Christophe Claramunt - Markus Schneider
Raymond Chi-Wing Wong - Li Xiong
Woong-Kee Loh - Cyrus Shahabi

Ki-Joune Li (Eds.)

Advances in Spatial
and Temporal Databases

14th International Symposium, SSTD 2015
Hong Kong, China, August 26-28, 2015
Proceedings

LNCS 9239

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9239

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Christophe Claramunt - Markus Schneider
Raymond Chi-Wing Wong - Li Xiong
Woong-Kee Loh - Cyrus Shahabi
Ki-Joune Li (Eds.)

Advances 1n Spatial
and Temporal Databases

14th International Symposium, SSTD 2015

Hong Kong, China, August 26-28, 2015
Proceedings

@ Springer

Editors

Christophe Claramunt

Naval Academy Research Institute
Brest naval

France

Markus Schneider
University of Florida
Gainesville, FL
USA

Raymond Chi-Wing Wong
Hong Kong University of Science
and Technology

Woong-Kee Loh

Gachon University

Gyeonggi-do

Korea, Republic of (South Korea)

Cyrus Shahabi

University of Southern California
Los Angeles

USA

Ki-Joune Li
Pusan National University
Pusan

Kowloon Korea, Republic of (South Korea)
Hong Kong SAR

Li Xiong

Emory University
Atlanta

USA

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-22362-9

DOI 10.1007/978-3-319-22363-6

ISSN 1611-3349 (electronic)

ISBN 978-3-319-22363-6 (eBook)

Library of Congress Control Number: 2015945153
LNCS Sublibrary: SL3 — Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(Www.springer.com)

Preface

This volume contains the proceedings of the 14th International Symposium on Spatial
and Temporal Databases (SSTD). Included are research contributions in the area of
spatial and temporal data management and related computer science domains presented
at SSTD 2015 in Hong Kong, China. The symposium brought together, for three days,
researchers, practitioners, and developers for the presentation and discussion of current
research on concepts, tools, and techniques related to spatial and temporal databases.

SSTD 2015 was the 14th in a series of biannual events. Previous symposia were held
in Santa Barbara (1989), Zurich (1991), Singapore (1993), Portland (1995), Berlin
(1997), Hong Kong (1999), Los Angeles (2001), Santorini, Greece (2003), Angra dos
Reis (2005), Boston (2007), Aalborg (2009), Minneapolis (2011), and Munich (2013).
Before 2001, the series was devoted solely to spatial database management, and was
called The International Symposium on Spatial Databases. Starting in 2001, the scope
was extended in order to also integrate the temporal dimension and accommodate spatial
and temporal database management issues, owing to the increasing importance of
research that considers spatial and temporal dimensions of data as complementary
challenges.

This year the symposium received 64 submissions from authors in 27 different
countries, which were reviewed by at least three of the 53 Program Committee
members, helped by 89 external reviewers. At the end of a thorough process of reviews
and discussions, 24 submissions were accepted for presentation at the symposium.
SSTD 2015 also continued several innovative topics that were successfully introduced
in previous events. We also formed a Best Paper Committee including eight committee
members to select the best paper for SSTD 2015. In addition to the research paper
track, the conference hosted a demonstration and vision/challenge track. Demonstra-
tions and vision/challenge papers were solicited by separate calls for papers. While
proposals for demonstrations had to illustrate running systems that showcase the
applicability of interesting and solid research, the vision/challenge submissions had to
discuss novel ideas that are likely to guide research in the near future and/or challenge
prevailing assumptions. The submissions to the demo and vision/challenge track
(12 demonstration submissions and two vision/challenge papers submissions) were
evaluated by dedicated Program Committees, recruited by the demonstrations
co-chairs, and eight demos were selected for the conference program.

We were very fortunate to have had two well-accomplished researchers from aca-
demia and industry as keynote speakers opening the first two days of the conference:
Prof. Dimitris Papadias (The Hong Kong University of Science and Technology) gave
a presentation on “Query Processing in Geo-Social Networks™ and Jim Steiner (Oracle)
talked about “Emerging Geospatial Trends: The Convergence of Technologies.” Both
are very attractive and timely topics, from the academic and industrial points of view.

The success of SSTD 2015 was the result of a team effort. Special thanks go to many
people for their dedication and hard work, in particular to the local organizers, publicity

VI Preface

chairs, proceedings chair, and webmasters. Naturally, we owe our gratitude to more
people, and in particular we would like to thank the authors, irrespectively of whether
their submissions were accepted or not, for supporting the symposium series and for
sustaining the high quality of the submissions. Last but most definitely not least, we are
very grateful to the members of the Program Committees (and the external reviewers)
for their thorough and timely reviews.

Finally, these proceedings reflect the state of the art in the domain of spatiotemporal
data management, and as such we believe they form a strong contribution to the related
body of research and literature.

June 2015 Christophe Claramunt
Raymond Chi-Wing Wong

Markus Schneider

Li Xiong

Ki-Joune Li

Cyrus Shahabi

Steering Committee
The SSTD Endowment
Honorary Chair
Kyu-Young Whang
General Co-chairs

Ki-Joune Li
Cyrus Shahabi

Program Co-chairs
Christophe Claramunt

Raymond Chi-Wing Wong
Markus Schneider

Demonstration Chair
Li Xiong
Publicity Co-chairs

Jin Soung Yoo
Baihua Zheng

Sponsorship Co-chairs

Siva Ravada
Erik Hoel
Mehdi Sharifzadeh

Proceedings Chair

Woong-Kee Loh

Organization

KAIST, South Korea

Pusan National University, South Korea
USC, USA

Naval Academy, France
HKUST, Hong Kong, SAR China
University of Florida, USA

Emory University, USA

IPFW, USA
SMU, Singapore

Oracle, USA
ESRI, USA
Google, USA

Gachon University, South Korea

VI Organization
Local Arrangements
Hae-Kyong Kang
Treasurer

Juhyun Ham

KRIHS, South Korea

Pusan National University, South Korea

Research Program Committee

Walid Aref
Masatoshi Arikawa
Spiridon Bakiras
Michela Bertolotto
Claudio Bettini
Michael Bohlen
Reynold Cheng
Chi-Yin Chow

Gao Cong

Maria Luisa Damiani
Ugur Demiryurek
Ralf Hartmut Giting
Yan Huang
Seung-Won Hwang
Sergio Ilarri
Panagiotis Karras
Kyoung-Sook Kim
Minsoo Kim

Bart Kuijpers

Jae-Gil Lee

Dan Lin

Cheng Long

Hua Lu

Nikos Mamoulis
Yannis Manolopoulos
Claudia Medeiros
Mohamed Mokbel
Kyriakos Mouratidis
Mirco Nanni

Enrico Nardelli
Mario Nascimento
Dimitris Papadias
Spiros Papadimitriou
Torben Bach Pedersen
Dieter Pfoser

Chiara Renso

Vision Program Committee

Michael Gertz
Joerg Sander

Peter Scheuermann
Timos Sellis

Demonstration Program Committee

Rui Chen

Liyue Fan
Shen-Shyang Ho
Yaron Kanza
Chang-Tien Lu
Jun Luo

Apostolos Papadopoulos
Stavros Papadopoulos
Cyril Ray

Marcos Vaz Salles
Ankur Teredesai
Kristian Torp

Matthias Renz
Dimitris Sacharidis
Bernhard Seeger
Christian Sengstock
Shashi Shekhar
Ryosuke Shibasaki
Yufei Tao

Yannis Theodoridis
Carola Wenk

Ouri Wolfson
Xiaokui Xiao

Man Lung Yiu

Rui Zhang
Dongxiang Zhang
Wenjie Zhang

Yu Zheng
Xiaofang Zhou

Vassilis Tsotras

Goce Trajcevski
Jaideep Vaidya
Fusheng Wang
Wendy Hui Wang
Ting Wang

Best Paper Selection Committee

Michael Bohlen
Christophe Claramunt
Maria Luisa Damiani

External Reviewers

Ahmed Eldawy
Alessandra Raffaeta
Amr Magdy
Anastasios Gounaris
Andre Santanche
Andreas Zuefle
Andy Yuan Xue
Antonio Corral
Apostolos Papadopoulos
Bin Yang

Brittany TereseFasy
Chris Jonathan
Christian Authmann
Christian Beilschmidt
Chuanfei Xu
Daniele Riboni
Dimitris Tsakalidis
Eleftherios Tiakas
George Skoumas
Han Su

Haozhou Wang
Hoang Vo

Huichu Zhang
Jia-Dong Zhang

Platinum Sponsors

RealtimeTech Co.

Pusan National University

Oracle
ESRI

Yannis Manolopoulos
Claudia Medeiros
Joerg Sander

Jianqiu Xu
Jianzhong Qi

Jie Bao

Jiexing Li
Johannes Droenner
Kaiqi Zhao

Klaus Arthur Schmid
Kostas Patroumpas
Lefteris Ntaflos

Li Yuhong

Lisi Chen

Long Yuan

Louai Alarabi
Luyi Mo

Lyu Yan

Michael Mattig
Nikos Pelekis
Panos Parchas
Paolo Cintia

Phuc Nguyen
Qing Guo

Ramon Hermoso
Ran Wang

Raquel Trillo Lado

Organization

Markus Schneider
Raymond Wong

Saeid Hosseini
Sam King
Sandeep Sasidharan
Sergio Mascetti
Shiyu Yang
Shuo Ma

Sibo Wang
Tobias Emrich
Victor Junqiu Wei
Xiang Wang
Xiaojie Lin
Xiaoyang Wang
Xike Xie

Xin Cao

Yang Zhou
Yixiang Fang
Yong Xu

Yu Li

Yu Sun

Zeyi Wen
Zhang Chong
Zhi Liu

IX

X Organization

Silver Sponsors

Gaia3D, Inc.
QBS System Limited
Research Institute of Computers, Information, and Communication, PNU

Bronze Sponsors

LNCS, Springer

KDnuggets

Korea Spatial Information Society
KIISE Database Society of Korea

Contents

Reachability Query and Path Query

RICC: Fast Reachability Query Processing on Large Spatiotemporal
Datasets.
Elena V. Strzheletska and Vassilis J. Tsotras

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs.
Alexandros Efentakis, Christodoulos Efstathiades, and Dieter Pfoser

ParetoPrep: Efficient Lower Bounds for Path Skylines and Fast Path
ComPULAtioON. ot ot it e e e
Michael Shekelyan, Gregor Jossé, and Matthias Schubert

Reverse Query and Indexing

Relaxed Reverse Nearest Neighbors Queries.
Arif Hidayat, Muhammad Aamir Cheema, and David Taniar

Influence-Aware Predictive Density Queries Under Road-Network
ConStraintSot e
Lasanthi Heendaliya, Michael Wisely, Dan Lin,
Sahra Sedigh Sarvestani, and Ali Hurson

Uncertain Voronoi Cell Computation Based on Space Decomposition
Tobias Emrich, Klaus Arthur Schmid, Andreas Ziifle, Matthias Renz,
and Reynold Cheng

Navigation and Routing

Towards Fast and Accurate Solutions to Vehicle Routing in a Large-Scale
and Dynamic Environment.
Yaguang Li, Dingxiong Deng, Ugur Demiryurek, Cyrus Shahabi,
and Siva Ravada

Oriented Online Route Recommendation for Spatial Crowdsourcing Task
WOrKers. . ..o
Yu Li, Man Lung Yiu, and Wenjian Xu

Knowledge-Enriched Route Computation.
Georgios Skoumas, Klaus Arthur Schmid, Gregor Jossé,
Matthias Schubert, Mario A. Nascimento, Andreas Ziifle,
Matthias Renz, and Dieter Pfoser

http://dx.doi.org/10.1007/978-3-319-22363-6_1
http://dx.doi.org/10.1007/978-3-319-22363-6_1
http://dx.doi.org/10.1007/978-3-319-22363-6_2
http://dx.doi.org/10.1007/978-3-319-22363-6_3
http://dx.doi.org/10.1007/978-3-319-22363-6_3
http://dx.doi.org/10.1007/978-3-319-22363-6_4
http://dx.doi.org/10.1007/978-3-319-22363-6_5
http://dx.doi.org/10.1007/978-3-319-22363-6_5
http://dx.doi.org/10.1007/978-3-319-22363-6_6
http://dx.doi.org/10.1007/978-3-319-22363-6_7
http://dx.doi.org/10.1007/978-3-319-22363-6_7
http://dx.doi.org/10.1007/978-3-319-22363-6_8
http://dx.doi.org/10.1007/978-3-319-22363-6_8
http://dx.doi.org/10.1007/978-3-319-22363-6_9

XII Contents

Trajectory Analysis

Efficient Point-Based Trajectory Search 179
Shuyao Qi, Panagiotis Bouros, Dimitris Sacharidis,
and Nikos Mamoulis

Visibility Color Map for a Fixed or Moving Target in Spatial Databases 197
Ishat E. Rabban, Kaysar Abdullah, Mohammed Eunus Ali,
and Muhammad Aamir Cheema

Speed Partitioning for Indexing Moving Objects. 216
Xiaofeng Xu, Li Xiong, Vaidy Sunderam, Jinfei Liu, and Jun Luo

Spatio-Temporal Approaches

Using Lowly Correlated Time Series to Recover Missing Values in Time
Series: A Comparison Between SVD and CD. 237
Mourad Khayati, Michael H. Bohlen, and Philippe Cudré Mauroux

Minimal Spatio-Temporal Database Repairs 255
Markus Mauder, Markus Reisinger, Tobias Emrich, Andreas Ziifle,
Matthias Renz, Goce Trajcevski, and Roberto Tamassia

A Spatio-Temporally Opportunistic Approach to Best-Start-Time

Lagrangian Shortest Path 274
Sarnath Ramnath, Zhe Jiang, Hsuan-Heng Wu, Venkata M.V. Gunturi,
and Shashi Shekhar

Privacy and Matching

Combining Differential Privacy and PIR for Efficient Strong Location
Privacy 295
Eric Fung, Georgios Kellaris, and Dimitris Papadias

Privacy-Preserving Detection of Anomalous Phenomena in Crowdsourced
Environmental Sensing e 313
Mihai Maruseac, Gabriel Ghinita, Besim Avci, Goce Trajcevski,
and Peter Scheuermann

Efficient Top-k Subscription Matching for Location-Aware
Publish/Subscribe 333
Jiafeng Hu, Reynold Cheng, Dingming Wu, and Beihong Jin

http://dx.doi.org/10.1007/978-3-319-22363-6_10
http://dx.doi.org/10.1007/978-3-319-22363-6_11
http://dx.doi.org/10.1007/978-3-319-22363-6_12
http://dx.doi.org/10.1007/978-3-319-22363-6_13
http://dx.doi.org/10.1007/978-3-319-22363-6_13
http://dx.doi.org/10.1007/978-3-319-22363-6_14
http://dx.doi.org/10.1007/978-3-319-22363-6_15
http://dx.doi.org/10.1007/978-3-319-22363-6_15
http://dx.doi.org/10.1007/978-3-319-22363-6_16
http://dx.doi.org/10.1007/978-3-319-22363-6_16
http://dx.doi.org/10.1007/978-3-319-22363-6_17
http://dx.doi.org/10.1007/978-3-319-22363-6_17
http://dx.doi.org/10.1007/978-3-319-22363-6_18
http://dx.doi.org/10.1007/978-3-319-22363-6_18

Contents

Similarity Search and Pattern

Spatiotemporal Similarity Search in 3D Motion Capture Gesture Streams. . . .

Christian Beecks, Marwan Hassani, Jennifer Hinnell, Daniel Schiiller,
Bela Brenger, Irene Mittelberg, and Thomas Seidl

A Progressive Approach for Similarity Search on Matrix

Tsz Nam Chan, Man Lung Yiu, and Kien A. Hua

Discovering Non-compliant Window Co-Occurrence Patterns: A Summary

of Results.

Reem Y. Ali, Venkata M.V. Gunturi, Andrew J. Kotz, Shashi Shekhar,
and William F. Northrop

Keyword and Pattern

Maximizing Influence of Spatio-Textual Objects Based on Keyword

Selection

Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis,
and Kjetil Norvag

Geo-Social Keyword Search.

Ritesh Ahuja, Nikos Armenatzoglou, Dimitris Papadias,
and George J. Fakas

RCP Mining: Towards the Summarization of Spatial Co-location Patterns . . .

Bozhong Liu, Ling Chen, Chunyang Liu, Chengqi Zhang,
and Weidong Qiu

Demonstrations

Pedestrian-Flow Analysis System for Improving Layout of Exhibitions

Akinori Asahara, Nobuo Sato, and Masatsugu Nomiya

AETAS: A System for Semanticizing Temporal Expressions

from Unstructured Contents

Zagros Ardalan, Carme Martin, and Lluis Padro

SCHAS: A Visual Evaluation Framework for Mobile Data Analysis

of Individual Exposure to Environmental Risk Factors.

Shayma Alkobaisi, Wan D. Bae, and Sada Narayanappa

Distributed SECONDO: A Highly Available and Scalable System

for Spatial Data Processing.

Jan Kristof Nidzwetzki and Ralf Hartmut Giiting

XIII

355

373

391

413

431

451

473

http://dx.doi.org/10.1007/978-3-319-22363-6_19
http://dx.doi.org/10.1007/978-3-319-22363-6_20
http://dx.doi.org/10.1007/978-3-319-22363-6_21
http://dx.doi.org/10.1007/978-3-319-22363-6_21
http://dx.doi.org/10.1007/978-3-319-22363-6_22
http://dx.doi.org/10.1007/978-3-319-22363-6_22
http://dx.doi.org/10.1007/978-3-319-22363-6_23
http://dx.doi.org/10.1007/978-3-319-22363-6_24
http://dx.doi.org/10.1007/978-3-319-22363-6_25
http://dx.doi.org/10.1007/978-3-319-22363-6_26
http://dx.doi.org/10.1007/978-3-319-22363-6_26
http://dx.doi.org/10.1007/978-3-319-22363-6_27
http://dx.doi.org/10.1007/978-3-319-22363-6_27
http://dx.doi.org/10.1007/978-3-319-22363-6_28
http://dx.doi.org/10.1007/978-3-319-22363-6_28

X1V Contents

EasyEV: Monitoring and Querying System for Electric Vehicle Fleets

Using Smart Car Data

Gregor Jossé, Matthias Schubert, and Ludwig Zellner

TwitterViz: Visualizing and Exploring the Twittersphere

Christodoulos Efstathiades, Helias Antoniou, Dimitrios Skoutas,
and Yannis Vassiliou

A Trajectory Recommendation System via Optimizing Sensors Utilization

in Airborne Systems (Demo Paper)

San Yeung, Sanjay Kumar Madria, and Mark Linderman

Tourismo: A User-Preference Tourist Trip Search Engine.

Gregor Jossé, Klaus Arthur Schmid, Andreas Ziifle, Georgios Skoumas,
Matthias Schubert, and Dieter Pfoser

Author Index e

http://dx.doi.org/10.1007/978-3-319-22363-6_29
http://dx.doi.org/10.1007/978-3-319-22363-6_29
http://dx.doi.org/10.1007/978-3-319-22363-6_30
http://dx.doi.org/10.1007/978-3-319-22363-6_31
http://dx.doi.org/10.1007/978-3-319-22363-6_31
http://dx.doi.org/10.1007/978-3-319-22363-6_32

Reachability Query and Path Query

RICC: Fast Reachability Query Processing
on Large Spatiotemporal Datasets

Elena V. Strzheletska™ and Vassilis J. Tsotras

University of California, Riverside, USA
{elenas,tsotras}@cs.ucr.edu

Abstract. Spatiotemporal reachability queries arise naturally when
determining how diseases, information, physical items can propagate
through a collection of moving objects; such queries are significant for
many important domains like epidemiology, public health, security mon-
itoring, surveillance, and social networks. While traditional reachability
queries have been studied in graphs extensively, what makes spatiotem-
poral reachability queries different and challenging is that the associ-
ated graph is dynamic and space-time dependent. As the spatiotemporal
dataset becomes very large over time, a solution needs to be I/O-efficient.
Previous work assumes an ‘instant exchange’ scenario (where informa-
tion can be instantly transferred and retransmitted between objects),
which may not be the case in many real world applications. In this paper
we propose the RICC (Reachability Index Construction by Contraction)
approach for processing spatiotemporal reachability queries without the
instant exchange assumption. We tested our algorithm on two types of
realistic datasets using queries of various temporal lengths and different
types (with single and multiple sources and targets). The results of our
experiments show that RICC can be efficiently used for answering a wide
range of spatiotemporal reachability queries on disk-resident datasets.

1 Introduction

Reachability queries are significant for many important domains such as epi-
demiology, public health, social networks, security monitoring, and surveillance.
The last two application areas involve performing reachability queries on spa-
tiotemporal datasets, which are the main interest of this paper. Such datasets
may, for instance, contain information about locations of a set of moving objects
collected during some period of time.

Two objects O; and O, have a contact at time ¢;, (denoted as < O;, O;, ty, >),
if they are within some threshold distance d.,,; from each other at that time
instant [24]. During the encounter, the proximity between O; and O, gives
them an opportunity to exchange physical items or information (perhaps wire-
lessly), or a virus. As they move through the network, O; and O; may encounter
other objects, and participate in further exchanges. This pattern permits mov-
ing objects to function as couriers, allowing two objects that remain far apart to
nonetheless communicate with each other via intermediaries. A spatiotemporal
© Springer International Publishing Switzerland 2015

C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 3-21, 2015.
DOI: 10.1007/978-3-319-22363-6_-1

4 E.V. Strzheletska and V.J. Tsotras

.,

%
S

t=2 T(time)

Fig. 1. (a) Positions and contacts between a set of moving objects during the time
interval [0,2]; (b) Constructing a supergraph by combining the contact graphs with
the object trajectories.

reachability query determines whether two given objects Og and O could have
communicated (possibly through other objects), within a given time interval. An
example appears in Fig. 1(a), where four moving objects are shown at consecu-
tive time instants. Lines between objects denote contacts at those time instants.
For example, objects O; and Os are in contact at times ¢ = 0 and ¢t = 2. Note,
that objects O; and O3 never contacted each other explicitly, however O3 is
reachable from O; within the time interval [0, 1] through object Os (O; could
pass information to Og at time ¢ = 0, and Oy could pass it to O3 at time ¢t = 1).

The time to exchange information (or physical items etc.) between objects
affects the problem solution and it is application specific. We consider two types
of delays that may occur during an exchange: processing delay and transfer delay.
After two objects had a contact, the contacted object may have to spend some
time to process the received information (processing delay) before being able
to exchange it again; consider for example repackaging the physical item at
the receiver object before resending. In other applications, for the transfer of
information to occur (transfer delay), two objects are required to stay within
the contact distance for some period of time; we call such elongated contact a
meeting. An example appears if two cars exchange messages through bluetooth
and thus have to travel closely together for some time.

Thus we may consider the reachability problem with no delays, one kind of
delay (processing or transfer) as well as with both types of delays. To distinguish
among the various scenarios we use P to denote the existence of processing delay
and T for transfer delay; their absence will be denoted by P and T respectively.
If no delays are present (i.e., PT) the exchange is considered (almost) instan-
taneous. This scenario (we will call it ‘instant exchange’) is assumed in [24].
Consider Fig.1(a) where at time ¢ = 1 a chain of contacts occurs: object O
contacts O3z, and O3 contacts O4. Assuming instantaneous exchanges, at this
time instant information can travel from O to its immediate contacts, and at
the same time to all the current contacts of its contacts, etc., resulting in object
O, been reached by Oy during just one time instant ¢ = 1. As another example,
consider the case PT, that is, with processing delay (i.e., an object receiving
information at time ¢ may not immediately retransmit it) and no transfer delay

Fast Reachability Query Processing on Large Spatiotemporal Datasets 5

Fig. 2. Contact graphs for a set of moving objects during time interval [0, 2].

(i.e. a simple contact is enough to transfer the information). In Fig. 1(a), at time
t = 1, object Oy contacts object Oz, and O3 contacts Oy, but information from
O3 does not reach Oy at that time instant.

A trajectory of a moving object O; is a sequence of pairs (I;,t;), where [; is
the location of object O; at time ¢;. We assume that time is discrete, described
as a sequence of time instants (¢1,t2,...,%;,...) and the interval between two
consecutive time instants is constant (denoted as At). Moreover, each object
reports its location at each time instant. We further assume that all contacts
between objects are identified by looking at their location records (that is, At is
small enough that we do not miss any contact between consecutive time instants).

Consider the PT reachability scenario: for simplicity we assume that the
processing delay is At, and after a contact occurs, retransmission starts at the
next time instant (our solution can be easily modified to consider the case
where the processing delay is a multiple of At). The goal of a reachability
query @Q: {Og,Or, I}, is to determine whether object Or(target) is reachable
from object Og(source) during time interval I = [ts,tf], or in other words if
there exists a chain of subsequent contacts < Og,O;1,t1 >, < O;1,040,t2 >,
e »< Oim, O, T, >, with £ <t < ta... <t} < ty. Moreover, if such a chain
exists, we would like to find the earliest time instant when Op was reached (this
can have implications on the application: try to control the spread of the disease
fast, or identify the shortest time that information traveled through a network).

Note again how the answer to a reachability query depends on the transfer
requirements. Consider the example in Fig. 2: here the collection of five moving
objects is observed during three time instants. Let I = [to,¢2]. The answer to
the query {O1,O4, I} under the PT scenario is t = 0. Under the PT scenario,
the answer is t = 2. Another query, {O1, Os, I} will be answered with ¢ = 0 in
the first case, however, for the second case, the answer is ¢ = co. In general, the
set of objects, reached by some object O; during I under the PT scenario is a
superset of the set of objects reached under the PT case.

The traditional graph reachability problem examines whether a path exists
between two vertices of a static graph, such as a road network. Spatiotemporal
reachability is more complex, since even the underlying graph is determined by
the time-varying relationships between the positions of objects traversing the
road network. Moreover, the contact distance d..,; is a parameter, and not an
edge of a static graph. One could reduce spatiotemporal reachability into static
graph reachability by combining the contact graphs with the object trajectories
into a supergraph (by adding an edge connecting two consecutive occurrences of

6 E.V. Strzheletska and V.J. Tsotras

each object). This appears in Fig. 1(b) where dotted edges connect consecutive
object positions. However this approach will be inefficient as the supergraph is
very large and does not exploit the spatiotemporal properties of the dataset.

There are two naive approaches that could be used to answer a reachability
query on a small spatiotemporal dataset. The first approach (no-preprocessing)
is to traverse the dataset at query time, from the beginning to the end of the
query time interval, collecting all the objects that were reached by the source,
and checking whether the target is among the collected objects (in which case
the search can be stopped before the end of the interval is reached). If not, the
search proceeds, etc. The second approach (precompute-all) is to precompute
and store the reachability between every pair of objects for each possible time
interval in advance. Both approaches are infeasible for our problem size, since
they would require either too much time or space.

Since we consider large sets of moving objects over long periods of time, the
trajectory data cannot fit in main memory; hence the solution must be I/O effi-
cient. The first disk-based solution for the spatiotemporal reachability problem
with no delays (PT) was recently given by [24]. In this paper, we first develop
the RICC (Reachability Index Construction by Contraction) algorithm for the
PT reachability problem; we then show how it can be extended to work with no
processing but transfer delays (PT). We also discuss how the PT problem (i.e.,
with both types of delays) can be solved by a simple modification of PT.

RICC balances preprocessing time, storage consumption, and query perfor-
mance time. Its preprocessing consists of several steps: the contact network con-
struction, the reachability network construction, and the contact and reachability
index construction. For the reachability network construction, we utilize the path
contraction idea, introduced in Contraction Hierarchies (CH) [10]. A contraction
replaces a path between two nodes of a graph with a (shortcut) edge, which pre-
serves the distance between these nodes. Methods based on CH are currently the
fastest known approaches for answering shortest path queries on road networks
[9,10]. However, there are two major differences between our problem and com-
puting shortest paths on road networks. CH gains its speed up from creating a
hierarchy of nodes on the basis of their importance for the given road network,
while in the spatiotemporal reachability problem, there is no preference between
the graph nodes. In addition, road networks are typically static graphs, while
our environment is dynamic. We thus created our version of path contraction,
which decreases the size of the spatiotemporal reachability network, and thus
reduces the space search, and consequently the reachability query time.

Figure3(a) represents the supergraph G constructed on time interval
I = [to, ta) for the contact graphs in Fig. 1, under the ‘instant exchange’ assump-
tion (PT). At time t = 1 object Oy can pass the information to the object Os,
which then can pass it further to Oy during the same time instant. The super-
graph G’ in Fig.3(b) is constructed using the same contact graphs but under
the ‘no instant exchange’ assumption. To disallow the ‘instant exchange’ in G7,
for each pair of contacting objects O; and O; at time ¢, we remove edges that
represent contacts between them. Next, we connect O; at time ¢ with O; at

Fast Reachability Query Processing on Large Spatiotemporal Datasets 7

01 oZ 03 04 t=2 01 01 03 04 t=2 01 02 03 04 t=2
A S S R S St S
1 1 1 1 1 1 1 1 \/ /] (N 2

1 1 1 [1 1 i 1 \/,\‘l ‘vl

- 4

R S0 S KX

H 1 H H 1 1 1 1 NN T

I i I [1 1 I [SO W W A Y
oo SRR SR T A & 6 & & t=0 ¥ ¥
o, O O, O, o, 0 O, O, o, 0, 0, O,

(a) Gy (b) G’y (c) G,

Fig. 3. (a) G1 is the supergraph under the PT assumption; (b) DAG G is the super-
graph under the PT assumption; (c) the reachability graph Gz constructed from G
for interval I = [to, t2).

time tx11, and vice versa. The resulting graph G satisfies the required condi-
tion: in G at time ¢ = 1 object Oy can pass the information to Oz, but Os
cannot retransmit it to O4 at the same time instant. Finally Fig. 3(c) represents
the reachability graph Ga, obtained from G} by contracting reachability paths
and replacing them with new shortcut edges (and thus Gy is a much smaller
graph than G while maintaining the same reachability properties).

The rest of the paper is organized as follows: Sect.2 presents related work
while Sect. 3 introduces the RICC algorithm, its index construction and reacha-
bility query processing. In Sect. 4, we evaluate the performance of RICC using
large spatiotemporal datasets representing objects moving on a real road net-
work (created by the Brinkhoff generator [3]) as well objects moving freely on
a 2-dimensional plane (based on the random waypoint model). Finally, Sect.5
provides conclusions and future work.

2 Related Work

Static Graph Reachability. There are many approaches that have been
proposed for the static graph reachability problem and their performance lies
between the two naive approaches mentioned in the previous section. They are
categorized in [14] as using: (i) transitive closure compression, (ii) hop label-
ing, and (iii) refined online search. The first category encompasses methods that
compute and compress a transitive closure. Examples include interval label-
ing [1], dual labeling [28], chain decomposition, tree cover, etc. The next category
includes hop labeling methods: 2-hop cover [7], 3-hop cover [15] and path-top [4].
For instance, in the 2-hop approach a node u in a graph G is assigned a label,
which consists of two sets of nodes: a set L;, that contains nodes that can
reach u, and a set L,,; of those nodes that can be reached by u. Then a node
v is reachable from w if and only if L;, and L,,; have a non-empty intersec-
tion. Representatives from the third category include GRAIL [30], which uses
indexing based on randomized multiple interval labeling, and PReaCH [19], that
applies the Contraction Hierarchies technique [10] to the reachability problem
and utilizes topological levels from GRAIL. GRAIL and PReaCH outperform
other reachability methods on large static graphs.

8 E.V. Strzheletska and V.J. Tsotras

Shortest Paths on Road Networks. In our model, the reachability question
is equivalent to a shortest path query in a supergraph with edges of weight 1 for
consecutive object positions and edges of weight 0 for contacts, with the restric-
tion that a path should not contain two consecutive 0-weight edges in a row.
Contraction Hierarchies [10] represent the state-of-the-art for solving shortest
path problems on road networks. The preprocessing of CH consists of assigning
an order to each node in the road network, and then contracting the nodes in that
order, introducing shortcut edges to preserve the shortest path weight for any
two nodes in the graph. A shortest path query is being answered by perform-
ing a Dijkstra search in the resulted contracted graph. Nevertheless, directly
applying CH would not be efficient for our reachability problem. CH benefits
from creating a hierarchy of nodes on the basis of their importance for the given
road network, while in the spatiotemporal reachability problem, there is no node
preference between the graph nodes. Algorithm PReaCH [19] discussed above,
applies CH on the static reachability problem (and thus does not exploit the
spatiotemporal properties of data).

Evolving Graphs. Evolving graphs (social, citation, biological networks, etc.)
have recently experienced high popularity and received increased interest in the
research community. In [17], the DeltaGraph is introduced, an external hierarchi-
cal index structure that enables efficient storing and retrieving of historical graph
snapshots. For large dynamic graphs, [33] constructs a reachability index, based
on a combination of labeling, ordering, and updating techniques. The work in [25]
utilizes graph reachability labeling methods to develop techniques for analyzing
temporal distance and reachability of temporal graphs. Information, stored in
such datasets, is of a different nature, if compared with spatiotemporal data.
Our problem is complicated by the need to compute the contacts between the
objects, while such contacts are already available in evolving graph applications.
In addition, out data has spatial properties, which is usually not the case in the
analysis, for example, of social and citation networks.

Spatiotemporal Databases. Spatiotemporal Access Methods. There has been a
large number of works on spatiotemporal access methods; these typically involve
some variation on hierarchical trees [6,8,11,18,23,27,31,32], or some form of a
grid-based structure [22,29] or indexing in parametric space [2,5,21]. A recent
survey appears in [20]. Nevertheless, existing spatiotemporal indexes typically
support traditional range and nearest neighbor queries and not the reachability
queries we examine here.

Complex Queries on Spatiotemporal Datasets. Recent work has focused on query-
ing/identifying the behavior of moving objects. Various methods have been
developed for determining patterns and similar behavior of a group of objects
during a particular time interval. Examples include discovering moving clus-
ters [12,16], flock patterns [26], and convoy queries [13]. Recently, [24] pro-
vided the first disk-based solutions for the spatiotemporal reachability problem,
namely ReachGrid and ReachGraph. These are indexes on the contact dataset
that enable faster query times. In ReachGrid, during query processing only

Fast Reachability Query Processing on Large Spatiotemporal Datasets 9

a necessary portion of the contact network which is required for reachability
evaluation is constructed and traversed. In ReachGraph, the reachability at dif-
ferent scales is precomputed and then reused at query time. Among the two
approaches, ReachGraph is superior (and showed that it also greatly outper-
forms traditional graph reachability solutions like GRAIL [30]). However, what
enables ReachGraph is the assumption that a contact between two objects can
be instantaneous, and thus during one time instance, a chain of contacts may
occur. Conceptually, this ‘instant exchange’ assumption, allows ReachGraph to
be smaller in size (the new graph uses a single vertex for all objects that could
be contacted at a given time instant) and thus reduce query time. On the other
hand, ReachGrid does not require the ‘instant exchange’ assumption and is com-
pared with our proposed methods through experimentation.

