, v, t+T ). It is therefore a cyclic time series with
integer values.

Output: A route, P , from o to d, and a start time α ∈ Tin.
Objective function: P is the shortest lagrangian path between o and d, if the
travel starts at a time instant in Tin.
Constraints on the Input: The time horizon of the ST network is finite. The edge
cost function is a cyclic, integer time series, with positive (non-zero) values.

How Our Approach Yields Efficiency: Before we formalize our process and
design experiments, it is useful to have an intuitive under- standing of how
computational savings can be realized by using our approach. Consider again
the example shown in Fig. 1(a). Our objective is to find the time instant at
which we should leave O in order to minimize the travel time for reaching D.
We present a short synopsis of how spatio-temporal opportunism works in this
case. (See details at http://web.stcloudstate.edu/rsarnath/bestimes.pdf.) The
travel-time series for (O,X) is [5 4 3 3 3 5 5 5 6]. The quickest option for this
edge is therefore, to leave O at time instant 2, 3 or 4. The travel-time series for
(O, Y ) is [6 6 5 5 4 3 3 3 6], which means the quickest option is time instant
5, 6 or 7. If we expand these best choices further (as would be dictated by an
opportunistic approach), we see that the path O−X −Z has length 6 for arrival
time interval [8 . . . 10] and the path O − Y − Z has length 6 for the arrival
time interval [11 . . . 13]. This means that these two sub-paths can be combined
to tell us that we have a set of paths from O to Z of length 6 for the arrival
time interval [8 . . . 13]. Combining this information with the travel times for the
edge (Z,D), we see that there is a path of length 9 arriving at D during the
interval [14 . . . 16]. We have therefore avoided traversing the entire network for
those start times from O, when the travel times for edges (O,X) and (O, Y )

http://web.stcloudstate.edu/rsarnath/bestimes.pdf
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were 4, 5 or 6. The spatial aspect of the opportunism is demonstrated by picking
the vertex with the most promising path, and temporal aspect is demonstrated
by picking the best set of time instances for each vertex. The difficulty is that
multiple distinct temporal routes can arrive at the same vertex and these must
be appropriately merged to manage the complexity.

3 A Spatio-Temporally Opportunistic Algorithm

Notation:
T : the time series associated with each edge.
TL: length of T .
Tin: set (range) of possible start times, Ts, . . . , Tf .
TL

in: length of Tin.
o: vertex of origin.
d: destination vertex.
L: length of shortest path from o to d that starts at o at some time instant in
Tin.
len(u, v, t): time to traverse the edge (u, v) starting at t.

The algorithm keeps track of the following:

1. Spatio-temporal labels. The algorithm creates spatio-temporal labels (or
simply labels). Each label is associated with a vertex, v, and tells us that a
path of a certain length, starting at the source(o), and arriving at v a certain
time(or a set of times) has been discovered in our traversal. For some such
path, o, x1, x2, . . . , xk, v, the penultimate vertex, xk, is also stored in the label.

2. Av: When we process a label, we are looking at a vertex, v, and a set of time
instants. It may so happen, that after the label was enqueued, other shorter
paths to v were discovered. Therefore shorter paths to v may be known for
some of the time instants. Av helps us track this by storing a collection of all
the lengths of shortest paths arriving at different time instants at the vertex
v. Let t be a time instant, such that a path has been found from o to v,
arriving at v at time t. Let l be the length of the shortest such path. Then
Av[t] stores the value l. For all vertices v(except o), and time instants t, Av[t]
is initialized to ∞. Ao is initialized to zero for all t.

3. Sl
v: Several distinct paths, arriving at vertex v at different time instants, could

have the same length. To handle this, we keep a collection of arrival times
when a path of length l arrives at v. With each arrival instant, t, we store the
penultimate vertex on the corresponding path. Formally,
Sl

v = {(t, u) | a path of length l, reaches v at time t, through (u, v)}.
4. A priority queue. The priority contains all the spatio-temporal labels gener-

ated by the process. Each label consists of a vertex, v, the length, l, of the
paths reaching v, and the set of times, Sl

v, at which these paths arrive at v.
The priority queue is a collection of 3-tuples of the form (v, l, Sl

v).

Algorithm 1 formally describes the algorithm BESTIMES. Figure 4 shows a
simple network with four nodes and traces the algorithm for the first few steps:
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Algorithm 1. BESTIMES Algorithm
1: Inputs: A graph G with a set of nodes V and edges E, where each edge has a

travel-time series (len(u, v, t) is the time taken to traverse edge (u, v) starting at
time t), an origin o, a destination d, and a set of possible start times, Tin. We
assume that for all u, v, and t, len(u, v, t) > 0.

2: Output: The shortest path from o to d that starts at some instant in Tin.
3: Initialize the collections Av and Sl

v. /*INITIALIZE*/
4: Insert the label (o, 0, S0

o ) in priority queue. /*INITIALIZE*/
5: while the shortest path has not been found /*MAIN LOOP*/ do
6: ( u, l, Sl

u ) = Dequeue()
7: if u == d then
8: For any pair (t, x), (t, x) ∈ Sl

u report that shortest path to d departs from o
at time t− l. Extract the shortest path recursively by extracting the shortest
path to x. EXIT.

9: end if
10: for each t, such that (t, x) ∈ Sl

u /*PROCESS EACH ARRIVAL TIME*/ do
11: if Au[t] == l /*l is the least time needed to reach u at t*/ then
12: for each edge (u, v) /*PROCESS EACH OUTGOING EDGE*/ do
13: t1 = (t + len(u, v, t))
14: l1 = Av[t1]
15: if l1 > l + len(u, v, t) then
16: /*a shorter path is found for reaching v at t1*/
17: Av[t1] = (l + len(u, v, t)) /*Av[t1] is updated*/

18: Insert(S
l+len(u,v,t)
v , (t1, u))

19: Enqueue(v, l + len(u, v, t), S
l+len(u,v,t)
v )

20: end if
21: end for
22: end if
23: end for
24: end while

1. Initially we have the label [o1: (o, 0,{})], which represents that we are
at vertex o, and the shortest path arriving here is of length zero.

2. When we process this label, we see from the travel time sequence for the
edge (o, x) that we can reach x in 3 time steps if we leave at any of the
time instants 0, 1 or 2, and arrive at time instants 3, 4 or 5, respectively.
This is captured by the label [x1: (x, 3, {(3, o), (4, o), (5, o)})].
The information associated with this label is a 3-tuple which gives us the
vertex, x, the path length, 3, and the arrival time instants, 3, 4, or 5. Along
with each arrival time, we store the penultimate vertex on the path. This
information is useful to retrieve the path after the computation is complete.
Likewise, we see from the travel time sequence for the edge (o, x) that
we can reach x in 4 time steps if we leave at any of the time instants 3,
4, 5, 6, 7 or 8, and arrive at time instants 7, 8 9, 10, 11 or 12, respec-
tively. However, our time series is of length 9, 12 is the same as 3, mod-
ulo 9; as we already have a path of length 3 arriving at time instant 3,
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we do not record the path of length 4. Accordingly, we get the label
[x2: (x, 4, {(7, o), (8, o), (9, o), (10, o), (11, o)})]

3. Next we look at the edge (o, y), and from the travel time sequence, we gen-
erate three labels: [y1: (y, 3, {(9, o), (10, o) (11, o)})],
[y2: (y, 4, {(7, o), (8, o)})],
and [y3: (y, 5, {(5, o), (6, o)})] This completes the processing of
label o1, and leaves us with five labels in our priority queue.

4. In the next step, we pick the label with the shortest path from the prior-
ity queue and process it. This could be either x1 or y1, since both have
length 3. Say we choose y1. When we process this, two more labels are added,
[d1: (d, 8, {(16, y)})], and [d2: (d, 9, {(15, y)})].

5. The next choice has to be x1, which adds the labels [d3: (d, 6, {(6, x)})]
and [d4: (d, 10, {(11, x), (12, x)})].

6. Note that the label d3 captures the shortest path. However, the algorithm
must first process x2, y2, and y3 before it picks d3.

4 Analysis of the Algorithm

For a complete version with details of proofs see full paper at: http://web.
stcloudstate.edu/rsarnath/bestimes.pdf.

4.1 Correctness

Since the label (u, l, Sl
u) is associated with a path of length l from o to u, and

the queue is prioritized by l, we have the following lemma.

Lemma 1. Suppose that in the algorithm BESTIMES, the label (u, l, Sl
u) is

dequeued before (u′, l′, Sl′
u′). Then l ≤ l′.

Lemma 2 follows from the manner in which Av[t] is updated.

Lemma 2. The values stored in the arrays Av, for any vertes v, can only
decrease or remain the same during the course of the algorithm.

Lemma 3. Suppose that in the algorithm BESTIMES, the label (u, l, Sl
u) is

dequeued, and inner FOR loop is executed for some arrival time t. Then, the
shortest path from o to u, starting at some instant in T = [Ts . . . Tf ], and reach-
ing u at time t, has length l.

From the above lemmas, we get the following result.

Theorem 1. Of all the paths from o to d that leave d at some instant in T =
[Ts . . . Tf ], the algorithm BESTIMES returns a path from o to d that has the
least travel time.

http://web.stcloudstate.edu/rsarnath/bestimes.pdf
http://web.stcloudstate.edu/rsarnath/bestimes.pdf
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X

D

Y

[3 3 3 4 4 4 4 4 4 ]

[6 6 5 4 4 4 3 3 3 ]
[ 5 5 5 4 4 4 3 3 3]

[3 3 3 3 7 7 6 5 4]

Execution Trace, showing the set of labels after each label is expanded:

[y1: (y, 3, {(9, o), (10, o) (11, o)})], [y2: (y, 4, {(7, o), (8, o)})],  [y3: (y, 5, {(5, o), (6, o)})]

After expanding y1:  [x1: (x, 3, {(3, o), (4, o), (5, o)})], [x2: (x, 4, {(7, o), (8, o), (9, o), (10, o), (11, o)})],

[d2: (d, 9, {(15, y)})]
 [y2: (y, 4, {(7, o), (8, o)})],  [y3: (y, 5, {(5, o), (6, o)})], [d1: (d, 8, {(16, y)})],

,])})o,8(,)o,7({,4,y(:2y[,])})o,11(,)o,01(,)o,9(,)o,8(,)o,7({,4,x(:2x[:1xgnidnapxeretfA
[y3: (y, 5, {(5, o), (6, o)})], [d1: (d, 8, {(16, y)})], [d2: (d, 9, {(15, y)})]
[d3: (d, 6, {(6, x)})], [d4: (d, 10, {(11, x), (12, x)})]

O

Initial set of labels: [o1: (o, 0,{})] 

After expanding o1: [x1: (x, 3, {(3, o), (4, o), (5, o)})], [x2: (x, 4, {(7, o), (8, o), (9, o), (10, o), (11, o)})],

Fig. 4. Execution trace of BESTIMES for a simple example

4.2 Complexity

A naive analysis (i.e., multiplying the maximum number of iterations of each
loop) gives an incorrect (possibly exponential) result. This can be improved,
since the FOR loops may not be executed for each iteration of the WHILE loop.
A more careful analysis, placing bounds on the number of iterations is provided
here.

Lemma 4. If n is the number of nodes, and L is the length of the shortest path
from o to d returned by the algorithm, then the WHILE loop executes at most
nL times.

In a worst case situation, we could have nTL iterations of the inner FOR
loop in a single iteration of the WHILE loop. This would give us a loose bound
of n2LTL on the complexity of the algorithm. This bound can be significantly
reduced by placing independent bounds on the total number of times that the
inner loops can execute in the course of the entire algorithm. These bounds are
described in the following lemmas.

Lemma 5. Let m be the number of edges, and TL be the length of the time
series associated with each edge. Algorithm BESTIMES can be implemented so
that the inner FOR loop executes at most mTL times.
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Lemma 6. Let m be the number of edges, and L be the length of the shortest
path returned. In the Algorithm BESTIMES, the inner FOR loop executes at
most m(L + TL

in) times.

The enqueue operation is invoked only when the inner FOR loop is executed.
The following lemma follows immediately from Lemma 6.

Lemma 7. Let m be the number of edges, and L be the length of the shortest
path returned. Algorithm BESTIMES performs at most m(L + TL

in) enqueue
operations.

The number of dequeue operations is obviously bounded by the number of
enqueue operations. We can therefore combine Lemmas 4 through 7 to get the
following:

Lemma 8. Let P = min(TL, L+TL
in). Algorithm BESTIMES performs at most

mP dequeue operations and at most mP executions of the inner FOR loop.

Theorem 2. Let P = min(TL, L + TL
in). The Algorithm BESTIMES can be

implemented such that the total number of operations performed by the algorithm
is O(mP (logm + logP )).

Proof. From Lemma 8 we know that the WHILE loop and the inner FOR loop
both execute at most mP times. To deal with the case where the outer FOR
loop executes but the inner FOR loop does not, note that this happens when
there is a pair, (t, x) ∈ Sl

u, such that (Au[t] �= l). However, for any such pair,
such an event will happen exactly once. Hence the total number times that the
outer FOR loop executes, but the inner FOR loop does not, cannot exceed the
number total number of Insert operations, i.e., the total number of iterations
of the inner FOR loop. All the steps in the algorithm can be done in O(1) time
or in logarithmic time using standard data structures [7] and our result follows.

Note that in the case where TL equals 1, we get a complexity of O(| E | log | E |).
For road networks, this is asymptotically the same as that of Dijkstra’s algorithm
(which is O(| E | + | V | log | V |)), since the nodes have bounded degree.

5 Experimental Evaluation

The goal of the experimental evaluations was twofold. The first goal was to
compare the computational performance of the proposed BLSP algorithm, BES-
TIMES, with the existing BEST and SPTAG algorithms, as different parameters
were varied. Theoretical analysis tells us that the performance should depend
on the network size(n and m), the length of the travel time sequence(TL), the
length of the start time interval(TL

in), and the travel time, i.e., the length of the
shortest path(L). Our second goal was to see how well our experimental results
correlate with the theoretical analysis.
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5.1 Experiment Setup

Experiment Design: The experiment design is illustrated in Figure 5. Since
we ran the experiments on real data, the network size(n and m) and the length
of the travel time sequence(TL) were fixed. In the comparative experiments, we
therefore varied three parameters: the start time point of query time interval
(Ts), the length of query time interval (TL

in), and the approximate travel time
between the source node and the destination node (roughly equal to L). All the
algorithms were implemented in C++. Experiments were conducted on a iMac
with 8 GB memory and Intel Core i7 CPU with 4 cores. The time costs are the
sums of 50 runs.

SPTAG BEST BESTIMES

Spatio−temporal road network

Computation
time

interval
Start of

interval
Length of

destination node
Source node,

Fig. 5. Experiment design

Dataset Description: The experiments were carried out on a real data set
containing the highway road network of Hennepin county, Minnesota, provided
by NAVTEQ [1]. The dataset contained 1417 nodes and 3754 edges. It also
contained travel times for each edge at time quanta of 15 min. For experimental
purposes, the travel times were converted into time quanta of 1mins by linear
interpolation.

5.2 Experiment Results

Effect of Length of Start Time Interval (TL
in): We fixed the start time (Ts

as non-rush hour at 0:00 a.m.) and the travel times. We increased the length
of the query time interval from 100, 200, 300, 400, 500, to 1000, 2000, 3000,
4000, 5000. Figure 6(a–c) shows the results with travel times fixed at 30, 50, and
150 min respectively. As can be seen, the BESTIMES algorithm has lower costs
than the SPTAG and BEST algorithms when the travel times are small, e.g.,
30 min and 50 min. The reason why BESTIMES is faster than SPTAG is that
it considers multiple time instances at the same time while SPTAG computes
shortest path repeatedly for every start time. The BEST algorithm has signifi-
cantly larger costs than the BESTIMES algorithm when the travel time is small.
The reason is that BEST uses a label correcting approach and iterates through
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Fig. 6. Computational performance comparison with different TL
in starting at non-rush

hour

entire network, whereas BESTIMES is label-setting algorithm which stops as
soon as destination is reached. When the travel time from source and destina-
tion is large, e.g., 150 min, BESTIMES and BEST seem to have the same cost.
This result is somewhat surprising, since the theoretical complexity of BEST is
O(n2mT ) [15], which is much worse than that of BESTIMES. However, it has
been pointed out [9] that label-correcting approaches on road networks converge
much faster than what the graph-theoretic bounds predict for general graphs.

Effect of Network Traffic: To test the effect of traffic volume, we re-conducted
the analysis shown above with a different start time of 420th minute (7 a.m. in
the morning, which is during the rush hour). This comparison is useful to test
whether the cost reduction achieved by BESTIMES is significantly affected when
the traffic pattern changes. The results are shown in Fig. 7. Comparing Figs. 6
and 7 together, we can see that this change does not seem to influence the
computational performance significantly in the experiment.

Effect of Different Travel Times: We fixed a non-rush hour (0 min, midnight
at 0:00 a.m.) time for the start of the query interval(Ts) and varied the length
of the query time interval (TL

in was set to 100, 1000, and 5000 respectively). We
increased the travel times, i.e., length of the shortest path, from 10, 20, to 150
by changing the destination node. Figure 8(a–c) shows the results of fixing TL

in
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Fig. 7. Computational performance comparison with different TL
in starting at non-rush

hour

at 100, 1000, and 5000 respectively. As can be seen, the cost of BEST algorithm
does not change with the travel time. This is consistent with the fact that BEST
is a label correcting algorithm, updating the entire network. In contrast, the
computational costs of both SPTAG and BESTIMES increase with travel times,
with SPTAG being much higher. When the travel times are small, e.g., less
than 40 min, the computational costs of SPTAG and BESTIMES are smaller
than BEST algorithm. When the travel times increase, the computational cost
of BESTIMES approaches that of BEST, due to the small network size (i.e.,
around 1400 nodes).

6 Discussion

The results in Sect. 5 clearly show that when the travel time (L) is small com-
pared to the size of the network (n), the proposed BESTIMES algorithm is sig-
nificantly faster than both the SPTAG and the BEST algorithms. As the travel
time increases the performances of BEST and BESTIMES converge. This clearly
shows that the spatio-temporally opportunistic approach yields an improved
algorithm. A few other issues are discussed below:

Improving the Efficiency of the BESTIMES Implementation: Instead
of a set of time instants for each label we could treat them as sub-intervals of
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Fig. 8. Computational performance comparison with different travel times starting at
non-rush hour

time instants. This could save us some redundancy, but will incur an additional
overhead for maintaining data structures that deal with interval operations.

Finding Multiple Solutions: The algorithm can be easily adapted to find,
say, the ten best start times. To do this, we do not terminate the process upon
reaching d, but continue until we have dequeued the labels necessary for locating
the first ten paths. Such an adaptation is useful for a system that provides the
traveler with several choices in response to a query.

Enhancing Performance of BESTIMES: Since BESTIMES is a label-setting
algorithm, it seems possible to enhance it by employing techniques like A*,
partial pre-computation and bi-directional search. This would make it a useful
search technique to build practical tools.

Discrete vs Continuous Model: Some work has been done on using a continu-
ous model of time-dependent networks, in which we have a continuous time series.
An algorithm for the continuous model was presented in [18], which reports all
the shortest paths between two query vertices for a continuous time interval.
It has been pointed out that for some cases their algorithm does not converge
[11,14], and some of the issues with [18] were addressed in [12]. Since the actual
data that we are using is discrete, and the models are very different, it is very
difficult to compare our results with these.
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FIFO vs Non-FIFO: The FIFO assumption [16] states that the time series
associated with any edge is such that a traveler starting at a later time instant
along an edge, will not reach the end of the link before a traveler who had started
earlier. We have not used the FIFO assumption in proving the correctness of our
algorithm. This means that no waiting is allowed at intermediate nodes along
the path. This is not a serious restriction, since it has been shown that waiting
requirements can be handled by suitably modifying the travel time sequences
during pre-processing [5,16].

Using ALSP to Solve BLSP: It is possible to solve the BLSP problem, by
solving the All Lagrangian Shortest Path (ALSP) problem and then picking
the best time. This requires some additional bookkeeping. A solution to ALSP
was first proposed in [5], using a label-correcting approach. More recently, the
efficiency of ALSP was improved by identifying critical time points and removing
redundancy [16]. Since BEST uses a label-correcting approach, we have in essence
compared our approach with that of [5]. It would be interesting to see how
spatio-temporally opportunistic algorithms compare with the critical time point
approach presented in [16].

Working with Arrival Times Instead of Departure Time: Travelers with
very little knowledge of the network may prefer to specify a range of acceptable
arrival times. It appears that the spatio-temporally opportunistic approach can
also be applied to this version of the problem.

6.1 Temporally-Expanded Priority Queues

The role of priority queues can be generalized in the context of algorithms for
time-dependent networks.

Table 1 illustrates the properties and operations of a temporally-expanded
(TE) priority queue in contrast to a regular priority queue. Unlike the scalar
elements in a regular priority queue, an element of a TE priority queue is a time-
series of values. A TE priority queue is ordered on the value of the component
time series at a particular time index. This time instant, targ, could be the same
across all the keys or be different for each key. Apart from the standard priority
queue operations such as insert, extract-min, and update-key, we have two new
operations called “Retrieve-keys” and “forecast-critical-time-point.” “Retrieve-
keys” returns all the keys whose key-label matches the input id. “forecast-critical-
time-point” can be called at the end of each extract-min, when it compares the
time-series corresponding to the extract-min with the other time-series in the
queue to determine the maximum time duration (beyond targ) for which the
chosen time-series has the lowest value. Temporally-expanded priority queues
can be used both for our BESTIMES algorithm and for the CTAS algorithm for
the ALSP problem proposed in [16], as follows:

Implementation for BESTIMES: Temporally-expanded priority queues can
be used implement the Sl

v’s which are inserted into the priority queue of the
BESTIMES algorithm. Here, a key in the TE priority queue would contain con-
tiguous segments of arrival times at the node v, all of which have the same travel
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Table 1. Priority queue vs temporally-expanded priority queue.

Properties/

operations
Priority Queue

Temporally-expanded Priority

Queue

Keys Scalar values
a tuple containing (key-label,

targ, time-series of values)

Ordering
Ascending or

Descending

Ascending or Descending on the

value of time series in the keys

at time index targ

Insert operation
Inserts scalar

value
Inserts a time-series

Update-Key

operation

Updates a

scalar value
Updates an entire time-series

Extract-Min

Returns a

scalar with

lowest cost

Returns a time-series with lowest

cost

Retrieve-keys(id)
--Not

Available--

Retrieves all keys with certain

key-id

Forecast Critical

Time-Point

--Not

Available--

Returns Maximum time tctp(>
targ) for which the previous

extract-min has least value among

all keys in the queue

time. The queue is ordered on this travel time. Here, targ could be set to any
time index within this contiguous segment of arrival time series at node v.

Implementation for CTAS: Temporally-expanded priority queues can be used
to fulfill priority queue requirements (line number 5 in Algorithm 1 of [16]) of
the CTAS algorithm. For this implementation, all the keys in the TE priority
queue would be ordered on the same time index. In other words, targ would be
the same for all the keys. After each extract-min (line number 7 in Algorithm
1 of [16]), the CTAS algorithm could determine a potential critical-time-point
using the “forecast-critical-time-point” operation (line number 8 in Algorithm 1
of [16]).

7 Conclusion and Future Work

In this paper we proposed the concept of spatio-temporally opportunistic algo-
rithms, and used this concept to design an algorithm that finds the best
lagrangian start time. This problem is an important component of applications in
transportation networks. Traditional approaches have treated time in a sequen-
tial manner, which results in redundancy. Our experimental results have shown a
well-defined range of inputs on which our algorithm performs better than earlier
algorithms.
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There are two ways in which we could enhance the performance of our algo-
rithm. One way is to develop efficient TE data structures that can be fine-tuned
to the mix of operations performed in a spatio-temporal approach. The other
way is to apply some of the techniques cataloged in [3]. Bi-directional search
could significantly reduce the region of the network to be searched. It would also
be useful to incorporate the algorithm into other existing systems to study the
performance.
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Abstract. Data privacy is a huge concern nowadays. In the context of
location based services, a very important issue regards protecting the
position of users issuing queries. Strong location privacy renders the
user position indistinguishable from any other location. This necessi-
tates that every query, independently of its location, should retrieve the
same amount of information, determined by the query with the maxi-
mum requirements. Consequently, the processing cost and the response
time are prohibitively high for datasets of realistic sizes. In this paper,
we propose a novel solution that offers both strong location privacy and
efficiency by adjusting the accuracy of the query results. Our frame-
work seamlessly combines the concepts of ε-differential privacy and pri-
vate information retrieval (PIR), exploiting query statistics to increase
efficiency without sacrificing privacy. We experimentally show that the
proposed approach outperforms the current state-of-the-art by orders of
magnitude, while introducing only a small bounded error.

1 Introduction

Mobile devices enable the use of location based services (LBS) in order to facili-
tate everyday tasks. An LBS allows users to issue queries along with their loca-
tions to a server, which in turn replies with the results. For example, a user may
ask for the closest gas station to his current location, the shortest path from his
home to a shopping mall, real-time traffic condition in his area, and so on. Each
of the queried locations, e.g., gas station, shopping mall, is called a Point of
Interest (POI). However, location based queries raise privacy concerns, as they
can reveal the sensitive location of the user. For example, a user may wish to
find the nearest bar without revealing his presence in the specific area. In this
work we focus on private k-Nearest Neighbor queries (kNN), which ask for the
k nearest POIs to the user.

Numerous algorithms have been proposed for private kNN queries. Strong
Location Privacy for kNN [23] is currently the only solution which renders the
position of the user truly indistinguishable from all other possible locations. It
leverages hardware PIR and a query plan. Hardware PIR ensures that the server
is oblivious to the data acquired by the users, while the query plan requires that
every user receives the same amount of information independent of the data size
needed. By combining these two properties, the query process for any user from
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 295–312, 2015.
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any location appears exactly the same to the server. In order to guarantee that
all users receive accurate answers, the algorithm of [23] sets the query plan as
the maximum data size required by any possible query. Although this solution is
viable for small databases, it becomes prohibitively expensive for a large number
of POIs because the result size required to satisfy any query may be enormous.

In order to overcome this problem, we propose the adaptive query plan, which
relaxes the need for answering all queries accurately. Instead, it computes a
minimum data size, which guarantees that at least a predefined percentage of
queries are answered correctly. The adaptive query plan depends on the actual
user behavior and changes periodically based on statistics of previously issued
queries. However, utilizing statistics on sensitive location data may reveal the
whereabouts of a user [7]. In order to avoid this type of privacy breaches, we
employ the notion of ε-differential privacy [8]. This concept offers theoretical
privacy guarantees when publishing statistics on sensitive data. Our solution is
applicable to [23], and in general to PIR techniques based on similar principles.

We demonstrate the efficiency and effectiveness of our approach by using
rigorous secure hardware simulations on two real datasets consisting of millions
of POIs. Compared to [23], it offers up to orders of magnitude better efficiency,
while retaining high levels of accuracy, rendering it practical for large datasets.

2 Related Work

Section 2.1 describes the notion of ε-differential privacy. Section 2.2 reviews loca-
tion privacy techniques in general and presents the implementation of the state-
of-the-art method of [23].

2.1 ε-Differential Privacy

Differential privacy hides sensitive information about individual users when pub-
lishing statistics. Specifically, the published results are produced in a random
way, so that the presence of any individual in the data has negligible impact.
Let D be a set of finite databases with d attributes. Each D ∈ D is a set of
rows. For example, each row of D represents a user, and each column a loca-
tion. A cell ci,j of D is 1 if user i has visited location j, and 0 otherwise. Two
databases D,D′ ∈ D are considered neighboring if they differ in at most one
row; essentially, D and D′ differ in the locations of one user. A mechanism M
is a randomized algorithm performed by the publisher; given a database D, M
applies some functionality and outputs a transcript o.

Definition 1. A mechanism M : D → O satisfies ε -differential privacy if
for all sets O ⊆ O, and every pair D,D′ ∈ D of neighboring databases

Pr[M(D) ∈ O] ≤ eε · Pr[M(D′) ∈ O] (1)

The smaller the value of ε, the stronger the privacy guarantees. Intuitively,
M satisfies ε-differential privacy, if changing the attributes of one individual in
the database has a negligible effect on the distribution of the output of M.
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A common differential privacy technique adds Laplace noise to the outputs
using the Laplace Perturbation Algorithm (LPA [7,8]). Before presenting LPA, we
formulate the notion of sensitivity. We view the release of statistical information
as a query performed on the data. For example the query asks for the counts
on each column of D, i.e., the number of users who visited each location. We
model the query as a function Q : D → N

d, where d is the number of elements
in the output. For D,D′ ∈ D, Q(D),Q(D′) are two d-dimensional vectors. Let
‖Q(D) − Q(D′)‖ be the L1 norm of Q(D),Q(D′). Then, the sensitivity of Q
is Δ(Q) = maxD,D′∈D ‖Q(D) − Q(D′)‖ for all neighboring D,D′ ∈ D.

Let Lap(λ) be a random variable drawn from Laplace distribution with mean
zero and scale parameter λ. LPA achieves ε-differential privacy through the mech-
anism outlined in the following theorem [7].

Theorem 1. Let Q : D → N
d, and define c def= Q(D). A mechanism M that

adds independently generated noise from a zero-mean Laplace distribution with
scale parameter λ = Δ(Q)/ε to each of the d output values of Q, i.e., which
produces transcript

o = c + 〈Lap(Δ(Q)/ε)〉d

achieves ε-differential privacy. The error introduced in the ith element of o by
LPA is

error i
LPA = E|o[i] − c[i]| = E|Lap(λ)| =

√
2λ =

√
2Δ(Q)/ε

The higher the error the more the published results deviate from their actual
values, reducing their utility. Next, we include a composition theorem [19] that
is useful for our proofs. It concerns successive executions of differentially private
mechanisms on the same input, and allows us to view ε as a privacy budget,
distributed among these mechanisms.

Theorem 2. Let M1, . . . ,Mr be a set of mechanisms, where each Mi provides
εi-differential privacy. Let M be another mechanism that executes M1(D), . . . ,
Mr(D) using independent randomness for each Mi, and returns the vector of the
outputs of these mechanisms. Then, M satisfies (

∑r
i=1 εi)-differential privacy.

An interesting problem concerns computing differentially private range-sums
over sensitive histograms. Applying LPA in this scenario would result in high
error due to the noise accumulation [3,9] reduce the error by building a full
binary tree over the input values. Every node stores the sum of the values of
its children, plus noise with logarithmic scale to the input size. Then, each sum
of consecutive values is computed by summing the root values of the maximal
subtrees covering the values. We exploit this technique in our solution in order
to maximize utility.

2.2 Location Privacy for kNN Queries

The setting of private kNN queries assumes a data owner, who provides the POIs
to an LBS, and users, who issue queries to the LBS. The goal is to conceal the
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user locations from the LBS. There exist two notions of privacy in the literature:
(i) weak location privacy, where the LBS can derive that the query issuer lies in
some general area, without, however, being able to pinpoint his exact position,
and (ii) strong location privacy, where the LBS cannot infer anything about the
position of the user issuing the query. Weak location privacy solutions adopt
three general methodologies, namely K-anonymity, location obfuscation, and
data transformation.

K-anonymity [14,20] methods assume the existence of a trusted third party
that receives and anonymizes the queries before sending them to the LBS. Specif-
ically, a trusted anonymizer that has the locations of all users, generalizes each
query so that the LBS cannot distinguish who among K users issued the query.
Location obfuscation [5,6,16] substitutes the exact user location with a cloaking
region, which is sent to the LBS instead of the exact location. In some obfus-
cation methods (e.g., [28]), the user sends a fake location and keeps obtaining
results until it acquires all k nearest neighbors. In all the above techniques, the
LBS can restrict the position of the querying users in some area within the data
space, without however being able to pinpoint their exact location.

Data transformation techniques [16,25] assume that the owner encodes the
data before sending them to the LBS. Subsequently, the users send encoded
queries to the server. The latter cannot determine either the queried data or
the user query location. Data transformation methods conceal the user locations
better than K-anonymity and obfuscation. However, they are expensive due to
the encoding/decoding operations. Additionally, they are prone to access pattern
attacks [27] because the same query always returns the same encoded results.
For example, the LBS may use the query frequency and data density to infer
the position of a user (e.g., queries at a city center are much more frequent than
those from the suburbs).

Strong location privacy is based on private information retrieval (PIR) [10,11],
which allows the users to retrieve data from a database obliviously. There are three
categories of PIR, namely information-theoretical, computational, and hardware-
based. Information-theoretical PIR [4] offers privacy with theoretical guarantees,
while computational PIR [13,18,21,24,26] assumes computationally bounded
adversaries. They are both infeasible even for databases of moderate sizes [25].
Hardware-based PIR relies on a tamper-resistant CPU, trusted by the clients,
attached to the server. This CPU receives client block requests, which are unread-
able by the server, obliviously extracts the requested blocks from the server disk,
and returns them to the client. Hardware-based methods are the only viable PIR
solutions for large datasets.

[15] applies hardware-based PIR for kNN processing, allowing, however, a
variable number of PIR requests for different queries. Consequently, although
each PIR retrieval is private, the cardinality of these retrievals may allow access
pattern attacks. On the other hand, the method of [12] achieves strong location
privacy because every query involves a single PIR request and, hence, all queries
are indistinguishable. Nevertheless, this scheme focuses on single NN processing
(k = 1), and relies on a prohibitively expensive computational PIR protocol [18].
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Currently, the only viable technique that guarantees strong location privacy for
kNN queries is AHG [23]. AHG is a hardware-based PIR algorithm that utilizes
a query plan to avoid access pattern attacks.

Specifically, the setting of [23] assumes that the LBS maintains the data as
sequential blocks1. AHG initially imposes a Hilbert index grid G on the POIs,
grouping them into cells. The Hilbert index grid is a mapping which defines an
ordering among the cells according to their unique Hilbert values, e.g., Hilbert
values of cell c21 and cell c11 are defined by H(2, 1) = 1 and H(1, 1) = 0, respec-
tively. To preserve locality, the LBS stores the cells ordered by the Hilbert values
along with their POI counts in multiple PIR blocks of a database DB1. It also keeps
the blocks of individual POIs in two databases, namely DB2 and DB3. Essentially,
DB1 maintains an index of the POIs stored in DB2. DB2 holds the actual loca-
tions of the POIs, i.e., the longitudes and latitudes, and pointers to DB3. Finally,
DB3 stores the tail records of the POIs, i.e., other data related to the POIs, such
as street addresses, phone numbers, and detailed information.

The users issue kNN queries to the trusted CPU (attached to the LBS),
using a fixed query plan to ensure that each query retrieves the same number of
blocks from each database, independent of the query location. The query plan is
defined as QP = ((DB1, cnt1), (DB2, cnt2), (DB3, k)). Specifically, when a user
asks a kNN query, he first obtains cnt1 index blocks from DB1. Then, using the
index, he retrieves cnt2 blocks with POI coordinates from DB2, and locates the
k nearest POIs using these coordinates. Finally, he issues a query to DB3 and
obtains the k corresponding blocks from DB3. In order to guarantee that every
user receives enough blocks for an accurate answer, cnt1 and cnt2 constitute
upper bounds for the number of blocks needed by any possible query location2.

3 Adaptive Query Plan

We assume the same setting as [23], where a curious, but not malicious LBS main-
tains the data as sequential blocks. Users issue kNN queries in the form of block
requests to a trusted CPU attached to the LBS. This CPU obliviously extracts
the requested blocks from the server, and returns them to the client. According
to the fixed query plan of AHG, every user receives the maximum number of
blocks required to accurately answer all possible queries. Consequently, most
users obtain numerous redundant blocks since the vast majority of queries need
relatively few blocks due to the fact that the query distribution usually follows
the distribution of the POIs [2,17,22]. This has a negative impact on the LBS
(in terms of processing cost) and the users (in terms of response time), rendering
AHG too slow for large spatial datasets commonly found in practice.

To overcome this problem, we propose an adaptive query plan (AQP) that
yields the exact kNN set for the majority of the queries, but may lead to inaccu-
rate results for a pre-defined percentage (1 − α) of queries at sparse areas of the
1 The size of each block depends on the PIR hardware.
2 There is a distinct query plan for every allowed value of k. For ease of presentation,

we focus on a single value of k.
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data space. The value of α adjusts the trade-off between accuracy and efficiency.
In order to derive the size of AQP, we utilize differentially private statistics about
previous queries. Strong location privacy is always preserved independently of
the value of α and the size of AQP.

Our framework involves two stages: (1) The query stage has a fixed period
(e.g., a day), in which users issue kNN queries to the LBS. Every user can ask
up to qmax private kNN queries, where qmax is a system parameter. For each
query, he records the number of redundant blocks during the current period.
(2) At the query plan re-computation stage, the LBS obtains the redundancy
data from users in a differentially private manner, and computes the distribution
of redundant blocks along with the number of blocks necessary to answer the
issued queries. Finally, it generates an AQP for the next query stage, so that
at least a percentage α of the queries receive enough PIR blocks for accurate
results, according to the current statistics. Section 3.1 describes the query stage,
Sect. 3.2 elaborates the re-computation stage, and Sect. 3.3 proves the correctness
and analyzes the utility of our approach.

3.1 Query Stage

During this stage, each user u maintains a vector Ru of length cnt1 + 1 that
stores the number of redundant blocks received from DB1. Each element j of Ru

holds the number of times that u received j redundant blocks. The last element
Ru[cnt1] indicates the number of queries with insufficient blocks (i.e., those with
potentially inaccurate results). For example, if cnt1 = 30, Ru[0] = 1, Ru[2] = 5,
and Ru[30] = 4, then u had 1 query for which he received the exact number of
required blocks, 5 queries with 2 redundant blocks, and 4 queries without enough
blocks. A similar vector Su of length cnt2 + 1 is maintained for database DB2.

Figure 1 depicts an example for 20 POIs (P1 to P20), a 6 × 6 grid, and a
query location Q. Let cyx be the cell of the yth row and xth column. All the
cyx’s are ordered according to their unique Hilbert values, and stored in DB1 as
pairs of numbers. The first value of cyx indicates the sum of the POIs contained
in all preceding cells in the Hilbert order, while the second one is the number of
POIs in cyx. For example, (3,0) for c13 denotes 3 POIs lying in c11, c21, c22, c12,
and no POIs in c13. Each block in DB1 holds up to 8 cells, and it is denoted as
B1,id, where id is the block id. DB2 holds a tuple < P.id, P.x, P.y, P.ptr > for
each POI, where P.id is the POI id, P.x, P.y its coordinates, and P.ptr a pointer
to DB3. Each DB2 block, denoted as B2,id, consists of up to 4 POIs, which are
sorted on the Hilbert values of their cells. Finally, DB3 contains tuples of the
form < P.id, P.tail >, where P.id is the POI id, and P.tail is the tail information
of the POI. Each block in DB3 is denoted as B3,id.

Let the query plan be ((DB1, 2), (DB2, 4), (DB3, 2)). Assume that a user u
in cell c45 issues a 2NN query from location Q. Initially, u discovers the block
in DB1 that contains his residing cell as follows. He computes the Hilbert value
H(4, 5) = 29 of c45, and determines the required block as (29+1)/8+1 = 4. Then,
he finds the position of c45 by computing (29 + 1) mod 8 = 6. Consequently,
u derives that the information of c45 is at position 6 of the 4th block in DB1,
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Fig. 1. Query stage example

and instructs the secure CPU to retrieve block B1,4. The pair of values in c45 is
(17, 0), denoting that there are no POIs in u’s cell. Thus, u proceeds with the
next closest cell to Q, which is c35. The latter belongs to the already retrieved
block B1,4 and hence, u does not need to obtain another block. Moreover, c35
contains only one POI and as such u needs to explore more cells by following the
same procedure. After retrieving c44 from B1,2, u has gathered 2 POIs, which
he uses for pruning as follows. He computes the maximum possible distance
maxdist between Q and the retrieved cells, and draws a circle C1 centered at
Q, with radius of maxdist. All the cells that have no common area with the
disk of C1 cannot contain any POIs comprising the 2NN, and hence, they can
be ignored. Therefore, u needs only the information of cells c34, c46, c36, c55,
c25, c54, c24, c43, c33, c56, and c26, which are distributed among all the 5 blocks
of DB1. However, he cannot acquire the information for all these cells, since his
DB1 block retrieval is limited to 2 blocks by the query plan. As such, he has
insufficient blocks from DB1 in order to ensure an accurate 2NN, and hence, he
updates the redundancy vector for DB1 by setting Ru[2] := Ru[2] + 1.

Next, u requests the coordinates of the POIs from DB2 in ascending order of
the minimum distances between Q and each retrieved cell from DB1. Specifically,
he obtained (17, 1) for c35 from the previous step. He computes (17+1)/4+1 = 5,
and (17 + 1) mod 4 = 2, and derives that the POI is at the 2nd position of the
5th block of DB2. Thus, he requests B2,5 from DB2, and repeats the process for
all of the potential NNs. Each time he retrieves the coordinates of a POI, he
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updates the best 2NN so far, and further prunes the search space if the current
distance of this 2NN is less than the minimum distance between Q and any other
cell. For example, let the current 2NN be P9 and P12, which lets u draw circle
C2. Any cell with no common area with the disk of C2 cannot contain a better
NN, e.g., cell c43 is pruned, because the distance between Q and P12, is smaller
than the minimum distance between Q and c43. Eventually, u receives 3 blocks,
i.e., B2,1, B2,4, and B2,5, and his 2NN consists of the POIs P9 and P12. However,
the query plan requires that any user retrieves 4 blocks, so he sends a random
request, retrieves one more block, and updates his redundant block vector Su for
DB2, to Su[1] := Su[1] + 1. Finally, he follows the pointers of P9 and P12, and
retrieves blocks B3,2 and B3,6 from DB3 in order to acquire the tail information.

3.2 Re-Computation Stage

During re-computation, the LBS aggregates the redundancy vectors of all active
users, i.e., those that are on-line. The process is identical for both DB1 and DB2;
in the following we focus on DB1. Each active user must specify the percentage
� of users that he trusts not to collude with the LBS. For instance, if � = 10,
10 % of the users are considered trusted. The parameter adjusts the noise scale
added by the differentially private mechanism. High values of �, as well as a
large number of active users, lead to more accurate statistics. For simplicity, we
assume that every user chooses the same � value.

When a user u registers with the service, he sends to the LBS a self-signed
Diffie-Hellman (DH) component for computing pairwise keys, and a certificate
to authenticate himself. At the beginning of re-computation, the LBS distrib-
utes the self-signed DH components and certificates to all active users. Every
user computes the pairwise keys shared with the other users using the DH com-
ponents. Then, each user u performs computations on Ru, before forwarding a
noisy and encrypted version R̂u of Ru to the LBS. Having collected R̂u from the
active users, the LBS derives a differentially private vector R̂ of the aggregate
statistics and uses it to generate the new AQP.

The process constitutes a combination of secure multiparty computation and
distributed differential privacy, for which we adopt the method of [1], originally
proposed for computing differentially private sums3. Let n be the number of
active users, Ku,w be the pairwise key shared by users u and w, r1 and r2 be
two random numbers published by the LBS, and Ku a symmetric key between
user u and the LBS. For every element Ru[v], user u spends privacy budget
λ = ε/(4 · qmax) by drawing two noise values from the Gamma distribution,
and computes R̂u[v] = Ru[v] + Gu,1(n · �, λ) − Gu,2(n · �, λ). Subsequently, u
selects approximately n·� other users randomly by using a secure pseudo random
function (PRF), so that if u selects w, then w selects u as well. The PRF works
as follows: u chooses w, if PRF (Ku,w, r1) ≤ n · �/(n − 1); for each chosen w,

3 In this setting, there are several users, each holding a value, and they wish to publish
the total sum, so that the value of any user is not revealed, even if an adversary has
complete knowledge of all the remaining users.
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u computes dkeyu,w = (u − w)/|u − w| · PRF (Ku,w, r2). Note that dkeyu,w =
−dkeyw,u. User u then encrypts R̂u[v] as Enc(R̂u[v]) = R̂u[v]+Ku+

∑
w dkeyu,w

and sends it to the server.
The LBS aggregates all the numbers sent from the users. By doing this,

all the dkeys are canceled out, and the server decrypts the sum by R̂[v] =∑
u Enc(R̂u[v]) − ∑

u Ku =
∑

u Ru[v] +
∑

u (Gu,1(n · �, λ) − Gu,2(n · �, λ)). [1]
shows that R̂[v] is equivalent to R̂[v] =

∑
u Ru[v]+Lap(λ/�) because the Laplace

noise can be approximated from identically distributed (i.i.d.) gamma distribu-
tions. As such, after computing all the elements of R̂, the final result satisfies
differential privacy.

The LBS calculates cnt1 by executing method recomputeQP (R̂), shown in
Fig. 2. Lines 4–5 determine if the percentage of queries without enough blocks
exceeds (1 − α) by checking ratio = R̂[cnt1]/

∑cnt1
i=0 R̂[i]. In this case, the value

of cnt1 increases, so that queries receive more blocks. In case the percentage of
queries without enough blocks does not exceed (1 − α) (lines 6–11), the server
iteratively computes ratio+ = R̂[l]/

∑cnt1
i=0 R̂[i] by incrementing l until the ratio

exceeds (1 − α). Essentially, the ratio for a certain l value represents the per-
centage of queries that will not receive enough blocks if we decrease the previous
query plan by l. Thus, the new query plan is computed as the previous one
reduced by (l − 1).

In lines 2 and 9 of recomputeQP (Fig. 2), the LBS sums consecutive noisy
values of R̂ in order to compute differentially private range-sums over private
data. As discussed in the related work session, this would result in high error
due to the noise accumulation. Therefore we adapt the technique of [3,9] as
follows. Each user u creates a binary tree, such that the original redundancy
vector Ru (without noise) represents the leaf nodes and each parent node is
the sum of its direct children, i.e., the root node is the sum of all leaf nodes.
Moreover, the privacy budget spent by the users decreases from ε/(4qmax) to
ε/(4qmax · log2 |R̂|), in order to satisfy the same level of privacy as suggested by
[3,9]. Then, aggregation is executed for the tree nodes instead for the elements of

Fig. 2. Pseudocode of recomputeQP
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Ru. Finally, the LBS acquires an aggregate tree with leaf nodes representing the
noisy values of R̂, and re-computes the query plan as before. The only difference
is that, instead of adding the values of R̂ one by one in order to compute ratio,
the LBS utilizes the noisy tree structure, resulting in more accurate sums.

3.3 Correctness and Utility Analysis

The next theorem shows that our adaptive solution, when applied on both DB1

and DB2, satisfies ε-differential privacy.

Theorem 3. The AQP algorithm satisfies ε-differential privacy for at most
qmax queries per user.

Proof. We refer to the query stage as mechanism M1, and the re-computation
stage as mechanism M2. Due to the fact that the query stage satisfies strong
location privacy [23], an adversary cannot distinguish if the user asks a query
from a location j or any other location j′. In other words, the probability for the
user to be at location j, and receive cnt1 blocks from DB1 and cnt2 blocks from
DB2 is the same with the probability he is at j′, and receives exactly the same
number of blocks from the two databases. Thus, from Definition 1, M1 satisfies
0-differential privacy.

In the case of M2, we further split the mechanism into two mechanisms M2.1

and M2.2. M2.1 computes cnt1 for DB1 and M2.2 computes cnt2 for DB2. Thus,
mechanism M2 comprises of cnt1 + 1 (M2.1) and cnt2 + 1 (M2.2) mechanisms
of [1], each utilizing privacy budget ε/(4 · qmax).

Let D1 be a table where each row represents a user, and each column the
received redundant blocks from DB1, i.e., each row u of D1 corresponds to Ru

of user u for DB1. Each cell i, j of D1 holds how many times user i received j
redundant blocks from DB1 during the query stage. Similarly, we define a table
D2 for DB2, i.e., each row u of D2 corresponds to Su of user u for DB2.

Mechanism M2.1 (resp. M2.2) essentially executes the method of [1] on each
column of D1 (resp. D2), and returns vector R̂ (resp. Ŝ), which holds the noisy
sums on the columns. A neighboring database D′

1 (resp. D′
2) differs at most by

2 · qmax to D1 (resp. D2): A user issues at most qmax private queries in D1 (resp.
D2), and there can be at most qmax different private queries in D′

1 (resp. D′
2).

As such, he can change at most 2 · qmax values of each database D1 and D2.
In order to determine the achieved privacy level we work as follows. For any

D1 (resp. D2), w.r.t a D′
1 (resp. D′

2), we create two databases; Da which contains
only the columns of D1 (resp. D2) that differ from D′

1 (resp. D′
2), and Db which

contains the columns that are exactly the same as those of D′
1 (resp. D′

2). Note
that Da has at most 2·qmax columns due to the sensitivity of D1 (resp. D2). From
Da we compute the noisy sums of the columns R̂a, and from Db we compute R̂b,
where R̂a ∪ R̂b = R̂D1 (resp. R̂a ∪ R̂b = R̂D2) and R̂a ∩ R̂b = ∅. Any mechanism
of [1] when applied on Da with privacy budget ε/(4·qmax), it satisfies ε/(4·qmax)-
differential privacy, as shown in [1]. On the other hand, when it is applied on Db,
it satisfies 0-differential privacy, due to Definition 1, since Db = D′

b. Moreover,
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we have at most 2 · qmax sub-mechanisms of M2.1 (resp. M2.2) applied on Da,
since Da has at most 2 · qmax columns. Hence, from Theorem 2, M2.1 satisfies
(2 · qmax · ε/(4 · qmax) = ε/2)-differential privacy, and equivalently M2.2 satisfies
ε/2-differential privacy, while M1 satisfies 0-differential privacy. Thus, the whole
procedure satisfies (0 + ε/2 + ε/2 = ε)-differential privacy due to Theorem2.

Next, we quantify the expected error. We focus on DB1 since the analysis
for DB2 is the same. Let q be the total number of queries performed at query
stage, and R be the actual redundancy vector without the noise required for
differential privacy. Due the the noise addition, we expect that the computed
(at the LBS) vector R̂ deviates from R, yielding an error during the query plan
re-computation.

Let lreal be the position of R representing the α percentile, i.e., the minimum
lreal value such that R[cnt1]+

∑lreal

i=0 R[i] > (1−α) ·q. Then, cnt1−lreal−1 is the
number of necessary blocks for accuracy α. On the other hand, the corresponding
number in Fig. 2 is computed as the minimum value of l for which it holds that
R̂[cnt1]+

∑l
i=0 R̂[i] > (1−α) ·q. As such, recomputeQP may stop at an l ≤ lreal

(or l > lreal), and return |lreal−l| more blocks (resp. fewer blocks) for each query
than required for accuracy α. We define |lreal − l| as the error due to the noise
perturbation.

As an example, let n = 10, α = 70%, q = 10, cnt1 = 3, |R̂| = 4, and R and
R̂ as shown in Table 1. Then, (1 − α) · q = 3, R[3] + R[0] = 3, and lreal = 2.
Consequently, cnt1 − (lreal − 1) = 2, and hence, cnt1 = 2 for the next period.
However, the server knows only the noisy R̂. It computes R̂[3]+ R̂[0]+ R̂[1] > 3,
and sets l = 3. As a result, cnt1 − (l − 1) = 1, or cnt1 = 1, and due to noise each
query receives |lreal − l| = 1 block less than required for 70% accuracy.

In the worst case, R is highly skewed, and (α + δ)q queries, for any small
δ > 0, receive cnt1 − 1 redundant blocks (i.e., R[cnt1 − 1] = (α + δ)q), while the
rest receive insufficient blocks (i.e., R[cnt1] = (1−α−δ)q). Therefore, lreal should
be |R| − 1, i.e., the new query plan should be set as cnt1 = 1. In this case, if
the Laplace noise added while computing R̂[cnt1] is positive, recomputeQP will
compute the new query plan as cnt1 := cnt1+1 = |R|, resulting in the maximum
error of |R|−1. Due to the fact that the Laplace distribution is symmetric about
its mean 0, the probability for recomputeQP to stop at position 0 is 50%, at
position 1 is 25%, and so on. This is equivalent to multiple Bernoulli trials and
hence, the probability to stop at position i can be described with the Binomial
distribution with p = 0.5. Thus, with probability 50%, we get the worst possible
error |R| − 1, while the probability for the error to be reduced by l (i.e. to stop
at position l) is equal to the probability we receive l heads in l coin flips.

Table 1. An example illustrating variables

Redundancy 0 1 2 Insufficient

R 2 2 5 1

R̂ 1 3 5 1
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In order to better quantify the expected error, we assume a uniform distri-
bution of the queries in R, i.e., q/|R| queries receive 0 redundant blocks, q/|R|
queries receive 1 redundant block, and so on. In this case, in order to achieve
α accuracy, we need to set lreal = (1 − α)|R|. Then, it suffices to compute the
expected value of l (returned by recomputeQP ) in order to find the expected
error |lreal − l|. Initially, we calculate the expected error of each sum

∑i
i=0 R̂[i],

for any 0 ≤ i ≤ |R|. The sum is computed utilizing the aggregate tree at
the server side with noisy node values. The noise at each node is equivalent
to Laplace noise with scale λ = 4qmax·log |R|

ε·� . In order to calculate each sum i we
use the technique of [3], which results in error err less than λ ·√log(i + 1) · log 1

δi

with probability (1 − δi).
RecomputeQP checks the value of each sum for i = 0 to |R|, and returns the

first i that results in a noisy sum which is higher to (1−α)·q. Thus, i = l if it does
not stop at i = 0 . . . l−1, with probability higher than 1− δ. The probability for
the algorithm to stop at a position l is equal to the probability it does not stop
until position l − 1 or

∏l
i=0

(
1 − Pr

[
(i + 1) q

|R| + err ≥ (1 − α) · q
])

. Thus, the
value of l can be computed as the first value for which the following inequality
does not hold.

l∏

i=0

(
1 − Pr

[
(i + 1)

q

|R| + err ≥ (1 − α) · q

])
≥ (1 − δ)

l∏

i=0

(
1 − Pr

[
err ≥ (1 − α) · q − (i + 1)

q

|R|
])

≥ (1 − δ)

l∏

i=0

(1 − δi) ≥ (1 − δ)

where δi = 0.5
(1−α)·q−(i+1)·q/|R|

λ
√

log (i+1) .

4 Experimental Evaluation

In this section we compare our adaptive query plan AQP with the fixed query
plan of AHG [23]. We implemented the methods in C++ on a Linux server
with Intel Core i7-4770 and 32 GB of RAM. Since the re-computation takes
only a few seconds and is performed once after each query stage, it is excluded
from the evaluation, and all experiments focus on query processing. In order to
evaluate efficiency, we measure the query response time, which directly affects
the user, and the number of block accesses, which determines the processing
cost at the LBS. We used two datasets with real POIs from Germany (denoted
as Germany) and the United States (denoted as USA)4. The former consists of
1.9 million POIs, while the latter has 12.8 million POIs.

4 SimpleGeo’s Places, available at http://freegisdata.rtwilson.com/.

http://freegisdata.rtwilson.com/
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Table 2. Parameter values

Parameter Values Default

# of active users n 2000, 4000, 6000, 8000, 10000 6000

% of trusted users � 5, 10, 15, 20, 25 10

Accuracy α 0.75, 0.8, 0.85, 0.9, 0.95 0.95
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Fig. 3. Response time vs. G granularity

Table 2 illustrates the examined parameters, along with their default values.
The number n of active users denotes those participating in the re-computation
stage. The percentage � of trusted users corresponds to those trusted not to
collude with others. Accuracy α is the percentage of queries that should be
answered correctly. In all experiments, we set ε = 1 for differential privacy, and
k = 10 as the number of returned nearest neighbors. Every user issues qmax = 10
private queries that follow the same distribution as the POIs. Since all queries
retrieve the same number of blocks they incur the same cost and response time.

