
On the Hierarchy of Block Deterministic
Languages

Pascal Caron, Ludovic Mignot(B), and Clément Miklarz

LITIS, Université de Rouen, 76801 Saint-Étienne du Rouvray Cedex, France
{pascal.caron,ludovic.mignot,clement.miklarz1}@univ-rouen.fr

Abstract. A regular language is k-block deterministic if it is specified
by a k-block deterministic regular expression. This subclass of regular
languages has been introduced by Giammarresi et al. as a possible exten-
sion of one-unambiguous regular languages defined and characterized by
Brüggemann-Klein and Wood. We first show that each k-block determin-
istic regular language is the alphabetic image of some one-unambiguous
regular language. Moreover, we show that the conversion from a minimal
DFA of a k-block deterministic regular language to a k-block determin-
istic automaton not only requires state elimination, and that the proof
given by Han and Wood of a proper hierarchy in k-block deterministic
languages based on this result is erroneous. Despite these results, we
show by giving a parameterized family that there is a proper hierarchy
in k-block deterministic regular languages.

1 Introduction

A Document Type Definition (DTD) containing a grammar is used to know
whether an XML file fits some specification. These grammars are made of rules
whose right-hand part is a restricted regular expression. Brüggemann-Klein and
Wood have formalized these regular expressions and have shown that the set of
languages specified is strictly included in the set of regular ones. The distinctive
aspect of such expressions is the one-to-one correspondence between each letter of
the input word and a unique position in them. The resulting Glushkov automaton
is deterministic. The languages specified are called one-unambiguous regular
languages.

Several extensions of one-unambiguous expressions have been considered:

– k-block deterministic regular expressions [4] are such that while reading an
input word, there is a one-to-one correspondence between the next at most
k input symbols and the same number of symbols of the expression. These
expressions have particular Glushkov automata. The transitions of these
automata can be labeled by words of length at most k and for every cou-
ple of words labeling two output transitions of a single state, these words are
not prefix from each other.

– k-lookahead regular expressions form another generalization. This time, the
reading of the next k symbols of the input word allows one to know the next
position in the expression. This extension has been proposed in [6].

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 63–75, 2015.
DOI: 10.1007/978-3-319-22360-5 6

64 P. Caron et al.

– (k, l)-unambiguous regular expressions [3] is another extension of one-unam-
biguity, where the next k symbols may induce several paths, but with at most
one common state.

These three families of expressions fit together as families of languages in the
way that a language is k-block deterministic (resp. k-lookahead deterministic,
(k, l)-unambiguous) if there exists a k-block deterministic (resp. k-lookahead
deterministic, (k, l)-unambiguous) expression to represent it.

Preliminaries are gathered in Sect. 2. In Sect. 3, we recall several results
from [4,6] on which we question their truthfulness. Indeed, we show in Sect. 4
that, due to an erroneous statement of Lemma 4, the witness family given as
a proof of Theorem 3 is invalid; and present an alternative family, proving the
infinite hierarchy of k-block deterministic regular languages w.r.t. k.

2 Preliminaries

2.1 Languages and Automata Basics

Let Σ be a non-empty finite alphabet. A word w over Σ is a finite sequence of
symbols from Σ. The length of a word w is denoted by |w|, and the empty word
is denoted by ε. The word x is a prefix of w if there exists a word u such that
w = xu. The set of all prefixes of w is denoted by Pref(w).

Let Σ∗ denote the set of all words over Σ. A language over Σ is a subset of
Σ∗. Let L and L′ be two languages over Σ. The following operations are defined:

– the union: L ∪ L′ = {w | w ∈ L ∨ w ∈ L′}
– the concatenation: L · L′ = {w · w′ | w ∈ L ∧ w′ ∈ L′}
– the Kleene star : L∗ =

⋃
k∈N

Lk with L0 = {ε} and Lk+1 = L · Lk

A regular expression over Σ is built from ∅ (the empty set), ε, and symbols
in Σ using the binary operators + and ·, and the unary operator ∗. The language
L(E) specified by a regular expression E is defined as follows:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a},

L(F + G) = L(F) ∪ L(G), L(F · G) = L(F) · L(G), L(F ∗) = L(F)∗,

with a ∈ Σ, and F , G some regular expressions over Σ. Given a language L,
if there exists a regular expression E such that L(E) = L, then L is a regular
language.