3 RICC

We proceed with the description of RICC. First we describe the preprocessing
needed to maintain the contact and reachability networks and the indexing used
to enable fast query time. Then the query processing algorithm is introduced.

3.1 Preprocessing

We start the preprocessing by dividing the entire time interval covered by the
dataset into a number of non-overlapping subintervals, which we call time blocks;
each of the created time blocks contains the information about the locations of
all objects during the corresponding time interval. We call the number of time
instants in each time block the contraction parameter C. Next, we partition the
area covered by the dataset into spatial blocks (or grid cells), such that each cell
is inscribed into a square with a side no greater than the contact distance dcon;-

For each time block, our algorithm performs several steps: multiple contact
graph construction, reachability graph construction, and contact and reachabil-
ity index construction. During the preprocessing, each time block is read into
main memory only once, and all work on a block could be done as soon as the
data for this particular block is collected.

Contact Graph Construction. For this step, we need to materialize a contact
graph for each time instant. To efficiently find all contacts between the objects
during a given time instant, we start with partitioning the set of all objects that
are active during this time instant into subsets on the basis of their location,
and according to the area partitioning described above. Due to the size of each
grid cell, all contacts of object O are located either in the same cell with O,
or in adjacent cells. We can start, for example, with the left bottom cell of the
grid, find all contacts between the objects in this cell, then all contacts between
objects in this cell and objects in all adjacent cells. Further, we move to the next
cell and proceed until all cells are visited.

After all contacts are found, a contact graph for this time instant is con-
structed: each object is represented by a vertex, and each contact between two

10 E.V. Strzheletska and V.J. Tsotras

0, o, 0, o, o] 0, o, 0, o,

t=2 3 t=2 t=2
S S S | s)\ a2
i i 1 1 F4 \ TN 7 \ II
1 1 1 [l t=1 ()Z Il \i) \‘I N/
2 i t * / 7\/ AN

4 4 2 Y AN
i i : i 4 e \ SN N
¥ 8 b & t70 é t=0 ¥ ¥ s 70
01 oZ 03 04 01 01 02 03 04
(a) (b) (c)

Fig. 4. (a) Supergraph; (b) Path contraction between O!” and O{?; (c) Non-trivial
reachability graph on interval I = [tg,t2) (contraction parameter C' = 2).

objects - by an edge. Subsequently, when a contact graph is constructed for each
time instant of the block, the information is recorded in the file Contacts as
described later. First, all data about contacts between all the objects during
each time instant of a block is collected. The set of the objects is being parti-
tioned on the basis of their location at the first time instant of the block. This
time, the size of the grid G (we will call it a grid resolution as in [24]), is much
larger, than for the previous partition.(In the Experiments section we describe
how to find a good value for G empirically.) Next, objects are sorted according to
the order of cells that they belong to. Further, in this order, information about
the contacts of each object during the time block, is sequentially written on disk
into the file Contacts. A record for each object contains its contacts at each time
instant of the block in time order. An example of the Contacts file appears in
Fig. 5.

Reachability Graph Construction. To construct the reachability graph on
one time block of the dataset, we start with creating a directed supergraph by
collecting contact graphs for each time instant of a block (in time order) and
connecting them by introducing an edge for each two consecutive occurrences of
each object. Figure4(a), shows a supergraph, constructed on a time block with
contraction parameter C' = 2 from two contact graphs given in Fig. 1(a). The
next step is to contract the reachability graph. Let O,(j) denote an occurrence of
object Oy during an i-th time instant of a block.

Theorem 1. Let G° be a supergraph constructed over a time block B. There
exists a path in G* from O,(CO) to Ol(c_l), if and only if, Ol(c_l) is reachable by
0\ during B

k g 5.

It follows, that to capture all reachability cases during a block, we need to
answer, whether there is a path between every pair of vertices OI(CO) and Ol(Cfl)
in the supergraph constructed for that block. A path non-trivial if k # [. Next,

we consider that any instance of object Oy is reachable from its later instance
(there is a trivial path from O,(f) to O,(f) for i < j), and will not record it.

If there is a non-trivial path in G* between O,(CO) and Ol(c_l), we contract this
path, and replace it with an edge. In Fig.4(a), there is a path between Ogo) and
O§2), thus O3 is reachable from O; during this block. This path can be contracted,

Fast Reachability Query Processing on Large Spatiotemporal Datasets 11

Time Block Index

Time Block Page (Contact Index) Page (Reach. Index)

Reached

0 — Page ID Page ID
1 — Page D Page ID ———
1
1
Time | Object Page Time | Object | Time | Contacts : Page Time | Object [Contacts
Block Block ' Block
1
> 0 0, Page ID O, 110, G 1 Page ID 0, |0 0,0
o. Page ID 0 Oy 2 |0 1 Page ID 0
U —— 1 \
o, 0 |o H I~ O |0 O
0, Page IDN 0. 1 0. 1 Page ID
\ d o NN
N ! N o, |0 o,
1 Op Page ID o) 1 lo 1 Page ID 0y
0O, Page ID — " ° : Page ID -
- o | 1 [o o H =, Q% |0 O
1 0, 2 | o, 1
1
> o | o [0, 0 O[O O
o, 2 |0, O 1 >
Contacts Index : Reached Index
1
. H
1
1
1

Contacts

Fig. 5. Two-level index on files Contacts and Reached.

and replaced by a shortcut edge as in Fig.4(b). We can effectively find all the
paths by using multi-source BFS from each object Ol(co) in G*. Figure 4(c) depicts
the final reachability graph. Upon construction of the reachability graph for a
given block, all reachability information is written sequentially into file Reached
in the same object order as for the contact graphs (Fig.5).

Contact and Reachability Index Construction. To efficiently retrieve infor-
mation from disk, we use a two-level index, constructed on the files Contacts
and Reached. An example of this index appears in Fig.5. The first level
(TimeBlockIndex), is ordered by time block number: each record consists of
the time block number, and two pointers to disk pages in the second level
indexes, namely the ContactsIndex and the ReachedIndex. Each record in the
ContactsIndex is comprised of an object id and a pointer to the page in the file
Contacts, which contains, which objects and when were contacted by this object
during the given time block. Each record in the ReachedIndex is composed of
object id and a pointer to the page in the file Reached, which contains, which
objects were reached by this object during the given time block. The order of
objects in each page of the ContactsIndex and ReachedIndex is the same as
in Contacts and Reached respectively. Note that in Fig. 5 with the exception of
the Time Block Index, the time block numbers (left columns) are depicted for
clarity (i.e., they are not part of the index).

3.2 Query Processing

Consider a query (Og,Or,I), where Og is the source object, Or is the tar-
get object, and time interval I = [t,,t¢]. Before processing this query, we need
to identify the time blocks that ¢; and t; belong to. Suppose, t; € B, and

12 E.V. Strzheletska and V.J. Tsotras

ty € Byy1. Using the TimeBlockIndex, we can identify the starting posi-
tions of each block B; (such that B, < B; < By) in the ContactsIndex and
ReachedIndex. In most cases, the second level indexes, ContactsIndex and
ReachedIndex, are accessed at most once per block, before accessing data related
to contacts and reachability respectively. Let Syeqcheq denote the set of objects
that have been reached so far. Initially, Syeqcheq contains only one element, the
source object Og. As the query proceeds, new elements are included into this
set, and as soon as O is added to it (or the end of the last block is reached),
the query processing terminates, as either the target, or the end of the query
interval is reached.

Straightforward Query Processing. After S,cqcheq is initialized with Og, a
straightforward approach would be to start query processing from file Contacts.
We discover objects that were in contact with Og at time ¢, and add them to
Sreached- The process has to be repeated, however now the contacts need to be
found for each object that belongs to the updated S;eqcheq at time ts11. We
proceed this way until the last time instant of the block By is processed. The
next step is to find block Bsy; in file Reached, determine all objects that could
be reached by each object from Sjeqched, and update Sycqcheq- The algorithm
iterates through these steps in Reached until either By_;-st block is processed,
or the target is reached. Finally, the process returns to file Contacts. If Or has
not been reached, the remaining query interval that belongs to block By needs
to be checked. On the other hand, if Or was reached during or before B¢_;-st
block, then the last block, processed in Reached has to be traversed in Contacts
once again, to determine the exact time of the contact, when target was reached.

Optimized Query Processing. At the beginning and at the end of the query,
when processing information from Contacts, new objects are added to Syeached
at each time instant. This leads to an increase of disk accesses as parts of file
Contacts that cover the first and the last blocks may be read multiple times
(in the worst case, C' times, where C' is the contraction parameter). This can be
avoided if query processing begins from reading file ReachedIndezx.

Theorem 2. Let I and I' be two time intervals such that I C I'. If Op is
reachable from Og during I, then Ot is reachable from Og during I' as well.
Also, if Or is not reachable from Og during I', then O is not reachable from
Og during I.

The optimized query processing algorithm (Algorithm 1) starts from the
ReachedIndex (from the page, pointed by the TimeBlockIndex), and attempts
to find a record for the source object (it will start at By and continue until either
some record is found, or the end of the interval reached). If such record is found,
it points to the page in Reached, from where we can determine all objects, that
were reached by Og during the current time block. However, if the current block
is the first block of the query, and ¢4 is not the first time instant of this block,
caution is needed, as (according to the theorem above) the set of objects, reached
by Og during By is the superset of the set of objects, reached by Og from t;

Fast Reachability Query Processing on Large Spatiotemporal Datasets 13

Algorithm 1. Reachability query processing
1: procedure QUERY PROCESSING(Og, Or, I)

2: SReached - {05}7 tReached = OO
3: find Bs and By, Beur = Bs
4: Crna = readTimeBlockIndex(Bs, By) > Find position of each B; in
5: Rina = readTimeBlockIndex(Bs, Bf) b ContactsIndex and ReachedIndex
6: while (OT ¢ SReached and Bcur §£ Bf+1) do
7 Rpagerns = {0} > Rpagerps - list of pages to be read from Reached
8: while (Rpagerps = {0} and Beur # Byy1) do
9: Rpagerps = readReachedIndex(Rind, Skeached)
10: Bewr ++
11: Stemp = {0} > Stemp is the set of objects, reached during the block
12: Stemp = findReached(RpangS, SRE(LChed7 Bcur)
13: if (Beur = Bs or Beur = By or Or € SReached) then
14: Crageins = {0} > Chagerns - list of pages to be read from Contacts
15: Chpagerns = readContactsIndex(Cind, Sreached, Stemp)
16: Snew = filterContacts(CpagerDsy SReached, Stemp)
17: Sreached = SReached U Snew
18: if (Or € SReached) then
19: update t Reached
20: else(SReached = SReached U Stemp)
21: Bewr ++
22: return treached > If tReached = 00, then the target has not been reached

to the end of B,. Hence, we need to traverse Contacts to make sure that we
filtered all the objects that do not satisfy the time condition (the only time they
were reached by the source was before the beginning of the query). After the set
Sreached 18 finalized, the algorithm switches to file Reached again, and proceeds
as in the previous version, with the exception of the last time block. Suppose, we
arrived at the end of By_1, collected all objects that were reached so far, but Or
was not among them. Now, we continue in Reached, and record all objects that
were reached during By. If the target is not one of them, the query processing
is completed. However, if O was reached during By, and t¢ is not the last time
instant of this block, then (again, it follows from the theorem above) we have to
return into C'ontacts, and confirm that the target was reached before the end
of the query interval. Although this algorithm may read from Contacts at the
beginning and/or at the end of the query, just like the straightforward query
processing, the major difference is that in this case, we read a time block (or
rather its portions) only once, thus minimizing the number of 1/Os.

3.3 Reachability with Transfer Delays

We now consider the reachability scenario using transfer delays. This scenario is
challenging because transferring information between two objects requires that
they remain in contact for some time (we call this a meeting). It is thus important
to identify when the transfer starts, i.e., when the first contact occurs. To simplify

14 E.V. Strzheletska and V.J. Tsotras

Fig. 6. Reachability with meetings: (a) Sliding window covers time instants to, 1, t2;
(b) Sliding window covers time instants ti,t2,t3. Meeting are shown with gray
rectangles.

the problem we first consider no processing delays (i.e. PT). Let \; be the time
duration required to transfer information between two objects. We say that two
objects O; and O; have a meeting if they had been within the threshold distance
deont from each other for at least \;. Assuming that object O; was carrying some
information, object O; will be considered ‘reached’ itself after A; from the start
of the meeting (and can thus be able to retransmit this information). Below we
show, how RICC can be extended to work with meetings.

To identify when the first contact between two objects occurs, we remove
the assumption that contacts can be identified only at reported time instants.
The only assumption we need is that between two consecutive location records
objects move linearly. Let d,,., denote the largest distance that can be covered
by any object during time At. We call two objects O; and O; ‘candidate contacts’
at time ty, if they are within the distance d.. = 2dnaz + deont from each other
at that time instant. If two objects are not candidate contacts at tj, they cannot
have a contact during the interval [tg, tx11)-

Again, to find the contacts, we partition the area covered by the dataset
into spatial blocks (grid cells). However, this time the size of the cell has to
be d... During the contact graph construction phase, as opposed to identifying
all contacts, we find all candidate contacts at each time instant. Next, for each
pair of candidate contacts, we need to verify, whether the contact between them
occurred, and if yes, what was the length of their meeting. To perform such a
filtering of candidates, we can utilize a sliding time window of size p, i.e., a set
of snapshots of all the moving objects taken at p consecutive time instants. For
example, for p = 3 a window w; will cover time instants t;, t;11, and ¢;42. The
length of the window p can be calculated as follows: p = (%‘t + 1].

Consider a sliding window that starts at tx. Since it is assumed that between
two consecutive location records objects move linearly, it is easy to verify whether
two candidate contacts at t; had a contact during [tg,tx+1), and find the time
of the contact t.. Now, using a line-sweep algorithm, we find the length of each
meeting by “sweeping the line” from t; to t;4,—1. If we confirm that there was
a meeting between O; (the ‘carrier’) and Oj, O; is considered to be ‘reached’ at
t. + As. The rest of the preprocessing as well as the query processing is similar
to those, described for the RICC.

Fast Reachability Query Processing on Large Spatiotemporal Datasets 15

We should point out that the approach considered above for the PT reach-
ability, can be easily modified to solve the PT reachability problem. Object
Oj, that was reached at t. + X in the PT scenario, cannot start retransmission
immediately under the PT' scenario due to the processing delay \,. Instead, O;
is ready to start the exchange at t. + A; + \p. It is also easy to modify the PT'
algorithm to solve a general PT reachability problem (without the assumption
that contacts can be identified only at reported time instants). After all con-
tacts are found, we simply omit the meeting verification portion. As a result,
with some modifications, RICC can solve all three problems that involve delays.

4 Experiments

4.1 Dataset Description

We tested the proposed algorithm on two types of realistic datasets. Three of
the datasets were created by the Brinkhoff data generator [3], which gener-
ates traces of objects, moving on real road networks. For our experiments we
chose the San Francisco Bay area road network, which covers an area of about
30000 km?. Three datasets contain the information about 1000,2000, and 4000
moving (within the speed limit) vehicles respectively; the location of each vehicle
was recorded every 5 seconds and collected during a four month period (a total
of 2,040,000 time instants). Further, we assume that wireless communication is
held via the Dedicated Short-Range Communications protocol (DSRC), which
can afford contacts for up to 300 m. Thus, for the experiments on these datasets
deont = 300m. We will refer to these sets as the Moving Vehicle datasets (or
MVy, MVy, and MV, for sets of 1000, 2000, and 4000 objects respectively).

For the second type of datasets, we created our own data generator, which
utilizes the popular random waypoint model, frequently used for modeling move-
ments of mobile users. According to this model, each user chooses the direction,
speed (between 1.5m/s and 4m/s), and duration of the next trip, then com-
pletes it, after which chooses the parameters for the next trip, and so on. The
three generated sets simulate the movements of 10000, 20000, and 40000 individ-
uals respectively, whose location is recorded every 6 seconds for a period of one
month (432,000 time instants total), and cover the area of 100 km? each. These
sets will be referred to as Random Waypoint datasets (or RW7, RWs, and RW,
for sets of 10000,20000, and 40000 objects respectively). We perform two sets
of experiments on these datasets. For the first, we presume the communication
over a Bluetooth connection and a contact distance of deon: = 25m. For the
second set of experiments, we assume that the individuals have to transfer a
physical item in order for the contact to occur, and set a contact distance to be
deont = 2m. The size of each dataset is given in Table 1(a).

Since we consider disk-resident datasets, the performance is evaluated using
the number of disk accesses (I/Os) for query processing. The ratio of a sequential
I/0 to a random I/O is system dependent; for our experiments this ratio is
20:1 [24]. In the rest, the total number of I/Os reports the equivalent number of
random I/Os (that is, we assume that 20 sequential I/Os are equal to 1 random,

16 E.V. Strzheletska and V.J. Tsotras

Table 1. (a) Size of datasets and indexes, and (b) System specifications

Size of Index Size (GB)
Dataset Dataset
(GB) RICC ReachGrid
MV, 54 17 54
MV, 107 56 100 €S W
MV 213 175 = Disk Size 3TB, 7200 RPM
s
RW, 97 31 2 CPU 3.3 GHz
RW, 194 120 197 RAM BEB
RW, 387 419 392 Page Size 4096 B
(a) Size of datasets and indexes (b) System specifications

Table 2. Parameter optimization on dataset MV;

Contraction Parameter (Time instants)
20 40 60 80
Grid 20 9295 5884 5162 5779
Resolution
(Thousand 40 9277 5876 5192 5738
km) 60 9278 5874 5127 5656
80 9260 5815 5146 5413

and calculate the total number of I/Os using this ratio). The specifications for
the system used for the experiments are given in Table 1(b).

4.2 Parameter Optimization

The query performance of RICC depends on two parameters: the contraction
parameter C' and the grid resolution G, both of which are dataset dependent. To
tune these parameters we used a subset of the dataset (of size 10 %). In general,
if data is time-wise homogeneous across a dataset, any portion of it could be
used, while if data differs according to some pattern - day /night, rush hour, etc.,
a sample that reflects the pattern should be created. We tested the performance
of RICC using a set of 300 queries (the length of each query was picked uniformly
at random between 100 and 500 time instants), and found the pair (C, G), which
minimized the number of I/Os. The results of the parameter tuning experiments
for dataset MV, are shown in Table 2; based on these results for the rest of the
experiments involving MV; we pick (C,G) = (60, 60) (the values for the other
datasets were picked in a similar way).

4.3 Preprocessing and Indexing

Preprocessing Time. The preprocessing time depends on the size of a dataset,
as well as on the contraction parameter. During the parameter optimization
phase, if there are cases where several pairs of parameters (C, G), give approx-
imately the same query performance, we choose the pair with the smaller con-
traction parameter C as this leads to less preprocessing.

The preprocessing time for our datasets ranged from 90 min (for the Moving
Vehicles, 1000 objects dataset) to 43h (for the Random Walk, 40000 objects

Fast Reachability Query Processing on Large Spatiotemporal Datasets 17

7%RICC 7 RICC % RICC
5120 W ReachGrid 8180 ReachGrid & 315 m ReachGrid
= = L
5 5 5
5 80 15120 y 210
o E-] 3
5 £ §
Z 40 Z 60 = 105
, % % , 2
o /M /M 7 o o
100 300 500 100 300 500 100 300 500
Query Length (Time Instants) Query Length (Time Instants) Query Length (Time Instants)
(a) Mv, (b) MV, (c) MV,

Fig. 7. Query performance evaluation for one-to-one queries; MV datasets

720 1140 1980
7 RICC 7RICC 7 RICC
— 1650
, 600 mReachGrid 3 950 m ReachGrid 3 m ReachGrid
L a0 L 760 S 1320
5 s E)
g 30 g 570 y o0 Y
E 240 E 380 E 660 -
=z
= 120 | 190 - 7/ % a0
0 0 _ 0-
100 300 500 100 300 500 100 300 500
Query Length (Time Instants) Query Length (Time Instants) Query Length (Time Instants)
(a) Rw, (b) RW, (c) RW,
Fig. 8. Query performance evaluation for one-to-one queries; RW datasets
dataset and deon: = 25m). Taking into account the preprocessing speed, as

well as the fact, that during the preprocessing each time block of data is read
(consequently) into main memory only once, we conclude, that RICC can be
applied for processing spatiotemporal data streams.)

Index Size. Fast reachability algorithms often suffer from large index size.
The smallest query time is achieved when the transitive closure is precomputed
(which however requires space that is quadratic on the graph size). Nevertheless,
RICC can achieve very good query performance while its index size is relatively
small as it can be seen from Table1(a). This is because instead of transitive
closure we precompute reachability for small portions of the graph.

4.4 Query Processing

For the query processing performance evaluation, we ran different sets of 300
queries on each of the preprocessed datasets. Further we implemented the Reach-
Grid for the PT reachability, and optimized its parameters as described in [24].

One-to-One Queries. We first consider one-to-one queries {Os, Oy, I}, (one
source and one target). For the MV and RW (with deon: = 25m) datasets
we created three sets of queries, with query lengths of 100, 300, and 500 time
instances respectively, and evaluated the performance of RICC and ReachGrid
by counting the number of I/Os. The results of these experiments are depicted
in Figs.7 and 8. On all instances, our approach outperforms ReachGrid. This

18 E.V. Strzheletska and V.J. Tsotras

250
~—a— RICC 0
200 —e— ReachGrid -
g o ®
B 10 g
E o
s X
E /
z / 2
’ M N
o - -) 0
S0 100 200 400 800 1600 1000 2000 4000 8000
Query length (time instants) Query length (time instants)
(a) Scaling, one-to-one queries; dataset: MV, (b) Long queries; dataset: RW,, contact distance - 2m

720

BRICC, 1 source object
ORICC, 2 source objects
WRICC, 4 source objects
@ReachGrid, 1 sourceobject

%
.
|
/

|

.

OReachGrid, 2 sourceobject
B ReachGrid, 4 sourceobjects

” i.%% .

100 300 i ’ 500
Query length (time instants)
(c) Testing RICC and ReachGrid, many-to-many queries; dataset: RW,

Number of /Os

DN

Fig. 9. (a) Scaling, (b) long interval queries, and (c¢) multisource queries

improvement is because ReachGrid visits each object in a cell while RICC focuses
on precomputed meetings. As the query length increases the number of objects
to be checked by ReachGrid increases rapidly. Thus the biggest advantage over
ReachGrid (up to 5x improvement) is reached for the longest queries on the
smallest datasets (MV;, RW; which have smallest number of meetings).

Scaling. The next set of tests is used to analyze the dependence of the RICC
performance on the query length. When starting processing a query we need to
retrieve few objects from the disk. If the query specifies a large time interval,
more objects become carriers, which in turn (depending on the efficiency of
an algorithm) may affect the query performance. We tested our algorithm on
the MV; dataset, with five sets of queries, with time intervals ranging from 50
to 1600 instants respectively (after 1600 time instants all objects in the MV;
dataset were reached). As can be seen from Fig. 9(a), while RICC uses a similar
number of disk accesses as ReachGrid for the smallest length queries, it achieves
much better query performance for the longer ones (up to 6.5 times for the 1600
interval). Further, RICC scales well with the size of the query length.

Many-to-Many Queries. We proceed with the experimental results for many-
to-many queries (i.e., queries with several sources and/or several targets). First
we note that Single Source Multitarget Queries have the same performance
as one-to-one queries. Let (O, {O1,,0r1,},I) be a query with the set of tar-
gets {Op,,Or,}. Then the time to answer this query ¢ = maxz(tg1,tg2), and
Nio = maz(N}y, N?y) (where tq, is the time when and if the target t; was

Fast Reachability Query Processing on Large Spatiotemporal Datasets 19

reached (or the end of query interval otherwise), and N, is the number 1/Os,
needed to answer the query (Og, O, I)).

More interesting are the Multisource Queries. In this case if an algorithm
strongly utilizes a spatial locality for index construction, its performance should
decrease when executing queries with more than one source. In the worst case
(when sources are very far from each other), the number of I/Os of a query
({0s,,0s,},07,I) becomes Nio = N}y, + Nip,. For these experiments we
used the MV and RW (dcont = 25m) datasets; as we can see from Fig.9(c),
with the increase of the number of sources, the gap between the number of I/Os
of RICC and ReachGrid, becomes larger.

Long Interval Queries. For the last set of experiments we used the RW;
dataset with d..,s = 2m. Since the contact distance is much smaller than previ-
ously, the average contact degree becomes smaller, which in turn leads to longer
average time for two objects to reach each other. We start with queries that are
1000 time instants long. We extended the query length up to 8000 time instants
(which for this dataset makes about 95 % objects reachable by the end of the
query interval). For these experiments, we were not able to optimize the para-
meters and complete the preprocessing for ReachGrid, since its query processing
was very slow (ReachGrid does not scale well under the given scenario). As it
can be seen from Fig. 9(b), RICC can be effectively used for long interval queries
as well (it scales almost linear with the query length).

5 Conclusions

We proposed the RICC algorithm for efficient spatiotemporal reachability query
processing (without the instant exchange assumption) on large disk-resident
datasets. We tested our algorithm on two types of realistic datasets and differ-
ent types of queries. RICC outperformed the previous known algorithm (Reach-
Grid) on all experiments. In addition, our algorithm shows good performance
for many-to-many queries, while also scaling well. We are currently examining
aggregation-based reachability queries.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient managemet on transitive rela-
tionships in large data and knowledge bases. In: ACM SIGMOD, pp. 253-262
(1989)

2. Bakalov, P., Hadjieleftheriou, M., Keogh, E., Tsotras, V.J.: Efficient trajectory

joins using symbolic representations. In: MDM, pp. 86-93 (2005)

Brinkhoff, T., et al.: Generating traffic data. Data Eng. Bull. 26(2), 19-25 (2003)

4. Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability
queries. In: 19th ACM CIKM, pp. 119-128 (2010)

5. Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with chebyshev polynomials.
In: ACM SIGMOD, pp. 599-610 (2004)

w

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E.V. Strzheletska and V.J. Tsotras

. Chen, S., Ooi, B.C., Tan, K., Nascimento, M.: St2b-tree: a self-tunable spatio-

temporal b+-tree index for moving objects. In: ACM SIGMOD, pp. 29-42 (2008)

. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries

via 2-hop labels. STAM J. Comput. 32(5), 1338-1355 (2003)

. De Almeida, V.T., Giiting, R.H.: Indexing the trajectories of moving objects in

networks. Geoinformatica 9(1), 33-60 (2005)

. Geisberger, R., Rice, M.N., Sanders, P., Tsotras, V.J.: Route planning with flexible

edge restrictions. ACM J. Exp. Algorithms 17(1), 1-20 (2012)

Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: 7th International Conference
on Experimental algorithms (2008)

Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing
of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorny, J., Saltenis, S.,
Bertino, E., Béhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251-268.
Springer, Heidelberg (2002)

Jensen, C., Lin, D., Ooi, B.: Continuous clustering of moving objects. IEEE TKDE
19, 1161-1174 (2007)

Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajec-
tory databases. PVLDB 1, 1068-1080 (2008)

Jin, E., Ruan, N., Dey, S., Xu, J.Y.: Scarab: scaling reachability computation on
large graphs. In: ACM SIGMOD, pp. 169-180 (2012)

Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme
for reachability query. In: ACM SIGMOD, pp. 813-826 (2009)

Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 364-381. Springer, Heidelberg (2005)

Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: IEEE ICDE, pp. 997-1008 (2013)

Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: ACM
PODS, pp. 261-272 (1999)

Merz, F., Sanders, P.: PReaCH: a fast lightweight reachability index using pruning
and contraction hierarchies. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS,
vol. 8737, pp. 701-712. Springer, Heidelberg (2014)

Nguyen-Dinh, L.V., Aref, W.G., Mokbel, M.F.: Spatio-temporal access methods:
part2 (2003-2010). IEEE Data Eng. Bull. 33(2), 46-55 (2010)

Ni, J., Ravishankar, C.V.: Indexing spatiotemporal trajectories with efficient poly-
nomial approximation. IEEE TKDE 19, 663-678 (2007)

Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted tra-
jectories. In: ACM SIGMOD (2004)

Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for
moving object trajectories. In: 26th VLDB Conference, pp. 395-406 (2000)
Shirani-Mehr, H., Banaei-Kashani, F., Shahabi, C.: Efficient reachability query
evaluation in large spatiotemporal contact datasets. PVLDB 5(9), 848-859 (2012)
Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance
and reachability in mobile and online social networks. ACM SIGCOMM Comput.
Commun. Rev. 40(1), 118-124 (2010)

Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in
spatio-temporal data. In: GIS, pp. 286-295. ACM (2009)

Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions
of continuously moving objects. In: ACM SIGMOD, pp. 331-342 (2000)

28.

29.

30.

31.

32.

33.

Fast Reachability Query Processing on Large Spatiotemporal Datasets 21

Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph
reachability queries in constant time. In: ICDE 2006 (2006)

Xiong, X., Mokbel, M.F., Aref, W.G.: Lugrid: Update-tolerant grid-based indexing
for moving objects. In: MDM (2006)

Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: scalable reachability index for large
graphs. PVLDB 3, 276-284 (2010)

Yiu, M.L., Tao, Y., Mamoulis, N.: The bdual-tree: Indexing moving objects by
space filling curves in the dual space. VLDB J. 17(3), 379-400 (2008)

Yufei, T., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal
access method for predictive queries. In: 29th VLDB Conference (2003)

Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic
graphs: a total order approach. In: ACM SIGMOD pp. 1323-1334 (2014)

COLD. Revisiting Hub Labels on the Database
for Large-Scale Graphs

Alexandros Efentakis! ®9) | Christodoulos Efstathiades2, and Dieter Pfoser?

1 Research Center “Athena”, Marousi, Greece
efentakis@imis.athena-innovation.gr
2 Knowledge and Database Systems Laboratory,
National Technical University of Athens, Zografou, Greece
cefstathiades@dblab.ece.ntua.gr

3 Department of Geography and Geolnformation Science,

George Mason University, Fairfax, USA

dpfoser@gmu.edu

Abstract. Shortest-path computation is a well-studied problem in algo-
rithmic theory. An aspect that has only recently attracted attention is the
use of databases in combination with graph algorithms to compute dis-
tance queries on large graphs. To this end, we propose a novel, efficient,
pure-SQL framework for answering exact distance queries on large-scale
graphs, implemented entirely on an open-source database system. Our
COLD framework (COmpressed Labels on the Database) may answer
multiple distance queries (vertex-to-vertex, one-to-many, kNN, RENN)
not handled by previous methods, rendering it a complete solution for
a variety of practical applications in large-scale graphs. Experimental
results will show that COLD outperforms previous approaches (includ-
ing popular graph databases) in terms of query time and efficiency, while
requiring significantly less storage space than previous methods.

1 Introduction

Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf. [9]
for the most recent overview) the emergence of social networks has generated
massive unweighted graphs of interconnected entities. On such networks, the
distance between two vertices is an indication of the closeness of their entities,
i.e., for finding users closely related to each other or extracting information about
existing communities within the social media users. Although we may always use
a breadth first search (BFS) to calculate the distance between any two vertices
on such graphs, that approach cannot facilitate fast-enough queries on main
memory or be easily adapted to secondary storage solutions.

Moreover, most of the excellent preprocessing techniques available for road
networks cannot be adapted to large-scale graphs, such as social or collaboration
networks. So far, the most promising approach for this type of graphs builds on
the 2-hop labeling or hub labeling (HL) algorithm [12,23], in which we store a
© Springer International Publishing Switzerland 2015

C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 22-39, 2015.
DOI: 10.1007/978-3-319-22363-6_-2

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 23

two-part label L(v) for every vertex v: a forward label L (v) and a backward label
Ly(v). These labels are then used to very fast answer vertex-to-vertex shortest-
path queries. This technique has been adapted successfully to road networks
[2-4,15] and quite recently has also been extended to undirected, unweighted
graphs [5,14,25]. The HL method has also been applied for one-to-many, many-
to-many and kNN queries in road networks [16,17] and kNN and RANN queries
in the context of social networks in [21].

Although hub labeling is an extremely efficient shortest-path computation
method using main memory, there are very few works that try to replicate those
algorithms for secondary storage. HLDB [18] stores the calculated hub labels for
continental road networks in a commercial database system and translates the
typical HL distance query between two vertices to plain SQL commands. More-
over, it showed how to efficiently answer kNN queries and k-best via points, again
by means of SQL queries. Recently, HopDB [25] proposed a customized solution
that utilizes secondary storage also during preprocessing. Unfortunately, both
methods have their shortcomings. HLDB has only been tested on road networks
and consequently small labels sizes (<100). Its speed would seriously degrade
for large-scale graphs due to the much larger label size. HopDB answers only
vertex-to-vertex queries and is a customized C++ solution that cannot be used
with existing database systems and, hence, has limited practical applicability.

This work presents a database framework that may service multiple distance
queries on massive large-scale graphs. Our pure-SQL COLD framework (COm-
pressed Labels on the Database) can answer multiple exact distance queries
(point-to-point, kKNN) in addition to RANN and one-to-many queries not han-
dled by previous methods, rendering it a complete database solution for a variety
of practical massive, large-scale graph problems. Our extensive experimentation
will show that COLD outperforms previous solutions, including specialized graph
databases, on all aspects (including query performance and memory require-
ments), while servicing a larger variety of distance queries. In addition, COLD is
implemented using a popular, open-source database engine with no third-party
extensions and, thus, our results are easily reproducible by anyone.

The outline of the remainder of this work is as follows. Section 2 presents
related work. Section 3 describes the novel COLD framework and its implemen-
tation details. Experiments establishing the benefits of COLD are provided in
Sect. 4. Finally, Sect. 5 gives conclusions and directions for future work.