Following [23], we first fine-tune the granularity of the grid G, used by the
basic AHG and AQP. Figure 3 shows the query response time, i.e. the total
elapsed time until a user receives a query answer, as a function of the granu-
larity of G, assuming fixed query plans (as in [23]). Coarse granularity leads to
high cost because there are numerous POIs in each cell, leading to many DB2

PIR retrievals. The response time is also high when the granularity is too fine
because there are numerous empty cells, yielding many DB1 PIR retrievals. In
the remaining experiments, we set the grid granularity to the optimal configu-
ration, which is 500 × 500 for Germany, and 900 × 900 for USA. Note that a
single query by basic AHG requires more than 10 min in USA, even for the best
granularity, motivating the need for AQP.

Figure 4 plots the response time versus the number of active users, setting
α = 95% and � = 10%. The cost drops as the active users increase because
the accuracy of statistics estimation improves, leading to a smaller query plan.
The basic solution needs 93.3 s for Germany, and 743.1 s for USA, in order to
answer a single query. For Germany, AQP reaches the lowest value (about 20 s)
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Fig. 4. Response time vs. number of active users

quickly, saving 78.6 % compared to AHG. Concerning USA, the benefits of AQP
are limited for a small number of users due to inaccurate query plan calculation
by the LBS. However, as the number of active users increases, the cost drops
quickly, reaching 65 s for 10,000 users and achieving savings of 91.3 %. The larger
benefits of AQP for USA are explained by the fact that the basic plan is very
expensive leaving more space for optimization.

To better elaborate performance, we investigate the size (in blocks) of the query
plans.The fixed query plan forGermany is ((DB1, 83), (DB2, 53), (DB3, 10)) under
all settings. This implies that any 10NN query retrieves cnt1 = 83 blocks from
DB1, cnt2 = 53 from DB2, and cnt3 = 10 from DB3. Recall that the cnt1 blocks
correspond to cell retrievals, whereas the cnt2 blocks represent POI retrievals. The
cnt3 blocks refer to detail information about the 10NNs, and cannot be avoided by
AQPor any othermethod.The fixed query plan forUSA is ((DB1, 299), (DB2,485),
(DB3, 10)). Note that cnt1 (cnt2) is higher for USA because of the finer grid gran-
ularity (larger number of POIs).

Figures 5 and 6 show the number of blocks cnt1 and cnt2, in both fixed and
adaptive plans, as a function of the number of active users, setting α = 95% and
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� = 10%. Comparing Figs. 5 and 6, the benefits of AQP are more pronounced
in DB1. This is explained by the fact that the pruned cells are likely to contain
few POIs; therefore the cell reduction in DB1 does not directly translate to an
equivalent POI reduction in DB2. In general, the results are consistent with
those on response time in Fig. 4; i.e., for Germany a small number of active
users suffices, while for USA more users are necessary to substantially reduce
the number of block retrievals.

Figure 7 shows the response time as a function of the percentage of trusted
users �, fixing α = 95% and n = 6, 000. The time drops as � increases because
the resulting statistics have smaller noise scale. For Germany, even � = 5% (i.e.,
300 trusted users) yields the lowest cost. Similar to Fig. 4, for USA the number
of users necessary for convergence is larger, but the savings with respect to the
basic plan are more substantial.
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Figure 8 illustrates the response time as a function of the percentage of accu-
racy α, setting � = 10% and n = 6, 000. As expected, the cost drops with the
required accuracy, but the effect is more pronounced in USA where reducing
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the accuracy from 95% to 75 % decreases the time from 135 to 30 s. The same
reduction in Germany gains only about 3 s. It is worth pointing out that even
for the inaccurate queries, the retrieved 10NN set is similar to the real one; i.e.,
80 %–90 % of the actual nearest neighbors are in the query result.

In the next experiment, we evaluate the actual versus the expected accu-
racy of queries. Specifically, we first executed n · qmax = 60, 000 queries based on
which the LBS generated the AQP. Then, we performed another 100, 000 queries
and measured the percentage for which the users obtain accurate results, i.e.,
the retrieved and the actual 10NN sets are identical. Note that the query dis-
tributions in both cases are the same as that of the POIs. As shown in Fig. 9,
the accurate queries always exceed the desired accuracy level because the error
incurred by the re-computation stage corresponds to a conservative estimation.

Summarizing the experimental evaluation, even the current state-of-the-art
method may take several minutes (more than 10 for USA) to answer a nearest
neighbor query. This implies that the results may be out-dated by the time they
are received, especially for the case of mobile users. On the other hand, the
proposed AQP approach achieves efficiency by sacrificing accuracy for a small
percentage of queries (in our experiments, the default accuracy setting is 95 %).
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5 Conclusion

Strong location privacy requires that every query retrieves the same number of
blocks in order to protect users from access pattern attacks. This has serious
performance implications for both the LBS (in terms of processing cost) and
the users (in terms of response time). To overcome the problem, we propose a
novel approach that utilizes query statistics and ensures privacy by adopting the
concept of ε-differential privacy. The trade-off is that accuracy is sacrificed for
a small predefined percentage of queries. As shown in a comprehensive experi-
mental evaluation with real POIs, ours is the first practical approach for strong
location privacy in large datasets.

Acknowledgments. This work was supported by GRF grant 618011 from Hong Kong
RGC.
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Abstract. Crowdsourced environmental sensing is made possible by the
wide-spread availability of powerful mobile devices with a broad array
of features, such as temperature, location, velocity, and acceleration sen-
sors. Mobile users can contribute measured data for a variety of pur-
poses, such as environmental monitoring, traffic analysis, or emergency
response. One important application scenario is that of detecting anom-
alous phenomena, where sensed data is crucial to quickly acquire data
about forest fires, environmental accidents or dangerous weather events.
Such cases typically require the construction of a heatmap that captures
the distribution of a certain parameter over a geospatial domain (e.g.,
temperature, CO2 concentration, water polluting agents, etc.).

However, contributing data can leak sensitive private details about an
individual, as an adversary may be able to infer the presence of a person
in a certain location at a given time. In turn, such information may reveal
information about an individual’s health, lifestyle choices, and may even
impact the physical safety of a person. In this paper, we propose a tech-
nique for privacy-preserving detection of anomalous phenomena, where
the privacy of the individuals participating in collaborative environmen-
tal sensing is protected according to the powerful semantic model of dif-
ferential privacy. Our techniques allow accurate detection of phenomena,
without an adversary being able to infer whether an individual provided
input data in the sensing process or not. We build a differentially-private
index structure that is carefully customized to address the specific needs
of anomalous phenomenon detection, and we derive privacy-preserving
query strategies that judiciously allocate the privacy budget to main-
tain high data accuracy. Extensive experimental results show that the
proposed approach achieves high precision of identifying anomalies, and
incurs low computational overhead.

1 Introduction

Environmental sensing using crowdsourcing is a promising direction due to the
widespread availability of mobile devices with positioning capabilities and a
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 313–332, 2015.
DOI: 10.1007/978-3-319-22363-6 17
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broad array of sensing features, e.g., audio and video capture, temperature,
velocity, acceleration, etc. In addition, mobile devices can easily interface with
external sensors and upload readings for many other environmental parameters
(e.g., CO2, water pollution levels, atmospheric pressure). The growing trend
towards crowdsourcing environmental sensing is beneficial for a wide range of
applications, such as pollution levels monitoring or emergency response. In such
a setting, authorities can quickly and inexpensively acquire data about forest
fires, environmental accidents or dangerous weather events.

One particular task that is relevant to many application domains is that
of detecting anomalous phenomena. Such cases typically require to determine
a heatmap capturing the distribution of a certain sensed parameter (e.g., tem-
perature, CO2 level) over a geospatial domain. When the parameter value in
a certain region reaches a predefined threshold, then an alarm should be trig-
gered, signaling the occurrence of an anomaly. Furthermore, the alarm should
identify with good accuracy the region where the dangerous event occurred, so
that countering measures can be deployed to that region.

However, there are important privacy concerns related to crowdsourced sens-
ing. Contributed data may reveal sensitive private details about an individual’s
health, lifestyle choices, and may even impact the physical safety of a person.
To protect against such disclosure, the state-of-the-art model of differential pri-
vacy (DP) adds noise to data in a way that prevents an adversary from learning
whether the contribution of an individual is present in a dataset or not. Sev-
eral DP-compliant techniques for protecting location data have been proposed
in [1,16,17]. However, these approaches consider only simple, general-purpose
count queries, and rely on simplifying assumptions that make them unsuitable
for our considered problem of anomalous phenomenon detection.

Consider the example of a forest fire, where mobile users report air tem-
perature in various regions. To model the fire spread, one needs to plot the
temperature distribution, which depends on the values reported by individual
users, and the users’ reported locations. With existing techniques, one could par-
tition the dataspace according to a regular grid and split the available privacy
budget between two aggregate query types, one counting user locations in each
grid cell, and the other summing reported values. Next, a temperature heatmap
is obtained by averaging the temperature for each cell. As we show in our experi-
mental evaluation, this approach results to useless data, due to the high amount
of noise injected. This is the result of a more fundamental limitation of exist-
ing approaches that are designed only for general-purpose queries, and do not
take into account correlations that are specific to more complex data processing
algorithms.

In this paper, we propose an accurate technique for privacy-preserving detec-
tion of anomalous phenomena in crowdsourced sensing. We also adopt the pow-
erful semantic model of differential privacy, but we devise a tailored solution,
specifically designed for privacy-preserving heatmap construction. Our technique
builds a flexible data indexing structure that can provide query results at arbi-
trary levels of granularity. Furthermore, the sanitization process fuses together
distinct types of information (e.g., user count, placement and reported value
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scale) to obtain an effective privacy-preserving data representation that can help
decide with high accuracy whether the sensed value in a certain geographical
region exceeds the threshold or not. To the best of our knowledge, this is the
first work that addresses the problem of value heatmap construction within the
differential privacy framework. Our specific contributions are:

1. We introduce a hierarchical differentially-private structure for representing
sensed data collected by mobile users. The structure is customized to address
the specific requirements of value heatmap construction, and accurately sup-
ports queries at variable levels of granularity.

2. We examine the impact of structure parameters and privacy budget allocation
on data accuracy, and devise algorithms for parameter selection and tuning.

3. We investigate techniques for reducing the impact of DP-injected noise, and
devise effective voting strategies during data processing that increase accuracy
of anomalous phenomenon detection.

4. We perform an extensive experimental evaluation which shows that the pro-
posed techniques accurately detect anomalous phenomena, and clearly out-
perform existing general-purpose sanitization methods that fare poorly when
applied to the studied problem.

The paper is organized as follows: Sect. 2 provides background information
on differential privacy. In Sect. 3, we introduce the system model, and the met-
rics used to characterize anomalous phenomenon detection accuracy. Section 4
presents the proposed privacy-preserving data indexing structure and analytical
models for characterizing query accuracy. We introduce strategies for anomaly
detection in Sect. 5, followed by experimental evaluation results in Sect. 6. We
present related work in Sect. 7, and conclude with directions for future work in
Sect. 8.

2 Background

2.1 Differential Privacy

Differential privacy (DP) [2,3] addresses the limitation of syntactic privacy mod-
els (e.g., k-anonymity [19], �-diversity [12], t-closeness [9]) which are vulnerable
against background knowledge attacks. DP is a semantic model which argues
that one should minimize the risk of disclosure that arises from an individual’s
participation in a dataset.

Two datasets D and D′ are said to be siblings if they differ in a single record r,
i.e., D′ = D ∪ {r} or D′ = D�{r}. An algorithm A is said to satisfy differential
privacy with parameter ε (called privacy budget) if the following condition is
satisfied [2]:

Definition 1 (ε-indistinguishability). Consider algorithm A that produces
output O and let ε > 0 be an arbitrarily-small real constant. Algorithm A satisfies
ε-indistingui-shability if for every pair of sibling datasets D,D′ it holds that

∣
∣
∣
∣ln

Pr[A(D) = O]
Pr[A(D′) = O]

∣
∣
∣
∣ ≤ ε (1)
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In other words, an attacker is not able to learn, with significant probability,
whether output O was obtained by executing A on input D or D′. To date, two
prominent techniques have been proposed to achieve ε-indistinguishability [3,13]:
the Laplace mechanism (and the closely related geometric mechanism for integer-
valued data) and the exponential mechanism. Both mechanisms are closely
related to the concept of sensitivity:

Definition 2 (L1-sensitivity [3]). Given any two sibling datasets D, D′ and a
set of real-valued functions F = {f1, . . . , fm}, the L1-sensitivity of F is measured

as ΔF = max∀D,D′

m∑

i=1

|fi(D) − fi(D′)|.

The Laplace mechanism is used to publish the results to a set of statistical
queries. A statistical query set Q = {Q1, . . . , Qm} is the equivalent of a set
of real-valued functions, hence the sensitivity definition immediately extends to
such queries. According to [3], to achieve DP with parameter ε it is sufficient
to add to each query result random noise generated according to a Laplace
distribution with mean ΔQ/ε. For COUNT queries that do not overlap in
the data domain (e.g., finding the counts of users enclosed in disjoint grid cells),
the sensitivity is 1.

An important property of differentially-private algorithms is sequential com-
posability [13]. Specifically, if two algorithms A1 and A2 executing in isolation on
dataset D achieve DP with privacy parameters ε1 and ε2 respectively, then exe-
cuting both A1 and A2 on D in sequence achieves DP with parameter (ε1 + ε2).
In contrast, parallel composability specifies that executing A1 and A2 on disjoint
partitions of the dataset achieves DP with parameter max (ε1, ε2).

2.2 Private Spatial Decompositions (PSD)

The work in [1] introduced the concept of Private Spatial Decompositions (PSD)
to release spatial datasets in a DP-compliant manner. A PSD is a spatial index
transformed according to DP, where each index node is obtained by releasing
a noisy count of the data points enclosed by that node’s extent. Various index
types such as grids, quad-trees or k-d trees [18] can be used as a basis for PSD.

Accuracy of PSD is heavily influenced by the type of PSD structure and
its parameters (e.g., height, fan-out). With space-based partitioning PSD, the
split position for a node does not depend on data point locations. This category
includes flat structures such as grids, or hierarchical ones such as BSP-trees
(Binary Space Partitioning) and quad-trees [18]. The privacy budget ε needs to
be consumed only when counting the users in each index node. Typically, all
nodes at same index level have non-overlapping extents, which yields a constant
and low sensitivity of 1 per level (i.e., adding/removing a single location in the
data may affect at most one partition in a level). The budget ε is best distributed
across levels according to the geometric allocation [1], where leaf nodes receive
more budget than higher levels. The sequential composition theorem applies
across nodes on the same root-to-leaf path, whereas parallel composition applies
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to disjoint paths in the hierarchy. Space-based PSD are simple to construct, but
can become unbalanced.

Object-based structures such as k-d trees and R-trees [1] perform splits of
nodes based on the placement of data points. To ensure privacy, split decisions
must also be done according to DP, and significant budget may be used in the
process. Typically, the exponential mechanism [1] is used to assign a merit score
to each candidate split point according to some cost function (e.g., distance from
median in case of k-d trees), and one value is randomly picked based on its noisy
score. The budget must be split between protecting node counts and building
the index structure. Object-based PSD are more balanced in theory, but they
are not very robust, in the sense that accuracy can decrease abruptly with only
slight changes of the PSD parameters, or for certain input dataset distributions.

The recent work in [16] compares tree-based methods with multi-level grids,
and shows that two-level grids tend to perform better than recursive partitioning
counterparts. The paper also proposes an Adaptive Grid (AG) approach, where
the granularity of the second-level grid is chosen based on the noisy counts
obtained in the first-level (sequential composition is applied). AG is a hybrid
which inherits the simplicity and robustness of space-based PSD, but still uses a
small amount of data-dependent information in choosing the granularity for the
second level.

All these methods assume general-purpose and homogeneous queries (i.e.,
find counts of users in various regions of the dataspace), and, as we show later
in this paper, are not suitable for the problem of anomalous phenomenon detec-
tion. We compare against state-of-the-art PSD techniques in our experimental
evaluation (Sect. 6).

3 System Model and Evaluation Metrics

We consider a two-dimensional geographical region and a phenomenon charac-
terized by a scalar value (e.g., temperature, CO2 concentration) within domain
[0,M ]. A number of N mobile users measure and report phenomenon values
recorded at their location. If a regular grid is super-imposed on top of the data
domain, then the histogram obtained by averaging the values reported within
each grid cell provides a heatmap of the observed phenomenon. Since our focus
is on detecting anomalous phenomena, the actual value in each grid cell is not
important; instead, what we are concerned with is whether a cell value is above
or below a given threshold T , 0 < T < M .

Mobile users report sensed values to a trusted data collector, as illustrated in
Fig. 1. The collector sanitizes the set of reported values according to differential
privacy with parameter ε, and outputs as result a data structure representing a
noisy index of the data domain, i.e., a PSD. This PSD is then released to data
recipients (i.e., general public) for processing. Based on the PSD, data recipients
are able to answer queries with arbitrary granularity that is suitable for their
specific data uses. Furthermore, each data recipient has flexibility to choose a
different threshold value T in their analysis. In practice, the trusted collector
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role can be fulfilled by cell phone companies, which already know the locations
of mobile users, and may be bound by contractual obligations to protect users’
location privacy. The collector may charge a small fee to run the sanitization
process, or can perform this service free of charge, and benefit from a tax break,
e.g., for supporting environmental causes.

According to differential privacy, the goal of the protection mechanism is
to hide whether a certain individual contributed to the set of sensed values
or not. To achieve protection, noise is added to the values of individual value
reports. Furthermore, fake value reports may have to be inserted, and some
actual readings may have to be deleted from the dataset. Inherently, protection
decreases data accuracy.

To measure the accuracy of sanitization, we need to quantify the extent to
which the outcome for certain regions changes from above the threshold to below,
or vice-versa. Given an arbitrary-granularity regular grid, we define the following
metrics:

φboth: number of grid cells above the threshold according to both actual and
sanitized readings.

φeither: number of grid cells above the threshold according to either actual or
sanitized readings.

φflip: number of grid cells above the threshold in one dataset and below in the
other.

φall: total number of grid cells.

It results immediately from the metric definitions that φeither = φflip+φboth.
Hence, we can define two additional metrics with domain [0, 1] and ideal value
of 1 (i.e., perfect accuracy). FlipRatio (FR) quantifies the proportion of cells
that change their outcome due to sanitization:

FR = 1 − φflip

φall

Fig. 1. System model
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The Jaccard (J) metric, derived from the Jaccard similarity coefficient [2],
measures the dissimilarity between the real and sanitized datasets:

J =
φboth

φeither

The FR and J metrics have the advantage of being less dependent on the
grid granularity, i.e., the φall values, so they maintain their relevance across a
broad range of query granularities. However, only the J metric captures the local
impact of the sanitization method. Interchanging the state of two random cells
will not change the values of any other metrics than J , so they are not sufficient
to determine the accuracy of the heatmap. Therefore, in the rest of the paper,
we focus on the J metric. Formally, our problem statement is:

Problem 1. Given N users moving within a two-dimensional space, a phenom-
enon characterized by a scalar value with domain range [0,M ], an anomaly
threshold T , 0 < T < M and privacy budget ε, determine an ε-differentially-
private release such that the Jaccard metric between the real and sanitized
dataset is maximized.

4 PSD for Anomalous Phenomenon Detection

Constructing an appropriate PSD is an essential step, since the accuracy of the
entire solution depends on the structure properties. Furthermore, due to the
specific requirements of our problem, general-purpose PSDs such as the ones
optimized for count queries [1,16,17] are not suitable.

The anomalous phenomenon detection may be performed with respect to a
regular grid of arbitrarily fine-grained granularity. On the other hand, creating a
PSD that is too fine-grained is not a suitable approach. According to the Laplace
mechanism, each cell’s query result is added with random noise of magnitude
independent of the actual value. Therefore, PSDs with small cells and PSDs that
do not adapt to data density are not appropriate, as the resulting inaccuracy
is high. Instead, we construct a flexible structure, based on which the threshold
condition can be answered for arbitrary regular grids, as illustrated on the right
side of Fig. 1.

The PSD must keep track of two measures necessary to determine phenomena
heatmaps: sensor counts1 and phenomenon value sums, which together provide
average values for each cell. We denote the actual values for sensor count and value
sum in a cell by n and s, respectively (we use subscript indices to distinguish the n
and s values across cells). We denote the sanitized counts and sums by n∗ and s∗.
The sensitivity of n is 1, whereas the sensitivity of s is M (adding a new sensor in a
cell can increase n by 1 and s by M). Hence, if n is answered using privacy budget
εn and s is answered using privacy budget εs, the variance of n∗ is 2

ε2
n
, whereas

the variance of s∗ is 2M2

ε2
s

.

1 In the rest of the paper, the terms mobile user and sensor are used interchangeably.
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To simplify presentation, we introduce our PSD in incremental fashion: first,
we outline the main concepts and parameters for a single-level regular grid.
Next, we extend our findings to a two-level structure, and then generalize to a
multiple-level structure. Table 1 summarizes the notations used.

Single-level Grid. Assume a regular grid of N0 × N0 cells spanning over a
data domain of size w × w. Similar to other work on PSD [10,16], we assume
that a negligible fraction of the privacy budget is spent to estimate n∗

0, the total
number of sensors, and s∗

0, the sum of all sensed values. Granularity N0 must
be chosen to minimize the expected error over all rectangular queries (since any
query can be decomposed into non-overlapping rectangular regions). The error
has two sources:

– Laplace error within a single cell due to noise addition by the Laplace mech-
anism. These errors are added for all cells covered by the query.

– Non-uniformity error caused by non-uniformity of sensor distribution within
a grid cell. These errors occur only for cells which are partially covered by the
query rectangle. In such a case, we output a value proportional to the fraction
of the cell that overlaps the query.

Furthermore, errors occur for both sensor counts and sensed values. Since the
threshold T is expected to be proportional to scale M , we normalize the error
for sensed values to account for the skew introduced by M . The error expression
subject to minimization becomes the sum of all count errors plus 1

M of the sum
of all value sum errors.

Table 1. Symbols and notations used in the paper.

Symbol Description

n, s Real count and sum of values of sensors in a cell

n∗, s∗ Noisy count and sum of values of sensors in a cell

n′, s′ Count and sum of values of sensors in a cell after weighted averaging

n, s Count and sum of values of sensors in a cell after mean consistency step

ε Privacy budget

εn, εs Privacy budget used for answering count and, respectively, sum queries in
the cell

α Proportion of available privacy budget to use at current PSD level

β Proportion of privacy budget for the current level used for answering
count queries

Nu Split factor for cell u

M Maximum value of a sensor’s scale

T Threshold for the anomalous heatmap

Nt Threshold for minimum (noisy) number of sensors in a cell

K Non-uniformity constant
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Consider an arbitrary rectangle query of size rw2, r ∈ (0, 1). The query will
cover approximately rN2

0 cells. The total variance of the query result is 2rN2
0

ε2
n

for

n and 2M2rN2
0

ε2
s

for s. Hence, the count error is expressed as
√

2r N0
εn

, and the sum

error as
√

2r MN0
εs

. The total Laplace error is
√

2rN0

(
1

εn
+ 1

εs

)
.

The query rectangle might partially cover some cells. The number of such cells
is of the order O(

√
rN0) (determined by the perimeter of the query rectangle).

Hence, we can assume that the number of points in partially covered cells is of the
order O(

√
rN0

n∗
0

N2
0
) = K

√
r

n∗
0

N0
, where K is a constant. Assuming uniform sensor

density, the error for value sum in partially covered cells is K
√

r
s∗
0

N0
. Hence, the

non-uniformity error is K
√

r
N0

(
n∗
0 + s∗

0
M

)
.

Thus, we must minimize the expression:

√
2rN0

(
1
εn

+
1
εs

)
+ K

√
r

N0

(
n∗
0 +

s∗
0

M

)
(2)

According to the sequential composition property (Sect. 2), the available pri-
vacy budget ε must be split between εn and εs. We capture this split with
parameter β ∈ (0, 1), defined as the fraction used by the count sanitization:
εn = βε and εs = (1 − β)ε. Minimizing Eq. (2) with respect to N0, we obtain
the optimal single-level granularity

N0 =

√

ε × K√
2

× β(1 − β)
(

n∗
0 +

s∗
0

M

)
(3)

Two-level Grid. Starting with the optimal single-level N0 setting, we further
divide each cell according to its noisy n∗ and s∗. The privacy budget must be
split between the two levels according to sequential composition. We model this
split with parameter α ∈ (0, 1), which quantifies the budget fraction allocated
to the level 1 grid. Levels 1 and 2 receive respectively budgets ε1 = αε and
ε2 = (1 − α)ε. Each level budget is further divided between counts and sums
using parameter β ∈ (0, 1):

εn1 = βε1, εs1 = (1 − β)ε1, εn2 = βε2, εs2 = (1 − β)ε2 (4)

Since each level-1 cell is further divided, we define N0 as a fraction of the
value in Eq. (3) (later in this section, Eq. (11) shows how to choose η):

N0 =
1
η

√

ε × K√
2

× β(1 − β)
(

n∗
0 +

s∗
0

M

)
(5)

For each cell u in the first level we use budgets εn1 and εs1 to determine n∗
u1

and, respectively, s∗
u1. Based on these values, we split cell u into N2

u cells. For
each cell v ∈ child(u), we use εn2 and εs2 to determine n∗

v2 and, respectively,
s∗

v2 (the subscript indicates the level of the grid where the value is computed).
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Since the actual sensor count in a cell at level 1 is the same as the sum of the
sensor counts in all of its children at level 2 (and the same holds for the sums),
we perform a constrained inference procedure with the purpose of improving
accuracy. Based on the values n∗

u1, s∗
u1, n∗

v2, s∗
v2 we determine nu1, su1, nv2 and

sv2 such that

nu1 =
∑

v∈child(u)

nv2

su1 =
∑

v∈child(u)

sv2

and ∀u, the variances of nu1 and su1 are minimized. Note that, since all input
values are already sanitized, no budget is consumed in the constrained inference
step, and differential privacy is still enforced.
We determine these values in two steps:

1. We determine the weighted average estimators n′
u1 and s′

u1 with minimal
variance. We average the values of n∗

u1 and
∑

v∈child(u) n∗
v2 to determine n′

u1

and the corresponding ones for s′
u1. To do so, we are using the fact that

the variance of the weighted average of two random variables X and Y with
variances V ar(X) and V ar(Y ) is minimized by the value

V ar(Y )
V ar(X) + V ar(Y )

× X +
V ar(X)

V ar(X) + V ar(Y )
× Y (6)

In our case, X is n′
u1 (s′

u1) and Y is
∑

v∈child(u) n∗
v2 (respectively∑

v∈child(u) s∗
v2).

2. We update the values to ensure mean consistency according to:

nu1 = n′
u1 nv2 = n′

v2 +
1

N2
u

⎛

⎝nu1 −
∑

v∈child(u)

n′
v2

⎞

⎠ (7)

su1 = s′
u1 sv2 = s′

v2 +
1

N2
u

⎛

⎝su1 −
∑

v∈child(u)

s′
v2

⎞

⎠ (8)

The effects of the constrained inference so far concern only queries which
partially cover level-1 cells. Suppose that a query covers i × j sub-cells of cell u,
where i, j ∈ {1, 2, . . . Nu}. Then, the effect of the constrained inference is that
min(i × j,N2

u − i × j) level-2 cells will be used to answer the query. On average,
the number of level-2 cells required to answer a query is:

1
N2

u − 1

Nu∑

i=1

Nu∑

j=1

min(i × j,N2
u − i × j) ≈ N2

u

5
+ O(Nu)

Hence, the total variances are 2N2
u

5ε2
n2

and 2M2N2
u

5ε2
s2

, and the resulting total Laplace

error is
√
10Nu

5

(
1

εn2
+ 1

εs2

)
.
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For non-uniformity errors, assume r is the ratio between the area used to
answer the query and the total area of the cell. We know from the single-level
case that the non-uniformity errors are K

√
r

n∗
u

Nu
and K

√
r

s∗
u

Nu
. To eliminate the√

r factor, we integrate over its domain ((0, 0.5]) and compute the expected

value of the total non-uniformity error. Since
∫ 0.5
0

√
rdr

∫ 0.5
0 dr

=
√
2
3 we get that the

total non-uniformity error is
√
2K

3Nu

(
n∗

u + s∗
u

M

)
.

Thus, we must minimize the expression
√

10Nu

5

(
1

εn2
+

1
εs2

)
+

√
2K

3Nu

(
n∗

u +
s∗

u

M

)

and we obtain

Nu =

√√
5

3
εKβ(1 − β)(1 − α)

(
n∗

u +
s∗

u

M

)
(9)

where we can approximate
√
10
3 by 1. This also provides a value for η (Eq.(5)),

such that:

N0 =

√

ε × K√
2

× β(1 − β)α
(

n∗
0 +

s∗
0

M

)
(10)

Nu =

√

ε × K√
2

× β(1 − β)(1 − α)
(

n∗
u +

s∗
u

M

)
(11)

Generalization to Multiple Levels. The analysis for two levels can be
extended to a multiple-level structure, where the privacy budget is split across
levels (keeping αε for the current level and dividing privacy budget between count
and sum using β, as before), and the granularity for each new level is determined
based on the sanitized data and variance analysis at the previous level. However,
we must carefully decide when to end the recursion, as having too many levels
will decrease the budget per level, and consequently decrease accuracy. Because
of this, we implement two stopping mechanisms: first, we introduce a maximum
depth of the PSD, max depth, to prevent excessive reduction of per-level privacy
budget. Second, we introduce a threshold, Nt such that a cell u is divided only
if its estimated sensor count satisfies inequality n∗

u > Nt.
The number Nu of children nodes of u is given by:

Nu =

√

εu × K√
2

× β(1 − β)(1 − α)
(

n∗
u +

s∗
u

M

)
(12)

We illustrate the proposed multiple-level PSD approach with a running exam-
ple, in parallel with the description of the pseudocode provided in Algorithm1.
The PSD is built in three phases. First, the PSD structure is determined (i.e.,
the spatial extent of each index node), by splitting cells according to Eq. (12),
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and noisy values are computed for sensor counts and value sums. This is the
only step that accesses the real dataset of readings, and hence the only step
that consumes privacy budget. The recursive procedure buildPSD (Algorithm 1)
summarizes this process.

Algorithm 1. Splitting a PSD cell u at depth depth, with privacy budget ε

1: function buildPSD(ε, u, depth)
2: if depth == max depth then
3: εcrt ← ε
4: else
5: εcrt ← αε
6: end if
7: εn ← βεcrt
8: εs ← (1 − β)εcrt
9: (n, s) ← getRealValues(u)

10: n∗ ← n + Laplace(1/εn)
11: s∗ ← s + Laplace(M/εs)
12: Nu ← ComputeSplit(ε, n∗, s∗)
13: if Nu < Nt then
14: εn ← β(1 − α)ε
15: εs ← (1 − β)(1 − α)ε
16: n′∗ ← n + Laplace(1/εn)
17: s′∗ ← s + Laplace(M/εs)
18: n′ ← Average(n∗, n′∗)
19: s′ ← Average(s∗, s′∗)
20: end if
21: for all v ∈ SplitCell(u, Nu, depth) do
22: buildPSD((1 − α)ε, v, depth + 1)
23: end for
24: end function

Figure 2 illustrates PSD construction with α = 0.2, β = 0.5 and ε = 1.6.
The root node will receive a budget of εn,root = 0.5 × 0.2 × 16 = 0.16 (lines
2–8 of Algorithm 1). Line 9 computes the real values for the count and sum
of sensor values inside the cell (the sensor counts for the running example are
presented in Fig. 2(d)). Lines 10–11 add Laplace noise, resulting in a value of
n∗

root = 14. The split granularity for next level is determined as in Eq. (12).
Assume we obtain Nu = 4, larger than the threshold Nt = 2. The root is split
into four cells, and the procedure is recursively applied to each of them with
ε1 = (1 − α)ε = 0.8 × 1.6 = 1.28.

The budget for level 1 is further split between sum and count values, to
obtain εn,1 = 0.128 (lines 2–8). Adding the corresponding Laplace noise to the
real values of 2, 1, 2 and 3 (Fig. 2(d)) (lines 10–11), results in noisy counts 9, 2,
6 and, respectively, −2 (Fig. 2(a)).

The cells with values 9 and 6 are further split, while the one with n∗
1 = −2 is

not, due to the value of Nt. In case no further splits are performed, the remaining
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(a) Building the index, showing (b) Weighted averaging, showing

(c) Mean consistency, showing (d) The real values for

Fig. 2. Representation of PSD construction, including weighted averaging and mean
consistency.

budget is used by running lines 13–20 of Algorithm1, which compute new noisy
estimates which are averaged to determine n′ and, respectively, s′.

Since the remaining cells are at the maximal depth allowed by the method,
the remaining privacy budget of εn,2 = 0.512 is used to compute the remaining
noisy values. The result of the algorithm is shown in Fig. 2(a).

The second phase of the index building method is weighted averaging.
We average for each internal node the two estimates and compute n′ and s′

according to Eq. (6). For each node, we keep track of the variance of the noisy
variables and the averaged values, since they will be needed in the higher levels
of the tree. The resulting tree at the end of this phase is shown in Fig. 2(b).

Finally, the last phase performs mean consistency, which ensures that the
estimate from one node is the same as the sum of the estimates from its children.
We use Eqs. (7) and (8) in a top-down traversal of the tree, the result of which
is shown in Fig. 2(c).

5 PSD Processing and Heatmap Construction

As illustrated in Fig. 1 (Sect. 3), after the PSD is finalized at the trusted col-
lector, it is distributed to data recipients who process it according to their own
granularity and threshold requirements. The objective of the data recipient is to
obtain a binary heatmap that captures areas with anomalous phenomena, i.e.,
regions of the geographical domain where the measured values are above the
recipient-specified threshold.

We assume that the recipient is interested in building a heatmap according
to a recipient resolution grid (rrg). Recall that our solution is designed to be
flexible with respect to recipient requirements, and each recipient may have its
own rrg of arbitrary granularity. In this section, we show how a recipient is able
to accurately determine a phenomenon heatmap given as input the PSD, the
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Vote: negative

Vote: positive

Vote: positive

Level 1

Level 2

Level 3

Recipient grid

Fig. 3. Construction of heatmap at the data recipient site

recipient-defined rrg and threshold T . The objective of heatmap construction is
to determine for each rrg cell a binary outcome: positive if the value derived for
the cell is above T , and negative otherwise.

Figure 3 shows an example of rrg superimposed on the PSD index. The PSD
has four levels, out of which only three are shown (the root is split into four
cells, and it is omitted from the diagram due to space considerations). The
bottom layer in the diagram represents the rrg. The shaded cell in the rrg layer
represents the cell for which we are currently determining the outcome. In this
example, we illustrated a high-resolution rrg, so most rrg cells are completely
enclosed within a PSD cell at each index level. However, in general, there may
be cases when a rrg cell overlaps with several PSD cells. We consider both cases
below.

Since the recipient has no other information other than the PSD, we assume
that the count and sum values inside a PSD cell are uniformly distributed over
the cell’s extent. Hence, for each rrg cell we compute n and s in proportion to the
overlap between the rrg and PSD cells, normalized by the PSD cell area. If one
rrg cell overlaps two or more PSD cells, the values for n and s are determined
as the weighted sum of the values corresponding to each PSD cell, where the
weight is represented by the overlap amount.

Note that, even if the above procedure may result in values for n and s for
each rrg cell which are not too far apart from the actual values, there is another
important source of inaccuracy due to the fact that the outcome for an rrg cell
is obtained by dividing the noisy s and n values. The ratio can be significantly
affected even if the noise is not very high. Furthermore, even though the leaf
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cells of the PSD are likely to be closer in resolution to the rrg grid, considering
solely leaf nodes in the outcome evaluation may have undesirable effects, due
to the fact that the noise added to leaf nodes is more significant compared to
their actual values compared to PSD nodes that are higher in the hierarchy (i.e.,
relative errors are higher closer to the leaf level).

In our solution, we account for these factors. Instead of näıvely dividing
estimates for n and s in each rrg grid cell (which may have low accuracy), we
evaluate individually the outcome based on information at each PSD level, and
then combine the outcomes through a voting process in order to determine the
outcome for each individual rrg cell. Returning to the example in Fig. 3, assume
that threshold T = 80. We determine the outcome of the gray cell at the rrg
layer by using the outcomes for all the marked PSD cells on the three levels
shown (cells are marked using a small black square). Specifically, the Level 1
PSD cell containing the shaded grid cell has n = 30 and s = 1050, resulting
in a phenomenon value ρ = s

n = 35, below the threshold T = 80. Hence, the
root cell’s vote would be negative, meaning that with the information from that
layer, the grayed grid cell does not present an anomalous reading.

However, at Level 2 of the PSD, we have n = 20 and s = 1700, resulting
in a value of 85, greater than the threshold. Hence, this layer will contribute a
positive vote. Similarly, at Level 3, n = 8 and s = 800 which also results in a
positive vote.

The resulting outcome for any rrg cell depends on the distribution of the
votes it has received. We could use the difference between positive and negative
votes, but this will report a biased result for grid cells overlapping multiple PSD
cells at the same level. A better solution is to use the ratio of positive votes
to the total votes. In our example, the grayed cell got two positive votes and a
single negative one, hence it would be marked as anomalous.

An alternative approach is to use only the number of positive votes
that have been received. For instance, a rrg cell would receive a posi-
tive outcome if at least two PSD cells vote positively. This approach has
two advantages: first, it captures locality better than the previous strat-
egy. If the region where the phenomenon has an anomalous value is small,
majority voting would tend to flatten the heatmap at higher levels, and
the sharp spike may be missed. The two-vote strategy, however, may correctly
identify the spike if both the leaf level PSD and another level above vote posi-
tively. Second, the two-vote strategy may prevent false alarms, caused by small
PSD cells that may receive a high amount of random noise. By having a sec-
ond level confirm the reading, many of the false negatives are eliminated, as it
is unlikely that two PSD cells at different levels that overlap each other both
receive very high noise due to the Laplace mechanism.

6 Experiments

We evaluate experimentally the proposed technique for privacy-preserving detec-
tion of anomalous phenomena. We implemented a C prototype, and we ran our
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experiments on an Intel Core i7-3770 3.4 GHz CPU machine with 8 GB of RAM
running Linux OS. We first provide a description of the experimental settings
used. Next, we evaluate the accuracy of our technique in comparison with bench-
marks. Finally, we investigate the performance of our technique when varying
fundamental system parameters.

Experimental Settings. We consider a square two-dimensional location space
with size 100 × 100, and a phenomenon with range M = 100 and threshold
T = 80. We consider between 10, 000 and 50, 000 mobile users (i.e., sensors),
uniformly distributed over the location domain. The average non-anomalous
phenomenon value is 20, and to simulate an anomaly we generate a Gaussian
distribution of values with scale parameter 20, centered at a random focus point
within the location domain.

We consider two benchmark techniques for comparison. The first method,
denoted as Uniform Grid (U), considers a single-level fixed-granularity regu-
lar grid. The parameters of the grid are chosen according to the calculations
presented in the first part of Sect. 4. The second method, Adaptive Grid (AG),
implements the state-of-the-art technique for PSDs as introduced in [16]. Specif-
ically, it uses a two-level grid, where the first grid granularity is chosen according
to a fixed split as indicated in [16], whereas the second-level granularity is deter-
mined based on the data density in the first level.

Comparison with Competitor Methods. We measure the accuracy in
detecting anomalous phenomena for the proposed tree-based technique (denoted
as t) and the benchmarks U and AG when varying privacy budget ε. For fair-
ness, we consider the 1-vote decision variant, which is supported by all methods.
Figure 4(a) shows that our technique (presented with two distinct depth settings)
clearly outperforms both benchmarks with respect to the Jacard metric. The U
and AG method are only able to achieve values around 0.1 or less. Furthermore,
they are not able to make proper use of the available privacy budget, and some-
times accuracy decreases when ε increases. The reason for this behavior is that
the procedure for grid granularity estimation proposed in [16] has some built-in
constants that are only appropriate for specific datasets and query types. In our
problem setting, the granularity of these choices increases when ε increases, and
the noise injected offsets the useful information in each cell.

To validate the superiority of the proposed technique beyond the J met-
ric, Fig. 4(b) and (c) provide visualization of the heatmap obtained for the U
method and our technique, respectively (the heatmap obtained for AG is similar
to that of U). The anomalous phenomenon in the real data is shown using the
circle area (i.e., points inside the circle are above the threshold). The heatmap
produced by the U method is dominated by noise, and indicates that there are
small regions with above-the-threshold values randomly scattered over the data
domain. In contrast, our technique accurately identifies a compact region that
overlaps almost completely with the actual anomalous region. Furthermore, for
the t technique we consider two distinct maximum depth settings, d = 3 and
d = 4. We observe that, although both variants outperform the benchmarks, as
the height of the structure increases, a potentially negative effect occurs due to
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the fact that the privacy budget per level decreases. Hence, it is not advisable
to increase too much the PSD depth.

Both the UG and the AG method are unable to maintain data accuracy, and
return virtually unusable data, without the ability to detect the occurrence of
anomalous phenomena. In the rest of the experiments, we no longer consider
competitor methods, and we focus on the effect of varying system parameters
on the accuracy of the proposed technique. We also note that our method incurs
low performance overhead, similar to that of the U method (between 2 and 4 s
to sanitize and process the entire dataset). The AG method requires slightly
longer, in the range of 15–20 s.

Effect of Varying System Parameters. We perform experiments to mea-
sure the accuracy of the proposed technique when varying fundamental system
parameters, such as budget split parameters α, β and sensor count N .

Figure 5 shows the accuracy of our method when varying α, the budget split
fraction across levels. Each graph illustrates several distinct combinations of
budget ε and count-sum budget split β. For smaller α values, a smaller fraction
of the budget is kept for the current level, with the rest being transferred for
the children cells. Since the root node and the high levels of the tree have large
spans, a smaller budget does not have a significant effect on accuracy, so it is
best when a larger fraction is used in the lower-levels. For α = 0.2, the proposed
method reaches close to perfect J metric value.

We also illustrate the effect of the various decision variants based on voting.
Comparing Fig. 5(a) and (b), we can see that the accuracy increases slightly for
the 2-vote scenario. This confirms that the 2-vote approach is able to filter out
cases where some large outlier noise in one of the lower-level cells creates a false
positive. On the other hand, the majority-voting strategy from Fig. 5(c) obtains
lower accuracy, as it suffers from a relatively high false negative rate. Even if
some of the levels signal an alarm, it is possible that a large amount of noise on
several levels flips the outcome to “below the threshold”. We conclude that the
2-vote strategy is the best available option.

Figure 6 shows the effect of varying parameter β, which decides the privacy
budget split between the counts and sums in the PSD. Similar to previous results,
we observe that the majority voting strategy has lower accuracy, due to the
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increased occurrence of false negatives. The results also show that an equal split
between counts and sums yields good results. As long as the β split is not severely
skewed, the parameter does not significantly influence accuracy. However, when
β is excessively low or high, one of the sum or count components gets very little
budget, which causes large errors. In fact, this is one of the main reasons why
competitor techniques fail to obtain good accuracy, as they do not consider the
correlation between sum and count errors.

Finally, we consider the effect of varying number of sensors N . Figure 7 shows
that the accuracy of the method increases slightly with N . This is expected, as a
higher data density due to more reporting sensors benefits differential privacy, as
the signal-to-noise ratio increases. In this case, we also notice a tendency of the
majority voting strategy to underperform significantly compared to the 1-vote
and 2-votes strategies.
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7 Related Work

Collaborative sensing enables information extraction from a large number of
wireless devices, spanning from smart phones to motes in a WSN. We focus on
personal devices which are carried by users and may be used in sensing appli-
cations – from tracking to shapes-detection – in settings in which there are
no WSNs available [11,15]. Such settings occur in many real-life applications in
which the deployment of a WSN is either not possible or the WSN approach is not
sustainable. We note that collaborative sensing is, in some sense, a broader par-
adigm than participatory sensing and opportunistic sensing, and when it comes
to issues related to privacy protection, it subsumes the ones from the latter
two paradigms in the risk of leaking personal/sensitive information [8]. While
privacy-preserving computation has its history in domains such as cryptogra-
phy and data mining, the existing methodologies cannot be straightforwardly
mapped into the collaborative sensing applications.

Existing work addressed different aspects of the problem of detecting and rep-
resenting spatial features of a particular monitored phenomenon [4,5]. Spatial
summaries (e.g., isocontours [5]) may be constructed for energy-efficient query-
ing. A natural trade-off is the precision of the aggregated representation vs the
energy efficiency.

Location privacy has been studied extensively. Some techniques make use
of cryptographic protocols such as private information retrieval [6]. Another
category of methods focuses on location cloaking, e.g., using spatial k-anonymity
[7,14], where a user hides among k other users. As discussed in Sect. 2, such
techniques have serious security drawbacks. Closest to our work are the PSD
construction techniques in [1,16,17]. As discussed in Sect. 4, these techniques
are general-purpose, and our experimental evaluation shows that they are not
suitable for anomalous phenomenon detection.

8 Conclusions

We proposed an accurate differentially-private technique for detection of anom-
alous phenomena in crowdsourced environmental sensing. Our solution consists
of a PSD specifically-tailored to the requirements of phenomenon heatmap data,
and strategies for flexible processing of sanitized datasets with values collected
from mobile users. Experimental results show that the proposed technique is
accurate, and clearly outperforms existing state-of-the-art in private spatial
decompositions. In the future, we plan to extend our solution to continuous
monitoring of phenomena, where multiple rounds of reporting are performed.
This scenario is more challenging, as an adversary may correlate readings from
multiple rounds to breach individual privacy.
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Abstract. The dissemination of messages to a vast number of mobile
users has raised a lot of attention. This issue is inherent in emerging
applications, such as location-based targeted advertising, selective infor-
mation disseminating, and ride sharing. In this paper, we examine how
to support location-based message dissemination in an effective and effi-
cient manner. Our main idea is to develop a location-aware version of the
Pub/Sub model, which was designed for message dissemination. While a
lot of studies have successfully used this model to match the interest
of subscriptions (e.g., the properties of potential customers) and events
(e.g., information of casual users), the issues of incorporating the location
information of subscribers and publishers have not been well addressed.
We propose to model subscriptions and events by boolean expressions
and location data. This allows complex information to be specified. How-
ever, since the number of publishers and subscribers can be enormous, the
time cost for matching subscriptions and events can be prohibitive. To
address this problem, we have developed the RI -tree. This data structure
is an integration of the R-tree and the dynamic interval-tree. Together
with our novel pruning strategy on RI -tree, our solution can effectively
and efficiently return the top-k subscriptions with respect to an event.
We have performed extensive evaluations to verify our approach.

1 Introduction

Due to the advance of telecommunications and Internet technologies, tremen-
dous amounts of location information can now be obtained easily. For instance,
a user’s location is often tracked by base stations in a cellular network; a vehi-
cle’s position can be obtained through GPS receivers or sensors on roads; a user
reveals her location when she “checks in” (e.g., through Facebook and Twitter).
The availability of location information stimulates the development of location-
based messaging services, which disseminates interesting messages to users based
on their positions and other information. Taking location-based targeted adver-
tising as an example, advertisements are sent to users selected in terms of age,
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 333–351, 2015.
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gender, interest, and location1. Another example is the Location-Based App Rec-
ommendation (LBAR), where software or “apps” are suggested to a user based
on where she is. An LBAR feature recently appears in Apple’s iOS 82, which
shows the picture of an app (e.g., “Starbucks”) in the lock screen based on the
user’s context (e.g., she is close to a Starbucks coffee shop). As pointed out by
Verve Mobile in 2013, the LBTA outperforms non-location-targeted advertising
by a factor of two, and the usage of the LBTA exceeds the industry average
click-through rate (CTR) of 0.4 %3.

Those applications can be built on the top of Publish/Subscribe (Pub/Sub)
systems [6] which can provide large-scale matching and information dissemi-
nation. In a Pub/Sub system, there are two kinds of clients, subscriber and
publisher. A subscriber, typically an information provider such as an advertis-
ing company, specifies the properties of users in which it is interested. These
properties, or constraints, are collectively known as a subscription. For instance,
an advertising company A (e.g., a restaurant), acting as a subscriber, posts
the following subscription to the Pub/Sub system: (15 < age < 30, interest =
{barbecue, sushi}, gender = male, visited time ≥ 3). The constraints specified
in this subscription are used to match the “events” published by a publisher; once
a matching is found, information from a subscriber is sent to the publisher. A
publisher can be a casual mobile phone user. When a publisher, say, U , browses
a homepage (say, Facebook), an event, containing information about this user
(e.g., age=25, interest=barbecue, gender=male, visited time=5 ), is sent to the
system.

Since one or more constraints may be specified in a subscription, it may
not be possible for the values of an event to match all the constraints. Hence,
researchers have proposed to allow more flexibility in the matching process by
allowing matching between subscribers and publishers to be inexact or partial.
This variant of Pub/Sub systems, called ranked Pub/Sub systems [14,17,18],
return the k best subscriptions (or top-k subscriptions) to a publisher based on
some scoring functions.

We notice that the current work only focuses on normal boolean expressions
including strings and numbers. However, the newly emerging applications bring
the new technical challenges. Continuing the example of a location-based tar-
geted advertising application, when a publisher opens an app, his geographic
coordinates will be sent to the system. A subscriber can also specify this kind
of location, for instance, by saying that his shop is at a specific location. On
the other hand, to push advertisements to a mobile user, due to the factors
like limited network bandwidth and the screen size of user’s mobile phone, only
the advertisements whose distribution scopes are near to the user’s current loca-
tion may become the candidate advertisements. Since subscriptions contain both
complex boolean expressions and location information, it is rather costly to
retrieve top-k relevant subscriptions from millions of subscriptions for an event.

1 http://www.google.com/ads/admob/.
2 http://goo.gl/wZeSg5.
3 http://goo.gl/kJpQPG.

http://www.google.com/ads/admob/
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Different from the ranked Pub/Sub systems, the location information has
been integrated into the so-called keyword Boolean matching Pub/Sub sys-
tems [11,13,19] where the numeric attribute matching is not supported. Their
methods of incorporating the location information are either not applicable or
inefficient for the ranked Pub/Sub systems. In the empirical studies, we extend
the existing work related to the location-aware Pub/Sub systems as the com-
petitors to support the numeric attribute matching. The experimental results
demonstrate that our approach significantly outperforms the competitors.

In this paper, we explore the issues of incorporating location information into
a ranked Pub/Sub system. To support top-k subscription matching for location-
aware Pub/Sub systems, we propose a novel R-tree based index, the RI -tree,
by integrating the dynamic interval tree into the R-tree nodes. When an event
with location information arrives, our algorithm can quickly report the top-k
subscriptions most relevant to the event. To summarize, our main contributions
are:

1. We formalize a new variant of top-k subscription matching, permitting loca-
tion data to be a part of a subscription or an event;

2. We propose an index structure, called the RI -tree;
3. We design an efficient matching algorithm; and
4. Our experimental evaluation validates the feasibility of our RI -tree based

solution.

The rest of the paper is organized as follows. Section 2 overviews the related
work. Section 3 formulates the top-k subscription matching. Section 4 gives the
threshold algorithm based solution as a baseline solution. In Sect. 5, we present
the RI -tree index and describe the matching algorithm. Finally, we evaluate the
performance of the RI -tree based solution by extensive experiments in Sect. 6
and conclude the paper in Sect. 7.

2 Related Work

The related work can be categorized into two main areas: ranked Pub/Sub sys-
tems and location-aware Pub/Sub systems. The differences between our RI -
tree solution and the existing solutions are summarized in Table 1 (BE denotes
Boolean Expression).

Table 1. Comparison of existing location-aware Pub/Sub systems

Pub/Sub spatial keyword RI -tree

SOPT-R-tree [14]k-index [18]BE*-tree [17]Rt-tree [13]OpIndex [20]IR-tree [4]I3[21]

matching semanticsBE BE BE keyword BE keyword keywordBE

location data × × × � × � � �
top-k � � � × × � � �
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2.1 Ranked Pub/Sub Systems

Since the issue of the top-k subscription matching is posed in [14], there have
existed some researches on top-k subscription matching [8,14,17,18]. [14] desig-
nates a subscription to be a set of intervals over a multi-dimensional space, in
which each dimension is associated with a weight, and an event to be a point
over the same multi-dimensional space. Based on this, [14] builds scored interval
indexes for each dimension of the subscriptions. As thus, while an event arrives,
the matching is carried out on every dimension of subscriptions, returning a
corresponding subscription list sorted in a descending order of the scores. Then,
the threshold algorithm [7] (TA for short) is employed to merge multiple sorted
lists to obtain the subscriptions whose scores are ranked among the top k. More-
over, [14] presents two novel index structures: the IR-tree and the SOPT-R-tree
to support top-k subscription matching. However, these index structures can-
not support dynamic insertion and deletion of subscriptions. So they are not
applicable to the scenarios where the subscriptions are updated frequently.

Whang et al. [18] turn the top-k subscription matching into another prob-
lem: how to efficiently index Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF) boolean expressions over a high-dimensional space so as
to quickly find the boolean expressions that evaluate to true for a given assign-
ment of values to attributes. [18] presents the k-index, an inverted list based
index for DNF and CNF boolean expressions, and then finds the top-k matched
boolean expressions by virtue of the k-index. As an extension of [18], the meth-
ods presented in [8] are not restricted to the normal form expressions, but can
deal with arbitrarily complex boolean expressions. [8] leverages existing tech-
niques for evaluating leaf-level conjunctions, and then develops two bottom-up
evaluation techniques, Dewey ID matching and Interval ID matching, to reduce
unnecessary evaluation.

For the hierarchical top-k subscription matching, [17] presents a novel index
structure named BE*-tree, which permits the values of attributes to be a contin-
uous or discrete domain and combines a bi-directional tree expansion mechanism
and an overlap-free splitting strategy to adapt to different workloads. For very
high dimensional subscription matching, [20] proposes an in-memory index OpIn-
dex, which builds an inverted index on the pivot attributes of subscriptions and
designs a two-level partitioning scheme. However, OpIndex is not yet available
to support location data and ranking.

2.2 Location-Aware Pub/Sub Systems

Recently, there have been many researches on location-aware Pub/Sub systems
from a database perspective [2,9,11,13,19]. [13] proposes the Rt-tree which can
efficiently filter geo-textual data. [19] extends Rt-tree to support ranking seman-
tics, i.e., return all subscriptions whose similarities with the query event are
not smaller than a given threshold θ. But the pruning algorithm proposed in
[19] can not be used for top-k search. Further, [11] studies the location-aware
Pub/Sub problem for parameterized spatio-textual subscriptions and presents
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a filter-verification framework by integrating prefix filtering and spatial prun-
ing techniques. However, only keywords are considered in [11,13,19], and they
can not support to retrieve top-k subscription matching. Note that Pub/Sub
systems which only consider keywords cannot support numeric attribute match-
ing such as the example of the subscription described in Sect. 1. Compared to
[11,13,19], the RI -tree proposed in this paper has two distinguishing features.
First, it allows users to specify their interests with boolean expressions, which is
more expressive than keywords. Second, it focuses on the top-k semantics which
is frequently used in many emerging applications (e.g., location-based targeted
advertising).

Chen et al. [2] considers the temporal spatial-keyword top-k subscription
query. They present an efficient solution which can continuously maintain up-to-
date top-k most relevant results (events) over a stream of geo-textual objects for
each subscription. [9] proposes a new location-aware Pub/Sub system, i.e., Elaps,
that focuses on continuously monitoring moving users subscribing to dynamic
event streams. However, their problems are different from ours. Our work is also
different from spatial keyword search [1,4,21]. The main reason is that they
focus on keywords while we adopt boolean expressions to express subscriber’s
requirements in subscriptions, which is more expressive than keywords.