A finite automaton A is a 5-tuple (Σ,Q, I, F, δ) where: Q is a finite set of
states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of final states, and
δ ⊂ Q × Σ × Q is a set of transitions. The set δ is equivalent to a function
of Q × Σ → 2Q : (p, a, q) ∈ δ ⇐⇒ q ∈ δ(p, a). This function can be extended
to 2Q × Σ∗ → 2Q as follows: for any subset Q′ ⊂ Q, for any symbol a ∈ Σ,
for any word w ∈ Σ∗: δ(Q′, ε) = Q′, δ(Q′, a) =

⋃
q∈Q′ δ(q, a), δ(Q′, a · w) =

δ(δ(Q′, a), w); finally, we set δ(q, w) = δ({q}, w). The language L(A) recognized
by A is the set {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. Two automata are equivalent if they

On the Hierarchy of Block Deterministic Languages 65

recognize the same language. The right language of a state q of A is denoted by
Lq(A) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}. Two states are equivalent if they have the
same right language.

An automaton A = (Σ,Q, I, F, δ) is standard if |I| = 1 and ∀q ∈ Q,∀a ∈
Σ, δ(q, a)∩I = ∅. If A is not a standard automaton, then it is possible to compute
an equivalent standard automaton (Σ,Qs, Is, Fs, δs) as follows:

– Qs = Q ∪ {is} with is /∈ Q
– Is = {is}
– Fs = F ∪ {is} if I ∩ F �= ∅, F otherwise
– δs = δ ∪ {(is, a, q) | ∃i ∈ I, (i, a, q) ∈ δ}
This operation is called standardization.

An automaton A = (Σ,Q, I, F, δ) is deterministic if |I| = 1 and ∀t1 =
(p, a, q1), t2 = (p, b, q2) ∈ δ, (t1 �= t2) =⇒ (a �= b). If A is not deterministic,
it is possible to compute an equivalent deterministic automaton by using the
powerset construction described in [10].

A deterministic automaton A = (Σ,QA, {iA}, FA, δA) is minimal if there
is no equivalent deterministic automaton B = (Σ,QB , {iB}, FB , δB) such that
|QB | < |QA|. If A is not minimal, it is possible to compute an equivalent minimal
deterministic automaton by merging equivalent states [7,9]. Notice that two
equivalent minimal deterministic automata are isomorphic.

Kleene’s Theorem [8] asserts that the set of the languages specified by regular
expressions is the same as the set of languages recognized by finite automata.
The conversion of regular expressions into automata has been deeply studied,
e.g. by Glushkov [5]. To differentiate each occurence of the same symbol in a
regular expression, a marking of all the symbols of the alphabet is performed by
indexing them with their relative position in the expression. The marking of a
regular expression E produces a new regular expression denoted by E� over the
alphabet of indexed symbols denoted by ΠE where each indexed symbol occurs
at most once in E�. The reverse of marking is the dropping of subscripts, denoted
by �, such that if x ∈ ΠE and x = ak, then x� = a.

Let E be a regular expression over an alphabet Σ. The following functions
are defined:

– Null(E) = {ε} if ε ∈ L(E), ∅ otherwise
– First(E) = {x ∈ Σ | ∃w ∈ Σ∗, xw ∈ L(E)}
– Last(E) = {x ∈ Σ | ∃w ∈ Σ∗, wx ∈ L(E)}
– Follow(E, x) = {y ∈ Σ | ∃u, v ∈ Σ∗, uxyv ∈ L(E)}, ∀x ∈ Σ

From these functions, an automaton recognizing L(E) can be computed:

Definition 1. The Glushkov automaton of a regular expression E over an
alphabet Σ is denoted by GE = (Σ,QE , IE , FE , δE) with:

– QE = ΠE ∪ {i}
– IE = {i}
– FE = Last(E�) ∪ {i} if Null(E�) = {ε}, Last(E�) otherwise

66 P. Caron et al.

– δE = {(x, a, y) ∈ ΠE × Σ × ΠE | y ∈ Follow(E�, x) ∧ a = y�}
∪{(i, a, y) ∈ {i} × Σ × ΠE | y ∈ First(E�) ∧ a = y�}

Finally, an automaton is a Glushkov automaton if it is the Glushkov automaton
of a regular expression E.

