
On the Disambiguation of Weighted Automata

Mehryar Mohri1,2 and Michael D. Riley2(B)

1 Courant Institute of Mathematical Sciences, New York, NY, USA
2 Google Research, New York, NY, USA

riley@google.com

Abstract. We present a disambiguation algorithm for weighted
automata. The algorithm admits two main stages: a pre-disambiguation
stage followed by a transition removal stage. We give a detailed descrip-
tion of the algorithm and the proof of its correctness. The algorithm is
not applicable to all weighted automata but we prove sufficient conditions
for its applicability in the case of the tropical semiring by introducing
the weak twins property. In particular, the algorithm can be used with
all acyclic weighted automata and more generally any determinizable
weighted automata. While disambiguation can sometimes be achieved
using determinization, our disambiguation algorithm in some cases can
return a result that is exponentially smaller than any equivalent deter-
ministic automaton. We also present some empirical evidence of the space
benefits of disambiguation over determinization in speech recognition and
machine translation applications.

1 Introduction

Weighted finite automata and transducers are widely used in applications. Most
modern speech recognition systems used for hand-held devices or spoken-dialog
applications use weighted automata and their corresponding algorithms for
the representation of their models and their efficient combination and search
[2,18]. Similarly, weighted automata are commonly used for a variety of tasks in
machine translation [9] and other natural language processing applications [10],
computational biology [6], image processing [1], optical character recognition [5],
and many other areas.

A problem that arises in several applications is that of disambiguation of
weighted automata: given an input weighted automaton, the problem consists
of computing an equivalent weighted automaton that is unambiguous, that is
one with no two accepting paths labeled with the same string. The need for
disambiguation is often motivated by the computation of the marginals given
a weighted transducer, or the common problem of determining the most prob-
able string or more generally the n most likely strings, n ≥ 1, of a lattice, an
acyclic weighted automaton generated by a complex model, such as those used in
machine translation, speech recognition, information extraction, and many other
natural language processing and computational biology systems. A lattice com-
pactly represents the model’s most likely hypotheses. It defines a probability

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 263–278, 2015.
DOI: 10.1007/978-3-319-22360-5 22

264 M. Mohri and M.D. Riley

distribution over the strings and is used as follows: the weight of an accept-
ing path is obtained by multiplying the weights of its component transitions
and the weight of a string obtained by summing up the weights of accepting
paths labeled with that string. In general, there may be many accepting paths
labeled with a given string. Clearly, if the lattice were unambiguous, a stan-
dard shortest-paths or n-shortest-paths algorithm [8] could be used to efficiently
determine the n most likely strings. When the lattice is not unambiguous, the
problem is more complex and can be solved using weighted determinization [19].
An alternative solution, which we will show has benefits, consists of first finding
an unambiguous weighted automaton equivalent to the lattice and then running
an n-shortest-paths algorithm on the resulting weighted automaton.

In general, one way to determine an equivalent unambiguous weighted
automaton is to use the weighted determinization algorithm [16]. This, however,
admits several drawbacks. First, weighted determinization cannot be applied to
all weighted automata. This is both because not all weighted automata admit
an equivalent deterministic weighted automaton but also because even for some
that do, the weighted determinization algorithm may not halt. Sufficient condi-
tions for the application of the algorithm have been given [3,16]. In particular
the algorithm can be applied to all acyclic weighted automata. Nevertheless, a
second issue is that in some cases where weighted determinization can be used,
the size of the resulting deterministic automaton is prohibitively large.

This paper presents a new disambiguation algorithm for weighted automata
extending to the weighted case the algorithm of [17] – the weighted case is sig-
nificantly more complex and this extension non-trivial. As we shall see, our
disambiguation algorithm applies to a broader family of weighted automata
than determinization: we show that, for the tropical semiring, if a weighted
automaton can be determinized using the algorithm of [16], then it can also
be disambiguated using the algorithm presented in this paper. Furthermore,
for some weighted automata, the size of the unambiguous weighted automaton
returned by our algorithm is exponentially smaller than that of any equiva-
lent deterministic weighted automata. In particular, our algorithm leaves the
input unchanged if it is unambiguous, while the size of the automaton returned
by determinization for some unambiguous weighted automata is exponentially
larger. We also present empirical evidence that shows the benefits of weighted
disambiguation over determinization in applications. Our algorithm applies in
particular to unweighted finite automata. Note that it is known that for some
non-deterministic finite automata of size n the size of an equivalent unambiguous
automaton is at least Ω(2