2 Related Work

Throughout this work we use undirected, unweighted graphs G(V, E) (where V rep-
resents vertices and E arcs). A k-Nearest Neighbor (kNN) query seeks the k-nearest
neighbors to an input vertex g. The RENN query (also referred as the monochro-
matic RENN query), given a query point g and a set of objects P, retrieves all the
objects that have ¢ as one of their k-nearest neighbors according to a given dis-
tance function dist(). In graph networks, dist(s, t) corresponds to the minimum net-
work distance between the two objects. Formally RkNN(q) = {p € P : dist(p,q)

24 A. Efentakis et al.

< dist(p,pr)} where py is the k-Nearest Neighbor (KNN) of p. Throughout this
work, we assume that objects are located on vertices and we always refer to snap-
shot kNN and RENN queries on graphs, i.e., objects are not moving. Also, similarly
to previous works, the term object density D refers to the ratio |P|/|V|, where P is
aset of objects in the graph and |V is the total number of vertices. Although, there
is extensive literature focusing on kNN and RENN queries in Euclidean space, since
our work focuses on graphs we will only describe related work focusing on the latter.

Regarding road networks and ANN queries, G-tree [33] is a balanced tree
structure, constructed by recursively partitioning the road network into sub-
networks. Unfortunately, this method cannot scale for continental road networks,
since it requires several hours for its preprocessing. Moreover, it requires a target
selection phase to index which tree-nodes contain objects (requiring few seconds)
and thus, cannot be used for moving objects. Recently, the work of [17] expanded
the graph-separators CRP algorithm of [13] to handle kNN queries on road
networks. Unfortunately, (i) CRP also requires a target selection phase and thus,
cannot be applied to moving objects and (ii) it may only perform well for objects
near the query location. Hence, this solution is also not optimal. The latest work
for kNN queries on road networks is the SALT framework [22] which may be
used to answer multiple distance queries on road networks, including vertex-
to-verter (v2v), single source (one-to-all, range, one-to-many) and kNN queries.
This work expands the graph-separators GRASP algorithms of [20] and the ALT-
SIMD adaptation [19] of the ALT algorithm and offers very fast preprocessing
time and excellent query times. For kNN queries, SALT does not require a target
selection phase and hence it may be used for either static or moving objects.

For RENN queries on road networks, the work of [30] uses Network Voronoi
cells (i.e., the set of vertices and arcs that are closer to the generator object) to
answer RENN queries. This work has only been tested on a relatively small
network (110 K arcs) and all precomputed information is stored in a data-
base. Despite the fact that the preprocessing stage for computing the Network
Voronoi cells is quite costly, the queries’ executions times range from 1.5s for
D = 0.05 and k = 1, up to 32s for k = 20, rendering this solution impracti-
cal for real-time scenarios. Up until recently, the only work dealing with other
graph classes (besides road networks) is [32], although it has only been tested on
sparse networks, e.g., road networks, grid networks (max degree 10), p2p graphs
(avg degree 4) and a very small, sparse co-authorship graph (4 K nodes). In this
work, the conducted experiments for values of k > 1 refer only to road networks,
therefore the scalability of this work for denser graphs and larger values of k is
questionable. Recently, Borutta et al. [10] extended this work for time-dependent
road networks, but presented results were not very encouraging. The larger road
network tested had 50 k nodes (queries require more than 1s for k = 1) and for
a network of 10 k nodes and k = 8, RENN queries take more than 0.3 s (without
even adding the I/O cost). In a nutshell, all existing contributions and methods
have not been tested on dense, large-scale graphs, cannot scale for increasing
k values and their performance highly depends on the object density D.

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 25

Our work builds upon the 2-hop labeling or Hub Labeling (HL) algorithm
of [12,23] in which, preprocessing stores at every vertex v a forward Lj(v)
and a backward label Ly(v). The forward label Ly(v) is a sequence of pairs
(u, dist(v,u)), with ueV. Likewise, the backward label L;(v) contains pairs
(w,dist(w,v)). Vertices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and ¢, the set L;(s) N Ly(¢)
must contain at least one hub that is on the shortest s — ¢ path. For undi-
rected graphs Ly(v) = Ly(v). To find the network distance dist(s,t) between
two vertices s and ¢, a HL query must find the hub v € L(s) N Ly(t) that min-
imizes the sum dist(s,v) + dist(v,t). By sorting the pairs in each label by hub,
this takes linear time by employing a coordinated sweep over both labels. The
HL technique has been successfully adapted for road networks in [2-4,15]. In
the case of large-scale graphs, the Pruned Landmark Labeling (PLL) algorithm
of [5] produces a minimal labeling for a specified vertex ordering. In this work,
vertices are ordered by degree, whereas the work of [14] improves the suggested
vertex ordering and the storage of the hub labels for maximum compression.
The HL method has also been used for one-to-many, many-to-many and kNN
queries on road networks in [16] and [17] respectively. Our latest work [21] pro-
posed ReHub, a novel main-memory algorithm that extends the Hub Labeling
approach to efficiently handle REKNN queries. The main advantage of the ReHub
algorithm is the separation between its costlier offline phase, which runs only
once for a specific set of objects and a very fast online phase which depends on
the query vertex ¢. Still, even the costlier offline phase hardly needs more than
1 s, whereas the online phase requires usually less than 1ms, making ReHub the
only RENN algorithm fast enough for real-time applications and big, large-scale
graphs.

Regarding secondary-storage solutions, Jiang et al. [25] propose their HopDB
algorithm that suggest an efficient HL index construction when the given graphs
and the corresponding index are too big to fit into main memory. The work of [1]
introduced the HLDB system, which answers distance and kNN queries in road
networks entirely within a database by storing the hub labels in database tables
and translating the corresponding HL queries to SQL commands. Throughout
this work, we will compare our proposed COLD framework to HLDB, since to the
best of our knowledge, it is the only framework that may answer exact distance
queries entirely within a database. Moreover, within the COLD framework we
also adapt our ReHub main-memory algorithm into a database context, so that
its online phase may be translated to fast and optimized SQL queries.

3 Contribution

This section presents the COLD (COmpressed Labels on the Database) database
framework. COLD can answer multiple distance queries (vertex-to-vertex, kNN,
RENN and one-to-many) for large-scale graphs using SQL commands. Since
COLD builds on HLDB [1] and ReHub [21], we will follow the notation and
running example presented there, for highlighting the necessary concepts and

26 A. Efentakis et al.

Table 1. The created hub-labels for the sample
graph G of Fig. 1

Vertex Hub Labels (h,d)
0 (0,0)
1 (0,1), (1,0)
2 (0,1), (2,0)
3 (0,1), (3,0)
4 (0,1), (4,0)
5 (0,2), (1,1), (5,0
6 (0,2), (1,1), (6,0)
7 (0,2), (1,1), (7,0)
8 (0,2), (2,1), (8,0)
9 (0,2), (3,1), (9,0)
10 (0,2), (4,1), (10,0)
. 11 (0,3), (1,2), (5,1), (11,0)
Fig. 1. A sample Graph G 12 (0,3), (1,2), (6,1), (12,0)
13 (0,3), (1,2), (7,1), (13,0)

challenges for adapting those previous works, (i) in the context of large-scale
graphs for [1] and (ii) within the boundaries of a relational database manage-
ment system (RDBMS) for [21]. To this end, we chose PostgreSQL [29] for our
implementation, given that it is a popular, open-source RDBMS. Although we
use some PostgreSQL-specific data-types and SQL extensions, we do not use any
third-party extensions but only features included in its standard installation.

3.1 Implementation

The COLD framework assumes that we have a correct hub labeling (HL) frame-
work that generates hub-labels for the undirected, unweighted graphs we wish
to query. Although COLD will work with any correct HL. algorithm, in this
work we use the [6] implementation of the PLL algorithm of [5] to generate
the necessary labels. To highlight the results of this process, the labels for the
undirected, unweighted graph G of Fig. 1 are shown in Table 1. Throughout this
work, we will refer to those labels as the forward labels. The forward label L(v)
for a vertex v is an array of pairs (u, dist(v,u) sorted by hub w. Since our work
also focuses on snapshot kNN and RENN queries, there also some objects PV
that do not change over time. For our specific running example we assume that
P ={4,10,12} and thus, we highlight the respective entries of Table 1.

Vertex-to-Vertex (v2v) Queries. To find the network distance dist(s,t)
between two vertices s and ¢, a HL query must find the hub v € L(s)NL(¥)

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 27

Table 2. The forward table used Table 3. The forwcold table used
in HLDB for the sample graph G for COLD for the sample graph G

v |hub dist v | hubs | dists
20 | 1 2 | {0,2} | {1,0}
2 2 L. - L.
7 1{0,1,7} {2,1,0}
710 e .
7 1 1
TT
Code 1.1. V2v query for HLDB Code 1.2. V2v query for COLD

1+ SELECT MIN(nl.dist+n2.dist) 1 SELECT MIN(nl.d+n2.d) FROM
2 FROM forward nl, forward n2 2 /* Ezpand hubs, dists arrays */

3 WHERE nl.v = s 3 (SELECT UNNEST (hubs) AS hub,
4 AND n2.v = t 4+ UNNEST (dists) AS d
5 AND nl1.hub = n2.hub; 5s FROM forwcold WHERE v = s) nil,

6 (SELECT UNNEST (hubs) AS hub,
7 UNNEST (dists) AS d

s FROM forwcold WHERE v = t) n2
o WHERE n1l1.hub=n2.hub;

that minimizes the sum dist(s,v) + dist(v,t). For our sample graph G, the min-
imum distance between e.g., vertices 2 and 7 is d(2,7) = 3, using the hub 0.
To translate this HL query into SQL commands, in HLDB [1] forward labels
are stored in a database table denoted forward where the labels of vertex v are
stored as triples of the form (v, hub, dist(v, hub)) (see Table 2). The table forward
has the combination of (v, hub) as the primary key and is clustered according
to those columns, so that “all rows corresponding to the same label are stored
together to minimize random accesses to the database” [1]. Then we can find the
distances between any two vertices s and ¢t by the SQL query of Code 1.1.
Although the HLDB vertex-to-vertex (v2v) query is very simple, there is one
major drawback. For such a query, HLDB has to fetch from secondary storage
the subset of |L(s)| + |L(t)| rows with common hubs. Although this is prac-
tical for road networks where the forward labels have less than 100 hubs per
vertex [3], it cannot scale for large-scale graphs where the forward labels have
thousand of hubs per vertex. Moreover, on such graphs the forward DB table
and the corresponding primary key index will become too large, which is also an
important disadvantage. To this end, we take advantage of the fact that Post-
greSQL features an array data type that allows columns of a DB table to be
defined as variable-length arrays. Hence, in COLD we store hubs and distances
for a vertex (both ordered by hub) as arrays in two separate columns (i.e., hubs
and dists) in a single row. The resulting forwcold compressed DB table is shown

28 A. Efentakis et al.

in Table3. This approach not only emulates exactly how labels are stored on
main-memory for fast v2v queries but also has considerable advantages: (i) The
forwcold DB table has exactly |V| rows (ii) The forwcold DB table has the col-
umn v as primary key without needing a composite key. This alone facilitates
faster queries. Moreover the size of the corresponding index will be much smaller.
In fact, our experimentation will show that the primary-key index for forwcold
may be > 4,400x smaller than the index size of HLDB. (iii) For a v2v query,
COLD needs to access exactly two rows, regardless of the sizes of |L(s)| and
|L(t)]. This way, we efficiently minimized the secondary-storage utilization, even
working inside a database. The resulting SQL query for COLD is shown in Code
1.2. There we exploit the fact that PostgreSQL “guarantees that parallel unnest-
ing” for hubs and distances for each nested query “will be in sync”, i.e., each
pair (hub, dist) is expanded correctly since for the same v the respective arrays
have the same number of elements!.

Additional Queries Overview. For answering more complex (KNN, RENN and
one-to-many) distance queries on a HL framework for a set of objects P, we need
to build some additional data structures from the forward labels (for undirected
graphs). Then to answer the respective query we only need to combine the forward
labels L(g) of query vertex ¢, with the respective data structure explained in the
following. Those data structures are summarized in Table 4.

Table 4. Necessary data structures for the sample graph G, P = {4, 10,12} and one-
to-many, kNN and RENN queries

Hub | Backward Labels | kNN Backward | RENN Backward | Obj | kNN Result (k=1)
(to-many) [16] | Labels (k=2) [1] | Labels (k=1) [21] (Obj., dist) [21]
0 |(4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3) 4 (10,1)
1 (12,2) (12,2) (12,2)
4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1) 10 (4,1)
6 (12,1) (12,1) (12,1)
10 (10,0) (10,0) (10,0) 12 (4,4)
12 (12,0) (12,0) (12,0)

For answering one-to-many queries, i.e., calculate distances between a source
vertex q and all objects in P, we need to build the backward labels-to-many by
basically ordering the forward labels of the objects by hub [16] and then by
distance for the same hub. For kNN queries we only need to keep at most the
k-best pairs (of smallest distances) per hub from the backward labels-to-many to
create the kNN backward labels [1]. In our specific example, the kNN backward
labels for £ = 2 and hub 0, do not contain the pair (12, 3). Finally, for RENN
queries, we must first calculate the kNN Results (i.e., the NN of the object 4 is the
object 10 with distance 1) and then we build the RENN backward labels, based

! http://stackoverflow.com/a/23838131.

http://stackoverflow.com/a/23838131

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 29

on the observation that “we need to access those pairs from the backward labels-
to-many to a specific object, if and only if those distances are equal or smaller
than the distance of the kNN of this object” [21]. In our specific example, the
RENN backward labels for £ = 1 and hub 0, do not contain the pair (10,2) since
the NN of object 10 (the object 4) is within distance 1. Although for our small
graph the differences between the individual data structures seem minimal, for
larger graphs those differences become very prominent. This was also showcased
by the theoretical analysis provided in [21] which showed that backward labels-
to-many will have on average D - |H L| pairs, the kNN backward labels have at
most k - |V| pairs and the RENN backward labels have on average € - D - |HL)|
pairs where € may be < 0.01 for specific datasets and experimental settings.
Moreover, Efentakis et al. [21] have shown how these additional data structures
may be constructed from the forward labels in main-memory, requiring less than
few seconds, even for the larger tested datasets.

kNN Queries. To translate the HL. kNN query into SQL, HLDB stores kNN
backward labels in a separate DB table denoted knntab that stores triples of the
form (hub, dist, obj) (see Table5). The respective table knntab has the combina-
tion of (hub,dist,o0bj) as a composite primary key and is clustered according to
those columns. Note that in HLDB, we cannot use the combination of (hub, dist)
as a primary key, because especially in large scale graphs we will have a lot of
distance ties even for k-entries for the same hub. Then we can can answer a kNN
query from vertex ¢ by the SQL query of Code 1.3. Again, the kNN HLDB query
has the same drawbacks as before, i.e., it has to retrieve |L(q)| rows from forward
and k- |L(q)| rows from knntab tables, for a total of (k+1)-|L(q)| rows retrieved
from secondary storage. Moreover in a database, it makes sense to create one
large knntab table for the maximum value kmax of k (e.g., for k = 16) that may
be serviced by the DB framework and that same table will be used for all kNN
queries up to k = kmax. In that case, the HLDB framework will have to retrieve
(kmaz + 1) - |L(q)| rows for every kNN query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB table
(Table6) that has the columns (hub,dist,objs), whereas objects are grouped
and ordered per hub and distance (the column objs is an array). Although
for our sample graph G, the DB tables knntab and knncold seem identical,
COLD’s method offers several advantages: (i) We can now use the combination
of (hub,dist) as a primary key, which makes the respective index significantly

Table 5. The knntab table used Table 6. The knntab table used
in HLDB for the sample graph G, in COLD for the sample graph G,

k=2 and P = {4,10,12} k=2 and P = {4,10,12}
hub | dist | obj hub | dist | objs
0 1 4 0 1 {4}
0 2 10 0 2 {10}
1 2 12 1 2 | {12}

30 A. Efentakis et al.

smaller and faster and (ii) In case of many distance ties (common to large-scale
graphs) and one large knncold DB table that services all kNN queries for val-
ues of k up to the maximum value kmax, we only need to fetch the first k-objs
entries (i.e., objs[1:k]) per hub and dist, which makes the later sorting faster
(see Code 1.4).

Code 1.3. kNN query for HLDB Code 1.4. kNN query for COLD

SELECT MIN(nl.dist+n2.dist),
n2.obj FROM

forward nl, knntab n2

WHERE nl1.v = q

1 SELECT MIN(nl.d+n2.dist),
2

3

4

5 AND nl1.hub = n2.hub

6

7

8

UNNEST (objs) AS obj FROM
(SELECT UNNEST (hubs) AS hub,
UNNEST (dists) AS d

FROM forwcold WHERE v = q) nl,
/* k-entries per hub,dist */
(SELECT hub, dist,objs[1:k]
FROM knncold) n2

WHERE n1.hub=n2.hub

GROUP BY obj

ORDER BY MIN(nl.d+n2.dist)
LIMIT k;

GROUP BY n2.obj
ORDER BY MIN(nl.dist+n2.dist)
LIMIT k;

© 0 N e oA W N

== e
v o= O

One-to-Many Queries. Similar to how COLD handles kNN queries, for one-
to-many queries, COLD stores the backward labels-to-many in a new objcold
DB table that has an identical format to knncold, i.e., it has three columns
(hub, dist,0bjs) whereas objects are grouped and ordered per hub and distance.
Objcold also uses the combination of (hub, dist) as a primary key. The resulting
one-to-many query (Code 1.5) is quite similar to COLD’s kNN query, but (i) it
operates on the larger objcold DB table (ii) It does not have the ORDER BY ...
LIMIT k clause and (ili) We use the entire objs array per hub and distance
instead of objs[1:k]. Note that HLDB cannot possibly support such queries
because it will need to retrieve on average |L(q)| rows from the forward table
and a total of |L(q)| - D - (|[HL|/|V|) [21] rows from the corresponding objlab
table, which will be prohibitively slow for very large datasets.

RENN Queries. For RENN queries, COLD stores the

Table 7. The knnres RENN backward labels in a separate revcold DB table
table used in COLD that has an identical format to previous knncold and obj-
for RENN - queries, ¢old DB tables, i.e., three columns (hub, dist, objs) where
the sample graph G, ghiects are grouped and ordered per hub and distance
{;4 1:() 112}and P = and the combination of (hub, dist) used as a primary key.
T COLD also stores the kNN Results, i.e., the kNN of all
obj | dists | objs objc?ct? in an(?ther knnres DB table t.hat has the formz.xt
4 {1} {10} (ob],dzsts,objs,) where obj is the primary key and objs
00 {1 {4 and dists are arrays (both ordered by distance) (Table 7).
12 {4 {4 Therefore the kNN of object p is the objs[k] within dis-
tance dists[k] of the respective row for p. Again it makes

sense to build a knnres DB table for a max value of kmax

that may service RENN queries for varying values of k. As a result, during the

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 31

Code 1.5. One-to-many COLD query Code 1.6. RENN query for COLD
1 SELECT MIN(nl.d+n2.dist), 1 SELECT n3.id2,n3.dist FROM

2 UNNEST (objs) AS obj FROM 2 /¥ n3 subquery is a modified

3 (SELECT UNNEST (hubs) AS hub, 3 one-many-query to revcold */

4 UNNEST (dists) AS d 4+ (SELECT MIN(nl.d+n2.dist) AS d3,
5 FROM forwcold 5 UNNEST (objs) AS obj FROM

6 WHERE v = q) ni, 6 (SELECT UNNEST (hubs) AS hub,

7 objcold n2 7 UNNEST (dists) AS 4

8 WHERE nl1.hub=n2.hub 8 FROM forwcold WHERE v = q) nl,

9 GROUP BY obj; 9 revcold n2

10 WHERE n1.hub=n2.hub

11 GROUP BY obj

12 ORDER BY obj ,MIN(n1.d+n2.dist)
13) n3,

14 /* Join with knnres table */
15 (SELECT obj, dists[k] AS dist
16 FROM knnres) n4

17 WHERE n3.obj=n4.o0bj

18 AND n3.d3<=n4.dist

19 ORDER BY n3.o0bj;

RENN COLD query, we will have to use an additional JOIN between the revcold
and knnres DB tables. The resulting query is shown in Code 1.6.

We see that even the more complex RENN query in COLD requires just a
few lines of SQL code that will work on any recent PostgreSQL version without
any need of third-party extensions or specialized index structures. In fact, all
DB tables in COLD, use only standard B-tree primary key indexes, without
any modifications. To satisfy this strict requirement, we effectively compressed
the index sizes by grouping rows per vertex (forcold table) or object (knnres
table), or by hub and distance for knncold, objcold and rknncold. And although
we used PostgreSQL specific SQL extensions for expanding the stored arrays,
latest versions of other databases (e.g., Oracle) support similar array data-types.
Hence, it would be quite easy to port COLD to other database vendors as well.

This section detailed the COLD framework in terms of design and imple-
mentation. COLD can answer multiple distance queries (v2v, kNN, RkKNN and
one-to-many) based on data stored in an off-the-shelf relational database. We
also presented the actual queries used and the way the necessary data struc-
tures are stored within the database, so that our results are easily reproducible.
Although we focused on query efficiency, it is important to note that once we
create the forcold table, all the adjoining DB tables within COLD may also
be created using SQL commands (resulting queries were omitted due to space
restrictions). This fact also shows that COLD is truly a pure-SQL framework for
servicing multiple distance queries on large-scale graphs. We also provided the
necessary theoretical details as to why the COLD framework will outperform
existing solutions. This will be further quantified in the following section.

32 A. Efentakis et al.

4 Experimental Evaluation

To assess the performance of COLD on various large-scale graphs, we conducted
experiments on a workstation with a 4-core Intel i7-4771 processor clocked at
3.5GHz and 32Gb of RAM, running Ubuntu 14.04. We compare our COLD
framework with a custom implementation of HLDB in PostgreSQL and with
Neodj, a well-known, popular graph database.

We use the same network graphs as our previous work of [21] that are taken
from the Stanford Large Network Dataset Collection [26] and the 10th Dimacs
Implementation Challenge website [8]. All graphs are undirected, unweighted
and strongly connected. We used collaboration graphs (DBLP, Citeseerl, Cite-
seer2) [24], social networks (Facebook [28], Slashdotl and Slashdot2 [27]), net-
works with ground-truth communities (Amazon, Youtube) [31], web graphs
(Notre Dame) [7] and location-based social networks (Gowalla) [11]. The graphs’
average degree is between 3 and 37 and the PLL algorithm creates 26 — 4,457
labels per vertex, requiring 0.03 — 5,946 s for the hub labels’ construction
(see TableR).

Table 8. Networks graphs statistics

Graph | V| | E | Avg degr || HL | / | V | | PLL Preproc. Time (s)
Facebook 4,039 88,234 22 26 0.03
NotreDame 325,729 | 1,090,108 3 55 6
Gowalla 196,591 950,327 5 100 13
Youtube | 1,134,800 | 2,987,624 3 167 123
Slashdot1 77,360 469,180 6 204 11
Slashdot2 82,168 504,230 6 216 13
Citeseerl 268,495 | 1,156,647 4 408 110
Amazon 334,863 925,872 3 689 230
DBLP 540,486 | 15,245,729 28 3,628 5,720
Citeseer2 434,102 | 16,036,720 37 4,457 5,946

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64 bit with rea-
sonable settings (8192Mb shared buffers, 64 Mb temp buffers). We also used
Neodj Server v2.1.5. The Neo4j queries were formulated using Cypher, Neodj’s
declarative query language and we report query times as they were returned by
the server. Although Cypher may theoretically facilitate one-to-many queries
(besides vertex-to-vertex), testing Neodj with our datasets and the same num-
ber of target vertices we tested COLD with, resulted in a “java.lang.Stack
OverflowError”. Providing the server with additional resources? had no positive
effect and thus there are no results for one-to-many queries and Neodj.

2 http://neo4j.com/developer /guide-performance-tuning/.

http://neo4j.com/developer/guide-performance-tuning/

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 33

We conducted experiments belonging to four query types: (i) vertez-to-vertet,
(ii) kNN, (iii) RENN and (iv) one-to-many. For each experiment, we used 10,000
random start vertices, reporting the average running time. Before each exper-
iment, we restart the PostgreSQL and Neo4j servers for clearing their internal
cache and we also clear the operating system’s cache for accurate benchmarking.
All charts are plotted in logarithmic scale.

4.1 Performance on HDD

In our first round of experiments, we ran experiments on an HDD, specifically a
SATA3 Seagate Barracude ST3000DMO001 7200rpm with 64Mb cache.

Vertex-to-vertex. Fig.2(a) shows results for vertex-to-vertex (v2v) queries
for COLD, HLDB and Neo4j. Results show that COLD is consistently 2 - 20.7x
faster than HLDB, with this difference amplified for the Citeseerl, Amazon and
Youtube datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also
9 - 143x (for the Gowalla dataset) faster than Neo4j, which exhibits stable
performance for all datasets, but is slower from both COLD and HLDB. For all
datasets, COLD requires less than 9ms for answering v2v queries.

Figure2(b) shows the difference in memory size for the DB tables for-
cold (COLD) and forward (HLDB) and their respective primary-key (PK)
indexes. Results show that the size of the PK index in COLD is 3,600 - 4, 444 x
smaller than for HLDB (for DBLP and Citeseer2 respectively). As expected, the
difference in index sizes is almost identical to the |HL|/|V| ratio, since forcold
table has |V| rows and forward has |H L| rows. Likewise, the corresponding tables
are 131 - 188x smaller for COLD. Thus, the techniques used for compressing
the forward labels in COLD clearly achieve a considerable reduction in memory
size, rendering our proposed framework suitable for real-world scenarios.

1000.0 10000

WP2P(COLD) CIP2P(HLDB) [P2P (Neodj) B Tables Windex
1000
- |:| I:I |:I |:| |:I
g

100.0

-lllLidddd

&

Time (ms)
Forwad Labels (Cold vs HLDB)

Ng
S

S A o3 " 4 2 & 3
S &S oS & é& ‘Fg} Voo P F
& & F &S & & F L S
oS i & O Q) K

v O @ & @ \¥°\ o o X ® & & o'é & Ry

(a) Vertex-to-vertex query times (b) Memory size’s difference be-
tween COLD and HLDB

Fig. 2. Experiments on HDD for vertez-to-vertex

kENN. Fig.3(a) shows the speedup of COLD compared to HLDB in the case
of kNN queries for D = 0.01 and k = {1,2,4,8,16}. As described in Sect. 3.1,

34 A. Efentakis et al.

we have created two DB tables for each framework (COLD, HLDB), one for
kmazr = 4 and one for kmaxz = 16. Then the DB table for kmax = 4 is used
for answering kNN queries for k = 1, k = 2 and k = 4 and the kNN table for
kmax = 16 is used for answering kNN queries for £k = 8 and k = 16. Results
show that for k = 1, COLD is 5 - 19x faster for the five largest datasets (Ama-
zon, Citeseer,Citeseer2, DBLP. Youtube) and although this speedup degrades for
larger values of k, COLD remains consistently 2 - 10x faster even for £ = 16. For
the smaller datasets, performance between COLD and HLDB is quite similar,
with COLD performing better on Facebook and Gowalla, while HLDB performs
only marginally better for Slashdotl, Slashdot2 and Notredame. In all cases,
COLD answers kNN queries for all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of COLD
vs HLDB for varying values of D. For each value for D, we have build separate
versions of knntab (HLDB) and knncold (COLD) DB tables for D - |[V| objects
selected at random from each dataset and kmaz = 4. Figure 3(b) shows results
for kK = 4 and D = {0.001,0.005,0.01,0.05,0.1}. Again, for the five largest
datasets COLD is consistently 3.4 - 23.4x faster than HLDB, whereas even for
the smaller datasets, COLD is consistently 8.6 - 11.5x faster than HLDB for the
largest value of D (for D = 0.1). Moreover, COLD may answer kNN queries for
k =4 on all datasets and all values of D in less than 14ms.

32

-+ -Amazon
- T

-% seer2
<> DBLP
-B- Facebook
| A Gowalla ,
-~ Notredame 8r .
P> Slashdot1
2

- -Slashdot.
=%~ Youtube
1}

-%-Youtube

0.5
0.001 0.0050.01 0.05 0.1
D

(a) ENN Speedup of COLD vs (b) Speedup of COLD vs HLDB
HLDB for D = 0.01 and varying for k = 4 and varying values of D
values of k

Fig. 3. kNN Experiments on HDD for COLD and HLDB

RENN. For RENN experiments, we only report COLD’s performance, since
there is no other SQL framework that supports these queries. In out first exper-
iment, we report the performance of COLD for D = 0.01 and k = {1,2,4,8,16}.
For all those queries we have built one version of the knnres DB table for
kmax = 16 (see Sect.3.1) and 3 separate revcold tables for kmax = {1,4,16}.
As expected, for RKNN queries and k& = 1 we use the revcold table built for

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 35
100.0

1000

10.0

0.1 H]]
\{.
o

o1

[©0.001
a2
=4

2 Wﬂﬂ il

Time (ms)

Time (ms)
5
Ve —

& & N @ & O O ¢

S & & N & &P EUN I N 2 &

FEEL L LA ILS &,;5’ @.,z gy Iy S ~°z,c‘v‘ 5
o) 2 &

e @"bs«‘,\o,,\o@ ¢ &g @“"z\&“"s\"’*"

(a) COLD RANN query times for (b) COLD RENN query times for k =
D = 0.01 and varying values of k 1 and varying values of D

Fig. 4. RENN Experiments on HDD for COLD

kmax = 1, for k = 2, k = 4 we use the revcold table built for kmax = 4 and for
k =8, k = 16 we use the revcold table built for kmax = 16. Figure 4(a) presents
the results. In all cases, COLD provides excellent query times that are below
20ms for kK =1 in all datasets and never exceed 82 ms even for k = 16.

In our second set of REKNN experiments, we assess the performance of COLD
for varying values of D. Figure4(b) presents results for £k = 1 (as this is the
typical case for RENN queries) and D = {0.001,0.005,0.01,0.05,0.1}. Results
show that although COLD’s performance degrades for larger values of D, RENN
query times are below 49ms for all datasets and values of D, with the exception
of Youtube and D = 0.1 (109.3ms). Thus, COLD offers excellent and stable
performance in RENN queries for all all datasets and tested values of k and D.

One-to-Many. Again, COLD is the only SQL framework that supports one-to-
many queries. Figure 5(a) presents the corresponding results for varying values of
D (D = {0.001,0.005,0.01,0.05,0.1}). COLD answers such queries in less than a
second for all datasets and values of D, except the Citeseer2 and DBLP datasets
(those with the highest | HL|/|V| ratio) that require 5601 ms and 4170 m.s respec-
tively, for D = 0.1. For such high values of D, the one-to-many query reaches
the complexity of an one-to-all query and as expected, it cannot be any faster
on a secondary storage device. Note that even specialized graph databases like
Neo4j cannot support this type of queries for more than a 1,000 target objects,
whereas COLD answers one-to-many queries to 110,000 target objects in the
Youtube dataset in 401 ms with a simple SQL query.

4.2 Performance on SSD

Having established the performance characteristics of COLD in the HDD, in our
second round of experiments, we repeat some of the previous experiments, using
a SSD to measure the impact of the secondary-storage device type to results.
The SSD used is a SATA3 Crucial CT512MX100SSD1 MX100 512 GB 2.5”.

36 A. Efentakis et al.

10000 1000
1000 100
100 mooo1 £
g 00.005 g 10
E w0 ' E mHDD
@o0.01
1 005 1 I:| ossb
01 [[i] not 0.1 Ij
’b‘\'do fo'é ,,eém 9‘2’8 ’°°°‘. .,x"\\,b yé& x\bo‘ §°"y éoe 6‘9¢ & eef‘(‘, oeg ~o°§. q\&\b b’b&z b°0 bd& &soe
WY T E WEFE T EFL
(a) Onme-to-Many experiments for (b) COLD One-to-Many HDD vs
COLD varying values of D SSD

Fig. 5. One-to-many experiments for COLD

BP2P (Cold) CIP2P(HLDB) B P2P (Neod)) Vertex-to-vertex. Although the usage of

SSD favors HLDB more than COLD (see

10.00 Fig.6), COLD is consistently 1.6 - 3.2x faster

than HLDB (except Facebook, the smallest of

datasets). The SSD has almost no impact on

. Neo4j and thus, COLD is now 11-171x faster

& @”&f S S than Neo4j on all datasets. Note, than on the

¥ SSD, COLD requires less than 0.9ms for all

datasets and v2v queries, except the Citeseer2

and DBLP datasets (those with the highest

|[HL|/|V| ratio). But even then, vertex-to-vertex queries still require less than
2.6 ms for COLD.

kENN. Fig. 7(a) shows the performance speedup of COLD compared to HLDB
in the case of kNN queries running on the SSD, for D = 0.01 and varying value
of k. Again, although the SSD lowers the performance gap between COLD and
HLDB, COLD is still faster on all datasets (except Facebook). In fact, COLD is
2.6 - 6.75x faster than HLDB for the high |HL|/|V| ratio datasets (Citeseer2,
HLDB) requiring less than 24.6 ms even for k = 16.

Fig. 6. SSD vertez-to-vertex

RENN. Fig.7(b) presents the results of the REKNN query time performance
on COLD for D = 0.01 and varying value of k. Results show that SSD usage
accelerates COLD by only 20 % at most, which clearly demonstrates that COLD
effectively minimized secondary storage utilization and thus adding a better
secondary-storage medium provides minimal benefits for RkKNN queries.

One-to-Many. Finally, Fig.5(b) compares one-to-many queries on HDD and
SSD for COLD. Again, the SSD usage accelerates COLD by only 2- 30 %, which
further confirms the optimal secondary storage utilization of COLD.

4.3 Summary

Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, including

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 37

100

=
=3

o1

SIIQess ”',' o

a RREES o -~ Notredame
2 5 - o2
8 2 ' X~ Youtube £,
o sagg oo
o i, == @4

- us

1 -
R 01 o16

v
<
054] 16 ¢

Time (ms)

LS
0,

(a) kNN Speedup of COLD (b) COLD RENN query times for
vs HLDB for D = 0.01 and D = 0.01 and varying values of
varying values of k k

Fig. 7. kNN and REKNN SSD performance

query performance, memory size and scalability. Using HDDs, COLD is 2——21x
faster for vertex-to-vertex queries and 5 — —19x faster for kNN queries and the
largest datasets. Using SSDs, COLD is 1.6 — —3.2x faster than HLDB for vertez-
to-vertex and up to 6.75x faster for kNN queries. COLD also requires up to
4,444 x less storage space (indexes) and up to 188x less storage space (DB
tables) used for storing forward labels. Even specialized graph databases like
Neo4j are outperformed by COLD, which is up to 143x faster. Most importantly
COLD may service additional (RENN, one-to-many) queries, not handled by any
other previous secondary-storage solutions, while providing excellent query times
and optimal secondary-storage utilization even on standard hard drives.