Example 1. Let E = (a + b)∗a + ε. Then E� = (a1 + b2)∗a3 + ε with ΠE =
{a1, b2, a3}, and GE is given in Fig. 1.

i a3

a1

b2

a

a

b

a

b

a

b

a

a

Fig. 1. The Glushkov automaton GE of E = (a + b)∗a + ε

2.2 One-Unambiguous Regular Languages

We present the notion of one-unambiguity introduced in [1].

Definition 2. A regular expression E is one-unambiguous if GE is determin-
istic. A regular language is one-unambiguous if it is specified by some one-
unambiguous regular expression.

Brüggemann-Klein and Wood showed that the one-unambiguity of a regular
language is stucturally decidable over its minimal DFA. This decision procedure
is related to the strongly connected components of the underlying graph and to
their links with the remaining parts.

Let A = (Σ,Q, I, F, δ) be a deterministic automaton. A set O ⊂ Q is called
an orbit if it is a strongly connected component. An orbit is trivial if it consists
of only one state and there is no transition from it to itself in A. The orbit of a
state q, denoted by O(q) is the orbit to which q belongs. The set of orbits of A
is denoted by OA. Let O ∈ OA be an orbit and p ∈ O be a state. The state p is
a gate of O if (p ∈ F) ∨ (∃a ∈ Σ,∃q ∈ (Q \ O), q ∈ δ(p, a)). The set of gates of
O is denoted by G(O). The automaton A has the orbit property if all the gates
of each orbit have identical connections to the outside. More formally:

Definition 3. An automaton A = (Σ,Q, I, F, δ) has the orbit property if, for
any orbit O in OA, for any two states (p, q) in G(O), the two following conditions
are satisfied:

On the Hierarchy of Block Deterministic Languages 67

– p ∈ F =⇒ q ∈ F ,
– ∀r ∈ (Q \ O),∀a ∈ Σ, r ∈ δ(p, a) =⇒ r ∈ δ(q, a).

Let q ∈ Q be a state. The orbit automaton Aq of the state q in A is the automaton
obtained by restricting the states and the transitions of A to O(q) with initial
state q and final states G(O(q)). For any state q ∈ Q, the languages L(Aq) are
called the orbit languages of A. A symbol a ∈ Σ is A-consistent if there exists
a state qa ∈ Q such that all final states of A have a transition labelled by a to
qa. A set S of symbols is A-consistent if each symbol in S is A-consistent. The
S-cut AS of A is constructed from A by removing, for each a ∈ S, all transitions
labelled by a that leave a final state of A. All these notions can be used to
characterize one-unambiguous regular languages:

Theorem 1 ([1]). Let M be a minimal deterministic automaton and S be a
M -consistent set of symbols. Then, L(M) is one-unambiguous if and only if:

1. the S-cut MS of M has the orbit property
2. all orbit languages of MS are one-unambiguous.

Furthermore, if M consists of a single non-trivial orbit and L(M) is one-unambi-
guous, M has at least one M -consistent symbol.

This theorem suggests an inductive algorithm to decide, given a minimal deter-
ministic automaton M whether L(M) is one-unambiguous: the BKW test. Fur-
thermore, the theorem defines a sufficient condition over non-minimal determin-
istic automaton:

Lemma 1 ([1]). Let A be a deterministic automaton and M be its equivalent
minimal deterministic automaton.

1. If A has the orbit property, then so does M
2. If all orbit languages of A are one-unambiguous, then so are all orbit lan-

guages of M .

Consequently, the BKW test is extended to deterministic automata which are
not minimal. Reinterpreting the results in [1], it can be shown that

Lemma 2. The Glushkov automaton of a one-unambiguous regular expression
passes the BKW test.

2.3 Block Deterministic Regular Languages

We present the notion of block determinism introduced in [4].
Let Σ be an alphabet and k be an integer. The set of blocks BΣ,k is the set

{w | w ∈ Σ∗ ∧ 1 ≤ |w| ≤ k}. The notions of regular expression and automaton
can be extended to ones over set of blocks. Let E be a regular expression over
Γ and A = (Γ,Q, I, F, δ) be an automaton. Let Σ be an alphabet and k be an
integer, if Γ ⊂ BΣ,k then E and A are (Σ, k)-block. And since Γ ⊂ BΣ,k ⊂ Σ∗, a

68 P. Caron et al.

language over Γ is also a language over Σ. To distinguish blocks as syntactic com-
ponents in a regular expression, we write them between square brackets. Those
are omitted for one letter blocks. The notion of determinism can be extended to
block-determinism.