3 Problem Formalization

3.1 Data Model

Definition 1. Subscription: A subscription s contains a boolean expression
Ω, a location loc, and a tuning parameter α, i.e., s : Ω ∧ loc ∧ α. The boolean
expression is a conjunction of predicates, i.e., Ω = {p1 ∧ · · · ∧ pn}. A predicate
is a quadruple, i.e., p =< attr, op, val, ω >, with attr being an attribute id that
uniquely represents a dimension, op being an operator (e.g., from the relational
operators (<,≤,=, �=,≥, >), the set operators (∈s, /∈s) and the interval operator
(∈i)), val being a value, a set of values in discrete domains or a range of values in

continuous domains, and ω being an assigned predicate weight, where
n∑

i=1

pi.ω=1.

The predicate weight signifies the relevance between the predicate and the event
and can be given by subscribers (e.g., the advertiser assigns higher weights to
more relevant predicates). The location loc represents the spatial dimension and
is denoted as a conjunction of two triples, i.e., (lat = vallat) ∧ (lon = vallon),
where lat (lon) denotes the latitude (longitude) of the object. The parameter α
is used to balance the relative importance of non-spatial and spatial similarity.

For example, in the targeted advertising, the subscription for an advertise-
ment from a restaurant can be:{(age ∈i [15, 30], 0.3) ∧ (income > 5000, 0.4) ∧
(credit score > 80, 0.3) ∧ (lat = 22.27) ∧ (lon = 114.17) ∧ α = 0.5}.

As explained in [16], predicates with different types of operators can be con-
verted into one-dimensional intervals, as shown in Table 2, where vmin and vmax

are the smallest and the largest possible values in the corresponding domain,
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and {v1, · · · , vk} is sorted in an ascending order. The way of converting �= and
/∈s to an interval that spans the entire domain is built on the following reason-
able speculation: these kinds of predicates are satisfied with a high probability
by an event having a predicate on the corresponding attribute. Thus, the given
transformation can help the early pruning during the matching. Therefore, in
this paper, we focus on predicates in the form of intervals.

Table 2. Predicate Conversion

Predicates Interval Predicates Interval

i < v1 [vmin, v1) i ≥ v1 [v1, vmax]

i ≤ v1 [vmin, v1] i ∈s {v1, · · · , vk} [v1, vk]

i = v1 [v1, v1] i /∈s {v1, · · · , vk} [vmin, vmax]

i �= v1 [vmin, vmax] i ∈i [v1, v2] [v1, v2]

i > v1 (v1, vmax]

Definition 2. Event: An event e includes a non-spatial set of attribute name
and value pairs and a location loc, i.e., e : (attr1 = val1) ∧ (attr2 = val2) ∧ · · · ∧
(attr|e| = val|e|)∧(lat = vallat)∧(lon = vallon), where attri is the attribute iden-
tifier, vali is the associated value, vallat and vallon are the publisher’s current
latitude and longitude, respectively.

Here is an example of an event: {age = 25 ∧ income = 5000 ∧ credit score =
1000 ∧ lat = 22.27 ∧ lon = 114.17}.

Definition 3. Similarity Function ψ: Given event e : (attr1 = val1) ∧
(attr2 = val2) ∧ · · · ∧ (attr|e| = val|e|) ∧ loc and subscription s : (Ω ∧ loc ∧ α) =
(p1 ∧ p2 ∧ · · · ∧ pn ∧ loc ∧ α), the similarity function ψ(e, s) is defined as follows.

ψ(e, s) = (1 − s.α) · ψt(e, s) + s.α · ψs(e, s), (1)

where ψt is a non-spatial similarity function and ψs is a spatial similarity
function.

Further, the non-spatial similarity4 is given by:

ψt(e, s) =
∑

e.attri∈e,s.pj∈s.Ω,e.attri=s.pj .attr

s.pj .ω · check(e.vali, s.pj) (2)

where e.vali denotes ith attribute value of event e, s.pj (j = 1, · · · , n) denotes
the jth predicate of subscription s and function check(e.vali, s.pj) is defined in
Eq. 3 to check whether the constraint s.pj is satisfied by e.vali.

check(e.vali, s.pj) =
{

1 e.vali ∈i s.pj .val
0 otherwise

(3)

4 More generally, the non-spatial similarity can be any monotonic function of the
weights.
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The spatial similarity is given by:

ψs(e, s) = 1 − dist(e.loc, s.loc)
MaxDist

, (4)

where dist(e.loc, s.loc) is the Euclidian distance between e.loc and s.loc, and
MaxDist is the maximum Euclidian distance between subscriptions.

3.2 Problem Definition

Based on the above definitions, we formulate the problem we will solve as fol-
lows. Given a set of subscriptions S, an event e, and a parameter k, the Top-k
Subscription Matching problem (SM-k problem for short) finds the top-k best
matching set Sk ⊆ S which is defined as Sk = {s|ψ(e, s) ≥ ψ(e, s′),∀s′ ∈ S\Sk}
and |Sk| = k.

Example 1. Figure 1 shows 9 subscriptions s0 · · · s8 and an event e. The simi-
larities between subscriptions and the event e are shown in Table 3. For event
e, subscription s0 is the result of the top-1 matching according to Eq. 1, i.e.,
ψ(e, s0) = 0.925.

Fig. 1. Example of subscriptions and an event

Table 3. Similarities between event e and subscriptions in Fig. 1

s s0 s1 s2 s3 s4 s5 s6 s7 s8

ψs(s, e) 0.75 0.5 0.875 0.75 0.75 0.5 0.5 0.8 0.8

ψt(s, e) 1.0 0.0 0.0 0.2 0.7 0.0 0.1 0.6 0.0

ψ(s, e) 0.925 0.35 0.35 0.365 0.725 0.1 0.42 0.7 0.64
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4 Baseline Solution

In this section, we present the Threshold Algorithm-based Solution for SM-k
problem as a baseline solution. Considering that top-k subscription matching
belongs to the relaxed matching and the subscription is not required to match
with the event on each attribute exactly, we build an index for each attribute,
i.e., build a scored segment-tree [14] for every non-spatial attribute and R-tree
[10] for the spatial attribute. Based on that, we propose the Threshold Algorithm
based Solution (TAS).

TAS builds a two level index for subscriptions. At the root level, a hashmap
is used to map attribute names to the sub-level data structures. At the sub-
level, an index is built for each attribute to index those subscriptions contain
that attribute.

For each non-spatial attribute, we build a scored segment-tree [14] for all
subscription intervals in that attribute. The scored segment-tree is a variant of
segment trees. A segment-tree [5] is a binary-tree structure to index intervals
(segments). It partitions the intervals into a collection of disjoint, atomic inter-
vals. Each atomic interval corresponds to a leaf node in the tree. If the length
of the whole interval is n, then a segment tree is a balanced binary tree with n
nodes as leaves and log n as the height of the tree.

Let I be the set of all subscription intervals in attribute attri, I be the
interval constraint of subscription s in attribute attri where I ∈ I, interval(V )
denote the interval of node V , and SV be the set of all subscriptions stored on
node V , where ∀I ∈ SV , we have interval(V ) ⊆ I and interval(U) �⊆ I, here,
node U is the father of node V .

To retrieve top-k scoring interval of I stabbed by an event point e.vali, a
segment-tree should be modified into a scored segment tree [14], i.e., subscrip-
tions stored in node V are sorted in the order of their weights (in practice, it
can be implemented by a priority queue). When retrieving top-k subscriptions
in a scored segment-tree T for attribute attri, we maintain a global max-heap
of size O(log n) and follow the steps below.

Firstly, we replenish the heap by inserting the top element of each subscrip-
tion list from the nodes on the retrieval path in T . Secondly, we pop out the
top element of the heap as a candidate subscription (assuming that the element
popped out is stored on node V ) and insert the next element of the subscription
list from node V . Run the second step in turns, until k elements are picked up.
As thus, we can get top-k subscriptions (elements) on T .

For the spatial attribute, we build an R-tree for all locations of subscriptions.
On each node N of the R-tree, an extra information αmax is stored. If the node
N is a leaf node, the value of αmax is the α of the corresponding subscription.
Otherwise, if the node N is a non-leaf node, the value of αmax is the maximum
of all its children’s αmax. Thus, the new R-tree can support incremental nearest
neighbor (NN) search. When an event location e.loc arrives, for each non-leaf
node N on the R-tree, the upper bound is

N.αmax · (1 − MinDist(e.loc,N.rectangle)
MaxDist

),
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where MinDist(e.loc,N.rectangle) denotes the minimum Euclidian distance
between e.loc and any point on the Minimum Bounding Box of node N .

Now we describe the matching process. When an event e arrives, for each
attribute in e, use the hashmap to get the related index structure, and incre-
mentally return the subscriptions matching with e on that attribute in the order
of their weight on that attribute (The weight of a subscription s on each attribute
is multiplied by (1− s.α) when s is inserted into the scored segment-tree). Then
we use the Threshold Algorithm (TA) [7] to merge multiple ranked lists. It is
proved that TA is correct and instance optimal in [7].

Thus, the steps of TAS are as follows:

1. At the beginning, for each attribute of the event, retrieve the best candidate
subscription using the corresponding index structure. Then go to 3.

2. For each attribute of the event, retrieve the next best candidate subscription.
3. Merge those candidates using TA. If the terminal criterion in TA cannot be

satisfied, then go to 2. Otherwise, go to 4.
4. Return the top-k subscriptions got in TA.

TAS will search on each attribute separately. If there exists a subscription
matched with an event on many attributes with small weight for each predicate
(the total similarity is very large), the searching list for each attribute can be
very long. Thus, TAS is not very efficient. In order to avoid this problem, we
design a novel index which combines all attributes on one tree index.

5 RI-tree Based Solution

In this section, we present a framework that integrates the R-tree and the
interval-tree into a new index, named RI -tree and that includes an algorithm
for processing SM-k problem using the RI -tree.

5.1 RI-tree Index Structure

The R-tree [10] is a widely used index for spatial queries and the interval-tree
[15] is the “standard” known solution for efficiently processing simple stabbing
queries. They are designed separately for different kinds of queries.

The RI -tree is essentially an R-tree, each node of which is enriched with
reference to a set of dynamic interval trees for objects contained in its sub-tree.

In the RI -tree, if node N is a leaf node, it contains a number of entries
of the form (sid,Ω, loc, α), where sid is the identifier of an subscription, Ω,
loc and α are the boolean expression, the location and the tuning parameter
of the subscription ssid, respectively. Here, it is important to note that the
weight of a subscription ssid on each attribute is multiplied by (1− ssid.α) when
ssid is inserted into the RI -tree. A leaf node also contains some metadata. The
metadata includes rectangle, which is the Minimum Bounding Rectangle of all
constituent entries, αmin and αmax which are the minimum and maximum value
of α among all constituent entries, and the aggregated information Γ for each



342 J. Hu et al.

attribute of the form (attri, range, ωmax). In addition, a leaf node also contains
a pointer to a dynamic interval tree forest F , i.e., a set of dynamic interval trees
organized by a hashmap, shown as Fig. 2a. Let Sattr be the set of all attributes
stored on the leaf node. The hashmap manages all attributes in Sattr. For each
attribute attri, the hashmap maps it to a dynamic interval tree Tattri . The tree
Tattri stores all intervals of the leaf node N ’s entries on attribute attri. The form
of intervals stored on the tree is (range, sid, ω), where range denotes the range
of the interval, sid is the id of the corresponding subscription and ω is the weight
of that subscription on attri.

(a) dynamic interval tree forest (b) interval stabbing-max problem

Fig. 2. Example of the dynamic interval tree forest and the interval stabbing-max
problem

The dynamic interval tree Tattri dynamically maintains a set of intervals I,
where each interval I ∈ I has a weight I.ω such that the interval with the max-
imum weight containing an event point can be found efficiently. This structure
can solve the interval stabbing-max problem. For instance, as shown in Fig. 2b,
for the query point q, it stabs four intervals (a, b, c, d). Since interval d has the
greatest weight 0.5, it will be returned. There exists several solutions which can
solve this problem. In this paper, we use the modified interval tree structure men-
tioned in [12] which can support queries in O(log2 n) time, updates in O(log n)
time and only requires O(n) space.

On the other hand, if node N is a non-leaf node, it contains a number of
entries cp, which points to the corresponding child node. Being same as the
type of leaf nodes, node N also maintains the metadata and a dynamic interval
tree forest organized by a two-level index structure which contains the interval
information for each associated attributes. For each child node U of node N , the
interval of U.Γattri will be stored on the dynamic interval tree Tattri of the node
N . Thus, the number of intervals in Tattri will not exceed the number of entries
in node N .

Example 2. Figure 3 illustrates the RI -tree index for the subscriptions in Fig. 1.
Figure 4 is an example of Metadata1 and Forest1.

After describing the RI -tree index, now we introduce an important metric,
the Upper Bound (UB) of the similarity. Given an event e and a node N in the
RI -tree, the metric UB provides an upper bound of the similarity between the
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Fig. 3. RI -tree index for subscriptions in Figure

Fig. 4. Example of Metadata1 and Forest1

event e and all subscriptions located at the rectangle of node N . It can be used
to order and efficiently prune the paths of the search space in the RI -tree. To
get the value of UB, we first calculate the upper bound of non-spatial similarity
UBt, and then calculate the upper bound of spatial similarity UBs.

Definition 4. UBt(e, N): Given an event e and a node N , the upper bound
of non-spatial similarity UBt(e,N) is defined as follows:

UBt(e,N) =
∑

e.attri=N.Γ.attrj

N.Tattrj (e.vali), (5)

where Tattrj (e.vali) returns the maximum weight of the interval containing e.vali
in attribute N.Γ.attrj.

Definition 5. UBs(e, N): Given an event e and a node N , the upper bound
of spatial similarity UBs(e,N) is defined as follows:

UBs(e,N) = 1 − MinDist(e.loc,N.rectangle)
MaxDist

, (6)

where MaxDist is the same as in Eq. 4, and MinDist(e.loc,N.rectangle) is the
minimum Euclidian distance between e.loc and any point on N.rectangle.
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Definition 6. UB(e, N): Given an event e and a node N , according to Eq. 1,
the total upper bound UB(e,N) is defined as follows:

UB(e,N) = max
α∈[N.αmin,N.αmax]

min(1 − α, UBt(e,N)) + α · UBs(e,N)

= max
α∈[N.αmin,N.αmax]

min(α · (UBs(e,N) − 1) + 1, α · UBs(e,N) + UBt(e,N))

(7)

where α ∈ [N.αmin, N.αmax]. Let f1(α) = α · (UBs(e,N) − 1) + 1 and f2(α) =
α · UBs(e,N) + UBt(e,N). Since UBs(e,N) ≤ 1 and α ≥ 0, then f1(α) is
a monotone decreasing function and f2(α) is a monotone increasing function.
Thus, we can get a more succinct formula to calculate UB(e,N).

UB(e,N) =

⎧
⎨

⎩

1 − N.αmin + N.αmin · UBs N.αmin ≥ (1 − UBt)
(1 − UBt) · UBs + UBt N.αmin < (1 − UBt) < N.αmax

N.αmax · UBs + UBt N.αmax ≤ (1 − UBt)
(8)

Theorem 1. Given an event e and a node N whose rectangle encloses a set of
subscriptions S = {si, 1 ≤ i ≤ n}, we have:

∀s ∈ S, ψ(e, s) ≤ UB(e,N) (9)

Proof. Since subscription s is enclosed in the rectangle of node N , the minimum
Euclidian distance between e.loc and any point on N.rectangle is no larger than
the Euclidian distance between e.loc and s.loc, i.e.:

MinDist(e.loc,N.rectangle) ≤ dist(e.loc, s.loc) (10)

Thus, the spatial similarity between e and s is no larger than the upper bound
of spatial similarity between e and node N according to the Eqs. 4 and 6, i.e.:

ψs(e, s) ≤ UBs(e,N) (11)

Meanwhile, the set of attributes in N.Γ is the union of all subscriptions in
node N . And for each attribute appears in both event e and N.Γ, let e.attri =
N.Γ.attrj , the value N.Tattrj (e.vali) is the maximum weight of all subscriptions
in node N on that attribute. Thus:

(1 − s.α) · ψt(e, s) ≤ min(1 − s.α, UBt(e,N)) (12)

Since s.α ∈ [N.αmin, N.αmax], according to Eqs. 1, 7, 11 and 12, we can get:

ψ(e, s) = (1 − s.α) · ψt(e, s) + s.α · ψs(e, s)
≤ min(1 − s.α, UBt(e,N)) + s.α · UBs(e,N)
≤ max

α∈[N.αmin,N.αmax]
min(1 − α, UBt(e,N)) + α · UBs(e,N) (13)

= UB(e,N)
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Algorithm 1. RI -treeMatch(e, tree, k)
1: queue ← new PriorityQueue(); /*The higher the value of UB, the greater the

priority*/
2: heap ← new Min-Heap(); /*Store candidate top-k subscriptions*/
3: queue.push(tree.root, 1);
4: while not queue.empty() do
5: element ← queue.top();
6: queue.pop();
7: if element.Node is a leaf node then
8: for each entry sub ∈ element.Node do
9: if heap.size() < k then

10: heap.insert(sub, ψ(e, sub));
11: else if ψ(e, sub) > heap.begin().key then
12: heap.erase(heap.begin());
13: heap.insert(sub, ψ(e, sub))
14: if heap.size()==k and

(queue.empty() or heap.begin().key ≥ queue.top().key) then
15: break;
16: else
17: for each entry node ∈ element.Node do
18: queue.push(node, UB(e, node));
19: reverse all elements in heap and return;

5.2 Matching

Now, we discuss how to use the RI -tree to solve SM-k problem when an event e
arrives. The best-first traversal algorithm (e.g., [15]) is used to retrieve the top-
k best matched subscriptions. A priority queue is used to store the nodes that
have yet to be visited (i.e., the node with higher UB has a greater priority).
And a global min-heap of size O(k) is maintained and is used to store top-k
subscriptions among all subscription objects visited.

Algorithm 1 shows the pseudocode of retrieving top-k subscriptions on the
RI -tree. The algorithm always picks the node N with the largest UB(e,N) value
in the priority queue. The algorithm terminates when k subscriptions have been
found and the similarity of the smallest one is not smaller than the largest one
in the priority queue (or the priority queue is empty).

6 Evaluation

In this section, we evaluate the RI -tree based solution by conducting extensive
experiments on a very large data set. All algorithms are implemented in C++
and compiled using g++ 4.2.1 and the experiments are run on a 2.3 GHz Intel(R)
Core(TM) core i7 processor with 16 GB of RAM.
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Table 4. Experimental Parameters

Param Description Value

Ne # Events 1000

Ns # Subscriptions 1M, 2M, 3M, 4M, 5M

d # Dimensions 50, 100, 400, 600, 800

c Dimension cardinality 10, 50,100,250,500

Le Avg. event length 6, 8, 10, 12, 14

Ls Avg. subscription length 2, 3, 4, 5, 6

k Top-k parameter 1, 3, 5, 7, 9

fα Distribution of α N (0.1, 0.05), N (0.5, 0.05), N (0.9, 0.05), U(0,1)

6.1 Experimental Setup

We evaluate the following algorithms: (1) SCAN(a sequential scan); (2) Rt-
tree (we extend Rt-tree [19] to support our model, i.e., constructing an Rt-tree,
changing its TokenSet to the attribute set which includes attribute id, range
and maximum weight and traversing the Rt-tree from the root to leaves); (3)
TAS (the threshold algorithm based solution); (4) RI -tree (the RI -tree based
solution). In the experiments, all subscriptions are first loaded into the memory
and indexed by corresponding index structures, and then events are read as
input continuously. We record and analyze the average time and space cost of
matching top-k matched subscriptions with an event. The maximum number of
children of a node in the RI -tree and the Rt-tree is 50 in our experiments.

Since there is no suitable public real subscription and event dataset for top-
k subscription matching, we use a synthetic dataset by combining non-spatial
data generated by BE-Gen5 [16] and spatial data selected from real twitter data
with location information in USA [3] for both events and subscriptions. For each
boolean expression generated by BE-Gen, we randomly assign a location to it
from the twitter dataset.

As to the weight for each predicate of subscriptions, we adopt the weight
generation technique proposed in [18] (this way is also used in [17]): (i) For
each unique attribute attr, first compute its reciprocal of frequency, denoted
by ξattr, based on the concept that popular attribute should be assigned a low
weight while an infrequent attribute should be assigned a high weight. (ii) For
each predicate pi = (attr, op, val, ω), its weight is computed as follows: pi.ω =
max(ξpi.attr, x), where x is randomly generated from a Gaussian distribution:
N (0.8 × ξpi.attr, 0.05 × ξpi.attr).

In our experiments, we evaluate the performance of those algorithms under
different data distributions(Uniform and Zipf). Table 4 summarizes the main
parameters used in experiments (default values are in bold).

5 http://msrg.org/datasets/BEGen.

http://msrg.org/datasets/BEGen
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6.2 Experimental Results and Analyses

We conduct 6 groups of experiments, observing the effect of the number of
subscriptions, the space dimensionality, the dimension cardinality, the average
subscription/event length, the top-k parameter and the distribution of α on
matching time. In each group of experiments, we conduct the experiments under
different distributions of choosing predicates’ attributes (Uniform and Zipf).

Varying the Number of Subscriptions. In the first group of experiments, we
observe the effect of the number of subscriptions. Figure 5 show the performance
of 4 algorithms when the number of subscriptions is varied from 1 million to 5
millions under different workload distributions. In general, with the increase of
the number of subscriptions, the matching times of Rt-tree, TAS, and SCAN
all increase quickly while our solution is very smooth. In these experiments, the
matching time of RI -tree on average is 4.8 and 4.3 times faster than the next best
algorithm for the uniform distribution and the Zipf distribution, respectively.
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Fig. 5. Varying the number of subscriptions

Varying Space Dimensionality. Compared with the effect of varying the
number of subscriptions, the effect of space dimensionality is slight. All algo-
rithms with the exception of TAS are almost unchanged as the dimensionality
varies, as shown in Fig. 6. In Fig. 6a, under the uniform distribution the match-
ing time of TAS decreases as the dimensionality increases, since subscriptions
tend to share less common predicates when the dimensionality is large. However,
under the Zipf distribution the matching time of TAS does not increase as the
dimensionality increases, it is because there are a few popular dimensions among
all subscriptions, leading to a large of overlap among subscriptions. Overall, on
average RI -tree is 3.7 and 4.4 times faster than the next best algorithm for the
uniform distribution and the Zipf distribution, respectively.

Varying the Dimension Cardinality. In this group of experiments, we
observe the effect of the dimension cardinality. When the dimension cardinality
increases, the matching rate between an event and all subscriptions will decrease.
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Fig. 6. Varying space dimensionality

Facing such data set, the R-tree based algorithms will visit more nodes, result-
ing in the increasing of matching time. However, as shown in Fig. 7, on average,
RI -tree is still 4.8 and 4.2 times faster than Rt-tree for the uniform distribution
and the Zipf distribution, respectively.
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Fig. 7. Varying dimension cardinality

Varying Average Subscription/Event Length. Another key factor which
can affect the algorithm performance is the average number of predicates per sub-
scription and event. As shown in Fig. 8, all algorithms are sensitive to the aver-
age subscription length. It is because the overlap among subscriptions increases.
Compared with the average subscription length, 4 algorithms are insensitive to
the average event length, as shown in Fig. 9. The matching times of RI -tree
and Rt-tree both increase since the upper bound of non-spatial similarity will
increase as the average event length increases. In general, RI -tree performs best
because of its filtering strategy. It is 4.3 and 4.6 times faster than the next best
algorithm for the uniform distribution and the Zipf distribution, respectively, as
the average subscription length increases. It is also 4 and 4.4 times faster than
the next best algorithm for the uniform distribution and the Zipf distribution,
respectively, as the average event length increases.
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Fig. 8. Varying average subscription length

Avg. Event Length
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Fig. 9. Varying average event length

Varying the Value of k. Now we observe the effect of the top-k parameter,
here, the value of k grows from 1 to 9. Figure 10 shows the performance of 4
algorithms when varying k under different workload distributions. In general,
with the increase of k, the matching times of Rt-tree and RI -tree increase mar-
ginally. However, RI -tree still has the best performance. For instance, at k = 9,
under the uniform distribution, the matching time of RI -tree is 3, 6, and 30
times better than Rt-tree, TAS, and SCAN, respectively. Similarly, under the
Zipf distribution, the speed-up ratios are 4, 39, and 57 times, respectively.

Varying the Distribution ofα. Finally, we conduct a group of experiments
observing the effect of the distribution of α. Figure 11 shows the performance
of 4 algorithms under different distribution of α, i.e., Normal distribution
:N (0.1, 0.05), N (0.5, 0.05) and N (0.9, 0.05); Uniform distribution U(0, 1). Under
Normal distribution, the RI -tree performs much better than all other algorithms
and also is better than the situation RI -tree at U(0, 1). The reason behind this
is that the values of α for all subscriptions are close to the mean and most
search paths can be filtered efficiently by the pruning strategy. For example, at
N (0.5, 0.05), the matching time of RI -tree is 21 and 133 times faster than the
next best algorithm (TAS) for the uniform distribution and the Zipf distribution,
respectively.
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Fig. 11. Varying the distribution of α

7 Conclusions

In this paper, we propose and formalize a variant of top-k subscription matching,
i.e., top-k subscription matching for location-aware Pub/Sub systems which sup-
ports boolean expressions in subscriptions. We propose a novel index structure
RI -tree, which combines the R-tree and the dynamic interval-tree. In addition,
we develop an efficient filtering strategy to reduce the search space. Finally, we
evaluate the RI -tree based solution by experiments on a large-scale dataset. The
experimental results convincingly demonstrate the benefits of our algorithm.
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Abstract. The question of how to model spatiotemporal similarity
between gestures arising in 3D motion capture data streams is of major
significance in currently ongoing research in the domain of human com-
munication. While qualitative perceptual analyses of co-speech gestures,
which are manual gestures emerging spontaneously and unconsciously
during face-to-face conversation, are feasible in a small-to-moderate
scale, these analyses are inapplicable to larger scenarios due to the lack of
efficient query processing techniques for spatiotemporal similarity search.
In order to support qualitative analyses of co-speech gestures, we propose
and investigate a simple yet effective distance-based similarity model
that leverages the spatial and temporal characteristics of co-speech ges-
tures and enables similarity search in 3D motion capture data streams
in a query-by-example manner. Experiments on real conversational 3D
motion capture data evidence the appropriateness of the proposal in
terms of accuracy and efficiency.

Keywords: Similarity search · Spatiotemporal data · 3D motion cap-
ture data · Streams · Co-speech gestures · Gesture matching distance ·
Gesture signature · Dynamic time warping

1 Introduction

Human communication typically involves multiple modalities such as vocaliza-
tions, spoken or signed language, manual gestures, eye gaze, body posture and
facial expressions. In face-to-face conversation, gestures are a communication
component of the most natural form and accompany over 75 % of all clauses
[10,36]. They support us in expressing information in non-verbal form. Gestures
that emerge spontaneously during conversation and are associated with speech
are denoted as co-speech gestures. These gestures are understood as kinetic action
involving hand and arm configurations or movements that have some communica-
tive function and are an integral part of utterance formation and communicative
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 355–372, 2015.
DOI: 10.1007/978-3-319-22363-6 19
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Fig. 1. Three example gestures of different spatiotemporal movement types: (a) ges-
ture of type spiral, (b) gesture of type circle, and (c) gesture of type straight. Blue
trajectories indicate the main movement of the gestures (Color figure online).

interaction [29,36,41]. They are contextualized and disambiguated according to
the concurrent speech and are multifunctional, i.e., they may fulfill a broad range
of cognitive, communicative, performative and interactive functions, and often-
times they perform several of them at the same time [42]. Examples of co-speech
gestures are brief hand motions, denoted as beats, pointing gestures referring
to physical objects and concepts, denoted as deictics, and miming of actions
or shapes of concrete and abstract things which are referred to as iconics and
metaphorics [10,36].

Since co-speech gestures appear spontaneously and unconsciously during con-
versation, they are not bound by well-formedness conditions and imply a high
degree of idiosyncrasy. In other words, the spatiotemporal patterns underlying
co-speech gestures do not follow a rigorous theoretical model as expected from
codified gestures such as emblems, i.e. manual signs with fixed culture-dependent
meanings, e.g. the victory sign [43], and sign languages that are essentially lin-
guistic [10] and exhibit large vocabularies and complex grammars.

Currently ongoing research in the domain of human communication with
respect to co-speech gestures mainly focus on qualitative analyses. To this
end, co-speech gestures are typically manually compared with respect to their
observed similarity and contextualized according to their associated speech.
Hypotheses are then advanced or refuted by inspecting the video recordings
of single or multiple conversations.

In order to support such qualitative analyses and access similar co-speech
gestures automatically, we propose a simple yet effective distance-based simi-
larity model for co-speech gestures arising in 3D motion capture data streams.
In contrast to conventional 2D video capture technology, the utilization of 3D
motion capture technology has the advantage of measuring and visualizing the
spatiotemporal dynamics of otherwise invisible movement traces with the highest
possible accuracy. We aim at maintaining this accuracy by aggregating move-
ment traces, i.e. trajectories, into a lossless, spatiotemporal feature representa-
tion, namely gesture signature, which has the ability of weighting trajectories
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individually according to their relevance. In order to compare two gesture signa-
tures with each other, we propose the Gesture Matching Distance as a distance-
based similarity measure that matches individual trajectories of the gesture sig-
natures. Our approach is able to deal with gesture signatures varying in size
and structure. Additionally, it effectively takes care of gesture signatures that
do not include all trajectories due to the problem of hidden markers. We focus
our evaluation on co-speech gestures exhibiting specific spatiotemporal move-
ment patterns which result in different kinds of image-schematic gestalts, e.g.
spirals, circles, and straight paths [14,38]. An illustration of co-speech gestures
belonging to the aforementioned movement types is depicted in Fig. 1, where
blue trajectories indicate the main movement of the gestures. For the sake of
convenience we will denote co-speech gestures as gestures in the remainder of
this paper.

Our main contributions are summarized as follows:

– We propose to model gestures arising in 3D motion capture data streams by
means of gesture signatures maintaining the spatiotemporal characteristics
and allowing for individual trajectory weighting.

– We present two different weighting schemes to reflect the inherent character-
istics of relevant trajectories.

– We propose the Gesture Matching Distance as a distance-based similarity
measure for assessing the dissimilarity between two gesture signatures and
investigate its theoretical properties.

– We introduce a sequential query processing algorithm for the analysis of 3D
motion capture data streams in a query-by-example manner.

– We benchmark the proposed approach with respect to the qualities of accuracy
and efficiency on real conversational 3D motion capture data.

The remainder of this paper is structured as follows: Sect. 2 outlines related
work with respect to adjacent research fields. Section 3 proposes the concept
of gesture signatures for modeling gestures arising in 3D motion capture data
streams. The Gesture Matching Distance is introduced in Sect. 4 together with
an analysis of its theoretical properties. Section 5 then introduces our query
processing algorithm. The results of the experimental evaluation on real conver-
sational 3D motion capture data are presented in Sect. 6. The paper is concluded
with an outlook on future work in Sect. 7.

2 Related Work

As pointed out by Campbell [10], conversational gestures have been investigated
since ancient times. One of the first academic works which tries to visually clas-
sify spontaneous gestures has been carried out by Efron [16]. Following his work,
Ekman and Friesen [17], Kendon [27,28], and MacNeil [36] also studied vari-
ous aspects of spontaneous gestures and tried to classify such gestures accord-
ing to their discourse functions. The resulting gesture taxonomies lead to the
research question of whether co-verbal gestures can be classified automatically.
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Campbell [10] investigated this research direction and investigated Hidden
Markov Models for classifying co-verbal gestures. He came to the conclusion
that the recognition rate is not good enough to be useful in a real world working
system and compared the situation of gesture recognition with the early days of
speech recognition [10].

From the computer science point of view, gestures are mainly researched in
terms of gesture recognition which aims at recognizing meaningful expressions
of human motion including hand, arm, face, head, and body movements [37].
Many surveys [25,32,34,35,37,47,49,56,57] have been released in the past years,
providing an extensive overview of the many facets of gesture recognition. Many
approaches either rely on 2D video capture technology and, thus, computer vision
techniques, cf. [39,40], or on 3D motion capture technology which provides higher
accuracy and thus more potential for precise spatiotemporal similarity search.
A recent survey of vision-based gesture recognition approaches can be found
in [47].

Frequently encountered approaches for recognizing hand gestures are based
on Hidden Markov Models [31,44,46,53] or more generally Dynamic Bayesian
Networks [52]. More recent approaches are based for instance on Feature Fusion
[13], on Dynamic Time Warping [1,9], on Longest Common Subsequences [51],
or on Neural Networks [20].

Since gestures addressed within the scope of this paper are represented in a
lossless feature representation by aggregating movement traces, i.e. trajectories,
the question of how to measure similarity between 3D motion capture trajecto-
ries is of crucial importance. Measuring the similarity between two trajectories
can be carried out for instance by Dynamic Time Warping [8,58], Levenshtein
Distance [19], Minimal Variance Matching [33], Longest Common Subsequence
[54,55], Edit Distance with Real Penalty [11], Edit Distance on Real Sequences
[12], or Mutual Nearest Point Distance [18]. When considering a real-time man-
agement of the trajectories, many streaming solutions have been proposed to
track the emerging patterns that are appearing in the trajectory stream and
their similarities as they are generated [21,22].

In addition to the aforementioned trajectory similarity measures, there exists
also a rich amount of research literature on distance-based similarity mea-
sures applicable to feature signatures [2,3,5,48]. Well-known measures are the
transformation-based Earth Mover’s Distance [48], the correlation-based Signa-
ture Quadratic Form Distance [6], the matching-based Hausdorff Distance [23]
and its variants [24,45] as well as the Signature Matching Distance [4].

Many of the approaches mentioned above are based on complex models or fea-
tures that are learned or extracted prior to query processing. This assumes that
enough training data is available and, in particular, that the gestural patterns to
be considered are known to some extent, which is rarely the case for co-speech
gestures due to their high degree of idiosyncrasy. For this reason, we propose a
distance-based similarity model that is applicable to any type of gestural pat-
tern. In fact, the proposed Gesture Matching Distance on gesture signatures
can be utilized in order to model dissimilarity between gestural patterns whose
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movement types are well-known and between gestural patterns whose inherent
structure is completely unknown. In this way, we provide an unsupervised and
model-free distance-based approach of modeling gesture similarity.

3 Gesture Signatures

In this section, we introduce gesture signatures as lossless, spatiotemporal fea-
ture representations of gestures in 3D motion capture data streams. These data
streams can be thought of as sequences of points in the three-dimensional Euclid-
ean space R

3. In the scope of this work, these points arise from several reflective
markers which are attached to the body and in particular to the hands of a
participant. The motion of the markers is triangulated via multiple cameras and
finally recorded every 10 milliseconds. In this way, each marker defines a finite
trajectory of points in a three-dimensional space. The formal definition of a
trajectory is given below.

Definition 1 (Trajectory). Given a three-dimensional feature space R
3, a tra-

jectory t : {1, . . . , n} → R
3 is defined for all 1 ≤ i ≤ n as:

t(i) = (xi, yi, zi).

A trajectory describes the spatiotemporal motion of a single marker in
a three-dimensional space. It is worth noting that the time information is
abstracted to integral numbers in order to model trajectories arising from dif-
ferent time intervals and sampling rates. Since a gesture typically arises from
multiple markers within a certain period of time, we aggregate several tra-
jectories including their individual relevance by means of a gesture signature.
For this purpose, we denote the set of all finite trajectories as trajectory space
T =

⋃
k∈N

{t|t : {1, . . . , k} → R
3} and define a gesture signature as a function

from the trajectory space T into the real numbers R. The formal definition of a
gesture signature is given below.

Definition 2 (Gesture Signature). Let T be a trajectory space. A gesture signa-
ture S ∈ R

T is defined as:

S : T → R subject to |{t ∈ T|S(t) �= 0}| < ∞.

A gesture signature formalizes a gesture by assigning a finite number of
trajectories non-zero weights reflecting their importances. Negative weights are
immaterial in practice but ensure the gesture space S = {S|S ∈ R

T ∧ |S−1(R \
{0})| < ∞} forms a vector space. While a weight of zero indicates insignificance
of a trajectory, a positive weight is utilized to indicate contribution to the cor-
responding gesture. In this way, a gesture signature allows us to focus on the
trajectories arising from those markers which actually form a gesture. For exam-
ple, if a gesture is expressed by the participant’s hands, only the corresponding
hand markers and thus trajectories have to be weighted positively.
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A gesture signature defines a generic mathematical model but omits a con-
crete functional implementation. In fact, given a subset of relevant trajectories
T + ⊂ T, the most naive way of defining a gesture signature S consists in assign-
ing relevant trajectories a weight of one and irrelevant trajectories a weight of
zero, i.e. by defining S ∈ S for all t ∈ T as follows:

S(t) =

{
1 if t ∈ T +

0 otherwise.

This uniform approach, however, completely ignores the inherent character-
istics of the relevant trajectories. We therefore propose to weight each relevant
trajectory according to its inherent spatiotemporal properties of motion distance
and motion variance. These properties are defined below.

Definition 3 (Motion Distance and Motion Variance). Let T be a trajectory
space and t : {1, . . . , n} → R

3 be a trajectory. The motion distance mδ : T → R

of trajectory t is defined as:

mδ(t) =
n−1∑

i=1

‖t(i) − t(i + 1)‖2.

The motion variance mσ2 : T → R of trajectory t is defined with mean μ(t) =
1
n · ∑n

i=1 t(i) as:

mσ2(t) =
1
n

·
n∑

i=1

‖t(i) − μ(t)‖22.

The intuition behind motion distance and motion variance is to take into
account the overall movement and vividness of a trajectory. The higher these
qualities, the more information the trajectory may contain and vice versa. Their
utilization with respect to a set of relevant trajectories finally leads to the def-
initions of a motion distance gesture signature and a motion variance gesture
signature, as shown below.

Definition 4 (Motion Distance Gesture Signature and Motion Variance Ges-
ture Signature). Let T be a trajectory space and T + ⊂ T be a subset of relevant
trajectories. A motion distance gesture signature Smδ

∈ S is defined for all t ∈ T

as:

Smδ
(t) =

{
mδ(t) if t ∈ T +

0 otherwise.

A motion variance gesture signature Smσ2 ∈ S is defined for all t ∈ T as:

Smσ2 (t) =

{
mσ2(t) if t ∈ T +

0 otherwise.



Spatiotemporal Similarity Search in 3D Motion Capture Gesture Streams 361

Motion distance and motion variance gesture signatures are able to reflect
the spatial and temporal characteristics of the expressed gestures with respect to
the corresponding relevant trajectories by adapting the number and weighting
of relevant trajectories. As a consequence, the computation of a (dis)similarity
value between gesture signatures is frequently based on the (dis)similarity val-
ues among the involved trajectories in the trajectory space. Whereas distance
functions applicable to trajectories are outlined in Sect. 2, we continue with
introducing the Gesture Matching Distance in the following section.

4 Gesture Matching Distance

Gesture signatures naturally differ in size and length, i.e., in the number of rele-
vant trajectories that contribute to a certain gesture and in the lengths of those
trajectories. In order to quantify the distance between differently structured
gesture signatures, we propose the matching-based Gesture Matching Distance.
The idea of this distance-based similarity measure between gesture signatures
is to match the underlying trajectories with respect to their spatial and tempo-
ral characteristics. These characteristics are evaluated by means of a trajectory
distance function, such as the Dynamic Time Warping Distance. Based on a tra-
jectory distance function, similar trajectories between both gesture signatures
are matched according to the principle of the δ-Nearest-Neighbor Matching. The
formal definition of this matching is given below.

Definition 5 (δ-Nearest-Neighbor Matching). Let S1, S2 ∈ S be two gesture sig-
natures and δ : T × T → R be a trajectory distance function. The δ-Nearest-
Neighbor Matching mδ-NN

S1→S2
⊆ T × T between S1 and S2 is defined as follows:

mδ-NN
S1→S2

= {(t1, t2) ∈ T × T|S1(t1) > 0 ∧ S2(t2) > 0 ∧ t2 = argmint∈Tδ(t1, t)}.

As can be seen in the definition above, the δ-Nearest-Neighbor Matching
mδ-NN

S1→S2
between two gesture signatures S1 and S2 assigns each trajectory t1

from the first gesture signature S1 to one or more trajectories t2 from the second
gesture signature S2. The δ-Nearest-Neighbor Matching mδ-NN

S1→S2
satisfies left

totality, i.e. it holds that ∀t1,∃t2 : S1(t1) > 0 ⇒ (t1, t2) ∈ mδ-NN
S1→S2

but not right
uniqueness, i.e. it holds that ∀t1, t2, t

′
2 : (t1, t2) ∈ mδ-NN

S1→S2
∧ (t1, t′2) ∈ mδ-NN

S1→S2
�⇒

t2 = t′2. Therefore, the size of the δ-Nearest-Neighbor Matching is restricted by
the number of trajectories which contribute to both gesture signatures, i.e. it
holds that |mδ-NN

S1→S2
| ≤ |{S1(t) > 0}t∈T| · |{S2(t) > 0}t∈T|. Given the δ-Nearest-

Neighbor Matching between two gesture signatures, we can now introduce the
Gesture Matching Distance as shown in the definition below.

Definition 6 (Gesture Matching Distance). Let S1, S2 ∈ S be two gesture signa-
tures and δ : T×T → R be a trajectory distance function. The Gesture Matching
Distance GMDδ : S × S → R between S1 and S2 is defined as:

GMDδ(S1, S2) =
∑

(t1,t2)∈mδ-NN
S1→S2

S1(t1) · δ(t1, t2) +
∑

(t2,t1)∈mδ-NN
S2→S1

S2(t2) · δ(t2, t1).
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The Gesture Matching Distance GMDδ between two gesture signatures is
evaluated by adding the distances between matching trajectories and weighting
these distances with the corresponding weights. In this way, the spatiotemporal
relations of matching trajectories between two gesture signatures are linearly
combined by the Gesture Matching Distance. The more similar two gesture sig-
natures in terms of their underlying trajectories, the smaller the corresponding
values of the trajectory distance functions between matching trajectories and
thus the smaller the value of the Gesture Matching Distance.

The computation time complexity of a single distance computation lies in
O(|{S1(t) > 0}t∈T| · |{S2(t) > 0}t∈T| · ζ) where ζ denotes the computation time
complexity of the trajectory distance function δ.

The following theorem formally proves that the Gesture Matching Distance
indeed complies with the properties of a distance function [15]: (i) non-negativity,
(ii) symmetry, and (iii) reflexivity.

Theorem 1 (Distance Properties of Gesture Matching Distance). Let S =
{S|S ∈ R

T ∧ |S−1(R \ {0})| < ∞} be a gesture space over the trajectory space
T and δ : T × T → R be a trajectory distance function. The Gesture Matching
Distance GMDδ : S × S → R satisfies the following distance properties for any
gesture signatures S1, S2 ∈ S:

(i) GMDδ(S1, S2) ≥ 0
(ii) GMDδ(S1, S2) = GMDδ(S2, S1)
(iii) GMDδ(S1, S1) = 0

Proof. (i): By definition of mδ-NN
S1→S2

and the properties of δ it holds that
∀t1, t2 ∈ T : (t1, t2) ∈ mδ-NN

S1→S2
⇒ S1(t1) > 0 ∧ δ(t1, t2) ≥ 0. Therefore, it holds

that
∑

(t1,t2)∈mδ-NN
S1→S2

S1(t1) · δ(t1, t2) ≥ 0. It can be shown analogously that
∑

(t2,t1)∈mδ-NN
S2→S1

S2(t2) · δ(t2, t1) ≥ 0 and thus GMDδ(S1, S2) ≥ 0.

(ii): The symmetry of GMDδ can be shown as follows:

GMDδ(S1, S2)

=
∑

(t1,t2)∈mδ-NN
S1→S2

S1(t1) · δ(t1, t2) +
∑

(t2,t1)∈mδ-NN
S2→S1

S2(t2) · δ(t2, t1)

=
∑

(t2,t1)∈mδ-NN
S2→S1

S2(t2) · δ(t2, t1) +
∑

(t1,t2)∈mδ-NN
S1→S2

S1(t1) · δ(t1, t2)

= GMDδ(S2, S1).

(iii): By definition of mδ-NN
S1→S1

and the properties of δ it holds that
∀t1, t

′
1 ∈ T : (t1, t′1) ∈ mδ-NN

S1→S1
⇒ δ(t1, t′1) = 0. Therefore, it holds that∑

(t1,t′
1)∈mδ-NN

S1→S1
S1(t1) · δ(t1, t′1) = 0 and thus GMDδ(S1, S1) = 0. This gives

us the theorem.

Theorem 1 states that the Gesture Matching Distance GMDδ is a valid dis-
tance function between gesture signatures from S provided that the underly-
ing trajectory distance function δ satisfies the properties of non-negativity and
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reflexivity. Due to the nature of trajectories whose inherent spatial and temporal
properties are rarely expressible in a single figure, trajectories are frequently com-
pared by aligning their coincident similar points with each other. A prominent
example is the Dynamic Time Warping Distance, which was first introduced in
the field of speech recognition by Itakura [26] and Sakoe and Chiba [50] and later
brought to the domain of pattern detection in databases by Berndt and Clifford
[7]. The idea of this distance is to locally replicate points of the trajectories in
order to fit the trajectories to each other. The point-wise distances finally yield
the Dynamic Time Warping Distance, whose formal definition is given below.

Definition 7 (Dynamic Time Warping Distance). Let tn : {1, . . . , n} → R
3

and tm : {1, . . . , m} → R
3 be two trajectories from T and δ : R3 × R

3 → R be
a distance function. The Dynamic Time Warping Distance DTWδ : T × T → R

between tn and tm is recursively defined as:

DTWδ(tn, tm) = δ(tn(n), tm(m)) + min

⎧
⎪⎨

⎪⎩

DTWδ(tn−1, tm−1)
DTWδ(tn, tm−1)
DTWδ(tn−1, tm)

with

DTWδ(t0, t0) = 0
DTWδ(ti, t0) = ∞ ∀1 ≤ i ≤ n

DTWδ(t0, tj) = ∞ ∀1 ≤ j ≤ m.

As can be seen in the definition above, the Dynamic Time Warping Distance
is defined recursively by minimizing the distances δ between replicated elements
of the trajectories. In this way, the distance δ assesses the spatial proximity of two
points while the Dynamic Time Warping Distance preserves their temporal order
within the trajectories. By utilizing Dynamic Programming, the computation
time complexity of the Dynamic Time Warping Distance lies in O(n · m).

We have decided to utilize the Dynamic Time Warping Distance within the
Gesture Matching Distance for the following two reasons: (i) The value of the
Dynamic Time Warping Distance is based on all points of the trajectories with
respect to their temporal order and is not attributed to partial characteristics
of the trajectories and (ii) it provides the ability of efficient query processing by
means of lower bounding [30].

Given the proposed spatiotemporal similarity model for gestures arising in
3D motion capture data streams, namely gesture signatures endowed with the
Gesture Matching Distance, we will show in the following section how to process
queries sequentially in order to provide a means of support for qualitative
analyses.

5 Query Processing in 3D Motion Capture Data

In this section, we introduce a query processing algorithm for the query-driven
analysis of 3D motion capture data streams. The objective of this algorithm is
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to produce a dissimilarity plot for the whole 3D motion capture data stream in
order to indicate temporal segments comprising high spatiotemporal similarity
with respect to a given query signature. To this end, we make use of a sliding
window approach in order to average dissimilarity values between the query
pattern and patterns within the 3D motion capture data stream. The pseudo
code is listed in Algorithm 1.

input : trajectories t1, . . . , tn ∈ T, signature Q ∈ S

output: avgDissimilarity

1 queryLength ← getMaxTrajectoryLength(Q);
2 dataLength ← getMaxTrajectoryLength(t1, . . . , tn);
3 for i ← 0 to i < (dataLength − queryLength) do
4 signature S ← signaturize(t1|[i,i+queryLength], . . . , tn|[i,i+queryLength]);
5 S ← weight(S);
6 S ← normalize(S);
7 dist ← GMDδ(Q,S);
8 avgDissimilarity[i, . . . , i + queryLength] ← update(avgDissimilarity,dist);
9 i ← i + 1;

10 end
Algorithm 1. Query processing algorithm

The input of Algorithm 1 consists of a 3D motion capture data stream in
form of trajectories t1, . . . , tn ∈ T and a query gesture signature Q ∈ S reflecting
the spatiotemporal pattern of interest. The method getMaxTrajectoryLength
is invoked twice to determine the maximum length of the query trajectories and
of the data trajectories, respectively. The variable queryLength defines the size
of the sliding window which is utilized to generate gesture signatures from the
3D motion capture data stream. For this purpose, the method signaturize gen-
erates a gesture signature from the trajectories t1, . . . , tn restricted to the inter-
val [i, i + queryLength]. The resulting gesture signature S is further weighted
by means of a weighting scheme, as proposed in Definition 3, via the method
weight. In addition to this weighting, the algorithm further applies a min-max-
normalization to the interval [0, 1]3 ∈ R

3 by the method normalize. This ensures
the gesture signatures to be translation invariant. Finally, the Gesture Matching
Distance GMDδ(Q,S) between the query gesture signature Q and the generated
gesture signature S is evaluated and the variable avgDissimilarity[i, . . . , i +
queryLength] is updated accordingly via the method update. The variable
avgDissimilarity contains the dissimilarity plot, i.e. the average dissimilarity
values as a function of time, and is returned by the algorithm after processing
the 3D motion capture data stream.

Unlike query processing algorithms designed for distance-based range and
nearest neighbor queries, whose aims lie in finding the most similar objects with
respect to queries, the proposed query processing algorithm aims at supporting
domain-specific analyses by providing an average dissimilarity value for each tem-
poral segment within the 3D motion capture data stream. We show the appro-
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priateness of this dissimilarity plot obtained by utilizing the Gesture Matching
Distance in the following section.

6 Experimental Evaluation

Evaluating the performance of distance-based similarity models is a highly
empirical discipline. It is nearly unforeseeable which approach will provide the
best results in terms of accuracy. To this end, we evaluated the Gesture Match-
ing Distance based on the Dynamic Time Warping Distance by using a natural
media corpus of 3D motion capture data collected for this project. This dataset
comprises three-dimensional motion capture data streams arising from eight par-
ticipants during a guided conversation. The participants were equipped with a
multitude of reflective markers which were attached to the body and in partic-
ular to the hands. The motion of the markers has been tracked optically via
cameras at a frequency of 100 Hz. In the scope of this work, we used the right
wrist marker and two markers attached to the right thumb and right index fin-
ger each. The gestures arising within the conversation were classified by domain
experts according to the following types of movement: spiral, circle, and straight.
Example gestures of these movement types are sketched in Fig. 1. A total of 20
gesture signatures containing five trajectories each was obtained from the 3D
motion capture data streams. The trajectories of the gesture signatures have
been normalized to the interval [0, 1]3 ∈ R

3 in order to maintain translation
invariance.

Fig. 2. Distance matrix for the Gesture Matching Distance based on motion variance
gesture signatures with respect to different movement types. Bluish and reddish colors
indicate small and large distance values, respectively. The distance values are normal-
ized to the interval [0, 1] ∈ R (Color figure online).
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Fig. 3. Average dissimilarity values shown as a function of time with respect to ges-
ture patterns of movement type spiral. Reddish time intervals depict gestural patterns
included in the 3D motion capture data streams. Average dissimilarity values for the
corresponding queries are shown via bluish and greenish lines (Color figure online).

The resulting distance matrix of the Gesture Matching Distance between
all gesture signatures is shown in Fig. 2. Since weighting of relevant trajectories
by motion distance and motion variance, cf. Definition 3, approximately shows
the same tendency, we include the results regarding motion variance gesture
signatures only. We depict small and large distance values by bluish and reddish
colors in order to visually indicate the performance of our proposal: gesture
signatures from the same movement type should result in bluish colors while
gesture signatures from different movement types should result in reddish colors.

As can be seen in Fig. 2, the Gesture Matching Distance is able to distinguish
gesture signatures from different movement types. On average, gesture signatures
belonging to the same movement type are less dissimilar to each other than ges-
ture signatures from different movement types. We further observed that the dis-
tinction between gesture signatures from the movement types spiral and straight
are most challenging. This is caused by a similar sequence of movement of these
two gestural types. While gesture signatures belonging to the movement type
straight follow a certain direction, e.g., movement on the horizontal axis, ges-
ture signatures from the movement type spiral additionally oscillate with respect
to a certain direction. Since this oscillation can be dominated by the movement
direction, the underlying trajectory distance function is often unable to distin-
guish oscillating from non-oscillating trajectories and thus gesture signatures of
movement type spiral from those of movement type straight.

The question of whether our proposed distance-based similarity model and
query processing algorithm are able to find similar spatiotemporal patterns
within streams of 3D motion capture data is investigated in the remainder of this
section. To this end, we used gestures classified by domain experts according to
their movement type as queries and computed the dissimilarity plot for different
motion capture data streams by means of Algorithm 1. The resulting average
dissimilarity values calculated by the query processing algorithm are visualized
as a function of time in Fig. 3 for the movement type spiral, in Figs. 4 and 5
for the movement type straight, and in Figs. 6 and 7 for the movement type cir-
cle. We highlight the corresponding gestural patterns included in the 3D motion
capture data streams via reddish time intervals. The average dissimilarity values
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Fig. 4. Average dissimilarity values shown as a function of time with respect to gesture
patterns of movement type straight. Reddish time intervals depict gestural patterns
included in the 3D motion capture data streams. Average dissimilarity values for the
corresponding queries are shown via bluish and greenish lines (Color figure online).

Fig. 5. Average dissimilarity values shown as a function of time with respect to gesture
patterns of movement type straight. Reddish time intervals depict gestural patterns
included in the 3D motion capture data streams. Average dissimilarity values for the
corresponding queries are shown via bluish and greenish lines (Color figure online).

Fig. 6. Average dissimilarity values shown as a function of time with respect to ges-
ture patterns of movement type circle. Reddish time intervals depict gestural patterns
included in the 3D motion capture data streams. Average dissimilarity values for the
corresponding queries are shown via bluish and greenish lines (Color figure online).

for the respective queries are shown by means of bluish and greenish lines. The
better these lines coincide with the corresponding gestural patterns, the better
the similarity model.

As can be seen in the figures, more than 90 % of the queries match the
corresponding gestural patterns included in the 3D motion capture data streams
as indicated by low dissimilarity values. The only exception is the second query
of movement type spiral that is visualized in Fig. 3. It can be further observed
that similar and dissimilar patterns in the 3D motion capture data streams



368 C. Beecks et al.

Fig. 7. Average dissimilarity values shown as a function of time with respect to ges-
ture patterns of movement type circle. Reddish time intervals depict gestural patterns
included in the 3D motion capture data streams. Average dissimilarity values for the
corresponding queries are shown via bluish and greenish lines (Color figure online).

are well separable with respect to a specific query by a dissimilarity threshold of
approximately 0.2. In other words, our proposal is able to find gestures that share
similar spatiotemporal characteristics with the query pattern. It thus supports
qualitative domain-specific analyses by query-driven spatiotemporal similarity
search in 3D motion capture data streams.