5 Conclusions

This work presented COLD, a novel SQL framework for answering various exact
distance queries for large-scale graphs on a database. Our results showed that
COLD outperforms existing solutions (including specialized graph databases)
on all levels, including query performance, secondary storage utilization and
scalability. Moreover, COLD also answers RENN and one-to-many queries, not
handled by previous methods. This establishes COLD as a competitive database-
driven framework for querying large-scale graphs. The paper gives the design and
implementation details of COLD using a popular, open-source database system
along with the actual SQL queries used in our implementation. This should allow
for a simple replication of our results and encourage other researchers to expand
the COLD framework towards handling more complex queries and test-cases.

Acknowledgements. This work was partially supported by EU (European Social
Fund - ESF) and Greek national funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research
Funding Program: Thales. Investing in knowledge society through the European Social
Fund and the EU/Greece funded KRIPIS Action: MEDA Project. D. Pfoser’s work was
partially supported by the NGA NURI grant HM02101410004.

38

A. Efentakis et al.

References

10.

11.

12.

13.

14.

15.

. Abraham, 1., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Hldb: Location-

based services in databases. In: SIGSPATIAL GIS. ACM, November 2012

. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling

algorithm for shortest paths in road networks. In: Pardalos, P.M., Rebennack, S.
(eds.) SEA 2011. LNCS, vol. 6630, pp. 230-241. Springer, Heidelberg (2011)
Abraham, 1., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24-35. Springer, Heidelberg (2012)

Akiba, T., Iwata, Y., Kawarabayashi, K., Kawata, Y.: Fast shortest-path distance
queries on road networks by pruned highway labeling. In: 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014,
Portland, Oregon, USA, 5 January 2014, pp. 147-154 (2014)

Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, USA,
pp. 349-360 (2013)

Akiba, T., Iwata, Y., Yoshida, Y.: Pruned landmark labeling (2015). https://
github.com/iwiwi/pruned-landmark-labeling

Albert, R., Jeong, H., Barabdsi, A.-L.: The diameter of the world wide web, CoRR
(1999). http://cond-mat/9907038

Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering. Contemporary Mathematics, vol. 588. American Mathe-
matical Society, Providence (2013)

Bast, H., Delling, D., Goldberg, A.V., Miiller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route planning in transportation networks. CoRR,
abs/1504.05140 (2015)

Borutta, F., Nascimento, M.A., Niedermayer, J., Kroger, P.: Monochromatic rknn
queries in time-dependent road networks. In: Proceedings of the Third ACM
SIGSPATTAL International Workshop on Mobile Geographic Information Systems,
MobiGIS 2014 pp. 26-33, New York, NY, USA. ACM (2014)

Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, 21-24 August 2011, pp. 1082-1090 (2011)

Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. In: Proceedings of the Thirteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2002, pp. 937-946. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2002)

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376-387. Springer, Heidelberg (2011)

Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust distance queries on
massive networks. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 321-333. Springer, Heidelberg (2014)

Delling, D., Goldberg, A.V., Werneck, R.F.: Hub label compression. In:
Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS,
vol. 7933, pp. 18-29. Springer, Heidelberg (2013)

https://github.com/iwiwi/pruned-landmark-labeling
https://github.com/iwiwi/pruned-landmark-labeling
http://arxiv.org/abs/cond-mat/9907038

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

COLD. Revisiting Hub Labels on the Database for Large-Scale Graphs 39

Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in
road networks. In: ATMOS, pp. 52-63 (2011)

Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road net-
works. In: 21st SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL 2013, Orlando, FL, USA, 5-8 November 2013,
pp. 490-493 (2013)

Delling, D., Werneck, R.F.: Better bounds for graph bisection. In: Epstein, L.,
Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 407—418. Springer, Heidelberg
(2012)

Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocess-
ing. In: CTS: 6th ACM SIGSPATIAL International Workshop on Computational
Transportation Science, 5 November 2013, Orlando, FL, USA, p. 25 (2013)
Efentakis, A., Pfoser, D.: GRASP. extending graph separators for the single-source
shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 358-370. Springer, Heidelberg (2014)

Efentakis, A., Pfoser, D.: ReHub. Extending hub labels for reverse k-nearest neigh-
bor queries on large-scale networks (2015). arXiv preprint http://arXiv:1504.01497
Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. a unified framework for all shortest-
path query variants on road networks. In: Bampis, E. (ed.) SEA 2015. LNCS, vol.
9125, pp. 298-311. Springer, Heidelberg (2015)

Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In:
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2001, pp. 210-219. Society for Industrial and Applied Mathematics,
Philadelphia, PA; USA (2001)

Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: Munro, J.I., Wagner, D. (eds.) ALENEX, pp. 90-100. SIAM (2008)
Jiang, M., Fu, A.W., Wong, R.C., Xu, Y.: Hop doubling label indexing for point-to-
point distance querying on scale-free networks. PVLDB 7(12), 1203-1214 (2014)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
June 2014. http://snap.stanford.edu/data

Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29-123 (2009)

McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012, Proceedings of a meeting held
3-6 December 2012, Lake Tahoe, Nevada, United States, pp. 548-556 (2012)
PostgreSQL. The world’s most advanced open source database (2015). http://
www.postgresql.org/

Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query
processing on spatial networks. Multimedia Syst. 15(5), 295-308 (2009)

Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. In: 12th IEEE International Conference on Data Mining, ICDM
2012, Brussels, Belgium, 10-13 December 2012, pp. 745-754 (2012)

Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbors in large
graphs. IEEE Trans. Knowl. Data Eng. 18(4), 540-553 (2006)

Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: An efficient index for knn search
on road networks. In: Proceedings of the 22nd ACM International Conference on
Conference on Information Knowledge Management, CIKM 2013, pp. 39-48. ACM,
New York, NY, USA (2013)

http://arxiv.org/abs/1504.0149
http://snap.stanford.edu/data
http://www.postgresql.org/
http://www.postgresql.org/

ParetoPrep: Efficient Lower Bounds for Path
Skylines and Fast Path Computation

Michael Shekelyan?, Gregor Jossé!®) | and Matthias Schubert!

! Institute for Informatics, Ludwig-Maximilians-University Munich,
Oettingenstr. 67, 80538 Munich, Germany
{josse,schubert}@dbs.ifi.lmu.de
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza
Domenicani 3, 39100 Bozen-bolzano, Italy
michael.shekelyan@inf.unibz.it

Abstract. Computing cost-optimal paths in network data is an impor-
tant task in many application areas like transportation networks, com-
puter networks, or social graphs. In many cases, the cost of an edge can
be described by various cost criteria. For example, in a road network
possible cost criteria are distance, time, ascent, energy consumption or
toll fees. In such a multicriteria network, path optimality can be defined
in various ways. In particular, optimality might be defined as a combi-
nation of the given cost factors. To avoid finding a suitable combination
function, methods like path skyline queries return all potentially opti-
mal paths. To compute alternative paths in larger networks, most effi-
cient algorithms rely on lower bound cost estimations to approximate the
remaining costs from an arbitrary node to the specified target. In this
paper, we introduce ParetoPrep, a new method for efficient lower bound
computation which can be used as a preprocessing step in multiple algo-
rithms for computing path alternatives. ParetoPrep requires less time
and visits less nodes in the network than state-of-the-art preprocessing
steps. Our experiments show that path skyline and linear path skyline
computation can be significantly accelareted by ParetoPrep.

1 Introduction

In recent years, querying network data has become more and more important in
many application areas like transportation systems, the world wide web, com-
puter networks, or social graphs. One of the most important tasks in network
data is computing cost-optimal paths between nodes. Especially in transporta-
tion and computer networks finding cost-optimal paths is essential for optimizing
the movement of objects or information. Optimal paths can depend on multiple
cost criteria. We refer to such networks, which consider more than one cost cri-
terion, as multicriteria networks. In road networks, for example, possible criteria
are travel time, distance, toll fees, environmental hazards, or energy consump-
tion. In computer networks, typical cost criteria are bandwidth, rental cost, and
current traffic. To describe the connections of people in a social graph, telephone
calls, mails, meetings are aspects which can be transformed into cost criteria.

© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 40-58, 2015.
DOI: 10.1007/978-3-319-22363-6-3

ParetoPrep: Efficient Lower Bounds for Path Skylines 41

In order to compute a cost-optimal path in a multicriteria network, it is
necessary to specify which type of cost should be minimized. This optimization
criterion can either be one of the underlying cost criteria or a combination of
these criteria, e.g., a weighted sum. Given that any monotone combination of
cost values leads to a valid optimality criterion, there is an infinite number of
possible cost values. One might be able to anticipate user preferences in some
applications, but existing works in this area still rely on the set of skyline paths
when recommending suitable path alternatives, e.g., [2,10]. Therefore, the estab-
lished approach of presenting results to the user is to compute a set of alternative
paths which allows the user to evaluate the trade-off between the cost criteria.

The most general set of optimal paths is the set of pareto optimal paths or
path skylines [9,13]. This set contains all paths optimal under any monotone
combination function. Since this set is typically rather large, newer approaches
like the so-called linear path skyline [16,17] restrict the allowed combination
function to linear combinations. The difference between the conventional and
the linear path skyline is illustrated in Fig. 1.

The state-of-the-art algorithms for computing path skylines employ multi-
criteria lower bound estimations to approximate the minimum costs which have
to be spent to travel from a given node n to a target node ¢t. This way it is
possible to compute the best-case cost vector for any path containing n and
ending at t. The general idea is analoguos to the concept of the A* search for
shortest path computation: If even the shortest possible path, a straight line
with Euclidean distance, is longer than the current best result, the current node
can be discarded from the search. Although there are algorithms which do not
employ lower bounds (e.g., BRSC in [13]), their use is restricted to small graphs
which can be visited entirely, making these algorithms infeasible in most cases.

Considering multiple and arbitrary cost criteria requires lower bound approx-
imations for all cost criteria. One solution is precalcu ating general bounds, as
done by a reference node embedding [7,13]. However, these bounds have several
drawbacks. First, the approximation quality is often insufficient for the majority
of queries. Second, they typically require a lot of memory compared to the size
of the network. And finally, in dynamic networks — where edge costs vary over
time — the approximation may lose its bounding properties.

Alternatively, [4] conducts a Dijkstra search from the target node to all other
nodes in the network w.r.t. each cost criterion. The obtainted lower bounds are
query-specific and, thus, exact for the given target. However, this kind of pre-
processing has to be done at query time. For d cost criteria this step is performed
d times, and for each node d lower bounds have to be stored. Although the pre-
processing effort is large, the optimality of the bounds for the given task, often
leads to an significant speed-up when performing the actual path computation.
In fact, the results of our experiments demonstrate that this method clearly
outperforms the use of a reference node embedding for computing path skylines
with more than two criteria.

Tackling all of the above problems, we introduce ParetoPrep: A new algo-
rithm for computing all single-criterion shortest paths for arbitrary cost criteria

42 M. Shekelyan et al.

in a multicriteria network. ParetoPrep computes the same optimal lower bounds
as [4] for given start and target nodes. However, ParetoPrep requires only a
single instead of d graph traversals. Furthermore, the visited part of the graph
is significantly smaller than with the approach described in [4]. To show that
ParetoPrep is a valid preprocessing step for the path skyline algorithms men-
tioned above ([9,13,16,17,19]), we show that all nodes contained in any pareto
optimal path between the given start and target nodes are visited. Consequently,
any node which is not visited by ParetoPrep can be excluded when searching
for a cost optimal path w.r.t. any monotone combination function. ParetoPrep
reduces processing time, memory consumption, the visited portion of the graph
and the number of graph traversals when computing optimal lower bounds. This
means, ParetoPrep is a valid and highly efficient preprocessing step for any of
the above algorithms, as it yields optimal lower bounds for the computation of
all pareto optimal paths.

An additional use of ParetoPrep is to simultaneously compute multiple opti-
mal paths for a given set of cost criteria or combinations of these cost criteria.
This is possible, because the computed lower bounds correspond to the exact cost
of the optimal path to the target node w.r.t. each of the original cost criteria. Of
course, it is possible to consider combined cost criteria (e.g., 0.3- distance 40.6-
travel time +0.1- traffic lights) as additional basic cost criteria. Given an arbi-
trary number of such combined criteria, ParetoPrep computes all cost-optimal
paths in a single traversal.

The rest of the paper is organized as follows: In Sect. 2, we present related
work in the area of path skylines and lower bound computation in multicrite-
ria networks. Section 3 provides basic notations and concepts. Furthermore, we
illustrate the use of point-to-point lower bound computation when computing
path skylines. Our new algorithm ParetoPrep is presented in Sect.4. Addition-
ally, the section contains formal proofs concerning correctness and termination of
ParetoPrep. Section 5 describes the results of our experiments, comparing Pare-
toPrep to state-of-the-art lower bounds for 2 path skyline algorithms. The paper
concludes with a summary and directions for future work in Sect. 6.

2 Related Work

In this section we review existing works on (linear) path skylines. We focus not
on algorithmical details but the application and use of lower bounds, stressing
that performance depends crucially on tight lower bounds. Also, we will survey
the state-of-the-art methods for lower bound computation and point out their
shortcomings.

In the database community, the task of computing a path skyline between
two nodes in a multicriteria network is referred to as path (or route) skyline
query in [13]. Synonymously, the path skyline is sometimes referred to as the set
of all pareto optimal paths. In Operations Research, the problem is known as
the multiobjective shortest path problem. The result set in any case are those
paths which have cost vectors that are, mathematically speaking, optimal under

ParetoPrep: Efficient Lower Bounds for Path Skylines 43

T T

(a) Hlustration of a skyline. (b) Hlustration of a linear skyline.

Fig. 1. The linear skyline holds a subset of the elements of the conventional skyline.

some monotone cost function. Surveys on existing solutions to this problem can
be found in [5,6,18,20]. Early on, [11] proved that the size of the path skyline
may increase exponentially with the number of hops between start and target
node, and that the problem therefore is NP-hard. More recently, [15] showed that
the number of paths is in practice feasibly low when using strongly correlated
cost criteria. Another way of coping with the great number of skyline paths was
presented in [17] and extended in [16]. Instead of all paths which are optimal
under some monotone cost function, the result set here consists of all paths which
are optimal under a linear cost function. This is a restriction of the result set,
referred to as linear path skyline. Both sets are visualized in Fig. 1.

Various algorithms have been proposed to solving linear and especially con-
ventional path skyline queries. Going into detail on all methods presented in the
above papers would go beyond the scope of this work. We will restrict ourself to
noting that the state-of-the-art algorithms either rely on some kind of labeling
algorithm or a sequence of target-oriented path searches. Labeling algorithms
label nodes with the cost vectors of assembled paths ending at that node. They
begin at the start node and follow its outgoing edges. In each iteration all pre-
viously assembled paths that may be part of a skyline path are extended. The
algorithm terminates once all assembled paths were either extended or pruned.
The labeling algorithm for skyline computation that we choose for evaluation
purposes is ARSC [13]. Contrary to extending all paths by one edge at a time
is the concept of sequentially computing full paths. For such an algorithm to
terminate in reasonable time, it is essential to efficiently explore the exponential
space of possible results. This means, path searches must be directed, either pro-
ducing a new result or excluding the existence of results in a particular search
direction. LSCH [16] proceeds this way when computing the linear path skyline.

What both algorithmic concepts have in common, is their reliance on lower
bound cost estimations. Either to prune branches of the search tree (nonpromis-
ing paths which have not yet reached the target) or to direct the search towards

44 M. Shekelyan et al.

the target. Without lower bounds, either approach becomes infeasible even for
networks of moderate size and only two cost criteria. Thus handling networks of
state-size with three or more criteria requires the use of lower bounds.

The way lower bound cost estimations help directing a path search towards
its target, is relatively straightforward. Lower bounds underestimate the cost
from a node to the target. When computing the path from start to target, in
every iteration, the most promising edge can be chosen based on the lower bound
of its end node. This directs the search, in an A*-manner, towards its target.

We compare to two state-of-the-art methods for computing lower bounds.
The first is the precomputation of bounds based on a so-called reference node
embedding (RNE), as presented in [13]. A number of uniformly distributed refer-
ence nodes is chosen, and all cost-optimal paths between all pairs of these nodes
are computed. Note that this procedure is independent of start and target node
and can therefore be executed prior to any query. Based on the cost differences of
these paths, lower bounds are computed. Of course, a reference node embedding
only yields optimal lower bounds for some queries. Furthermore, the memory
consumption is rather large and any precomputed information has to be checked
for validity in case of dynamically changing edge costs.

The other prevalent method ([9,16]) was introduced by Tung and Chew [4].
The authors propose to perform a reversed single-source all-target Dijkstra search
for each cost criterion to find the costs of the shortest paths from all other nodes
in the graph to the target node. Note that this procedure is not independent of the
query input and must be performed at query time. We will refer to this approach
as Multi-Dijkstra (MD). Despite the overhead at query time, the superior pruning
power in many cases reduces the runtime of path computation to a degree which
compensates for the additional effort. A major shortcoming of MD is that it has to
process the full graph for every cost criterion. For large graphs, which cannot be
held in main memory, this method is unsuitable.

Let us note that in the case of two cost criteria, special properties of (linear)
path skylines may be used for further speed-up. We would like to stress that
this is only applicable to the case of two cost criteria and that we focus on non-
trivial multicriteria networks with a higher number of cost criteria. Hence, we
will not go into detail on methods which are limited to the two-dimensional case
([1,11,12,14,17]), but refer the interested reader to these works.

3 Preliminaries

A multicriteria network is represented by a directed weighted graph G(V,&,C)
comprising a set of nodes V and a set of directed edges £ € V x V. Each edge
(n,m) € € is labeled with a cost vector cost(n,m) € C C R% which consists
of the costs for traversing edge (n,m) w.r.t. each of the d cost criteria. If there
exists an edge (n,m) then n and m are neighboring nodes and (n,m) shall be
called an outgoing edge of n and an incoming edge of m.

A sequence of consecutive edges connecting two nodes s and ¢, for instance,
w = ((s,n1), (n1,n2),...,(nkK,t)), is called a way from s to t. If w does not visit

ParetoPrep: Efficient Lower Bounds for Path Skylines 45

any node twice it is called a path. The cost of a path p for each cost criterion
is the sum of its individual edge costs:

cost(p); = Z cost(n, m);

(n,m)€p

A monotone cost function is a function f : R% :— R for which the following
property holds: For cost vectors a,b € R‘i where a; < b; for some 1 <14 < d,
f(a) < f(b) holds.

A cost vector a € Ri dominates a cost vector b € Ri, denoted a <gom b, iff
a has a smaller cost value than b in at least one dimension i and b does not have
a smaller cost value than a in any dimension j:

Jieqt,ay 1 <bi A Bieqr,ayia; >bj € a <dom b

Note that there is a unique cost vector associated with each path. We therefore
say a path dominates another path, if the cost vector of the former dominates
the cost vector of the latter. Note that for any monotone cost function f(-),
a <dom b= f(a’) < f(b)

Paths (more precisely: their cost vectors) which are not dominated by any
other path are called nondominated or pareto optimal. The set of nondominated
paths includes are all paths which are optimal under some monotone cost func-
tion. This set is called path (or route) skyline [3]. In [16,17] this concept was
extended in the following way: Instead of computing the paths which are opti-
mal under monotone cost functions, it can be of greater interest to compute the
paths which are optimal under linear cost functions. This set is called the linear
skyline (see Fig. 1).

3.1 Multicriteria Lower Bounds

The task we examine in this paper is to derive lower bounds Ib(s,t) for cost
vectors cost(p), where p is a path from node s to node ¢ in a multicriteria
network. Formally, a lower bound for two nodes a and b is defined as follows:

Definition 1 (Lower Bound Costs). Let a and b be nodes, and let c(-) be
an arbitrary cost criterion. If for the real value lb.(a,b) holds lb.(a,b) < ¢(p)
for any path p connecting a and b, then it is called a lower bound for ¢ w.r.t. a
and b. A vector consisting of lower bounds of all cost criteria w.r.t. a and b is
denoted as lb(a, b) and referred to as lower bound (cost) vector.

A lower bound cost vector contains a lower bound for each of the cost criteria.
Thus, for an arbitrary path p connecting nodes a and b, f(lb(a,b)) < f(cost(p))
holds for any monotone cost function f(-). Or, in words, the image of a lower
bound cost vector (w.r.t. a and b) under a monotone cost function is also a lower
bound for the costs of all paths between a and b. The lower bounding property
is therefore invariant under monotone cost functions.

We will refer to a lower bound vector [b(s,t) as optimal iff V1 < i < d:
Ip=((s,n1),...,(ng,t)) where Ib;(s,t) = cost(p);.

46 M. Shekelyan et al.

The bounds computed by Multi-Dijktstra and ParetoPrep are optimal. How-
ever, they are query-specific, i.e., only bounds for the cost to reach the target
node t are available. Furthermore, since any node is a potential target node, it
is not feasible to precompute these bounds, and both methods usually compute
bounds at query time. Let us note that the lower bounds provided by a reference
node embedding are not specific to a particular query. However, they are usually
not optimal. As will be shown in the experiments, for more than two cost crite-
ria and larger distances between start and target, optimal bounds compensate
for the additional overhead. In the following, we will explain how lower bounds
are employed in algorithms for finding cost optimal and pareto optimal paths in
multicriteria networks.

3.2 Lower Bounds in Multicriteria Path Search

Computing an optimal query-specific bound includes computing the cost-optimal
path from s to t w.r.t. all given cost criteria. Thus, if all cost criteria or com-
bination functions are known in advance, in order to compute the wanted path
alternatives, it suffices to compute optimal lower bounds. In other words, the
lower bound method can be used to compute the set of alternatives and no
other algorithm is necessary. Of course, the used algorithm has to provide a
method to reconstruct these optimal paths as well as to determine their cost.
Both algorithms, Multi-Dijkstra and ParetoPrep, provide this possibility. If the
desired combination functions are not known in advance, computing (linear) path
skylines is recommended, in order to compute all paths potentially of interest.

For computing linear path skylines in general multicriteria networks (d > 2),
LSCH [16] is currently the most efficient algorithm. The method successively
constructs a linear skyline as part of a convex hull in the cost space. In each step
of the algorithm, LSCH determines a linear combination function and searches
the cost-optimal path w.r.t. this monotone combination. If lower bounds are
available, these searches can be done using A*-search. Recall that a lower bound
vector induces a lower cost value under all monotone combination functions.
Thus, LSCH may exploit a given multicriteria lower bound to accelerate these
searches. In this setting, query-specific lower bounds indeed make sense, because
the algorithm performs multiple A*-searches between the same two nodes s and
t where each search employs a different cost combination. Note that the bounds
are not necessarily optimal anymore when using a combination function to derive
the cost values. However, the quality of the bounds usually still outperforms the
quality of non-query-specific lower bounds.

Another area of application of multicriteria lower bounds is the computation
of path skylines. The most advanced path skyline approaches are label correcting
methods like ARSC [13] which we will sketch in the following to explain the
necessity of high quality lower bounds. ARSC computes all pareto optimal paths
between two nodes s and ¢ in a single graph traversal. To do this efficiently, ARSC
employs two ways of pruning the search space. The first is local domination:

ParetoPrep: Efficient Lower Bounds for Path Skylines 47

Definition 2 (Local Domination). Let p and q be two paths starting at s
and ending at t. Iff cost(p) <dqom cost(q) holds, we refer to q as dominated by
p, denoted by p <gom q. Correspondingly, q is referred to as nondominated iff
Bp=((s,n1),...,(nk, 1)) : cost(p) <gom cost(q).

For any path ¢ = ((ni,n2),...,(n—1,n;)), any subsequence of edges
p=((ni,nit1),..., (ng—1,nx)) is called a subpath of ¢q. As a direct consequence
of the following lemma, we may prune any dominated path and all of its possible
extensions. This fact constitutes the first domination check referred to as local
domination check.

Lemma 1 (Local Domination Check). Any subpath of a nondominated path
is nondominated (w.r.t. its start and target node).

A proof for this lemma can be found in [13]. ARSC maintains a local skyline
of paths for each visited node n. Thus, a path is only extended if it is part
of local skyline of its end node n. Though local pruning helps to prevent the
extension of large amounts of paths, it is not capable of restricting the search
to a limited section of the network. To direct this extension towards the target,
ARSC employs a second pruning method which relies on lower bounds, being
referred to as global domination:

Definition 3 (Global Domination). Given a start node s and a destination
node t, an arbitrary path p is called globally dominated iff it is a subpath of a
dominated path q between s and t. Respectively, any subpath p of a nondominated
path q between s and t is called globally nondominated.

Thus, any path p between s and some node n can be excluded from further
expansion if there does not exist an extension of p ending an target ¢ which is
part of the skyline.

To detect global domination as early as possible, high-quality lower bounds
can be used to check for global domination:

Lemma 2 (Global Domination Check). Letp be a path from node n to node
m and q be a path from the start node s to the target node t. If cost(q) =<dom
Ib(s,n) + cost(p) + lb(m,t), then p is globally dominated.

Proof. The cost vector 1b(s,n) + cost(p) + lb(m,t) is a lower bound cost of all
paths from s to ¢ via p. If this lower bound cost is dominated by the cost of a
path from s to ¢, there is no nondominated path from s to ¢ via p.

ARSC can employ global domination checks as early as the first skyline
path is known. This reveals an additional benefit of using query-specific lower
bounds. As mentioned before, precomputing optimal bounds includes computing
the single-criterion optimal paths for all given cost criteria. These paths are
obviously part of the skyline. Thus, when using query-specific bounds, ARSC
can use global domination upon initialization.

48 M. Shekelyan et al.

Fig. 2. Exemplary output of ParetoPrep given a start node s and a target node t. The
indicated paths {s,a,b,c,t} and {s,a,d,t} are the shortest paths for the first and the
second criterion, respectively. The vectors next to each node are the computed lower
bound costs [b of reaching ¢ from the respective nodes.

A final remark on query-specific bounds is that the number of nodes for which
a lower bound is required is limited. In general, it is only necessary to provide esti-
mations for all nodes which are part of any pareto optimal path from s to ¢. This
observation is based on the property that the path skyline is the super set of all
potentially optimal paths. Thus, any search algorithm reaching a node outside of
this area can prune the respective path.

4 Multicriteria Lower Bound Computation

The idea of ParetoPrep is to compute all single-criterion shortest paths between s
and ¢t within a single graph traversal. As will be shown later on, there cannot be a
node which is part of a skyline path and not visited during this graph traversal.
Thus, ParetoPrep is correct in the sense that it visits all nodes required for
computing a path skyline.

4.1 ParetoPrep

The goal of a precomputation step like Multi-Dijkstra (MD), the reference node
embedding (RNE), or ParetoPrep is to compute the minimum costs from an
arbitrary node n to the given target node ¢ for each of the cost criteria. These
bounds are computed at or prior to query time and are used by the subsequent
path search. ParetoPrep computes all shortest paths for all cost criteria within a
single graph traversal. This approach yields major improvements. While ensuring
optimal bounds, it is possible to reduce the number of times a node is visited.
For example, if the shortest path for two cost criteria ends with the same edge,
both shortest paths will be found by processing the same node. The pseudocode
of ParetoPrep is provided in Algorithm 1, an exemplary output and execution
of the algorithm are shown in Figs. 2 and 3, respectively.

ParetoPrep maintains a set of open nodes open and a set S of paths from s to t.
Each visited node n has an entry consisting of two elements {lb(n,t), succ;(n)}.

ParetoPrep: Efficient Lower Bounds for Path Skylines 49

After Iteration 1: n (gjrr:l;) lb(n) After Iteration 3: n (Plrl) = lb(n)
open = {+ n, m} O open = {#= n} O
s . }L (8) 1b(t) Ib(s) (z) s (o) >t (8) Ib(1)
S, O’(i) (3)4/
m m
lb(m) = (gii) Ib(m) = (f)
After Ite{ratior} 2: ;) Ib(n) After Iteration 4 n (;) = Ib(n)
open = {#m open = {#} o
: o
wo - (325 & 0 (9) —n w9 =(;4)s Q) wt(5) - no

b(m) 1)

Fig. 3. Exemplary execution of ParetoPrep. Active node of iteration is underlined.
After Iteration 2 path through [s,n1,t] with costs [3,4], after iteration 3 path through
[s,n1,n2,t] with costs [3,6] is constructed. ParetoPrep terminates upon iteration 4.

The cost vectors lb(n,t) : V — R% are the lower bound costs of all paths from n
to t, through which n was previously reached in ParetoPrep. Upon termination of
the algorithm, n is reached by all globally nondominated paths from n to ¢t. The
edges succ;(n) : V x N — & are the first edges of the currently shortest path from
n to t for criterion 7. These successor edges are used to reconstruct current shortest
paths from s to t. An entry of an unvisited node n is assumed to be Ib(n, t); = oo,
succ;(n) = (. Ib(t, t); is always zero because the lower bound cost of reaching ¢
from t are zero.

The first step of the algorithm is the initialization. The open set is created,
and the target node t is added to the open set. The second step is node selection.
In each iteration, an open node n is selected and removed from the open set.
To reduce the number of nodes which have to be visited twice, the nodes closest
to t should be visited first. To achieve this, each node is ranked by the linear
sum of its cost vector, and the node with the smallest value is selected first. The
third step is a check if the selected node has to be extended. If b(s, n) +1b(n, t) is
dominated by the costs of a known path, step 4 and 5 are skipped. The cost vector
Ib(s,n) is the lower bound cost of all globally nondominated paths from s to n.
If no such information is available {b(s,n) = 0. The fourth step is the extension
of the selected node. The cost of each neighboring node m in dimension ¢ is set
to the minumum of Ib(m, t); and Ib(n,t); + cost(m,n);, where (m,n) is an edge
from m to n. For each criterion ¢ in which ¢(m); is changed, the i-th predecessor
edge succ;(m) is set to (m,n). If Ib(m,t) was changed and m is not the start
node s, m is added to the set of open nodes. The fifth step is the construction
of paths from s to ¢. This only happens if {b(s,t) was modified in the previous
step. For each modified cost criteria the currently shortest path from s to ¢ is
constructed. The paths are constructed by following succ; of nodes, similarly to
how paths are reconstructed in Dijkstra’s algorithm. The pseudocode is provided

50 M. Shekelyan et al.

without ParetoPrep with ParetoPrep

Fig. 4. Comparison of search areas for a routing task from Augsburg (s) to Munich
(t) with two cost criteria. The illustration compares thesearch are of ARSC without
precomputed bounds to that of ARSC with ParetoPrep-bounds. It is easily observed
that the label correcting search considers almost no dominated paths when using the
information provided by ParetoPrep.

in Algorithm 2. The sixth step is termination. If after an iteration there are no
more open nodes the algorithm terminates, otherwise the algorithm continues
with step 2. Upon termination, S contains a shortest path from s to ¢ for each
criterion, and /b maps each node which is possibly part of a skyline path from s
to t onto its lowerboundcosts of reaching ¢.

4.2 Correctness and Termination

In this section, we prove that ParetoPrep does indeed visit the portion of the
graph which is necessary to compute a path skyline and thus, all nodes which
are potentially visited by any cost-optimal path. More precisely, we will show
that every node which is part of a nondominated path from start to target is
visited (Fig. 4).

Definition 4. Let R(n) be all paths through which ParetoPrep reached a node
n. For every n # t, we initialize R(n) = (. In each iteration, every neighbor

m of the selected node n is reached through the edge connecting the two nodes
R(m) =R(m) U {p estended with (m,n) | p € R(n)}.

Note that in this case (m,n) becomes the first edge of the path extended
with (m,n). This is because ParetoPrep follows incoming edges, moving back-
ward from the target node. For the rest of this section, when we speak of
(non)domination, we mean global (non)domination.

Lemma 3. At the end of each iteration, lb(n,t) equals the minimal costs of all
paths through which n was reached, i.e., Ib(n,t); = min,eg y) cost(p);

Proof. The statement obviously holds for the target node. Now, assume a
selected node n is expanded by an edge (m,n). Let i be the index of an
arbitrary criterion. The lower bound value of the i-th criterion is set to

ParetoPrep: Efficient Lower Bounds for Path Skylines 51

//step 1: initialization

S — 0 and open «— {t}

while open # () do

//step 2: node selection

select n with minimal lower bound sum from open and remove from set;

//step 3: global domination

if S <dom lb(n,t) + Ib(s,n) then

| skip step 4 and 5
//step 4: node expansion
foreach incoming edge (m,n) of n do
foreach criterion i do
if 1b(n,t); + cost(m,n); < lb(m,t); then

Ib(m, t), « lb(n,t); + cost(m,n);
sucei(m) — (m,n)
open «— open U {m}

//step 5: path construction

if 1b(s,t) was modified in step 4 then

foreach modified component i of lb(s,t) do

p « constructpath(s, t, succ;, 1)
L S8 U {p}
remove paths dominated by p from S

Algorithm 1. Pseudocode of ParetoPrep

min{lb(m,t);,1b(n,t); + cost(m,n);} (see Algorithm 1). By the above defini-
tion this is exactly the minimal cost of each path through which m is reached.
Note that if m was previously unvisited, its cost vector is co. Concludingly, the
statement holds.

Lemma 4. If a node is reached by a nondominated path, it is expanded.

Proof. ParetoPrep expands every node m with two exceptions: (1) if global
domination holds in Step 3, or (2) if the m is not added to the open set in
Step 4 (cf. Algorithm 1). Of course, if m is reached through a nondominated
path, global domination does not hold. Hence, the node is expanded, unless
Ib(n,t); +cost(m,n); > lb(m,t); for all of the criteria. If m was previously unvis-
ited, {b(m, t); = co. Therefore, m must have been visited, and if m is reached by
a nondominated path, then (b(n,t); + cost(m,n); < Ib(m,t); must hold at some
point. This means, m is added to the open set and expanded subsequently. This
proves the statement.

Lemma 5. Upon termination, each node n which is part of a nondominated
path from s to t was reached. Furthermore, the node n is reached through each
nondominated path from n to t.

52 M. Shekelyan et al.

Data: s, t, succ;, i
Result: Current shortest path from s to ¢ for criterion &
m« s
p < new empty path
while m # t do
(m,n) « succ;(m)
L p — p extended with (m,n)
m<«—n
return p

Algorithm 2. Pseudocode of ParetoPrep’s path construction routine

Proof. Let p be an arbitrary nondominated path from n to ¢. If no such path
exists for n, then n is not contained in any nondominated paths from s to t.
Let K be the number of nodes through which p passes. Let p(*) be the k-th
node through which p passes. Let p{-%) be a subpath of p which starts at p{?)
and ends at p®). If the claim were incorrect, there would exist some k-th node
p®). k < K, which would not be reached. This implies one of the two cases:

(1) p+1) was reached by p*+1 K but not expanded afterwards
(2) p*+1) was not reached

Since p*+t1. %) is a subpath of the nondominated path p and thereby nondom-
inated itself, it must be expanded by Lemma 4 which contradicts (1). (2) is
the inductive shifting of the original statement that p*) was not reached. This
implies two cases, as above. The first one is contradicted as before, the sec-
ond one is again the inductive shifting. Following the chain of induction, we get
pS) =t was not reached which is contradicted by the empty path starting at ¢.
Concludingly, n is reached by all nondominated paths from n to t.