√
n) [22], which gives a lower bound on the time and

space complexity of any disambiguation algorithm for finite automata.
Our disambiguation algorithm for weighted automata is presented in a gen-

eral way and for a broad class of semirings. Nevertheless, the algorithm is limited
in several ways. First, not all weighted automata admit an equivalent unam-
biguous weighted automaton. But, even for some that do, our algorithm may
not succeed. The situation is thus similar to that of weighted determinization.
However, we present sufficient conditions based on a new notion of weak twins

On the Disambiguation of Weighted Automata 265

property under which our algorithm can be used. In particular, our algorithm
applies to all acyclic weighted automata and more generally to all determinizable
weighted automata. Our algorithm admits two stages. The first stage called pre-
disambiguation constructs a weighted automaton with several key properties,
including the property that paths leaving the initial state and labeled with the
same string have the same weight. The second stage consists of removing some
transitions to make the result unambiguous. Our disambiguation algorithm can
be applied whenever pre-disambiguation terminates.

We refer to [17] for an extensive discussion of disambiguation algorithms
for unweighted automata and finite-state transducers, in particular the algo-
rithm of Schützenberger. In the weighted case, we already mentioned and dis-
cussed weighted determinization [16] as a possible disambiguation algorithm in
some cases. A procedure was described by [14] for the special case of the disam-
biguation of finitely ambiguous min-plus automata, which is a straightforward
application of Schützenberger’s algorithm for the disambiguation of functional
transducers. That procedure does not extend to the general case of weighted
automata we are considering because in the general case, the removal of tran-
sitions causing ambiguity cannot be executed correctly in that way.1 An alter-
native procedure was also described by [13][pp. 598–599] for constructing an
unambiguous weighted automaton (when it exists) in the specific case of poly-
nomially ambiguous min-plus weighted automata. The construction is rather
intricate and further relies on the prior determination of a threshold value Y .
The authors do not give an explicit algorithm for computing Y but state that it
can be inferred from [13, Proposition 5.1]. However, the corresponding procedure
seems intractable. In fact, as indicated by the authors, the cost of determining
Y using that property is super-exponential. The authors of [13] do not give the
running-time complexity of their procedure and do not detail various aspects,
which makes a comparison difficult. But, our algorithm is much simpler and
seems to be significantly more efficient. Our algorithm is also more general since
it applies in particular to weighted automata over the tropical semirings that
verify the weak twins property and that may be exponentially ambiguous. It
is also given for a broader family of semirings. While we are not presenting
guarantees for its applicability for semirings different from the tropical semiring,
its applicability for at least acyclic weighted automata for those semirings is
clear. One advantage of the procedures described by [13] is that the existence
of an unambiguous weighted automaton is first tested, though that test proce-
dure appears also to be very costly. Finally, let us mention that an algorithm of
Eilenberg [7] bears the same name, disambiguation, but it is in fact designed for
an entirely different problem.

1 The removal of ambiguous transitions requires the following key property which
is guaranteed by our R-pre-disambiguation algorithm: after removal of ambiguous
transitions, the weight of a remaining path must be precisely the same as the weight
assigned to the string labeling that path by the original automaton. Let us also
emphasize that the procedure of [14] is not a special instance of our algorithm and
in particular does not benefit from the crucial use of the relation R∗.

266 M. Mohri and M.D. Riley

The paper is organized as follows. In Sect. 2, we introduce some preliminary
definitions and notation relevant to the description of our algorithm. Section 3
describes our pre-disambiguation algorithm and proves some key properties of
its result. We describe in fact a family of pre-disambiguation algorithms parame-
terized by a relation R over the set of pairs of states. A simple instance of that
relation is for two states to be equivalent when they admit a path labeled by the
same string leading to a final state. In Sect. 4, we describe the second stage, which
consists of transition removal, and prove the correctness of our disambiguation
algorithm. In Sect. 5, we introduce the notion of weak twins property which we
use to prove the sufficient conditions for the application of pre-disambiguation
and thus the full disambiguation algorithm. The proofs for this section are given
in the case of weighted automata over the tropical semiring. Finally, in Sect. 6, we
present experiments that compare weighted disambiguation to determinization
in speech recognition and machine translation applications. Our implementation
of these algorithms used in these experiments is available through a freely avail-
able OpenFst library [4]. Detailed proofs for most of our results are given in the
[20].