Apart from the quality of accuracy, efficiency is another important aspect
when evaluating the performance of a gesture similarity model. For this purpose,
we measured the computation time needed to perform a single distance compu-
tation with respect to the gesture signature size, i.e. with respect to the length
of relevant trajectories. We implemented the proposed distance-based approach
in Java 1.8 and conducted the evaluation on a single-core 3.4 GHz machine. The
average time needed to perform a single distance computation strongly depends
on the gesture signature size. While the Gesture Matching Distance needs on
average 57 ms for a single distance computation between two gesture signatures
comprising trajectories of length 100, i.e. for gestures with a duration of 1 sec-
ond, it needs on average 1.3 sec for a single distance computation between two
gesture signatures comprising trajectories of length 500, i.e. for gestures with a
duration of 5 sec. Thus, the computation time of the Gesture Matching Distance
significantly grows with increasing length of the corresponding trajectories and
thus the duration of the gestures.

To sum up, the experimental evaluation reveals that the proposed Gesture
Matching Distance is able to model spatiotemporal similarity between gestures
arising in 3D motion capture data streams in an unsupervised and model-free
way. Without the need for training a complex model or extracting computation-
ally intensive features from the 3D motion capture data streams, the experimen-
tal evaluation shows that our approach instantly supports the domain experts’
qualitative analyses of gestural patterns.

7 Conclusions and Future Work

In this paper, we have proposed and investigated a distance-based approach to
measure spatiotemporal similarity between gestures arising in 3D motion cap-
ture data streams. To this end, we have explicated gesture signatures as a way
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of aggregating the inherent spatial and temporal characteristics of gestures and
introduced the Gesture Matching Distance as a novel distance-based approach
for quantifying dissimilarity between gesture signatures. The Gesture Match-
ing Distance epitomizes an unsupervised and model-free measure that can be
instantly applied to 3D motion capture data streams in order to support the
domain experts’ qualitative analyses of gestural patterns within multimedia con-
texts.

In future work, we intend to extend our research on gesture similarity
towards indexing and efficient query processing. While the focus of the present
paper lies on investigating a distance-based similarity model for gesture signa-
tures and providing an intuitive query processing algorithm for supporting the
domain experts’ qualitative analyses, we further plan to research lower bounding
approaches for incrementally computing distances in a stream-based manner in
order to enable real-time query-driven analyses in 3D motion capture gesture
streams.

Acknowledgment. This work is partially funded by the Excellence Initiative of the
German federal and state governments and by DFG grant SE 1039/7-1.
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12. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 491–502 (2005)

13. Cheng, J., Xie, C., Bian, W., Tao, D.: Feature fusion for 3D hand gesture recog-
nition by learning a shared hidden space. Pattern Recogn. Lett. 33(4), 476–484
(2012)

14. Cienki, A.: Cognitive linguistics: Spoken language and gesture as expressions of
conceptualization. Body - Language - Communication: An International Handbook
on Multimodality in Human Interaction, pp. 182–201 (2013)

15. Deza, M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
16. Efron, D.: Gesture and Environment. Kings Crown Press, New York (1941)
17. Ekman, P., Friesen, W.: The repertoire of nonverbal behavior: Categories, origins,

usage, and coding. Semiotica 1(1), 49–98 (1969)
18. Fang, S., Chan, H.: Human identification by quantifying similarity and dissimilarity

in electrocardiogram phase space. Pattern Recogn. 42(9), 1824–1831 (2009)
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Abstract. We study a similarity search problem on a raw image by
its pixel values. We call this problem as matrix similarity search; it has
several applications, e.g., object detection, motion estimation, and super-
resolution. Given a data image D and a query q, the best match refers
to a sub-window of D that is the most similar to q. The state-of-the-
art solution applies a sequence of lower bound functions to filter sub-
windows and reduce the response time. Unfortunately, it suffers from two
drawbacks: (i) its lower bound functions cannot support arbitrary query
size, and (ii) it may invoke a large number of lower bound functions,
which may incur high cost in the worst-case. In this paper, we propose an
efficient solution that overcomes the above drawbacks. First, we present
a generic approach to build lower bound functions that are applicable
to arbitrary query size and enable trade-offs between bound tightness
and computation time. We provide performance guarantee even in the
worst-case. Second, to further reduce the number of calls to lower bound
functions, we develop a lower bound function for a group of sub-windows.
Experimental results on image data demonstrate the efficiency of our
proposed methods.

1 Introduction

Multimedia databases [14,15,21] support similarity search on objects (e.g.,
images) by their feature vectors. In contrast, we consider a similarity search
problem on a raw image by its pixel values. We call this problem as matrix
similarity search; it has several applications, e.g., object detection [6], motion
estimation [17], and super-resolution [7]. For example, we consider a satellite
image in which each pixel represents a certain area on Earth (or in the sky).
We illustrate a weather satellite image (obtained from [1]) in Fig. 1a and a cloud
pattern in Fig. 1b. The matrix similarity search problem has been used for cloud
motion estimation on satellite images [4]. This problem takes a data image D
and a query image q as inputs (c.f. Fig. 1). A candidate c refers to a sub-window
(of D) with the same size as q. The matrix similarity search problem comes in
two flavors [19,22]:
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 373–390, 2015.
DOI: 10.1007/978-3-319-22363-6 20
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– Range search: given a range τrange, find every candidate c of D such that
dist(q, c) ≤ τrange.

– Nearest neighbor (NN) search: find a candidate c of D such that it has
the smallest dist(q, c).

The typical distance function dist(q, c) is the Lp-norm distance (usually L1 or
L2). In subsequent discussion, we let the size of D be ND = LD × WD, and the
size of q be Nq = Lq × Wq.

(a) data image D, of size ND = LD × WD (b) query image q, of size Nq = Lq × Wq

(best match: yellow rectangle)

Fig. 1. The matrix similarity search problem

In this paper, we focus on the NN flavor of matrix similarity problem because
some applications [4,17] require finding the best match. Unlike the range search,
the NN search has a fixed result size and does not require the user to supply a
range parameter τrange [22].

Schweitzer et al. [22] is the state-of-the-art NN search algorithm for the
matrix similarity search problem. It applies a sequence of lower bound func-
tions to filter candidates and reduce the response time. We illustrate this idea in
Fig. 2a. It starts with the cheapest lower bound function and then progressively
apply tighter lower bound functions when necessary. However, this solution still
suffers from two drawbacks. First, the lower bound functions in [22] are based on
a Fourier transform on matrix (called the Walsh-Hadamard transform), which
can only support query of the size 2r × 2r. Thus, it cannot support arbitrary
query size. Second, in the worst case, it may invoke a large number of lower
bound functions on a candidate, which may sum up to a high cost.

To avoid the above drawbacks on matrix similarity search, we contribute two
lower bound functions LBlevel,� and LBgroup, as shown in Fig. 2b.

– When compared to Ref. [22], we present a generic approach to build a sequence
of lower bound functions LBlevel,� that are applicable to arbitrary query size.
As shown in Fig. 2b, our approach would only call a logarithmic number of
functions (in terms of Nq) in the worst-case.
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tightness

bound 
tightness (2)

(3)

LB100

logarithmic 

(a) the state-of-the-art

time
LB1

(b)  our progressive approach

O(1)

time

O(4l)

LBgroup

O(α)

group size

(0)

(1) LBbasic

O(Nq)
O(Nq)

LB2

LB3 LB99

logarithmic 
number of functions

Fig. 2. Intuition

– Existing lower bound functions take a single candidate as input. We develop
a lower bound function LBgroup that can take a group of candidates as input.
This significantly reduces the frequency of calling lower bound functions for
individual candidates.

The rest of the paper is organized as follows. Section 2 defines our prob-
lem and introduces the background information. Section 3 presents our proposed
solution. Section 4 discusses our experimental results. Section 5 elaborates on the
related work. Section 6 concludes the paper with future research directions.

2 Preliminaries

2.1 Problem Definition

In this paper, we represent each image as a matrix. Let D be the data matrix
(of size ND = LD × WD) and q be the query matrix (of size Nq = Lq × Wq). A
candidate cx,y is a sub-window of D with the same size as q.

cx,y[1..Lq, 1..Wq] = D[x..x + Lq − 1, y..y + Wq − 1] (1)

The subscript of cx,y denotes the start position in D; we drop it when the context
is clear.

Problem 1 (Matrix NN Search). Given a query q and a data matrix D, find the
candidate cbest such that it has the minimum distp(q, cbest), where the distance
is defined as:

distp(q, c) = (
Lq∑

i=1

Wq∑

j=1

|q[i, j] − c[i, j]|p) 1
p (2)

Figure 3 shows a query q of size 4×4 and a data matrix D of size 8×8. There
are 5 × 5 = 25 candidates in D. For instance, the dotted sub-window refers to
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1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13
candidate cx

2 14 10 11 12 19 14 16 16
3 24 25 20 16 23 20 17 19
4 16 12 17 16 22 11 18 14
5 11 15 14 15 21 25 17 24
6 17 19 14 30 24 26 25 31
7 14 26 22 33 26 19 20 20

1 2 3 4

1 16 13 22 21
2 18 17 20 11
3 13 15 20 22
4 15 32 22 22

x

y

103 109 77 76 89

95 79 71 79 77

88 86 27 87 86

70 91 74 105 110

98 96 98 108 106

dist1(q,c)

8 23 21 18 21 24 23 18 22query q

data matrix D
y

distances from q
to candidates

Fig. 3. Example for the problem

the candidate c3,3. The right-side of Fig. 3 enumerates the distances from q to
each candidate, assuming the L1 distance (i.e., p = 1) is used. In this example,
the best match is c3,3 because it has the smallest distance dist1(q, c3,3) = 27
from q.

2.2 Background: Prefix-Sum Matrix and Basic Lower Bound
Functions

In this section, we first introduce prefix-sum matrix and then discuss how they
can be utilized to compute basic lower bound functions.

As we will introduce shortly, lower bound functions require summing the
values in a rectangular region in a matrix. We can speedup their computation
by using a prefix-sum matrix [11]. It is also called integral image [26] in the
computer vision community.

Definition 1 (Prefix-sum matrix). Given a matrix A (of size NA = LA ×
WA), we define its prefix-sum matrix PA (of the same size) with entries:

PA[x, y] =
x∑

i=1

y∑

j=1

A[i, j] (3)

The prefix-sum matrix occupies O(NA) space and takes O(NA) construction
time [11]. It enables us to find the sum of values of a rectangular region (say,
[x1..x2, y1..y2]) in a matrix A in O(1) time, according to Eq. 4.

∑
A[x1..x2, y1..y2] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

PA[x2, y2] if x1 = 1, y1 = 1
PA[x2, y2] − PA[x1 − 1, y2] if x1 > 1, y1 = 1
PA[x2, y2] − PA[x2, y1 − 1] if x1 = 1, y1 > 1

PA[x2, y2] + PA[x1 − 1, y1 − 1]
−PA[x1 − 1, y2] − PA[x2, y1 − 1]

otherwise

(4)
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1 2 3 4 5 6 7 8

Σ D[4..7,2..5] = PD[7,5] – PD[3,5] – PD[7,1] + PD[3,1]

1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13

2 14 10 11 12 19 14 16 16

3 24 25 20 16 23 20 17 19

4 16 12 17 16 22 11 18 14

5 11 15 14 15 21 25 17 24

6 17 19 14 30 24 26 25 31

7

x 1 16 40 66 79 97 113 133 146

2 30 64 101 126 163 193 229 258

3 54 113 170 211 271 321 374 422

4 70 141 215 272 354 415 486 548

5 81 167 255 327 430 516 604 690

6 98 203 305 407 534 646 759 876

7 112 243 367 502 655 786 919 1056

x

14 26 22 33 26 19 20 20

8 23 21 18 21 24 23 18 22

data matrix D
y

8 135 287 429 585 762 916 1067 1226

prefix-sum matrix PD of D
y

Fig. 4. Example of a prefix-sum matrix

Figure 4 illustrates a data matrix D and its corresponding prefix-sum matrix
PD. The sum of values in the dotted region ([4..7,2..5]) in D can be derived from
the entries (7,5), (3,1), (3,5), (7,1) in PD.

We proceed to introduce the basic lower bound function LBbasic used in
Fig. 2. Since our solution will use LBbasic as a building block (cf. Sect. 3), we
require that: (i) LBbasic can be computed in O(1) time, (ii) LBbasic(q, c) ≤
distp(q, c) always holds, and (iii) LBbasic supports arbitrary query size.

In this paper, we use the following lower bound functions as LBbasic.

LB⊕(q, c) =
p
√

Nq

Nq
·
∣
∣
∣
∣
∣

Lq∑

i=1

Wq∑

j=1

q[i, j] −
Lq∑

i=1

Wq∑

j=1

c[i, j]

∣
∣
∣
∣
∣

(5)

LBΔ(q, c) =

∣
∣
∣
∣
∣

p

√√
√
√

Lq∑

i=1

Wq∑

j=1

|q[i, j]|p − p

√√
√
√

Lq∑

i=1

Wq∑

j=1

|c[i, j]|p
∣
∣
∣
∣
∣

(6)

The first one (LB⊕(q, c)) is given in [28]. The second one (LBΔ(q, c)) is derived
from the triangle inequality of the Lp distance [5,13].

Observe that both of them can be computed in O(1) time, by using a prefix-
sum matrix as discussed before. Regarding the summation term for q, we can
compute it once and then reuse it for every candidate c. For LB⊕(q, c), the term
∑Lq

i=1

∑Wq

j=1 c[i, j] can be derived from the prefix-sum matrix PD (of data matrix

D). For LBΔ(q, c), the term
∑Lq

i=1

∑Wq

j=1 |c[i, j]|p can be derived from the prefix-
sum matrix PD′ , where the matrix D′ is defined with entries: D′[i, j] = (D[i, j])p.

As a remark, we are aware of lower bound functions used in the pattern
matching literature [2,10,18,19,25]. However, since those lower bound functions
take more than O(1) time, we choose not to use them as LBbasic (the building
block) in our solution.
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3 Progressive Search Algorithm

We illustrate the flow of our proposed NN search method in Fig. 5. Like [16,23],
we employ a min-heap H in order to process entries in ascending order of their
lower bound distance. The main difference is that H contains two types of entries:
(i) a candidate, (ii) a group of candidates. As discussed before, a candidate
corresponds to a sub-window of D. On the other hand, a group represents a
consecutive region of candidates. Initially, H contains a group entry that covers
the entire D.

When we deheap an entry from H, we check whether it is a group or a
candidate.

1. If it is a group G, then we divide it evenly into 4 groups G1, G2, G3, G4
1. For

each Gi, we compute the group lower bound LB(q,Gi) and then enheap Gi

into H.
2. If it is a candidate c, then we compute the candidate lower bound

LBlevel,�(q, c) at the next level �, and then enheap c into H again.

During this process, a group would degenerate into a candidate when it covers
exactly one candidate. Similarly, when a candidate reaches the deepest level, we
directly apply the exact distance function dist(q, c) on it, and update the best
NN distance found so far τbest. The search terminates when the lower bound of
a deheaped entry exceeds τbest.

apply LBgroup to these groups, then enheap them

a group 
(of candidates)

min-heap H
deheap an entry

divide it into 
4 groups

increment 
level

apply LBlevel to it, then enheap it

a candidate
(at level l)

or compute 
exact distance

Fig. 5. The flow of our progressive search method

Table 1 lists the lower bound functions to be used in our NN search method.
We have introduced LBbasic in Sect. 2.2. We will develop LBlevel,� and LBgroup

1 This is similar to the division of nodes in a quadtree.



A Progressive Approach for Similarity Search on Matrix 379

in Sects. 3.1 and 3.2, respectively. Section 3.3 explores an efficient technique for
computing LBgroup. Finally, we summarize our proposed NN search algorithm
in Sect. 3.4.

Table 1. Types of lower bound functions

Function Apply to Cost

LBbasic (e.g., LBΔ, LB⊕) Candidate O(1)

LBlevel,� Candidate O(4�)

LBgroup Group O(α)

3.1 Progressive Filtering for Candidates

As discussed in Sect. 1, the lower bound LBbasic and the exact distance distp
have a significant gap in terms of computation time and bound tightness (cf.
Fig. 2). In order to save expensive distance computations, we suggest to apply
tighter lower bound functions progressively.

In this section, we present a generic idea to construct a parameterized lower
bound function LBlevel,� by using LBbasic as a building block. The level parame-
ter � controls the trade-offs between the bound tightness and the computation
time in LBlevel,�. A small � incurs small computation time whereas a large �
provides tighter bounds.

Intuitively, we build LBlevel,� by using divide-and-conquer. We can partition
the space [1..Lq, 1..Wq] into 4� disjoint rectangles {Rv : 1 ≤ v ≤ 4�}, and then
apply LBbasic (for q and c) in each rectangle Rv.2 Then, we combine these 4�

lower bound distances into LBlevel,� in Eq. 7. The time complexity of LBlevel,�

is O(4�), as each LBbasic takes O(1) time.

LBlevel,�(q, c) = p

√√
√
√

4�∑

v=1

LBbasic(q[Rv], c[Rv])p (7)

For example, in Fig. 6, when � = 2, both the query q and the candidate c are
divided into 4� = 16 rectangles. We apply LBbasic on each rectangle in order to
compute LBlevel,�(q, c). As a remark, the maximum possible level �max (for �) is:

�max = �log2(max{Lq,Wq})� (8)

Next, we show that LBlevel,� satisfies the lower bound property.

Lemma 1. For any candidate c, we have: LBlevel,�(q, c) ≤ distp(q, c).

2 In general, the space [1..Lq, 1..Wq] may have less than O(4�) disjoint rectangles.
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Proof. For each region Rv, we have LBbasic(q[Rv], c[Rv]) ≤
p

√∑
(i,j)∈Rv

|q[i, j] − c[i, j]|p, and thus LBbasic(q[Rv], c[Rv])p ≤ ∑
(i,j)∈Rv

|q[i, j] − c[i, j]|p. By summing it over all Rv, we obtain:
∑4�

v=1 LBbasic(q[Rv], c[Rv])p ≤
Lq∑

i=1

Wq∑

j=1

|q[i, j] − c[i, j]|p, because ∪4�

v=1Rv covers

all positions in the query matrix q. Thus we have: LBlevel,�(q, c) ≤ distp(q, c).��
During search, we will apply LBlevel,� on a candidate in the ascending order

of � as shown in Fig. 6. If we cannot filter c at level �, then we attempt to filter
it with minimal extra effort, i.e., at level � + 1. We justify this ascending � order
in Lemma 2.

apply LBbasic to each region Rk

l = 1 l = 2 l = 3

……

l = 0

Fig. 6. LBlevel,� at different levels

Lemma 2. Consider a candidate c that is not the nearest neighbor. The ascend-
ing level order achieves costorder ≤ 4

3 · costopt, where costopt is the optimal cost,
and costorder is the cost of the order.

Proof. Recall that the cost of LBlevel,�(q, c) is 4�. Let �∗ be the smallest level
such that LBlevel,�∗(q, c) > distNN , where distNN is the best match distance.

In order to discard c, the optimal way (which knows �∗) is to apply LBlevel,�∗ .
Thus, we have: costopt = 4�∗

.
For the ascending level order, we have: costorder =

∑�∗

i=0 4i = 4�∗+1−1
3 . Thus,

we have: costorder/costopt ≤ 4�∗+1−1
3×4�∗ ≤ 4

3 . ��

3.2 Progressive Filtering for Groups

We first introduce the concept of a group and then propose a lower bound
function for it. A group G represents a consecutive region of candidates as
shown in Fig. 7. It contains the following attributes: (i) Lg and Wg repre-
sent the size of the group, and (ii) xstart and ystart represent the start posi-
tion (top-left corner) of the group. In order to cover all candidates in the
group (e.g., those at bottom-right corner), we define the extended region as
G.Rext = [xstart..x

ext
end, ystart..y

ext
end], where xext

end = min(xstart + Lg + Lq − 1, LD)
and yext

end = min(ystart + Lg + Wq − 1,WD).
Our lower bound functions require the following concepts.
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(xstart, ystart)

Wq

Lg

candidates

Lq

Wg

group region

(xend, yend)

extended group region

Fig. 7. Illustration of a group with Lg × Wg consecutive candidates

Definition 2 (The smallest/largest Nq values). We define Nq min(G.Rext)
as the multi-set of the smallest Nq values in the submatrix D[G.Rext], i.e., it
satisfies:

max{v : v ∈ Nq min(G.Rext)} ≤ min{v : v ∈ D[G.Rext] − Nq min(G.Rext)}

Then we define the following aggregates:
φmin(G.Rext) =

∑
v∈Nq min(G.Rext) v, φp

min(G.Rext) =
∑

v∈Nq min(G.Rext) |v|p.
We define the max versions (i.e., Nq max(G.Rext), φmax(G.Rext), φp

max

(G.Rext)) in a similar way.

We illustrate these concepts in Fig. 8. Assume that p = 2 and the query size
is Nq = 2 × 2 = 4. Consider the group G with region G.R = [2..5, 2..5] (as
dotted square) and the extended region G.Rext = [2..6, 2..6] (as bolded square).
In this example, the smallest Nq values G.Rext are: 9, 9, 10, 10. Thus, we have:
φmin(G.Rext) = 9 + 9 + 10 + 10 = 38, φ2

min(G.Rext) = 2 · 92 + 2 · 102 = 362.
We then extend basic lower bound functions (e.g., LB⊕, LBΔ) for a group

G. We propose the lower bound functions LB⊕
group and LBΔ

group for G in Eqs. 9
and 10. They serve as lower bounds of LB⊕(q, c), LBΔ(q, c) for any candidate c
in G (cf. Lemmas 3 and 4).

LB⊕
group(q,G) =

⎧
⎪⎪⎨

⎪⎪⎩

p
√

Nq

Nq
(φmin(G.Rext) − ∑

∗ q) if φmin(G.Rext) >
∑

∗ q
p
√

Nq

Nq
(
∑

∗ q − φmax(G.Rext)) if φmax(G.Rext) <
∑

∗ q

0 otherwise

(9)
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1 2 3 4 5 6 7 8

1 8 6 3 7 9 3 1 5
2 5 11 10 11 10 10 1 7 group region G R

x

2 5 11 10 11 10 10 1 7
3 2 11 11 12 11 11 2 10
4 4 11 10 11 10 10 11 9
5 7 11 9 10 11 12 8 7
6 10 9 11 10 11 10 9 12
7 8 3 5 6 4 1 3 2
8 5 10 4 10 4 2 2 4

1 2

1 3 2
2 2 4

query q

group region G.R

x

y

extended region G.Rext

5 10 4 10 4 2 2 4

data matrix D

y

Fig. 8. Illustration of Nq min(G.Rext) and Nq max(G.Rext)

LBΔ
group(q, G) =

⎧

⎪

⎨

⎪

⎩

p
√

φp
min(G.Rext) − p

√
∑

∗ |q[i, j]|p if φp
min(G.Rext) >

∑

∗ |q[i, j]|p
p
√
∑

∗ |q[i, j]|p − p
√

φp
max(G.Rext) if φp

max(G.Rext) <
∑

∗ |q[i, j]|p
0 otherwise

(10)

where
∑

∗ q =
Lq∑

i=1

Wq∑

j=1

q[i, j] and
∑

∗ |q[i, j]|p =
Lq∑

i=1

Wq∑

j=1

|q[i, j]|p.

Lemma 3. Given a group G, for any candidate c in G, we have:
LB⊕

group(q,G) ≤ LB⊕(q, c).

Proof. First, we focus on the first case of LB⊕
group(q,G), i.e., when

φmin(G.Rext) >
∑

∗ q.
Consider a candidate c in the group region of G. Since Nq min(G.Rext) con-

tains the least Nq values in the group, we have:
∑

∗ c ≥ φmin(G.Rext). Combin-
ing it with the condition in the first case, i.e., φmin(G.Rext) >

∑
∗ q), we have∑

∗ c ≥ φmin(G.Rext) >
∑

∗ q.
Then we apply the above inequality on LB⊕(q, c) and derive: LB⊕(q, c) =

p
√

Nq

Nq
· (

∑
∗ c − ∑

∗ q) ≥
p
√

Nq

Nq
(φmin(G.Rext) − ∑

∗ q) = LB⊕
group(q,G).

We omit the proof for the second case as it is similar to the above argument.
The proof for the third case (i.e., LB⊕

group(q,G) = 0) is trivial. ��
Lemma 4. Given a group G, for any candidate c in G, we have:
LBΔ

group(q,G) ≤ LBΔ(q, c).

Proof. First, we focus on the first case of LBΔ
group(q,G), i.e., when

φp
min(G.Rext) >

∑
∗ |q[i, j]|p.

Consider a candidate c in the group region of G. Since Nq min(G.Rext) con-
tains the least Nq values in the group, we have:

∑
∗ |c[i, j]|p ≥ φp

min(G.Rext).
Combining it with the condition in the first case, i.e., φp

min(G.Rext) >∑
∗ |q[i, j]|p, we have

∑
∗ |c[i, j]|p ≥ φp

min(G.Rext) >
∑

∗ |q[i, j]|p.
Then we apply the above inequality on LBΔ(q, c) and derive: LBΔ(q, c) =

p
√∑

∗ |c[i, j]|p − p
√∑

∗ |q[i, j]|p ≥ p
√

φp
min(G.Rext) − p

√∑
∗ |q[i, j]|p =

LBΔ
group(q,G).
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We omit the proof for the second case as it is similar to the above argument.
The proof for the third case (i.e., LBΔ

group(q,G) = 0) is trivial. ��
We will discuss how to compute LBgroup(q,G) efficiently in the next

subsection.
During our search procedure (cf. Fig. 5), we will apply LBgroup(q,G) on a

group G. If we cannot filter G, then we partition its group region G.R into
four sub-groups G1, G2, G3, G4 accordingly, and apply LBgroup(q,Gi) on each
sub-group Gi.

3.3 Supporting Group Filtering Efficiently

The lower bound LBgroup(q,G) involves the terms φmin(G.Rext), φmax(G.Rext),
φp
min(G.Rext), φp

max(G.Rext), which require finding the smallest Nq and the
largest Nq values in G.Rext.

In this section, we design a data structure called prefix histogram matrix to
support the above operations efficiently, namely in O(α) time. The parameter α
allows trade-off between the time complexity and the bound tightness. A larger
α tends to provide tighter bounds, but it incurs more computation time.

We proceed to elaborate on how to construct the prefix histogram matrix
for a data matrix D. First, we partition the values in matrix D into α bins and
convert each value D[i, j] to the following bin number D′[i, j]:

D′[i, j] =
⌊
α · D[i, j] − Dmin

Dmax − Dmin + 1

⌋
+ 1

where Dmin and Dmax denote the minimum and maximum values in D, respec-
tively.

We define the prefix histogram matrix PHD as a matrix where each entry
PHD[i, j] is a vector:

PHD[i, j] = 〈P1[i, j], P2[i, j], · · · , Pα[i, j]〉
where

Pv[i, j] = count(x,y)∈[1..i,1..j](D′[x, y] = v)

As a remark, the prefix histogram matrix occupies O(αND) space.
Figure 9a illustrates a histogram matrix PHD in which each entry PHD[i, j]

stores a count histogram for values in region [1..i, 1..j] in the data matrix D.
Given an extended group region G.Rext, we first retrieve count histograms at

four corners of G.Rext, and then combine them into the histogram as shown in
Fig. 9b. With this histogram, we can derive bounds for the minimum/maximum
Nq values of G.Rext in D by Definition 3.

Definition 3 (Sum of the smallest/largest Nq values in a count his-
togram). Let CH be a count histogram for G.Rext. We define φ′

min(CH) as
the sum of the smallest Nq values in CH, and φ′

max(CH) as the sum of the
largest Nq values in CH.
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While scanning the bins of CH from left to right, we examine the count and the
minimum bound of each bin to derive φ′

min(CH). A similar way can be used to
derive φ′

max(CH). The time complexity is O(α) as CH contains α bins.
As an example, consider the count histogram CH obtained in Fig. 9b. Assume

that α = 6 and Nq = 4. Thus, the width of each bin is Dmax−Dmin+1
α = 12

6 = 2.
Since the count of bin 9..10 is above Nq, we derive: φ′

min(CH) = 9 · 4 = 36.
Note that φ′

min(CH) = 36 is looser than the actual value φmin(G.Rext) = 38
(obtained in Fig. 8).

Then we replace LB⊕
group by the following function LB′⊕

group:

LB′⊕
group(q,G) =

⎧
⎪⎪⎨

⎪⎪⎩

p
√

Nq

Nq
(φ′

min(CH) − ∑
∗ q) if φ′

min(CH) >
∑

∗ q
p
√

Nq

Nq
(
∑

∗ q − φ′
max(CH)) if φ′

max(CH) <
∑

∗ q

0 otherwise

(11)

Since φ′
min(CH) ≤ φmin(G.Rext) and φ′

max(CH) ≥ φmax(G.Rext), LB′⊕
group ≤

LB⊕
group.
Similarly, we can adapt the above technique to derive a lower bound of

LBΔ
group efficiently.

1 2 3 4 5 6 7 8

1
x

14
16

count

2

3

4

5

6

7

8

y

extended region 
G.R ext

0
2
4
6
8

10
12
14

value

(a) prefix histogram matrix PHD

(b) histogram for G.Rext

(= PHD[6,6] – PHD[6,1] – PHD[1,6] + PHD[1,1])

Fig. 9. prefix histogram matrix, α = 6, Dmin = 1, Dmax = 12

3.4 Algorithm for NN Search

In this section, we summarize our techniques in Algorithm 1. Like [16,23], we
employ a min-heap H in order to process entries in ascending order of their
lower bound distance. Also, we maintain the best distance found-so-far τbest

during the search. The main difference from [16,23] is that we apply multiple
lower bound functions on candidates and also consider lower bound function for
groups of candidates.

Initially, we create an entry eroot to represent the group of all candidates.
In each iteration, we deheap an entry e and check whether it is a group entry
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Algorithm 1. Progressive Search Algorithm for NN search
1: procedure Progressive Search(query matrix q, data matrix D)
2: τbest ← ∞ � best NN distance found so far
3: create a min-heap H
4: create a heap entry eroot

5: eroot.G ← [0..LD − 1, 0..WD − 1] � the region covered by the group
6: eroot.bound ← LBgroup(q, e.G)
7: enheap eroot to H
8: while H �= ∅ do
9: e ← deheap an entry in H

10: if e.bound ≥ τbest then � termination condition
11: break
12: if |e.G| �= 1 then � group entry
13: divide e into 4 entries e1, e2, e3, e4
14: for each ei, i ← 1 to 4 do
15: ei.bound ← LBgroup(q, ei.G)
16: enheap ei to H if ei.bound ≤ τbest

17: else � candidate entry
18: if e.� < �max then � not at the deepest level
19: e.bound ← LBlevel,�(q, e)
20: increment e.�
21: enheap e to H if e.bound ≤ τbest

22: else
23: compute distp(q, c)

or a candidate entry. When e is a group entry, we divide it into four group
entries and enheap them into H. Otherwise, e is a candidate entry, and then we
examine the level of e. If e has not reached the maximum level �max, we compute
LBlevel,�(q, e), advance it to the next level, and enheap it into H. Otherwise, we
compute the exact distance of e from q, and update τbest if necessary. The loop
terminates when H becomes empty or the lower bound of the current entry
exceeds τbest.

4 Experimental Evaluation

In this section, we compare the efficiency of our methods with the state-of-the-
art method [22] called Dual-Bound (DB). Table 2 shows the bounding functions
used in these methods. Our progressive search methods share the same prefix
PS:

– PSL stands for progressive search with LBlevel only, and
– PSLG stands for progressive search with both LBlevel and LBgroup.

The subscripts of our methods (e.g., ⊕ or Δ) indicate whether they use lower
bound functions built on top of LB⊕ or LBΔ. We implemented all algorithms in
C/C++ and conducted experiments on an Intel i7 3.4 GHz PC running Ubuntu.
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Table 2. The list of our methods and the competitor

Method Bounding functions used in the method

DB [22]

PSL⊕ LB⊕, LBlevel

PSLΔ LBΔ, LBlevel

PSLG⊕ LB⊕, LBlevel, LBgroup

Table 3. Our datasets and queries

Dataset Image size Number of images Number of queries per image

Photo 2560 × 1920 30 10

Weather 1800 × 1800 30 10

Note that each method (in Table 2) requires a preprocessing step — scan a
data image D to compute its prefix-sum matrix. This step is done only once
before queries arrive. It is negligible compared to the query response time.

Table 3 summarizes the details of our image data and queries. We collect
image datasets from [1,19]. Photo [19] contains 30 images of the size 2560×1920.
Weather [1] contains 30 weather satellite images of the size 1800 × 1800; the
timestamps of these images are from 00:00 on 1/4/2014 to 06:00 on 2/4/2014. For
each image, we generate 10 random starting positions by the uniform distribution
to extract queries from that image.

In each experiment, we execute the methods on 300 queries (= 30 images ×
10 queries) and then report the average response time.

4.1 Experimental Results

First, we study the effect of the number of bins α on the response time of our
method PSLG⊕. Figure 10 plots the running time as a function of α. When α
increases, the group-based lower bound LBgroup becomes tighter (i.e., higher
pruning power) so the response time drops. Nevertheless, when α is too large, it
incurs high overhead to compute LBgroup so the response time rises slightly. In
subsequent experiments, we set α = 16 by default.

Next, we evaluate the scalability of methods with respect to the query size
Nq. Figure 11 shows the response time of methods versus the query size Nq.
Since DB [22] can only support query size of the form 2r ×2r, we use query sizes
like 322, 642, · · · in this experiment. Thanks to the group lower bound function,
PSLG⊕ outperforms all other methods and scales better with respect to Nq. On
the other hand, DB, PSLΔ and PSL⊕ need to obtain candidates one-by-one and
incur higher overhead on maintaining the min-heap.

Since PSL⊕ performs better than PSLΔ, we omit PSLΔ in the next experi-
ment.

Following [22], we then test the robustness of methods by adding noise to
queries. As in [22], Gaussian noise with a standard deviation σ is added into each
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Fig. 10. Response time vs. the number of bins α

query image. The query size is fixed to 128 × 128 in this experiment. Figure 12
shows the response time of methods as a function of σ. The performance gap
between our methods and DB widens as σ increases. At a high σ, the pruning
power of all lower bound functions becomes weaker. For each worst-case can-
didate (that cannot be pruned), DB may invoke a long sequence of bounding
functions on it, whereas our methods invoke only a logarithmic number of LBlevel

(in terms of Nq) on it. In summary, our methods are more robust against noise.

5 Related Work

5.1 Nearest Neighbor Search

The nearest neighbor (NN) search problem has been extensively studied in mul-
timedia databases [14,15,21] and in time series databases [8,20,28].

Multimedia databases [14,15,21] usually conduct similarity search (i.e., NN
search) on feature vectors of images (e.g., their color/texture histograms) rather
than on raw pixel values in images. Various techniques on indexing [3,13,21],
data compression [27], and hashing [12,24] have been developed to process NN
search efficiently. Recall that those multimedia techniques require knowing fea-
ture vectors in advance. Those techniques are applicable to our problem context,
when the query size Nq is fixed, as we can convert each candidate (sub-window)
cx,y to a Nq-dimensional feature vector offline. However, those techniques become
inapplicable if we need to support arbitrary query size (i.e., Nq only known at the
query time). It is infeasible to do precomputation for every possible query size as
it would blow up the storage space by a huge factor (ND

2), where ND = LD×WD

is the size of the data image.
Generic NN search algorithms [16,23] are applicable to any types of objects

and distance function dist(q, c). Ref. [23] requires using a lower bound function
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Fig. 11. Response time vs. vary query size Nq

Fig. 12. Response time vs. the noise σ

LB(q, c), where LB(q, c) ≤ dist(q, c) always holds. Its search strategy [23] is to
examine candidates in ascending order of LB(q, c) and then compute their exact
distances to q, until the current LB(q, c) exceeds the best NN distance found so
far. Ref. [16] takes an additional upper bound function UB(q, c) as input and
utilizes it to further reduce the searching time. Observe that the lower bound
functions for a specific problem (e.g., matrix similarity search problem) are not
provided in [16,23]. In this paper, we focus on developing lower bound functions
like LBlevel, LBgroup for matrix similarity search.

The NN search on a time series [8,20,28] can be considered as a special case
of our problem, where both the data image D and the query q are modeled as
vectors instead of matrices. While some simple lower bound functions originate
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from them, our proposed lower bound functions (LBlevel, LBgroup) are new and
specific to matrix similarity search. Specifically, our LBlevel is a generic function
that can be built on top of any given LBbasic, and our LBgroup can take a group
of candidates as input.

5.2 Matrix Similarity Search Methods

Various lower bound functions [2,9,10,18,19,22,25] have been developed for the
matrix similarity search problem, in order to prune unpromising candidates effi-
ciently and thus avoid expensive exact distance computations. Most solutions
focus on range search and a few study on NN search. Ouyang et al. [19] pro-
poses a unified framework that covers range search solutions [2,9,10,18,25]. The
state-of-the-art NN search method is [22]. It applies both lower and upper bound
functions to accelerate NN search. Its lower/upper bound functions are based on
a Fourier transform on matrix (called the Walsh-Hadamard transform), which
can only support query of the size 2r × 2r. Thus, it cannot support arbitrary
query size. Also, [22] has not explored our group-based lower bound function
LBgroup, which applies to a group of candidates instead of a single candidate.

6 Conclusion

We have developed a progressive NN search method for the matrix similarity
search problem. It includes a generic lower bound function LBlevel for candidates,
and a group-based lower bound function LBgroup for a group of candidates. Our
proposed solution performs much better than the state-of-the-art method.

In the future, we plan to investigate approximateNN searchmethods formatrix
similarity search. Sampling techniques may be adapted to address this problem.
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Abstract. Given a set of trajectories annotated with measurements of
physical variables, the problem of Non-compliant Window Co-occurrence
(NWC) pattern discovery aims to determine temporal signatures in the
explanatory variables which are highly associated with windows of unde-
sirable behavior in a target variable. NWC discovery is important for
societal applications such as eco-friendly transportation (e.g. identifying
engine signatures leading to high greenhouse gas emissions). Challenges
of designing a scalable algorithm for NWC discovery include the non-
monotonicity of popular spatio-temporal statistical interest measures
of association such as the cross-K function. This challenge renders the
anti-monotone pruning based algorithms (e.g. Apriori) inapplicable. To
address this limitation, we propose two novel upper bounds for the cross-
K function which help in filtering uninteresting candidate patterns. Using
these bounds, we also propose a Multi-Parent Tracking approach (MTN-
Miner) for mining NWC patterns. A case study with real world engine
data demonstrates the ability of the proposed approach to discover pat-
terns which are interesting to engine scientists. Experimental evaluation
on real-world data show that MTNMiner results in substantial compu-
tational savings over the naive approach.

1 Introduction

Given a set of trajectories annotated with measurements of physical variables,
the Non-compliant Window Co-occurrence (NWC) pattern discovery problem
aims to determine temporal signatures in the explanatory variables which are
highly associated with windows of undesirable behavior in a target variable
(e.g. non-compliance with some standard). For instance, consider Fig. 1, which
shows portions of trajectories of a metro transit bus in Minneapolis-St. Paul,
MN, USA. In these trajectories, each point is annotated with physical mea-
surements such as engine power, engine revolutions per minute (RPM), wheel
speed, elevation and engine emissions. The red color marks temporal windows
within the trajectories where a target variable (emissions of oxides of nitro-
gen (NOx) in this example) shows a non-compliant behavior (i.e., the average
emissions within the windows exceed US EPA regulations [1]). As shown in the
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 391–410, 2015.
DOI: 10.1007/978-3-319-22363-6 21
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Fig. 1. Non-compliant emissions of
oxides of nitrogen along a bus route in
Minneapolis, MN (best viewed in color)
(Color figure online).

Fig. 2. Example of candidate NWC
patterns (best viewed in color) (Color
figure online).

figure, while some journeys show this non-compliant behavior, others do not.
NWC discovery aims to determine the underlying temporal signatures of the
measured physical variables which are highly associated with those windows of
elevated NOx emissions. These signatures (aka “patterns”) represent sequences
defined on one or more variables that either coincide with or occur within a
prespecified time lag from a non-compliant window. For instance, consider Fig. 2
which shows a non-compliant window < 2, 6 >, of length 5 s, in which the NOx

emissions within the window exceed the US EPA standard of 0.267 gm/kW-h.
As shown in the figure, patterns of high acceleration and increase in elevation
co-occur with this non-compliance behavior and thus would be considered as
candidate patterns by the NWC discovery problem.

Importance: Discovering NWC patterns is important to several scientific and
societal applications such as eco-friendly transportation (e.g. discovering engine
behaviors leading to high greenhouse gas emissions), detection of engine signa-
tures associated with engine malfunctions (e.g. patterns of sudden unintended
acceleration [2]) which can help save people’s lives, and industrial process con-
trol (e.g. understanding patterns of failure in an industrial process [3]). In this
paper we use eco-friendly transportation as our illustrative application domain.
Current efforts in the field of engine research are aimed at reducing harmful
vehicle emissions such as NOx and carbon dioxide (CO2) due to their adverse
effects on human health and the environment [4,5]. Despite recent advances in
emissions reduction technologies and stricter standards imposed by regulatory
government agencies, vehicles are emitting at rates higher than their certified
limit [6,7]. These discrepancies are not a result of vehicles failing certification
but rather the certification test not accurately reflecting real-world vehicle use.
Therefore, identifying engine variable signatures co-occurring with elevated NOx

emissions in the real-world is key to understanding the cause of the excess emis-
sions. Additionally, the time lag in co-occurrence patterns must be considered
when analyzing vehicle systems due to the large timescale of some vehicle inter-
actions. For instance, as engine load increases, engine temperature (a key factor
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in NOx production) may rise at a slower rate due to the heat capacity and iner-
tia of the engine and coolant and hence the non-compliant NOx emissions might
only occur after a few seconds from the start of increase in engine load.

To measure the strength of an association between a pattern and non-
compliant windows in such a domain, a spatio-temporal statistical measure is
preferred in order to provide a statistical interpretation of the output patterns.
The cross-K function [8,9] is a popular spatio-temporal statistical measure which
is often used to measure the interaction between pairs of events in space and
time. The cross-K function can express how much the association between a
given pattern and non-compliant windows deviates from the assumption of their
independence. Additionally, the cross-K function is not sensitive to the preva-
lence of the output pattern, unlike support measures, and hence can capture
rare signatures that are highly associated with non-compliant windows but not
prevalent in the input dataset.

Challenges: Designing an algorithm for NWC discovery that captures statisti-
cally meaningful patterns while maintaining the computational scalability is chal-
lenging for the following reasons: First, domain-preferred spatio-temporal statisti-
cal association measures (e.g. cross-K function) lackmonotonicity: a pattern repre-
senting an engine signature over multiple variables may be interesting even though
its component single-variable signatures are not. For instance, the doubling of both
engine RPM and brake torque might be more strongly associated with a doubling
in NOx than just the doubling of engine RPM. This property renders Apriori-based
pruning inapplicable. Second, there is a huge number of candidate patterns to con-
sider. For each non-compliant window, the number of associated candidate pat-
terns is exponential in the number of variables. This includes all combinations of
one, two, three, etc., variables. Third, the data volume is potentially huge due to
the large number of variables over a long time series.

Fig. 3. Related work on mining con-
tiguous sequence co-occurrence pat-
terns

Limitations of Related Work: Related
work for the NWC discovery problem
mainly consists of literature on min-
ing multi-dimensional temporal association
rules [10–13]. In these rules, a consequent
occurs within T time points of an antecedent
(a single or multi-dimensional sequence).
However, these works have mainly focused
on finding the most frequent patterns using a
minimum support threshold and an Apriori-
based pruning approach that relies on the anti-monotone property of the interest
measure. By contrast, in the NWC discovery problem, rare associations can still
be interesting since they can reveal rare patterns that are highly associated with
non-compliant windows but have low support. The statistical interest measure
used to capture these patterns does not have this anti-monotone property, ren-
dering Apriori-based pruning inapplicable. Figure 3 shows a classification of the
related work.
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Contributions: This paper makes the following contributions: (1) We for-
mally define the Non-compliant Window Co-occurrence (NWC) pattern discov-
ery problem (Sect. 2). (2) We provide two upper bounds for the cross-K func-
tion which are cheaper to compute than the computation of the exact cross-K
function. We also show that one of the proposed upper bounds has a special
monotone property that allows pruning of other candidate patterns without even
calculating their upper bounds (Sect. 3). (3) We propose a Multi-parent Track-
ing approach (MTNMiner) that uses upper-bound filtering strategies to discover
NWC patterns (Sect. 3.2). (4) We present a case study to evaluate the effec-
tiveness of MTNMiner in finding statistically meaningful engine patterns that
are associated with NOx emissions in transit buses (Sect. 4). (5) We provide an
experimental evaluation using real-world data and show that MTNMiner yields
substantial computational savings compared to the naive approach (Sect. 5).

Scope: The process of mining association rules from time series data in contin-
uous domains typically consists of two steps [10–12]: First, the time series values
are discretized. Then, the data is used to extract interesting associations. In this
paper, we focus on the problem of mining interesting co-occurrence patterns. We
do not, however, address the problem of choosing the most suitable discretization
technique. Instead, we assume that the discretization intervals for each variable
are given as an input to this problem, possibly using representations suggested
in [13–16].

2 Basic Concepts and Problem Statement

2.1 Basic Concepts

Definition 1. An event: Given a variable v, an event ei(v) is a reading where
v falls within a predefined range [vi,vi+1).

For example, a set of events E(v) = {e1(v), e2(v), .., em(v)} can be defined
for the wheel speed variable v where e1(v) indicates that wheel speed ∈ [0, 5)
km/h, e2(v) indicates that wheel speed ∈ [5, 10) km/h, and so on.

Definition 2. A multi-variate event trajectory (MET): Given a set of
explanatory variables V and a target variable y, a MET is a sequence of multi-
variate points pt = (p1t , p

2
t , ..., p

|V |
t , yt), 1 ≤ t ≤ τ , where t is a timestamp of pt,

τ is the trajectory length, pk
t is an event defined for variable vk ∈ V, 1 ≤ k ≤ |V |,

and yt ∈ R.

Figure 4 shows an example of a MET, of length τ = 8, defined over
two explanatory variables V = {v1:engine power, v2:engine RPM}, where
E(v1) = {a1, a2, a3} and E(v2) = {b1, b2, b3} are their corresponding sets of
events, and a target variable y of NOx emissions.

Definition 3. An event-sequence S(v): Given a variable v, an event-
sequence S(v) is a sequence of events ei(v) that are temporally contiguous in
a MET.
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For example, in Fig. 4, a2a3a2 is an event sequence for engine power.

Definition 4. A non-compliant window (WN ): Given a window length L
and a MET m defined over a set of explanatory variables V and a target variable
y, a non-compliant window WN = < ti,tj> is a temporal window in m, of
length L, where y exceeds a user supplied standard. The length L is defined as
the number of time instants within the window. i.e. L = tj - ti + 1.

For example, given the MET in Fig. 4, a length L = 3 s, and a standard spec-
ifying that the percentage of increase in NOx between the start and end of a
window should not exceed 100 %, the window < 1, 3 > is identified as a non-
compliant window since 0.023−0.011

0.011 = 109 %>100 %.

Definition 5. A Non-compliant Window Co-occurrence (NWC) pat-
tern: Given a MET m defined over a set of explanatory variables V and a target
variable y, and a time lag δ, an NWC pattern, C, is a set of equal-length event-
sequences {Si(ui) | ui ∈ U, U ⊆ V and 1 ≤ i ≤ |U | }, that started at the same
time point, and within a time lag δ preceding the start of a non-compliant win-
dow in m. Length(C) denotes the length of the event-sequences in C and is equal
to the non-compliant window length L. Dim(C) denotes the dimensionality of
pattern C (i.e. number of variables in C), where Dim(C)= |U |.

For example, in Fig. 4, given a time lag δ=1 s, we can identify 6 NWC patterns
as listed in Table 1. The first three patterns coincide with the non-compliant
window, while the last three patterns precede the window by a lag of 1 s. Patterns
with IDs =1, 2, 4 and 5 have a dimensionality of 1 since they are defined on only
one variable, while that of patterns 3 and 6 is 2.

2.2 Interest Measure: Temporal Cross-K Function

In this work, the temporal cross-K function, a purely temporal form of the
space-time cross-K function [8,9], is used as a statistical measure to express how
much the association between a given pattern and non-compliant windows devi-
ates from independence. A temporal cross-K function measuring the association
between an NWC pattern, C, and the occurrence of non-compliant windows,
WN , at a time lag δ is calculated as follows: KC,WN

(δ) = λ−1
WN

E[number of
non-compliant windows starting within time δ from the start of an instance of
C], where λWN

is the expected number of non-compliant window events per unit
time. Under the assumption of independence between the occurrences of pat-
tern C and the non-compliant windows, KC,WN

(δ) is equal to (δ +1). Whenever
KC,WN

(δ) is greater than δ + 1, this indicates an association between the pat-
tern and the non-compliant behavior, with higher values indicating a stronger
association. According to [17], KC,WN

(δ) can be estimated by:

K̂C,WN
(δ) = λ−1

WN

∑

i

∑

j

I(0 ≤ d(Ci,WN j) ≤ δ)
|C|

=
T

|WN ||C|
∑

i

∑

j

I(0 ≤ d(Ci,WN j) ≤ δ) (1)



396 R.Y. Ali et al.

where d(Ci,WN j) is the distance between the start of instance Ci of pattern C
and the start of the non-compliant window WN j ; I(.) is an indicator function
that assumes a value of 1 if 0 ≤ d(Ci,WN j) ≤ δ, and a value of 0 otherwise;
T =

∑

allMETs

τ (referred to as the time series length in this paper), and |WN | and

|C| are the number of non-compliant windows and the number of instances of
pattern C (i.e., cardinality of pattern C) across all METs (i.e., the time series)
respectively. Hence, K̂C,WN

(δ) can be written as:

K̂C,WN
(δ) =

T × |C δ
��WN |

|WN ||C| (2)

where |C δ
�� WN | denotes the cardinality of the temporal join set between the

instances of pattern C and non-compliant windows, WN , such that an instance
Ci and WN j are only joined if Ci preceded WN j by time t where 0 ≤ t ≤ δ. For

simplicity, in the rest of this paper, we will refer to |C δ
�� WN | as the cardinality

of the join set of C.

2.3 Problem Statement

The problem of discovering Non-compliant Window Co-occurrence (NWC) pat-
terns can be expressed as follows:
Given:
1. A set M of multivariate event trajectories (METs) defined on a set of explana-
tory variables V and a target variable y,
2. A window length L and a standard for defining non-compliant windows on y,
3. A time lag δ,
4. A temporal cross-K function threshold ε, and
5. A minimum support threshold minsupp (optional, default value = 0)
Find: All NWC patterns C where K̂C,WN

(δ) > ε.
Objective: Reduce computational cost.
Constraints:
1. All output patterns should have a support at least equal to minsupp.
2. The input standard is cheaply computable (e.g. using an algebraic function).
3. All METs in M are sampled uniformly at the same sampling rate.
4. Correctness and completeness.

The minsupp threshold is used to reduce the number of patterns output to
the user (i.e. as a post-processing step), for example by discarding patterns that
might have occurred only once in the dataset. minsupp is not used as an interest
measure to get frequent candidates, and it should generally be set to a very low
value to allow the discovery of rare patterns.
Example: Figure 4 shows an example for the input to the NWC discovery prob-
lem. The input consists of a MET defined on two explanatory variables: v1:engine
power and v2:engine RPM, and a target variable: NOx emissions in gm/sec.
E(v1) = {a1,a2,a3} and E(v2) = {b1, b2, b3} are the set of events defined for
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the engine power and engine RPM variables, respectively. Suppose that win-
dows of non-compliant NOx emission are defined as follows: windows of length
L = 3 s in which the percentage of increase in NOx between the start and end
of the window exceeds 100 %. Based on that definition, only one non-compliant
window < 1, 3 > can be identified and is marked by a red rectangle as shown
in the figure. Hence, |WN | = 1. The K̂C,WN

(δ) threshold ε is set to 5, δ is
set to 1 s, and minsupp is set to 0.1 %. The aim is to find all NWC patterns
meeting the K̂C,WN

(δ) and minsupp thresholds. Table 1 shows all the candi-
date NWC patterns. The first 3 patterns are those coinciding with the non-
compliant window < 1, 3 >, while the next 3 patterns are the patterns pre-
ceding the window by a lag of 1 s. Columns 3, 4, 5 and 6 show the number
of occurrences of each pattern in the time series (i.e. pattern cardinality), the
cardinality of the join set between instances of this pattern and non-compliant
windows, the pattern support, and the value of the interest measure, respec-
tively. For example, the first pattern in the table occurred twice at time instants
1 and 5 (i.e. |C|=2). However, only one of those occurrences was associated
with a non-compliant window: the pattern instance at t=1 coincided with the
non-compliant window < 1, 3 > (i.e. |C 1

�� WN | = 1). Hence, for this pattern,

K̂C,WN
(δ) = K̂C,WN

(1) = T×|C 1
�� WN |

|WN ||C| = 8×1
1×2 = 4 < 5. However, the second

pattern occurred only once at t=1, where it coincided with a non-compliant

window. Hence for this pattern, K̂C,WN
(1) = T×|C 1

�� WN |
|WN ||C| = 8×1

1×1 = 8 > 5. As
shown in Table 1, only patterns 2 and 3 have an interest measure exceeding ε,
and thus these are the final output patterns as indicated in column 7.

Fig. 4. Input data with one non-compliant window identified (best in color) (Color
figure online)

3 Proposed Approach

In this section, we first describe a naive approach for solving the NWC discovery
problem. Then, we present the key ideas of the proposed approach including the
two upper bounds developed for our interest measure and the properties of these
bounds. Finally, we present our proposed Multi-Parent Tracking approach for
mining NWC patterns (MTNMiner).

Naive Approach: The naive approach starts by finding all non-compliant win-
dows in the given time series (i.e. the collection of input METs) using a sliding
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Table 1. Candidate NWC patterns

ID Candidate Pattern C | C | |C δ
�� WN | supp(C) K̂C,WN (1) Is output?

1 {a2a3a2} 2 1 1/4 4 NO (4 < 5)

2 {b1b2b3} 1 1 1/8 8 YES (8 > 5)

3 {a2a3a2, b1b2b3} 1 1 1/8 8 YES (8 > 5)

4 {a1a2a3} 2 1 1/4 4 NO (4 < 5)

5 {b1b1b2} 2 1 1/4 4 NO (4 < 5)

6 {a1a2a3, b1b1b2} 2 1 1/4 4 NO (4 < 5)

window of the same length as the given non-compliant window length. Then, for
each non-compliant window in a MET m, we enumerate all temporal windows
in the MET that started within time t preceding this non-compliant window,
where 0 ≤ t ≤ δ. Finally, for each of these temporal windows we enumerate all
the candidate NWC patterns. Each pattern C is enumerated by calculating its
cardinality |C| using a single linear scan of the time series. Whenever an instance
of the pattern is found, the algorithm examines the non-compliant windows table
to count the number of windows that are within δ sec from this pattern. Hence,

for a pattern C, both |C| and |C δ
��WN | are calculated using a single linear scan.

Finally, if the pattern satisfies the minsupp threshold, its interest measure is
calculated and the pattern is output if the measure exceeds the user-specified
threshold ε.

Note that while enumerating the non-compliant windows and their corre-
sponding candidate patterns, no non-compliant window or pattern is allowed to
overlap two different METs. In addition, if the input METs belong to different
moving objects (e.g. different vehicles), NWC patterns in a MET of one object
should not be associated with a non-compliant window in a MET of another
object. To achieve this, the non-compliant window table also stores the object
ID to differentiate between the non-compliant windows of the different objects.