The above lemmas prove that ParetoPrep is sufficient for path skyline com-
putation, i.e., every node that is possibly part of a skyline path is indeed visited.
In addition, let us state precisely, what the values of the lower bound costs are
and how they are related to single-criterion shortest paths.

Claim. Let n be a node contained in a nondominated path from s to t. The cost
vector Ib(n, t) equals the lower bound costs of all nondominated paths from n to ¢.
Furthermore, a shortest path from s to t for each criterion is found.

Proof. The first statement follows directly from Lemmas 3 and 5. If n is con-
tained in a nondominated path from s to ¢, n is reached through all nondom-
inated paths from n to t. Hence, lb(n,t) equals the lower bound costs of all
nondominated paths from n to t. Now, let us investigate the special case of the
start node s. The single-criterion shortest paths are obviously a subset of the
nondominated paths. Hence, s is reached by all single-criterion shortest paths
which are reconstructed in Step 5 of Algorithm 1.

Finally, let us note that ParetoPrep always terminates if executed on finite
graphs. This is due to the fact that each previously visited node n is expanded

ParetoPrep: Efficient Lower Bounds for Path Skylines 53

Computation time (seconds) of query-dependent Percentage of visited nodes of graph [muc, bav]
preprocessing for varying number of cost criteria [muc, bav] 100% N N N
- 80% N N\ §
1 60% X N §
. N D\ o
20% - \ N N N N
o \ 20% § \ § § § § §
ooy M I \ I | I N % — | N § - § § - \§ §
2 3 4 5 2 3 4 5
®PP[muc] *PP[bav] ™MD [muc] ° MD [bav] ®PP[muc] \PP[bav] ®MD[bav] MD [muc]
(a) Computation Time (b) Visited Nodes

Fig. 5. Computation time (seconds) and percentage of visited nodes (of all nodes in
the graph) of the query-dependent preprocessing steps PP and MD for the settings
muc and bav.

if at least one criterion of Ib(n,t) has been lowered. Once a node is reached by
the shortest paths for each criterion, it will not be expanded anymore. From a
finite number of nodes follows a finite number of paths between nodes which in
turn implies that ParetoPrep performs a finite number of iterations.

This concludes our section on the properties and the correctness of Pare-
toPrep. In the following, we will explore the efficiency and performance of our
approach.

5 Experiments

We evaluate ParetoPrep (PP) on settings based on the real world road net-
work of the state of Bavaria, Germany, with 1023 561 nodes and 2 418 437 edges,
extracted from OpenStreetMap! (OSM) using the MARIO framework [8]. All
experiments were conducted on a work station with an Intel i7 CPU (3.4 GHz)
and 32 GB RAM, running Windows 8. Different algorithms are tested on the
same randomly generated scenario before comparing results. Runtime evalua-
tions are based on Java’s nanotime clock and performed for each algorithm
individually.

First, we compare the query-dependent preprocessing steps PP and Multi-
Dijkstra (MD) in terms of computation time. Given a start and target pair, we
evaluate how long the preprocessing step takes. Second, for PP, MD, and the
reference node embedding (RNE), we investigate the quality of the respective
bounds, i.e., we evaluate the actual performance gain for different algorithms. For
RNE, we select 9 reference nodes on a uniform grid over the map and assume that
there is no overhead for loading the embedding. In a first subsetting, we examine
how the path skyline algorithm ARSC benefits from the bounds provided by PP,
MD and RNE. Given the information of the respective preprocessing step and a
start and target pair, we take the runtime of the algorithm as a measure for the
quality of the bounds. In a second subsetting, we analyze how the linear path
skyline algorithm LSCH benefits from the bounds, again in terms of runtime.

! http://www.openstreetmap.org)/.

http://www.openstreetmap.org/

54 M. Shekelyan et al.

Computation time per ARSC query Computation time per ARSC query
(seconds) [muc] (seconds) [bav]
1000
10000
100 100
o N | | I n
2 3 2 3
® PP m MD m RNE m PP m MD mRNE
(a) ARSC
Computation time per LSCH query Computation time per LSCH query
(seconds) [muc] (seconds) [bav]
10 100
1 10
0.01 0.1
2 3 4 5 2 3 4 5
m PP mMD mRNE mPP mMD mRNE
(b) LSCH

Fig. 6. Average computation time (seconds) of ARSC and LSCH given the precom-
puted bounds by the respective methods, evaluated on the bav scenario.

Finally, we evaluate PP as a means for single-criterion shortest path computation
for given cost criteria. In a network with four criteria, PP can be used to compute
the shortest paths w.r.t. given weightings of the criteria or, even simpler, to
compute the shortest paths w.r.t. each of the criteria, as produced by four distinct
Dijkstra searches. We compare PP to these multiple single-source single-target
Dijkstra searches w.r.t. runtime and visited part of the graph. Note that in order
to compensate runtime effects in the virtual machine, runtime is measured by
performing each task five times and taking the minimum of these runs.

We evaluate the above scenarios on two settings based in Bavaria, Germany.
The first one is rather local and set in Munich, capitol of Bavaria, routing from
one of the 25 district centers to another, amounting to (225) = 300 pairs in total.
We refer to this setting as muc. The other setting is — relative to the graph —
rather global, routing from one of the 5 major cities in Bavaria to all others,
amounting to (g) = 10 pairs in total. We refer to this setting as bav. The cost
criteria used are distance (dist), travel time (tt), ascent (asc), penalized travel
time (ttpen), and energy expenditure (ener). The basic travel time estimate (tt)
assumes travel speeds equal to the speed limits and no delays at crossings. The
penalized travel time estimate (ttpen) assumes additional 30s for each traffic
light. The energy expenditure estimate (ener) assumes that 0.2 kWh are lost
on friction per kilometer, which is a rough estimate derived from typical bat-
tery capacities of electric cars and their respective ranges. For each ascended
kilometer 4 kWh are added to the energy usage, which is derived from the
increase in potential energy from ascending 1 000 meters with a 1500 kg vehicle:

ParetoPrep: Efficient Lower Bounds for Path Skylines 55

Computation time (seconds) for all Computation time (seconds) for all

single-criterion shortest paths [muc] single-criterion shortest paths [bav]
0.2 4
35
0.15 3
25
0.1 2
1.5
0.05 1

m B =
0 o
2 3 4 5 2 3 4 5
m PP Dijkstra mPP Dijkstra

(a) Computation time

Number of nodes visited when computing all Number of nodes visited when computing all
single-criterion shortest paths [muc] single-criterion shortest paths [bav]
50000 600000
40000 500000
400000
30000
300000
20000
200000
10000 100000
0 0
1 2 3 4 1 2 3 4
m PP Dijkstra mPP Dijkstra

(b) Visited nodes

Fig. 7. Computation time (seconds) and visited nodes when computing all k singlecri-
terion shortest paths with PP and k& Dijkstra searches.

1000 m - 1500 kg - 9.81% - ;LKW — 40875 kWh. For each descended kilome-
ter 2 kWh are subtracted from the energy loss and negative energy loss values
are corrected to zero. The employed formula for the energy loss in kWh for a
road segment from n to m with length len(n, m), ascent asc(n, m) and descent
desc(n,m) in kilometers is max(0, 0.2-len(n,m)+4-asc(n,m) —2-desc(n,m)),
where ascent and descent are derived from OSM data. Let us stress that in
order to validate the efficiency of the proposed approach, the cost criteria are
not required to be realistcally modeled; we do not claim so for tt, ttpen, ener.
We performed queries using the following selection of criteria: 2: dist+tt, 3:
dist+tt+asc, 4: dist+tt+asc+ttpen, 5: dist+tt+asc+ttpen+ener.

Figure 5 compares the preprocessing times of the query-dependent methods
PP and MD. It shows the computation time in seconds when varying the number
of cost criteria for both settings, muc and bav. We observe that PP always out-
performs MD; independent of the number of cost criteria, PP is always around
two orders of magnitude faster than MD, hardly ever exceeding 100 ms of com-
putation time. This is especially remarkable, seeing as PP computes optimal
bounds. A major reason for this behavior can be observed in the right figure:
PP only visits a very restricted part of the graph, yet — as shown before — the
necessary part of the graph to compute all pareto optimal path. For the muc
setting, it only visits at most 6 % of the network and even for examples with
large distances (bav) between start and target, ParetoPrep needs to visit only
about half of all nodes.

56 M. Shekelyan et al.

The impact of the bound quality can be observed in Fig. 6. The bounds com-
puted by PP accelerate both algorithms significantly. While LSCH is evaluated
for the same cost criteria as above, ARSC is evaluated for two and three cost
criteria only, as it becomes infeasibly slow for more dimensions. Note that this
is a drawback of the algorithm itself, not the bound quality. Of course, the sig-
nificant discrepancies in runtime are due to algorithmic details and the different
result sets (ARSC computes the path skyline, LSCH only computes the linear
path skyline). For both algorithms holds that RNE yields slightly faster run-
times in the two-dimensional case, but it rapidly degenerates with increasing
dimensionality. Overall, the bounds computed by PP yield an ARSC speed-up
between five times and two orders of magnitude for both scenarios. A similar
acceleration is achieved for LSCH. It should be noted that even in the highly
complex scenarios with five cost criteria, PP allows for unprecendent runtimes
when computing linear skylines. Executing an ARSC search with RNE on more
than three cost criteria is infeasibly slow due to the subpar quality of the bounds.

As mentioned above, PP computes optimal paths w.r.t. all d cost criteria.
In the following, we want to compare this task to d separate single-source single-
target Dijkstra searches. Note that this not the same procedure as MD which
performs all-source single-target searches and cannot terminate upon arrival at
the source. Figure7 visualizes calculation time and number of visited nodes
for both approaches and scenarios. Remarkably, although PP visits significantly
more nodes, it is faster than the separate Dijkstra searches for the muc scenario.
However, when the discrepancy regarding the number of visited nodes becomes
too large — as in the bav scenario — PP is marginally slower than the Dijk-
stra approach. Of course, PP visits more nodes than separate Dijkstra searches
because it visits all nodes relevant to any skyline path, as proven in Lemma 5.
In contrast, the nodes visited by the Dijkstra searches will in general not suffice
to build the path skyline. Hence, considering the additional information which
PP acquires during its single graph traversal, the overall calculation time is
unrivaled.

6 Conclusion

A multicriteria network is a graph where each edge has a vector of traversal costs,
e.g., travel time, distance, toll fees, ascension in road networks. Therefore, there
might exist multiple optimal paths between two nodes of the network. To find a
set of path alternatives, path skyline queries compute all paths optimal under an
arbitrary monotone combination function. As an alternative, linear path skyline
queries restrict the result set to paths optimal under a linear combination func-
tion. In general, algorithms for computing alternative paths in large multicriteria
networks employ lower bound estimations of the cost for reaching the target from
a given node for each cost criterion. To generate these bounds, the established
method [4] runs a all-source single-target Dijkstra search for each of the d cost
criteria. For networks with more than two cost criteria, this requires d separate
all-source searches, each visiting the whole network. In this paper, we present

ParetoPrep: Efficient Lower Bounds for Path Skylines 57

ParetoPrep as an alternative method for lower bound computation when search-
ing for optimal path alternatives. ParetoPrep computes optimal lower bounds
for all criteria in a single graph traversal. Furthermore, ParetoPrep only visits a
very limited part of the graph, which further accelerates the computation. Thus,
ParetoPrep can be used in arbitrarily large networks where visiting all nodes
would cause an infeasible overhead. To show that ParetoPrep still visits enough
nodes to support optimal path queries, we prove that any node on a pareto
optimal path is visited and bounded by ParetoPrep. Hence, ParetoPrep is an
efficient preprocessing step for all algorithms computing multiple paths between
a pair of nodes w.r.t. varying cost functions. In our experiments, we show that
ParetoPrep considerably reduces query times and the visited part of the network
for the state-of-the-art path computation algorithms ARSC [13] and LSCH [16].

Acknowledgements. This research has received funding from the Shared E-Fleet
project (in the IKTII program), by the German Federal Ministry of Economics and
Technology (grant no. 01ME12107).

References

1. Andersen, K.A., Skriver, A.J.: A label correcting approach for solving bicriterion
shortest-path problems. Comput. Oper. Res. 27, 507-524 (2000)

2. Balteanu, A., Jossé, G., Schubert, M.: Mining driving preferences in multi-cost net-
works. In: Nascimento, M.A., Sellis, T., Cheng, R., Sander, J., Zheng, Y., Kriegel,
H.-P., Renz, M., Sengstock, C. (eds.) SSTD 2013. LNCS, vol. 8098, pp. 74-91.
Springer, Heidelberg (2013)

3. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering (ICDE), Heidelberg,
Germany (2001)

4. Chew, K.L., Tung, C.T.: A multicriteria pareto-optimal path algorithm. Eur.
J. Oper. Res. 62, 203-209 (1992)

5. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR-Spektrum 22(4), 425-460 (2000)

6. Ehrgott, M., Raith, A.: A comparison of solution strategies for biobjective shortest
path problems. Comput. Oper. Res. 36, 1299-1331 (2009)

7. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets
graph theory. Technical report MSR-TR~2004-24, Microsoft Research (2004)

8. Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: Mario: Multi attribute routing in
open street map (2011)

9. Guo, C., Jensen, C.S., Kaul, M., Yang, B., Shang, S.: Stochastic skyline route
planning under time-varying uncertainty. In: ICDE 2014, pp. 136-147 (2014)

10. Guo, C., Jensen, C.S., Yang, B., Guo, C., Ma, Y.: Toward personalized, context-
aware routing. VLDB J. 24(2), 297-318 (2015)

11. Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making Theory and Application. Lecture Notes in Economics
and Mathematical Systems, vol. 177, pp. 109-127. Springer, Heidelberg (1980)

12. Ishwar, M., Mote, J., Olson, D.L.: A parametric approach to solving bicriterion
shortest path problems. Eur. J. Oper. Res. 53, 81-92 (1991)

58

13.

14.

15.

16.

17.

18.

19.
20.

M. Shekelyan et al.

Kriegel, H.P., Renz, M., Schubert, M.: Route skyline queries: a multi-preference
path planning approach. In: ICDE 2010, pp. 261-272 (2010)

Machuca, E., Mandow, L.: Multiobjective heuristic search in road maps. Expert
Syst. Appl. 39, 64356445 (2012)

Miiller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in prac-
tice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001.
LNCS, vol. 2141, pp. 185-197. Springer, Heidelberg (2001)

Shekelyan, M., Jossé, G., Schubert, M.: Linear path skylines in multicriteria net-
works. In: ICDE15, pp. 459470 (2015)

Shekelyan, M., Jossé, G., Schubert, M., Kriegel, H.-P.: Linear path skyline com-
putation in bicriteria networks. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S.,
Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol.
8421, pp. 173-187. Springer, Heidelberg (2014)

Skriver, A.J.: A classification of bicriterion shortest path (BSP) algorithms. Asia
Pac. J. Ope. Res. 17, 199-212 (2000)

Stewart, B., Chelsea, I.: White. Multiobjective a*. J. ACM 38, 775-814 (1991)
Tarapata, Z.: Selected multicriteria shortest path problems: an analysis of complex-
ity, models and adaptation of standard algorithms. Int. J. Appl. Math. Comput.
Sci. 17, 269-287 (2007)

Reverse Query and Indexing

Relaxed Reverse Nearest Neighbors Queries

Arif Hidayat®™), Muhammad Aamir Cheema, and David Taniar

Faculty of Information Technology, Monash University, Clayton, Australia
{arif.hidayat,aamir.cheema,david.taniar}@monash.edu

Abstract. Given a set of users U, a set of facilities F', and a query
facility g, a reverse nearest neighbors (RNN) query retrieves every user
u for which ¢ is its closest facility. Since ¢ is the closest facility of w,
the user u is said to be influenced by ¢. In this paper, we propose a
relared definition of influence where a user u is said to be influenced by
not only its closest facility but also every other facility that is almost as
close to u as its closest facility is. Based on this definition of influence,
we propose relaxed reverse nearest neighbors (RRNN) queries. Formally,
given a value of z > 1, an RRNN query g returns every user u for which
dist(u,q) < z X NN Dist(u) where NN Dist(u) denotes the distance
between a user u and its nearest facility. Based on effective pruning
techniques and several non-trivial observations, we propose an efficient
RRNN query processing algorithm. Our extensive experimental study
conducted on several real and synthetic data sets demonstrates that our
algorithm is several orders of magnitude better than a naive algorithm
as well as a significantly improved version of the naive algorithm.

1 Introduction

People usually prefer the facilities in their vicinity. Hence, they are influenced by
nearby facilities. A reverse nearest neighbors (RNN) query [1-4] aims at finding
every user that is influenced by a query facility ¢q. Formally, given a set of users
U, a set of facilities F' and a query facility g, an RNN query returns every user
u € U for which the query facility ¢ is its closest facility. The set containing
RNNs, denoted as RNN(q), is also called the influence set of g.

Consider the example of Fig. 1 that shows four McDonald’s restaurants (f;
to f4) and three users (u; to uz). In the context of RNN queries, the users us and
ug are both influenced by f; because fi is their closest McDonald’s. Therefore,
ug and ug are the RNNs of fy, i.e., RNN(f1) = {ug2,us}. Similarly, it can be
confirmed that RNN(f2) =0, RNN(f3) =0, RNN(f4) = {u1}.

A reverse k nearest neighbors (RENN) query [5-10] is a natural extension
of the RNN query and uses a relaxed notion of influence. Specifically, in the
context of an RENN query, a user u is considered to be influenced by its k closest
facilities. Hence, an RENN query ¢ returns every user v € U for which ¢ is among
its k closest facilities. In the example of Fig. 1, assuming k = 2, R2ZNN(f3) =
{u1,uq,us} because fo is one of the two closest facilities for all of the three users.
Similarly, R2NN(f1) = {uz,us}, RZNN(f3) = 0 and R2NN(f4) = {u1}.
© Springer International Publishing Switzerland 2015

C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 61-79, 2015.
DOI: 10.1007/978-3-319-22363-6_4

62 A. Hidayat et al.

fu fu
m, 3 fu,
o [0 f,

fsmn

Fig. 1. Illustration of the reverse nearest neighbor query and its variants

RENN queries have numerous applications [1] in location based services,
resource allocation, profile-based management, decision support etc. Consider
the example of a supermarket. The people for which this supermarket is one of
the k closest supermarkets are its potential customers and may be influenced by
targeted marketing or special deals. Due to its significance, RNN queries and its
variants have received significant research attention in the past decade (see [6]
for a survey).

In this paper, we propose an alternative definition of influence and propose a
variant of RNN queries called relazed reverse nearest neighbors (RRNN) query.
This definition is motivated by our observation that an REKNN query may not
properly capture the notion of influence as explained below.

1.1 Motivation

Consider the example of a person living in a suburban area (e.g., us in Fig. 1)
who does not have any McDonald’s nearby. Her nearest McDonald’s is fi; which
is say 30 Km from her location. In the context of R2NN query, us is influenced
by fi1 and fo — her two nearest facilities. However, we argue that it is also
influenced by f3 because a user who needs to travel a minimum of 30 Km to
visit a McDonald’s may also be willing to travel to a McDonald’s store 31 Km
far from her location.

Similarly, consider the example of another person living in a suburb (e.g.,
up in Fig. 1) who has only one McDonald’s nearby (f,) assuming that all other
McDonald’s (e.g., f1 to f3) are in downtown area and are quite far. In the context
of R2NN queries, the user u; is considered to be influenced by both f4 and fs
because these are her two closest facilities. However, we argue that the user uq
is only influenced by f4 because the other facilities are significantly farther than
dist(uq, f4), e.g., a user who has a McDonald’s within 1 Km is not very likely to
visit a McDonald’s that is say 30 Km from her location.

As shown above, the definition of influence used in RENN queries considers
only the relative ordering of the facilities based on their distances from w and
ignores the actual distances of the facilities from u. Motivated by this, in this
paper, we propose a relaxed reverse nearest neighbors (RRNN) query that relaxes
the definition of influence using a parameter = (called the x factor in this paper)
and considers the relative distances between the users and the facilities.

Relaxed Reverse Nearest Neighbors Queries 63

Definition 1. Let NNdist(u) denote the distance between u and its nearest
facility. Given a value of x > 1, a user u is said to be influenced by a facility f,
if dist(u, f) <z x NNdist(u).

Relaxed Reverse Nearest Neighbors (RRNN) Query. Given a value of z >
1, an RRNN query ¢ returns every user u for which dist(u,q) < x X NNdist(u),
i.e., return every user u that is influenced by ¢ according to Definition 1. The set
of RRNNs of a query ¢ is denoted as RRN N,.(q). Note that an RRNN query is the
same as an RNN query if z = 1.

In the example of Fig.1, assuming x = 1.2, RRNN of fy are the users us
and wug, i.e., RRNNy2(fa) = {ug,us}. Similarlyy, RRNN;yo(f1) = {us2,us},
RRNN1_2(f3) = {Ug} and RRNNl_Q(f4) = {U1}

Remark. RENN queries and RRNN queries assume that the distance is the main

factor influencing a user. This assumption holds in many real world scenarios.
For instance, the users looking for nearby fuel stations are usually not concerned
about price (or even rating) because all fuel stations have similar price (or even
the same price because, in some countries, the fuel prices are regulated by the
government). Similarly, users interested in McDonald’s restaurants are mainly
influenced by the distance because other attributes such as price, menu, and
ratings are the same for all stores. Nevertheless, in the case where the users
are influenced by other attributes, reverse top-k queries [11,12] can be used to
compute the influence using a scoring function involving multiple attributes such
as distance, price, and rating. This is a different line of research and is not within
the scope of this paper.

1.2 Contributions
We make the following contributions in this paper.

1. We complement the RENN queries by proposing a new definition of influence
that uses the x factor to provide more meaningful results by considering the
relative distances between the users and the facilities.

2. As we show in Sect. 3, the pruning techniques used to solve RENN queries
cannot be applied or extended for RRNN queries. This is mainly because,
in our problem settings, a facility f may not be able to prune the users
that are quite far from f (see Sect.3 for details). Based on several non-
trivial observations, we propose efficient pruning techniques that are proven
to be tight, i.e., given a facility f used for pruning, the pruning techniques
guarantee to prune every point that can be pruned by f. We then propose
an efficient algorithm that utilizes these pruning techniques to efficiently
compute the RRNNs.

3. We conduct an extensive experimental study on three real data sets and sev-
eral synthetic data sets to show the effectiveness of our proposed techniques.
Since existing techniques cannot be extended to answer RRNN queries, we
compare our algorithm with a naive algorithm (called RQ) as well as a signif-
icantly improved version of RQ (called IRQ). The experimental results show

64 A. Hidayat et al.

that our algorithm is several orders of magnitude better than both of the
competitors. Furthermore, we note that the results of an RRNN query are
the same as the RENN (k = 1) query when x is quite close to 1. Therefore,
we also compare our algorithm (by setting = 1 + 107°6) with the most
notable RNN algorithms. Although our algorithm solves a more challenging
version of the problem, our experiments show that it performs reasonably
well compared to RNN algorithms.

The rest of the paper is organized as follows. We present the problem defini-
tion and an overview of the related work in Sect.2. The pruning techniques are
discussed in Sect. 3. Section4 describes our algorithm to solve RRNN queries.
An extensive experimental study is provided in Sect.5 followed by conclusions
and directions for future work in Sect. 6.

2 Preliminaries

2.1 Problem Definition

Similar to RENN queries, RRNN queries can also be classified into bichromatic
RRNN queries and monochromatic RRNN queries.

Bichromatic RRNN Query. Given a set of users U, a set of facilities F,
a query facility ¢ (which may or may not be in F'), and a value of z > 1,
a bichromatic RRNN query returns every user u € U for which dist(u,q) <
xx NNdist(u) where NN Dist(u) denotes the distance between u and its nearest
facility in F.

Monochromatic RRNN Query. Given a set of facilities F', a query facility ¢
(which may or may not be in F'), and a value of > 1, a monochromatic RRNN
query returns every facility f € F for which dist(f,q) <z x NNdist(f) where
NNDist(f) denotes the distance between f and its nearest facility in {F — f}.

In Fig. 1, the monochromatic RRNNs of f; (assuming x = 1.5) are f1 and fs.
Monochromatic queries aim at finding the facilities that are influenced by the
query facility. Consider a set of police stations. For a given police station q, a
monochromatic query returns the police stations for which q is a nearby police
station. Such police stations may seek assistance (e.g., extra policemen) from ¢
in case of an emergency event.

Although our techniques can be easily applied to monochromatic RRNN
queries, in this paper, we focus on bichromatic RRNN queries because the bichro-
matic version has more applications in real world scenarios. Similar to the exist-
ing work on RNN queries, we assume that both the facility and user data sets
are indexed by R*-tree [13]. The R*-tree that indexes the set of facilities (resp.
users) is called facility (resp. user) R*-tree. Since most of the applications of the
RNN query and its variants are in location-based services, similar to the existing
RNN algorithms [6], the focus of this paper is on two dimensional location data.

Relaxed Reverse Nearest Neighbors Queries 65

2.2 Related Work

The RENN query has been extensively studied [2-5,7-10,14-19] ever since it was
introduced in [1]. Below, we briefly describe two widely used pruning strategies.

Half-Space Based Pruning [5]. A perpendicular bisector between a facility f
and a query ¢ divides the whole space into two halves. Let Hy., denote the half-
space that contains f and Hg.r be the half-space that contains ¢g. A user u that
lies in Hy.q cannot be the RNN of ¢ because dist(u, f) < dist(u,q). Consider
the example of Fig. 2, where the half-space H,., is the shaded area. The users
u; and up cannot be the RNN of g because they lie in H,.,. This observation
can be extended for REKNN queries. Specifically, a user v cannot be the REKNN
of ¢ if it lies in at least k such half-spaces. In Fig. 2, assuming k = 2, the user us
cannot be R2NN of ¢ because it lies in Hg.q and Hy.4. In other words, the area
Hg.q N Hy.,4 (the dark shaded area) can be pruned.

Six-Regions Based Pruning [2]. In six-regions based pruning approach, the
space around ¢ is divided into six equal regions of 60° each (see P; to Ps in Fig. 3).
Let df be the distance between ¢ and its k-th nearest facility in a partition P;.
It can be proved that a user u lying in a partition P; cannot be the RENN of
q if dist(u,q) > d¥. Based on this observation, the k-th nearest facility in each
partition P; is found and the distance d¥ is used to prune the search space. For
instance, in Fig. 3, the shaded area can be pruned if k£ = 1, i.e., the users u; and
ug are pruned.

Fig. 2. Half-space pruning Fig. 3. Six-regions prun- Fig. 4. Challenges
ing

It has been shown [5] that the half-space based approach prunes more area
than the six-regions based pruning. However, the advantage of the six-regions
based pruning is that it is computationally less expensive. Six-region [2] and
SLICE [10] are the most notable algorithms that use six-regions based pruning
whereas TPL [5], FINCH [20], InfZone [8,21], and TPL++ [6] are some of the
remarkable algorithms that employ half-space based pruning. The details of these
algorithms can be found in a recent survey paper [6].

To the best of our knowledge, none of the existing algorithms can be applied
or trivially extended to answer RRNN queries studied in this paper. The idea of

66 A. Hidayat et al.

relative distances has been discussed in [22] in the context of k nearest neighbors
queries. However, this is a survey study and a solution was not proposed.

3 Pruning Techniques

Given a facility f, a user v cannot be the RRNN of ¢ if dist(u, q) > x x dist(u, f).
In such case, we say that the facility f prunes the user u. In this section, we will
present the pruning techniques that use a facility f or an MBR of the facility
R*-tree to prune the users. First, we highlight the challenges.

3.1 Challenges

Existing pruning techniques cannot be applied or extended for the RRNN queries
due to the unique challenges involved. For instance, the algorithms to solve
RENN queries can prune most of the search space by considering only the nearby
facilities surrounding ¢. Consider the example of Fig.4 where the six-regions
approach finds the nearest facility to the query ¢ in each of the six partitions
and the shaded area can be pruned.

However, in the case of RRNN queries, the nearby facilities surrounding the
query ¢ are not sufficient to prune a large part of the search space. Assuming
x = 2, in partition Ps (see Fig.4), while the user u; can be pruned by f the
user up cannot be pruned by f. In other words, the users that are further from
a facility f are less likely to be pruned by it.

In Fig. 4, assuming x = 2, the six shaded circles show the maximum possible
area that can be pruned by the six facilities a to f (the details on how to compute
the circles will be presented later). Note that the facilities that are close to ¢
prune a smaller area as compared to the farther facilities. Hence, the algorithm
needs to access not only nearby facilities but also farther facilities to prune a
large part of the search space. Also, note that RRNN queries are more challenging
because the maximum area that can be pruned is significantly smaller.

In Sect. 3.2, we present the pruning techniques that prune the space using
a data point, i.e. a facility f. In Sect. 3.3, we present the techniques to prune
the space using an MBR of the facility R*-tree. Efficient implementation of the
pruning techniques is discussed in Sect. 3.4.

3.2 Pruning Using a Facility Point

Before we present our non-trivial pruning technique, we present the definition
of a pruning circle.

Definition 2 (Pruning circle). Given a query q, a multiplication factor x > 1

and a point p, the pruning circle of p (denoted as C,) is a circle centered at c
z-dist(q,p)
2—1

such that dist(q,c) > dist(p,c) and dist(q,c) =

with radius r where r = and c is on the line passing through q and p

z2-dist(q,p)
r2—1 :

Relaxed Reverse Nearest Neighbors Queries 67

Consider the example of Fig. 5 that shows the pruning circle C¢ of a facility
f assuming x = 2. The centre of c is located on the line passing through g and f
such that dist(q,c) = 4'dis+(q’f), dist(q,c) > dist(f,c) and radius r = Mi+(q’f).
The condition dist(g,c) > dist(f,c) ensures that ¢ lies towards f on the line
passing through ¢ and f, i.e., f lies between the points ¢ and ¢ as shown in
Fig. 5. Next, we introduce our first pruning rule in Lemma 1.

Lemma 1. Every user u that lies in the pruning circle Cy of a facility f cannot
be the RRNN of q, i.e., dist(u,q) > x x dist(u, f).

Proof. Given two points v and w, we use 7w to denote dist(v,w). Consider the
example of Fig. 5. Since u is inside the circle Cf, uc < r. Assume that uc =n-r

where 0 < n < 1. SinceT:f—g%%,wehaveﬁzzn-rzn-;—g%%.

Gy

Fig.5. Lemma 1 Fig. 6. Lemma 3 Fig. 7. Pruning using MBR

Considering the triangle Aque, qu = /(q¢)? + (uc)? — 2 - uc - gc - cos . Since

z>.qf
2217

ue=n- % and ge = we have

z2—1

qu = \/(Lq{p + nQ(x'_qflp _ gn(ﬂ)(ﬂ_‘”) . cos 0

2 — 2 — 2 —-1"22 -1
= \/(;2._(]]01)2(3:24-712 —2-x-n-cosb) (1)
“:L'o

= (= qfl)\/m2—|—n2—2mncos<9
2 —

Similarly considering A feu, fu = \/ (fc)?2 + ()2 — 2 -ue - fc-cosh. Since

fe=gec—qf and gc = f;—‘_‘Ti, we get fc = %. We can obtain the value of fu
by replacing the values of fc and we.

68 A. Hidayat et al.

fu= \/(562(1{1)2 —|—n2(j2'gfl)2 -2 n(aigfl) . ($2qi 1) . cosf o

= (qu 1)\/1 + n2x2 — 2nx cos b
x

Note that the user u can be pruned if dist(u,q) > x x dist(u, f). Therefore,
we need to show qu —x - fu > 0. The left side of this inequality can be obtained
using the values of gu and fu from Egs. (1) and (2), respectively.

z.qf
2 -1

qu—z- fu= (Va2 +n? —2zncos — /14 22n? — 2zncosf) (3)

Since z > 1, (;2?}1) is always positive. Hence, we just need to prove that

(V2 +n2 — 2rncosf — /1 + 22n2 — 2zncosf > 0. In other words, we need to
show (V&2 4+n2 —2xncosf > 1+ x2n2 — 2zncosf. Note that both sides of
this inequality are positive (otherwise gu and fu in Eqgs. (1) and (2) would be
negative which is not possible). Hence, we can take the square of both sides
resulting in 22 4+ n? — 2zxncosf > 1 + x2n? — 2zn cosd which implies that we
need to prove (22 +n? — 22n? — 1) > 0. This inequality can be simplified as
(22—1)(1—n?) > 0. Since # > 1 and n < 1, it is easy to see that (z?—1)(1-n?) >
0 which completes the proof. a

Note that although the pruning technique itself is non-trivial, applying this
pruning rule is not expensive, i.e., to check whether a user v can be pruned or
not, we only need to compute its distance from the centre ¢ and compare it with
the radius r. Next, we show that this pruning rule is tight in the sense that any
user v’ that lies outside C is guaranteed not to be pruned by the facility f.

Lemma 2. Given a facility f and a user v’ that lies on or outside its pruning
circle Cy, then dist(v',q) < x x dist(v, f), i.e. v’ cannot be pruned by f.

Proof. Consider the user v’ in Fig. 5. Since u’ is on or outside the pruning circle,
it satisfies u’c = n-r, where n > 1. The proof is similar to the proof of Lemma 1
except that we need to show that v/q — z.fu’ < 0, i.e., we need to show (22 —

1)(1 — n?) < 0 which is obvious given that > 1 and n > 1. O

Note that the pruning circle Cy is larger if dist(q, f) is larger which implies
that the facilities that are farther from the query prune larger area. For instance,
in Fig. 6, the pruning circle (Y is bigger than the pruning circle C,,.

3.3 Pruning Using the Nodes of Facility R*-tree

In this section, we present our techniques to prune the search space using the
intermediate or leaf nodes of the facility R*-tree. These pruning techniques

Relaxed Reverse Nearest Neighbors Queries 69

reduce the I/O cost of the algorithm because the algorithm may prune the
search space using a node of the R*-tree instead of accessing the facilities in its
sub-tree.