2 Preliminaries

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗ and
by ε the empty string for which |ε| = 0.

The weighted automata we consider are defined over a broad class of semi-
rings. A semiring is a system (S,⊕,⊗, 0, 1) where (S,⊕, 0) is a commutative
monoid with 0 as the identity element for ⊕, (S,⊗, 1) is a monoid with 1 as the
identity element for ⊗, ⊗ distributes over ⊕, and 0 is an annihilator for ⊗.

A semiring is said to be commutative when ⊗ is commutative. Some
familiar examples of (commutative) semirings are the tropical semiring (R+∪
{+∞},min,+,+∞, 0) or the semiring of non-negative integers (N,+,×, 0, 1).
The multiplicative operation of a semiring (S,⊕,⊗, 0, 1) is said to be cancella-
tive if for any x, x′ and z in S with z �= 0, x ⊗ z = x′ ⊗ z implies x = x′. When
that property holds, the semiring (S,⊕,⊗, 0, 1) is also said to be cancellative.

A semiring (S,⊕,⊗, 0, 1) is said to be left divisible if any element x ∈ S−{0}
admits a left inverse x′ ∈ S, that is x′ ⊗ x = 1. (S,⊕,⊗, 0, 1) is said to be weakly
left divisible if for any x and x′ in S such that x⊕x′ �= 0, there exists at least one
z such that x = (x ⊕ x′) ⊗ z. When the ⊗ operation is cancellative, z is unique
and we can then write: z = (x ⊕ x′)−1 ⊗ x.

Weighted finite automata (WFAs) are automata in which the transitions
are labeled with weights in addition to the usual alphabet symbols which are
elements of a semiring [15]. A WFA A = (Σ,Q, I, F,E, λ, ρ) over S is a 7-tuple
where: Σ is the finite alphabet of the automaton, Q is a finite set of states,
I ⊆ Q the set of initial states, F ⊆ Q the set of final states, E a finite multiset
of transitions which are elements of Q × Σ × S × Q, λ:I → S an initial weight
function, and ρ:F → S the final weight function mapping F to S.

On the Disambiguation of Weighted Automata 267

A path π of a WFA is an element of E∗ with consecutive transitions. We
denote by orig[π] the origin state and by dest[π] the destination state of the path.
A path is said to be accepting or successful when orig[π] ∈ I and dest[π] ∈ F .

We denote by w[e] the weight of a transition e and similarly by w[π] the weight
of path π = e1 · · · en obtained by ⊗-multiplying the weights of its constituent
transitions: w[π] = w[e1] ⊗ · · · ⊗ w[en]. When orig[π] is in I, we denote by
wI [π] = λ(orig[π]) ⊗ w[π] the weight of the path including the initial weight of
the origin state. For any two subsets U, V ⊆ Q and any string x ∈ Σ∗, we denote
by P (U, x, V) the set of paths labeled with x from a state in U to a state in V
and by W (U, x, V) the ⊕-sum of their weights:

W (U, x, V) =
⊕

π∈P (U,x,V)

w[π].

When U is reduced to a singleton, U = {p}, we will simply write W (p, x, V)
instead of W ({p}, x, V) and similarly for V . To include initial weights, we denote:

WI(x, V) =
⊕

π∈P (I,x,V)

wI [π].

We also denote by δ(U, x) the set of states reached by paths starting in U and
labeled with x ∈ Σ∗. The weight associated by A to a string x ∈ Σ∗ is defined by

A(x) =
⊕

π∈P (I,x,F)

wI [π] ⊗ ρ(dest[π]), (1)

when P (I, x, F) �= ∅. A(x) is defined to be 0 when P (I, x, F) = ∅.
A state q of a WFA A is said to be accessible if q can be reached by a path

originating in I. It is coaccessible if a final state can be reached by a path from q.
Two states q and q′ are co-reachable if they each can be reached by a path from
I labeled with a common string x ∈ Σ∗. A WFA A is trim if all states of A are
both accessible and coaccessible. A is unambiguous if any string x ∈ Σ∗ labels at
most one accepting path. The intersection of two WFAs is a WFA that satisfies
(A1 ∩ A2)(x) = A1(x) ⊗ A2(x).

In all that follows, we will consider weighted automata over a weakly left
divisible cancellative semiring.2

3 R-Pre-disambiguation of Weighted Automata

3.1 Relation R over Q × Q

Two states q, q′ ∈ Q are said to share a common future if there exists a string
x ∈ Σ∗ such that P (q, x, F) and P (q′, x, F) are not empty. Let R∗ be the relation
defined over Q × Q by q R∗ q′ iff q = q′ or q and q′ share a common future in
2 Our algorithms can be straightforwardly extended to the case of weakly left divisible

left semirings [3].