3.1 Key Proposed Ideas for Better Computational Performance

Our MTNMiner algorithm is founded on the following three key ideas:

Key Idea 1: Local Upper Bound of K̂C,WN
(t): First, we define a sub-

set/superset relation between NWC patterns.

Definition 6 (Subset/Superset Patterns). Let C={Si(ui) : ui ∈ U, 1 ≤ i ≤
|U |} and C’={Si(qi) : qi ∈ Q, 1 ≤ i ≤ |Q|} be two NWC patterns. Then, C’ is
said to be a subset of C iff: (1) Length(C’) = Length(C). (2) Q ⊆ U. (3) For
every Si(qi) ∈ C’, we have Si(qi) ∈ C. Similarly, C is said to be a superset of
C’ (i.e. superset(C’)).

Definition 7 (Local Upper Bound). Given an NWC pattern C={Si(ui) | ui

∈ U, U ⊆ V and 1 ≤ i ≤ |U |} and a time lag δ, the local upper bound of
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K̂C,WN
(δ), denoted as UBlocal(K̂C,WN

(δ)), can be computed as follows:

UBlocal(K̂C,WN
(δ)) =

T

|WN | × UpperLoc(|C δ
�� WN |)

Lower(|C|)
where: UpperLoc(|C δ

�� WN |) = min
{Si}∈C,1≤i≤Dim(C)

(|{Si} δ
�� WN |)

and Lower(|C|) = |superset(C)| (3)

Note that UpperLoc(|C δ
�� WN |) is an upper bound of |C δ

�� WN | which exists
in the numerator of K̂C,WN

(δ). It is computed using the minimum join set car-
dinality of all subset patterns of C that consist of only one event-sequence (i.e.
one-variable subset patterns). Lower(|C|) is a lower bound of |C| which is in the
denominator of K̂C,WN

(δ) and is equal to the cardinality of any superset pattern
of C. Next, we prove that UBlocal(K̂C,WN

(δ)) is an upper bound of K̂C,WN
(δ).

Lemma 1. Given an NWC pattern C and a time lag δ, UpperLoc(|C δ
�� WN |) is

an upper bound of |C δ
�� WN |.

Proof. For every NWC pattern {Si} consisting of a single event-sequence
where {Si} ⊆ C, 1 ≤ i ≤ Dim(C), we have |{Si}| ≥ |C|, where |{Si}|
and |C| are the cardinality of the patterns {Si} and C in the time series,

respectively. Therefore, |{Si} δ
�� WN | ≥ |C δ

�� WN |, ∀ 1 ≤ i ≤ Dim(C). Then,

UpperLoc(|C δ
�� WN |) = min

{Si}∈C,1≤i≤Dim(C)
(|{Si} δ

�� WN |) ≥ |C δ
�� WN |. �

Lemma 2. Given an NWC pattern C and a δ time distance, Lower(|C|) is a
lower bound of |C|.
Proof. Any superset pattern of C has a cardinality smaller than or equal to C.
Therefore, Lower(|C|) = |superset(C)| ≤ |C|. �

Theorem 1. Given an NWC pattern C and a time lag δ, UBlocal(K̂C,WN
(δ))

is an upper bound of K̂C,WN
(δ).

Proof. Using Lemmas 1 and 2, we have K̂C,WN
(δ) = T

|WN | × |C δ
�� WN |
|C| ≤ T

|WN | ×
UpperLoc(|C δ

�� WN |)
Lower|C| = UBlocal(K̂C,WN

(δ))

�
Since UBlocal(K̂C,WN

(δ)) is an upper bound of ˆKC,WN
(δ), then if this upper

bound is less than the cross-K function threshold ε, this pattern will not be
output and hence there is no need to compute the actual cardinality of the
pattern or the cardinality of its join set.

Key Idea 2: Local Upper Bound of K̂C,WN
(t): We also propose a second

upper bound for the ˆKC,WN
(δ) of a pattern C, namely, the lattice upper bound
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UBlattice(K̂C,WN
(δ)). Although this bound is less tight than the local upper

bound of a pattern, UBlattice(K̂C,WN
(δ)) has a conditional monotone property.

Based on that property, if UBlattice(K̂C,WN
(δ)) is less than ε, then the lattice

upper bound for all subset patterns of C is also less than ε and so they can be
completely pruned without calculating their upper bounds.

Definition 8 (Lattice Upper Bound). Given an NWC pattern C={Si(ui) |
ui ∈ U, U ⊆ V and 1 ≤ i ≤|U |} and a time lag δ, the lattice upper bound of
K̂C,WN

(lag), denoted as UBlattice(K̂C,WN
(δ)), can be computed as follows:

UBlattice(K̂C,WN
(δ)) =

T

|WN | × UpperLat(|C δ
�� WN |)

Lower(|C|)
where: UpperLat(|C δ

�� WN |) = max
{Si}∈C,1≤i≤Dim(C)

(|{Si} δ
�� WN |)

and Lower(|C|) = |superset(C)| (4)

Theorem 2. Given an NWC pattern C and a time lag δ, UBlattice(K̂C,WN
(δ))

is an upper bound of K̂C,WN
(δ).

Since Definition 8 differs from Definition 7 only in the min term being
replaced by a max term, the proof of Theorem 2 is straightforward from
Theorem 1.

Conditional Monotone Property for the Lattice Upper Bound:

Lemma 3. Given an NWC pattern C and a time lag δ, UBlattice(K̂C,WN
(δ)) is

monotonically decreasing with decreasing Dim(C) if Lower(|C|) is kept monoton-
ically increasing. In other words, given two NWC patterns C and C’ where
C’ ⊂ C, then if Lower(|C ′|) ≥ Lower(|C|), then UBlattice(K̂C′,WN

(δ)) ≤
UBlattice(K̂C,WN

(δ)).

Proof. Let C’ ⊂ C where C and C’ are two NWC patterns. Then ∀ Si(vi) ∈ C’,

where 1 ≤ i ≤ Dim(C’), we have Si(vi) ∈ C. Therefore, UpperLat(|C ′ δ
�� WN |) =

max
{Si}∈C′,1≤i≤Dim(C′)

(|Si
δ
�� WN |) ≤ max

{Si}∈C,1≤i≤Dim(C)
(|Si

δ
�� WN |) =

UpperLat(|C δ
�� WN |) (a). Also, since Lower(|C|) is kept monotonically increas-

ing as Dim(C) decreases, then Lower(|C ′|) ≥ Lower(|C|) (b). From (a) and

(b), we have UBlattice(K̂C,WN
(δ)) = T

|WN | × UpperLat(|C δ
�� WN |)

Lower(|C|) ≥ T
|WN | ×

UpperLat(|C′ δ
�� WN |)

Lower(|C′|) = UBlattice(K̂C′,WN
(δ)).

�

Key Idea 3: Efficiently Calculating the Pattern Cardinality: We pro-
pose a more efficient method to calculate the pattern cardinality by preprocessing
the time series to create a startingEdge index. This index is a hash table where
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the key is two events that occurred consecutively in time i.e., s1 → s2. The
value is a list of all the time instants where this edge appeared in the input time
series. A separate index is kept for each of the input variables. To calculate the
cardinality of a pattern, the first two consecutive events (i.e. first edge in the
pattern) are used as the key, and the corresponding time instants where this
edge occurred are retrieved from the hash table. Then, we only search the time
series at these time instants to count the cardinality of the pattern.

3.2 MTNMiner: A Multi-parent Tracking Approach for Mining
NWC Patterns

Our proposed MTNMiner algorithm starts by finding and then iterating through
all non-compliant windows. For each window, it enumerates patterns starting at
t time points preceding that window, where 0 ≤ t ≤ δ. In addition, MTNMiner
uses the key ideas introduced in the previous subsection to efficiently traverse
the candidate patterns enumeration space. For each value of t preceding a non-
compliant window < ti, tj >, a lattice data structure is used to represent all the
patterns starting at t, as shown in Fig. 6a. The lattice nodes represent all the
possible patterns within the window < ti − t, tj − t >. Each node is labeled with
the list of variables in the pattern it belongs to. For example, consider the input
MET shown in Fig. 5. For the window < 0, 2 >, the lattice node labelled {a, b}
represents the pattern defined by the first two variables in that window, namely
{a1a2a3, b1b1b2}.

Within the lattice of each window, MTNMiner starts by enumerating all leaf
nodes representing one-variable patterns, and stores the join-set cardinality of
these nodes in an array LeafJoinSetCount. Then, a top-down breadth first
traversal/search (BFS) is performed to enumerate the rest of the lattice nodes
while applying the proposed upper bounds. Since each node has multiple parents,
a node can be pruned through the lattice upper bound of any of its parent nodes.
Therefore, a node is inserted into the BFS queue for enumeration only if all its
parents were already visited and none had a lattice upper bound > ε. Hence, each
node keeps track of the number of its unvisited parents (i.e. unV isitedParents).
This also avoids adding duplicate copies of a node to the queue through the
node’s multiple parents. In addition, each node stores the following information:
(1) supersetCount: the maximum cardinality found so far of a superset pattern
of this node; and (2) isPruned: a flag to indicate if the node was already pruned
through one of its ancestor nodes. Initially, for each node n, isPruned is set
to False, unV isitedParents is set to the number of parent nodes of n, and
supersetCount is set to 1 since we are sure that there is at least one instance
of the root node pattern in the current window, and this root node pattern is
a superset of all the patterns in that window. An enumeratedPatterns table
is used to store the patterns already enumerated. This table also stores the
cardinalities of the leaf nodes’ patterns and their join sets. Finally, the algorithm
uses a queue to perform a Breadth First Traversal for the lattice nodes.

Algorithm 1 shows the pseudo code of MTNMiner. First, the algorithm finds
all the non-compliant windows and initializes the used data structures (lines 1–5).
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Algorithm 1. MTNMiner
1: H ← FindAllNoncompliantWindows
2: enumeratedPatterns ← {}
3: Queue queue ← {}
4: startingEdgeIndex ← CreateStartingEdgeIndexFromMETs
5: lattice ← Create and initialize lattice
6: for each window w=<ti, tj>in H do � iterate through all non-compliant windows
7: for t := δ to 0 do � iterate from 0 to the max lag δ preceding w
8: latticeCp ← CreateDeepCopy(lattice)
9: LeafJoinSetCount ← EnumerateOneVariableNodes(latticeCp,enumeratedPatterns)

10: queue.enqueue(latticeCp.root)
11: while queue not empty do
12: Node node ← queue.dequeue()
13: enumerateWithUpperBoundPruning(latticeCp,node,queue,w,t,δ)

14: function enumerateWithUpperBoundPruning(lattice,n,queue,w,t,δ)

15: if UBlattice(K̂n.C,WN
(δ)) ≤ ε then PruneAllNodeSubsets(n,lattice)

16: else if UBlocal(K̂n.C,WN
(δ)) ≤ ε then

17: for each unpruned non-leaf child node ch of n do
18: ch.supersetCount ← max(ch.supersetcount,n.supersetcount)
19: Check if n is last visited parent of ch, then queue.enqueue(ch)

20: else � no pruning occurred
21: C ← expandPattern(n)
22: if C not in enumeratedPatterns then

23: [|C|, |C δ
�� WN |] ← Calculate cardinalities using startingEdgeIndex

24: enumeratedPatterns.put(C)

25: if
|C|
T ≥ minsupp and K̂C,WN

(δ) >ε then Output C.

26: for each unpruned non-leaf child node ch of n do
27: ch.supersetCount ← max(ch.supersetcount,|C|)
28: Check if n is last visited parent of ch, then queue.enqueue(ch)

29: else � C already enumerated
30: PruneAllNodeSubsets(n)

Next, the pattern enumeration step is performed (lines 6–13). The algorithm
iterates through all temporal windows starting within a time lag t preceding a
non-compliant window, where 0 ≤ t ≤ δ. For each temporal window, MTNMiner
starts by creating a copy of the initial lattice to enumerate the patterns in that
window (line 8). Within this window, pattern enumeration is performed in two
phases: In phase 1 (line 9): patterns represented by all the leaf nodes are
enumerated. Each pattern is expanded by retrieving it from the input time series.
If the pattern was already enumerated, its cardinality and join set cardinality are
retrieved from the enumeratedPatterns table and used to calculate its interest
measure. The join set cardinality is also stored in the LeafJoinSetCount array.
Otherwise, the pattern cardinality and its join set cardinality are calculated and
stored with the pattern in the enumeratedPatterns table. Additionally, the join
set cardinality is stored in the LeafJoinSetCount array to be used in calculating
the upper bounds for the rest of the lattice nodes. In phase 2 (lines 10–13):
the algorithm performs a top-down breadth first traversal starting from the root
node of the lattice and continuing until the queue is empty. For each node in
the queue, the function EnumerateWithUpperBoundPruning(.) (lines 14–30)
is called, as follows.

The EnumerateWithUpperBoundPruning(.) function starts by calculating
the lattice upper bound of the node using the maximum join set cardinality of
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all the one-variable subsets of the node (already stored in LeafJoinSetCount)
and the supersetCount value of the node. If the lattice upper bound is ≤ ε, all
subset patterns of this node (i.e. all descendant nodes) are marked as pruned
(line 15). If not, the local upper bound is calculated. If this bound is ≤ ε (line
16), then the cost of enumerating the pattern represented by this node (i.e.
expanding it and calculating its cardinality and the cardinality of its join set) is
saved. However, we still need to examine the children of this node (lines 17–19).
For each child node not marked as pruned, we set its supersetCount variable to
the maximum of its current supersetCount value and the supersetCount of its
parent node. Then, we decrease the number of unV isitedParents for the child
by one and if this was the last visited parent (i.e. unVisistedParents = 0), we
insert the child node into the queue. Finally, if the local upper bound of the node
was greater than ε, then we have to enumerate this node (lines 20–30). First the
node is expanded by retrieving the actual pattern from the time series. If the
pattern was already enumerated (lines 29–30), all its subset nodes are marked as
pruned. Otherwise (lines 22–28), the cardinalities of the pattern and its join set
are calculated using the startingEdge index, and the pattern is inserted into the
enumeratedPatterns table. If the pattern satisfies the minsupp threshold, its
interest measure is calculated and the pattern is output if its interest measure
exceeded ε (line 25). Finally (lines 26–28), the child nodes are treated in the
same way as described before; however, in this case, the supersetCount of each
child is set to the maximum of its current value and the cardinality computed for
the parent node (line 27). As the supersetCount value of each node increases,
the lattice upper bound becomes tighter.

Table 2. MTNMiner Bottleneck Analysis

No. of variables Cardinality counting time Other tasks time Total time

6 267.2 s 3.1 s 270.3 s

8 769.2 s 9.3 s 778.5 s

10 3772 s 39 s 3811 s

Fig. 5. Input with 2 non-compliant windows

Bottleneck Analysis: Table 2 shows a break-down of the running time of MTN-
Miner without pruning. A MET with T = 50,000 points is used, with L = 5 s,
δ = 1 s, ε = 15, and no minsupp threshold is specified. As shown in the table,
the main bottleneck is calculating the cardinality of the candidate patterns and
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Fig. 6. MTNMiner Execution trace (Best viewed in color) (Color figure online)

their join set. The time required for copying and traversing the actual lattice (in
addition to all other tasks) is negligible compared to the time required for the
cardinality computation. Hence, our pruning strategies focus on avoiding this
computation cost. It is also worth mentioning that although for each enumer-
ated window, a lattice is created with nodes representing all candidate patterns
within that window, only one lattice at a time is kept in memory.

Execution Trace: Figure 6 shows an example run of MTNMiner for the input
data shown in Fig. 5. The MET is of length T=12 and we assume two non-
compliant windows (with length L = 3 s) were identified (i.e., < 1, 3 > and
< 7, 9 >). The cross-K function threshold ε = 3.5, δ = 1 s and no minsupp
threshold is specified. For brevity, the execution trace shows only the enumera-
tion of candidates within one window < 0, 2 >, which started 1 s before the non-
compliant window < 1, 3 >. Similar enumerations will be done for the windows
< 1, 3 >, < 6, 8 > and < 7, 9 >. Figure 6 shows the lattice for window < 0, 2 >
after executing each step of the algorithm, where one whole level is enumerated
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at every step. Figure 6a shows the lattice created for window < 0, 2 > after
enumerating the leaf-nodes and calculating their interest measure. Their join set
cardinalities are shown in the array LeafJoinSetCount. Figure 6d shows the
computed values at step 1, in which only the pattern of node {c} is output,
namely {c1c2c1}, since its interest measure equals 4 >ε. Next, the root node is
inserted in the queue. Figure 6b shows the lattice after enumerating the root node
by calculating its lattice upper bound (= 12

2 × max{1,1,2,1}
1 = 12>ε) and local

upper bound (= 12
2 × min{1,1,2,1}

1 = 6>ε). Since both values exceed ε, the actual
cardinalities of the root pattern and its join set are calculated. Then for its child
nodes, the unV isitedParents variable is decremented, their supersetCount is
set to the actual cardinality of the root node pattern just computed (changes
are marked in red), and the child nodes are inserted into the queue. In Fig. 6c,
the lattice upper bound is calculated for the first node in the queue, {a, b, c}.
Although its value exceeds ε, the local upper bound value of 3 is less than ε and
hence the node is pruned (from Theorem 1). Then, the supersetCount of its
child nodes is set to its supersetCount value and their unV isitedParents are
decremented. Then, node {a, b, d} which is next in the queue, is enumerated by
calculating its lattice upper bound. Since the bound is equal to 3 < ε, the node
is pruned and its three child nodes are also marked as pruned (from Theorem2
and Lemma 3). The enumeration continues similarly for all the nodes in this level
where nodes {a, c, d} and {b, c, d} will also be pruned through their local upper
bounds (=3 < ε). Finally, the next level of nodes will be enumerated similarly
until the queue is empty.

4 Case Study

To evaluate the effectiveness of our proposed approach, we performed a case
study on a real-world dataset collected from an on-board sensor on a transit bus
in the Minneapolis-St. Paul area, USA. The dataset measured several engine and
environmental variables at a rate of 1 Hz. Data points covered roughly 19 days
(≈ 176 trips) on three different routes, ensuring the data was not biased by a
specific route. The non-compliant windows of NOx emissions were defined as
windows of length L = 5 s in which the average NOx in gm/kW-h exceeds the
Environmental Protection Agency (EPA) test threshold (NOxT ) of 0.267 [1] and
the percentage increase in NOx exceeds PincT = 100 %. We used a temporal
cross-K function threshold ε = 15, δ = 2 s, and minsupp = 0.01 %. The variables
used for this case study include engine RPM, engine torque, engine power, wheel
speed, and acceleration as these parameters typically influence the increase in
NOx. Additionally, since the production of NOx is heavily dependent on tem-
perature [18], the engine intake temperature, coolant temperature, and selective
catalytic reduction (SCR) system intake temperature were also added to the list
of prescribed variables. Most of the variables had equal length intervals, however
for the engine RPM, additional modified windows were created to account for
the narrow windows of engine idling.
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Table 3. Interesting case study patterns

ID NWC Pattern C K̂C,WN (2)

1 Wheel speed: {w0 w0 w0 w1 w2} 21.57

2 Engine RPM: {s1 s2 s3 s3 s3} 16.28

Engine power: {r5r5r5r5r5}
Wheel speed: {w0w0w0w0w0}
Acceleration: {a16 a16 a17 a17 a17}

3 Engine RPM: {s1 s1 s2 s3 s3} 17.15

Engine power: {r5r5r5r5r5}
Wheel speed: { w1 w0w0w0w0}

The number of identified non-compliant windows was 98,290, generating
1,159 NWC patterns. Analysis of the output shows that MTNMiner was able
to correctly identify the high NOx association with low engine load and slow
speed driving that was previously found by Misra et al. [6]. The NWC pattern
showing the slow speed association with high NOx is shown in the first row of
Table 3. This pattern illustrates that accelerating with speeds between 0 and
15 km/h is highly associated with elevated NOx conditions. The output pattern
shown in the second row of Table 3 illustrates the association between high NOx

output and low engine load. In this instance, the wheel speed was between 0 and
5 km/h, and the engine load is around 10 % of the rated load which would con-
stitute a low load condition. These findings confirm that NWC pattern discovery
can correctly identify patterns associated with high NOx. An interesting NWC
pattern finding is also shown in the last row of Table 3. In this instance the wheel
speed appears to decrease from the start of the window, but the engine RPM
appears to increase substantially, resulting in counter intuitive vehicle operation.
A potential explanation of this case could be the effect of some factors such as a
down-shift in the transmission. Further investigation is required to understand
the true cause of this finding.

5 Experimental Evaluation

The goal of our experiments was to evaluate the performance of the pruning
filters proposed in MTNMiner as compared to the naive approach. The evalua-
tion was performed on real-world data by varying and observing the effect of the
following workload parameters: time series length T, number of variables |V |,
temporal cross-K function threshold ε, time lag value δ, NWC pattern length L
(i.e. non-compliant window length), and the non-compliant window definition.

Experimental Setup: Experiments were performed using the real-world
dataset used in the case study with a time series of length T=100,000 points.
The non-compliant windows were defined as windows of length 5 s in which the
average of NOx emissions in gm/kW-h exceeded the EPA standard threshold
(NOxT ) of 0.267, and the percentage of increase in NOx exceeded PincT =
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100 %. The default parameter values were: T = 50,000 points, |V | = 8, ε = 15,
δ = 2 s, L = 5 s, minsupp = 0.001, NOxT = 0.267 and PincT = 100 %, unless
stated otherwise. Algorithms were implemented using the Java programming
language. All experiments were run on a machine with an Intel Xeon Quad Core
3.00 GHz processor with 64 GB RAM.

5.1 Experimental Results

Fig. 7. Execution time with varying T

In this subsection, we focus on evaluating the performance of our pruning fil-
ters which are the main contribution of this work. However, we also evaluated the
effect of the startingEdge index by running two versions of the naive approach:
one using a linear scan of the data to calculate the cardinality of each pattern and
its join set, and another version using the startingEdge index. Figure 7 shows
the execution times of both versions. As can be seen, the startingEdge index
leads to substantial computational savings by reducing the time required for car-
dinality counting. At T=105 points, the naive approach using the startingeEdge
index was 8.5 times faster than the linear scan version. Therefore, for the rest
of our experiments we used the naive approach with the startingEdge index as
the baseline method to evaluate the performance of MTNMiner.

Effect of Time Series Length (T): We ran the naive approach and MTN-
Miner on subsets of the dataset with 1000, 10,000, 50,000 and 100,000 points
where each subset was a contiguous set of trips. Figure 8a shows the execu-
tion times for both algorithms and Fig. 8b shows the corresponding speedup
(= Naiveexecutiontime

MTNMinerexecutiontime
). As can be seen, MTNMiner reduces the computation

cost of the naive approach as a result of the pruning filters, where computa-
tional savings increase as the length of the time series increases. At 100,000
points, MTNMiner is 2.4 times faster than the naive approach.

Effect of the Number of Variables (|V |): Figure 8c shows the execution
times for both algorithms as the number of variables increases and Fig. 8d shows
the corresponding speedup. Although the effect of the increase in the number of
variables is exponential on both algorithms, the results show a significant separa-
tion between the two approaches where the computational savings of MTNMiner
increase as the number of variables increases. This is because as the number of
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Fig. 8. Execution time for MTNMiner vs. the naive approach.

variables increases, a larger number of nodes occurs in the middle layer of the
lattice, which allows MTNMiner to prune more patterns.

Effect of Temporal Cross-K Function Threshold (ε): Figure 8e shows the
execution times for both the naive and MTNMiner algorithms as the temporal
cross-K function threshold ε increases. As can be seen, the naive approach execu-
tion time remains constant since no pruning takes place. However, the execution
time for MTNMiner dramatically decreases since most of the candidate patterns
can be pruned at higher thresholds for the interest measure.

Effect of Time Lag (δ) and Pattern Length (L): To observe the effect
of the maximum time lag between a pattern and a non-compliant window, we
measured the execution times at δ = 0, 2 and 4 s. Figure 8f shows that a larger δ
value increases the execution time for both algorithms. The reason is that more
time is needed to enumerate the larger number of temporal windows preceding
each non-compliant window. Nevertheless, MTNMiner consistently outperforms
the naive approach because of its pruning filters. Figure 8g shows a similar trend
for the effect of pattern length due to the increase in the cost of calculating the
pattern cardinality. Still, MTNMiner always outperforms the naive approach.

Effect of the Non-compliant Window Definition: Figure 8h shows the exe-
cution times as PIncT increases from 0 % to 200 %. The computational cost of
the naive approach decreases as PIncT increases. This is due to the decrease in
the number of non-compliant windows, which reduces the total number of pat-
terns enumerated. Similarly, for MTNMiner, the computational cost decreases
as PIncT increases from 50 % to 200 %. However, at PIncT = 0 %, the num-
ber of non-compliant windows was very high, resulting in a large decrease in the
interest measure values for all the candidate patterns. This occurred because the
number of non-compliant windows |WN | exists in the interest measure’s denom-
inator and no output patterns were produced. As a result, most patterns were
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pruned by MTNMiner, leading to a large reduction in execution time. However,
as PIncT increased from 0 % to 50 %, the number of non-compliant windows
decreased substantially (from 12,931 to 6,026 windows), leading to higher inter-
est measures and less pruning. Then, as PIncT increased to 100 %, the number
of non-compliant windows exhibited a smaller decrease (from 6,026 to 4,845 win-
dows). At this smaller decrease, the reduction in the overall computation pattern
enumeration time was higher than the pruning lost by the increase of the interest
measure values, leading to an overall reduction in execution time.

6 Discussion

Some other studies in the literature have addressed the problem of mining rare
(i.e. low support) co-occurrence/association patterns with a high confidence
threshold [19–22]. Although these methods can capture rare associations, they
only focus on associations between single events and do not model associations
between contiguous sequences (e.g. a temporal signature of engine variables co-
occurring with non-compliant windows). For instance, they would not be able
to capture the association of a continuous acceleration or braking pattern with
a window of elevated emissions as shown in our case study. In addition, none of
these methods except [22] guarantee completeness.

7 Conclusion and Future Work

This work explored the problem of Non-compliant Window Co-occurrence (NWC)
pattern discovery in relation to an important real-world application: eco-friendly
transportation. The NWC discovery problem is challenging due to the large num-
ber of candidate patterns, large data volume and the lack of monotonicity in the
temporal cross-K function used to measure the interestingness of a pattern. We
proposed two upper bounds on the interest measure which are much less expensive
to compute, and showed that one upper bound exhibits a conditional monotone
property that allows other patterns to be pruned without calculating their upper
bound. Using these bounds, the proposed MTNMiner algorithm showed substan-
tial computational savings over the naive approach. We also presented a case study
using engine measurement data that also validated the effectiveness of MTN-
Miner. In the future, we plan to explore spatial aspects of the NWC discovery
(e.g. the effect of left/right turns on non-compliant engine emissions). Moreover,
we will investigate the discovery of statistically significant NWC patterns.
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Abstract. In modern applications, spatial objects are often annotated
with textual descriptions, and users are offered the opportunity to for-
mulate spatio-textual queries. The result set of such a query consists of
spatio-textual objects ranked according to their distance from a desired
location and to their textual relevance to the query. In this context,
a challenging problem is how to select a set of at most b keywords to
enhance the description of the facilities of a spatial object, in order to
make the object appear in the top-k results of as many users as possible.
In this paper, we formulate this problem, called Best-terms and we show
that it is NP-hard. Hence, we present a baseline algorithm that provides
an approximate solution to the problem. Then, we introduce a novel
algorithm for keyword selection that greatly improves the efficiency of
query processing. By means of a thorough experimental evaluation, we
demonstrate the performance gains attained by our approach.

1 Introduction

Spatio-textual search has attracted increased attention recently, due to the
numerous applications that provide value-added services to the users by com-
bining spatial location with textual relevance. Given a database of geographical
points of interest that are annotated with textual information (also called spatio-
textual objects), the objective of a spatio-textual query is to retrieve a ranked
set of top-k spatio-textual objects that are close to the query point and have
high textual similarity to the query keywords. As a notable example, consider
hotels that are annotated with their facilities (e.g., in the form of keywords),
and tourists that search for hotels close to some location of interest and a set of
query keywords indicating desired facilities (for example “pool” or “Wi-Fi”).

An interesting problem encountered in real-life applications that rely on
spatio-textual retrieval is how to improve the ranking of a spatio-textual object
for as many users as possible. For instance, for a newly established hotel at some
location, the question is how to enrich its textual annotation in order to maxi-
mize its rank for many different users. To address this challenging problem, we
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 413–430, 2015.
DOI: 10.1007/978-3-319-22363-6 22
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capitalize on reverse top-k queries [19], which retrieve the set of users that have
a given object in their top-k results. We model the problem as a maximization
of the cardinality of the reverse top-k result set, and we explore the different
combinations of keywords that will increase the query object’s rank for many
users, when added to its textual annotation. We call this problem as Best-terms,
we show that it is NP-hard, and we present a greedy solution that serves as
baseline. Then, we propose a novel algorithm that boosts the performance of
query processing, by deliberately selecting keywords that increase the score of
the query object for many users simultaneously. Finally, we present the results of
our experimental evaluation that verifies the performance gains of our algorithm.

In summary, our main contributions are outlined below:

– We formulate the novel problem, called Best-terms, of increasing the rank
of a spatio-textual object for many different users, by enriching its textual
description.

– We show that the Best-terms problem is NP-hard and we provide a baseline
solution.

– We propose an efficient query processing algorithm that significantly outper-
forms the baseline consistently.

– We provide an experimental evaluation that demonstrates the merits of our
approach.

The rest of this paper is structured as follows: Sect. 2 provides an overview
of the related work. Section 3 presents the necessary background and prelimi-
nary concepts. Then, in Sect. 4, we formally describe the problem statement.
Section 5 presents the baseline algorithm, while Sect. 6 describes our efficient
query processing algorithm. Section 7 presents the experimental evaluation, and
Sect. 8 concludes the paper.

2 Related Work

In this section, we provide an overview of the related research literature.

Keyword Recommendation. Zhang et al. [23] present a method for recom-
mending keywords for advertisements in keyword search results using Wikipedia.
They focus mostly in cases where the advertisement (target) consists of short-
text web pages that contain inadequate textual content to describe the adver-
tised entity. Based on the fact that a large number of entities are described in
Wikipedia, they use Wikipedia articles relevant to the advertised entity in order
to recommend keywords to connect to the target. Fuxman et al. [9] follow a
different approach. They suggest keyword queries to advertisers using logs that
store the queries posed by the users and the URLs of the result set that were
selected by the users. Some of the URLs are also connected to a set of concepts.
The target of the authors is to connect the set of concepts to the queries using
the Markov Random Field model and suggest the most relevant queries for each
concept to the advertisers. Ravi et al. [16] propose a variety of methods for
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automatic generation of bid phrases. Among others they introduce the usage of
a translation model that extends a predefined mapping between bidding phrases
and target web pages. Papadimitriou et al. [15] study the problem of mapping an
advertisement in a set of URLs based on a set of keyword queries. In particular,
they assume that each advertisement is mapped to a set of keyword queries and
their aim is to map each advertisement in a set of URLs which will be represen-
tative of the results produced by the attached keyword queries. Choi et al. [4]
create a representative summary of the advertisement based on the context of
the advertised material. Their method makes use of co-occurrence and seman-
tic vectors in order to enrich the ad context and create a representative set of
terms. Cholette et al. [5] study the problem of finding optimal bids in search-
based algorithms. Agrawal et al. [1] introduce an approach for recommending
bid phrases from a given ad landing page by classifying a set of labels generated
by click logs. Their classifier has logarithmic complexity and can efficiently make
predictions on large sets of labels.

The aim of the aforementioned approaches is to identify potentially relevant
queries to the advertised products and form bid phrases based on the identified
queries. Our approach is inherently different, because the above techniques try
to predict relevant queries and do not consider the relevance of the advertised
product in relation to similar products. In addition, they do not consider top-k
search criteria as the appearance of a product in a search result is decided mainly
on the bidding strategy. On the contrary, our aim is to enhance the description
of a spatio-textual object and to increase the number of queries for which the
target product appears in the top-k list of the search results. In this effort, we
take into consideration not only the user preferences, but also the rest of the
spatio-textual objects that are relevant to those queries.

Spatial Keyword Search. Spatial keyword search has been well studied during
the recent years and several index structures have been introduced for efficient
search. A detailed evaluation of existing spatio-textual indexes can be found in
[3]. Cong et al. [6] introduced the IR-tree and its variants. The IR-tree is based
on the R-tree structure. Each node of the tree is also associated with inverted
index containing the textual information of the children of the node. Rocha
et al. [17] proposed the S2I index which uses different strategies for frequent
and infrequent terms and outperforms the IR-tree. Zhang et al. proposed the I3

index [22], which is based on the quadtree, and the RCA approach [21], which
is based on Fagin’s CA algorithm [8]. Both approaches outperform the S2I and
IR-tree index structures. Nonetheless, the IR-tree is able to perform a spatial
only search, retrieving objects that are not textually relevant to a spatio-textual
query. This possibility is not offered by any of the S2I, I3 and RCA approaches.
Cao et al. [2] introduce the concept of prestige where a spatio-textual object has
a higher prestige if it is collocated with other textually similar objects. They
calculate the prestige of a spatio-textual object based on a graph where each
node corresponds to an object and two nodes are connected if and only if their
textual similarity and spatial proximity exceed certain thresholds. Deng et al. [7]
suggested an approach of finding a set of spatio-textual objects that are relevant
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to a spatio-textual query and at the same time they fulfill a desired spatial
property. In particular, their aim is to identify a keyword-cover of optimal score,
where as keyword cover is defined a set of objects where each object is associated
with exactly one term of the spatio-textual query.

Lu et al. [14] and Lu et al. [13] studied the problem of reverse spatial and
textual k nearest neighbor search where, given a query point q, the objective
is to locate the set of spatio-textual objects for which q is among the k nearest
neighbors. The distance between the objects is a linear combination of the textual
and the Euclidean distance of the objects. The authors introduce the IUR-tree
which is an adaptation of the IR-tree. Each node of the IUR-tree contains the
union and the intersection of the terms contained in the objects in the subtree
rooted at the node. Our approach is different, as we do not evaluate the similarity
between elements of a set of spatio-textual objects, but our aim is to increase the
relevance and therefore the visibility of an object against a set of user preferences
which constitutes a different set from that of the spatio-textual objects that our
query object belongs.

Wu et al. [20] propose the W-IR-tree which is similar to the IR-tree but it is
constructed based primarily on textual distance. The W-IR-tree shows improved
performance for batch queries where objects are considered relevant to the query
only if they contain all terms of the query. The W-IR-tree cannot be applied in
our case as we consider it possible for a spatio-textual object to be relevant to
a user preference even if it does not contain all terms of the user preference.
Gao et al. [10] propose a filter-and-refinement framework for processing reverse
boolean top-k spatial keyword queries. They focus on queries where a spatio-
textual object must contain all terms of a query to be considered a valid result.
Lin et al. [12] study the problem of identifying important terms in the textual
description of a spatio-textual object that cause the object to be highly ranked
for a specific query or a specific region. Our approach is different, as we focus
on enriching the textual description of a an object with new terms.

3 Preliminaries

Let D be a set of objects, where each object o is represented by a tuple of the
form o = 〈o.T, o.L〉 where o.T is a set of keywords describing the features of o
and L is a point in R

2 describing the location of o. We denote as A =
⋃

o∈D o.T
to be the set of all keywords in D. In the scope of this paper, we call these objects
spatio-textual objects. For a given object o, we consider the size of o to be equal
to |o.T |, namely the size of an object is the number of terms it contains.

3.1 Top-k Spatial Keyword Queries

Let u be a user preference query on D, where u is represented by the a tuple
u = 〈u.T, u.L, α〉, u.T ⊆ A is the text describing the user’s desired features,
u.L ∈ R

2 denotes the desired location and α ∈ [0, 1] denotes the importance of
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location over matching the desired features. Given a preference u, we can assign
a score to each object using the following equation:

f(o, u) = α × δ(o.L, u.L) + (1 − α) × θ(o.T, u.T ) (1)

where δ(o.L, u.L) is the spatial distance, and θ(o.T, u.T ) is the textual distance
between the object o and the user preference u. Given an integer k, we can
return the top-k spatio-textual objects according to their score. In the scope
of this paper, we assume that lower scores are better, both spatial and textual
distances are normalized in the interval [0,1] and f(o, u) = 1.0 if θ(o.T, u.T ) = 1.
The latter assumption implies that objects that are not textually relevant to the
query cannot be considered as a valid result.

The textual relevance we employ is the normalized intersection of terms
between the description of a spatio-textual object o.T and a user preference
keyword set u.T , i.e., θ(o.T, u.T ) = 1 − |o.T ⋂

u.T ||u.T |−1. Although in large
documents different textual similarity functions are more appropriate, the inter-
section is more representative in cases of feature selection. For instance if a user
is looking for a hotel with a restaurant and a pool, any hotel offering more fea-
tures (e.g. restaurant, pool, bar) than the ones specified by the user should not
be less textually relevant than a hotel which offers only the features specified by
the user preference (restaurant, pool).

Definition 1 Top-k query. Given a set D of spatio-textual objects, a set of
terms A, a scoring function f , an integer k, and a query u, the result set
TOPk(u) of a top-k query is a set of spatio-textual objects such that TOPk(u) ⊆
D, |TOPk(u)| = k and ∀o1, o2 : o1 ∈ TOPk(u), o2 ∈ D − TOPk(u) it holds that
o1.T

⋂
u.T �= ∅ and f(o1, u) ≤ f(o2, u).

If an object o belongs to the TOPk(u) set of a user preference u, we say that
o is visible to u or that u sees o. For a specific set of objects D and a set of
user preferences U , it is possible to identify for a query object q the set of users
who can see q. This is the reverse procedure of a top-k query and therefore it is
called reverse top-k (RTOPk) query [18].

Definition 2 RTOPk query. Given a set D of spatio-textual objects, a set of
user queries U , a scoring function f , integer k, and a spatio-textual object q, the
result set RTOPk(q) of a reverse top-k query is set such that RTOPk(q) ⊆ U
and u ∈ RTOPk(q) if and only if ∃o ∈ TOPk(u) such that f(q, u) ≤ f(o, u).

The cardinality of the RTOPk set of a query-object q is called influence score
of the object and we denote it as I(q). The influence score indicates the number
of users to whom q is visible.

3.2 IR-tree

We employ a state-of-the-art index structure to process spatial keyword queries,
namely the IR-tree [6]. The IR-tree is an R-tree where each node is associated
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with an inverted index of the objects contained in the respective sub-tree rooted
at the node. The IR-tree offers the possibility of retrieving objects that are near
a query point but not textually relevant to it, a property that is essential in
identifying possibly interesting terms. In more detail, each leaf node contains an
inverted index of the spatio-textual objects contained in the node. The leaf node
is characterized by a spatio-textual pseudo-object which consists of a minimum
bounding rectangle (MBR) that encloses all objects of the node and a pseudo-
document that consists of the union of all the terms contained in the children
of the node. Each non-leaf node contains an inverted index of the spatio-textual
pseudo-objects of the children nodes it contains. Non-leaf nodes are also charac-
terized by spatio-textual pseudo-objects which are constructed similarly to the
pseudo-objects of the leaf nodes.

4 Problem Definition

Given a set of spatio-textual objects D and a set of spatio-textual preferences
U , the influence score of an object q is the number of preferences to which q
is visible. Assuming that the location of a spatio-textual object cannot change,
the only the way to improve the influence score of q is to enhance its textual
description, in order to increase the textual relevance between q and the user
preferences in U . In this paper, we study the problem of finding a set of b terms,
which when added to the textual description of q, they maximize the influence
score of q. We refer to this problem as Best-terms.

Definition 3 Best-terms query. Given a set D of spatio-textual objects, a set
of terms A =

⋃
o∈D o.T , a set of queries U , a scoring function f , an integer k,

a spatio-textual object q = 〈q.T, q.L〉, and an integer b, the set BT is a set of
terms such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b and ∀T ⊆ A − BT, |T | ≤ b it

holds that I(q1) ≥ I(q2) where q1 = 〈q.T ⋃
BT, q.L〉 and q2 = 〈q.T ⋃

T, q.L〉.
The Best-terms problem is NP-hard. We show that by studying a special case

of a Best-terms query, namely the respective decision problem of finding whether
there exists a set of terms T with |T | ≤ b such that I(〈q.T ⋃

T, q.L〉) = |U |.
Problem 1 Best-terms (decision problem). Given a set D of spatio-textual
objects, a set of terms A =

⋃
o∈D o.T , a set of queries U , a scoring function f ,

an integer k, and a spatio-textual object q = 〈q.T, q.L〉 ∈ D, decide if there is
a set BT such that BT ⊆ A, BT

⋂
q.T = ∅, |BT| ≤ b for which it holds that

I(q1) = U where q1 = 〈q.T ⋃
BT, q.L〉

We will show that Problem 1 is NP-complete by reducing the set cover prob-
lem in Problem 1 using the restriction technique [11].

Definition 4 Set cover problem. Let U be a set of elements (universe) and
T = {T1, . . . , Tn} be a collection of sets where

⋃n
i=1 Ti = U . The set cover

problem decides if there is a subset of T , T ′ ⊆ T of size |T | ≤ b such that T ′ is
a cover of U .
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Theorem 1. The decision problem of Best-terms is NP-complete.

Proof. Let an oracle machine select the BT set for a query object q. We set
p = 〈q.T ⋃

BT, q.L〉 and by performing a TOPk query for each user preference
we can calculate the RTOPk(p) set and the influence score I(p) of object p in
polynomial time. Therefore the solution can be verified in polynomial time and
our problem belongs to the NP class.

We set U a to be a set of users and D = {q}, where q.T = ∅. We define
a collection T = {T1, . . . , T|A|} of sets, one for each term ti in A where a user
u belongs in Ti only if ti ∈ u.T . If we consider k = 1, then, for all users that
q.T

⋂
u.T = ∅ it holds that q �∈ TOPk(u) since q is not relevant to u.T . If

q.T
⋂

u.T �= ∅ then q ∈ TOPk(u) as it is the only object. Therefore any selection
of a term ti is equivalent of selecting a subset of Ti of U . The set cover problem
is consequently reduced to Problem 1, as it can be seen as a special case of
Problem 1. Problem 1 is therefore NP-complete. Best-terms is at least as hard
as Problem 1, which leads us to the conclusion that the Best-terms problem is
NP-hard.

5 The Best Term First (BTF) Algorithm

Since the Best-terms problem is NP-hard, an exact solution is infeasible, even
for medium-sized datasets. Motivated by this observation, in this section we
describe a greedy algorithm, termed Best Term First (BTF), that provides an
approximate solution to the Best-terms problem. BTF operates in an iterative
way consisting of b steps, and in each step it adds to the query object the term
that induces the highest increase in influence score.

5.1 Algorithmic Description

Algorithm 1 describes the BTF approach in more detail. BTF takes as input
an IR-tree index containing the set of spatio-textual objects D, and an IR-tree
index containing the set of user preferences U . BTF works in b iterations, and in
each iteration the best term (i.e., the term that induces the maximum increase
in the influence of q) is selected and added to the terms of the query object.

Initially, BTF creates a pseudo-preference q′ defined by q and using α = 1,
which indicates that q′ uses only distance to data objects, not textual similarity,
for ranking. The role of q′ is to enable traversing the preference dataset solely
based on distance to the query object q. This imitates a sorted access to the
preferences, yet this is achieved by means of the IR-tree index on U , without
having to sort U .

In each iteration, BTF first creates a set C of candidate spatio-textual
objects, one for each term that can be added to q. The size of C is equal to
|A − q.T |. In lines 9 and 10 the algorithm exploits the sorted access to the pref-
erence dataset, in order to avoid processing some top-k queries. More accurately,
given the current user preference u, the score of the last retrieved spatio-textual
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Algorithm 1. Best Term First (BTF) Algorithm
Input: U :set of users, D: set of objects,

q:query point, b : number of new terms
Output: BT: set of new terms

1 C ← ∅, buffer ← ∅
2 q′ ← 〈q.T, q.L, 1〉
3 bestCandidate← q
4 for i = 0; i < b; i + + do // repeat until b new terms have been found
5 forall the t ∈ A − q.T do
6 C ← C

⋃{〈bestCandidate.T
⋃{t}, bestCandidate.L〉}

7 u ←next(U,q′)
8 while u �= null do
9 τ ← max

p∈buffer
(f(p, u)) // empty buffer in first iter., so we set τ ← ∞

10 if ∃c ∈ C : f(c, u) ≤ τ then
11 buffer← TOPk(u)
12 τ ← max

p∈buffer
(f(p, u))

13 forall the c ∈ C do
14 if f(c, u) ≤ τ then
15 I(c) ← I(c) + 1

16 u ←next(U,q′)

17 bestCandidate← argmax
c

(I(c))

18 BT← bestCandidate.T-q.T
19 return BT

objects is compared with the scores of the candidate objects C, and if no can-
didate object has a better score than the k-th ranked spatio-textual object, the
user preference is ignored (pruning condition) as no candidate object can be in
its TOPk set. Otherwise, the top-k query needs to be executed and its TOPk

result set is stored in the buffer. All candidate objects that are no worse than the
k-best element of the calculated TOPk set belong also to the TOPk set of u and
therefore their influence score is increased. When all user preferences have been
examined, the object with the highest influence score is selected and a new set
of candidate objects is created based on that object. The procedure is repeated b
times until an object with b new terms is created. The b terms that were selected
constitute the resulting BT set.

Although BTF adopts a greedy technique to select the b terms, the use
of sorted access to dataset U together with the pruning condition reduce the
number of processed top-k queries, thereby saving computational costs.

5.2 Complexity Analysis

The cost of the BTF algorithm is determined by the cost of selection of each
of the b terms. The main factors that affect the cost of term selection are the
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construction of set C with cost O(|A|), and the cost Ctopk of processing a top-k
query which in worst case will be processed |U | times. Thus, the overall com-
plexity of BTF is equal to CBTF = O(b(|A| + |U |Ctopk)). However, in practice
the number of processed top-k queries is much smaller than |U |.

6 Graph-Based Term Selection

BTF extends the textual description of a spatio-textual object iteratively, which
forces the algorithm to scan the preferences set U multiple times. In this section
we present a novel algorithm, named Graph-Based Term Selection (GBTS),
which examines the set of preferences only once and creates a graph of terms
that provides an estimation of the influence gain any combination of terms may
provide.

Essentially, GBTS consists of two separate algorithms. The first algorithm,
named Graph Construction (GC), creates a graph connecting the terms which
when added to the spatio-textual query object q, they can induce an increase
in its influence score. The second algorithm, named Best Subgraph Selection
(BSS), traverses the graph in a deliberate manner, in order to identify the sets
of terms that will induce the highest increase in the influence score of q.

6.1 Graph Construction Algorithm

Given a set of objects D, a set of user preferences U and a spatio-textual object
q, we denote as Û(q) the subset of all preferences (Û(q) ⊆ U) for which q is
not visible and at most b terms are needed for q to become visible. The Graph
Construction algorithm builds a weighted graph G = (V,E) where each node
of the graph represents a candidate term, and the weights on edges indicate
the maximum increase in the influence score of q that can be induced, if the
respective set of terms is added to q.

In more detail, for each examined user preference u, the algorithm adds to
graph G a node for each previously unseen term. The edges connecting the nodes
and the weights of the edges are determined by the number of terms λ that need
to be added to u for it to be included in RTOPk(q). The value of λ is calculated
based on Eq. 2, where τ is the worst score that q is required to have in order to
be in the TOPk(u) set and derives directly from Eq. 1.

τ = α × δ(q.L, u.L) + (1 − α) × |q.T ⋂
u.T | + λ

|u.T | (2)

– If λ ≤1, the algorithm adds a loop edge with weight equal to 1 to each term
t that is not contained in q. If the edge already exists, the weight is simply
added to the weight of the existing edge.

– In the case that λ > 1, i.e., more than one terms are necessary for q to be
included to TOPk(u), the procedure is slightly different. Let T = u.T − q.T =
{t1, . . . , tn} be the terms that are included in u but not in q. For each pair of
terms in u.T − q.T , the algorithm adds an edge with weight we. As before, if
an edge already exists, the weight is added to the existing edge.
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Algorithm 2. Graph Construction (GC) Algorithm
Input: U :set of users, D: set of objects, q:query point, b : number of new terms
Output: G = (V, E): resulting graph

1 V ← ∅, E ← ∅, buffer← ∅,G ← (V, E) // graph initialization
2 q′ ← 〈q.T, q.L, 1〉
3 u ← next(U, q′)
4 while u �= null do
5 buffer← TOPk(u)
6 τ ← max

p∈buffer
(f(p, u))

7 if f(q, u) > τ then // if q �∈ TOPk(u)
8 T ← u.T − q.T
9 V ← V

⋃

T

10 λ ← max

(

1,

⌈(

1 − τ − aδ(q, u)

1 − a

)

|u.T | − |q.T ⋂u.T |
⌉)

// from Eq. 2

11 if λ = 1 then
12 E ← E

⋃{e = (ti, ti, 1) : ti ∈ T}
13 else if 1 < λ ≤ b then

14 E ← E
⋃

{

e =

(

ti, tj ,
2

λ(λ − 1)

)

: ∀ti, tj ∈ T and ti �= tj

}

15 u ←next(U,q′)

16 return G

Since we add λ terms that correspond to λ(λ−1)/2 pairs of terms, the weight
of each edge we is set to 2 (λ(λ − 1))−1, which is a normalization that makes the
sum of weights added equal to 1. Intuitively, we add a total weight of 1 to each
subgraph G′ = (V ′, E′) where V ′ ⊆ T and |V ′| = λ, indicating the potential
increase in the influence score of q if the terms contained in G′ were added to q.

Algorithm 2 describes the construction of the term graph G. Similarly to
Algorithm 1, GC traverses the preferences based on their distance to q. For each
user preference u, if q is not in the TOPk(u) set, GC updates the node set of G
and calculates λ (line 10), the number of terms that need to be added in q for it
to be included in the TOPk(u) set. A non-positive value of λ indicates that u is
located near q but q.T

⋂
u.T = ∅ and therefore q is not included in the TOPk(u)

set. The addition of any term will allow q to be added to TOPk(u) set and
therefore one loop edge is added to each term t for which it holds t ∈ u.T − q.T .
If more than one terms are necessary to be added in q (λ > 1), GC adds all
necessary edges in the graph. The algorithm continues until all user preferences
have been examined.

The size of the graph depends on the number of distinct terms contained in
Û(q). The terms correspond to the features extracted from the textual descrip-
tions of spatio-textual objects that describe the offered facilities. In practice, we
have noticed that the vocabulary for the targeted applications is limited and
therefore the graph is expected to fit in main memory.
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user terms min terms to be added

u1 t1, t2, t3 1

u2 t2, t4, t5 2

u3 t2, t3, t5, t6 3

u4 t1, t3, t6 3

User terms

(a) The term-sets for the users

t3t1 t2

t4t5t6

1 11

1

0.33

1
1.33

0.33

0.33
0.66

0.33

0.33

0.33

(b) The resulting graph

Fig. 1. Example graph: The nodes of the suggested solution are colored with light gray

Example 1. As an example, let the user preferences in Fig. 1(a) be the Û(q)
set for b = 3, i.e., the set of user preferences that can be added to the RTOPk(q)
set if 3 more terms are added to the spatio-textual object q. We also assume that
the shown terms for each user preference are not included in q. The first step of
the algorithm is the evaluation of the user preference u1. The algorithm adds to
the graph the nodes t1, t2, t3 and since only one term needs to be added to q for
u1 to be added to RTOPk(q), it adds one loop edge with weight 1 to all terms.
On the next step u2 is processed and two more nodes (t4, t5) are added to the
graph. For each pair of the terms contained in u2 we add an edge to the graph
with weight equal to 2(λ(λ − 1))−1 where λ is equal to 2 which the number of
terms needed to be added to q, for u to be in RTOPk(q). When u3 is processed,
t6 is added to the graph and for each pair of terms in u3 an edge with weight 1/3
is added to graph. Finally, u4 is processed and the graph is updated accordingly.

6.2 Best Subgraph Selection Algorithm

When the graph has been created, the Best Subgraph Selection algorithm (BSS)
chooses as seed nodes the b nodes (terms) of the graph with the highest degree
and creates a set of b subgraphs with initially one node each. Next, each subgraph
is expanded by adding at each step the node with highest degree that is adjacent
to a node of the subgraph. The expansion of each subgraph is continued until
each subgraph has b nodes or the subgraph cannot be expanded. Finally, the
subgraph with the highest sum of edge weights is selected as solution and the
set of terms included in the subgraph are the ones that constitute the BT set.

Algorithm 3 describes the algorithm of term selection. Initially an empty
priority queue (Q) is constructed. Subsequently, at line 3 the algorithm chooses
as seed the highest degree node ti that has not yet been selected and constructs
the subgraph Gti (line 4). The subgraph is constructed by repeatedly selecting
the highest degree node adjacent to the Gti until |Gti | = b or until no nodes can
be added to Gti . When each subgraph is constructed, it is pushed to Q. The
sorting key of Q is the sum of weights of the edges in the subgraph. The BT
set is constructed by selecting the subgraph with the highest sum of edges and
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Algorithm 3. Best Subgraph Selection (BSS) Algorithm
Input: G = (V, E): graph, b: number of desired terms
Output: BT:set of new terms

1 Q ← ∅, BT ← ∅
2 for i = 0; i < b; i + + do
3 ti ← next node of G with the highest degree
4 Gti ← createSubgraph(ti)
5 Q.add(sumOfWeights(Gti),Gti)

6 while |BT| ≤ b do
7 GS ←Q.pop()
8 add to BT the b − |BT| highest degree nodes from GS

9 return BT

adding the terms of the subgraph to BT. If the subgraphs contain less than b
terms, more subgraphs are pulled from the priority queue until BT contains b
terms. In such cases we add from each subsequent subgraph to BT the b − |BT|
highest degree nodes of the subgraph.

Example 2. Continuing the previous example, during the execution of BSS, 3
subgraphs are created with seed nodes the terms t2, t5 and t3. We denote the
respective subgraphs as Gti where ti is the seed node of the subgraph. Each sub-
graph Gti is extended to the highest degree node adjacent to Gti . In the case of
Gt2 , the subgraph is expanded by adding first node t5, which is the node with the
highest degree adjacent to t2 and subsequently with node t3 which is the highest
degree node adjacent to either t2 or t5. After the addition of t3, the size of Gt2

becomes equal to 3 and therefore the expansion stops and the next subgraph is
processed. In the case of the example all subgraphs produce the same result which
includes the light gray nodes in Fig. 1(b). The nodes contained in the result are
the ones to be added to q.

6.3 Complexity Analysis

The overall complexity of Graph-Based Term Selection is determined by the two
algorithms that comprise it.

CGBTS = CGC + CBSS

GC consists of two parts: the processing of |U | top-k queries and the addition
of edges Û(q) times. The addition of an edge is done in constant time and
therefore the cost of GC is equal to: CGC = O(|U | · Ctopk + Û(q)).

BSS also consists of two parts: the construction of b subgraphs, and the
selection of nodes (terms) from the best of these subgraphs. The main cost of
BSS is the construction of the b subgraphs, which is O(b · (b3 + logb)). The cost
of expanding a single-node subgraph b times and finding the highest degree node
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Fig. 2. Evaluating the quality of results

is equal to O(b3), while the cost of insertion to the priority queue is equal to
O(logb). The node selection is in worst case O(b · logb), though in practice it is
logb. Hence, we derive: CBSS = O(b · (b3 + logb)).

Consequently, the overall complexity of Graph-Based Term Selection is equal
to: CGBTS = O(|U | · Ctopk + Û(q) + b · (b3 + logb)).