A node of the facility R*-tree is represented by a minimum bounding rec-
tangle (MBR) that encloses all the facilities in its sub-tree. Without accessing
the contents of the node, we cannot know the locations of the facilities inside it
except that each side of the MBR contains at least one facility. We utilize this
information to devise our pruning techniques. Specifically, we use all four sides
of the MBR and use each side (i.e., line segment) to prune the search space.
Lemma 3 presents the pruning rule and Fig. 6 provides an illustration.

Lemma 3. Given a query q, a multiplication factor x > 1, and a line ab rep-
resenting a side of an MBR, a user u cannot be the RRNN of q if it lies inside
both of the pruning circles C, and Ch, i.e., u can be pruned if u lies in C, N Cy.

Proof. Let maxdist(p,ab) denote the maximum distance between a point p and
a line ab. Note that mazdist(u,ab) = max(dist(u,a),dist(u,b)). Since u lies
in both C, and Cy, dist(u,q) > x X dist(u,a) and dist(u,q) > x x dist(u,b)
(according to Lemma 1). In other words, dist(u,q) > x x mazdist(u,ab). Since
there is at least one facility f on the line ab, dist(u, f) < maxdist(u,ab). Hence,
dist(u,q) > x x dist(u, f) which implies that the user u can be pruned. O

In Fig. 6, the shaded area can be pruned by using the line ab. he next lemma
shows that this pruning rule is also tight.

Lemma 4. Given a line ab such that the only information we have is that there

is at least one facility f on ab, a user u cannot be pruned if it lies outside either
C, or Cy.

Proof. Without the loss of generality, assume that u lies outside C,. Now assume
that there is exactly one facility f on the line ab and it lies at the end point a.
Since f lies on a, C, = Cf which implies that u is outside C'y. Hence, u cannot
be pruned by f (Lemma 2). O

To prune the search space using an MBR, we apply Lemma 3 on each of side
s; of the MBR. Specifically, a user v can be pruned if, for any side s; of the
MBR, wu lies in both of the pruning circles of the end points of s;. Consider the
example of Fig. 7 where an MBR abed is shown along with the pruning circles
of the corners of the MBR (see C,, to Cy). Let A; denote the area pruned by a
side s; of the MBR. In Fig. 7, the shaded area can be pruned which corresponds
to U?:lAi where A1 = C, NCy, Ay = C,NC,, A3 =C.NCy,and Ay = CqNC,.

3.4 Implementation of the Pruning Techniques

In the previous sections, we discussed how to prune the search space using a
facility point or an MBR of the facility R*-tree. In this section, we discuss how
to efficiently and effectively implement the pruning techniques.

70 A. Hidayat et al.

Assume that we have a set of facilities and MBRs to be used for pruning
the search space. Let A; denote the area pruned by a facility point or a side
of an MBR. Let A = {A;,---,A,} be the total area that can be pruned by
using the set of facilities and MBRs. In this section, we present Algorithm 1
that efficiently checks whether an entry e of user R*-tree (i.e., a point or an
MBR) can be pruned by A or not, i.e., whether e lies inside A or not. Before
we discuss the details of Algorithm 1, we describe how to prune a user MBR e
using a single pruning area A; € A. Since e is an MBR, it is possible that e only
partially lies in A;. Ideally, we should be able to prune the part of the MBR, that
lies inside A;. In our algorithm, we process the MBR e such that the area that
lies inside A; is trimmed. Below are the details on how to do this.

Case 1: A; corresponds to the area pruned by a facility. Consider the example of
Fig.8 where A; corresponds to the circle C,. Note that only a part of the rec-
tangle R lies in the circle. In such case, we conservatively approximate the area
that can be pruned. Specifically, we use a function TrimEntry(C,, R) that trims
the MBR R using a circle C, and returns R, that corresponds to the minimum
bounding rectangle of the part of R that lies outside C,, i.e., R, cannot be
pruned by C,. In Fig.8, R, is the shaded area. In Fig.9, R}, (the light shaded
area) is returned by TrimEntry(Cp, R). The function TrimEntry(C,, R) can be
implemented as follows. Let I be the set of intersection points between a circle
C, and a rectangle R. Let C be the corners of R that lie outside C,. The trimmed
entry R, is the minimum bounding rectangle enclosing the points in I UC.

Gy

Fig. 8. Trimming an MBR Fig. 9. Pruning an entry Fig. 10. Observations 1 & 2

Case 2: A; corresponds to the area pruned by a side of an MBR. Consider the

example of Fig.9 where A; corresponds to the area pruned by a line ab, i.e.,
A; = C, N Cy. In this case, we find the part of the MBR R that cannot be
pruned by A; as follows. Let R, = TrimEntry(C,, R) (see the dark shaded area)
and Rp = TrimEntry(Cy, R) (see the light dotted area) in Fig.9. The unpruned
part of R is the minimum bounding rectangle enclosing both R, and Ry, e.g.,
R; shown in thick broken lines in Fig.9 cannot be pruned by C, N C}.
Algorithm 1 shows the details of how to prune an entry e using a set of
pruned areas A. The output of the algorithm is the part of e that cannot be

Relaxed Reverse Nearest Neighbors Queries 71

Algorithm 1. PruneEntry(e,.A)

Input: e: the entry to be pruned, A: the set of pruned areas

Output: Return the part of e that cannot be pruned by A
1: for each A; € A do

2 if A; is related to a facility f then

3 R «— TrimEntry(Cy,e)

4: else if A; is related to a line ab then

5: Ry < TrimEntry(Ca,e)

6.

7

8

Ry, < TrimEntry(Ch,e)
R «— minimum bounding rectangle enclosing both R, and Ry
: e—R
9: if e is empty then
10: return ¢
11: return e

pruned by A. Each entry A; is iteratively accessed from A and the entry e is
trimmed using the details described earlier (lines 2 to line 7). The trimmed part
R is assigned to e which is to be further trimmed in the next iteration (line 8).
At any stage, if e is empty, the algorithm terminates by returning ¢ (line 10)
which indicates that the whole entry e can be pruned by A. When all entries A;
in A have been accessed, the algorithm returns e.

We remark that although the trimming significantly improves the I/O cost
(2 to 3 times) of the algorithm, the overall CPU time is also increased due to
the overhead of trimming. This must be taken into consideration when making
the decision on whether to use trimming or not, e.g., the trimming should not
be used if the main focus is to optimize CPU cost.

Improving Algorithm 1. Note that Algorithm 1 accesses every entry A; € A
regardless of whether A; can prune a part of e or not. Now, we discuss how
to improve the efficiency of Algorithm 1 by ignoring the entries A; that cannot
prune e. Similar to six-regions approach [2] and SLICE [10], we divide the whole
space around q in t equally sized partitions, e.g., see the partitions P; to FPs in
Fig. 10. Our technique is based on the following two simple observations.

Observation 1. Let P be the set of partitions overlapped by a pruned area A;.
An entry e can be pruned by A; only if e overlaps with at least one partition
in P. Consider the example of Fig. 10 where the area A; is shown shaded and
overlaps with partitions P3 and P,. Since the entry e; does not overlap with Ps
or Py, it cannot be pruned by A;.

Observation 2. Let A;.max and A;.min denote the maximum and minimum dis-
tances between ¢ and the pruned area A;, respectively. Figure 10 shows A;.max =
dist(q,a) and A;.min = dist(q,b). We remark that A;.max and A;.min can be
computed following the ideas presented in [23,24]. Note that an entry e can-
not be pruned by A; if mindist(q,e) > A;.max or maxdist(q,e) < A;.min. For
instance, the entry e; cannot be pruned by A; because mindist(q, es) > A;.max.
Similarly, the entry e3 cannot be pruned because mazdist(g,es) < A;.min.

72 A. Hidayat et al.

Let A;.interval denote an interval from A;.min to A;.max and e.interval
denote an interval from mindist(q, e) to maxdist(q,). Observation 2 shows that
an entry e can be pruned by A; only if e.interval overlaps with A;.interval.
We use an interval tree [25] to efficiently retrieve every A; for which A;.interval
overlaps with e.interval. Specifically, for each partition P;, we maintain an inter-
val tree 7; that contains Aj.interval for every A; € A that overlaps with P;.
To check whether an entry e (that overlaps with a partition P;) can be pruned by
A, we issue an interval query on 7; with input interval e.interval. Let A, denote
the set containing every area A; returned by the interval query e.interval. In
Algorithm 1, we use A, instead of A. Note that the cost of interval query is
O(m + logn) where n is the number of intervals stored in the interval tree and
m is the number of intervals that overlap with the input interval.

4 Algorithm

Our algorithm consists of three phases namely pruning, filtering and verification.
In the pruning phase, we use the facility R*-tree to prune the search space, i.e.,
compute A. In the filtering phase, the users that lie in the pruned space are
pruned and the remaining users are inserted in a candidate list called L,q.
Finally, in the verification phase, each candidate user u € L.,q is verified to
check whether it is a RRNN of ¢ or not.

Pruning Phase. Algorithm 2 presents the details of the pruning phase. The
algorithm initializes a heap h with the root of the facility R*-tree. The entries
are iteratively de-heaped from the heap and are processed as follows. If a de-
heaped entry e is pruned (i.e., the entry e’ returned by Algorithm 1 is empty),
we ignore it (lines 5 and 6). Otherwise, we process it as follows.

Algorithm 2. Pruning

Input: facility R*-tree, and a query ¢
Output: The set of pruned areas A
1: A—¢

2: insert root of facility R-tree in a h
3: while h is not empty do

4: de-heap an entry e

5. € < PruneEntry(e, A) > Algorithm 1
6: if ¢’ # ¢ then > e is not pruned
T if e is an intermediate or leaf node then

8: for each side ab of e do

9: create A; = C, N Cy and insert in A

10: for each child c of e do

11: if ¢ overlaps with e’ then insert ¢ in the heap

12: else > e is a facility point

13: create A; = C. and insert in A

Relaxed Reverse Nearest Neighbors Queries 73

Algorithm 3. Filtering

Input: user R*-tree, query ¢, and A
Output: a list of candidates L¢nqg
1: Lcnd — ¢

2: insert root of user R*-tree in a stack S

3: while S is not empty do

4 retrieve top entry e from S

5. € « PruneEntry(e, A) > Algorithm 1
6: if ¢’ # ¢ then > e s not pruned
T if e is an intermediate or leaf node then
8
9
0
1

for each child ¢ of e do
if ¢ overlaps with ¢’ then insert ¢ in stack S
else > e is a user
insert e in Lepqg

If e is an intermediate or leaf node of the R*-tree, for each side of e, we create
a pruning area A; and insert it in A (line 9). We also insert its children in the
heap h. Note that a child ¢ of e that does not overlap with ¢’ can be pruned
because it lies in the pruned area. Hence, only the children that overlap with e’
are inserted in the heap (line 11). If e is a facility point, we create the pruning
circle C, and add it to A (line 13). The algorithm terminates when the heap
becomes empty.

Filtering Phase. Algorithm 3 describes the filtering phase. A stack S is initial-
ized with the root entry of the user R*-tree. Each entry e is iteratively retrieved
from S and processed as follows. If e can be pruned by A, it is ignored (lines 5
and 6). Otherwise, if it is an intermediate or leaf node, its children that overlap
with e’ are inserted in the stack (line 9). If e is a user, it is inserted in L.pg
(line 11). The algorithm stops when the stack S becomes empty.

Verification Phase. In the verification phase, each candidate user u € L,q is
verified as follows. Note that a user u is a RRNN if and only if there is no facility
f for which dist(u, f) < distw.a) A cireular boolean range query is issued with

-
centre at u and radius r = W that returns true if and only if there exists a
facility in the circle. The boolean range query is conducted on the facility R*-tree

as in previous works [7] and u is reported as an answer if it returns false.

5 Experiments

5.1 Experimental Setup

To the best of our knowledge, there is no prior algorithm to solve RRNN queries.
We consider a naive algorithm (RQ) and make reasonable efforts to devise a
significantly improved version of RQ, as explained below.

Range Query (RQ). For each user u, a boolean range query with range
dist(u,q)/z is issued on the facility R*-tree (as described in the verification
phase above).

74 A. Hidayat et al.

Improved Range Query (IRQ). Note that an intermediate or leaf node entry
e, of the user R*-tree cannot contain any RRNN if there exists at least one
facility f such that mindist(e,,q) > = X mazxdist(e,, f), i.e., e, can be pruned.
Based on this, to check whether e, can be pruned or not, we use a function
isPruned(e,) that is implemented as follows. The facility R*-tree is traversed
in ascending order of maxdist(e,,es) where ey denotes an entry in the facil-
ity R*-tree. The entry e, is pruned as soon as we find an entry ey for which
mindist(ey,q) > x X mazxdist(ey,ef). To further improve the I/O and CPU
cost of isPruned(e,), we do not access the sub-tree of a facility entry ey if
mindist(ey,q) < x X mindist(e,, ey) because no child of ey can prune e,.

The IRQ algorithm is the same as Algorithm 3 except that (1) “if isPruned(e)
then” replaces lines 5 and 6 of Algorithm 3; and (2) at line 11, the user is reported
as an answer instead of inserting it in L.,4. Note that IRQ does not have a pruning
and verification phase because it merges all these phases in one algorithm. In our
experiments, we observed that the performance of IRQ can be further improved
if isPruned(e,,) is only applied to leaf entries of the user R*-tree. This is because
the intermediate nodes are highly unlikely to be pruned and result in un-necessary
1/0. We included this optimization in IRQ.

All algorithms were implemented in C++ and experiments were run on Intel
Core I5 2.3 GHz PC with 8 GB memory running on Debian Linux. Experimental
settings are quite similar to the existing work [6]. Specifically, we use the same
real data sets containing 175,812 points from North America (called NA data
set hereafter), 2.6 million points from Los Angeles (LA) and 25.8 million points
from California (CA). We also generate several synthetic data sets containing
1,000 to 20 million points following normal distributions. The default real data
set is LA containing 2.6 million points. Unless mentioned otherwise, each data
set is randomly divided into two sets of almost equal size, one corresponding to
the facilities and the other to the users. The page size of each R*-Tree [13] is
set to 4,096 Bytes. We randomly select 100 points from the facility data set and
treat them as query points. The cost reported in the experiments correspond to
the average cost of a single RRNN query. We vary the value of = from 1.1 to 4
and the default value is 1.5.

5.2 Evaluating Performance

Effect of Buffers. All three algorithms need to traverse facility R*-tree every
time a boolean range query is issued to verify a candidate user. Hence, the buffers
may reduce the I/O cost. We study the effect of the number of buffers on each
algorithm. Each buffer page can hold one node of the R*-tree and we use random
eviction strategy. In Fig. 11, we report the I/O cost of each algorithm on LA data
set for different number of buffers. As expected, the I/O cost of each algorithm
decreases with the increase in number of buffers. Note that IRQ is up to two
orders of magnitude better than RQ and our algorithm is up to three orders
of magnitude better than TRQ. Similar to [6], we use 100 buffer pages for each
algorithm in the rest of the experiments.

Relaxed Reverse Nearest Neighbors Queries 75

cID
TOO|

150k] d

11567862.2
4136224.2
O—.

95691.36

=
S
=

CPU cost (ms)
@
° 2
_ 96418.26

23.59

wlff 2470.02
5.75
i 96331.83

nf] 2697.43
* o2

Lff2197.22
294
N 95516.73

MR 3121.37

700

Nmber of1uffers
(a) I/O cost (a) CPU cost (b) I/O cost
Fig. 11. Number of buffers Fig. 12. Effect of the z factor (LA data set)

Effect of the = Factor. In Fig. 12, we study the effect of the z factor on
the three algorithms. Specifically, Fig. 12(a) shows the CPU cost and Fig. 12(b)
shows the I/O cost of the three algorithms for varying values of z. In terms of
both CPU and I/0O cost, our algorithm is up to three orders of magnitude better
than IRQ and up to four orders of magnitude better than RQ. The cost of our
algorithm and IRQ is higher for larger x factor because the pruning area shrinks
as the = factor increases which results in a larger number of candidates and
RRNNs. Note that the cost of RQ is not significantly affected by the x factor
mainly because it needs to verify every user regardless of the value of x.

Effect of Data Set Size. In Fig. 13(a) and (b), we study the effect of data set
size on the performance of the three algorithms. Specifically, we conduct experi-
ments on three real data sets: NA (175,000 points), LA (2.6 million points) and
CA (25.8 million points). Our algorithm outperforms the other two algorithms
and the gap between the three algorithms increases as the data set size increases
(please note that log-scale is used in both figures). For example, Fig. 13(a) shows
that our algorithm is around 25 times faster than IRQ on NA data set and 330
times faster on CA data set. Similarly, Fig. 13(b) shows that the I/O cost of
our algorithm is around 12 times lower than IRQ for NA data set and almost
430 times lower for CA data set. Also, as expected the cost of each algorithm
increases as the data set size increases. This is mainly because the size of each
R*-tree increases and more entries are required to be processed.

1928395.24.
3
3
O
5189774.5

CPU cost (ms)

NA(175K)n LA(2.6M) CA(25.8M) NA(175K) LA(2.6M)
data set data set
(a) CPU cost (b) I/O cost

Fig. 13. Performance comparison on different real data sets

76 A. Hidayat et al.

Since our algorithm is up to several orders of magnitude better than the other
algorithms, in the rest of the experiments, we focus on analysing the behavior of
our algorithm and omit the cost of the other algorithms for better illustration.

Effect of Relative Data Size. In the previous experiments, each data set
contained almost the same number of users and facilities. Next, we analyse the
performance of our algorithm where the number of users and the number of
facilities are different. Specifically, in Fig. 14 we vary the number of facilities
from 1000 to 1 million and the number of users is fixed to 100K. The sets of
facilities and users are generated using normal distribution. Figure 14(a) and (b)
show the CPU and I/O cost of our algorithm, respectively. Figure 14(c) shows
the number of candidates, number of RRNNs and the number of entries (facility
points and MBRs) used for pruning.

Pruning ——

500! Results mm—
Filtering &z - 150 Filtering exxzzz= 3 = Candidates
@ Points for pruning

< MBRSs for pruning &=z
5]

n
=3

Verification Verification s

3
S

» 3

50 I

400

(ms)
@

o
*
S

CPU cost
>

o

700K 1

1 Nu::':ber of facilities Numl.!:(er of fag'htles
(a) CPU cost (b) I/O cost (c) Stats

=)

Fig. 14. Effect of varying the number of facilities (100 K users)

Figure 14(a) shows that the CPU cost of our algorithm is larger if the number
of facilities is too small or too large as compared to the number of users. The
reason is as follows. When the number of facilities is too small (e.g., 1,000),
the total area that can be pruned is smaller due to the lower density of the
facilities. This results in a larger number of candidates and RRNNs (as shown
in Fig. 14(c)). Hence, the verification cost of the algorithm is larger as shown
in Fig.14(a). On the other hand, when the number of facilities is too large
(e.g., 1 million), the pruning phase is the dominant cost of the algorithm. This
is because the algorithm needs to access a larger number of entries to prune the
search space (see Fig. 14(c)).

Figure 14(b) shows the I/O cost of our algorithm. When the number of facil-
ities is too small, the I/O cost of the filtering phase is larger because the area
that can be pruned is smaller due to the lower density of facilities data set. The
I/0O cost of pruning phase increases as the number of facilities increases. This is
because the size of facility R*-tree increases and more entries are required to be
accessed to prune the search space.

In Fig. 15, we vary the number of users from 1,000 to 1 million and fix the
number of facilities to 100 K. Figure 15(a) shows that the CPU cost of the algo-
rithm increases as the number of users increases. This is because the filtering
and verification cost of the algorithm increases for larger set of users, e.g., the

Relaxed Reverse Nearest Neighbors Queries 7

Pruni 150 Pruning —— esults mm—

Filtering Exzzzz= 1 Filtering Exzz=zza 125 Candidates]
Verification s Verification s Points for pruning ——
MBRs for pruning &a=z=

=)

@
<

-3

© © © ©
=3 = = =
< < @ @
R R R R

CPU cost (ms)
o

rS

10K 100K M K
Number of users Number of users Number of users

(a) CPU cost (b) I/O cost (c) Entries

Fig. 15. Effect of varying the number of users (100K facilities)

@

CPU cost (ms)
N

£ -
NAT175K LA (2.6M CA (25.8M
(175K) A ;a se} () NA (175K) ‘sz g.gng)t

(a) CPU cost (b) IO cost

CA (25.8M)

Fig. 16. Comparison with state-of-the-art RNN algorithms

number of candidate users and RRNNs increases (as shown in Fig. 15(c)). Simi-
larly, Fig. 15(b) shows that the I/O cost of the algorithm also increases for larger
number of users. This is because the filtering requires traversing a larger user
R*-tree which results in requiring to access more nodes of the users.

Figure 15(c) also shows the effectiveness of the proposed pruning techniques.
Note that the number of candidates is much smaller as compared to the total
number of users. Furthermore, almost 65% of the candidates are the relaxed
reverse nearest neighbors. We remark that the verification 1/O cost of our algo-
rithm is negligible mainly because most of the nodes accessed during verification
are already present in the buffer (from pruning phase or the previously issued
boolean range queries).

Efficiency Compared with RNN Algorithms. As stated earlier, there is
no previous algorithm to solve RRNN queries and the existing algorithms to
solve RNN queries cannot be trivially extended. Although we made significant
efforts to devise the second competitor IRQ, our algorithm is up to three orders of
magnitude better than it. In the absence of a well-known competitor, readers may
find it harder to evaluate the efficiency of an algorithm. Therefore, we compare
our algorithm with the most well-known RNN algorithms, namely SLICE [10],
InfZone [8], TPL [5], FINCH [20] and six-regions [2]. For our algorithm, we set
x = 1+ 1075 because we note that the results of an RRNN query is the same
as those of an RNN query if « is very close to 1.

Figure 16 shows that the performance of our algorithm is comparable to the
most popular RNN algorithms which shows the effectiveness of the techniques

78 A. Hidayat et al.

proposed in this paper. We remark that this experiment is conducted only to
demonstrate that our algorithm is efficient and it should not be used to draw any
conclusion regarding the superiority of our algorithm over any other algorithm
and vice versa. This is because our algorithm solves an inherently different and
arguably more challenging problem.

6 Conclusions and Future Work

In this paper, we propose a variant of RNN queries called relaxed reverse nearest
neighbors (RRNN) queries. An RRNN query relaxes the definition of influence
using the relative distances between the users and the facilities. RRNN queries
are motivated by our observation that RENN queries may be unable to properly
capture the notion of influence. We propose an efficient algorithm based on
several efficient and effective pruning techniques and non-trivial observations.
The pruning techniques are proved to be tight. The extensive experimental study
demonstrates that our algorithm is several orders of magnitude better than the
competitors.

There are several interesting directions for future work. For example, it will
be interesting to study the relaxed version of reverse top-k queries by using the
idea of relative scores, i.e., return every user for whom the query product is
almost as good as her most preferred product. Also, continuous RRNN queries
for moving objects is another interesting research direction, e.g., continuously
report the drivers for which my fuel station is an RRNN. RRNN queries for
other distance metrics such as road network distances also need to be explored.

Acknowledgments. The research of Muhammad Aamir Cheema is supported by
ARC DE130101002 and DP130103405.

References

1. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD, pp. 201-212 (2000)

2. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: ACM SIGMOD Workshop, pp. 44-53 (2000)

3. Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest
neighbor queries on uncertain data. IEEE Trans. Knowl. Data Eng. 22, 550-564
(2010)

4. Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.E.: Discovery of influence sets
in frequently updated databases. In: PVLDB, pp. 99-108 (2001)

5. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality.
In: PVLDB, pp. 744-755 (2004)

6. Yang, S., Cheema, M.A., Lin, X., Wang, W.: Reverse k nearest neighbors query
processing: experiments and analysis. In: PVLDB, pp. 605-616 (2015)

7. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: FINCH: evaluating reverse k-nearest-
neighbor queries on location data. In: PVLDB, pp. 1056-1067 (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Relaxed Reverse Nearest Neighbors Queries 79

Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently processing
reverse k nearest neighbors queries. In: ICDE, pp. 577-588 (2011)

Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest
neighbors queries in euclidean space and in spatial networks. VLDB J. 21, 69-95
(2012)

Yang, S., Cheema, M.A., Lin, X., Zhang, Y.: SLICE: reviving regions-based pruning
for reverse k nearest neighbors queries. In: ICDE, pp. 760-771 (2014)

Vlachou, A., Doulkeridis, C., Kotidis, Y., Ngrvag, K.: Reverse top-k queries. In:
ICDE, pp. 365-376 (2010)

Cheema, M.A., Shen, Z., Lin, X., Zhang, W.: A unified framework for efficiently
processing ranking related queries. In: EDBT, pp. 427-438 (2014)

Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, Atlantic City, NJ,
23-25 May, pp. 322-331 (1990)

Emrich, T., Kriegel, H.-P., Kroger, P., Renz, M., Ziifle, A.: Incremental reverse
nearest neighbor ranking in vector spaces. In: Mamoulis, N., Seidl, T., Peder-
sen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 265—282.
Springer, Heidelberg (2009)

Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest
neighbor queries. In: CIKM (2003)

Achtert, E., Kriegel, H.P., Kroger, P., Renz, M., Ziifle, A.: Reverse k-nearest neigh-
bor search in dynamic and general metric databases. In: EDBT, pp. 886-897 (2009)
Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with voronoi diagrams for efficient
processing of spatial nearest neighbor queries. PVLDB 3(1), 1231-1242 (2010)
Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: an effi-
cient technique to continuously monitoring reverse knn. In: PVLDB, pp. 1138-1149
(2009)

Bernecker, T., Emrich, T., Kriegel, H.P., Renz, M., Ziifle, S.Z.A.: Efficient proba-
bilistic reverse nearest neighbor query processing on uncertain data. In: PVLDB,
pp. 669-680 (2011)

Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Continuous reverse k-nearest-neighbor
monitoring. In: MDM, pp. 132-139 (2008)

Cheema, M.A., Zhang, W., Lin, X., Zhang, Y.: Efficiently processing snapshot and
continuous reverse k nearest neighbors queries. VLDB J. 21(5), 703-728 (2012)
Taniar, D., Rahayu, W.: A taxonomy for nearest neighbour queries in spatial data-
bases. J. Comput. Syst. Sci. 79(7), 1017-1039 (2013)

Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe
zone: an effective technique to monitor moving circular range queries. In: ICDE,
pp. 189-200 (2010)

Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous mon-
itoring of distance-based range queries. IEEE Trans. Knowl. Data Eng. 23(8),
1182-1199 (2011)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to Algo-
rithms, vol. 2. MIT Press, Cambridge (2001)

Influence-Aware Predictive Density Queries
Under Road-Network Constraints

Lasanthi Heendaliya™), Michael Wisely, Dan Lin, Sahra Sedigh Sarvestani,
and Ali Hurson

Department of Computer Science, Missouri University of Science and Technology,
Rolla, MO, USA
{heendaliyal,mwwcp2,lindan,sedighs,hurson}@mst.edu

Abstract. Density query is a very useful query type that informs users
about highly concentrated/dense regions, such as a traffic jam, so as to
reschedule their travel plans to save time. However, existing products
and research work on density queries still have several limitations which,
if can be resolved, will bring more significant benefits to our society. For
example, we identify an important problem that has never been studied
before. That is none of the existing works on traffic prediction consider
the influence of the predicted dense regions on the subsequent traffic
flow. Specifically, if road A is estimated to be congested at timestamp
t1, the prediction of the condition on other roads after ¢; should con-
sider the traffic blocked by road A. In this paper, we formally model
such influence between multiple density queries and propose an efficient
query algorithm. We conducted extensive experiments and the results
demonstrate both the effectiveness and efficiency of our approach.

1 Introduction

Sitting in road traffic congestion is obviously not a pleasant experience for a trav-
eler. The impacts of traffic congestions indeed expand beyond the inconvenience
and include environmental, economical, and safety issues [2,18]. This work aims
to find solutions to traffic congestion problems by leveraging mobile devices and
their popularity among the community.

Some common strategies related to relieving the traffic congestion problem
include providing current traffic information (like Google Maps) [4,9,23] or mod-
eling future traffic conditions with past data [17,20,21]. However, these existing
approaches still have several limitations which, if can be resolved, will bring more
significant benefits to our society. Specifically, such limitations include the fol-
lowing. First, existing approaches that provide only current traffic information
do not offer many options for a driver. Because, based on current information, it
may already be too late for some vehicles very close to the traffic congestion to
divert to a new route. Therefore, several research works [13] have been proposed
to predict traffic conditions with mobile object database queries. Unfortunately,
most of them simplify the problem by considering objects moving on Euclid-
ean space rather than under road-network constraints, making them hard to

© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 80-97, 2015.
DOI: 10.1007/978-3-319-22363-6_5

Influence-Aware Predictive Density Queries 81

Prior Approach

= DS:
,L_:T" o gl
- l, |8
I Va "

-

<
= S, &
£ o o

Time t1 Time t2 (5 minutes after t1)
(without influence consideration) (without influence consideration)
| ~ o | ™
N oA T \ ‘ | LA \
| Vs [
~ h\ﬁ ‘ \ |~ /—t/ \
\“ . (\ N

Our Approach)

L \iIOa N
~— > |

o

N\ 0,
\ ‘ — ,W

< “" / ’ ! I } r -)i
/ E“ AN ‘ ‘/ ZOT%{W\

Time t1 Time t2 (5 minutes after t1)
(With influence consideration) (With influence consideration)

Fig. 1. An example of traffic influence effect

be directly adopted in real scenarios. Very few works predict traffic conditions
under the road-network constraints. The most recent one is the Predictive Line
Query (PLQ) [11]. However, PLQ only returns predicted traffic information of
a user specified road. It would not be able to identify all possible dense regions
(i.e., traffic congestions) automatically.

Besides the aforementioned limitations, there is another important issue that
has been neglected by all existing works on predictive density queries, which is
the influence of a predicted dense region on the subsequent traffic flow. Specif-
ically, if road A is forecasted to be congested at timestamp ¢, the prediction of
the condition on other roads after ¢ should consider the traffic being blocked
by road A during the period of congestion. To have a better understanding,
let us consider a more concrete example shown in Fig.1. In Fig.1, the left-
most diagram shows the positions and moving directions of vehicles (denoted as
black points) at timestamp to. Without considering traffic influence, a density
query will predict a dense road segment DS; (highlighted by the rectangle) at
timestamp ¢; and then another two (DS3 and DS3) at timestamp to (say 5min
later). However, if observed carefully, vehicles stopped by the congestion at DS
are unlikely to travel to DSs since traffic would not be clear within 5min. As a
result, DS5 may not have any congestion at all at timestamp t,. This scenario
explains that predicting dense areas on a given timestamp could be inaccurate
unless the influence of former possible dense areas are taken into consideration.
Our goal is to model such influence (as shown by the gray area) and provide
more realistic traffic prediction.

82 L. Heendaliya et al.

In this paper, we define a new type of query, called Influence-aware Predictive
Density (IPD) Queries. Our proposed IPD query has the following three key
features that are unseen in prior works: (i) it automatically identifies and reports
all possible dense areas, in terms of road segments, considering the underlying
road network; (ii) it provides predicted traffic density information, which users
will find more practical than the current density information; (iii) it accounts
for the influence of dense regions on other nearby dense regions to produce more
accurate traffic estimation. To efficiently answer the IPD queries, we propose
a three-phase query algorithm along with several heuristics to further prune
the search space. We have conducted experiments using real road maps and
the experimental results demonstrate both effectiveness and efficiency of our
approach.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 formally defines the density query problem. Section 4 presents the query
algorithm. Section 5 reports the experimental results and Sect. 6 concludes the

paper.

2 Related Work

Generally speaking, a density query aims to retrieve all regions with a density
(i.e., the number of moving objects per square unit) that exceeds a given thresh-
old. It is worth noting that the density query is different from the range query
in that the input to the range query is the location of a query region, whereas
the input to the density query is the density threshold and the size (but not the
location) of the dense region. The remainder of this section discusses the past
work on the density query problem and its solutions.

Existing works on density queries can be roughly classified into two cate-
gories: (i) density queries in Euclidean space; (ii) density queries in road net-
works. Most of existing works on density queries mainly consider objects moving
freely in Euclidean space. The first work is by Hadjieleftheriou et al. [16] who
proposed two versions of density queries: Snapshot Density Queries (SDQ) and
Period Density Queries (PDQ). The SDQ identifies dense regions for a specific
time instance in the future, while the PDQ identifies dense regions in a time
interval. In their approach, the entire space is divided into a grid of equal-sized
cells, and density regions are reported in terms of cells. Such approach ignores
possible dense regions located in the middle of multiple cells and causes a so-
called answer loss problem as pointed out by Jensen et al. in [13]. To resolve the
answer loss problem, Jensen et al. [13] redefined the density query and propose
a two-phase query algorithm to predict dense regions that can be located any-
where and are not constrained to partitioning cells. Unlike previous works where
the dense regions are square shaped, Ni and Ravishankar [19] define a pointwise
dense regions (PDR) that allows the dense region to be of any shape and any
size. They also partition the space into grid while their search algorithm ensures
that a 4-cell block is searched each time and hence also avoids the answer loss
problem. All the aforementioned query algorithms consider the snapshot version

Influence-Aware Predictive Density Queries 83

of the density query. The algorithms proposed in [10,22] support the continuous
density queries. Similar to the snapshot queries, the continuous density queries
also take the density threshold and size of the dense region as input. In order to
continuously identify dense regions, the algorithm repeatedly divides the entire
space into quadrants until the quadrant is no larger than the given size of the
dense region. Then, each quadrant is labeled as either dense or not. This is the
main limitation of such an approach.

In addition to the aforementioned density query algorithms, to which move-
ments are considered in the Euclidean space, very few works [15] have been
conducted on density queries restricting the movements to road networks. One
such work is by Lai et al. [15] who propose the Effective Road-Network Den-
sity Query (e-RNDQ). The definition of density under road network constraint is
now the number of moving objects per road segment rather than per square unit.
Furthermore, the distance between any two neighboring objects in a dense road
segment should not exceed the given distance threshold. This condition prevents
skewed object distribution in a query result. Lai et al. propose a clustering-based
algorithm to obtain the query results. The main limitation is that they only iden-
tify dense road segment at current timestamp but do not support any predictive
queries.

In summary, our work is different from existing works in the following aspects:
(i) it is the first time that the traffic influence is considered during multiple dense
region exploration; (ii) it is the first work, to the best of our knowledge, that
supports predictive density queries on road networks.