268 M. Mohri and M.D. Riley

A. Clearly, R∗ is reflexive and symmetric, but in general it is not transitive.
Observe that R∗ is compatible with the inverse transition function, that is, if
q R∗ q′, q ∈ δ(p, x) and q′ ∈ δ(p′, x) for some x ∈ Σ∗ with (p, p′) ∈ Q2, then
pR∗ p′. We will also denote by R0 the complete relation defined by q R0 q′ for all
(q, q′) ∈ Q2. Clearly, R0 is also compatible with the inverse transition function.

The construction we will define holds for any relation R out of the set of
admissible relations R defined as the reflexive relations over Q × Q that are
compatible with the inverse transition function and coarser than R∗. Thus, R
includes R∗ and R0, as well as any reflexive relation R compatible with the
inverse transition function that is coarser than R∗, that is, for all (q, q′) ∈ Q2,
q R∗ q′ =⇒ q R q′. Thus, for a relation R in R, two states q and q′ that share the
same future are necessarily in relation, but they may also be in relation without
sharing the same future. Note in particular that R is always reflexive.

3.2 Construction

Fix a relation R ∈ R. For any x ∈ Σ∗, and q ∈ δ(U, x), we also denote by δq(U, x)
the set of states in δ(U, x) that are in relation with q:

δq(U, x) = δ(U, x) ∩ {p:pR q}.

Note that, since R is reflexive, by definition, δq(I, x) contains q. We will assume
that WI(x, {p1, . . . , pt}) �= 0 for any x ∈ Σ∗, otherwise the subset corresponding
to x needs not be constructed. For any x ∈ Σ∗ and q ∈ δ(I, x), we define the
weighted subset s(x, q) by

s(x, q) =
{

(p1, w1), . . . , (pt, wt):
({p1, . . . , pt} = δq(I, x)

)

∧ (∀i ∈ [1, t], wi = WI(x, {p1, . . . , pt})−1 ⊗ WI(x, pi)
)}

.

For a weighted subset s, define set(s) = {p1, . . . , pt}. For any automaton A define
A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) as follows:

Q′ = {(q, s(x, q)):x ∈ Σ∗, q ∈ δ(I, x)}
I ′ = {(q, s(ε, q)):q ∈ I} and F ′ = {(q, s(x, q)):x ∈ Σ∗, q ∈ δ(I, x) ∩ F}

E′ =
{

((q, s), a, w, (q′, s′)):(q, s), (q′, s′) ∈ Q′, a ∈ Σ,

∃x ∈ Σ∗ | s = s(x, q) = {(p1, w1), . . . , (pt, wt)},

s′ = s(xa, q′) = {(p′
1, w

′
1), . . . , (p

′
t′ , w′

t′)},

q′ ∈ δ(q, a), w =
t⊕

i=1

(
wi ⊗ W (pi, a, set(s′))

)
,

∀j ∈ [1, t′], w′
j = w−1 ⊗

(t⊕

i=1

wi ⊗ W (pi, a, p′
j

)}

On the Disambiguation of Weighted Automata 269

and ∀(q, s) ∈ I ′, s = {(p1, w1), . . . , (pt, wt)}, λ′((q, s)) =
⊕

i∈[1,t]

λ(pi).

∀(q, s) ∈ F ′, s = {(p1, w1), . . . , (pt, wt)}, ρ′((q, s)) =
⊕

pi∈F
i∈[1,t]

(wi ⊗ ρ(pi)).

Note that in definition of the transition set E′ above, the property set(s′) =
δq′(set(s), a) always holds. In particular, if p′ is in δq′(set(s), a), then there is a
path from I to some p ∈ set(s) labeled x and a transition from p to p′ labeled
with a and p′ R q′ so p′ is in set(s′). Conversely, if p′ is in set(s′) then there
exists p reachable by x with a transition labeled with a from p to p′. Since p′ is
in set(s′), p′ is in δq′(I, xa), thus p′ R q′. Since there exists a transition labeled
with a from q to q′ and from p to p′, this implies that p R q. Since p R q and p is
reachable via x, p is δq(I, x).