Definition 4. An automaton A = (Γ,Q, I, F, δ) is k-block deterministic if the
following conditions hold:

– there exists an alphabet Σ such that A is (Σ, k)-block,
– |I| = 1,
– ∀t1 = (p, b1, q1), t2 = (p, b2, q2) ∈ δ, (t1 �= t2) =⇒ (b1 /∈ Pref(b2)).

Since Σ = BΣ,1, regular expressions and automata can be considered as ones over
a set of blocks. Moreover, the blocks can be treated as single symbols, as we do
when we refer to the elements of an alphabet. With this assumption, the marking
of block regular expressions induces the construction of a Glushkov automaton
from a block regular expression, and the usual automaton transformations such
as determinization and minimization can be easily performed.

Example 2. Let E = [aa]∗([ab]b + ba)b∗. Then E� = [aa]∗1([ab]2b3 + b4a5)b∗
6, and

GE is given in Fig. 2.

i

[aa]1b4 [ab]2

b3b5 b6

aa
b

ab

aa

b ab

b

b

a

b

b

Fig. 2. The (Σ, 2)-block Glushkov automaton GE

Finally, the block determinism of a Glushkov automaton can be used to
extend the block determinism to block expression:

Definition 5. A block regular expression E is k-block deterministic if GE is k-
block deterministic. A regular language is k-block deterministic if it is specified
by some k-block deterministic regular expressions.

Example 3. Since the Glushkov automaton in Fig. 2 is 2-block deterministic,
L([aa]∗([ab]b + ba)b∗) is 2-block deterministic.

On the Hierarchy of Block Deterministic Languages 69

Let A = (Σ,Q, I, F, δ) be an automaton and Γ be a set. Then the automaton
B = (Γ,Q, I, F, δ′) is an alphabetic image of A if there exists an injection φ from
Σ to Γ such that δ′ = {(p, φ(a), q) | (p, a, q) ∈ δ}. In this case, we set B = φ(A).
Caron and Ziadi showed in [2] that an automaton is a Glushkov one if and only
if the two conditions hold:

– it is homogeneous (for any state q, for any two transitions (p, a, q) and (r, b, q),
the symbols a and b are the same);

– it satisfies some structural properties over the transition structure.

One can check that any injection φ from Σ to Γ preserves such conditions, since
the alphabetical image preserves the transition structure by only changing the
symbol labeling a transition. Therefore

Lemma 3. The alphabetic image of an automaton A is a Glushkov automaton
if and only if A is a Glushkov automaton.

Let us show that the BKW test can be used to characterize the k-block deter-
minism of a regular language:

Theorem 2. A regular language L is k-block deterministic if and only if it is
recognized by a k-block deterministic automaton K such that K is the alphabetic
image of a deterministic automaton which passes the BKW test.

Proof. Let us show the double implication.

1. Let L be a k-block deterministic regular language over Σ. Then there exists
a k-block deterministic Glushkov automaton K = (BΣ,k, Q, {i}, F, δK) that
recognizes L. Let Π = {[b] | b ∈ BΣ,k} be an alphabet, ϕ : Π → BΣ,k be the
bijection such that for every [b] ∈ Π,ϕ([b]) = b. Let A = (Π,Q, {i}, F, δA) be
a Glushkov automaton such that K = ϕ(A). Let us suppose that A is not
deterministic. Then, there exist two transitions (p, a, q), (p, a, r) ∈ δA such
that q �= r. Thus, (p, ϕ(a), q), (p, ϕ(a), r) ∈ δK , which contradicts the fact
that K is k-block deterministic. So, A is a deterministic Glushkov automaton,
and therefore passes the BKW test following Lemma 2.