7 Experimental Evaluation

In this section, we present the results of the experimental evaluation. All algo-
rithms were implemented in Java and the experiments were executed on an AMD
Opteron 4130 Processor (2.60 GHz), with 32 GB of RAM and 2 TB of disk.

Datasets and Metrics. For the data set D of spatio-textual objects, we used a
set of 200000 descriptions of hotels from the site of Booking.com1. The dataset
contains 188 distinct features. The set of preferences U was generated using a
uniform distribution for creating the location and the α parameter of each pref-
erence, while the terms were randomly chosen from the vocabulary generated by
processing the set of hotels. The location of the user preferences was bounded in
the MBR defined by set of hotels. We also tested our algorithm against a Zip-
fian distribution of terms. We used the Zipfian distribution generator provided
by the Apache Commons project2. The metrics under which we evaluated the
implemented algorithms were: (a) increase in the influence score ΔI, (b) number
of I/O’s performed by each algorithm, and (c) processing time.

Experimental Procedure. Both datasets D and U were indexed using an IR-
tree where the maximum capacity of each node was 100 entries. We employed a
buffer which was fixed at the size of 4MB, for both the tree index and the inverted
files. The performance of the proposed algorithms was evaluated through a series
of experiments varying the parameters of (a) the cardinality of D in the inter-
val [10 K, 200 K], (b) the cardinality of U , [10 K, 200 K], (c) the number of
returned results per user preference k, [5, 50], (d) the maximum size of user pref-
erences, [1, 5], and (d) the number of returned terms for a query object b, [2–5].

1 http://www.booking.com.
2 http://commons.apache.org/proper/commons-math/.

http://www.Booking.com
http://www.booking.com
http://commons.apache.org/proper/commons-math/
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Fig. 3. Analysis for varying |D|, |U |, k, and b

For the Zipfian distribution we varied the value of the characteristic exponent s
in the interval [0.1–1.0]. The default setup for the experiments was: |D| = 20K,
|U | = 20K, k = 10, b = 3 and each the maximum preference size was set to 5.
For each experiment a random set of 20 query objects was selected from D.

Quality Evaluation. We compared the proposed algorithms against an exhaus-
tive algorithm, which examines all

(|A−q.T |
b

)
term combinations3 and calculates

the optimal set of terms BT. Due to the high processing cost of the exhaustive
algorithm even for small values of b, we employed datasets of limited size. The
default setting for this series of experiments was |D| = 100, |U | = 1000, and
b = 3. The set of objects D, consisted of a random set of hotels from the area
of Catalonia in Spain, and they were selected from Booking.com. The set of
preferences U , follows a uniform distribution in Figs. 2(a) and (b), and a Zip-
fian distribution in Fig. 2(c). Figure 2 indicates that both algorithms achieve an
increase to the influence score which is very close to the optimal value. The
execution time of the exhaustive algorithm was in all cases orders of magnitude
larger than the execution time of BTF and GBTS.

Varying |D|. Figures 3(a), (e), and (i) illustrate the performance of the algo-
rithms as we vary the number of spatio-textual objects. Figure 3(a) indicates

3 Based on the adopted similarity function, the addition of a term does not have a
negative effect on the influence score. In the general case, an exact algorithm should
examine 2|A| term combinations.
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that both algorithms perform similarly with respect to the increase of the influ-
ence score. As the number of objects increase the gain in influence score drops
as more spatio-textual objects compete for the same number of user-preferences
and therefore it becomes harder for a query object to increase its influence score.
Figures 3(e) and (i) indicate that the I/O accesses and the processing time for
both algorithms increase when the dataset size increases. As the dataset size
increases the cost of a single TOPk query increases as well and therefore both
algorithms are affected by the dataset size. The effect on BTF is larger than in
GBTS as BTF accesses the data multiple times in order to create the set of new
terms.

Varying |U |. Figures 3(b), (f), and (j) depict the performance of both algorithms
as more preferences are processed. When the number of preferences increases
there are more user preferences that can be added to the RTOPk set of an
object with an addition of a new set of terms and therefore the gain in influence
score increases as well. The processing cost for both algorithms is expected to
raise for a larger number of user preferences, as more preferences have be to
examined. Both processing time and I/O cost raise faster for BTF than for
GBTS. In particular the processing cost for BTF grows almost by a factor of b
faster than GBTS as BTF has to process the set of preferences b times in order
to identify the set of new terms.

Varying k. As the size of the TOPk set of each preference increases, the cost
of a single TOPk query increases as well. Figures 3(c), (g), and (k) indicate that
the increased I/O and processing cost of a TOPk query affects both algorithms.
Similarly to the increase on the size of datasets, the effect on BTF is magnified
by a factor of b. The influence score gain raises as well, since with the increase
in k more objects can be included in the TOPk set of a user preference and the
necessary increase in the text similarity for a query object q to be added to a
TOPk set of a user preference u becomes smaller.

Varying b. Figures 3(d), (h), and (l) illustrate the performance of the algorithms
as we vary the number of new terms added to each query object. It is noteworthy
that both algorithms behave similarly with respect to the increase of the influence
score. The cost of BTF raises linearly with respect to b, which is expected as it
has to process the data b times before returning the resulting BT set. On the
other hand, GBTS remains unaffected by the increase of the b parameter, as it
has to access the preferences set only once.

Varying the Query Size. Figure 4 indicates that as the maximum preference
size increases, the possible gain of influence score for a spatio-textual object
drops. The reason lies in the fact that for a large user preference u, more terms
are required to be added to a spatio-textual object q, for q to enter the TOPk(u)
set. Larger queries require more complex TOPk queries on the indexes and con-
sequently the performance of both algorithms is affected. As expected BTF is
affected in a larger degree than GBTS by the increased cost of the TOPk queries.

Zipfian Distribution. It is quite common that the terms of user-preferences
follow a Zipfian distribution. We tested our algorithms against a set of user
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preferences where the occurrences of terms follow a Zipfian distribution. Figure 5
illustrates the experimental results. Similarly to the uniform distribution, GBTS
outperforms BTF in terms of I/O accesses and processing time while producing
the same gain in influence score. In cases where the exponent of the Zipfian
distribution takes high values the gain in influence score raises significantly.
Such behavior is expected as when a small number of distinct terms appear in a
large number of user preferences, adding those terms to a spatio-textual object
will result in a significant increase of its influence score since the addition of
those terms will allow it to enter the TOPk set of many user preferences.

Scalability Analysis. We evaluated the performance of GBTS against larger
datasets to evaluate the scalability of our approach. BTF is not included in the
results as it needed excessive time to produce results. The experimental results
shown in Fig. 6 indicate that the processing time of GBTS grows logarithmically
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with respect to the size of the D, while the I/O cost increases linearly. The
performance difference between processing time and I/O accesses lies in the fact
that in the first TOPk queries we have an increased number of I/Os, however
after a certain number of queries, several nodes of the IR-tree are buffered and as
a result the subsequent TOPk queries induce a limited number of I/O accesses.
Figure 7 illustrates the performance of GBTS with respect to the cardinality of
user preferences set. Both the processing time and the I/O increase linearly with
respect to time.

8 Conclusions

In this paper, we address the challenging problem of increasing the influence of a
spatio-textual object, by enriching its textual description with at most b carefully
selected keywords. In this way, the spatio-textual object’s textual relevance to
user queries is increased, with the ultimate objective being for the object to
become part of the top-k result for many different users. We provide a formal
problem statement that is novel and relies on concepts related to top-k and
reverse top-k queries. We show that the problem is NP-hard, and we present a
greedy solution to the problem. Then, we propose a more efficient algorithm that
achieves results of comparable quality, but with significantly lower processing
cost. We demonstrate the performance gains of the proposed approach by means
of a thorough experimental evaluation that includes real data.
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Abstract. In this paper, we propose Geo-Social Keyword (GSK) search,
which enables the retrieval of users, points of interest (POIs), or key-
words that satisfy geographic, social, and/or textual criteria. We first
introduce a general GSK framework that covers a wide range of real-
world tasks, including advertisement, context-based search, and mar-
ket analysis. Then, we present three concrete GSK queries: (i) NPRU
that returns the top-k users based on their spatial proximity to a given
query location, their popularity, and their similarity to an input set of
terms; (ii) NSTP that outputs the top-k POIs based on their proximity
to a user v, the number of check-ins by friends of v, and their similar-
ity to a set of terms; (iii) FSKR that discovers the top-k keywords b
ased on their frequency in pairs of friends located within a spatial area.
For each query, we develop a processing algorithm that utilizes a novel
hybrid index. Finally, we evaluate our framework with thorough experi-
ments using real datasets.

1 Introduction

The rising popularity of social networks and smart-phones has led to the devel-
opment of techniques for personalized search and targeted advertisement that
combine social, geographic and textual criteria. As an instance of social and tex-
tual fusion, social networks, such as Facebook, permit the promotion of prod-
ucts to connected users that share common interests, e.g. the advertisement of
a rock festival to a group of friends that like rock music [1]. As an example of
geographic and textual integration, Web search engines, such as Google, allow
search for Points Of Interest (POIs) that match some description and are near
the query location , e.g., “Chinese restaurants nearby” [2]. Finally, Geo-Social
Networks (GeoSNs), such as Foursquare, combine geographic and social aspects
by enabling users to check-in at POIs, i.e., publish their current location to
friends. Moreover, advertisers can send GroupON-like offers to users in their
vicinity to attract them, as well as their friends [3].

Similar combinations of social, geographic and textual criteria have been
investigated in the research literature. (i) Keyword search in social networks
focuses of queries that seek groups of users forming a particular social structure
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(e.g. clique), and their members’ profiles cover a set of input terms [13,14,16].
(ii) Spatial keyword search queries return POIs that satisfy various spatial (e.g.,
range, nearest neighbor) and textual (e.g., text similarity) constraints [7,10,11,
18,20,24]. (iii) GeoSN queries output individual users, or groups of friends, that
exhibit some spatial and social properties, e.g., the closest clique of m friends to
a query point [5,17,19,22].

All the above cases consider only two out of the three criteria, focusing on
a single output type (e.g., users or POIs, but not both). On the other hand,
we introduce Geo-Social Keyword (GSK) search, a class of top-k queries that
combine all spatial, social, and textual attributes, and may return users, POIs
or keywords. We present three concrete GSK queries: (i) Top-k Nearest, Popular
and Relevant Users (NPRU) that, given a query location q and a set of terms Tq,
outputs the top-k users based on their proximity to q, their social connectivity,
and the similarity of their profiles to Tq; (ii) Top-k Nearest Socially and Textually
Relevant POIs (NSTP), which, given a user v and a set of terms Tq, returns the
top-k POIs based on their proximity to v, the number of check-ins by friends of
v, and their similarity to Tq; and (iii) Top-k Frequent Social Keywords in Range
(FSKR) that discovers the top-k keywords based on their frequency in pairs of
friends located within a geographic area.

Each query is suitable for a different type of task, including advertisement,
context-based search, and market analysis. For instance, NPRU could be used
by a restaurant to send promotions to nearby users, who are well-connected and
have expressed interest in its cuisine type. Conversely, a user could issue an
NSTP query to locate nearby restaurants of a specific type that are ‘liked’ by
his friends. Finally, FSKR could identify trends or word-of-mouth effects in a
geographic area, using the frequency of keywords shared by friends.

For each query, we provide a query processing algorithm that utilizes the
GSK Index (GSKI), a novel hybrid structure that stores users and POIs, based
on spatial, social, and textual attributes. GSKI is a lightweight multi-level grid
that supports efficient updates. Summarizing, our contributions are:

– We define GSK search as a general framework for retrieval of the top-k users,
POIs or keywords using various types of criteria.

– We present the GSKI, a hybrid structure for indexing users and POIs.
– We propose three GSK queries and the respective processing algorithms that

utilize the GSKI.
– We conduct a thorough experimental evaluation on real datasets.

The rest of the paper is organized as follows. Section 2 overviews related
work. Section 3 formalizes the GSK problem and introduces the general frame-
work. Section 4 presents the GSK Index. Sections 5, 6 and 7 propose the GSK
queries and the corresponding query processing methods. Section 8 contains the
experimental evaluation. Finally, Sect. 9 concludes the paper with directions for
future work.
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2 Related Work

We overview (i) keyword search in social networks, (ii) spatial keyword search,
and (iii) GeoSN queries.

Keyword Search in Social Networks. Although, there has been extensive
work on keyword search for general graphs, here we focus on social networks.
Lappas et al. [16] propose the Team Formation (TF ) query: given a weighted
social graph and a set of terms Tq, TF returns a subgraph of users, whose textual
descriptions cover Tq and their diameter (i.e., maximum shortest-path distance
between any two nodes) is minimized. The authors also devise a variant, where
the subgraph must be a minimum spanning tree, and show that both problems
are NP-Complete. [13] extends TF by additionally seeking a team leader, i.e.,
the member of the resulting group with the minimum total social shortest-path
distances from all members. Finally, [14] proposes the r-cliques query: given a
weighted social graph and a set of terms Tq, return a sugbraph of users that
covers Tq, and has diameter no larger than r. In the above methods, textual
information is stored in inverted files and the graph is kept in adjacency lists.

Spatial Keyword Search. Four types of spatial-keyword queries have received
particular attention in the literature [8] namely, the Boolean Range (BR), the
Boolean k-NN (BkNN ), the Spatial Aware Top-k text retrieval (SATopk), and
the Spatial Group Keyword (SGK ) query. Given a spatial region R and a set
of terms Tq, BR returns all POIs in R, whose textual description contains all
terms in Tq [20,24]. BkNN outputs the k nearest POIs to a query point q each
of which covers all the query terms [11]. Given q, Tq and a positive integer k,
SATopk returns a list of k POIs ranked based on their spatial proximity to q and
textual similarity to Tq [10]. Finally, SGK discovers a set of POIs that collectively
cover the query terms and either the sum of their distances to the query location
is minimized [7], or the maximum distance between any two POIs in the group
is minimized [18]. A recent work [21] introduces the Social-aware top-k Spatial
Keyword (SkSK ) query, which enhances personalized spatial-keyword search by
additionally taking into consideration the social connectivity of the query issuer
to all users, who have liked or recommended the POIs.

Spatial-keyword indices can be broadly classified according to the spatial
and textual structures employed. They are usually based on the R-Tree and
its variants, where each minimum bounding rectangle (MBR) keeps the textual
information of the POIs located within its bounds. Specifically, MBRs in [7,10]
utilize inverted files, while in [11,23] use bitmaps. Grid-based spatial-keyword
structures decompose the space into cells; each cell has a unique id according
to a global order (e.g., Hilbert curves [9]). Then, inverted files are primarily
used for indexing the cells based on the textual description of the POIs located
within their bounds [15,20]. Indices based on trees are in general more efficient
than grid-based structures [24], but the latter are easier to maintain. The Social
Network-aware IR-Tree [21] is an R-Tree, where each node also contains a set of
users relevant to the POIs indexed by the subtree rooted at the node; contrary
to its name, it does not index social information (i.e., user connections).
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Geo-Social Networks. GeoSN queries return users, or groups of users, that
satisfy spatial and social criteria. Given a location q and two positive integers k
and m (k < m), the Socio-Spatial Group query outputs a group of m users, such
that the total distance of the users to q is minimized, and each user is connected
to at least m − k other group members [22]. Given a location q and two positive
integers m, k, the Nearest Star Group query [5] returns the k nearest subgraphs of
m users, such that each subgraph (i.e., star) has a user, who is socially connected
to all users. Given a user v, the k-Geo-Social Circle of Friends query [17] finds
a group of k + 1 users that contains v and k friends with small pairwise social
distances, so that the diameter of the group is minimized. Finally, [19] introduces
the Social and Spatial Ranking query, which given a user v, reports the top-k
users based on their spatial proximity and social connectivity to v.

Most GeoSN approaches maintain separate structures for the spatial and
social attributes. For instance, Liu et al. [17] store the social graph in an adja-
cency matrix, and employ the R*-Tree for spatial indexing. Similarly, [5] uses
adjacency lists and a regular spatial grid, respectively. On the other hand, Yang
et al. [22] propose a hybrid index that constructs an R-tree while ensuring a
specified degree of connectivity among the users within the same node.

3 GSK Query Framework

Our setting consists of a social graph network and a set of POIs. The social net-
work is modeled as an unweighted, undirected graph G = (V,E), where a node
v ∈ V represents a user and an edge (v, u) ∈ E indicates the friendship between
v and u ∈ V . Each user v ∈ V may be associated with textual and spatial infor-
mation that represent his preferences and his most recent location, respectively.
Each POI p ∈ P has a spatial location, a textual description and a set of users Vp

that have checked-in at p in the past. T denotes a set of terms/keywords; specif-
ically, Tv (resp. Tp) is the set that appears in the preference of user v (resp. the
description of POI p).

Figure 1 depicts a running example of a social network with the locations
of 10 users as grey points, and the incident edges as their social relations. The
black squares represent the location of 4 POIs. Next to each user v and POI p
is the corresponding set of terms Tv and Tp, e.g., {c, f} for v4 and {c, e} for p1.
Moreover, the list below each POI (e.g., [v2, v4, v5, v6] for p1) represents the users
that have checked-in there. Depending on the application, the setting may vary;
e.g., the textual information of users may correspond to their query history or
profile data (instead of preferences), Vp may denote the current (instead of all)
check-ins at p, etc.

Geo-Social Keyword (GSK) search constitutes a family of top-k queries that
return results of type RT = (C, l), where C denotes the object class (i.e., V , P
or T ) and l represents the cardinality. For example, RT = (V, 3) denotes that
the output contains k groups of 3 users each, whereas RT = (P, 1) signifies that
the output consists of k individual POIs. Given a GSK query q, each object o of
type RT (e.g., a group of 3 users, or a single POI) is assigned a geographic fg(o),
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Fig. 1. Running example

social fs(o) and a textual ft(o) score. In general, fg(o) depends on the proximity
of o to q, fs(o) on the social connectivity of o, and ft(o) on the similarity between
the terms of o and q.

The total score of an object is obtained by combining the partial ones using
a ranking function F . We implement F as a weighted combination of the partial
scores, i.e., F (o) = αg · fg(o) + αs · fs(o) + αt · ft(o), where αg, αs, αt are non-
negative real numbers such that αg+αs+αt = 1, but any monotone1 function can
be used. A criterion (e.g., textual) can be omitted by setting the corresponding
weight (e.g., αt) to zero. Moreover, in some cases we may only be interested in
objects that satisfy a set of constraints CN , i.e., POIs in a geographic area, or
users who have certain characteristics (e.g., males above 30 years old). Finally,
we define a GSK query as follows:

Definition 1. Given a positive integer k, a result type RT , functions
fg, fs, ft, F , and a set of constraints CN , a GSK query returns the k objects
of type RT that have the highest scores according to F and satisfy all constraints
in CN .

By employing different combinations of result types, ranking functions and
constraints, we can devise a wide range of GSK queries. In this paper, we will
present three diverse queries that retrieve individual users, POIs and keywords.
All the queries utilize the index of the next section. Table 1 contains the frequent
symbols.

1 F should satisfy the condition ∀o, o′ : fg(o) ≥ fg(o
′) ∧ fs(o) ≥ fs(o

′) ∧ ft(o) ≥
ft(o

′) ⇒ F (o) ≥ F (o′).
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Table 1. Basic notations

Notation Definition

v User in GeoSN, i.e., v ∈ V

p Point of interest, i.e., p ∈ P

Nv Friends of user v

Tv (Tp) Set of terms of user v (POI p)

Tq Set of query terms

Vp Set of users that checked-in at p

‖v, q‖ Euclidean distance of user v to point q. Similarly for p, i.e., ‖p, q‖
‖c, q‖min Minimum Euclidean distance of 2D rectangle c to 2D point q

maxdist Maximum possible Euclidean distance between any two points

deg(v) Number of v’s friends, i.e., |Nv| = deg(v)

maxdeg Maximum number of friends in the graph

TS(T1, T2) Normalized textual similarity between term sets T1 and T2

4 Geo-Social Keyword Index

The Geo-Social Keyword Index (GSKI) stores users and POIs based on their
geographical, social and textual attributes. Given a granularity factor g and a
height parameter h, GSKI partitions the geographical space into gh ×gh equally
sized leaf cells. Each leaf cell lc contains:

– a rectangle Rlc that represents the area covered by lc,
– a list of users Vlc and a list of POIs Plc that lie in Rlc,
– the maximal degree Dlc of any user in Rlc,
– inverted files IVlc and IPlc, consisting of lists of keywords appearing in the

preferences of users and in the descriptions of POIs in Rlc, respectively. Lists
are sorted by the impact of keywords based on the cosine-normalized tf-idf
[25], and

– a bloom filter2 Blc of the union of all users checked-in at POIs in Rlc, i.e.
Blc = bloom filter of

⋃
p∈Plc

Vp.

Next, a hierarchical grid of height h is constructed in a bottom-up fash-
ion, where each intermediate cell points to g2 cells at the lower level that lie
inside its spatial extent. Every intermediate cell ic keeps only a small amount
of information summarizing its children cells. Specifically, ic is associated with
a rectangle Ric, maximum degree of users in Ric, namely Dic, and bloom filter
Bic. Additionally, for each term that appears in users or POIs located within
the bounds of Ric, ic keeps the term’s maximum textual impact in sets SVic and
SPic, respectively.

2 A bloom filter is a space-efficient probabilistic data structure that is used to test
whether an element is a member of a set [6].
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Figure 2 illustrates the GSKI and Table 2 shows the corresponding cell con-
tents for our running example, assuming g = 2 and h = 2. Leaf cell C02,2 is a
child of C11,1, which in turn is a child of C20,0. C02,2 contains users v1, v2 and
POI p1 in its spatial extent. Consequently, as elaborated in the fourth to last
row of Table 2, DC02,2 = 2 = deg(v1) = deg(v2), IVC02,2 stores terms a, f , since
they appear in v1’s and v2’s preferences, and IPC02,2 keeps terms c, e occurring
in p1’s description. Each term is associated with an impact value [25] in the
range [0,1]. BC02,2 contains users v2, v4, v5, v6 who checked-in at p1. Intermedi-
ate cell C11,1 aggregates the information of its children C02,2, C02,3, C03,2, and
C03,3. DC11,1 = 5 = deg(v4), since v4 is located in C02,3. C11,1 keeps SVC11,1

and SPC11,1 with the terms that appear in the children, namely {a, c, f} and
{a, c, e}, respectively. Finally, BC11,1 contains the union of BC02,2 and BC03,3

(C02,3 and C03,2 do not contain POIs).

Fig. 2. Hierarchical grid

To enable effective pruning during query processing, the GSKI preserves
monotonicity across the height of the hierarchical grid, i.e., assuming a monotone
function F , the overall score of an intermediate cell ic constitutes an upper bound
for the score of any user or a POI within Ric. Moreover, since the GSKI only
keeps concise aggregated data at the intermediate levels, the size of the inverted
file at a non-leaf cells is smaller than that of the original inverted file. Finally,
we chose a grid-based structure because grids in general are usually significantly
faster that R-trees for highly dynamic settings [12] such as ours, where there are
numerous location updates from users.

5 Top-K Nearest, Popular and Relevant Users

A Top-k Nearest, Popular and Relevant Users (NPRU) query returns the top-
k users based on their spatial proximity to a location q, their social connec-
tivity, and their textual similarity to an input set of terms Tq. NPRU is use-
ful for advertisement and promotion purposes. For instance, consider a restau-
rant owner who wishes to send lunch coupons. Promising targets are users that
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Table 2. GSKI contents

Cell c IVc / SVc IPc / SPc Dc Bc

C20,0

C10,0 〈c, 0.71〉, 〈d, 0.71〉, 〈e, 0.71〉 4

C00,0 0

C01,0 c : 〈v7, 0.71〉, 〈e : 〉 〈v7, 0.71〉 4

C00,1 0

C01,1 c : 〈v3, 0.71〉, 〈d : 〉 〈v3, 0.71〉 4

C11,0 〈b, 0.71〉, 〈d, 0.71〉, 〈e, 0.71〉 〈e, 0.71〉, 〈f, 0.71〉 3 〈v1, v6, v8, v9〉
C02,0 e : 〈p4, 0.71〉, f : 〈p4, 0.71〉 0 〈v1, v2, v6, v8〉
C03,0 d : 〈v6, 0.71〉, e : 〈v6, 0.71〉 3

C02,1 0

C03,1 b : 〈v5, 0.71〉, e : 〈v5, 0.71〉 3

C10,1 〈a, 0.71〉, 〈b, 1.0〉, 〈c, 0.71〉 〈a, 0.71〉, 〈f, 0.71〉 1 〈v4, v7, v9, v10〉
C00,2 a : 〈p2, 0.71〉, f : 〈p2, 0.71〉 0 〈v4, v7, v9, v10〉
C01,2 0

C00,3 a : 〈v10, 0.71〉, b : 〈v9, 1.0〉, c : 〈v10, 0.71〉 1

C01,3 0

C11,1 〈a, 1.0〉, 〈c, 0.71V 〉, 〈f, 1.0〉 〈a, 0.71〉, 〈c, 0.71〉, 〈e, 0.71〉 5 〈v2, v3, v4, v5, v6〉
C02,2 a : 〈v1, 1.0〉, f : 〈v2, 1.0〉 c : 〈p1, 0.71〉, e : 〈p1, 0.71〉 2 〈v2, v4, v5, v6〉
C03,2 0

C02,3 c : 〈v4, 0.71〉, f : 〈v4, 0.71〉 5

C03,3 a : 〈v8, 0.71〉, f : 〈v8, 0.71〉 a : 〈p3, 0.71〉, c : 〈p3, 0.71〉 1 〈v3, v5〉

(i) are near the restaurant, (ii) are highly connected, and (iii) express preference
to the restaurant’s type of food.

In our framework, the output type of NPRU is RT = (V, 1), i.e., the result
consists of individual users, and CN = ∅, i.e., there are no constraints on the
users to be retrieved. Regarding the geographic fg(v), social fs(v) and textual
ft(v) scores of each user v ∈ V , there are several alternatives. In our imple-
mentation, we set fg(v) = 1 − ‖v,q‖

maxdist
, where maxdist denotes the maximum

Euclidean distance in the data space. Intuitively, the spatial score of a user v
decreases as his Euclidean distance ‖v, q‖ from q increases. The social score of
v is defined as fs(v) = deg(v)

maxdeg
, where deg(v) is the number of v’s friends, and

maxdeg is the maximum degree of any user in the network. The textual score
ft(v) is the cosine-normalized tf-idf similarity TS(Tv, Tq) [25] between the terms
Tv of v and those in Tq. All partial scores are in the range [0,1]. The total score
of v is F (v) = αg · fg(v) + αs · fs(v) + αt · ft(v), as discussed in Sect. 3.

Consider, for instance an NPRU query with k = 2, q = p1, Tq = {c, e} and
αg = αs = αt = 1

3 in the running example of Fig. 1, e.g., a Chinese restaurant
p1 wishes to discover the top-2 users in its vicinity, that have many friends and
at the same time have matching keywords c, e (Chinese, Restaurant). The best
user is u7 because both keywords c and e are in his preferences. The top-2 user is
v4 with keyword c. Note that v4 out-ranks v3, which is slightly closer to p1 and
contains c, because he has higher degree (5 as opposed to 4 for v3). Although
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users v1 and v2 are the nearest to p1, they are not in the result because neither
contains keyword c or e; accordingly, their ft score is zero.

Processing NPRU queries is based on the branch-and-bound paradigm using
the GSKI. Specifically, a priority heap H maintains visited cells and users along
with their score according to F . The score of a cell c takes into consideration (i)
the minimum Euclidean distance of the cell to q, (ii) the maximum degree of any
user in c, and (iii) the maximum textual similarity of the queried terms amongst
the preferences of the users in c. This guarantees that the score of c is an upper
bound for the score of child cells and users within its extent. Consequently, if the
score of c does not exceed that of the top-kth user, then c can be safely pruned.

Figure 3 illustrates the pseudo-code of NPRU processing. Initially, the algo-
rithm adds GSKI’s root cell to H (Line 2). Then, in an iterative manner, it
removes the entity with the highest score from H, namely e, and (i) if e is an
intermediate cell, then it adds all its children cells to H (Lines 5–7), or (ii) if e
is a leaf cell, then it adds all users within e’s spatial extent to H (Lines 8–10),
or (iii) if e is a user, it adds him to the result set (Lines 11–12). The algorithm
terminates when the result set contains k users (Lines 13–14). The cells and
users remaining in H have score at most as high as that of the k-th result and,
hence, can be ignored.

Input: Social Graph G = (V, E), integer k, location q, set of terms Tq , weights αg, αs, αt

Output: Top-k users according to F

1. Define H as an empty heap of GSKI cells sorted according to their scores in decr. order
2. Add the root cell of GSKI to H
3. While H is not empty
4. e = top entity of H // it also removes e from H
5. If e is an intermediate cell of GSKI
6. For each child c of e

7. Add to H cell c with score αg · (1 − c,q min
maxdist

) + αs · Dc
maxdeg

+ αt · TS(Tc, Tq)

8. Else If e is a leaf cell of GSKI
9. For each user v ∈ Ve

10. Add to H user v with score αg · (1 − v,q
maxdist

) + αs · deg(v)
maxdeg

+ αt · TS(Tv, Tq)

11. Else // e is a user
12. Add e to R
13. If |R| = k then stop the execution
14. Return R

Fig. 3. NPRU Algorithm

Table 3 shows the heap state during the execution of the example query:
k = 2, q = p1, Tq = {c, e} and αg = αs = αt = 1

3 , using the GSKI contents
of Table 2. Heap entries consist of a cell or a user, and the corresponding score
according to F . Cells and users added to H are shown in bold. First, the algo-
rithm inserts the root of GSKI in H. At iteration 1, it removes the root cell and
adds its children along with their scores to H. Next, the intermediate cell with the
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highest score, C10,0, is removed and its child leaf cells {C00,0, C01,0, C00,1, C01,1}
are added to H. Similarly, C01,0 is removed at the next iteration and user v7 is
added to H. Next, intermediate cell C11,1 is de-heaped and its child leaf nodes
are en-heaped. Then, user v7 is removed and becomes the top-1 result. The algo-
rithm continues in the same manner and terminates after the 6th iteration, when
the top-2 user v4 is de-heaped.

Table 3. Heap of NPRU

Interation # Heap Contents

0 〈C20,0,∞〉
1 〈C10,0,0.90〉, 〈C11,1,0.81〉, 〈C11,0,0.71〉, 〈C10,1,0.51〉
2 〈C01,0,0.85〉, 〈C11,1, 0.81〉, 〈C11,0, 0.71〉, 〈C01,1,0.71〉,

〈C10,1, 0.51〉, 〈C00,1,0.24〉, 〈C00,0,0.21〉
3 〈C11,1, 0.82〉, 〈v7,0.80〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉,

〈C00,1, 0.24〉, 〈C00,0, 0.21〉
4 〈v7, 0.80〉, 〈C02,3,0.75〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉,

〈C02,2,0.46〉, 〈C03,3,0.33〉, 〈C03,2,0.30〉, 〈C00,1, 0.24〉,
〈C00,0, 0.21〉

5 〈C02,3, 0.75〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉,
〈C02,2, 0.46〉, 〈C03,3, 0.33〉, 〈C03,2, 0.30〉, 〈C00,1, 0.24〉,
〈C00,0, 0.21〉

6 〈v4,0.72〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C02,2, 0.46〉,
〈C03,3, 0.33〉, 〈C03,2, 0.30〉, 〈C00,1, 0.24〉, 〈C00,0, 0.21〉

6 Top-K Nearest Socially and Textually Relevant POIs

Given a user v and a set of terms Tq, a Top-k Nearest Socially and Textually
Relevant POIs (NSTP) query returns the top-k POIs based on their proximity to
v, the textual similarity of their descriptions to Tq, and the number of v’s friends
that checked-in. NSTP enables location-aware, socially-aware, and/or context-
aware search. For instance, consider a user who wants to visit a restaurant. NSTP
could locate nearby restaurants offering cuisine similar to the user’s preferences
that are also visited (or ’liked’) by his friends.

The output type of NSTP query is RT = (P, 1), i.e., the result consists of
individual POIs, and CN = ∅, i.e., there are no constraints on the POIs to be
retrieved3. The geographic and textual score definitions are similar to NPRU,
i.e., fg(p) = 1 − ‖v,p‖

maxdist
and ft(p) is based on cosine-normalized tf-idf between

Tp and Tq. The social score is defined as fs(p) = |Nv∩Vp|
|Nv| , where set Nv consists

3 Additional constraints in this case could restrict the top-k POIs to be in a certain
area, or enforce certain properties (e.g., restaurant must be open after 10 pm).
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of v’s friends (i.e., |Nv| = deg(v)), and Vp contains the ids of the users who
checked-in at p. The partial scores are combined by the linear function F also
used in NPRU.

For example, consider an NSTP query with v = v7, k = 2, Tq = {c, e}, and
αg = αs = αt = 1

3 using the running example, e.g., user v7 searches for two
nearby Chinese restaurants (c, e) that have been visited by many of his friends.
The best POI is p1 since it is relatively close to v7, contains both queried terms,
and it has been visited by 3 of his 4 friends (v2, v4, v6). The top-2 POI is p4
because it is the closest POI to v7, contains term e, and was visited by two of
v7’s friends (v2, v6). POIs p2 and p3 are not in the result set since they are far
from v7, are not relevant to T (only p3 contains one of the queried terms), and
are not popular among v7’s friends (each is visited by only one friend).

NSTP query processing is similar to NPRU. Specifically, the algorithm uses
a max-heap to store cells and POIs sorted in decreasing order of their scores.
The score of a cell c is based on: (i) the minimum distance of c to v, (ii) an upper
bound for the number of v’s friends that checked-in at any POI within c, and (iii)
the maximum textual similarity of T to the descriptions of the POIs in c. For the
computation of (ii), the algorithm examines if each friend of v is in the bloom
filter of c. Bloom filters may falsely indicate the presence of a user. However,
although false positives increase the score of c, they do not affect correctness
because the score of c is always an upper bound (albeit, in some cases, loose)
for that of any child cell or POI in c. The algorithm terminates after it retrieves
k POIs from the priority heap.

Consider again the example query with input: v = v7, k = 2, Tq = {c, e},
and αg = αs = αt = 1

3 , using the GSKI contents of Table 2. Table 4 shows the
state of the heap at each iteration. Starting from the root cell, the algorithm
retrieves the top-1 POI p1 at iteration 3. Then, it continues until iteration 6,
when it discovers p4 and terminates.

7 Frequent Social Keywords in Range

A Frequent Social Keywords in Range (FSKR) query returns the top-k terms
based on their frequency in pairs of friends located within a spatial area SR.
FSKR allows the discovery of trends or word-of-mouth effects. For instance,
FSKR on textual content derived from Twitter/Facebook posts can reveal topics
that are trending among friends in a geographic area. This information can be
then utilized by businesses towards social media marketing.

The output of FSKR query is RT = (T, 1), i.e., the result consists of individ-
ual terms. In addition, CN contains the constraint that valid terms must appear
jointly in the preferences of friends in SR. FSKR does not apply geographic or
social scores; instead, the total score of a term t is based solely on its frequency
among friends, i.e., F (t) = ft(t) = |{(v, u) ∈ E/t ∈ Tv∧t ∈ Tu∧v, u inside SR}|,
where Tv (resp. Tu) denotes the terms associated with v (resp. u). Note that an
edge (v, u) contributes 2 to the score of t; once per incident user v and u. This
does not affect the ranking of the top-k results.
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Table 4. Heap of NSTP

Interation # Heap H Contents

0 〈C20,0,∞〉
1 〈C11,1,0.75〉, 〈C11,0,0.55〉, 〈C10,0,0.33〉, 〈C10,1,0.28〉
2 〈C02,2,0.75〉, 〈C11,0, 0.55〉, 〈C03,3,0.44〉, 〈C10,0, 0.33〉,

〈C10,1, 0.28〉,〈C03,2,0.19〉, 〈C02,3,0.15〉
3 〈p1,0.75〉, 〈C11,0, 0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉,

〈C03,2, 0.19〉, 〈C02,3, 0.15〉
4 〈C11,0, 0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉, 〈C03,2, 0.19〉,

〈C02,3, 0.15〉
5 〈C02,0,0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉,

〈C02,1,0.28〉,〈C03,0,0.25〉, 〈C03,1,0.23〉, 〈C03,2, 0.19〉,
〈C02,3, 0.15〉

6 〈p4,0.59〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉, 〈C02,1, 0.28〉,
〈C03,0, 0.24〉, 〈C03,1, 0.23〉, 〈C03,2, 0.19〉, 〈C02,3, 0.15〉

Consider, for instance, the FSKR query with k = 2 and an area SR rep-
resented by the dashed-line rectangle in Fig. 1. The top-1 term is c, with score
F (c) = 6, since it appears in 3 pairs of friends within the range, i.e., (v3, v4),
(v3, v7), and (v4, v7). The top-2 term can be either e (v6, v7), or d (v3, v6), both
with score 2. The remaining terms in SR (a, d, f) are not shared by any pair of
friends.

FSKR query processing is performed in two steps: first, for every term t
in SR, a list PL[t] is created with the users (in SR) containing t; then, the
score F (t) of each term t is computed by examining the connections of users
appearing in PL[t]. Specifically, the contribution of each v ∈ PL[t] to F (t) is
|Nv ∩ PL[t]|, where Nv is the set of v’s friends. Let bestscore be the score of the
current top-kth term. The upper bound score of any (not-yet-examined) term t
is |PL[t]| · (|PL[t]| − 1), when all users containing t form a clique. Consequently,
if |PL[t]| · (|PL[t]| − 1) ≤ bestscore, then t can be safely pruned. Based on this
observation, FSKR examines terms in decreasing order of their list sizes, until
the first term that can be eliminated by its upper bound score.

Figure 4 elaborates the procedure. The algorithm first retrieves the non-
empty leaf cells of GSKI that intersect with the spatial range SR. For each
keyword t in the inverted lists of these cells, Lines 3–13 generate PL[t]. Next,
the terms are sorted in decreasing order of |PL[t]| size. For each term t, Lines
18–20, compute the score of t, and update bestscore accordingly. The algorithm
terminates at the first term for which |PL[t]| · (|PL[t]| − 1) ≤ bestscore (Lines
16–17), and returns the top-k set (Line 21). Unexamined terms cannot be in the
result set, and are pruned.

We describe the algorithm using our running example of Fig. 1, where
k = 1 and the spatial range SR is depicted as a dashed rectangle. Initially,
bestscore = 0. The terms associated with users in SR are a, c, d, e, f with lists



Geo-Social Keyword Search 443

Input: Social Graph G = (V, E), integer k, spatial range SR
Output: Top-k terms according to F

1. Initialize list PL as an empty list of sets, bestscore = 0
2. Set C = all non-empty leaf cells in GSKI that intersect with SR
3. For each cell c ∈ C
4. For each term t ∈ IVc

5. Occurt = posting list of t in IVc

6. If t appears for first time
7. PL[t] = {∅}
8. Else
9. If R covers c
10. PL[t] = PL[t] ∪ Occurt
11. Else
12. Occurt,valid = Exclude from Occurt all users not in SR
13. PL[t] = PL[t] ∪ Occurt,valid
14. Sort PL according to sets’ sizes in decreasing order
15. For each term t ∈ PL
16. If |PL[t]| · (|PL[t]| − 1) ≤ bestscore
17. Exit For Loop
18. For each user v ∈ PL[t]
19. Scoret = Scoret + |Nv ∩ PL[t]|
20. bestscore = kth highest score
21. Return the terms with the k highest scores

Fig. 4. FSKR algorithm

PL[a] = {v1}, PL[c] = {v3, v4, v7}, PL[d] = {v3, v6}, PL[e] = {v6, v7} and
PL[f ] = {v2, v4}. FSKR iterates over the lists in sorted order, starting from c. It
computes |PL[c] ∩ Nv3 | = 2, |PL[c] ∩ Nv4 | = 2, |PL[c] ∩ Nv7 | = 2, and F (c) = 6.
Since k = 1, it sets bestscore = 6 and retrieves the second most frequent keyword
e. The upper bound score for e is 2, which is below bestscore. Consequently, the
algorithm stops and outputs c as the top-1 result.

8 Experimental Evaluation

Section 8.1 presents the real datasets, Sect. 8.2 contains a qualitative evaluation
of the proposed queries, and Sect. 8.3 evaluates their performance experimentally.

8.1 Datasets

We use two real datasets obtained from Yelp [4] that consist of users and
POIs located in Las Vegas (LV) and Phoenix (PX). In particular, each dataset
includes: (i) a social graph, (ii) latest and past user check-ins, (iii) user pref-
erences, (iv) POI locations, and (v) POI descriptions. Table 5 summarizes the
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Table 5. Datasets

Statistic LV PX

|V | 40,297 30,056

Avg. Degree 9.66 5.41

Max. Degree 2451 1246

Avg. |Tv| 161 166

|P | 12,773 16,154

Avg. |Vp| 14.98 8.89

Avg. |Tp| 5.35 9.7

Area 37 km × 46 km 71 km × 87 km

Max. Dist 60 km 112 km

characteristics of LV and PX. Note that LV contains more users in a smaller geo-
graphic area, whose distribution is skewed. Users and POIs in PX are distributed
more uniformly.

8.2 Visualization

We qualitatively evaluate the proposed queries using LV. In the following visual-
izations, users and POIs are depicted as grey points and rectangles, respectively.
Query points and top-k results are colored black, and each points to an infor-
mation table that presents their parameters and partial scores.

Top-k Nearest, Popular and Relevant Users. Figure 5 illustrates the results
of an NPRU query issued by a Mexican bar, where Tq = {mexican, alcohol, bar},
k = 3 and αg = αs = αt = 1

3 . The top-1 user is the closest to the query point,
the most popular and the most relevant to Tq. Although the top-2 user is farther
than top-3, he receives a better score because he has a higher degree and his
preferences are more similar to Tq.

Top-k Nearest Socially and Textually Relevant POIs. Figure 6 depicts
the results of an NSTP query issued by a user v, who searches for 3 nearby
POIs that contain terms “mexican, alcohol, bar” and have been visited by his
friends (αg = αt = 0.25 and αs = 0.5). The top-1 bar is 400 meters away from v,
and has been visited by one of v’s friends. The top-2 bar is 1.53 km far from v,
and has also been visited by one friend. Note that the top-3 bar has the highest
textual similarity, but it is relatively far, and has not been visited by any of v’s
friends.

Frequent Social Keywords in Range. Figure 7 visualizes the results of an
FSKR query, where a dashed-lined rectangle represents SR and k = 1. The top-1
keyword “food” is shared among 9 pairs of friends, connected by the bold edges.
The remaining edges denote social connections of users in SR.
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Fig. 5. Top-3 users in NPRU

Fig. 6. Top-3 POIs in NSTP

8.3 Performance

The query processing algorithms were implemented in C++ under Linux
Ubuntu, and executed on an Intel Xeon E5-2660 2.20 GHz with 8 GB RAM.
All data and indices are stored in the main memory. The social graph is kept as
a collection of adjacency lists, one per user. The reported times are the average
of 20 query executions for each of LV and PX. Table 6 includes the tested value
ranges for the query and system parameters in our setup; r corresponds to the
radius of the circular spatial range SR of FSKR.

Geo-Social Keyword Index. Figure 8 studies the effect of GSKI granularity g
on the running time of NPRU, NSTP, and FSKR using LV, for h = 4, k = 16,
|Tq| = 3, and r = 3 km. For granularity up to 5, the running time of NPRU and
NSTP decreases with g. Since the cells cover smaller areas, the aggregate informa-
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Fig. 7. Top-1 keyword in FSKR

Table 6. Query and system parameters

Parameter Default Range

k 16 4, 8, 16, 32, 64

|Tq| 3 1, 2, 3, 4, 5

g 5 3, 4, 5, 6

r (km) 3 1, 2, 3, 4, 5

tion stored in the cells is more accurate, and thus the algorithms visit fewer cells.
When the granularity exceeds 5, the GSKI becomes less effective because the heaps
inNPRUandNSTPmaintain numerous cells, i.e., each intermediate cell has fanout
36.The execution timeofFSKRincreases slightlywithg.Recall that thefirst stepof
FSKRcreates the occurrence lists of terms inSRbymerging the invertedfiles of the
cells that intersect with SR. Consequently, the CPU time grows as the algorithm
merges more inverted lists, but the impact is negligible. In the remaining experi-
ments, we set g = 5 because it minimizes the execution time of NPRU, NSTP, and
it marginally affects FSKR.

Table 7 assesses the total construction time of GSKI indices under the setup
of Fig. 8 in both datasets. In the most challenging setting, i.e., g = 6 and h = 4
(1.6M leaf cells), GSKI needs only 45 s for both datasets since it only keeps
concise aggregated data at the intermediate levels.

Top-k Nearest, Popular and Relevant Users. Figure 9(a) presents the
query time of NPRU as a function of the result size k in LV and PX, for |Tq| = 3.
In both datasets, the cost increases with k because the algorithm retrieves
more users from the priority heap, and thus performs more iterations. NPRU is
faster in PX because it contains relatively few users, who are rather uniformly
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Fig. 8. Effect of GSKI granularity (LV Dataset, h = 4)

Table 7. GSKI construction time

Granularity g Height h # Leaf cells LV Time (sec) PX Time (sec)

3 4 6561 10.2 8.7

4 4 65536 13.3 11.6

5 4 390625 16.6 14.7

6 4 1679616 23.7 21.3

distributed. Therefore, the cells contain more accurate information that leads to
better pruning.

Figure 9(b) plots the running time versus the number of queried terms, i.e.,
|Tq|, for k = 16. In both datasets, the cost increases with |Tq| as the algorithm
requires more computations to calculate the textual similarity of each visited cell
or user. In addition, when |Tq| increases, more cells become textually relevant to
the query, reducing the pruning power of the algorithm.
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Fig. 10. Query time for NSTP

Top-k Nearest Socially and Textually Relevant POIs. Figure 10(a) shows
the execution time of NSTP versus the result size k in LV and PX, for |Tq| = 3.
Similar to NPRU, the running time increases with k since the algorithm exe-
cutes more iterations. Compared to PX, the cost in LV increases faster because
the distribution of POIs is highly skewed. This leads to inaccurate aggregate
information at cells covering dense areas, burdening the reported average time.
Figure 10(b) measures the running time as a function of |Tq|, for k = 16. The
diagrams and the explanations are similar to those of Fig. 9(b).
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Fig. 11. Query time for FSKR

Frequent Social Keywords in Range. Figure 11(a) plots the running time of
FSKR versus k, for r = 3 km. Recall that FSKR initially creates the occurrence
lists of the terms in SR by merging the inverted lists of the leaf cells that
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overlap SR. Then, the terms are sorted in decreasing order of list size. These
steps dominate the total cost. Consequently, the value of k does not affect the
execution time. FSKR is slower in LV since the average number of users in SR
is greater, i.e., 2105 in LV and 464 in PX.

Figure 11(b) shows the execution time as a function of the radius r of SR, for
k = 16. In both datasets the running time grows with r. In LV, the cost exhibits
a steep increase because many new users are covered by the expanded SR. For
instance, for r = 4 km, SR includes on average 3662 users in LV and 627 in PX,
whereas for r = 5 km, it covers 6092 and 776 users, respectively.

Summarizing the experimental evaluation, all algorithms are very fast (at
most, a few seconds) under all settings. In addition, the construction of GSKI
only takes up to 23 s for the selected g, h, and the largest dataset. Finally, the
GSKI supports efficient location updates as it is based on a grid structure.

9 Conclusion

This paper introduces a class of top-k queries that enable retrieval of users, POIs
or keywords based on geographic, social and textual criteria. We propose three
concrete queries that can be used in various tasks involving context-based search,
profile-based advertisement and market analysis. For each query we provide a
processing algorithm that exploits a specialized index. Our experiments with
real datasets confirm the effectiveness and efficiency of the proposed methods.

An interesting direction for future work concerns additional GSK queries,
applicable to different tasks. Even the same queries can be altered to support
alternative partial scores. For instance, instead of the Euclidean, we could apply
the road network distance to the definition of geographic score in NPRU and
NSTP. Similarly, FSKR could be based on co-occurrences of terms in triangles
(instead of pairs) of friends.
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Abstract. Co-location pattern mining is an important task in spatial
data mining. However, the traditional framework of co-location pattern
mining produces an exponential number of patterns because of the down-
ward closure property, which makes it hard for users to understand, or
apply. To address this issue, in this paper, we study the problem of min-
ing representative co-location patterns (RCP). We first define a covering
relationship between two co-location patterns by finding a new mea-
sure to appropriately quantify the distance between patterns in terms
of their prevalence, based on which the problem of RCP mining is for-
mally formulated. To solve the problem of RCP mining, we first pro-
pose an algorithm called RCPFast, adopting the post-mining framework
that is commonly used by existing distance-based pattern summarization
techniques. To address the peculiar challenge in spatial data mining, we
further propose another algorithm, RCPMS, which employs the mine-
and-summarize framework that pushes pattern summarization into the
co-location mining process. Optimization strategies are also designed to
further improve the performance of RCPMS. Our experimental results
on both synthetic and real-world data sets demonstrate that RCP min-
ing effectively summarizes spatial co-location patterns, and RCPMS is
more efficient than RCPFast, especially on dense data sets.

1 Introduction

As one of the most fundamental tasks in spatial data mining, co-location mining
aims to discover co-location patterns where each is a group of spatial features
whose instances are frequently located close to each other [14]. Spatial co-location
patterns yield important insights for various applications such as epidemiology
[21], ecology [4] and e-commerce [22]. A common framework of co-location pat-
tern mining uses the frequencies of a set of spatial features participating in a
co-location to measure the prevalence (known as participation index [14], or PI
for short) and requires a user-specified minimum threshold to find interesting
patterns. Typically, if the threshold is high, the framework may generate com-
monsense patterns. However, with a low threshold, a great number of patterns
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 451–469, 2015.
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Fig. 1. A motivating example.

Table 1. Prevalent patterns.
ID Feature Sets Events PI

F1 {A,B} A1B1, A1B2, A2B3 1

A4B4, A5B5, A3B6

F2 {A,B,C} A1B1C2, A2B3C1 5/6

A3B6C3, A4B4C4, A5B5C5

F3 {A,B,C,D} A2B3C1D2, A4B4C4D1 1/3

F4 {B,C,D} B3C1D2, B4C4D1, B5C5D2 1/2

F5 {C,D} C1D2, C4D1, C5D2 3/5

will be found. This is further exacerbated by the downward closure property
that holds for the PI measure. That is, if a set of features is prevalent with
respect to a threshold of PI, then all of its subsets will be discovered as preva-
lent co-location patterns. A huge pattern number will jeopardize the usability
of resulted patterns, as it demands great efforts to understand or examine the
discovered knowledge.

The key idea of solving this problem is to find an effective way to sum-
marize the co-location patterns, e.g., to find a high-quality representation that
describes the complete set of resulted patterns precisely and concisely. Two types
of compressed co-location patterns have been explored in the literature: maxi-
mal co-location patterns (MCP) [15] and closed co-location patterns (CCP) [19].
A co-location pattern is a MCP if it is prevalent itself and none of its super-
patterns are prevalent. MCP mining may significantly reduce the number of
co-location patterns, but it fails to preserve the prevalence information. It is
therefore a lossy approximation. As for the second type, a co-location pattern is
a CCP if it is prevalent itself and none of its super-patterns have the same PI
as it does. CCP mining not only diminishes the number of co-location patterns
but also preserves the complete PI information. However, by emphasizing too
much on the PI information, the compression power of CCP mining is limited.

For example, given a spatial data set shown in Fig. 1, where instances/events
of four spatial features, A, B, C and D, are represented by different symbols
and edges connecting events denote spatial neighborhood relationships, Table 1
lists a set of five prevalent co-location patterns and their corresponding PI in
the data set (the definition of PI is provided in Sect. 2). If MCP mining is
adopted, only F3 will be output as the others are all sub-patterns of F3. However,
F3 is significantly different from others in terms of their PIs. In contrast, if
CCP mining is used, then all patterns will be returned since each of them is
a closed pattern. That is, CCP mining provides no compression on this set
of patterns. Therefore, to address the limitations of MCP and CCP mining,
a method that not only provides optimal compression rate but also preserves
reasonable prevalence information will be favored.

Similar idea has been explored in the studies of summarizing frequent item-
sets [10,17,18]. Xin et al. [17] proposed the notion of a ε-cover relationship
between itemsets. An itemset X1 is ε-covered by another itemset X2 if X1 is a
subset of X2 and 1 − |T (X1)∩T (X2)|

|T (X1)∪T (X2)| ≤ ε, where T (Xi) is the set of supporting
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transactions of pattern Xi. The goal is then to find a minimum set of representa-
tive itemsets that can ε-cover all frequent itemsets. In this paper, we follow their
idea and propose to summarize co-location patterns using a set of representa-
tive co-location patterns (RCPs), which strikes a fine balance between improving
compression rate and preserving prevalence information.

However, existing methods for representative itemsets mining cannot be
applied directly to representative co-location pattern mining, neither the frame-
work of problem definition nor the mining process. This is mainly because there
is no natural notion of transactions in co-location mining [14]. Consequently,
the original definition of the ε-cover relationship cannot be adopted straightfor-
wardly because it is defined on a supporting transaction-based distance measure.
Moreover, the mining process will be more complicated as it is more expensive
to examine whether a set of feature instances participate in a co-location than
checking whether a set of items appear in one transaction.

To formulate the problem of representative co-location pattern mining, we
first define a new measure to appropriately quantify the distance between two
co-location patterns in terms of their prevalence, based on which the ε-cover rela-
tionship can be stated on a pair of co-location patterns. To solve the problem
of RCP mining, we first propose an algorithm, RCPFast, which follows exist-
ing distance-based pattern summarization techniques to adopt the post-mining
framework that finds RCPs from the set of discovered co-location patterns.
Observing a peculiar challenge in spatial data mining, we then develop another
algorithm, called RCPMS, which employs a mine-and-summarize framework to
discover RCPs directly from the spatial data. To our knowledge, RCPMS is the
first work among existing distance-based pattern summarization that pushes
summarization into the pattern mining process. Optimization strategies are also
devised to further improve the efficiency of RCPMS. We evaluate the perfor-
mance of the developed algorithms on both synthetic and real-world data sets.
Our experimental results demonstrate the effectiveness of RCP mining, and the
efficiency of RCPMS compared with RCPFast, especially on dense data sets.

The remainder of this paper is organized as follows. In Sect. 2, we define
relevant concepts and formally formulate the problem. Section 3 introduces the
RCPFast algorithm. Section 4 describes the RCPMS algorithm and optimization
strategies. In Sect. 5, we evaluate the performance of the developed algorithms.
Existing works related to our research are reviewed in Sect. 6. Section 7 closes
this paper with some conclusive remarks.

2 Preliminary

In this section we first review definitions related to traditional co-location pat-
terns. Then, we introduce a distance metric to measure the prevalence difference
between two patterns. Finally, we formally define the problem of representative
co-location pattern mining.
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2.1 Co-Location Patterns

Given a set of spatial features F = {f1, f2, . . . , fK}, a spatial data set is a collec-
tion of instances/events E = {e1, e2, . . . , eN}, where each ei ∈ E is represented
by a vector 〈event id, spatial feature type, location〉. We review the measures
used to characterize the interestingness of a subset of features F ⊆ F as follows.
Please refer to [14] for the details.

Definition 1. Given F = {f1, . . . , fk}⊆ F , E = {e1, . . . , ek} ⊆ E is a Row
Instance (RI) of F , denoted as RI(F ), if ∀i ∈ [1, k], ei is an instance of fi

and ∀i, j ∈ [1, k], ||ei − ej || ≤ τ , where ||ei − ej || refers to the spatial distance
between two events and τ is a user-specified spatial distance threshold.