When the set of states Q′ is finite, A′ is a WFA with a finite set of states
and transitions and is defined as the result of the R-pre-disambiguation of A.
In general, R-pre-disambiguation is thus defined only for a subset of weighted
automata, which we will refer to as the set of R-pre-disambiguable weighted
automata. We will show later sufficient conditions for an automaton A to be
R-pre-disambiguable in the case of the tropical semiring. Figure 1 illustrates the
R-pre-disambiguation construction.

3.3 Properties of the Resulting WFA

In this section, we assume that the input WFA A = (Σ,Q, I, F,E, λ, ρ) is R-pre-
disambiguable. In general, the WFA A′ constructed by R-pre-disambiguation is
not equivalent to A, but the weight of each path from an initial state equals the
⊕-sum of the weights of all paths with the same label in the input automaton
starting at an initial state.

Proposition 1. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
the following equalities hold for any path π ∈ P (I ′, x, (q, s)) in A′, with x ∈ Σ∗

and s = {(p1, w1), . . . , (pt, wt)}:

wI [π] = WI(x, set(s)) and ∀i ∈ [1, t], wI [π] ⊗ wi = WI(x, pi).

The proof of this proposition, as well as others not included here due to space
limitations, can be found in the full version of this paper [20].

Proposition 2. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
for any accepting path π ∈ P (I ′, x, (q, s)) in A′, with x ∈ Σ∗ and (q, s) ∈ F ′, the
following equality holds:

wI [π] ⊗ ρ′((q, s)) = A(x).

270 M. Mohri and M.D. Riley

0

1

a/1

4a/4

6

a/6

2b/2
c/3

5b/5

7c/6

3/1

a/4

b/5

a/6
c/7

b/8

(0, 1)

 (1, 1/11)
 (4, 4/11)
 (6, 6/11)

a/11

 (4, 4/5)
 (1, 1/5)

a/5

 (6, 6/7)
 (1, 1/7)

a/7

 (2, 1/11)
 (5, 10/11)

b/2

 (2, 1/13)
 (7, 12/13)

c/(39/11)

 (5, 10/11)
 (2, 1/11)

b/(22/5)

 (7, 12/13)
 (2, 1/13)

c/(39/7)

(3, 1)/1

a/(64/11)

b/(5/11)

a/(4/13)

b/(101/13)

a/(64/11)

c/(70/11)

b/(101/13)

Fig. 1. Illustration of the R-pre-disambiguation construction in the semiring
(R+,+,×, 0, 1). Initial states are depicted by a bold circle (always with initial weight
1 in figures here) and final states by double circles. For each state (q, s) of the result,
the subset s is explicitly shown. q is the state of the first pair in s shown. The weights
are rational numbers, for example 1

11
≈ .091.

Proof. Let s = {(p1, w1), . . . , (pt, wt)}. By definition of ρ′, we can write

wI [π] ⊗ ρ′((q, s)) = wI [π] ⊗ ⊕
pi∈F
i∈[1,t]

(wi ⊗ ρ(pi)) =
⊕

pi∈F
i∈[1,t]

(wI [π] ⊗ wi ⊗ ρ(pi)).

Plugging in the expression of (wI [π] ⊗ wi) given by Proposition 1 yields

wI [π] ⊗ ρ′((q, s)) =
⊕

pi∈F
i∈[1,t]

(WI(x, pi) ⊗ ρ(pi)). (2)

By definition of R-pre-disambiguation, q is a final state. Any state p ∈ δ(I, x)∩F
shares a common future with q since both p and q are final states, thus we must
have p R q, which implies p ∈ set(s). Thus, the ⊕-sum in (2) is exactly over the
set of states δ(I, x) ∩ F , which proves that wI [π] ⊗ ρ′((q, s)) = A(x). ��
Proposition 3. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
any string x ∈ Σ∗ accepted by A is accepted by A′.

Proof. Let (q0, a1, w1, q1) · · · (qn−1, an, wn, qn) be an accepting path in A with
a1 · · · an = x. By construction, ((q0, s0), a1, w

′
1, (q1, s1)) · · · ((qn−1, sn−1), an, w′

n,
(qn, sn)) is a path in A′ for some w′

i ∈ S and with si = s(a1 · · · ai, qi) for all
i ∈ [1, n] and s0 = ε and by definition of finality in R-pre-disambiguation, (qn, sn)
is final. Thus, x is accepted by A′. ��

On the Disambiguation of Weighted Automata 271

Fig. 2. Illustration of the proof of Lemma 1. The lemma proves the existence of the
dashed transitions and the dashed state when (q, s) �= (q′, s′) and x �= x′.