3 Problem Statement

Without loss of generality, we consider uni-directional or bi-directional roads
with separate lanes for each direction. In other words, it is assumed that the
high traffic density of one direction does not affect the traffic on the other direc-
tion. Under this assumption, in what follows we formally define our proposed
Influence-aware Predictive Density Query.

Definition 1. [Density] The density of a road segment r is the number of objects
per unit length (e.g., meter) per lane on the road, represented as DS(r) =
Tlen(r) where N is the number of objects on road r, len(r) is the length of
road r, and m is the number of lanes.

Definition 2. [Dense Road Segment] Given a density threshold p, the road seg-
ment r is dense if the density(r) at time t is greater than the threshold p.

We now proceed to define a new concept, namely mutually independent dense
road segments, which is the base of the influence-aware predictive density query.

Definition 3. [Mutually Independent Dense Road Segments| Given any two
dense road segments R, and Ry with occurrence time t, and t, (t, < tp) respec-
tively, R, and Ry are mutually independent of each other if one of the following
conditions is satisfied:

84 L. Heendaliya et al.

1. ty — t, > o, where o is the threshold that describes the typical time taken to
clear a traffic jam;

2. For any o € Og, Dist(0, Rp) > Umaz - (ty—ta), where O, is the set of objects on
road R, at time t,, Dist(o, Rp) computes the shortest road-network distance
between object o and the closer end of road Ry, and vpmq, is the mazimum
moving speed of objects.

The definition of mutually independent dense road segments aims to ensure
that objects that contribute to the density of one road segment will not affect
the density computation of another road. Specifically, the first condition checks
if the occurrence of dense regions are far enough apart in terms of time that
objects stuck on road R, may already be freed when computing the density for
road Rp. The second condition avoids considering any subsequent dense road
segment caused by the similar set of objects that recently contributed to a dense
road segment. For example, consider an object o passes by road R, at t, and
then Ry at tp,. If R, is predicted as a dense road segment at t,, we should not
consider o when computing the density of road R; at t; since o has stuck or been
slowed down by the traffic congestion.

Definition 4. [Influence-aware Predictive Density (IPD) Query] Given a
road map G, a density threshold p and a time window tpa., an IPD
query computes a list of predicted mutually independent dense road segments
{DS1,DS5,DSs, ..., DS, }, where the occurrence times t1 < to < tz3 < .-+ <
tn(tn < tmaz); ti s the occurrence time of DS;.

It is worth noting that dense road segments caused by the moving objects
that have already been accounted for in antecedent dense road segment are
excluded from further consideration in IPD queries. In other words, only the
earliest occurring dense road segment of a chain of dense segments is considered
each time.

4 Influence-Aware Predictive Density Query Algorithm

In this section, we first introduce the data structure that is utilized to support the
influence-aware predictive density (IPD) queries and then elaborate the query
algorithm.

4.1 Data Structure

To answer IPD queries, we need indexing structures to manage the information
of objects moving on road networks. There have been several such kind of indexes
such as IMORS [14], ANR-tree [6], R-TPR*-tree [8], and TPR*’ [7]. Here, we
employ the most recent one, the RP-tree [12], which is also our prior work.
Although our main contribution of this work lies in the query algorithm (in
Sect. 4.2) and not the data structure, we briefly introduce the data structure
here to facilitate a better understanding of the whole algorithm.

Influence-Aware Predictive Density Queries 85

R*Tree J—:HiH;LHg
Leaf Nodes LN

‘ ‘ ‘ ‘ ‘ Vehicle Objects Link Lists
I— T e T o B o B
—
_7__‘—'I:I—Dﬂﬂ
Edge Objects with one—|__|:'_,‘:|_yl:|_,:|

Hash Bucket per each
direction

I N Y N I
ENENEE

[

Fig. 2. The RP-tree

The RP-tree indexes two types of data: road-network information and object
location information. The road network is represented as a graph G = (V, &),
where V is the set of vertices and £ is the set of edges. Each edge e = {v1, v} € €
represents a road segment in the network where vi,vo € V; v; and vs are
starting and ending nodes of the road segment, respectively. Furthermore, each
road segment is associated with two parameters: [and s, where [is the length
of the edge and s is the maximum possible speed on that edge.

A moving object O is represented by the tuple {04, z¢, yt, ok, 0L, 0}, 044, t},
where 0;4 is the unique object ID, x; and y; are the coordinates of the moving
object at the latest update timestamp ¢, ol is the current road segment that
the object is on, o!™! is the next road segment that the object is headed to,
o, is the object’s velocity (or speed), and o044 is the object’s travel destination.
It is assumed that most moving objects are willing to disclose their tentative
traveling destinations to the service provider (server) in order to obtain high-
quality services, albeit their destinations may change during the trip.

Figure 2 illustrates the overall structure of the RP-tree. The RP-tree is com-
posed of an R*-tree [3] and a set of hash tables. The road-network informa-
tion is indexed by the R*-tree. Each entry in the non-leaf node is in the form
of (node_M BR, child_ptr), where node_M BR is the MBR (Minimum Bound-
ing Rectangle) covering the MBRs of all entries in its children pointed to by
the child_ptr. Leaf nodes in R*-tree pointing to hash tables represent moving
objects on each road segment. Each entry in the leaf node is in the form of
(edge-M BR, obj_ptr), where edge.M BR is the MBR of a road segment and
obj_ptr links to a hash table storing objects moving on this edge. Each hash
table has an Ny hash bucket, where N is the number of traveling directions.
Each bucket has two linked lists that provide a finer grouping for objects based
on their traveling directions. Moving objects with similar traveling directions
are hashed to the same hash bucket and stored in one of the sorted linked lists

1

86 L. Heendaliya et al.

maintained in that hash bucket. Moreover, for easy update, each object also has
a pointer directly linked to the edge that it is currently moving on. The details
of the construction of the RP-tree can be found in [12].

In addition to the RP-tree, we also maintain a two-dimensional histogram
that comprises of square-shaped cells covering the considered space. Each cell
maintains the counts of moving objects that may cross the cell within the time
period [tnow; tnow + H] for equally calibrated timestamps. Here H is the horizon
— the time window in which the prediction is valid. The histogram is initialized
according to the moving object’s estimated traveling path.

4.2 Query Algorithm

Influence-aware predictive density (IPD) queries aim to identify all dense road
segments that may occur at different timestamps in the near future and also do
not influence each other as defined in Sect.3. The query algorithm consists of
three phases: filtering, refinement, and refreshing.

The Filtering Phase. The filtering phase utilizes the histogram to quickly
identify potential grid cells that may contain dense road segments. Recall that
the histogram stores the estimated number of objects in the corresponding cell at
each timestamp starting from the current timestamp. When considering whether
a cell may contain a dense road segment, we do not simply use the original count
of objects in the cell, as in previous works. Instead, we consider the adjusted cell
density (Definition 5) in order to take into account the road topology. Specifically,
the adjusted cell density estimates the average number of objects per unit length
of road segments. For example, if a cell contains very few roads but a large
number of objects, it is very likely that the cell contains a dense road segment.
For time efficiency, the adjusted cell density can be generated along with the
computation of the count of objects when building the histogram. For storage
efficiency, the histogram can be compressed similarly as that in [13].

Definition 5. [Adjusted Cell Density] Let Nt be the number of objects in cell ¢
at timestamp t, and I be the total length of road segments in cell c. The adjusted
cell density ACD!. is computed as follows:

Nt

t __ c
ACD; = —¢

c

The filtering phase starts checking the adjusted cell density of each cell at the
earliest timestamp stored in the histogram. If a cell’s density is above a thresh-
old p., the cell will be inserted to a priority queue to be sent to the refinement
phase. The challenging issue here is to determine the proper value of the thresh-
old p.. If we simply set p. to the same value as the density threshold p given
by the query issuer, we may miss the dense road segment that spans multiple
non-dense cells and have many false negatives. If we set p. to a very low value,

Influence-Aware Predictive Density Queries 87

we will not miss the dense road segment but the filtering phase will lose the prun-
ing power and keep too many non-dense cells for further examination, which in
turn will increase the overall query cost. Therefore, we model this effect using
the following linear regression function. The goal is to identify the best value of
pe that balances both the query cost and the number of false negatives. Specif-
ically, in Eq. 1, Cost, and F'N are the estimated query cost and false negatives
for a given p., a is a weight value, and Cost;,q, is the query cost to retrieve
all objects in the entire space. Here, Cost, is the estimated cost of the second
refinement phase which is determined by the number of queries on cells in the
queue. The lower the p., the fewer the cells to be further examined and lower
Costy. CoStyay is used to normalize the value of the first part of the equation
to the range of 0 and 1, so that it is comparable to the false negatives. F'IN
is estimated using the number of road segments spanning cells. The goal is to
minimize the “Penalty” to determine p..

Cost,

Penalty(p.) = o - ——2
enalty(pe) = o oo

+(1-a)-FN (1)

After all cells at the same timestamp are considered, we move to the next
timestamp and the same filtering process continues until all timestamps in the
histogram have been examined. The final priority queue will have a list of cells
ordered in an ascending order of the timestamps. Cells at the same timestamp
are ordered by descending density.

More importantly, each cell ¢ in the queue also maintains a list of influenced
cells whose priority is lower than its own, along with the number of vehicles
coming from the cell ¢ to the influenced cell. This list will later be used to
quickly prune non-dense cells as discussed in the refreshing phase.

The Refinement Phase. The refinement phase takes a further look at the
candidate dense cells obtained from the filtering phase to see whether these cells
actually contain dense road segments. The refinement phase starts from the
highest prioritized candidate cell from the priority queue and moves to the next
highest prioritized cell of the same timestamp, and so on. After all candidate
cells at the same timestamp are examined, the refreshing phase (Sect.4.2) will
be activated in which the entries in the queue and their priority will be updated.
Then the highest prioritized cell from the updated queue is selected and sent back
to the refinement phase. The iteration between the refinement and refreshing
continues until the priority queue is empty. In what follows, we elaborate the
three main steps taken during the refinement.

The first step is to find the road segments containing the objects that may
pass by the candidate cell at the timestamp t4 (as stored in the priority queue)
when this cell may be dense. Note that these road segments may not be the
road segments located in the candidate cell. This is because we are predicting
future dense road segments, and objects on road segments outside the candidate
cell at current timestamp may enter this cell at a future timestamp. In order to

88 L. Heendaliya et al.

identify these related road segments, we perform a square-shaped ring query on
the RP-tree as shown in Fig. 3, where the square shaped ring is represented by
the shaded area between solid-line squares. The dimension of the square-shaped
ring is determined according to the road network information. Specifically, the
lengths innerL and outerL are the distances to the closest and the farthest
objects that may be able to enter the candidate cell according to the road speed
limits.

innerL = M + Dist(speedmin - (ta —tc)) (2)
outerL, = M + Dist(speedmaz - (tg — te))- (3)
\
\
. ||
[]

~]in N %

N oytery | |

—H -

Es

Fig. 3. Squared shaped ring query

The second step is to retrieve objects in the relevant hash bucket of each road
segment found by the previous step. Recall that each road segment is associate
with multiple buckets containing objects traveling towards different destinations.
Intuitively, if an object is not heading toward the candidate cell, we do not need
to retrieve it. To determine which bucket needs to be checked, we consider the
relevancy of the object’s traveling angle and the candidate cell as shown in
Fig.4. The Fig. 4 illustrates two cases where the number of hash buckets is 8
and different distances to the candidate cell (due to the difference in times when
the density is computed for: ¢, and ¢, > t,). As shown in the figure, the number
of hash buckets selected to examine candidate cell A’s density is 3 (hash bucket
1, 2, and 3) where that for candidate cell B is only two (bucket 0 and 1). The
use of bucket selection helps improve the overall query performance by pruning
irrelevant objects for further consideration.

Since objects returned from the second step may still contain objects that do
not contribute to any dense road segment, the final refinement step is to compute
the exact traveling routes of these candidate objects and then identify the truly
dense road segments. Specifically, each road segment in the candidate cell is
associated with a counter. For each candidate object’s path, we increase the
counter of the road segment passed by the object by one. This ensures that each

Influence-Aware Predictive Density Queries 89

Fig. 4. Two examples of modified hash bucket selection

path is examined only once. After analyzing all the candidate objects’ routes,
the road segments with count above the density threshold will be reported.

The Refreshing Phase. The refreshing phase aims to compute quarantine
areas of identified dense road segments. Since objects occurring on one dense
road segment are impossible to occur on another at the same time, it is not
necessary to run refreshing phase after each identified road segment. Instead,
the refreshing runs after all the dense road segments have been identified for
each timestamp considered to improve efficiency. It consists two main steps: (i)
compute quarantine areas; (ii) rejuvenate the priority queue.

Fig. 5. Influenced road segments in the quarantine area of road AB

A quarantine area is defined for each identified dense road segment within the
same timestamp. The area contains the dense road segments and the segments
that the congestion would propagated to. Figure5 shows an example of the
quarantine area regarding a dense road segment AB at time t,. The dashed-
lined road segments are the road segments that will be affected by AB. More
specifically, the road segments in the quarantine area contain objects stuck in
AB at time t, for the computation of their density at a near future timestamp
t, when the traffic may not be cleared. Therefore, the computation of density
of road segments in the quarantine area should ignore the objects stuck in AB.

90 L. Heendaliya et al.

- P E—
D B F B F
(t3:1.8] § [t3:2.1] | [t4:2.4] [t3:2.1] | [ta:2.4]
(9:5) (15:7) | (7:3) (15:7) (7:3)
y v y Y
(a) Original Priority Queue (b) Updated Pri-

ority Queue

Fig. 6. Updated queue

The objects on the road segments in the quarantine area are disregard from
subsequent dense area identification. The formal definition of quarantine area is
given by Definition 6, where the value of n is determined based on the typical
time that a traffic congestion can be cleared.

Definition 6. [Quarantine Area] Given a road network G(V,E) and a set of dense
road segments S; where S C £. The quarantine area of S is a set of road segments,
Q= Uie|$\(8i USP). Here I is the n -hop adjacent edges of it edge in S.

The second step of the refreshing is to rejuvenate the priority queue by dis-
carding cells influenced by the identified dense road segment. This step leverages
the influence cell list associated with each cell in the priority queue. Specifically,
for each cell ¢ that contains the identified dense road segment at the timestamp
considered, we update the adjusted density for the cells that overlap with the
quarantine area of cell ¢ by decreasing the corresponding number of objects stuck
in c. Figure6 shows an example. Suppose that after the refinement phase, we
know that cell A contains dense road segments while cell C' does not. Since cell
C' has no dense road segments in it, there is no need to update its entry in the
priority queue. As for cell A, it influences two cells B and D. Cell B contains two
objects that will travel from cell A. Since the objects in cell A are stopped due to
the high density of cell A, the total number of expected objects in cell B would
be decreased, and the new adjusted density of cell B becomes 15/7 =2.1. Simi-
larly, cell D’s new density is 1.8. Assuming that the cell D’s density is now below
the density threshold p., it would be removed from the priority queue for sub-
sequent computations. In this way, the refreshing phase helps avoid unnecessary
computations.

5 Performance Study

In this section, we evaluate the performance of our proposed influence-aware
predictive density (IPD) query algorithm by varying a number of parameters

Influence-Aware Predictive Density Queries 91

on different datasets. Since the IPD query is the only approach that predicts
dense road segments under road network constraints, we compare it with a
baseline approach which simply examines each object’s shortest path at different
timestamps to directly compute the dense road segments. The baseline approach
also implements the concept of quarantine area by discarding the objects on iden-
tified dense road segments from subsequent computation. Both algorithms were
implemented and tested on a 2.40 GHz Intel® Xeon®E5620 CPU desktop with
11 Gigabytes of memory. The page size is 4K bytes. The RP-tree implementa-
tion of RP-tree in our approach is the same as that in [12]'. The internal nodes
of a tree are pinned in a LRU buffer of 50 pages.

Table 1. Statistics of the road maps

State | Land area | Number of road segments | Average road segment length
IA 55,857 3392 356
AZ 166,455 4935 383
WA 113,594 1442 628
CA | 155,779 8062 225

The datasets used for testing are generated by the commonly adopted
Brinkhoff generator [5]. The generator was fed with four different US state maps:
IA, WA, AZ, and CA. The states differ in total land area, number of road seg-
ments, and average road segment length, which results in different mobile object
distributions. The statistics of the chosen states are given in Table 1. The number
of moving objects in each dataset ranges from 10K to 100 K. Average traveling
time of each data set is 60 min. The chosen input parameters and their values
are presented in Table 2 with the default value in bold. The efficiency and effec-
tiveness are measured in terms of the average I/O cost (i.e., the number of page
accesses) and the number of identified dense road segments from current time
to the query life (i.e., the predictive time window), respectively.

5.1 Effect of Number of Moving Objects

In the first round of experiments, we evaluate the query performance by varying
the number of moving objects from 10 K to 100 K while keeping other parameters
as default (in Table2). As shown in Fig.7(a), it is expected that the query cost
increases with the number of moving objects since more data need to be retrieved
from disk and examined. Our IPD query algorithm significantly outperforms the
baseline approach and the performance gap increases with the number of moving
objects. This can be attributed to our proposed filtering algorithm and bucket
selection algorithm that help reduce the number of objects to be examined and

! RP-tree adopts its R*-tree simulator from [1].

92 L. Heendaliya et al.

Table 2. Parameters and their values

Parameters Values

Number of mobile objects 10K, 20K, ..., 50K, ..., 100K

Road network topology TIA, AZ, WA, CA

Predictive time window (minutes) |10, 20, 30, 50

Cell density threshold (p.) 0.05, 0.1, 0.15, ..., 1

Road density threshold (p) 0.2, 0.4, 0.6, 0.8,1

Grid size (d) 10, 20,30, 40, 50

Vehicles equipped with the system | 25 %, 50 %, 75 %, 100 %

Timestamp interval (minutes) 5
, 600 o 500
% 500 ~IPD € £400
g 400 “Baseline E € 300
& 300 S, .
© 200 g g 00 “IPD
5100 g 5100 “Baseline

0 2 < 0
S RIB B8RS 8 SRR RB8RIR 8
Number of Moving Objects Number of Moving Objects
(in thousands) (in thousands)
(a) I/O cost (b) Number of Dense Road Segments

Fig. 7. Effect of the number of moving objects

the refreshing phase that further prunes the candidate cells which have been
influenced by the identified road segments.

Figure 7(b) compares the number of dense road segments found by the two
approaches. From the figure, we can observe that our IPD query reports fewer
number of dense road segments than the baseline approach. This is expected as
discussed in Sect. 4.2. Specifically, we adopt a cell density threshold in the filter-
ing phase. Higher p. will prune more cells and yield better query performance
but may introduce false negatives. Fortunately, we also observe that the percent-
age of such difference becomes smaller for bigger datasets. In a small dataset,
such effect is more severe since missing one object may make a road segment to
be non-dense easily. In the next experiment, we will take a closer look at how
the cell density threshold affect the performance.

5.2 Effect of Cell Density Threshold

We now study the effect of cell density threshold p.. Recall that p. is used to
prune those cells that are highly unlikely to contain dense road segments. As
aforementioned, higher p. may yield fewer number of candidate cells to be fur-
ther examined and hence reduce query cost. However, it is possible that when

Influence-Aware Predictive Density Queries 93

300 400
»n 250 § « 350
2 € 300
n [7] -
g 200 “IPD % E 250 N ~IPD
Q
< 150 =Baseline 5 & 20 ~Baseline
[100 2 © 150 e
& € 8100
a 52

50 3

= s0 ‘_\—'_h_—'_\—m
0 0

[Ta) wn wn n wn wn wn wn wn wn [Ta) wn wn wn wn [Ta} wn n n

g 2 4 m 3 0 8 R 93 S 4 & m < g R % g

o o o o o o o o o o o o o o o o o o o o
Cell Density Threshold Cell Density Threshold

(a) I/O cost (b) Number of Dense Road Segments

Fig. 8. Effect of the cell density threshold

pe is high, the cells with low density and contain part of a dense road segment
(i.e., a dense road segment that spans multiple cells) may be left out, result-
ing in false negatives. Figure8 reports the experimental results when varying
the cell density threshold from 0.05 to 1. As expected, the query cost of our
approach decreases quickly when the cell density threshold increases. Meanwhile
the number of missing dense road segments increases. In order to minimize false
negatives, we adopt the cell density threshold as 0.05 in our experiments.

5.3 Effect of Road Density Threshold

In this set of experiments, we study the effect of the road density threshold given
by the query. The results are shown in Fig. 9. We can observe that our IPD algo-
rithm again outperforms the baseline approach in terms of query efficiency and
identified similar number of dense road segments in all cases. Moreover, we also
observe that the query cost of our IPD algorithm increases with the road density
threshold while the baseline approach has constant performance. This is because
the baseline approach always checks all objects’ travel paths when computing the
density of road segments. In our approach, the higher the road density thresh-
old, the fewer the number of dense road segments. Correspondingly, there will
be fewer number of quarantine areas and fewer number of objects that can be
pruned.

5.4 Effect of Cell Size

We proceed to study the effect of the cell size. As shown in Fig. 10, the cell size
does not affect the baseline approach since the baseline approach does not utilize
cells for pruning. As for our IPD algorithm, it achieves better performance when
the cell size is small. This is probably because the adjusted density of smaller cells
is more useful for determining whether there is a potential dense road segment.
When the area of a cell is large, the road topology in the single cell becomes more
complex and the pruning becomes less effective. On the other hand, when the
cell is large, there is fewer chances to have dense road segments across multiple

94 L. Heendaliya et al.

300 700
250 g P 600 “IPD
§ 200 8 E 500 =Baseline
3 5 5400
S1s0 °&
5 § 4300
fo100 “IPD € 8200
% 50 2«
=Baseline 100
0 0
o < © % - o < © % B
o o o o [=} (=} o (=}
Road Density Threshold Road Density Threshold
(a) I/O cost (b) Number of Dense Road Segments
Fig. 9. Effect of the road density threshold
300 400
250 g w30 .
3 S €300
2200 - —
a 9 €50
& 150 2 g200
%100 +IPD é 5 150 “~IPD
& 50 +Baseline 5 2100 =Baseline
2 50
0 0
o o o o o o o o o o
— ~N ™M < wn - ~N (2] < wn
Cell Size Cell Size
(a) I/O cost (b) Number of Dense Road Segments

Fig. 10. Effect of the cell size

cells and hence it helps reduce false negatives. In our experiments, we choose the
cell size to be 30 as it balances both performance and accuracy.

5.5 Effect of Predictive Time Window

The effect of predictive time window was also studied. The results are shown in
Fig.11. It also shows the efficiency of the IPD algorithm. In fact, the IPD has

300 400
250 @ 350
g § gaoo
g 200 \/// E £ 250
<] c
£ 150 2 @200
$0100 “IPD 25150 “IPD
© £ .
e “Baseline 5 2100 Baseline
50 — 2 50 —
0 0
=1 Q 2 e 2 2 5] g 2
Predictive Window Size (minutes) Predictive Window Size (minutes)
(a) 1/O cost (b) Number of Dense Road Segments

Fig. 11. Effect of the predictive time window

Influence-Aware Predictive Density Queries 95

lower page accesses compared to that of the baseline algorithm. The IPD shows
an increase in the page accesses for longer predictive window lengths. This can
be expected as the area covered by the square-ring is also increased. The IPD
exhibits fewer unidentified road segments. In fact, the number of unidentified
dense road segments increases when the predictive time window is lengthier. It
is again due to relaxation of the cell threshold.

5.6 Effect of Road Network Topology

This round of experiments evaluate the effect of the road topology on the query
performance. As shown in Fig.12, our approach always achieves better query
efficiency than the baseline approach when different road maps are considered.
In addition, the results also indicate that the map topology does affect the
performance. In general, maps with fewer roads across multiple cells tend to
yield better performance. Moreover, we also observe that the numbers of dense
road segments identified by the two approaches demonstrate the same trend,
which proves the effectiveness of our approach.

300 o 00
@
e
£ 200 g
S 150 S 400
B % ¥ 300
5100 ‘g 8 200
50 3 €100 l
0 0
~N < < < N < < <
IPD < 3 N s IPD < 3 = S
M Baseline Topology W Baseline Topology
(a) I/O cost (b) Number of Dense Road Segments

Fig. 12. Effect of the road network topology

5.7 Effect of Percentage of Vehicles Equipped with the System

In the last set of experiments, we aim to examine an interesting and realistic sce-
nario when not all vehicles subscribe to traffic prediction services. That means,
the system will estimate the traffic based on a subset of vehicles. It is expected
the fewer the number of vehicles equipped with the system, the less accurate the
traffic prediction will be. To compensate for the missed information, we adjust
the system parameters by lowering both the cell density threshold and road seg-
ment density threshold. For example, given a density threshold p = 1, we set p,
= 0.0375 and p’ = 0.75. Our findings are reported in Fig. 13, where “Adjusted
IPD” refers to the approach with adjusted new threshold. We can observe that
the adjusted IPD has similar query cost as the original one but much better
accuracy in terms of the number of dense road segments being identified.

96 L. Heendaliya et al.

300 400
Q
0 250 9 ©350
2 & $300
§ 200 S € 250
<150 . © 200
Q -]
$100 ~IPD £73 150 IPD
a ~Adjusted IPD 58 00 “Adjusted IPD
50 ; z 50)
Baseline b Baseline
0
x 8 s S R 8 S)
n o o wn o [Tal o
~N wn ~ o o~ wn ~ o
- —
Percentage of Vehicles Equipped Percentage of Vehicles Equipped
(a) I/O cost (b) Number of Dense Road Segments

Fig. 13. Effect of the percentage of vehicles equipped with the system

6 Conclusion

In this paper, we define a new type of density query, namely Influence-aware
Predictive Density (IPD) queries, with the goal to take into account the impact
of a traffic congestion on the traffic flow, i.e., objects stuck in the traffic con-
gestion should not be counted into the subsequent traffic prediction before the
traffic is cleared. To the best of our knowledge, it is the first time that traf-
fic influence is considered for predicting potential traffic congestions under the
road network constraints. We propose an efficient query algorithm that lever-
ages multiple pruning techniques. Our experimental results have demonstrated
both the efficiency and effectiveness of our approach compared with the baseline
approach.

References

1. Achtert, E., Kriegel, H.-P., Schubert, E., Zimek, A.: Interactive data mining with
3d-parallel-coordinate-trees. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data (2013)

2. Barth, M., Boriboonsomsin, K.: Real-world carbon dioxide impacts of traffic con-
gestion. Transport. Res. Rec. J. Transport. Res. Board 2058, 163-171 (2008)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles (1990)

4. Bok, K.S., Yoon, H.W., Seo, D.M., Kim, M.H., Yoo, J.S.: Indexing of continuously
moving objects on road networks. IEICE Trans. Inf. Syst. E91-D, 2061-2061
(2008)

5. Brinkhoff, T.: A framework for generating network-based moving objects. Geoln-
formatica 6, 153-180 (2004)

6. Chen, J.-D., Meng, X.-F.: Indexing future trajectories of moving objects in a con-
strained network. J. Comput. Sci. Technol. 22(2), 245-251 (2007)

7. Fan, P., Li, G., Yuan, L., Li, Y.: Vague continuous K-nearest neighbor queries over
moving objects with uncertain velocity in road networks. Inf. Syst. 37(1), 13-32
(2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

Influence-Aware Predictive Density Queries 97

Feng, J., Lu, J., Zhu, Y., Mukai, N., Watanabe, T.: Indexing of moving objects
on road network using composite structure. In: Apolloni, B., Howlett, R.J., Jain,
L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 1097-1104. Springer,
Heidelberg (2007)

Feng, J., Lu, J., Zhu, Y., Watanabe, T.: Index method for tracking network-
constrained moving objects. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES
2008, Part II. LNCS (LNAI), vol. 5178, pp. 551-558. Springer, Heidelberg (2008)
Hao, X., Meng, X., Xu, J.: Continuous density queries for moving objects. In:
Proceedings of the Seventh ACM International Workshop on Data Engineering for
Wireless and Mobile Access, MobiDE 2008 (2008)

Heendaliya, L., Lin, D., Hurson, A.: Continuous predictive line queries for on-
the-go traffic estimation. In: Hameurlain, A., Kiing, J., Wagner, R., Decker, H.,
Lhotska, L., Link, S. (eds.) TLDKS XVIII. LNCS, vol. 8980, pp. 80-114. Springer,
Heidelberg (2015)

Heendaliya, L., Lin, D., Hurson, A.R.: Predictive line queries for traffic forecasting.
In: Database and Expert Systems Applications (2012)

Jensen, C.S., Lin, D., Beng, C.O., Zhang, R.: Effective density queries on contin-
uously moving objects. In: Proceedings of the 22nd International Conference on
Data Engineering (2006)

Kyoung-Sook, K., Si-Wan, K., Tae-Wan, K., Ki-Joune, L.: Fast indexing and updat-
ing method for moving objects on road networks. In: Proceedings of the 4th Inter-
national Conference on Web Information Systems Engineering Workshops (2003)
Lai, C., Wang, L., Chen, J., Meng, X., Zeitouni, K.: Effective Density queries
for moving objects in road networks. In: Dong, G., Lin, X., Wang, W., Yang,
Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 200-211. Springer,
Heidelberg (2007)

Gunopulos, D., Hadjieleftheriou, M., Kollios, G., Tsotras, V.J.: On-line discov-
ery of dense areas in spatio-temporal databases. In: International Symposium on
Advances in Spatial and Temporal Databases, SSTDn (2003)

Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal cor-
relations. Transp. Res. Part C 19(4), 606616 (2011)

Morgan, L.: The effects of traffic congestion (2014)

Ni, J., Ravishankar, C.V.: Pointwise-dense region queries in spatio-temporal data-
bases. In: IEEE 23rd International Conference on Data Engineering (2007)

Quek, C., Pasquier, M., Lim, B.B.S.: Pop-traffic: a novel fuzzy neural approach to
road traffic analysis and prediction. IEEE Trans. Intell. Transp. Syst. 7(2), 133146
(2006)

Smith, B.L., Williams, B.M., Oswald, R.K.: Comparison of parametric and non-
parametric models for traffic flow forecasting. Transp. Res. Part C 10(4), 303-321
(2002)

Wen, J., Meng, X., Hao, X., Xu, J.: An efficient approach for continuous density
queries. Front. Comput. Sci. 6(5), 581-595 (2012)

Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-tree: indexing moving objects by
space filling curves in the dual space. VLDB J. 17(3), 379-400 (2008)

Uncertain Voronoi Cell Computation
Based on Space Decomposition

Tobias Emrich?, Klaus Arthur Schmid!®), Andreas Ziifle!,
Matthias Renz!, and Reynold Cheng?

! Institute for Informatics, Ludwig-Maximilians-Universitit Miinchen,
Miinchen, Germany
{emrich,schmid,zuefle,renz}@dbs.ifi.1lmu.de
2 Department of Computer Science, University of Hong Kong, Hong Kong, China
ckcheng@cs.hku.hk

Abstract. The problem of computing Voronoi cells for spatial objects
whose locations are not certain has been recently studied. In this work,
we propose a new approach to compute Voronoi cells for the case of
objects having rectangular uncertainty regions. Since exact computation
of Voronoi cells is hard, we propose an approximate solution. The main
idea of this solution is to apply hierarchical access methods for both
data and object space. Our space index is used to efficiently find spatial
regions which must (not) be inside a Voronoi cell. Our object index
is used to efficiently identify Delauny relations, i.e., data objects which
affect the shape of a Voronoi cell. We develop three algorithms to explore
index structures and show that the approach that descends both index
structures in parallel yields fast query processing times. Our experiments
show that we are able to approximate uncertain Voronoi cells much more
effectively than the state-of-the-art, and at the same time, improve run-
time performance.

1 Introduction

The extensive use of social media, s.a. smartphones, and social networks produce
a huge flood of geo-spatial and geo-spatio-temporal data. This data allows to
assess information about the current positions of mobile entities, such as friends
in social networks, unoccupied cabs in a taxi application, or the current position
of users in augmented reality games. However, our ability to unearth valuable
knowledge from large sets of spatial and spatio-temporal data is often impaired
by the quality of the data.

— Data may be imprecise, due to measurement errors, for instance in applica-
tions using sensor measurements such as location-based services.

— Data records can be obsolete. For example, ties of friendship bind and break
over time, without necessarily reflecting such changes in a social network; in
location-based services, users may update their location infrequently, due to
bad connectivity or to preserve battery.

© Springer International Publishing Switzerland 2015

C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 98-116, 2015.
DOI: 10.1007/978-3-319-22363-6 6

Uncertain Voronoi Cell Computation Based on Space Decomposition 99

(a) An uncertain Voronoi cell. (b) Spatially Dominated Regions.

Fig. 1. Uncertain Voronoi cells.

— Data can be obtained from unreliable sources, such as crowd-sourcing appli-
cations, where data is obtained from individual users, which may incur inac-
curate or plain wrong data, deliberately or due to human error.

— To prevent privacy threats and to protect user anonymity, users often consent
to relay just a cloaked indication of their whereabouts [1] abstracted as an
uncertainty region enclosing (but apparently not centered at) their current
position.

Simply ignoring these notions of imprecise, obsolete, unreliable and cloaked data,
thus pretending that the data is accurate, current, reliable and correct is a com-
mon source of false decision making. The research challenge in handling uncer-
tainty in spatial and spatio-temporal data is to obtain reliable results despite the
presence of uncertainty. In this work, we revisit the problem of reliably answering
nearest-neighbor queries in uncertain data. The problem of finding the closest
uncertain object, which has applications such as taxi-customer matching, has
gained much attention in recent years [2-5]. Following a common approach in
uncertain data management, these approaches assume that uncertain objects are
represented by rectangular or circular uncertainty regions, which are guaranteed
to enclose the true (but unknown) position of the respective spatial objects. Fol-
lowing the approach of [6], we carry the concept of Voronoi cells to uncertain
data. The idea of [6] is to approximate the possible Voronoi cell V(O) of an
object O, which is defined as the space where a query point ¢ can possibly have
O as its nearest neighbor. Applications for possible Voronoi cells include geo-
location-based services, such as taxi assignments: The possible Voronoi cell of
an individual taxi cab ¢ covers the space of a city where customers may possibly
have ¢ as their nearest taxi. In such an application, as we see in taxi-GPS data
sets such as the T-drive dataset [7,8], the GPS position ¢(t) of a cab ¢ at a time
t may be highly obsolete, due to infrequent GPS updates. Models to infer the

100 T. Emrich et al.

uncertainty region of a mobile object on a road network given past observations
have been given in the literature [9].