2. Let A = (Π,QA, {iA}, FA, δA) be a deterministic automaton which passes the
BKW test, K = {Γ,QA, {iA}, FA, δK) be a k-block deterministic automaton,
and ϕ : Π → Γ be an injection such that K = ϕ(A). Now, ϕ : Π → Γ is
extended into the morphism ϕ : Π∗ → Γ ∗ such that for every letter a ∈ Π
and every word w ∈ Π∗ we have ϕ(a · w) = ϕ(a) · ϕ(w) and ϕ(ε) = ε. In this
case, L(K) = ϕ(L(A)). Since A passes the BKW test, there exists an equiva-
lent deterministic Glushkov automaton G = (Π,QG, {iG}, FG, δG). Following
Lemma 3, there also exists a Glushkov automaton H = (Γ,QG, {iG}, FG, δH)
such that H = ϕ(G) and L(H) = ϕ(L(G)). Since A and G are equivalent
deterministic automata, ϕ(L(G)) = ϕ(L(A)). And so L(H) = L(K). Let us
suppose that H is not k-block deterministic, then there exist two transitions
(pH , ϕ(a), qH), (pH , ϕ(b), rH) ∈ δH such that either (ϕ(a) = ϕ(b))∧(qH �= rH)

70 P. Caron et al.

or (ϕ(a) �= ϕ(b))∧(ϕ(a) ∈ Pref(ϕ(b))). By definition, (pH , a, qH), (pH , b, rH) ∈
δG. But since G and A are equivalent deterministic automata, there exist
two transitions (pA, a, qA), (pA, b, rA) ∈ δA, and by definition, (pA, ϕ(a), qA),
(pA, ϕ(b), rA) ∈ δK . Let us suppose that (ϕ(a) = ϕ(b)) ∧ (qh �= rh). Since
ϕ is an injection, (a = b) ∧ (qh �= rh), which contradicts the fact that G is
deterministic. So let us suppose that (ϕ(a) �= ϕ(b)) ∧ (ϕ(a) ∈ Pref(ϕ(b))), it
contradicts the fact that K is k-block deterministic. Therefore, H is a k-block
deterministic Glushkov automaton, and L(K) is k-block deterministic. ��

It has been proved that one-unambiguous regular languages are a proper
subfamily of k-block deterministic regular languages. Therefore one can wonder
whether there exists an infinite hierarchy in k-block deterministic regular lan-
guages regarding k. That has been achieved by Han and Wood [6], but with an
invalid assumption.

3 Previous Results on Block-Deterministic Languages

In [4], a method is presented for creating from a block automaton an equivalent
block automaton with larger blocks by eliminating states while preserving the
right language of every other states.

Let A = (Γ,Q, I, F, δ) be a block automaton. The state elimination of q in A
creates a new block automaton, denoted by S(A, q), computed as follows: first,
the state q and all transitions going in and out of it are removed; second, for
every two transitions (r, u, q) and (q, v, s) in δ, the transition (r, uv, s) is added.
This transformation is illustrated in Fig. 3.

q

r1

r2

s1

s2

u1

u2

v1

v2

w

r1

r2

s1

s2

u1v1

u1v2
u2v1

u2v2

wv1

wv2

Fig. 3. The state elimination of the state q

Definition 6. Let A = (Γ,Q, I, F, δ) be a block automaton. A state q ∈ Q
satisfies the state elimination precondition if it is neither an initial state nor a
final state and it has no self-loops.

The state elimination is extended to a set S ⊂ Q of states if every state in
S satisfies the state elimination precondition, and the subgraph induced by S is

On the Hierarchy of Block Deterministic Languages 71

acyclic. In this case, we can eliminate the states in S in any order. Giammarresi
et al. [4] suggest that state elimination is sufficient to decide the k-block deter-
minism of a regular language.

Lemma 4 ([4,6]). Let M be a minimal deterministic automaton of a k-block-
deterministic regular language. We can transform M to a k-block deterministic
automaton that satisfies the orbit property using state elimination.

Using this lemma, Han and Wood stated that:

Theorem 3 ([6]). There is a proper hierarchy in k-block-deterministic regular
languages.

Proof. Han and Wood exhibited the family of languages Lk specified by regular
expressions Ek = ([ak])∗([ak−1b]b+ba)b∗ whose minimal deterministic automata
Mk are represented in Fig. 4. Following Lemma 4, there is no other choice but
to eliminate states q1 to qk−1, in any order, to have the orbit property. Thus, Lk

is k-block deterministic and not (k − 1)-block deterministic. ��

qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

a

a

b

ba

b

qk

1 3 2

ak

b

ak−1b

ba

b

Fig. 4. The minimal deterministic automaton Mk and its equivalent k-block determi-
nistic automaton after having eliminated states q1 to qk−1

4 A Witness for the Infinite Hierarchy

In this section, we exhibit a counter-example for Lemma 4. We can find a k-block
deterministic language with a minimal deterministic automaton from which we
cannot get any k-block deterministic automaton that satisfies the orbit prop-
erty. In Fig. 5, the leftmost automaton is minimal and none of its states can be
eliminated. However, by applying standardization, we create an equivalent deter-
ministic automaton from which we can eliminate the state i to get the rightmost
equivalent 2-block deterministic automaton.