4 Disambiguation Algorithm

Propositions 1, 2 and 3 show that the strings accepted by A′ are exactly those
accepted by A and that the weight of any path in A′ accepting x ∈ Σ∗ is
A(x). Thus, if for any x, we could eliminate from A′ all but one of the paths
labeled with x, the resulting WFA would be unambiguous and equivalent to A.
Removing transitions to achieve this objective without changing the function
represented by the WFA turns out not to be straightforward. The following two
lemmas (Lemmas 1 and 2) and their proofs are the critical technical ingredients
helping us define the transition removal and prove its correctness. This first
lemma provides a useful tool for the proof of the second.

Lemma 1. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned
by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Let (q, s) and
(q′, s′) be two distinct states of A′ both admitting a transition labeled with a ∈ Σ
to the same state (q0, s0) (or both final states), and such that (q, s) ∈ δ(I ′, x) and
(q′, s′) ∈ δ(I ′, x) for some x ∈ Σ∗. Then, if (q, s) ∈ δ(I ′, x′) for some x′ �= x,
x′ ∈ Σ∗, there exists a state (q′, s′′) ∈ δ(I ′, x′) with (q′, s′′) �= (q, s) and such
that (q′, s′′) admits a transition labeled with a to (q0, s0) (resp. is a final state).

Proof. Figure 2 illustrates the proof of the lemma. First, note that since s =
s(q, x) and s′ = s(q′, x), q = q′ implies (q, s) = (q′, s′). By contraposition, since
(q, s) �= (q′, s′), we must have q �= q′. Since both q0 ∈ δ(q, a) and q0 ∈ δ(q′, a)
in A (or both q and q′ are final states), q and q′ share a common future, which
implies q R q′. Since (q′, s′) is reachable by x in A′ from I ′, q′ must be reachable
by x from I in A. This, combined with q R q′, implies that q′ must be in set(s).
Since (q, s) ∈ δ(I ′, x′), all states in set(s) must be reachable by x′ from I in A,
in particular q′. Thus, by definition of the R-pre-disambiguation construction,
A′ admits a state (q′, s(q′, x′)), which is distinct from (q, s) since q �= q′. If (q, s)
admits a transition labeled with a to (q0, s0), then we have s0 = s(q0, x′a).
If (q′, s′) also admits a transition labeled with a to (q0, s0), then q′ admits a
transition labeled with a to q0 and by definition of the R-pre-disambiguation
construction, (q′, s(q′, x′)) must admit a transition by a to (q0, s(q0, x′a)) =
(q0, s0). Finally, in the case where both (q, s) and (q′, s′) are final states, then q′

is final in A and thus (q′, s(q′, x′)) is a final state in A′. ��

272 M. Mohri and M.D. Riley

Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned by the R-
pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). For any state (q0, s0)
of A′ and label a ∈ Σ, let L(q0, s0, a) = ((q1, s1), . . . , (qn, sn)), n ≥ 1, be the list
of all distinct states of A′ admitting a transition labeled with a ∈ Σ to (q0, s0),
with q1 ≤ · · · ≤ qn. We define the processing of the list L(q0, s0, a) as follows: the
states of the list are processed in order; for each state (qj , sj), j ≥ 2, this consists
of removing its a-transition to (q0, s0) if and only if there exists a co-reachable
state (qi, si) with 1 ≤ i < j whose a-transition to (q0, s0) has not been removed.3

Note that, by definition, the a-transition to (q0, s0) of the first state (q1, s1) is
kept.

We define in a similar way the processing of the list F =
((q1, s1), . . . , (qn, sn)), n ≥ 1, of all distinct final states of A′, with an arbi-
trary order q1 ≤ · · · ≤ qn as follows: the states of the list are processed in order;
for each state (qj , sj), j ≥ 1, this consists of making it non-final if and only
if there exists a co-reachable state (qi, si) with i < j whose finality has been
maintained. By definition, the finality of state (q1, s1) is maintained.

Lemma 2. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned
by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Let (q0, s0) be
a state of A′ and a ∈ Σ, then, the automaton A′′ resulting from processing the
list L(q0, s0, a) accepts the same strings as A′. Similarly, the processing of the
list of final states F of A′ does not affect the set of strings accepted by A′.