Definition 2. Given a spatial data set E of a set of spatial features F , the
Table Instance (TI) of a subset of features F ⊆ F , denoted as TI(F ), is the
collection of all its row instances in E. That is, TI(F ) ={RI1(F ), . . . , RIm(F )}.

For example, consider the spatial data set in Fig. 1 and F5 = {C,D} in
Table 1. {C1D2} is a RI of F5. TI(F5) ={C1 D2, C4D1, C5D2}.

Definition 3. Given F = {f1, . . . , fk}, the Participation Ratio of a feature
fi ∈ F , denoted as PR(fi, F ), is the fraction of events of feature fi that partic-
ipate in the table instance of F . That is,

PR(fi, F ) =
|{ej |ej ∈ TI({fi}), ej ∈ T̂ I(F )}|

|TI({fi})}| , (1)

where T̂ I(·) is the union of elements in TI set.

Hence, the denominator refers to the total number of events of feature fi and
the numerator refers to the number of distinct events of feature fi that appear
in the table instance of F .

Definition 4. The Participation Index of a subset of features
F = {f1, . . . , fk}, denoted as PI(F ), is defined as PI(F ) = min

i∈[1,k]
PR(fi, F ).

For example, consider the spatial data set in Fig. 1 and F2 = {A,B,C} in
Table 1. Since PR(A,F2) = 5/5, PR(B,F2) = 5/6, PR(C,F2) = 5/5, we have
PI(F2) = min(5/5, 5/6, 5/5) = 5/6.

Definition 5. Given a user-specified threshold minpi, a subset of features F ⊆ F
is a Prevalent Co-location Pattern (PCP) if PI(F ) ≥ minpi.

2.2 Co-Location Distance Measure

A distance measure between traditional frequent itemsets has been proposed
in [17]. It compares the supporting transactions of two itemsets and deduces
a numerical value as D(I1, I2) = 1 − |T (I1)∩T (I2)|

|T (I1)∪T (I2)| , where T (Ii) denotes the set
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of transactions supporting the itemset Ii. However, it is difficult to apply this
measure to co-location patterns because there is no natural notion of transactions
in co-location mining [14]. We explore a new distance measure that appropriately
quantifies the prevalence difference between two co-location patterns which can
be computed efficiently without manipulating the spatial data set.

For simplicity, we denote the set in the numerator of Eq. (1) as EF (fi) (i.e.,
EF (fi) = {ej |ej ∈ TI({fi}), ej ∈ T̂ I(F )}). It refers to the set of events of feature
fi that participate in the table instance of F .

Definition 6. Let F1 and F2 be two co-location patterns and f be a feature
shared by them, namely, f ∈ F1 ∩F2, the Feature Distance between F1 and F2

w.r.t. f is defined as

FDf (F1, F2) = 1 − |EF1(f) ∩ EF2(f)|
|EF1(f) ∪ EF2(f)| (2)

Definition 7. Given two co-location patterns F1 and F2, the Co-location
Distance between them is defined as

D(F1, F2) =

{
max

∀f∈F1∩F2
FDf (F1, F2), if F1 ∩ F2 �= ∅

1, otherwise
(3)

Let us apply this new distance measure to co-location patterns in Table 1 to
see if it reasonably reflects the distance/proximity between patterns in terms
of their prevalence. Firstly, we consider F1 = {A,B} and F2 = {A,B,C}.
According to the above definitions, EF1(A) = EF2(A) = {A1, A2, · · · , A5},
EF1(B) = {B1, B2, · · · , B6}, EF2(B) = {B1, B3, B4, B5, B6}, then FDA

(F1, F2) = 1 − |EF2 (A)|
|EF1 (A)| = 1 − 5

5 = 0, FDB(F1, F2) = 1 − 5
6 = 1

6 . Hence,

D(F1, F2) = max(0, 1
6 ) = 1

6 . This small distance value suggests that F1 and F2

are quite similar in terms of prevalence. Similarly, let us consider F2 = {A,B,C}
and F3 = {A,B,C,D}. We can have D(F2, F3) = max(1 − 2

5 , 1 − 2
5 , 1 − 2

5 ) = 3
5 ,

which indicates that the two patterns (F2, F3) are quite different. We observe
that the new distance measure captures the prevalence distance between co-
location patterns appropriately.

2.3 Problem Statement

Based on the proposed distance measure, we define the ε-cover relationship
between two co-location patterns as follows.

Definition 8. Given two co-location patterns F1 and F2, and a real number
ε ∈ [0, 1], we say F2 ε-covers F1 if (1) F1 ⊆ F2 and (2) D(F1, F2) ≤ ε.

Then, given a set of prevalent co-location patterns, we can group them into
ε-clusters, where each ε-cluster consists of a centroid pattern Fr that ε-covers all
patterns in the cluster. It seems that we may return centroid patterns of ε-clusters
as representative patterns. However, by doing so, we restrict the representative
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patterns to be prevalent themselves (i.e. PI(Fr) ≥ minpi). The minimum num-
ber of representative co-location patterns that can be achieved using this method
is the number of MCPs.

In [17], it shows that an itemset only needs to satisfy a relaxed condition (i.e.,
Supp(X) ≥ (1 − ε) ∗ minsupp) to ε-cover a frequent itemset. We find that this
property holds as well for our newly defined distance measure and the induced
ε-cover relationship. The details are given in the long version of this paper [8].

Thus, to ε-cover a prevalent co-location pattern F1, F2 only needs to be
prevalent with respect to a lower threshold minpi∗ = (1− ε)∗minpi. Our exper-
imental results in Sect. 5 show that this relaxation contributes to an improved
compression rate.

Definition 9 (Problem Statement). Given a set of spatial features F , a spa-
tial data set E on F , a spatial distance threshold τ , a co-location distance thresh-
old ε, and a prevalence threshold minpi, the problem of representative co-location
pattern mining is to discover a minimal set of co-location patterns R such that:
(1) For all Fr ∈ R, P I(Fr) ≥ (1 − ε) ∗ minpi; (2) For any prevalent co-location
patterns F , i.e., PI(F ) ≥ minpi, there exits a Fr ∈ R s.t. Fr ε-covers F .

3 The RCPFast Algorithm

In this section, we first introduce an algorithm, RCPFast, which follows existing
distance-based pattern summarization approaches to mine RCPs by adopting a
post-mining framework.

Similar to [17], the mining framework of RCPFast consists of three stages.
Stage 1 discovers two sets of prevalent co-location patterns, PCP and PCP ∗,
with respect to minpi and (1 − ε) ∗ minpi, respectively. The objective is then
to select minimal number of patterns from PCP ∗ to cover all patterns in PCP .
Stage 2 generates the complete coverage information by finding all prevalent co-
location patterns F ∈ PCP that can be ε-covered by each pattern Fr ∈ PCP ∗.
All prevalent co-location patterns ε-covered by Fr is stored in set(Fr). Stage 3
finds the set of desired RCPs based on the coverage information. As discussed in
[17], it can be solved by a greedy strategy that always selects the representative
pattern that covers the most number of prevalent co-location patterns. According
to [3], this is a set cover problem which is NP-hard and the time complexity of
the greedy algorithm is O(

∑
Fr∈PCP ∗ |set(Fr)|). Hence the computational cost

of RCPFast mainly comes from the first two stages.
Since the time complexity of the greedy algorithm is O(

∑
Fr∈PCP ∗ |set(Fr)|),

the computational cost of RCPFast mainly comes from the first two stages.
For the first stage, mining prevalent co-locations is a well-studied topic. Many

efficient algorithms have been proposed, e.g., the spatial-join method [5] and the
join-less method [21]. Note that it is unnecessary to run the mining process twice
to discover PCP and PCP ∗. We can find prevalent patterns w.r.t. (1−ε)∗minpi
first, and then filter the results to obtain those prevalent w.r.t. minpi.

For the second stage, the bottleneck lies in the computations of co-location
distance between two patterns to verify the ε-cover relationship. The complexity
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Fig. 2. An explanation of RCPFast.

Algorithm 1. RCPFast

Input: (1)E, (2)τ , (3)minpi, (4)ε.
Output: The set of RCPs R
1: PCP = MinePCP(E, τ , minpi)
2: PCP ∗ = MinePCP(E, τ , (1− ε)∗minpi)
3: Sort PCP ∗ in decreasing order by

pattern length, and PCP in increasing
order.

4: for all Fr ∈ PCP ∗ do
5: for all F ∈ PCP do
6: if F ⊆ Fr then
7: Insert F into CandList(Fr)
8: for all Fr ∈ PCP ∗ do
9: for all F ∈ CandList(Fr) do
10: if Fr ε-covers F then
11: Insert F into set(Fr)
12: Find a set of patterns Q ⊆ PCP ∗

s.t. ∀Q ∈ Q, F ⊆ Q ⊆ Fr

13: for all Q ∈ Q do
14: Remove F from CandList(Q)

to set(Q)
15: while PCP 	= ∅ do
16: Find a Fr that maximizes |set(R)|
17: for all F ∈ set(Fr) do
18: Delete F from PCP
19: R = R ∪ {Fr}
20: Return R

of generating the complete coverage information is O(|PCP | ∗ |PCP ∗|), which
will become a performance issue when there are many prevalent patterns. There-
fore, we aim to exploit strategies to skip verifying the ε-cover relationship for as
many pairs of patterns as possible.

Theorem 1. Given three co-location patterns F1, F2, and F3 s.t. F1 ⊆ F2 ⊆ F3,
if F3 ε-covers F1, then F2 ε-covers F1.

Proof. From D(F1, F3) ≤ ε, we have ∀f ∈ F1, 1− |EF3 (f)|
|EF1 (f)| ≤ ε. Because ∀f ∈ F1,

|EF2(f)| ≥ |EF3(f)|. Thus, we have 1− |EF2 (f)|
|EF1 (f)| ≤ 1− |EF3 (f)|

|EF1 (f)| ≤ ε, or D(F1, F2) ≤
ε, which proves the result. �

According to the theorem, we are allowed to skip computing co-location dis-
tance for certain pairs of co-location patterns. For example, as shown in Fig. 2
(a), if we have found that {A,B,C,D} ε-covers {A,B}, then we conclude imme-
diately that {A,B,C} ε-covers {A,B} and {A,B,D} ε-covers {A,B} without
computing their corresponding co-location distances. To maximize the benefit
introduced by Theorem 1, we order the co-location patterns according to pattern
lengths. Then, the procedure of RCPFast is illustrated in Algorithm1.

Algorithm 1 follows the three-stage framework. The first stage (lines 1–2)
mines two sets of prevalent co-location patterns and the third stage (lines 15–19)
discovers the RCPs using a greedy strategy. The second stage starts with sorting
the patterns in PCP ∗ in decreasing order of pattern length, and sorting patterns
in PCP in the reverse order (line 3). Then, a candidate list (CandList) is con-
structed for each representative pattern Fr in PCP ∗, which stores all prevalent
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patterns that may be ε-covered by Fr (lines 4–7). Lines 8–14 find the complete cov-
erage information for each pattern Fr in PCP ∗ by implementing the optimization
enabled by Theorem 1. In particular, once it is confirmed that Fr ε-covers a preva-
lent pattern F (line 10), we find a set of patterns Q ⊆ PCP ∗ where each Q ∈ Q
is a sub-pattern of the current Fr and a super-pattern of F (line 12). According
to Theorem 1, F can be directly added to set(Q) (line 14).

Note that, the purpose of sorting PCP and PCP ∗ in the specified orders
is to allow early discovery of ε-cover relationship between a representative pat-
tern and its short sub-patterns so that more pairs of patterns can be skipped
for co-location distance computation. For example, Fig. 2 (b) shows the candi-
date lists of three representative patterns, ABCD, ABC and ABD. Due to the
ordering of patterns, we examine first whether ABCD ε-covers AB. If it hap-
pens, we can delete AB from CandList(ABC) and CandList(ABD) because AB
should be covered by these two patterns according to Theorem1. Therefore, the
computations of D(ABC,AB) and D(ABD,AB) are omitted.

4 The RCPMS Algorithm

Recall that, to verify the ε-cover relationship in the second stage of RCPFast, we
need to compute the co-location distance between two patterns, which requires
the table instance information of the corresponding patterns. However, the out-
put of prevalent co-location pattern mining in the first stage contains only the
prevalent patterns as well as their PI information. It may not be an issue for
frequent itemset summarization as the supporting transactions of an itemset can
be retrieved easily. However, for spatial data mining, it is expensive to re-scan
the data to obtain the table instance of a co-location pattern whenever it is
required. One possible solution is to output the information of table instances as
additional results. However, if the information is stored in disk, extra I/O cost
will be incurred. If the information is stored in memory, it will become prob-
lematic when the number patterns is huge. Therefore, we are motivated to push
coverage validation into the co-location mining process, thereby integrating the
first two stages in order to address the table instance acquisition problem.

Based on the idea, we devise the RCPMS algorithm that employs a novel
mine-and-summarize framework, while all existing distance-based pattern sum-
marization techniques adopt the post-mining paradigm. More specifically, when-
ever a representative pattern, prevalent w.r.t. (1 − ε) ∗ minpi, is discovered, all
prevalent patterns, w.r.t. minpi, which can be ε-covered by it will be found. The
feasibility of this idea is supported by the following two facts.

(1) Traditional prevalent co-location pattern mining algorithms usually use an
Apriori-based level-wise scheme to generate patterns [5,21]. When a repre-
sentative pattern is mined, all its prevalent sub-patterns have already been
found. Hence, it is sufficient to find the coverage information for the current
representative pattern.
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Algorithm 2. RCPMS
Input: Same as RCPFast.
Output: Same as RCPFast.
1: P1 = F , k = 2
2: while Pk−1 	= ∅ do
3: Ck = gen candidate colo(Pk−1)
4: for all C ∈ Ck do
5: pi = calculate PI(C)
6: if pi ≥ (1 − ε) ∗ minpi then
7: D Table ← cal preval child dis(C)
8: set(C) = gen cover set(C, C, 0)
9: if pi ≥ minpi then
10: Insert C into Pk and set(C)
11: k = k + 1
12: Obtain RCPs using the greedy algorithm

Algorithm 3. gen cover set(Fr, F ,
dis)

Input: Fr : current RCP; F : a sub-pattern;
dis: accumulated distance

Output: S: all prevalent patterns ε-covered
by Fr

1: for all P ⊂ F s.t. |F | − |P | = 1 &
PI(P ) ≥ minpi do

2: dis = dis + TableLookup(P , F )
3: if dis ≤ ε then
4: Insert P to S
5: gen cover set(Fr, P , dis)
6: else
7: dis = D(Fr, P )
8: if dis ≤ ε then
9: Insert P to S
10: gen cover set(Fr, P , dis)
11: return S

(2) When a representative pattern is output in the mining process, its information
of table instance is available, which can be used to compute its co-location dis-
tances with its sub-patterns. For its sub-patterns, we store their table instance
information in memory if they are child/immediate sub-patterns of the cur-
rent representative pattern (e.g., F ⊂ Fr and |Fr| − |F | = 1). Otherwise, we
will retrieve the table instance information of a sub-pattern F (e.g. F ⊂ Fr

and |Fr| − |F | > 1) only if the ε-cover relationship between Fr and F can-
not be inferred using our devised optimization and approximation strategies,
which will be discussed in Subsects. 4.1 and 4.2.

The general idea of RCPMS is summarized in Algorithm 2. In the beginning,
it assigns all unique spatial features to P1 (line 1). From line 2 to line 11, an
iterative process is used to generate patterns of length k from patterns of length
k − 1. In particular, line 3 calls the function gen candidate colo to generate
candidate co-location patterns (e.g., using an Apriori-like strategy). For each
candidate co-location pattern, we first calculate its PI (line 5). If the candidate
pattern is prevalent w.r.t. (1 − ε) ∗ minpi (line 6), we compute its co-location
distances with its child sub-patterns which are prevalent w.r.t. minpi and store
it in a distance table (line 7). Note that, only the co-location distances between
the current pattern and its prevalent child sub-patterns need to be computed
at this stage. As discussed later, its co-location distances with other descendent
prevalent sub-patterns will be computed only if they can’t be inferred using
our proposed optimization and approximation strategies. In line 8, we call the
method gen cover set to find all prevalent sub-patterns that can be covered by
the current representative pattern. Finally, if the current pattern is prevalent
w.r.t. minpi, it should be used to generate candidate patterns in the next round
and should be included into its own cover set (lines 9 and 10). Line 12 is the
same as the third stage of RCPFast which finds the minimal RCPs.
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Fig. 3. Optimization strategy Fig. 4. Approximation strategy.

In the following, we describe the details of the function gen cover set which
finds all prevalent sub-patterns that can be ε-covered by the current representa-
tive pattern. Before presenting the function, we first introduce an optimization
strategy and an approximation strategy that are used by the function.

4.1 Optimization Strategy

Note that, the optimization strategy used by RCPFast (i.e., Theorem 1) is not
applicable here. This is because when we output a representative pattern of
length k in RCPMS, the coverage information of representative patterns of length
(k−1) has already been found. Therefore, we exploit a new optimization strategy
based on the following theorem:

Theorem 2. Given three co-location patterns F1, F2 and F3 s.t. F1 ⊆ F2 ⊆ F3,
D(F1, F2) + D(F2, F3) ≥ D(F1, F3).

Due to the space constrain, the proof of Theorem2 is given in [8].
Figure 3 illustrates how to use Theorem 2 to skip computing co-location dis-

tance between a representative pattern and its non-child prevalent sub-patterns.
Suppose F6 is the current representative pattern and we have computed its
co-location distance with its child sub-pattern F5, D(F6, F5) = d1, stored in
the D Table (e.g., line 7 in Algorithm 2). Next, we need to examine whether F6

ε-covers F5’s child, e.g., F4. Note that D(F5, F4) = d2 should have been computed
and stored in the D Table when outputting F5 in the previous round. Accord-
ing to Theorem 2, we infer that D(F6, F4) < D(F6, F5) + D(F5, F4) = d1 + d2.
Therefore, if d1+d2 ≤ ε, we can conclude that F6 ε-covers F4 without computing
D(F6, F4). Similarly, when examining whether F6 ε-covers F3, which is a child
sub-pattern of F4, we have D(F6, F3) < D(F6, F5) + D(F5, F4) + D(F4, F3) =
d1 + d2 + d3. As indicated in the figure, d1 + d2 + d3 ≤ ε, we conclude that F6

ε-covers F3 and skip computing the distance D(F6, F3). When it comes to F2,
since d1 + d2 + d3 + d4 > ε, we have to compute the exact value of D(F6, F2)
(we will have to re-gain the table instance of F2 in this case). Therefore, in this
particular example, Theorem 2 enables us to skip two of the three co-location
distance computations (i.e., D(F6, F4), D(F6, F3) and D(F6, F2)).
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4.2 Approximation Strategy

Although Theorem 2 can reduce distance computation for a certain number of
pairs of patterns, the effectiveness of this single strategy may not be sufficient.
Therefore, we further exploit an approximation strategy which substantially
improves the computation efficiency by slightly sacrificing the compression rate.

Recall that, in Fig. 3, only if the co-location distance between the current
representative pattern (e.g., F6) and its child prevalent sub-pattern (e.g., F5)
is smaller than ε, we may use the optimization strategy to infer the distance
between F6 and F4 (F3). Otherwise, we have to compute the distance between
F6 and F4 (F3), which is expensive since we have to re-gain the table instance
of F4 (F3). Therefore, we consider the following approximation strategy.

If a representative pattern Fr cannot ε-cover its prevalent child sub-pattern
F ,we skip considering whether Fr ε-covers any descendant sub-pattern of F .

For example, in Fig. 3, if the co-location distance between F6 and F5 is greater
than ε, all F4, F3 and F2 will not be included in set(F6).

Figure 4 provides two examples to illustrate the influence of the approxi-
mation strategy. In Fig. 4 (a), let’s assume the set of PCP that need to be
summarized are F ′

5, F4 and F3, where F3 is a child sub-pattern of F4, which is
a child sub-pattern of F5. F ′

5 is a sibling pattern of F5 (e.g., ABC and ABD).
The exact coverage information shows that F6 ε-covers F4. However, since F6

does not ε-cover F5, F4 is removed from set(F6) according to the approximation
strategy. If using the greedy algorithm to find RCPs, the final number of RCPs
found from the exact cover sets will be 2, which is the same as the final number
of RCPs found from the approximate cover sets. It indicates that the approxi-
mation strategy does not incur any difference to the final number of RCPs under
this situation.

In contrast, Fig. 4 (b) shows an example where this approximation strategy
will result in difference in the final number of RCPs. In this example, suppose
the set of PCP are F4 and F ′

4. The complete coverage information shows that
F6 ε-covers both F4 and F ′

4. Since F6 does not ε-cover F5 or F ′
5, F4 and F ′

4

are removed from set(F6) in the approximate cover sets. Consequently, the final
number of RCPs found from the exact cover sets is 1 while the final number
found from the approximate cover sets is 2.

In general, we have the following lemma, implying that the final number of
RCPs generated from the incomplete cover sets, produced by the approximation
strategy, will be no smaller than the final number of RCPs generated from the
complete cover sets.

Lemma 1. Let P be a set of representative patterns with non-empty cover sets.
That is, P ⊆ PCP ∗ and ∀P ∈ P, |set(P )| > 0. Let P ′ be a set of representative
patterns with non-empty cover sets found using the approximation strategy. Then
we have (1) P ′ ⊆ P and ∀P ∈ P ′, |set(P )| ≥ |set′(P )|, where set′(P ) represents
the cover set generated by the approximation strategy. (2) let R and R′ be the
minimum sets of RCPs generated from P and P ′, respectively, i.e., R ⊆ P and
R′ ⊆ P ′, we have |R| ≤ |R′|.
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The proof is given in [8]. We will investigate the efficiency improvement
gained by this approximate strategy and the incurred loss of compression rate
in Sect. 5.

The gen cover set() Function. Integrating the optimization strategy and the
approximation strategy discussed above, we present the gen cover set() function
in Algorithm 3. Given the input representative pattern Fr, Algorith 3 visits its
sub-patterns using a depth-first search. Line 1 finds all child prevalent co-location
patterns of the current pattern F . Lines 2–4 implement the optimization strategy,
when the co-location distance between Fr and a sub-pattern can be inferred to
be smaller than ε. Otherwise, we have to compute the co-location distance (line
7). If the co-location distance is smaller than ε, we check further descendent
sub-patterns (lines 9–10). If not, the depth-first search can be stopped according
to the approximation strategy.

5 Experimental Study

We have conducted comprehensive experiments to evaluate the proposed algo-
rithms from multiple perspectives on both synthetic and real data sets. All algo-
rithms are implemented in Python 2.7. All experiments are run on a PC with
Intel Core Xeon 2.9 GHz CPU and 8 GB memory.

5.1 Experiments on Synthetic Data

Our synthetic data generation methodology is similar to the one used in [5] for
co-location mining. In our experiment, three synthetic data sets are generated.
SynData 1 is a sparse data set with 37 features and 29, 496 events. In contrast,
SynData 2 has 52 features and 291, 520 events in total, with a larger number
of events per feature. SynData 3 is the most dense dataset, containing 525 fea-
tures and 424, 400 events. The default values of the parameters minpi and ε are
0.4 and 0.2, respectively.

Compression Rate. We first evaluate the compression rate achieved by rep-
resentative co-location pattern (RCP) mining, in comparison with closed co-
location pattern (CCP) mining and maximal co-location pattern (MCP) min-
ing. Specifically, we define compression rate as (1 − N∗

NPCP
) × 100%, where N∗

equals to the number of compressed patterns and NPCP refers to the number of
prevalent co-location patterns (PCP).

Besides comparing with CCP and MCP, we also conduct experiments to
investigate the compression rate of RCP without relaxation (RCP-NoRelax). As
discussed in Sect. 2.3, we may either generate ε-clusters from the spatial data and
return the prevalent centroid patterns as representatives, or relax the restriction
to allow representative patterns to be prevalent w.r.t. (1− ε) ∗minpi in order to
achieve higher compression rate.

Figure 5 shows the compression rates of MCP, CCP, RCP, and RCP-NoRelax
on the three synthetic data sets by varying the parameters minpi and ε respec-
tively. Overall, it can be observed that CCP has the lowest compression rate,
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(a) SynData 1 (w.r.t. minpi) (b) SynData 2 (w.r.t. minpi) (c) SynData 3 (w.r.t. minpi)

(d) SynData 1 (w.r.t. ε) (e) SynData 2 (w.r.t. ε) (f) SynData 3 (w.r.t. ε)

Fig. 5. Compression rate tests on synthetic data sets.

while RCP achieves a higher compression rate than RCP-NoRelax. Regarding
the comparison between RCP and MCP, we observe that MCP has a higher
compression rate when ε is fixed at 0.2 (Figs. 5a, 5b and 5c). However, as ε is
getting larger, RCP’s compression rate prevails (Figs. 5d, 5e and 5f). That is, by
relaxing the condition on the co-location distance threshold ε, RCP can achieve
a compression rate which is even higher than that of MCP. This is due to the
definition of RCP, while the best compression rate of RCP-NoRelax is bounded
by that of MCP.

Moreover, it can be observed that RCP obtains a high compression rate on
a dense data set. For example, when ε = 0.2, the best compression rate of RCP
on SynData 1 is 71.9% (Fig. 5a) while it is 89.9% and 85.0% on SynData 2
and SynData 3, respectively (Figs. 5b and 5c). This is because a representa-
tive pattern tends to cover more patterns on a dense data set. We also observe
that when the prevalent threshold minpi gets smaller, which means more co-
location patterns are generated, the compression rate of RCP is higher. When
the requirement on preserving the prevalence information is relaxed (i.e., when
the co-location distance threshold ε is increased), the compression rate of RCP
also improves, which is consistent with the definition of ε-cover relationship.

RCPFast vs. RCPMS . In the following, we conduct experiments to compare
the two proposed algorithms from different perspectives.

Computation Efficiency. We compare the overall efficiency of the RCPFast
algorithm and the RCPMS algorithm, both implemented with respective opti-
mization strategies. In particular, we also implement a variation of RCPMS,
called RCPMS-NA, which uses the optimization strategy in Subsect. 4.1 only.
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(a) SynData 1 (w.r.t. minpi) (b) SynData 2 (w.r.t. minpi) (c) SynData 3 (vs. minpi)

(d) SynData 1 (w.r.t. ε) (e) SynData 2 (w.r.t. ε) (f) SynData 3 (vs. ε)

Fig. 6. Performance tests with minpi and ε on synthetic data sets.

Hence, by comparing RCPMS and RCPMS-NA, we can study the effectiveness
of the approximation strategy in Subsect. 4.2.

Figure 6 presents the running time on three synthetic data sets with respect
to the variation of minpi and ε respectively. It can be observed that RCPMS out-
performs RCPFast in all situations. Comparing the results on the three datasets,
we note that the performance advantage of RCPMS is not as obvious on sparse
data (SynData 1) as on dense data (SynData 2 and SynData 3). This is because
when the data is sparse, the size of table instance of a co-location is small,
resulting in a short time for computing co-location distance. Consequently, even
if RCPMS reduces more number of co-location distance computation, the effect
of computation saving of RCPMS is not obvious. The reasons for RCPMS being
more efficient on the two dense data sets are different. For SynData 2, the data is
dense in terms of the number of co-location instances, which leads to larger size
of table instances and longer time to compute co-location distances. Specifically,
the time of co-location distance computation is around 60ms on SynData 2 while
it is 2.3 ms and 3.5 ms on SynData 1 and SynData 3, respectively. Therefore, by
reducing a few more number of co-location distance computation, RCPMS can
show efficiency improvement clearly. SynData 3 is dense in terms of the num-
ber of co-locations. For this type of dense data, RCPMS demonstrates efficiency
advantage by directly reducing the number of co-location distance computation.

By comparing RCPMS and RCPMS-NA, it is obvious, especially on Syn-
Data 2 and SynData 3, that the approximation strategy contributes significantly
to the efficiency of the RCPMS algorithm.

Reduction of Co-location Distance Computation. The optimization strategies
devised form both RCPFast and RCPMS aim to skip some co-location distance
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computation. To investigate the effectiveness of these strategies more thoroughly,
we conduct experiments to record the number of co-location distance computa-
tions for RCPFast, RCPMS and RCPMS-NA, compared with the original num-
ber (baseline). Figure 7 presents the results by varying minpi and ε respectively.
It can be observed that all algorithms involves fewer co-location distance com-
putations than the baseline does and the number of computations in RCPMS
is the smallest. In addition, by comparing RCPFast against the baseline, we
notice that Theorem 2 does reduce the number of co-location distance computa-
tions. However, when the reduced number is not great enough (e.g., Figs. 7a, 7b,
and 7c). This is because it costs extra time for RCPFast to find all patterns that
can be skipped according to Theorem 2.

(a) SynData 1 (w.r.t. minpi) (b) SynData 2 (w.r.t. minpi) (c) SynData 3 (w.r.t. minpi)

(d) SynData 1 (w.r.t. ε) (e) SynData 2 (w.r.t. ε) (f) SynData 3 (w.r.t. ε)

Fig. 7. Co-location distance computation analysis on synthetic data sets.

Compression Rate. Although both Figs. 6 and 7 show that the approximation
strategy significantly improves the efficiency of RCPMS, more RCPs will be
discovered by RCPMS than RCPFast. Hence, we further carry out experiments
to evaluate how many more RCPs will be produced by RCPMS. We present
the results using compression rate difference, which is calculated as NM−NF

NPCP
×

100%, where NM and NF refer to the numbers of patterns output by RCPMS
and RCPFast, respectively. The results in Fig. 8 show that the compression rate
difference is less than 5% on all three datasets, regardless of the variation of
parameters. Hence, RCPMS effectively improves the computation efficiency by
sacrificing the compression rate very slightly.

5.2 Experiments on Real Data

Two real-world data sets are used in our experiments. The first one is an environ-
mental dataset from the EPA databases (http://www.epa.gov/), which consists

http://www.epa.gov/
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(a) w.r.t. minpi (b) w.r.t. ε

Fig. 8. Compression rate differences between RCPMS and RCPFast on synthetic data
sets.

of 23 features and 647 events in total. The second data set is the points of inter-
est (POI) in California (http://www.usgs.gov/) which was used in [7]. There are
63 category types (e.g., dam, school, and bridge) and 104, 770 data points. The
spatial distance threshold is 2000 by default (meaning 2 km in real world).

We first investigate the compression rate of RCP mining. Figure 9 illustrates
the compression rate of RCPFast and RCPMS on the two real data sets by
varying minpi and ε respectively. We set the default values as minpi = 0.4 and
ε = 0.2. Generally, the compression rates of the two algorithms are close to each
other, except on the EPA dataset when ε is large (e.g., Fig. 9b where ε = 0.5).
However, in that situation, we note RCPMS still can reach a compression rate as
high as 75%, which is acceptable. Also it can be observed that the compression
rates increase when minpi is decreased or ε is increased, which is consistent with
the results obtained from the synthetic data sets.

(a) EPA (w.r.t. minpi) (b) EPA (w.r.t. ε) (c) POI (w.r.t. minpi) (d) POI (w.r.t. ε)

(e) EPA (w.r.t. minpi) (f) EPA (w.r.t. ε) (g) POI (w.r.t. minpi) (h) POI (w.r.t. ε)

Fig. 9. Compression rate and performance on EPA and POI data sets.

Next, we study the efficiency of the proposed algorithms on real data sets.
Figure 9 illustrates the running time of the two algorithms with respect to the

http://www.usgs.gov/
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variation of minpi and ε respectively. It shows that RCPMS outperforms RCP-
Fast on the two real datasets, especially when the data is getting dense (e.g.,
when minpi is decreased) or the requirement of preserving prevalence informa-
tion is relaxed (e.g., when ε is increased).

6 Related Works

The problem of prevalent co-location pattern mining was first introduced by
Morimoto [12], where a support metric was defined as the number of instances
of a co-location and was used to measure the prevalence of a co-location pattern.
Shekhar and Huang [14] proposed to use participation ratio and minimum partic-
ipation index as the interestingness measures that are more statistically mean-
ingful. Various algorithms have been developed to mine prevalent co-location
patterns based on the two measures, such as the Apriori-like algorithm [5], the
partial-join algorithm [20] and the join-less algorithm [21].

Frequent pattern summarization has been studied extensively in traditional
frequent itemset mining [1,6,13]. One common generalization is The distance-
based approach [10,17]. It has been successfully applied in many applications
such as summarizing uncertain data [2,9]. Although the framework achieves
satisfactory compression rate, it cannot not be applied directly to summarize co-
location patterns due to the lack of transaction concepts in co-location mining.

Some initial research efforts have been exerted to summarize prevalent co-
location patterns. Mining maximal spatial co-location patterns from a large data
set was studied in [11]. Wang et al. used an order-clique-based approach to
identify table instances and mine maximal co-locations [16]. Closed co-location
pattern has been studied by Yoo et al. [21]. To our knowledge, our work is the first
distance-based approach to summarize co-location patterns using representative
patterns, which preserves more prevalence information than maximal co-location
patterns and enjoys higher compression rate than closed co-location patterns.

7 Conclusions

In this paper, we study the problem of summarizing spatial co-locations using
representative patterns. A new measure is defined to appropriately quantify
the prevalence distance between two co-location patterns. After formulating the
problem of RCP mining, we propose two efficient algorithms for RCP mining:
RCPFast and RCPMS. RCPFast adopts a post-mining framework while RCPMS
employs a novel mine-and-summarize paradigm to discover representative pat-
terns. Experimental results show that RCP mining effectively summarizes preva-
lent co-location patterns, and RCPMS significantly improves over RCPFast on
dense data sets by slightly sacrificing compression rate.
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Research Council (ARC) Discovery Project under Grant No. DP140100545.



468 B. Liu et al.

References

1. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, p. 74.
Springer, Heidelberg (2002)

2. Chen, L., Liu, C., Zhang, C.: Mining Probabilistic Representative Frequent Pat-
terns From Uncertain Data. In: SDM, pp. 73–81 (2013)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

4. Huang, Y., Pei, J., Xiong, H.: Mining co-location patterns with rare events from
spatial data sets. GeoInformatica 10(3), 239–260 (2006)

5. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial
data sets: a general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485
(2004)

6. Bayardo, Jr., R.J.: Efficiently mining long patterns from databases. In: SIGMOD
Conference, pp. 85–93 (1998)

7. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning
queries in spatial databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

8. Liu, B., Chen, L., Liu, C., Zhang, C., Qiu, W.: RCP Mining: Towards the Sum-
marization of Spatial Co-location Patterns. https://goo.gl/B0mwei

9. Liu, C., Chen, L., Zhang, C.: Summarizing probabilistic frequent patterns: a fast
approach. In: SIGKDD, pp. 527–535 (2013)

10. Liu, G., Zhang, H., Wong, L.: Finding minimum representative pattern sets. In:
KDD, pp. 51–59 (2012)

11. Modani, N., Dey, K.: Large maximal cliques enumeration in sparse graphs. In:
CIKM, pp. 1377–1378 (2008)

12. Morimoto, Y.: Mining frequent neighboring class sets in spatial databases. In:
KDD, pp. 353–358 (2001)

13. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

14. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

15. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining
maximal co-locations. Inf. Sci. 179(19), 3370–3382 (2009)

16. Wang, S., Huang, Y., Wang, X.S.: Regional co-locations of arbitrary shapes. In:
Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel, H.-P.,
Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 19–37. Springer,
Heidelberg (2013)

17. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In:
VLDB, pp. 709–720 (2005)

18. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based
approach. In: KDD, pp. 314–323 (2005)

19. Yoo, J.S., Bow, M.: Mining Top-k closed co-location patterns. In: ICSDM, pp.
100–105 (2011)

20. Yoo, J.S., Shekhar, S.: A partial join approach for mining co-location patterns. In:
GIS, pp. 241–249 (2004)

https://goo.gl/B0mwei


RCP Mining: Towards the Summarization of Spatial Co-location Patterns 469

21. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns.
IEEE Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

22. Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial colloca-
tions. In: KDD, pp. 384–393 (2004)



Demonstrations



Pedestrian-Flow Analysis System for Improving
Layout of Exhibitions

Akinori Asahara1(B), Nobuo Sato1, and Masatsugu Nomiya2

1 Hitachi Ltd., Center of Technology Innovation - Systems Engineering,
Tokyo, Japan

akinori.asahara.bq@hitachi.com
2 Hitachi Ltd., Smart Information Systems Division, Information

and Telecommunication Systems Company, Tokyo, Japan

Abstract. A system for practical pedestrian-track analysis at an actual
exhibition is demonstrated. Track data obtained at the exhibition was
uploaded to a spatio-temporal database, and the key features of the
technical exhibition were determined. New knowledge derived from these
features was successfully applied to improve the layout of the next event.

1 Introduction

“Pedestrian tracking” gives crucial hints for improving plans of large facilities
like shopping malls, airports, and exhibition halls. A population at a booth of an
exhibition event, calculated from the tracks of visitors to that booth, can be taken
as an example. Because the population is an effective indicator for evaluating the
quality of the presentations at the booth, a time series of the population at the
booth will show tendencies about the popularity of the booth. If the population
at the booth quickly increases after a presentation at a neighboring booth, it is
implied that the presentation encourages visitors’ interests in the former booth.
The correlation between the populations at the two booths thus implies that
both exhibitions should be linked more closely. Similarly, many indicators derived
from visitors’ tracks show various criteria concerning the booths, which clarify
the advantages and drawbacks of each booth.

Developed over the last few years, LIDAR (Light Detection and Ranging)
systems for tracking pedestrians are available for obtaining the tracks of visi-
tors to a large facility [1]. However, indicators for effectively improving planning
are not established yet. One of the reasons for that is “lack of experimental
data.” A LIDAR system incurs high costs and uncertainness of usefulness; there-
fore, it has only been used for a few experiments. Under such a circumstance,
the authors conducted an experiment on tracking pedestrians at two actual big
technical exhibition events. Track data obtained at the event was imported to a
spatio-temporal database, and the features key of the two events. New knowledge
derived from these features was successfully applied for improving planning of
the next event. A pedestrian-track analysis system that demonstrates improve-
ments inferred by pedestrian tracking is described in the following.
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 473–477, 2015.
DOI: 10.1007/978-3-319-22363-6 25



474 A. Asahara et al.

2 Related Works

Analysis of the tracks, called “trajectory analysis,” is used to extract information
from stored trajectories by three methods: trajectory clustering [2,3] for retriev-
ing similar trajectories from a database; extraction of a “representative path”
(which is abstract information about a trajectory dataset [4]); and prediction of
movement by various Markov-chain models [5].

Table 1. HIF2013 overview

Title Contents

Event name Hitachi Innovation Forum 2013 (HIF2013)

Place Tokyo International Forum (5000m2)

Date 2013/10/30 and 31 (two days)

Number of booths 210

Number of data records 6,801,655

3 Discovery: Hitachi Innovation Forum 2013

HIF2013 (Hitachi Innovation Forum 2013) is a private technical exhibition held
in Tokyo, Japan. The details of the event are listed in Table 1, and the event lay-
out is shown in Fig. 1(a). Tracks of visitors to HIF2013, obtained with 13 LIDAR
sensors (drawn by white circles in the layout) over two days, are drawn as yellow
lines in Fig. 1(b). Because the drawing is unreadable, numerical indices sum-
marizing pedestrian movements (i.e., number of pedestrians in an area, hourly
count of pedestrians walking through a corridor by time, and so on) are needed
to extract hints for improving the plan of the next exhibition. Note that many
indices for finding useful hints should be calculated by trial and error because
useful indices are unknown before the calculation. The pedestrian tracks were
thus uploaded to a spatial-relational database management system as very short
tracks. The table schema of short tracks allows various summarizations without
the need for programing, so many indices can be computed.

After many indices were computed, it was found that the sums of the dura-
tions of people’s stays around booths (shown in Fig. 2) are concentrated at sev-
eral booths. The cause of that concentration, that is, certain building structures
obstructing flows of people, is shown in Fig. 3. Most visitors to HIF2013 walked
in straight lines; however, their paths became curved if they met obstructions.
People’s flows thus bent toward specific sides of corridors, to which people’s
durations of stay around booths were concentrated. In conclusion, a new piece
of knowledge was found; namely, the layout of a technical exhibition should be
designed to bend the path of a pedestrian flow toward areas where their attention
is desired.
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(a) Layout Map (b) Tracks

Fig. 1. Pedestrian tracks at HIF2013
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Fig. 2. Total duration around booths in HIF2013

Fig. 3. Causal analysis of HIF2013

4 Improved: Hitachi Innovation Forum 2014

According to the analysis of HIF2013, the layout of a technical exhibition should
be designed to bend the path of a pedestrian flow. This knowledge was thus
applied to design the layout of next year’s event, i.e., HIF2014 (Hitachi Innova-
tion Forum 2014, the details of which are listed in Table 2). Many obstructions
were set up at HIF2014 in order to equalize pedestrian flows to the booths, as
shown in Fig. 4.

To clarify the improvements mentioned above, tracks of visitors to the event
in 2014 were also obtained by 18 LIDAR sensors. Dispersion of the people’s
durations of stay at different booths are compared in Fig. 5. Standard deviations
of people’s duration of stay at booths at HIF2013 and that at HIF2014 are shown
in Fig. 5(a). The normalized standard deviation for HIF2013 was over 1.4, while
that for HIF2014 was 0.8. That is, dispersion was reduced by half. This result
confirms that the knowledge gained by pedestrian tracking is useful for planning
exhibitions.
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Table 2. HIF2014 overview

Title Contents

Event name Hitachi Innovation Forum 2014 (HIF2014)

Place Tokyo International Forum (5000m2)

Date 2014/10/30, 31 (two days)

Number of booths 179

Number of data 9,126,297

Fig. 4. Layout of HIF2014

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

HIF2014 HIF2013

Fig. 5. Disparities among durations of
stay at booths

5 Concluding Remarks

It is shown that the layout of a technical exhibition was improved by applying
pedestrian tracking. It was demonstrated that pedestrian tracking with a LIDAR
system is helpful for planning events. Trajectory analysis of the tracking data
was carried out to calculate indices that would be helpful for knowledge extrac-
tion. That is, the knowledge extraction itself was completed manually. However,
most managers of facilities cannot handle such difficult analysis, so automatic
knowledge extraction must be developed as future work.

Demonstration

The system used for analysis of pedestrian flows at HIF2013 and HIF2014 will
be exhibited as the demonstration. The dataset for HIF2013 and HIF2014 is
uploaded to PostgreSQL (PostGIS). Many indices related to the event can be
calculated by the system. GIS (Geographical Information System) will visualize
the summary of track data. Examples of such visualization are given in Figs. 6
and 7. Density of people by colors on the map is shown in Fig. 6 (a). Averaged
direction of people’s movements (expressed with arrows) is shown in Fig. 6 (b).
The durations of stay of visitors to booths at HIF2013 and HIF2014 are compared
in Fig. 7 in terms of height of cylinders. The process for improving the event
layout will be introduced by using these visualizations at the demo session.
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Fig. 6. Distributed indicators of HIF2014

(a) HIF2013 (b) HIF2014

Fig. 7. Comparison of durations of stay at HIF2013 and HIF2014
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Abstract. AETAS is an online tool for converting text into RDF linked
data with resolution of temporal expressions. AETAS follows fully SOA
architecture and is accessible via web-service. It implements a novel app-
roach for semantic representation and linked temporal graphs built from
natural language sentences. In this paper, we present a demonstration
tool, which combines the normalized temporal expressions with linguistic
semantic frames and creates a linked RDF graph where time is defined
as an individual dimension. The tool is based on SUTime which iden-
tifies and normalizes the temporal expressions and on FreeLing, a lin-
guistic processor which extracts the semantics of sentences. The output
of AETAS is a set of time-enriched triples that can be stored in a RDF
database for later τ -SPARQL querying.

1 Introduction

Web archives already hold together more than 534 billion files —a phenomenon
that many refer to as big data [1]. As more and more information becomes
available year after year, its variety and richness in terms of temporal aspects
becomes more manifest. A recent research area aimed at incorporating temporal
aspects in modern information retrieval systems is temporal information retrieval
(TIR) [2].

The performance of temporal event extraction from these open resources
would dramatically increase if we were able to use relations and links between
existing resources. The term Linked Data (LD) stands for a new paradigm of
representing information on the Web in a way that enables the global inte-
gration of data and information in order to achieve unprecedented search and
querying capabilities. The formalism underlying this “Web of Linked Data” is
the Resource Description Framework (RDF) which encodes structured infor-
mation as a directed labeled graph. Hence, in order to publish information as
Linked Data, an appropriate graph-based representation has to be defined and
created [3].

Processing of text documents in terms of the extraction and normalization
of temporal expressions and of relations between events is very important for
several NLP tasks requiring a deep understanding of language such as question
answering or document summarization. Due to this fact, there has been sig-
nificant research in temporal annotation of text documents. Research work on
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 478–483, 2015.
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fully utilizing the temporal information embedded in the text of documents for
exploration and search purposes is very recent. The work by Alonso et al. [4]
presents an approach for extracting temporal information and how it can be
used for clustering search results. Schilder et al. [5] presented semantic tagging
for temporal expressions on news articles. They used their system to be part
of an experimental multi-document summarization system while covers indexi-
cal and vague temporal expressions. Meanwhile an interesting visualizing system
proposed by Marcus et al. [6] extracts and visualizes the events from micro-blogs
and tweets which are already being used for social science and augmented media
experiences. FRED, an RDFizer system from natural language text has been
proposed by Draicchio et al. [7]. They represent the natural language into RDF
framework which is connected to DBPedia knowledge source without considering
the temporal expressions.

Some work has been done in order to convert documents into RDF taking
into account temporal expressions. Rula et al. [8] found out that the availabil-
ity of temporal information describing the history and the temporal validity of
statements and graphs is still very limited. Meanwhile Batsakis et al. [9] pro-
posed a new framework to handle Spatial-Temporal information in OWL 2.0. To
the best of our knowledge, there is still no formal study of temporality issues in
RDF graphs and RDF query languages.

In this paper, we introduce AETAS, an end-to-end system which retrieves
plain text data from web and blog news and represents and stores them in RDF,
focusing on its temporal dimension. On top of the system, a querying layer has
been deployed in order to allow users access by time to the extracted linked data.

The rest of the paper is structured as follows: Sect. 2 outlines the architecture
of AETAS system for temporal expressions extraction and linguistic annotation,
which relies on SUTime [10] and FreeLing [11]. Section 3 describes the nature of
the demonstration.

2 AETAS Architecture

AETAS as a Latin word with meaning Time and Era, is the name of our system.
AETAS is fully designed and implemented in service-oriented approach in order
to get the benefits of SOA (Service Oriented Architecture) systems. AETAS
has four main components which are responsible for different functionalities, as
shown in Fig. 1. Two components have been implemented in-house: Temporal
Mapper and RDFizer (see Sect. 2.2). The other two components are SUTime
and FreeLing which are integrated as external components, and described in
Sect. 2.1.

The process starts with a raw text document with its reference date, obtained
from some web site such as news agencies or blogs. The document is fed to
SUTime component, which returns annotated expressions. Then the Mapper
component receives the document, and after some preprocessing, runs the docu-
ment through FreeLing language processing web-service. Then, Mapper combines
the linguistic information provided by FreeLing and the temporal expressions
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Fig. 1. AETAS Architecture.

identified by SUTime. The output of Mapper is piped to RDFizer, which creates
triples and linked information based on the semantic representation made by
FreeLing, and stores them into a BrightStarDB1 native RDF database.

2.1 External Components

SUTime component [10] from Stanford NLP system is responsible for recog-
nizing and extracting temporal expressions and normalize them in TIMEX3
standard. SUTime is one of best currently available temporal taggers, obtaining
90.32 F-score in TempEval-3 evaluation on 2013. Other top-performing systems
in this shared task were HeidelTime and ClearTK (F-score 90.30 and 90.23
respectively). See the shared task summary paper [12] for details and references.
SUTime offers three main features: (1) Extraction of temporal expressions from
text, (2) Representation of temporal expressions as objects convenient to handle
programmatically, and (3) Resolution of temporal expressions with respect to
a reference date (e.g. the document date). SUTime is integrated in AETAS as
the first processing step. It receives a raw text paragraph with a reference date
and outputs a set of objects representing found temporal expressions with their
normalized time and their temporal type.

FreeLing is an open-source library providing language analysis services for a
variety of languages. FreeLing is integrated in TextServer2 NLP cloud platform,

1 http://brigtstardb.com.
2 http://textserver.cs.upc.edu/textserver.

http://brigtstardb.com
http://textserver.cs.upc.edu/textserver
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which allows SOA access and an easy integration in AETAS. In our system,
FreeLing is responsible for tokenization, lemmatization, morphological analysis,
PoS tagging, named entity recognition, word sense disambiguation, dependency
parsing, semantic role labeling, and co reference resolution, providing as output a
semantic graph representing the main events described in the document and the
involved actors in each of them. FreeLing web-service is considered as a black-box
in AETAS, and we just call the service with appropriately formatted raw text
document. Then, the Mapper component will extend the semantic representation
of the document with the temporal expressions identified by SUTime, building
a time-aware representation of the document meaning.

2.2 Internal Components

The Temporal Mapper component is the core module in AETAS process. Its
main mission is to synchronize the outputs from SUTime and FreeLing to provide
the final temporally enriched semantic representation.

After mapping and processing the resulting objects, the temporal semantic
representation of the document is sent to the RDFizer component, which will
convert the graph into RDF triples.

The RDFizer component in AETAS is responsible for creating RDF triples
based on semantic representation of context and temporal information. Current
approaches for coding temporal information consider it as additional data inside
the data model. Therefore, temporal information is implicit in the data and
difficult to access by programs. In AETAS system, time has been proposed as
an additional semantic dimension of data. Therefore, it needs to be regarded as
an element of the meta model instead of being just part of the data model.

RDFizer applies the foundations established by Gutierrez et al. [13], imple-
menting an RDF-compatible syntax for temporal data. Then, these RDF triples
are stored modeling time as a dimensional discrete value, as in most of the
approaches dealing with temporal entities. Since RDFizer tries to roll up the time
dimension as much as possible, another dimension can be added to the graph,
connecting via an “associated with” edge the time point with any nodes related
to it. This approach would increase the performance of information retrieval in
SPARQL layer when the user tries to drill down into temporal data.

3 Demonstration

Since AETAS is just a RESTful web service, it does not have any graphical
interface. Thus, a simple client web page3 has been devised to demonstrate the
capabilities of AETAS, where the user can input raw textual data and see how
AETAS semanticizes the text and stores the result in a RDF database.

The demonstration page allows the user to turn on or off each component of
the system, showing how each component affects the process flow. Finally, the

3 http://xorrai.cs.upc.edu/aetas.

http://xorrai.cs.upc.edu/aetas
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demo page allows the user to enter a τ -SPARQL query and obtain a timeline
visualization of the events extracted from the input text. The timeline depiction
is generated using the Timeline widget4.

AETAS currently runs in two servers: FreeLing components are executed
via TextServer platform, which runs on a 1,000+ core HPC cluster. SUTime,
Mapper, and RDFizer run on a dedicated server at goDaddy web hosting5.

Regarding execution resources, the most time-consuming step is the construc-
tion of the semantic graph performed by FreeLing (which may take over 30 s for
an average news item of about 500 words). Nevertheless, since this occurs at
indexation time, it is executed in batch mode and does not affect the querying
performance. The τ -SPARQL querying of the RDF database and the Timeline
generation are performed in a few seconds.

The demonstration will use a RDF database pre-filled with information
extracted from news items on a particular event extracted from online news-
papers. A τ -SPARQL query will be executed and the timeline results presented.
Then, a new document reporting some related event not included in the data-
base will be processed, and the same query will be issued again, obtaining the
previous timeline extended with the newly extracted event.
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Abstract. Exposure to environmental risk factors as well as weather
conditions are known to have negative effects on health. Until recently,
there was little a society could do for an individual at risk, other than
provide general warnings when the concentration of pollutants or weather
conditions deviate from the norm. Similarly, the assessment of indi-
viduals’ exposure over time has been confined to population and geo-
graphic averages, rather than individualized estimates. Recent advances
in sensors and mobile technology have enabled real-time measurements
of environmental variables and, at the same time, provided information
about the spatio-temporal behavior of individuals. This can dramatically
change the way health and wellness are assessed as well as how care and
treatment are delivered. This paper presents a system framework called
“Smart and Connected Health Alert System (SCHAS)” for individual-
level environmental exposure in an attempt to better understand the
relationships among exposures, symptoms and human health conditions.
We demonstrate user interface, data acquisition and visual evaluation
tools for large mobile sensor data analysis.

1 Motivation

Air pollution is one of the most important environmental determinants of health
[11]. In fact, pollution-related respiratory chronic conditions, such as asthma and
chronic obstructive pulmonary disease are estimated to affect a significant por-
tion of people world-wide [1,6]. Understanding the relationship between health
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states and air pollution is a key prerequisite for optimizing care as well as for
guiding societal interventions (pollution limits).

To simplify the relationship between stochastic, spatio-temporal sequences of
pollutant concentration and their physiological consequences, researchers have
recently began to entertain the notion of “exposome” [15,19]. Most recently,
exposome has been defined as, “the cumulative measure of environmental influ-
ences and associated biological responses throughout the lifespan, including
exposures from the environment, diet, behavior, and endogenous processes” [13].

Over the past years, a variety of exposome studies have been conducted in
various disciplines [1,2]. While they have uncovered many important relation-
ships between environment and human health, the assessment of individuals’
exposure over time has been confined to population and geographic averages [14].
However, drawing conclusions on individual health effects based on the correla-
tion of aggregated data can lead to biases in environmental health studies [12].
Recent advances in mobile sensor, communication and computation opened new
opportunities to investigate the relationship between pollution, human behav-
iors and health outcomes as well as optimized interventions [16,17]. In particu-
lar, with appropriate sensing, big data analytics and model-based inference, it is
becoming possible to guide individuals to minimize their exposure to dangerous
pollutants, administer prophylactic treatments, etc.

Despite isolated commercial successes [2,5], considerable computing chal-
lenges exist in estimation of spatial, time-varying distribution of environmental
risk factor concentration combined with human spatial behaviors. This task is
extraordinarily time-consuming and resource-intensive. One cannot realistically
sample too frequently in order to keep data amounts reasonable and sensors
long lasting. No information of the individuals location is known other than
these sampled values, and this results in uncertainty of individuals positions
[7,18,20]. In addition, a given mobile sensor can likely measure only a subset of
environmental variables. The system often needs to use publicly available envi-
ronmental data that are less frequently updated and of lower resolution. This
results in uncertainty of individuals exposures. Measuring these data is also
associated with spatial and temporal uncertainties because of the approxima-
tions and interpolations used in modeling [10]. Estimating exposure depends on
estimating position in road networks and approximation of environmental data,
where the number of possible paths grows exponentially in the time between
position reports. However, existing methods do not provide effective modeling
for uncertainty of individual exposure. To scale the system up, often repeated
steps (such as the spatial multi-join of relevant environmental variables) must
be efficiently precalculated. Finally, behavior of individuals has a large impact
on exposure estimates, and such behavior is not known a priori, but rather built
iteratively from previous estimates of exposure and individuals responses.

The authors have introduced an initial framework of a health monitoring
system designed to capture exposome for asthma patients [8,9]. This paper pro-
poses a refined framework for exposure, estimation, evaluation and prediction.
We present our research initiated on the following objectives: (1) design data
models and define queries for the domain of environmental exposome, (2) develop
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efficient methods for data acquisition, (3) design user interface and visual analy-
sis tools for exposure estimation, and (4) integrate the Hadoop file system and
PostGres database for big data management.