This clearly shows that the only action of state elimination is not enough
to decide whether a language is k-block deterministic. Using this operation, we
show that:

72 P. Caron et al.

i

1

2

a

b

b
i′ i

1

2

a

b

a

b

b
i′

1

2

a

b

ba

bb

Fig. 5. The counter-example

Proposition 1. ∀k ∈ N \ {0}, the language Lk is 2-block deterministic.

Proof. As shown in Fig. 6, we can always standardize Mk, proceed to the state
elimination of qk and get a 2-block deterministic automaton which respects the
conditions stated in Theorem 2. Thus, Lk is 2-block deterministic and is specified
by the regular expressions Fk = (ak−1([aa]ak−2)∗([ab]a + bb) + ba)b∗. ��

i qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a

b

a a

a

a

b

ba

b

i

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

aaa

ab b

ba

b

Fig. 6. The standardization of Mk followed by the state elimination of qk

However, Theorem 3 is still correct since we can give proper details about
the proof with our own parameterized family of languages. Let k ∈ N \ {0} be
an integer and Ak = (Σ,Qk, Ik, Fk, δk) be the automaton (given in Fig. 7) such
that:

– Σ = {a, b, c}
– Qk = {f} ∪ {αj , βj | 1 ≤ j ≤ k}
– Ik = {βk}
– Fk = {f} ∪ {αk, βk}
– δk = Δk ∪ Γk with:

• Δk = {(βk, a, αk), (β1, b, f), (αk, a, αk), (α1, b, f), (α1, c, βk)}
• Γk = {(αj , b, αj−1), (βj , b, βj−1) | 2 ≤ j ≤ k}

First of all, let us notice that the word bj ∈ L(Ak) if and only if j = k. Thus,
for all k �= k′, L(Ak) �= L(Ak′). Furthermore,

On the Hierarchy of Block Deterministic Languages 73

βk βk−1 βk−2 β2 β1

αk αk−1 αk−2 α2 α1

f

b

a

b b

b

a
b b b

b

c

Fig. 7. The k-block deterministic automaton Ak

Proposition 2. ∀k ∈ N \ {0}, L(Ak) is k-block deterministic.

Proof. By construction, for all k, Ak is trimmed and deterministic. So, any
automaton that we can get from eliminating states such that the state elimina-
tion precondition is respected is a block deterministic automaton.

For any integer k in N \ {0}, we can eliminate the set of states {αj , βj | 1 ≤
j ≤ k − 1} because none of these states are initial or final and their induced
subgraph is acyclic. Thus, we can get a k-block deterministic automaton Bk,
such that L(Bk) = L(Ak), shown in Fig. 8. Obviously Bk respects the conditions
stated in Theorem 2, so L(Ak) is k-block deterministic. Furthermore, it can be
checked that L(Ak) is specified by the k-block deterministic regular expression
(a(ε + [bk−1c]))∗(ε + [bk]). ��

βk

αk

f

bk

a

a bk

bk−1c

Fig. 8. The k-block deterministic automaton Bk

Finally, let us show that the index cannot be reduced:

Proposition 3. ∀k ∈ N \ {0}, L(Ak) is not (k − 1)-block deterministic.

Proof. Let B = (BΣ,k−1, QB , {iB}, FB , δB) be a (k − 1)-block deterministic
automaton equivalent to Ak.