As an example of a possible Voronoi cell, consider Fig. 1(a), where rectangles
correspond to the uncertainty regions of objects. The highlighted region corre-
sponds to the subspace V(A), for which it holds that any point ¢ € V(A) may
possibly have object A as its nearest neighbor, i.e., the possible Voronoi cell of
A. Finding this region, which is the goal of this paper, is not a trivial task: The
shape of V(A) is a non-convex region which is bounded by hyperbolic curves.
As explained in [3,6,10], an exact construction of V(A) requires an exponential
amount of time. For this reason, an approximate technique for deriving possible
Voronoi cells was given in [6]. We propose a new solution for this problem, which
extends the existing solution of [6] by the following aspects:

— Unlike previous solutions, our approach offers full index support, indexing the
object space using an R*-tree [11] and indexing the data space using a kd-trie
[12].

— Rather than approximating the Voronoi cell V(o) by a single rectangle ([6]), we
use a set of kd-trie partitions, which allows much higher approximation quality.
This gain in approximation quality not only improves query times, as our
experiments show, but can also be used to gain a detailed visual exploration
of possible Voronoi cells.

— Our experiments further show that our provided index support for both data
and space enables the scaling of uncertain Voronoi cell computation to large
databases.

2 Related Work

The problem of answering nearest neighbor queries on uncertain data generally
involves two steps: A filter approach and a refinement step. In the filter step,
a (possibly small) set of objects is returned that contains all objects having a
non-zero probability of being the result object. In the refinement step, the exact
probability of each candidate object is computed. The refinement step is the
main research topic of [13-15], showing how to compute exact probabilities of
an object to be the nearest neighbor of a query object, given the probability
density functions of objects. In contrast, other existing work focuses on the filter
step, applying spatial filter steps in order to identify object that are guaranteed
to have a zero probability to be the result object [3,5,6]. In this work, we focus
on the filter step, i.e., the step of finding objects having a non-zero probability
to be the nearest neighbor of an object using Voronoi-cells.

The idea of using Voronoi diagrams to answer nearest neighbor (NN) queries
over points has been widely studied [16] . In this context, Voronoi diagrams
have been used to support nearest neighbor queries in geo-spatial applications
[17], location-based services [18,19], in spatial data streams [20] and in distrib-
uted spatial environments [21] as well as in spatial network environments [22].
To support nearest neighbor queries on uncertain data, initial approaches have
been presented in [2,13]. However, in these work, only the database objects are

Uncertain Voronoi Cell Computation Based on Space Decomposition 101

assumed to be uncertain, whereas the query object is assumed to be a point. In [3]
a solution to compute possible Voronoi-cells for the case of circular uncertainty
regions has been presented. This exact approach has exponential construction
and storage cost. Due to this computational drawback, an approximate solution
was presented in [6]. The aim of this approach is to approximate the true (but
unknown) possible Voronoi-cell V(O) of an uncertain object O using two rec-
tangle: A single conservative rectangle h(O) which is guaranteed to completely
contain V(0O), and a single progressive rectangle {(O) which is guaranteed to be
completely contained by V(O). These two approximation rectangles are obtained
by iteratively expanding the progressive rectangle 1(O), and iteratively shrinking
the conservative rectangle h(O). However, considering examples such as shown
in Fig. 1, it is evident that such approximations may be rather inaccurate. Thus,
h(O) may cover a large body of space not belonging to V(O), while I(O) may
miss a large body of V(O), even in the case where h(O) is the smallest conser-
vative bounding rectangle and [(O) is the largest progressive bounded rectan-
gle.! Furthermore, an approach for nearest neighbor search on moving uncertain
objects has been presented in [4]. A problem common to [3] and [4] is that
their solutions are customized for 2D data, making extensive use of intersection
and rotation operations of 2D hyperbolic curves. Our approach, as well as the
approach of [6] is applicable to arbitrary dimensionality. In comparison to [6],
the main contribution of this work is that we can accurately approximate an
arbitrarily shaped possible Voronoi-cell, rather than using a single rectangular
approximation only. This allows to answer nearest-neighbor queries more effi-
ciently, since less candidates have to be checked, and it allows to more precisely
illustrate the Voronoi-region of an uncertain object.

3 Problem Definition

Figure 1(b) shows how the possible Voronoi cell V(U) of an uncertain object U is
defined. Each shaded region in Fig. 1(b) corresponds to a pruning region S4(U),
i.e., the smallest region such that for any ¢ € S4(U), object A must be closer to
q than U. Formally,

Definition 1 (Nearest Neighbor Pruning Region). Let D = {Oy,...,On}
be an uncertain database where each object O; € D is represented by a rectangular
uncertainty region in R%. Let dist(.,.) denote any L, norm.? For any A, B € D,
we define the nearest neighbor pruning region where any point must be closer to
A than to B as follows:

SA(B) :={q € R : mazDist(q, A) < minDist(q, B)},

where mazDist(q, A) and minDist(q, B) denote the mazimum and minimum dis-
tance between a point q and a rectangle A or B, respectively, as defined in [25].

! The later case can not be guaranteed by the approach of [6] due to the numeric
nature of their approach.

2 We use Euclidean distance in all examples and illustrations, but any L, norm can
be applied.

102 T. Emrich et al.

Table 1. Table of notations.

Notation Meaning Notation | Meaning

D The database S =7R% |d-dimensional data space
UeD an uncertain object V() possible Voronoi cell of U
Ip Hierarchical data index|Zs Hierarchical space index
g d-dimensional grid gi € G | Rectangular grid cell

Sa(B) C R? The region where object A dominates object B

Dom(A, B,R) |Predicate that is true iff rectangle R is fully contained Sa(B).
Can be evaluated efficiently [24].

PDom(A, B, R) | Predicate that is true iff rectangle R intersects Sa(B).

Can be evaluated efficiently [24].

h CR? Rectangular Space Index Entry obtained from Zs:

Partition of Space for which we want to decide if it belongs to V(U)

e CRY Rectangular Data Index Entry obtained from Zp:

Spatial approximation of a set of data objects if e is non-leaf entry,

Uncertainty region of a single data object if e is a leaf entry.

Fig. 1(b) shows five nearest neighbor pruning regions Sp,(U),...,So.(U) as
shaded regions. Using Definition 1, we can now define the possible Voronoi cell
V(U) of an object U as the space that does not intersect any nearest neighbor
pruning region associated with U, formally:

Definition 2 (Possible Voronoi Cell). Let U € D be an uncertain object.
Then the possible Voronoi cell V(U) is defined as

V) =r"\ | So).

oeD\{U}

In Fig. 1(b), the white (i.e., non-shaded) region corresponds to the Voronoi cell
V(U). The problem tackled in this paper is to compute V(U) for a given object
U € D efficiently.

4 Spatial Domination Revisited

The concept of spatial domination and efficient techniques to verify it were
introduced in [24]. Spatial domination describes the spatial relation of three
rectangles to each other. Since the spatial domination can also be utilized for
the computation of uncertain voronoi cells, we briefly want to review the concept.
Notations used throughout this paper are explained in Table 1.

Definition 3 (Spatial Domination). Let A, B, R C R? be rectangles in a
d-dimensional space and dist() be a distance function defined on that space.

Uncertain Voronoi Cell Computation Based on Space Decomposition 103

The rectangle A dominates B w.r.t. R iff for all points r € R it holds that every
point a € A is closer to r than any point b € B, i.e.

Dom(A, B,R) < Vr € R,Ya € A,Yb € B : dist(a,r) < dist(b,r)

Informally speaking, Dom(A, B, R) is thus true if A is “certainly” closer to
R than B. In addition the concept of partial spatial domination was introduced.

Definition 4 (Partial Spatial Domination). Let A, B,R C R? be rectangles

in a d-dimensional space and dist() be a distance function defined on that space.

The rectangle A dominates B partially w.r.t. R , denoted by PDom(A, B, R) if A
dominates B for some, but not allr € R, i.e.

PDom(A,B,R) < (3Ir € R:Va € A, Vb € B : dist(a,r) < dist(b,r))

(Ire R: (Ja € A,3b € B : dist(a,r) < dist(b,r))

(3a € A,3b € B : dist(a,r) > dist(b,r))).

A
A

In [5] it was shown that spatial domination can be utilized when the rectangles
conservatively approximate uncertain objects. In this case Dom(A, B, R) means
P(“R is closer to A than to B”) = 1 and PDom(A, B, R) means 0 < P(“R is
closer to A than to B”) < 1. Using the Dom()- and the PDom()-function it is
thus possible to decide the location of a rectangle w.r.t. the uncertain bisector
of two uncertain objects. The uncertain bisector between two uncertain objects
A and B (conservatively approximated by rectangles) defines three spaces: In
Sa(B) ={s € S:Dom(A, B,{s})} all objects are certainly closer to A than to
B, in Sg(A) = {s € S: Dom(B, A,{s})} object are certainly closer to B than
to A and in the space in between no certain decision can be made. This relation
is shown in Fig.2. We are thus able to decide where the rectangle R is located
w.r.t. the bisector Sp(A) and S4(B) of A and B respectively by performing the
Dom() and the PDom() function [24]. The following six cases are defined using
a function DomCase(A, B, R) as follows.

Definition 5 (Domination Cases). Let A and B be rectangles. For any rec-
tangle R, one of the following cases holds:

Case 1: R is fully contained in Ss(B) iff Dom(A, B, R);
Case 2: R intersects Sa(B) butnot Sg(A) iff PDom(A, B, R)A\~PDom(B, A, R);
Case 3: R intersects neither Sa(B) nor Sp(A) iff

—~Dom(A, B,R) AN—-PDom(A, B,R) AN~PDom(B, A, R)=Dom(B, A, R);
Case 4: R intersects S(B) but not S(A) iff ~PDom(A, B, R)APDom(B, A, R);
Case 5: R is fully contained in S(B) iff Dom(B, A, R);
Case 6: R intersects both S(A) and S(B) iff PDom(A, B,R)ANPDom(B, A, R);

Figure 2 depicts all possible cases. Here, each rectangle R; corresponds to Case
i in Definition 5. Note that the materialization of the pruning regions S4(B)
and Sp(A) is a hard problem [6]. Nevertheless, the function DomCase(A, B, R)
allows to efficiently decide between the six possible domination cases defined
above. In the next section we will show how to use these relations in order to
compute uncertain Voronoi cells.

104 T. Emrich et al.

Fig. 2. Domination relation

5 Possible-Voronoi Cell Approximation

Computing the possible-Voronoi cell is a daunting task for two reasons: First,
it is challenging to find the objects in the database that have an effect on its
shape. Second, the representation of the cell is hard since it consists of many
linear and parabolic parts that grow exponentially with the dimensionality. This
section will present four algorithms that apply the concept of spatial domination
to efficiently approximate the possible-Voronoi cell V(U) of an object U as tight
as possible. The first, naive, algorithm divides the space into equi-distant grid
cells and labels the cells according to their membership to the possible-Voronoi
cell. The second algorithm, additionally uses an R*-tree to index the data objects
to avoid exploration of irrelevant objects. The third algorithm uses a kd-trie to
index the grid cells, in order to identify large regions of space which can not be
part of V(U) or which must be part of V(U). The fourth algorithm uses both a kd-
trie to index the space and an R-tree to index the data. For the later algorithm,
the main challenge is to smartly descend both hierarchical index structures in
parallel, to minimize the computational overhead.

5.1 Naive Solution

A straightforward way of computing V(U) is to apply an equi-distant
d-dimensional grid to partition the data space. For each cell g; we decide weather
it belongs to V(U) or not.

Uncertain Voronoi Cell Computation Based on Space Decomposition 105

(a) Cases of domination of a grid cell. (b) Example result.

Fig. 3. Illustration of the Naive approach.

Algorithm. The algorithm takes as input the target object U, D and a grid
G covering the space of D. We iterate over all grid cells g € G and in order to
decide whether g; is part of the UV cell of U, domination against all objects
O € D\ U has to be checked. All possible cases of domination of a grid-cell g
are depicted in Fig. 3(a). To determine if a grid-cell is (i) completely outside of
V(U) or (ii) completely inside V(U) or (iii) a boarder cell, we can apply the six
cases of Definition 5 as follows:

(i) If 30 € D\U : Dom(0,U, g;) then g; is not part of V(U). This corresponds
to Case 5 of Definition 5 and cell g5 in Fig. 3(a).

(ii) Otherwise, if 30 € D : PDom(0O,U, g;) then at least a small part of g; can
be part of V(U). This case corresponds to the cases of cells g4 and gg in
Fig.3(a), i.e., Case 4 or Case 6 of Definition 5.

(iii) Otherwise we can conclude that g; can be completely contained in V(U),
since for database object, U, it holds that g corresponds to one of the remain-
ing cases Case 1, Case 2 and Case 3 of cells g1, g» or g3, respectively, as
shown in Fig. 3(a)

The set of all grid cells satisfying (iii) define a lower bound of V(U), and all
grids cells satisfying (ii) or (iii) define an upper bound of V(U). An exemplary
result of this approach for a small database of uncertain objects is depicted in
Fig. 3(b). Here, the space grid is shown, where (i) unfilled cells are guaranteed to
be outside of V(U), (ii) black cells are guaranteed to be on the border of V(U)
and (iii) blue cells are guaranteed to be inside V(U). In the next subsection,
we show how we can obtain this result in a more efficient way. Thus note that
the algorithms presented in the following subsections compute the same result
approximation, but in a more efficient way.

106 T. Emrich et al.

5.2 Indexing D

Obviously, checking an object U against all uncertain objects O € D is very
expensive. Instead, we can use an MBR based index structure Zp (such as an
R*-Tree) to organize the objects hierarchically.

Algorithm. The algorithm takes as input the target object U, Zp and a grid
covering the space of Zp. For each grid cell g; the algorithm traverses the entries e
of Zp in a best first manner [25] according to MinDist(e, U). Note that the entry
e can be a single uncertain object (i.e., a leaf-entry) or an intermediate node that
conservatively approximates multiple uncertain objects. Since we assume that our
data index uses rectangular approximations, we can then apply Definition 5 to
decide which index entries have to be accessed. For reference, the following cases
are shown in Fig. 3(a). Keep in mind that in this case, the entries e are data index
entries, which may be intermediate entries representing multiple data objects.

Case 1: Dom(U, e, g1): e and none of its children can exclude ¢g; from the UV-
cell V(U). Thus, e don’t has to be resolved and g; can be part of V(U).

Case 2: PDom(U, e, g2): same as case 1.

Case 3: “PDom(U, e, g3) A ~PDom(e,U, g3): As long as e is not a leaf entry
(an object), there might exist a child of e which excludes g3 from the UV-cell,
thus e has to be resolved. If e is a leaf entry g3 is labeled as candidate for being
part of V(U)

Case 4: PDom(e,U, g4): same as case 3.
Case 5: Dom(e,U, gs5): g5 (and all child nodes of g5) cannot be part of V(U).
Case 6: PDom(U, e, gs) N PDom(e, U, gg): same as case 1.

5.3 Indexing S

Instead of indexing the data objects one could also think of indexing the space
containing the grid cells. We propose to use a tree based index structure (denoted
as Zs to organize the data space (e.g. Quadtree, kd-trie). For each entry h € Zs
it can be checked if it is part of the UV cell of U.

Algorithm. The algorithm takes as input the target object U, Zs, maxdepth
and a list of all data objects O € D. The entries h € Zs are traversed in a depth-
first manner. For each entry h we check all O € D to decide if the traversal has
to go deeper (to the children of h) or its subtree can be discarded for further
processing. The parameter maxdepth defines the maximum depth that Zs is
traversed. Thus the larger maxdepth, the finer the granularity of the UV-cell
approximation.
We can again distinguish the same cases as in Sect. 5.1:

1. If 30 € D : Dom(0O,U,h) (Case 5) then h is not part of the UV cell of U
and it does not have to be resolved further.

Uncertain Voronoi Cell Computation Based on Space Decomposition 107

Fig. 4. Cases of domination for a data index entry e.

2. Otherwise if 30 € D : PDom(0O,U, h) (Case 4 or Case 6) then at least a
small part of h can be part of the UV cell of U. Thus we have to resolve h
further. If A is on the maxdepth-level we label it as candidate to be part of
V().

3. Otherwise (Cases 1-3) we can conclude that i can be completely contained
in the UV cell of U. In this case we label h as candidate to be part of V(U)
and don’t have to resolve it, even if / is not on the mazxdepth-level.

5.4 Indexing D and S

It seems apparent to combine the ideas of Sects.5.2 and 5.3 and utilize both
index structures (Zp and Zs) to boost the performance. The non trivial task is
the definition of a traversal order to minimize necessary operations.

Prelude. Our approach is basically a depth-first traversal of Zg. Additionally
we define ASp to be the active set of entries of the index D. Each entry h € Zg
has its own active set and passes it on to its children (always removing irrelevant
entries e € ASp). ASp contains all entries of D which have already been seen
and not yet resolved during the traversal of the algorithm. For each entry h € Zg
we first try to identify one of the two following properties (cf Fig.4):

Case 5: 3e € ASp : Dom(e,U, h) = h is not part of the UV cell of U.
Case 1: Ve € ASp : Dom(U, e, h) = h can be part of V(U) .

If neither of the two conditions hold, either the current entry h or an entry
e € ASp has to be resolved. Here we propose the following heuristics:

Case 2: PDom(U,e, h) = resolve e or h depending on which one covers more
space.
Intuition: uncertain area becomes small if both constructing objects are small

108 T. Emrich et al.

Algorithm 1. UV-Cell computation
Require: U,2p,Zs

1: ASp = windowQuery*(U,Zp)

2: UVCellCheck(U,Zs.root,ASp)

Case 3: “PDom(U, e, h) A ~PDom(e,U, h) = resolve e.

Intuition: Resolving h can not yield any new information, since any child of
h must also yield Case 3.

Case 4: PDom(e,U,h) = resolve h if we find another data entry for which
Case 4 holds (for this space entry h). Otherwise resolve e or h depending on
which one covers more space. If e is a leaf entry only resolve h.

Intuition: If more than one data entry constructs Case 4, chances are good
that large portions of h can be decided.

Case 6: PDom(U, e, h) AN PDom(e,U, h) = resolve h. (cf Fig. 4, case 6)
Intuition: Resolving e can not yield any new information

Clearly, at one point there may be multiple data entries in the activate set of
a space node h, which may yield different cases. It may be smart to prioritize
the refinement of some data entries. In a nutshell, a data entry should be chosen
which maximizes the chance that we can guarantee that h is not part of V(U).
We propose to choose an entry e according to the following priority schema:

1. directory entries are prioritized over leaf entries.
2. prioritize cases in order 5, 4, 6, 3, 2, 1.
3. prioritize entries according to mindist to query

For ease of presentation of our algorithm, we define the function mazprio(U €
D,h € Is, E C Ip) which maps an uncertain object U, a space region h and a set
of data index entries E to the object which has the highest priority corresponding
to the heuristics above.

Algorithm 1: Takes as parameters the object U for which the UV-cell is to be
computed; the database D indexed by an R*-tree Zp; and the Quadtree/KD-
trie Zs indexing the space. The idea of Algorithm 1 is to build an initial
active set ASp that is reasonable for all space partitions h; € Zs to come
during query processing. For this we perform a window-query-like operation.
windowQuery*(U,Zp) basically performs a window query on Zp, but discards
entries e € D that fall in the window (since these entries cannot help to decide
the borders of V(U)). The result are now all entries e € Zp that have been seen
during the window-query but have not been resolved. This set is then used as an
initial active set(denoted as ASp) in the recursive Algorithm 2 which is initiated
by Algorithm 1.

Algorithm 2: This algorithm requires the uncertain object U for which the
UV-cell is being computed, one region of the result space h(initially the root of

Uncertain Voronoi Cell Computation Based on Space Decomposition 109

Algorithm 2. UVCellCheck
Require: U,h,ASp

1: emas //entry with mazimum priority
2: for all e € ASp do

3. if Dom(e,U, h) then

4: h is not part of UVCell
5: return

6: else if Dom(U, e, h) then
71 ASD = ASD \ e

8. else

9: emaz = Mazprio(emaz, €)
10: end if

11: end for

12: if ASp is empty then

13: h is part of UVCell

14: return

15: end if

16: if case(emaz, U, h) = 6 then

17: ASp = ASp \ €maz U €mac.children

18: end if

19: //redundant calculations can be reduced in the following
20: if case(émaz, U, h) = 4 or 6 &&— maxdepth then
21: for all h. € h.children do

22: UVCellCheck(U,h.,ASp.clone())

23: end for

24: else

25: UVCellCheck(U,h,ASp)

26: end if

the kd-tree), and the active set ASp containing a set of Zp-entries. The algorithm
works as follows:

— In a loop (lines 2—11)the algorithm first searches for the entry e defining the
most prioritized case (8-10). Of course we can stop further consideration of h
if we find an entry e which defines case 5 (lines 3-5). On the other hand side
if an entry e defines case 1, it can never disqualify the current h thus can be
excluded from ASp (lines 6-7).

— In lines 12-14 we check if all entries in the active set ASp have been pruned.
If that is the case, no object may possible prune h and thus h must be a true
hit, i.e. fully contained in the Voronoi cell.

— Now we decide whether we want to refine e,,,, or h, depending on the case
(c.f. Fig. 4 and Definition 5).

Case 4: there is a chance that refining h may allow child entries of h to be pruned,
and refining e,,,, may allow child entries of €,,4, to prune all of h. Therefore,
we refine both entries in this case.

Case 6: refining e cannot possibly allow us to prune h. However, refining h may
allow us to either prune children of h or to return children of h as true hits.
Thus we refine h.

110 T. Emrich et al.

B —
e
= | | gk
| o :

Fig. 5. Example of refinement

Case 3: no children of h can possibly be pruned.? Thus we split €,,,4,, Which may
allow h to be pruned.
Case 2: we refine h.

— Finally, space index entries & which must be completely contained in V(U) are
identified as entries having only Cases 1-3 in their active set. Computation
breaks if this is the case. After splitting the objects according to the rules
above. We recursively restart the algorithm with the new objects.

Figure 5 illustrates in which manner the algorithm resolves entries of Zp and
Zs. The figures shows all pages and objects of Zp which have been seen during
the computation of the possible Voronoi-cell V(U) of the green objects U. Refined
data objects are represented by filled red rectangles and refined directory nodes are

3 recall that if e, corresponds to case 3, then there exists no R*-entry such that

case 4 holds.

Uncertain Voronoi Cell Computation Based on Space Decomposition 111

represented by unfilled red rectangles. Furthermore, refined entries of Zg are shown
as (i) unfilled black rectangles if they are guaranteed to be fully outside of V(U), (ii)
as black rectangles if on the border of V(U'), and (iii) as blue rectangles if completely
inside V(U). We can observe that in areas far away from the UV cell, Zg is resolved
coarse whereas at the border of the cell it is resolved at very fine granularity. The
entries of Zp are also only resolved around the UV cell. Note that although the
number of resolved objects seems large, most of the objects are only needed for
a small fraction of the computations, especially on coarser levels of Zg. Finally,
note that a nice side effect of this computation is that we obtain a tight superset
of the (uncertain-) delaunay neighbors of U. This can be achieved by memorizing
the objects O for which Case 4 or Cast 6 (see Definition 5) holds.

6 Experiments

Our experimental evaluation investigates algorithm behaviour w.r.t. maximum
kd-trie depth, database size, object extent and dimension. Extent is a parameter
to control the size of the uncertain objects (object MBR) and corresponds to the
maximum extent of an object in one dimension. Experiments use synthetically
generated datasets as well as an excerpt from the T-Drive trajectory dataset
[7,8] which we modified to fit the scope. We implemented all approaches in the
ELKI framework [26], which also provided an R-tree implementation.

Dataspace is always normalized to [0,1] per dimension. In synthetic data,
objects are uniformly distributed over space with a randomly assigned side length
between 0 and maximum extent. Data points from the real world dataset were
sampled as a single snapshot of the world, on the afternoon of February 2nd,
2008. Therefore, one data point corresponds to the position of one taxicab within
the city of Beijing, China. After removing some outliers, this dataset contains
890 separate entities. To suit our application of location obfuscation, sample
locations were randomized using a Gaussian distribution based on this object’s
location. A single sample from this distribution is then set as center of the
object’s new MBR, with its extent set to 60 of this object’s Gaussian (3 to each
direction). On said city scale, an extent of 0.01 would equal an area of 100 m
side length.

Table 2. Default settings.

Parameter | default value | Notation | Algorithm

Dimension | 2 DI Data index traversal (Sect. 5.2)

db size 1000 SI Space index traversal (Sect.5.3)

extent 0.01 DSI Data & Space Index traversal (Sect.5.4)
tree depth | 14 SR Single rectangle (Implementation of [6])

Table 2 denotes input parameters and their default settings, as well as an
explanation of our algorithm notation. If not otherwise specified, the following

112 T. Emrich et al.

experiments use these input values. Those setups focusing on approximation
quality use DS exemplarily for all algorithms from Sects. 5.2-5.4, since result
quality is the same. Naturally, our real world dataset T-Drive has inherent values
that override parameters, namely dimension and size of database. The standard
depth of 14 refers to a maximum of 14 splits in our index structure, corre-
sponding to 16384(= 2'4) individual grid cells. Applied to a city scale of 10 by
10 kilometers, each grid cell side would measure some 78 m. As the proposed
approach is later scaled up to a depth of 22, grid cells correspond to an area of
only 4.8 by 4.8 meters, which on a city scale is extremely precise.

6.1 Approximation Quality

Our first evaluation explores how well the generated bounds approximate a cell.
For this, we set the tree depth for our implementation to various levels between
5 and 22, corresponding to the number of splits. Evidently, smaller grid cells can
more closely follow the outline of a UV-cell.

Figure 6 visualizes how upper and lower bounds converge with higher tree
granularities. The dark blue line refers to the upper bound of DSI, the orange
line to its lower bound, each represented by the total volume of their cells. The
hatched space in between the two lines refers to the range in which the true cell
volume must be located. As a point of reference, upper and lower bounds from
the Single Rectangle (SR) approach have also been denoted in the same graphic,
with the area shaded in grey corresponding to the approximation error. Since
SR does not use an index, its results remain unchanged for all tree granularities.

oL DSl upper and gmmmm SR upper and

lower bound %%\ lower bound lower bound

7

T

o DSl upper and g SR upper and

lower bound
0.01;

M

0.004 //#EJ’
00001/ 222222;;/ ' /
00 0.0

5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 5 6 7 8 9 10 11 12 13 14 15 ¥ 17 18 19 20 21 22
kd-trie depth kd-trie depth

(a) Synthetic Dataset (b) Real-world Dataset

°
2
2

2
g
8

Approximation Volume
P
8
g
2

Fig. 6. Approximation quality for DST and SR

Performance was tested on different datasets. Figure 6(a) represents average
results for runs on synthetic data, while Fig. 6(b) contains the results for our real
world dataset. While overall performance is fairly comparable, DST provides a
usable lower bound remarkably early, with as little as 8 tree splits necessary to
outperform SR. SR itself shows fairly similar behaviour on both datasets, with
results looking even more similar than they are due to logarithmic scale.

Uncertain Voronoi Cell Computation Based on Space Decomposition 113

6.2 Algorithmic Runtime

Runtime experiments were conducted while modifying database population and
dimensionality, between our three different traversal approaches compared to
SR as well as for DST alone to cover larger ranges of database size (others
have been excluded due to their worse performance). Although the taxi dataset
is not applicable here since we modify parameters that are inherent to specific
datasets, the semantics still stand: inserting more objects into a database of the
same geometric expansion could represent offering more taxis for hire in a city,
hence changing the nearest neighbor situation in most of the places. Therefore,
the maximum object extent remained unchanged for all database sizes, since
obfuscation of one’s location is independent of the world’s object density.

et = —= -=- Runtime

8
3
g
8

—— Data Pages
—v- Space Pages

QueryRuntime [s]
5
Query Runtime [s]
- 3
& g
sobed #

—"

100K 1x10° 5x10° . 10x10° 15x10°
Database Size

(a) All Approaches Compared (b) DSI (Data & Space)

1000 2000 3000 4000 7000 8000 9000 10000

Database Size

Fig. 7. A runtime comparison for all algorithms over different sizes of DB

In Fig. 7, run times to calculate one UV-cell are denoted over different data-
base sizes. Figure 7(a) contains results for the approaches Dataindex Traversal
(DI), Spaceindex traversal (SI), Data and Space Index Traversal (DSI) and SR.
Note how DI shows a relatively constant, high runtime since for each query,
every grid cell g; is explored, independently of database population. SR starts
off better, but since it features pairwise comparisons without the use of an index,
it does not scale well for higher numbers ob database objects. SI clearly shows
how such an index improves performance drastically, but also scales up rather
fast. DSI also increases in runtime for higher dimensional datasets, but at gener-
ally much lower absolute values than the other approaches. Also, DSI increases
at a lower rate. This is because the combined approach of data and space index
allows for early pruning of large portions of the database.

As query performance generally deteriorates for larger datasets (or remains
at high values in the case of DI), further scaling experiments were conducted
using DST only. Figure 7(b) shows the results of database populations from 10 K
to 15 Million objects. To avoid gross overlapping of objects, object extent has
been lowered to 0.001 for these runs. The left axis again refers to the average
time to perform one UV-cell calculation, which corresponds to the blue data
line. We observe a slightly superlinear scaling, confirming our theoretical obser-
vations that (i) adding more objects leads to linearly more intersections with

114 T. Emrich et al.

Voronoi cells, which are at least as big as U, and (ii) a linear increase in object
count causes logarithmic tree index growth. This results in a combined log-linear
growth in runtime.

The right scale denotes average page views during cell calculation, with the
orange line referring to pages of the data index, and the green line for pages
of the space index. Note that data index exploration roughly follows runtime
development, while the space index is used less for larger databases. This is
easily explained by a constant tree depth, resulting in a constant resolution of
space. With a higher database population, the likelyhood of all relevant objects
being enclosed in a small space increases.

6.3 Effect of Data Dimensions

Although the trivial case of a two-dimensional world is most intuitive for most
applications mentioned before, all approaches can manage high-dimensional
datasets as well. The main limitation here is keeping the approximation error
low in all dimensions at once, as well as computational complexity.

Figure8 displays performance of all approaches for multi-dimensional
datasets. As runtime and memory usage of SR do not scale well for more than
five data dimensions, experiments excluded this approach for higher dimension-
alities than 5. An evaluation of runtime as shown in Fig. 8(a) shows constant
increase for all approaches. The relative steepness of increase is due to the
growing inefficiency of pruning methods in high dimensions, which deteriorates
searches toward a linear scan, which itself has quadratic complexity.

Approximation quality for higer dimensions is shown in Fig.8(b). As men-
tioned before, fitting a bound to a more and more complex object leaves much
room for approximation error. Therefore, volumes of upper and lower bounds
diverge more for higher dimensions. Displayed here are bounds for SR up to
dimension 5 (grey) and two different settings of our DST approach, once with
a depth of 14 (blue) and a depth of 20 (orange). As expected, a higher depth
allows for more tree splits per dimension and thus a better approximation.

1000

imation Volume
3
£

Runtime (5]
3
2
&

“Isr DSI-14 DSI-20

pproxi

A
3
I

2
~

=Dl SR =%=S| =e=Ds|

2 3 4 5 6 7 8 [1 3 4 [6 7 8 9 1
Number of Data Dimensions Number of Data Dimensions

(a) Runtime (b) Approximation Quality

Fig. 8. A comparison for increasing data dimensions.

Uncertain Voronoi Cell Computation Based on Space Decomposition 115

6.4 Conclusions

In this work, we proposed an index-supported approach to approximate the shape
of a possible Voronoi-cell to support nearest neighbor queries on uncertain data.
Our approache uses an R*-tree as a hierarchical access method to efficiently find
the set of uncertain objects that influence the possible Voronoi-cell of an uncertain
object U, i.e., the set of Delauny-neighbors of U. In addition, we propose to use a
kd-trie as a hierarchical access method to identify regions of space which must (not)
be part of a Voronoi-cell. Compared to the state-of-the-art of computing uncertain
Voronoi-cells, our approach allows for much higher approximation quality, since
our result approximation consists of a set of rectangular kd-trie nodes, rather than
a single bounding rectangle. As future work, we want to extend our ideas to find
certain Voronoi-cells, that is regions, where a query object has a probability of one
of having some object U as its nearest neighbor. Furthermore, we want to extend
our solution to the case of k’th-order Voronoi-cells to support k-nearest neighbor
queries. Even in the case of certain data, k’th-order Voronoi-cells become complexly
shaped, having a representation complexity exponential in k. However, since we
are using space approximation techniques, rather than computing exact bounds,
we can avoid this computational drawback.

Acknowledgements. Part of the research leading to these results has received funding
from the Deutsche Forschungsgemeinschaft (DFG) under grant number RE 266/5-1 and
from the DAAD supported by BMBF under grant number 57055388. Reynold Cheng was
supported by the Research Grants Council of Hong Kong (RGC Project (HKU 711110)).

References

1. Chow, C.Y., Mokbel, M.F., Aref, W.G.: Casper*: query processing for location
services without compromising privacy. ACM TODS 34(4), 24 (2009)

2. Beskales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the top-k probable
nearest neighbors in uncertain databases. VLDB Endow. 1(1), 326-339 (2008)

3. Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: Uv-diagram: A voronoi diagram
for uncertain data. In: ICDE, pp. 796-807. IEEE (2010)

4. Ali, M.E., Tanin, E., Zhang, R., Kotagiri, R.: Probabilistic voronoi diagrams for
probabilistic moving nearest neighbor queries. DKE 75, 1-33 (2012)

5. Bernecker, T., Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Zifle, A.: A
novel probabilistic pruning approach to speed up similarity queries in uncertain
databases. In: Proceedings of the ICDE, pp. 339-350 (2011)

6. Zhang, P., Cheng, R., Mamoulis, N., Renz, M., Zufle, A., Tang, Y., Emrich, T.:
Voronoi-based nearest neighbor search for multi-dimensional uncertain databases.
In: ICDE, pp. 158-169. IEEE (2013)

7. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99-108 (2010)

8. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: SIGKDD, pp. 316-324 (2011)

9. Emrich, T., Kriegel, H.P., Mamoulis, N., Renz, M., Ziifle, A.: Querying uncertain
spatio-temporal data. In: ICDE, pp. 354-365. IEEE (2012)

116

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

T. Emrich et al.

Emrich, T., Kriegel, H.-P., Kroger, P., Renz, M., Ziifle, A.: Incremental
reverse nearest neighbor ranking in vector spaces. In: Mamoulis, N., Seidl, T.,
Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 265—
282. Springer, Heidelberg (2009)

Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles, vo