2 System Overview

2.1 Data Models

We focus on three data components: individuals’ moving trajectories, environ-
mental data, and individuals’ health conditions. The trajectory data is a record
of device id (id) and a sequence of position values consisting of time (t), longitude
(px), latitude (py), altitude (pz) and velocity (pv). If environmental sensors are
equipped, n environmental sensor data (e1, e2, .., en), which measure the environ-
mental elements (e.g., humidity), are collected as well. The numbers and types of
environmental sensors could vary from one individual to another depending on
the targeted environment factors of interest and the nature of the disease to be
monitored. The real-time data collected via Android mobile devices are sampled
with a pre-determined time interval, and transferred to the main system. The
system also retrieves publicly available environmental data through web services.
Sensors for individuals’ biological signals, such as location and time of inhaler
uses, peak flow meters and medication intake in the case of an asthma patient,
are integrated to the system.

2.2 Queries

The following set of representative queries are examples how the proposed system
can be used for exposure measurement:

Q1: How much time did patient A spend in a region with temperature 40
Celsius and 80 % humidity? First the regions need to be defined in 2-dimensional
map based on the environmental values for each time stamp. A given geograph-
ical area is subdivided into several regions (Voronoi cells) using the locations of
weather stations. Join operations on two datasets of temperature and humidity
result in a heat map. Join operation of the patient’s trajectory results in a set
of points as vertices that intersect the environmental data in a set of edges. The
exposure time to a particular environmental data value is proportional to the
ratio of edge (an edge that crosses the regions where temperature 40 Celsius and
humidity 80 %) and the length of the trajectory.

Q2: Return all individuals exposed to environmental variables X, Y , Z, dur-
ing time period D - their exposure exceeds given thresholds Tx, Ty, Tz. This query
corresponds to one of the common filtering queries: find individuals’ daily expo-
sure time to greater than 2500 ppm of CO2. Exposure to CO2 above 2500 ppm
is considered as “adverse health effects expected”, and the maximum allowed
concentration within a 8 hour working period is 5000 ppm.

Q3: Return all environmental conditions within distance R of the position of
an individual. Q3 is a common type of a select query based on spatio-temporal
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proximity. This query demonstrates the need for spatial operators and helps to
assess environmental exposure by integrating spatio-temporal domain knowledge.
Supposing that an incident of asthma episode (associated to an individual P ) is
notified with the location and time, we want to find all environmental conditions
near the location at a reported time that might have triggered the attack.

2.3 System Design

We propose a system framework called “Smart and Connected Health Alert
System (SCHAS)”. The system requires consideration of both the nature of
environmental exposures and their changes over time. It is unrealistic to mea-
sure every individual exposure continuously. Hence, data is sampled and this
results in exposure uncertainty. The underlying individuals’ moving trajectory
uncertainty models attempt to incorporate weather and other environmental
conditions to characterize and predict the path distribution, and estimate indi-
viduals’ exposure to environmental triggers in time. The system uses k-shortest
paths based on Dijkstra algorithm for path distribution but more sophisticated
behavioral models can be applied to characterize and predict the expected mobil-
ity. Our proposed system models and their relationships are shown in Fig. 1 (a).
The system consists of the following four main components: (1) user interface
(UI), (2) data acquisition, (3) analytical processing engine, and (4) big data
management. The system also implements security subsystem to ensure that
the data and views are accessible to validated users. The SCHAS uses the stan-
dard module approach for the high-level architecture. Overview of the system is
demonstrated in Fig. 1 (b).

The following technologies are used to implement the SCHAS: The system
uses Linux Redhat 6.0 operating system; Java and Python are as main program-
ming languages; Javascript is used for most of the client facing systems; Junit
for writing test scripts; Jlog for logging. The SCHAS implements data reposi-
tory using Hadoop file system and PostGres database. Raw data collected over
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time through mobile devices is stored in the Hadoop file system. These data are
processed and extracted information is stored in the PostGres database tables.
Third party data visualization tool such as OpenLayers [3] is used to create maps
and integrate geographical datasets. The client codes that invoke Representa-
tional State Transfer (REST) API to pull results from its data repository are
written in Javascript/AJAX, and are integrated with OpenLayers for the user
interface. The Apache Tomcat is used as an application server. The UI layer
connects to application server via JSP and using REST API. Our proposed sys-
tem is evaluated in a pilot study of exposure effects on asthma. This pilot study
provides a prototype in testing our proposed mathematical models, optimization
methods and computing algorithms.

3 Demonstration

In our demonstration we show the UI module that interacts with Web browsers
and mobile applications. The main functionalities of the UI are (1) to display
individuals’ data, such as moving trajectories (location/time) on maps, (2) to
overlay environmental data, and (3) to allow users (including patients, doctors
and medical staff, administrators, and researchers) to load the data, view the
data, and select interesting data.

We present data acquisition modules that collect data through Bluetooth
sensor equipped mobile devices and Web services: (1) GPS/GSM module for
individuals’ moving trajectories, (2) a sensor module for environmental data such
as temperature, humidity, ozone, and nitrogen dioxide. Publicly available envi-
ronmental data downloaded from Openweathermap [4] is also integrated into the
system through web services, (3) sensor modules for biological signals of patients,
such as peak flow meters and inhaler use time/location, and (4) user interface
using mobile devices for individuals’ current health status such as symptoms
(e.g., users post that they are feeling difficulty in breathing or chest wheezing)

(a) User interface (b) Exposure estimation using Voronoi diagram

Fig. 2. Visual evaluation framework
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and medication use. The system implements sets of interfaces on mobile devices
and examples are shown in Fig. 2 (a). Android mobile application is available at
https://play.google.com/store/apps/details?id=org.geospaces.schas01. A proto-
type of user interfaces for individual exposure analysis is shown in Fig. 2 (b) and
can be found at http://geospaces.org/SCHAS/html/maps/Openlayers3.html.
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Abstract. Cassandra is a highly available and scalable data store but
it provides only limited capabilities for data analyses. However, database
management systems (DBMS) provide a lot of functions to analyze data
but most of them scale poorly. In this paper, a novel method is proposed
to couple Cassandra with a DBMS. The result is a highly available and
scalable system that provides all the functions from the DBMS in a
distributed manner. Cassandra is used as a data store and the DBMS
Secondo is used as a query processing engine. Secondo is an extensible
DBMS, it provides various data models, e.g. models for spatial data and
moving objects data. With Distributed Secondo functions like spatial
joins can be performed distributed and parallelized on many computers.

1 Introduction

Secondo [1] is an extensible DBMS developed at FernUniversität Hagen. The
system is designed with a focus on supporting spatial and spatio-temporal data
management.

Distributed Secondo is a distributed version of Secondo. The system is
developed to handle huge amounts of data and provides mechanisms for analyz-
ing data in a distributed and parallel way. Cassandra is used as a data storage
and Secondo is used as a query processing engine. Distributed Secondo
allows adding new computers easily to handle more data or to analyze bigger
amounts of data. Moreover, the removal of systems is supported. This allows
reducing the amount of computers when the resources are no longer required.

The system offers all the functions implemented in Secondo in a distributed
and scalable way. Cassandra and Secondo are loosely coupled with each other;
unmodified versions of both components are used in Distributed Secondo. All
the details about data distribution, parallel query processing and fault tolerance
are encapsulated in one software component. That ensures that almost all of the
functions and data models implemented in Secondo can be used in a parallel
manner, without changing the implementation.

With Parallel Secondo [2] another Secondo based prototype for distrib-
uted data processing does exist. Parallel Secondo couples Hadoop [3] with
Secondo to achieve scalability and data distribution. In contrast to Distri-
buted Secondo, Parallel Secondo does not focus on data updates and its
architecture contains a master node, which is a single point of failure.
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 491–496, 2015.
DOI: 10.1007/978-3-319-22363-6 28
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BerlinMOD [4] is a benchmark for spatio-temporal database management
systems. The benchmark generates trips of moving vehicles within Berlin. The
data generated by BerlinMOD is used in this demonstration to simulate moving
vehicles. In a real world scenario, every observed vehicle is equipped with a
GPS receiver and sends out position updates every few seconds. These position
updates are handled and analyzed by Distributed Secondo.

2 System Overview

Distributed Secondo is a distributed system, consisting of three different
node types: storage nodes (SNs), query processing nodes (QPNs) and manage-
ment nodes (MNs).

SNs are responsible to store data and they are running Cassandra [5]. The
QPNs do the data processing and run Secondo as a query processing engine.
The MNs are running Secondo too; they are used to import and export data
and to specify the queries to be executed.

Query Execution: The usage of Distributed Secondo usually consists of
two steps: first of all, data is loaded, converted to tuples and stored on the SNs.
This is done by Secondo instances running on the MNs. In the second step,
the data is analyzed. For this purpose, the user creates a global execution plan
(GEP) and submits it to Distributed Secondo.

The GEP is an ordered set of single queries. These queries are formulated in
the Secondo executable language. Usually, a single query contains three oper-
ations: (i) fetching data from the SNs, (ii) processing the data and (iii) storing
the result on the SNs.

Work Units: For the parallel and distributed execution of queries, it is required,
that the input data is partitioned into small work units. The structure of the
logical ring of Cassandra is used to achieve this goal.

The key element of Cassandra is a distributed hash table (DHT), organized
as a logical ring. The logical ring consists of numbers, called tokens. Tokens
are ordered sequentially around the ring. The token with the highest number is
connected back to the token with the lowest number.

Upon initialization, every Cassandra system obtains one or more tokens. The
system is placed at the position according to its token. The range between two
adjacent Cassandra nodes is called token range. A node is responsible for the
token range between their token and the token of its predecessor node. The data
stored in a token range will be called work unit in this paper.

Partitioning Data: Some functions, e.g. joins, can be executed more effectively
if the work units are partitioned considering the structure of the data.
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Example: A join of the relations A and B should be executed. The join oper-
ator reads a work unit of relation A. After that, the operator needs to find all
corresponding tuples in relation B.

If the work units are created without considering the structure of the data,
all work units of the relation B have to be read. If the work units are partitioned
considering the join attribute, only the work unit containing the join attribute
has to be read.

For partitioning spatial data in Secondo, a grid is used [6]. The number of
the cell determines the position where the data is stored within the logical ring
of Cassandra. An example how spatial data is stored in Distributed Secondo
is shown in Fig. 1.
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Fig. 1. Two relations with spatial data stored in cassandra. The spatial data is over-
lapped with a grid. The content of corresponding cells in both relations are stored at
the same position in cassandra.

3 Demonstration

Two different demonstrations are presented to show the usage of Distributed
Secondo. The first one handles GPS coordinate updates of moving vehicles and
stores them. The second one performs a spatial join. An overview of the data
flow and the components of Distributed Secondo are shown in Fig. 2.

3.1 Scalable Processing of GPS Updates

In the first demonstration, BerlinModPlayer is used as a data generator. The tool
reads the trips of vehicles generated by BerlinMod, extracts GPS coordinates
from the trips and writes them to a TCP socket. In a real world scenario, such
data can be generated by vehicles, which drive through the streets of a city and
send GPS updates every few seconds to a central system.

Position updates are represented as lines. Every line consists of five fields,
each separated by a comma. The first field contains the time when the GPS
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Fig. 2. An overview of the data flow in Distributed Secondo. New data is processed
by a load balancer. The load balancer distributes the data on the MNs. These MNs
process the data and store them on the SNs. In a further step, the data is analyzed on
the QPNs.

coordinate is recorded. The second field identifies the vehicle, the third field the
trip. This field is ignored in this example. The fourth and the fifth field hold the
coordinates.

Format:�date;moid;tripid;x;y
Example:�2007-05-28�06:00:00.001,122,17724,13.43745,52.42229

Distributed Secondo also includes a TCP load balancer. By using the
load balancer, it is possible to distribute the stream of GPS coordinates on more
than one MN. The Secondo instances running on the MNs read the data from
a network socket, parse the lines, convert them into tuples and store them onto
the storage nodes. In the demonstration, it is measured how long the system
takes to store 1 000 000 position updates. To show the scalability of the system,
the demonstration is performed with a varying number of storage nodes.

Result: As illustrated by Fig. 3 the import of the data can be processed faster
with additional storage nodes. Processing 1 000 000 GPS coordinates takes about
200 s using one storage node. Using six storage nodes, the processing can be done
in about 110 s.

3.2 Performing a Distributed Spatial Join

In this demonstration, a parallel and distributed spatial join is performed. On the
SNs two relations are stored. The relations describe the geographic information of
the German state North Rhine Westphalia (NRW). Both relations are created
from data fetched from the Open Street Map [7] project. The relation Roads



Distributed SECONDO: A Highly Available and Scalable System 495

 0

 50

 100

 150

 200

 1  2  3  4  5  6

T
im

e 
(S

ec
)

Storage nodes

Importing 1.000.000 GPS coordinates

Execution time

Fig. 3. Importing 1 000 000 GPS coordinates into Distributed Secondo.
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Fig. 4. A distributed spatial join on n systems.

contains the roads of NRW, the relation Forests all forests of NRW. The spatial
data of both relations are partitioned using the same grid.

A spatial join is performed to find all roads that lead through a forest. For
the calculation of the spatial join, each QPN fetches the content of one or more
token ranges from the SNs, calculates the join and writes the result back to the
SNs. To show the scalability of Distributed Secondo, the demonstration is
performed with a varying number of query processing nodes.

Result: As shown in Fig. 4, the spatial join can be performed faster when the
number of systems increases. On one system, the join requires an execution time
of about 4 000 s, on six systems, the join can be executed in about 1 000 s.
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4 Conclusion

In this paper, two use cases for Distributed Secondo have been demonstrated.
In the first use case, it could be shown that the system is capable of handling
more parallel GPS updates by adding additional storage nodes. In the second
use case, it could be shown that Distributed Secondo could compute the
result of a spatial join faster, when additional query processing nodes are added
to the system.

Topics such as fault tolerance, data distribution and the creation of work
units were only superficially addressed. In a further paper, the technical aspects
will be discussed more precisely.
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Abstract. Electric vehicles (EVs) have great potential as a modern
mobility concept. Electricity already relies on a broad infrastructure
and is available anywhere in developed countries. Furthermore, EVs are
emmission-free which makes them the preferable form of individual trans-
portation in urban areas where air pollution is often alarmingly high.
However, operating EVs has several drawbacks compared to common
combustion engine cars. The range of most EVs is rarely above 150 km,
and when running out of energy, recharging an EV usually takes up to
several hours. In order to benefit from the advantages of EVs without
being afflicted with the disadvantages, it is advisable to rely on the sup-
port from smart systems for trip and charge planning. In the project
Shared E-Fleet, the shared use of a fleet of electric cars by a heteroge-
neous group of drivers is examined. In the presented demo, we introduce
a spatio-temporal query system which was developed to support drivers
and fleet managers alike. For the driver, the system provides assistance
to keep in range of charging stations and provides routing alternatives to
a specified destination. For the fleet manager, the system incorporates
real-time information to identify possible delays or battery drainages
and thereby detect deviations from the fleet schedule to allow for early
rescheduling.

1 Introduction

With increasing air pollution, limited fossil fuel supply, and growing pressure
to politically enforce reduction of CO2 emissions, it seems, the days of common
combustion engine cars are numbered. The number of electric vehicles (EVs) is
constantly growing, especially in urban areas where air pollution is an increas-
ing health threat. However, EVs have two major drawbacks which make them
significantly less flexible than combustion engine cars. The first limitation is the
range of EVs, which varies mostly from 100 to 150 km, excluding some excep-
tions like the Tesla Roadster which – according to the manufacturer – travels
up to 400 km per charge. In addition, the energy consumption and therefore the
range of an EV is dependent on the driving style but also on factors like heating,
air conditioning, sound system, and headlights. The second limitation are the
rather long recharging times. In contrast to refueling a car, a full recharge can
take several hours.
c© Springer International Publishing Switzerland 2015
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Fig. 1. System architecture of EasyEV. The manager is informed about anomalies con-
cerning his fleet. The user can query the system, his on-board unit provides information
to the system.

Despite these drawbacks, EVs have great potential to fulfill the mobility
needs of urban populations. This is mainly because the average trip in a city
is less than 30 km long and cars are actually parked most of the time. These
two aspects can be taken advantage of. Even so,when in a setting where EVs
are shared among several people, for instance by the employees of companies
residing in the same office building. The business model of a shared fleet of EVs
is examined in the project Shared E-Fleet. One goal of this project is to examine
how spatio-temporal information systems can counteract the drawbacks and how
the use of real-time information can improve the efficiency of a fleet of EVs.
For instance, by monitoring the vehicles and keeping track of their remaining
range limits, an automated booking system can inform the subsequent user of an
expected delay or – even better – assign the user a different vehicle. Conversely, if
the booking schedule is kept stable, charging times of vehicles can be optimized,
yielding low electricity costs and reliably plannable charging processes.

In this demonstration we present EasyEV, our prototype for supporting
drivers and fleet managers alike with spatio-temporal information services.
EasyEV is currently employed in pilot projects in three different German cities
involving seven BMW i3. Each car is equipped with an on-board transmission
unit providing data like position, remaining range, charging status, and active
electric devices. By evaluating this data, we are able to detect and predict anom-
alies, in order to inform the fleet manager about critical situations like expected
belated returns or expected superabundances. In addition to these so-called mon-
itoring features, EasyEV also supports the driver with multiple functionalities,
such as providing directions to the nearest charging station,visually informing
about reachable destinations, and computing alternative paths.

2 System Architecture

EasyEV runs as a platform-independent system which is connected to the fleet
management and to the driver via app as well as to a real-time car database and



EasyEV: Monitoring and Querying System 499

an aggregated sensor information database. While the driver queries the system
directly, the fleet management registers its vehicles and bookings with the system
and is informed if anomalies occur. All connections are realized as platform-
independent web service interfaces. Thus, the features of EasyEV are easily
reused in a system requiring similar functionalities. At the heart of EasyEV lies
a spatio-temporal query system (STQS) which answers directly to queries from
users (routing features) and indirectly executes all recurrent tasks (monitoring
features). For the STQS to answer queries instantly, the road network index has
to be kept in memory. Hence, the STQS is modeled as a standalone server entity,
while all communication with the server is handled by the aforementioned web
services. The architecture is illustrated in Fig. 1.

The STQS relies on OpenStreetMap1 (OSM) data for all road networks which
we model as multicriterion (multiattribute) graphs. In a multicriterion graph, the
vertices correspond to crossings, dead ends, etc., and the edges represent directed
road segments connecting the vertices. A cost function maps every edge onto
its cost vector. Each component of the cost vector corresponds to a particular
cost dimension of the respective edge, e.g., distance, travel time, and energy
consumption.

For the pilot projects, specific on-board units have been developed which
collect data directly from the car computer as well as from additional built-in
sensors, most prominently GPS and temperature sensors. The vehicle-specific
data is fed into a database (see Fig. 1), while the environment-related data is
aggregated and used to train time-dependent models reflecting outside influences
on city-scale traffic, such as congestion or icy roads. We rely on external service
providers feeding this kind of information into a data storage from where the
STQS can query current influence factors. In order to be independent of the
number of pilot test vehicles used during the demo presentation, we also simulate
driving behavior according to the recorded trajectories. This enables us to replay
actual historic driving data as well as display real-time movement enriched with
simulated trajectories and bookings, ensuring a high frequency of queries and
tasks.

In addition to the STQS, EasyEV offers a GUI to visualize trajectories,
traffic-influencing factors, and query results. OSM data, is easily displayed using
the open source library Leaflet(See Footnote 1) combined with the map design
tool Mapbox (See Footnote 1). The GUI is browser-based and thereby platform-
independent. It is dependent on the STQS-specific interfaces but can run on
an entirely different machine. Hence, the architecture of EasyEV follows the
model-view-controller principle, which facilitates portability and reusability.

3 Demo Features

We distinguish between routing features and monitoring features. The former are
especially interesting from a user perspective, while the latter are particularly
interesting from a fleet manager (operator) perspective. Note that in the pilot
1 www.openstreetmap.org, www.leafletjs.com, www.mapbox.com.

www.openstreetmap.org
www.leafletjs.com
www.mapbox.com


500 G. Jossé et al.

(a) Paths respecting (blue path) and ig-
noring (purple path) sensor-detected traf-
fic delay (red road segments) and road
ice (rectangular blue opaque regions).

(b) Respective range limits of two ve-
hicles, illustrated as isochrone regions.
The inner region is a more conservative
range estimation than the outer region.

Fig. 2. Visualizations as displayed by the framework (Color figure online).

projects, monitoring and routing features are separated, as users do not have
access to the trajectories of other users, while the monitoring system does not
need access to all routing features.

Let us first present the routing features. As an elementary functionality,
EasyEV supports shortest path searches given start and target nodes as well as
w.r.t. predefined combinations of cost criteria. This has proven useful, as some
users prefer a single path over a set of alternatives. However, EasyEV supports
state-of-the-art algorithms for the computation of two sets of alternative paths,
which we present without going into detail. The first set is known as the route
or path skyline or the set of pareto optimal paths [1,3]. More recently, another
concept of optimality was introduced in [5], called the linear path skyline. While
the conventional path consists of all paths with cost vectors optimal under some
monotone cost function, the result set of the linear path skyline consists of all
paths with cost vectors optimal under a linear cost function. This is a restriction,
limiting the number of results returned to the user and allowing for iterative
result generation. EasyEV supports efficient methods for the computation of
both sets, following [5,6]. In all the above cases, a result list is displayed which
the user can browse.

As mentioned before, EasyEV does not only rely on static edge costs, consti-
tuted by the underlying road network, but also incorporates sensor information,
as derived from data acquired by mobile (e.g., the vehicles themselves) and sta-
tionary sensors (e.g. traffic loop sensors). In our demo we focus on the influence
factors road ice and traffic delay, however noting that, given a wider array of data
providers, other factors could easily be included. These factors either affect spe-
cific roads (traffic delay) or whole areas (road ice). Both variants are displayed
on the map. Given this kind of data, EasyEV computes paths avoiding affected
roads or regions, depending on the duration of the delay or on the severity of
the road icing, as depicted in Fig. 2(a).

In addition to sensor data, EasyEV employs static meta-information. Incor-
porating locations of public charging stations, EasyEV allows for ad hoc queries
in order to intercharge when on the road, e.g., during a customer meeting. For the
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demo, this information is retrieved from providers like Open Charge Map or
Plugshare2. Relying on probabilistic algorithms, similar to those presented in
[2], EasyEV is able to provide paths along a number of charging stations, in
order to maximize the probability that one of these stations is currently vacant.

Now, let us turn to the monitoring functionalities which serve the purpose
of real-time as well as retrospective fleet analysis. In addition to the recorded
trajectories, we also simulate bookings and corresponding trajectories in order
to ensure high data density (during the demonstration). Trajectory simulation is
done by computing (some pareto-optimal) path and sending positions along this
path according to some randomly drawn travel time from a distribution around
the speed limit. All trajectories, real-time, historic, and simulated, are retrieved
from the vehicle database via web service. Most pilot test vehicles send their data
every minute, some vehicles send their data every ten seconds. In order to clean
the GPS signals of measurement errors and to be able to draw a valid trajectory
between any two data points, we apply a map matching algorithm similar to [4].
Hence, we can display the roaming cars either in real-time or for defined past
time spans at variable speeds. In both cases, we can display notifications having
been or being sent by our monitoring system.

There are four types of notifications distributed to the fleet manager by
the STQS. These notifications stem from the use cases covered in the project
and will be displayed as pop-ups during the demo. The first one informs the
manager of illegal movement, meaning that a registered veicle is moving without
a valid booking. If a vehicle is not moved throughout the whole period of a
booking, the manager receives a no show notification, as this might result in
different billing. The other two notifications only occur during driving (with a
valid booking). First, if a return within the booking period is unlikely, the fleet
manager is informed of an expected delay. This is the case, if even the fastest
path from the vehicle’s current location to the booking-specific return station is
longer than the remaining booking period. Second, if even the shortest path from
the current location to the return station is longer than the currently remaining
range of the vehicle, the fleet manager (and the driver) is informed of an expected
malfunction.

In addition to the geo-positions at the respective timestamps, various other
information is collected by the on-board unit and fed into the database. For
example, the total number of kilometers driven, whether the passenger seat is
occupied, whether wiper or lights are on, the current energy consumption, and
the remaining distance. EasyEV displays all this information when hovering
over the geo-position of an illustrated vehicle. Of all the data collected, the
remaining distance is of particular interest, seeing as range limit exceedance
results in vehicle deficiency and often significant rescheduling efforts. Hence, we
incorporate the feature of displaying isochrone diagrams around pilot test EVs,
as displayed in Fig. 2(b), where the inner isochrones are a more conservative
estimation, and the outer isochrones depict the ideally reachable area.

2 www.openchargemap.org, www.plugshare.com.

www.openchargemap.org
www.plugshare.com
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4 Conclusions

In this demo, we present EasyEV, a querying and monitoring system for fleets of
EVs, which is being used in a pilot project investigating the potential of smart
systems employed in optimization of EV fleets. EasyEV offers features for fleet
managers and drivers alike. All computations are handled by a spatio-temporal
query system, while the GUI is browser-based and the communication is handled
by web services. Hence, EasyEV ensures high functionality and at the same time
great flexibility and reusability.
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2. Jossé, G., Schmid, K.A., Schubert, M.: Probabilistic resource route queries with
reappearance. In: EDBT 15, pp. 445–456 (2015)

3. Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference
path planning approach. ICDE 10, pp. 261–272 (2010)

4. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparse-
ness. In: ACM SIGSPATIAL GIS 09, pp. 336–343 (2009)
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6. Shekelyan, M., Jossé, G., Schubert, M.: Paretoprep: efficient lower bounds for path
skylines and fast path computation. In: SSTD 15 (2015)



TwitterViz: Visualizing and Exploring
the Twittersphere

Christodoulos Efstathiades1,2(B), Helias Antoniou2, Dimitrios Skoutas1,
and Yannis Vassiliou2

1 Institute for the Management of Information Systems Research Center “Athena”,
Athens, Greece

cefstathiades@dblab.ece.ntua.gr, dskoutas@imis.athena-innovation.gr
2 Knowledge and Database Systems Laboratory,

National Technical University of Athens, Athens, Greece
hantoniou@dblab.ece.ntua.gr, yv@cs.ntua.gr

Abstract. Micro-blogging platforms and social networks are a rich
source of spatio-temporal information, which, together with additional
information that can be mined from the social network’s structure, makes
them extremely valuable for monitoring users’ opinions, sentiments and
behavior, and, consequently, making more timely and effective decisions.
In this demo, we present TwitterViz , a complete solution for the visu-
alization and analysis of spatio-temporal Twitter data, in combination
with the analysis of the Twitter graph, by leveraging the use of a popular
graph database and using state of the art visualization tools that aim at
providing insights to the non-expert user.

1 Introduction

Micro-blogging platforms, especially Twitter, have become a very popular com-
munication tool, where millions of users share opinions on different aspects of
everyday life. Twitter reports over 100 million active users and 500 million tweets
exchanged every day. This huge amount of data and the fact that they are offered
publicly in real time make their management and analysis challenging.

Many research studies have been conducted in order to determine whether
Twitter can actually give insights as to how people behave. Such studies have
focused on analyzing a variety of spatio-temporal phenomena (e.g. [4,7]), as well
as topics, sentiments and social interactions (e.g. [5,6]). Typically, these works
focus on specific problems and examine specific parts of the Twittersphere.

A recent survey of approaches for Twitter analytics can be found in [3].
It identifies the need for integrated solutions that provide a unified framework
to be used by researchers and practitioners across disciplines, and it suggests
the support of the following components for this purpose: (a) a focused crawler
to allow for configuration by the user, (b) a pre-processor for the processing of
tweets based on specific needs, (c) a defined data model that allows the efficient
execution of complex queries, (d) the support of a query language and (e) the
informative spatial as well as graph visualization.
c© Springer International Publishing Switzerland 2015
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(a) TwitterViz architecture
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(b) TwitterViz Data Model

Fig. 1. TwitterViz Architecture and Data Model for querying the Twittersphere

TwitterViz supports all of these components. The crawler allows spatial con-
figuration in order to focus on specific geographic areas. The pre-processor uses
natural language processing (NLP) in real time and the processed information is
stored in a graph database with a defined data model as well as the support of
a powerful graph query language. In addition, the visualization of the data both
based on spatio-temporal characteristics as well as graph characteristics renders
TwitterViz a complete solution for the management of Twitter data in order
to provide useful analytics. TwitterViz provides a framework to the non-expert
user for exploring and analyzing the Twittersphere using simple, unobtrusive yet
powerful tools.

2 The TwitterViz System

TwitterViz comprises a modular pipeline that supports data collection, storage,
analysis and visualization of Twitter data. Figure 1(a) shows the architecture of
the system. We briefly describe each module below.

Data Collection. The data collection module supports the crawling of tweets.
Tweets are collected from specific geographic regions based on users’ preferences
along with information about “followers” relationships.

Sentiment Analysis. NLP for sentiment analysis is conducted and each tweet
is then tagged with a score denoting its sentiment. The pre-processing uses the
AlchemyAPI 1 tool which is also used in various research works (e.g. [5]).

Storage. The storage module consists of a Neo4j 2 graph database, which natu-
rally fits the overtly relationship-centered domain of social networks. The defined
data model, depicted in Fig. 1(b), enables the Twitter graph construction using a

1 http://www.alchemyapi.com.
2 http://www.neo4j.org/.

http://www.alchemyapi.com
http://www.neo4j.org/
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(a) Spatio-Temporal Analysis Interface (b) Graph Mining Interface

Fig. 2. TwitterViz User Interface

variety of relationships, rendering it a complete model for the support of complex
queries.

Visualization and Analysis. The user interface of the TwitterViz framework,
shown in Fig. 2, consists of two main views: (a) the Spatio-Temporal Analysis
View and (b) the Graph Analysis View. Both can be used simultaneously, inde-
pendently or in combination with each other. In future versions, we intend to
provide additionally an API that would allow third-party applications to reuse
the results of the analysis creating custom visualizations for specific needs.

Spatio-Temporal Analysis. The user is given a variety of tools for spatio-temporal
analysis and exploration of Twitter data, both on the map as well as a variety of
charts. Spatial indexing is used to speedup range queries focusing on tweets in
specific areas. The user interface allows for temporal visualization and analysis of
tweets, as well as the simulation of the temporal evolution of tweets created dur-
ing a specific time window. All tools can be used in combination with each other
in order to reach to useful conclusions. Figure 2(a) shows the spatio-temporal
analysis interface, which supports the following operations:

• Range queries on the map to visualize tweets from specific areas.
• Visualization of sentiment on tweets on the map in speficic geographic areas

using a defined visual syntax. The user can investigate how the sentiments
change in specific areas as well as how they change in time, by also applying
other restrictions based on the social network’s structure.

• Visualization of a user’s followers’ tweets on the map, combining information
from the graph.

• Visualization and study of the temporal evolution of tweets in user-defined
time windows.

• Analysis of the spatio-temporal distribution of tweets.
• Presentation of a variety of real-time statistics on the streaming data.

All of the supported operations can be combined with each other using restric-
tions, allowing a powerful spatio-temporal and social analysis based on the
advanced visualization offered by TwitterViz .
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Graph Mining. The graph mining module offers to the non-expert user off-the-
shelf advanced queries for the exploration of the Twitter graph. In addition, the
expert can formulate her own Cypher queries3. The visualization of the graph
allows for exploration of query results. In addition, charts are used to visualize
specific relationships on the graphs such as hashtags. The user is thus given
powerful tools to explore the Twittersphere, visualize and analyze data as well
as extract meaningful information. Figure 2(b) shows the graph mining interface
that supports the following operations:

• Defined Cypher queries for the non-expert for graph exploration, like shortest-
path queries, n-Hop traversal queries and queries for locating specific nodes.

• Support for custom queries on the graph for more complex analysis, such as
pattern matching queries on the graph. Custom queries can be formulated
easily and can combine the tweets’ geo-social characteristics. Such example
queries could be:
– Find the tweets with hashtag “parthenon” that are within 0.5Km from the

Athens historical center (substituting x,y with actual coordinates).
START n=node:tweetWKT(’withinDistance :[x,y, 0.5] ’)
MATCH (n) -[]-(h:HashTag)
WHERE h.Hashtag=’parthenon ’
RETURN n,h

– Find the top-10 users in New York based on how many other users “follow”
them.

MATCH (n:User) <-[:FOLLOWS]-(m:User), (n) -[]->(t:Tweet)
WHERE t.Region=’NewYork ’ WITH n,count(m) AS total
RETURN n ORDER BY total DESC limit 10

• Visualization of the results for all of the queries on the graph.
• Presentation of a variety of statistics for real-time graph analysis.

3 Demonstration

A use-case scenario that benefits from the use of TwitterViz is the following: We
want to examine whether users who tweet from the same spatial neighborhood
and who use the same hashtags in their tweets are close in the followers graph.
This kind of scenario can be used to verify the results of a geo-social query as
in [1] or a kRNN query as in [2]. We pick a very popular hashtag from an area
in NYC job and we use TwitterViz to choose two random users who used job
in their tweets. TwitterViz visualizes the resulting subgraph, showing that u1
and u2 are three hops apart. Figure 3 shows how we use TwitterViz spatial and
graph analysis capabilities in order to gain insights.

For the demonstration at the SSTD 2015 conference, we intend to show-
case the full capabilities of TwitterViz for spatio-temporal and graph analysis
and visualization. Scenarios such as the above, that leverage the use of spatio-
temporal exploration and sentiment analysis, and combine the findings with
graph exploration in order to reach to useful results will be showcased. A current
prototype of TwitterViz is available online4 among with a video demonstration.
3 Cypher is the graph query language used in Neo4j.
4 https://web.imis.athena-innovation.gr/redmine/projects/twittervizdemo.

https://web.imis.athena-innovation.gr/redmine/projects/twittervizdemo
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Fig. 3. Use Case: Find paths between co-tagged users
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Abstract. Airborne sensory system is equipped on piloted or remotely-
piloted aerial vehicles to collect and transmit imagery data back to the
ground users. In traditional approaches where pilots to satisfy spatio-
temporal tasks via image capturing, the pilot is required to manually
decide an alternative trajectory to satisfy as many tasks as possible
while maintaining a low deviation cost due to fuel constraint. Addition-
ally, various constraints on tasks and original flight trajectory must be
satisfied as well, such as temporal and Quality of Service constraints.
We show a demo of a trajectory recommendation framework consists
of two approaches to generate an optimized trajectory with the above
goals by increasing sensor utilization via task aggregation and schedul-
ing. We demonstrate a trajectory recommendation system that accepts
user inputs and outputs visualization of intermediate processes and final
trajectory.

1 Introduction

Airborne sensory system is equipped on piloted or remotely-piloted aerial vehi-
cles to collect and transmit imagery data back to ground users. Requests for
the airborne sensors are made up of one or more taskpoints containing spatio-
temporal information, and each request could be sent to the system by the pilot
or by ground operators directly. The goal is to seek a new trajectory such that
it satisfies as many requests as possible while also satisfying the time constraint
on each of the waypoints on the original trajectory. However, each taskpoint has
additional temporal and QoS (Quality of Service) constraints that need to be
satisfied as well. For real world trajectories, the number of waypoints is mission
dependent (an acceptable range could be five to ten points), but the number
of taskpoints could be hundreds or thousands. Currently, the pilot has the sole
responsibilities of analyzing taskpoints and scheduling the final route. However,
it is difficult for the pilot to manually analysis all of the taskpoints and associ-
ated constraints to produce an optimized trajectory. Therefore, an automatic
trajectory recommendation system is necessary to perform quick analysis
c© Springer International Publishing Switzerland 2015
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on taskpoints and to generate an optimal trajectory considering all of the
constraints.

The problem is challenging in three ways: (1) maximize taskpoints satis-
faction, (2) satisfy original waypoints constraints, and (3) minimize trajectory
deviation. Given a set of taskpoints, an ideal trajectory would satisfy all of them,
but that is not realistic because each taskpoint has a hard temporal constraint,
causing only portion of taskpoints could be satisfied. The QoS constraint is a
critical real-world constraint and it requires that the sensor has to be at the
required altitude level or lower when the image is taken for a taskpoint in order
to obtain the desired image resolution (lower altitude means better image qual-
ity). This adds difficulty to satisfy maximum taskpoints because traveling from
one altitude to another induces extra distance and time cost. Moreover, the pilot
has to arrive at each original waypoint on or before the waypoint time constraint.
This is critical because there might be additional mission tasks assigned to the
pilot at the original waypoints. Lastly, the deviation cost between the original
and new trajectory should not be too large due to the limited fuel supply on
the aircraft. It means that we need to reach for a balance between number of
taskpoints to satisfy and deviation cost.

In order to develop an efficient trajectory recommendation system, we aim
to come up with a novel approach by optimizing airborne sensor utilization.
Most existing works focus on generating cost-effective trajectory in a constrained
environment, but not in the context of optimizing sensor utilization for trajectory
recommendation [1–3]. The problem is real and in this demo paper, we present a
trajectory recommendation framework by optimizing sensor utilization with the
aim to satisfy as many task requests as possible considering the accompanying
temporal as well as QoS constraints with low deviation from the original flight
trajectory. We assume the fully implemented system to be integrated on the
aircraft. Requests are issued dynamically and they are handled by the system
fitted in the aircraft. The system is capable of generating the recommended
trajectory on the fly, given that it has complete information on requests and
original route with their corresponding constraints.

This demo paper proposed a trajectory recommendation framework con-
sists of two approaches— (1) Foot-Print Clustering Approach (FPCA) and
(2) Swath-Width Clustering Approach (SWCA). They are based on optimiz-
ing sensor utilization using the concepts of sensor footprint diameter (maximum
diameter of the area the sensor camera can cover) and swath width (strip of
surface area when the sensor takes an airborne image). The proposed solutions
is novel by enhancing some basic works in clustering to integrate constraints in
imagery sensor and flight path. FPCA partitions original flight trajectory using
footprint diameter to generate the final trajectory while SWCA, an improved
solution from FPCA, uses the idea of swath-width boundary followed by an
optimization scheduling method to compute the optimized trajectory.

The rest of the paper is organized as follows. Section 2 gives a system overview
with problem definition and approaches discussions. Section 3 presents the sys-
tem demonstration. Finally, Sect. 4 concludes the paper and outlines future
research directions and recommendations.
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2 System Overview

The process of trajectory recommendation involves two critical steps: Task
Aggregation and Task Scheduling . Task aggregation refers to the analysis
of taskpoints distribution to identify dense regions that could be aggregated in
order to satisfy multiple requests simultaneously. Task scheduling generates a
new trajectory by selecting a set of clusters which met the constraint require-
ments. The new trajectory should have the following characteristics: (i) it con-
tains original and new waypoints and their time constraints are satisfied, (ii) it
should satisfy as many taskpoints as possible along with their constraints, and
(iii) it should maintain a low deviation cost because fuel supply is limited.

2.1 Inputs

The inputs to the system are the original flight trajectory and sensor requests.
The original trajectory is a set sequence of flight path consists of ordering of
waypoints: TR ={(w1, t1), (w2, t2),...(wm, tm)} where wi

′s are waypoints, each
consists of (longitude, latitude, altitude), and ti

′s are time constraints at those
waypoints where t1 < t2 <...< tm. The second input is requests sent to the sensor
from the pilot or from ground users. Each request is made up of one or more
taskpoints: REQ = {tp1, tp2, ..., tpn} where each tpi is a taskpoint consists of
(longitude, latitude, priority, QoS, time). The priority of a taskpoint is expressed
as weight in the domain of (high, medium, low). Intuitively, a taskpoint k with
high priority means that it is able to satisfy multiple requests, thus it is deemed
as a preferred point over those with a lower priority weight. In the case of having
to select between ki and kj due to constraints, decision could be made based
on priority weight. QoS constraint is the required altitude that the aircraft has
to be at or lower in order to satisfy the imagery resolution of k. Time is the
temporal constraint of a taskpoint of when the image needs to be taken by and
be sent back. A taskpoint satisfied beyond the required time would be equivalent
as unmet.

2.2 Benefits and Costs Measure

Recall that the two main objectives of the framework are to maximize the number
of taskpoints satisfied and keeping a low deviation on the new trajectory. They
conflict with each other; thus, we developed a utility metrics to balance the
benefits and costs relationship that will help us in the process of taskpoints
selection.

The utility metrics for individual taskpoint is defined as: Utpi
= pw

D where
Utpi

is the utility metrics for taskpoint i, pw is the priority weight of the task-
point, and D is the distance (deviation) measured from i to the closest point
on the original trajectory. It represents relationship such as that a taskpoint
with low priority weight and distance cost could be preferred then one with high
priority weight and high distance cost. This metrics will be used as the funda-
mental cluster selection criteria and will help determine the result of the final
flight trajectory, avoiding it to incur high deviation cost.
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2.3 Request Aggregation

The two proposed approaches, FPCA and SWCA, both consists of request aggre-
gation and task scheduling phases. Performing request aggregation allows us to
group taskpoints based on spatial proximity. From the aggregation result, it
helps us to determine locations of new waypoints because dense clusters imply
groups of interests that we would like to capture. FPCA utilizes the idea of foot-
print diameter and applies it towards clustering. Figure 1a shows that it begins
by partitioning the original trajectory into equivalent sections using a system-
defined footprint diameter value, and then cluster taskpoints into corresponding
sections. This way, we can satisfy all taskpoints of a cluster by only satisfying
the cluster center. An additional step is needed to handle the QoS constraints
of taskpoints by further generating QoS clusters in each section (represented by
the colored rectangles in the figure). The purpose is to identify at which altitude
level could satisfy the most taskpoints.

The second approach, SWCA, first prunes taskpoints that are located outside
of swath width boundaries, and then employs a density-based clustering method
to cluster remaining taskpoints. The boundary threshold is calculated using the

following formula: BoundaryTH =
√

( 12SW + Devmax)2 + (12DM + Devmax)2,
where SW and DM represents swath-width and footprint diameter, respectively.
Figure 1b shows boundary zones generated per each waypoint on the original
trajectory. The Devmax value is user-defined to control the maximum deviation
of the new trajectory. By providing this value, the system could reduce the
number of taskpoints in clustering.

(a) FPCA

Taskpoint

(b) SWCA

Fig. 1. Request aggregation and scheduling of proposed approaches

2.4 Task Scheduling

FPCA generates the final flight trajectory by using QoS clusters in each footprint
section. The main idea is to compute a sum utility metrics for each QoS cluster.
The scheduling algorithm then generates a subsection-trajectory in each section
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by choosing the one with the highest weight, and ensuring that time constraints
are satisfied with the original waypoint and other new waypoints already in the
sub-trajectory. Clusters with higher weights would be considered first, then the
algorithm will satisfy remaining lower weight clusters if time constraints allow.
When a cluster cannot be inserted due to time constraint violation, some of the
taskpoints may be removed from it to mitigate the violation and be re-inserted
only if its updated utility weight remains to be competitive. The complete new
trajectory is formed by merging all sub-trajectories together.

SWCA is inspired from the micro-and-macro clustering schema proposed in
[4] and the solution is based on generating representative trajectory, trarep, for
each cluster as a result from the density-based clustering. SWCA uses the sub-
trajectory technique described in FPCA to generate representative trajectory.
One advantage is that computing trarep allows us to assign utility metric for
each cluster. Then, the scheduling algorithm can formed the new trajectory by
selecting higher weight clusters first, and then satisfy remaining clusters as many
as possible. Similar with FPCA, the algorithm tries to mitigate time constraint
violation by updating the trarep of a cluster. The second advantage of SWCA
is that during the scheduling process, it has knowledge of clusters weight in a
macro-scale. On the other hand, FPCA has a weakness of detecting imbalance.
Experiments had shown that SWCA has better performance than FPCA.

3 Demonstration

The goal of this demonstration is to visualize the final trajectories output by the
two approaches. Figure 2 shows the system overview of the main user interface.
The user will choose one set of input from multiple trajectories and requests

Fig. 2. System main GUI
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sample. Then, he will choose which approach to run after confirming all system
parameters, which consists of three components. The user can control parame-
ters for clustering, epsilon and minimum number of points in a cluster, that will
directly affect the clustering result. The user can control parameters of average
and maximum flying speed that will impact time feasibility check, and the max-
imum deviation allowed from the original flight path. The user can also control
the sensor footprint diameter and scan angle parameters, which will affect the
swath width value.

In addition, user can selectively choose the display layers to visualize results.
By selecting different layer to be visible, user is able to see the route of the
original and final flight trajectory, original taskpoints distribution, clustering
results and corresponding respective trajectories. Extra deviation traveled and
the number of satisfied taskpoints will also be displayed.

4 Conclusions and Future Research

In this demo paper, we presented an optimization framework for sensory system
utilization with respect to request aggregation and scheduling in presence of
request QoS and time constraints. The goal is to generate a new trajectory with
minimum deviation from the original trajectory while being able to satisfy max-
imum number of taskpoints. The first approach, FPCA, is designed using foot-
print diameter sections to generate QoS clusters. The second approach, SWCA,
improves upon FPCA and utilizes the idea of representative trajectories in each
cluster to perform the scheduling. The demonstration shows that users are able
to submit parameters to each approach and select layers of view to visualize
the final output. For future work, we would like to consider rotational sensor
such that the swath width zones no longer only have vertical movements, and
to adapt our framework to handle dynamic requests.
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Abstract. In this demonstration we re-visit the problem of finding an
optimal route from location A to B. Currently, navigation systems com-
pute shortest, fastest, most economic routes or any combination thereof.
More often than not users want to consider “soft” qualitative metrics
such as popularity, scenic value, and general appeal of a route. Routing
algorithms have not (yet) been able to appreciate, measure, and eval-
uate such qualitative measures. Given the emergence of user-generated
content, data exists that records user preference. This work exploits user-
generated data, including image data, text data and trajectory data, to
estimate the attractiveness of parts of the spatial network in relation to
a particular user. We enrich the spatial network dataset by quantita-
tive scores reflecting qualitative attractiveness. These scores are derived
from a user-specific self-assessment (“On vacation I am interested in:
family entertainment, cultural activities, exotic food”) and the selection
of a respective subset of existing POIs. Using the enriched network, our
demonstrator allows to perform a bicriterion optimal path search, which
optimizes both travel time as well as the attractiveness of the route.
Users will be able to choose from a whole skyline of alternative routes
based on their preference. A chosen route will also be illustrated using
user-generated data, such as images, textual narrative, and trajectories,
i.e., data that showcase attractiveness and hopefully lead to a perfect
trip.

1 Introduction

Nowadays, social networks are a great source of rich geo-spatial data. Almost
every social network allows users to incorporate geo-social features into their data
stream. The different features include, amongst others, geo-tagged pictures (e.g.,
Flickr), geo-descriptive text (e.g., travel blogs), and tracked movement (e.g., run-
ners’ trajectories). For this demo, we rely on all these kinds of user-generated
data to define attractiveness on a real world road network. Our aim is to reflect
human fondness according to the crowd by using qualitative information and
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making it measurable. We present Tourismo, a tourist search engine, which com-
putes attractive paths along points of interest (POIs), tailored to the interest
of the user issuing the query. Based on this enriched spatial network, which has
information about the attractiveness of locations, we aim at answering attractive
path queries. Currently, navigation systems, i.e., machines, perform this task for
us, computing routes such as the shortest route, the fastest route, the most eco-
nomic route [1], or some combination of such quantitative measure on a spatial
network [2]. In all of these cases, the employed algorithms optimize cost mea-
sures inherent in the underlying road network. What is rarely reflected, however,
is user preference on subjective measures, such as attractiveness and interesting-
ness of a route. Often users are willing to take a suboptimal detour, a deviation
from quantitative optimality (shortest, fastest, etc.), in order to improve the
quality of their route. In order to see more attractions, for instance, a tourist
may be willing to take a moderate detour from a fast, but not very attractive,
highway.

How can we measure a subjective concept of “quality”? How to measure
attractive, scenic, recreative routes? As machines are not (yet) capable to reflect
this concept, we rely on the crowd to answer this question, i.e., we propose to
use crowdsourced data to estimate the attractiveness of an area. Relying on
different datasets, image data (from Flickr1), textual narratives (from travel
blogs), and trajectory data (from Endomondo (see Footnote 1)), we investigate
the applicability of different data sources as cost measures for the underlying
road network. More precisely, we enrich the road network by quantitative scores
of qualitative statements as follows:

– areas having a large density of Flickr images indicate a particularly attractive
area, increasing the attractiveness score;

– locations mentioned in the positive context of travel blogs increase attractive-
ness scores;

– routes commonly used by other users are also considered more attractive.

Furthermore, we incorporate meta-information from OpenStreetMap (see Foot-
note 1) (OSM), in order to categorize POIs and, using the aforementioned
popoularity score, propose routes according to the user’s preferences and the
fondness of the crowd. Tourismo presents solutions to enrich the underlying
road network using the data sources. We show an initial approach to map
these attractiveness scores to cost measures correlated with travel time, allow-
ing to apply existing routing algorithms which aim at minimizing edge-labeled
cost metrics. We apply algorithms for pareto-optimal route search similar to
[3,4], to find paths which are optimal w.r.t. the popularity scores. Our frame-
work allows to specify origin and destination, computes and displays the sky-
line of pareto-optimal paths. Furthermore, the reasons for attractiveness of each
path are illustrated: Flickr images along the way, travel blog entries mentioning
locations on the way, and historical trajectories which share the same route.
Our demonstrator is an extension of [5] it has three major features: First, we
1 www.flickr.com, www.endomondo.com, www.openstreetmap.org.

www.flickr.com
www.endomondo.com
www.openstreetmap.org
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incorporate new, route search algorithms which enable higher dimensional cost
spaces at the same reducing computation time. Second, the demonstration allows
to specify the interest of a user, thus returning routes that contain POIs which
are of particular interest to the user. Third, this version considers a third type
of data to enrich the underlying road network with attractiveness information:
In addition to geotagged images, and texts containing geospatial references, we
also learn attractiveness from an existing base of historic trajectory data.

2 State of the Art

Recently, a lot of interesting research has been done in the context of finding
scenic, interesting or popular routes. The first set of related work focuses on
providing paths which are easier to memorize, describe, and follow. For exam-
ple, the authors of [6,7] try to tackle the problem by introducing cost criteria
that allow for a trade-off between minimizing the length of a path while also
minimizing the complexity in terms of instructions or turns along the path. Fur-
thermore, an existing research direction covers the problem of defining tourist
routes, which maximize the subset of a set of pre-defined POIs which can be
visited in a tourist tour that has a time-constraint [8,9]. In these works, the
set of interesting POIs is given, and the main conceptual contribution of is to
automatically extract interesting locations, as well as a quantitative estimate of
the popularity of this location from a variety of data sources. Another research
direction, which is not necessarily restricted to touristic routing but lacks
the aspect of qualitative measures, are the Trip Planning Query and variants
thereof [10,11].

The approach most similar to the one presented in this work is [12], which
proposes a method for computing beautiful paths, as the authors phrase it. How-
ever, in order to quantify quality, the authors rely on explicit statements about
the beauty of specific locations, obtained from a crowd-sourcing platform which
collects user opinions on photos of specific locations. In contrast, we propose
to mine this kind of information from existing crowd-sourced data, which does
not require any monetary investment to aquire. Thus our approach has the cru-
cial advantage that it is scalable as the used data is already available globally
available, while having local expert users rate photos one by one can hardly be
extended to a global scale.

Another important research direction is the stitching existing trajectories
in order to obtain new trajectories which guarantee that each sub-trajectory
is used by other users, and is thus, “popular” following the definition [13] of
Chen et al. This, however, only reflects a notion common usage, not taking
into account, why a specific sub-trajectory has been favored. For instance, when
mining trajectories of commuters, the fastest path is most likely to be chosen
by most users. Hence, we propose mining trajectories specific to recreational use
and merging this information with the attractiveness scores we derive from other
user-generated data sources.
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3 Features

The main feature of this demonstrator is the estimation of attractiveness from
text, image, and trajectory data. Details covering text and image data can be
found in [5]. In this section, we briefly describe how we enrich the underlying
road network using historical trajectory data. For our demonstrator, we use
trajectories of walkers, runners and bikers that have uploaded their workouts to
Endomondo. Our dataset contains eight million trajectories, which are located all
around the world, but have a strong regional focus in Northern Europe. To match
each of the GPS trajectories, we apply state-of-the-art map matching techniques,
similar to those presented in [14]. In a first step, we perform a basic enrichment:
For each edge e of the spatial network, we count the number tra(e) of historical
trajectories that contain this edge. This count can be used as an indication of
attractiveness of the nodes delimiting the edge, following the assumption that
runners are, in average, more likely to choose a particularly nice running trail.
We assign vertices in a road network attractiveness scores derived from different
datasets. We refer to the score of a vertex v derived from Flickr image data as
im(v), to the score derived from travel blog text data as txt(v), and to the score
derived from trajectory data as tra(v). In contrast to [5], where the different data
source scores were combined into one cost measure, we now propose to diversified
measures. For each edge e = (u, v) and each of the scores f ∈ {im,txt,tra} we
define:

pf (e) = tt(e) · φCf (f(u)+f(v))

where tt(e) denotes the travel time alonge e, Cf denotes a scaling parameter
dependent only on the data source, and φ ∈ (0, 1) is a scaling factor for the
influence of the respective attractiveness score. Hence, we obtain three travel
time correlated cost measures reflecting notions of attractiveness according to the
different data sources. Consequently, we may query the enriched road network,
computing pareto-optimal paths as presented in [3,4] w.r.t. to the introduced
cost measures.

Additionally, Tourismo features category-specific path queries. If the user
chooses to specify his personal touristic interests, they can choose one or more
options from a list containing outdoor activities, cultural sightseeing, culinary
interest, and more. In order to provide paths which fulfill these requirements, we
mine the OSM meta-information. Thanks to a very active community, the data
contains well-tended information about POIs, that is named, categorized, and
subcategorized. For instance, the categories “food” and “tourist” contain sub-
categories “bar”, “restaurant”, “fastfood” and “monument”, “museum”, “arche-
ological”, respectively. Mapping these categories onto the preferences, we filter
POIs which correspond to the particular interest of the user. When querying a
route with a specific set of interests, the user is provided a number of pareto-
optimal paths, guiding him along POIs tailored to his preference.



518 G. Jossé et al.

(a) Particular Path Skyline (b) Detailed Path Information

(c) Detailed information about selected PoI

Fig. 1. Functionality of the presented framework.

4 Framework Description

The demonstrated framework allows users to validate that the notions of attrac-
tiveness defined in this paper indeed coincide with the general intuition. The
result paths returned to the user yield competitive solutions in terms of travel
time while passing POIs perceived as significant, appealing, and/or recogniz-
able. Using OSM as a road network, our demonstrator visualizes a map relying
on Google Maps. Upon selecting an origin and a destination location on the map,
the user is presented with the skyline view as shown in Fig. 1(a). In this view,
the path skyline is presented to the user. For each such route, the correspond-
ing cost values are shown in a table in the lower left corner of Fig. 1(a). Using
this table, the user can browse the choise and select a desired routeyielding the
route view shown in Fig. 1(b). For the selected route A, this view shows the
most “popular” points of interest on A. Once a point of interest is selected, the
sources of popularity of this POI are displayed, as shown in Fig. 1(c). For this
purpose, Fig. 1(c) shows all the pictures relevant for the selected POI, i.e., the
set of images having a sufficiently low distance. The bottom-left corner shows all
travel blog entries where this entry was mentioned in a positive context. Finally,
the lower left corner shows a heatmap derived from all trajectories that share
the same trajectory. During the demonstration, users will be able to specify start
and target locations (also, if desired, specific categories of interest) and compute
different sets of skyline paths.
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