We first show that there exists a non-trivial orbit O ⊂ QB and two states
α, β ∈ O such that Lα(B) = Lαk

(Ak) and Lβ(B) = Lβk
(Ak). Let us con-

sider the following state sequences: (αk,j)j∈N ⊂ FB and (βk,j)j∈N ⊂ FB , such
that βk,0 = iB , δB(βk,j , a) = αk,j and δB(αk,j , b

k−1c) = βk,j+1. It follows
that δB(iB , (abk−1c)j) = βk,j and δB(iB , (abk−1c)ja) = αk,j . Notice that the
existence of αk,j and βk,j is ensured by the fact that L(B) = L(Ak). Let us

74 P. Caron et al.

suppose that there exists j ∈ N such that Lβk,j
(B) �= Lβk

(Ak). Then there
exists w ∈ Σ∗ such that w ∈ Lβk,j

(B) � Lβk
(Ak), where for any two sets

X and Y , X � Y = (X \ Y) ∪ (Y \ X). And since δk(βk, (abk−1c)j) = βk,
(abk−1c)j · w ∈ L(B) � L(Ak). Thus, L(B) �= L(Ak) which is contradictory. So,
for every j ∈ N, we have Lβk,j

(B) = Lβk
(Ak). The proof that for every j ∈ N,

we have Lαk,j
(B) = Lαk

(Ak), is done in the same way. Now, let us suppose that
for every j �= j′ ∈ N, we have αk,j �= αk,j′ and βk,j �= βk,j′ . Then QB would be
infinite, which would contradict the fact that B is a finite automaton. So, there
exist j < j′ ∈ N such that αk,j = αk,j′ or βk,j = βk,j′ . Thus, either there exists
a path going from βk,j to αk,j and a path going from αk,j to βk,j′ = βk,j , and
βk,j and αk,j belong to the same orbit; or there exists a path going from αk,j to
βk,j+1 and a path going from βk,j+1 to αk,j′ = αk,j , and αk,j and βk,j+1 belong
to the same orbit.

Finally, let us focus on such an orbit O with two gates α and β such that
Lα(B) = Lαk

(Ak) and Lβ(B) = Lβk
(Ak). We know that for every i ∈ N such

that 1 ≤ i < k, we have δk(βk, bi) = βk−i with |Lβk−i
(Ak)| < ∞. Since Lβ(B) =

Lβk
(Ak) and B is (k − 1)-block deterministic, there exist j ∈ N and p ∈ QB

such that 1 ≤ j < k, δB(β, [bj]) = p and Lp(B) = Lβk−j
(Ak). This means that

|Lp(B)| < ∞, so p /∈ O. Now, if there does not exist a state q ∈ QB such that
δB(α, [bj]) = q, then B does not have the orbit property. So, let us suppose that
such a state exists. We know that for every i ∈ N such that 1 ≤ i < k, we
have δk(αk, bi) = αk−i with |Lαk−i

(Ak)| = ∞. Since Lα(B) = Lαk
(Ak), we have

Lq(B) = Lαk−j
(Ak) and |Lq(B)| = ∞. So p �= q and B does not have the orbit

property.
Since L(Ak) cannot be recognized by a (k−1)-block deterministic alphabetic

image of an automaton passing the BKW test, following Theorem 2 it holds that
L(Ak) is not (k − 1)-block deterministic. ��

References

1. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf.
Comput. 140(2), 229–253 (1998). http://dx.doi.org/10.1006/inco.1997.2688

2. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1–2), 75–90 (2000)

3. Caron, P., Flouret, M., Mignot, L.: (k,l)-unambiguity and quasi-deterministic
structures: an alternative for the determinization. In: Dediu, A.-H., Mart́ın-Vide,
C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 260–272. Springer, Heidelberg (2014)

4. Giammarresi, D., Montalbano, R., Wood, D.: Block-deterministic regular lan-
guages. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001.
LNCS, vol. 2202, pp. 184–196. Springer, Heidelberg (2001)

5. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

6. Han, Y.S., Wood, D.: Generalizations of 1-deterministic regular languages. Inf.
Comput. 206(9–10), 1117–1125 (2008)

http://dx.doi.org/10.1006/inco.1997.2688

On the Hierarchy of Block Deterministic Languages 75

7. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automa-
ton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196.
Academic Press, New York (1971)

8. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,
C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press,
Princeton (1956). Annals of Mathematics Studies 34

9. Moore, E.F.: Gedanken experiments on sequential machines. In: Shannon, C.,
McCarthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press,
Princeton (1956)

10. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
3(2), 115–125 (1959)

	On the Hierarchy of Block Deterministic Languages
	1 Introduction
	2 Preliminaries
	2.1 Languages and Automata Basics
	2.2 One-Unambiguous Regular Languages
	2.3 Block Deterministic Regular Languages

	3 Previous Results on Block-Deterministic Languages
	4 A Witness for the Infinite Hierarchy
	References