Assume that A is R-pre-disambiguable. Then, this helps us define a disam-
biguation algorithm Disambiguation for A defined as follows:

1. construct A′, the result of the R-pre-disambiguation of A;
2. for any state (q0, s0) of A′ and label a ∈ Σ, process L(q0, s0, a); process the

list of final states F .

Theorem 1. Let A = (Σ,Q, I, F,E, λ, ρ) be a R-pre-disambiguable weighted
automaton. Then, algorithm Disambiguation run on input A generates an
unambiguous WFA B equivalent to A.

Proof. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the WFA returned by R-pre-disambi-
guation run with input A. By Lemma 2, the set of strings accepted after process-
ing the lists L(q0, s0, a) and F remains the same4. Furthermore, in view of the
Propositions 1, 2 and 3, the weight of the unique path labeled with an accepted
string x in B ⊗-multiplied by its final weight is exactly A(x). Finally, by defini-
tion of the processing operations, the resulting WFA is unambiguous, thus B is
an unambiguous WFA equivalent to A. ��

3 This condition can in fact be relaxed: it suffices that there exists a co-reachable state
(qi, si) with i < j since it can be shown that in that case, there exists necessarily
such a state with a a-transition to (q0, s0).

4 The lemma is stated as processing one list, but from the proof it is clear it applies
to multiple lists.

On the Disambiguation of Weighted Automata 273

Fig. 3. Example illustrating the full disambiguation algorithm applied to a non-acyclic
WFA. (a) WFA A over the tropical semiring. (b) WFA A′ obtained from A by applica-
tion of pre-disambiguation. (c) WFA A′′ result of our disambiguation algorithm applied
to A. A′′ is obtained from A′ by removal of the transition from state 2 labeled with
c/2 and trimming. (d) WFA obtained from A by application of determinization.

Differing numberings of the states can lead to different orderings in each list
and thus to different transition or finality removals, thereby resulting in different
weighted automata, with potentially different sizes after trimming. Nevertheless,
all such resulting weighted automata are equivalent.

Figure 3 gives an example illustrating the pre-disambiguation and transition-
removal stages of our disambiguation algorithm and also shows the result of
determinization.

5 Sufficient Conditions

The definition of siblings and that of twins property for weighted automata were
previously given by [16] (see also [3]). We will use a weaker (sufficient) condition
for R-pre-disambiguability.

Definition 1. Two states p and q of a WFA A are said to be siblings if there
exist two strings x, y ∈ Σ∗ such that both p and q can be reached from an initial
state by paths labeled with x and there are cycles at both p and q labeled with y.

Two sibling states p and q are said to be twins if for any such x and y,
W (p, y, p) = W (q, y, q). A is said to have the twins property when any two
siblings are twins. It is said to have the R-weak twins property when any two

274 M. Mohri and M.D. Riley

0

1
a/1

2

a/1

b/1

3/0c/1

b/2

4
c/1

c/1

5/0

c/2

c/1 d/2
(0, 0)

(1, 0)
a/1

(2, 0)

a/1

b/1

(3, 0)c/1

b/2

(4, 0)c/1

(3, 0)
(5, 1)

/0
c/1

(5, 1)
(3, 0)

/0

c/1

c/1

(5, 0)/0d/2

c/1

)b()a(

Fig. 4. (a) Weighted automaton A that cannot be determinized by the weighted deter-
minization algorithm of [16]. (b) A has the weak twins property and can be disam-
biguated by Disambiguationas shown by the figure. One of the two states in dashed
style is not made final by the algorithm. The head state for each of these states, is the
state appearing in the first pair listed.

siblings that are in R relation are twins. When A admits the R∗-weak twins
property, we will also say in short that it admits the weak twins property.

The results given in the remainder of this section are presented in the specific
case of the tropical semiring. To show the following theorem we partly use a proof
technique from [16] for showing that the twins property is a sufficient condition
for weighted determinizability.

Theorem 2. Let A be a WFA over the tropical semiring that admits the R-weak
twins property. Then, A is R-pre-disambiguable.

The theorem implies in particular that if A has the twins property then A
is R-pre-disambiguable. In particular, any acyclic weighted automaton is R-pre-
disambiguable.

A WFA A is said to be determinizable when the weighted determinization
algorithm of [16] terminates with input A (see also [3]). In that case, the output
of the algorithm is a deterministic automaton equivalent to A.

Theorem 3. Let A be a determinizable WFA over the tropical semiring, then
A is R-pre-disambiguable.

By the results of [11], this also implies that any polynomially ambiguous
WFA that has the clones property is R-pre-disambiguable and can be disam-
biguated using Disambiguation. There are however weighted automata that
are R-pre-disambiguable and thus can be disambiguated using Disambigua-
tion but that cannot be determinized using the algorithm of [16]. Figure 4 gives
an example of such a WFA. To see that the WFA A of Fig. 4 cannot be deter-
minized, consider instead B obtained from A by removing the transition from
state 3 to 5. B is unambiguous and does not admit the twins property (cycles at
states 1 and 2 have distinct weights), thus it is not determinizable by theorem
12 of [16]. Weighted determinization creates infinitely many subsets of the form

On the Disambiguation of Weighted Automata 275

{(1, 0), (2, n)}, n ∈ N, for paths from the initial state labeled with abn. Precisely
the same subets are created when applying determinization to A.

On the tropical semiring, define −A as the WFA in which each non-infinite
weight in A is replaced by its negation. The following result can be proven in a
way that is similar to the proof of the analogous result for the twins property
given by [3].5

Theorem 4. Let A be a trim polynomially ambiguous WFA over the tropical
semiring. Then, A has the weak twins property iff the weight of any cycle in
B = Trim(A ∩ (−A)) is 0.

This leads to an algorithm for testing the weak twins property for polyno-
mially ambiguous automata in time O(|Q|2 + |E|2). It was recently shown that
the twins property is a decidable property that is PSPACE-complete for WFAs
over the tropical semiring [12]. It would be interesting to determine if the weak
twins property we just introduced is also decidable.

6 Experiments

In order to experiment with weighted disambiguation, we implemented the algo-
rithm (using the R∗ relation) in the OpenFst C++ library [4]. For comparison, an
implementation of weighted determinization is also available in that library [16].

For a first test corpus, we generated 500 speech lattices drawn from a random-
ized, anonymized utterance sampling of voice searches on the Google Android
platform [21]. Each lattice is a weighted acyclic automaton over spoken words
that contains many weighted paths. Each path represents a hypothesis of what
was uttered along with the automatic speech recognizer’s (ASR) estimate of the
probability of that path. Such lattices are useful for passing compact hypothesis
sets to subsequent processing without commitment to, say, just one solution at
the current stage.

The size of a lattice is determined by a probability threshold with respect to
the most likely estimated path in the lattice; hypotheses within the threshold
are retained in the lattice. Using |A| = |Q| + |E| to measure automata size, the
mean size for these lattices was 2384 and the standard deviation was 3241.

The ASR lattices are typically non-deterministic and ambiguous due to both
the models and the decoding strategies used. Determinization can be applied
to reduce redundant computation in subsequent stages; disambiguation can be
applied to determine the combined probability estimate of a string that may be
distributed among several otherwise identically-labels paths.

Disambiguation has a mean expansion of 1.23 and a standard deviation of
0.59. Determinization has a mean expansion of 1.31 and a standard deviation of
1.35. For this data, disambiguation has a slightly less mean expansion compared
to determinization but a very substantially less standard deviation.

5 In [3], the authors use instead the terminology of cycle-unambiguous weighted
automata, which coincides with that of polynomially ambiguous weighted automata.

276 M. Mohri and M.D. Riley

Fig. 5. Unambiguous automaton over the alphabet {a, b, c} accepting the language
L = {(a + b)k−1b(a + b)n−kcak:1 ≤ k ≤ n}. For any k ≥ 0, Uk serves as a shorthand
for (a + b)k.

As a second test corpus, we used 100 automata that are the compact rep-
resentation of hypothesized Chinese-to-English translations from the DARPA
Gale task [9]. These automata may contain cycles due to details of the partic-
ular translation system, which provides an interesting contrast to the acyclic
speech case. Some fail to determinize within the allotted memory (1 GB) and
about two-thirds of those also fail to disambiguate, possible when cycles are
present.

Considering only those which are both determinizable and disambiguable,
disambiguation has a mean expansion of 4.53 and a standard deviation of 6.0.
Determinization has a mean expansion of 54.5 and a standard deviation of 90.5.
For this data, disambiguation has a much smaller mean and standard deviation
of expansion compared to determinization.

As a final example, Fig. 5 shows an acyclic unambiguous (unweighted)
automaton whose size is in O(n2). No equivalent deterministic automaton can
have less than 2n states since such an automaton must have a distinct state for
each of the prefixes of the strings {(a + b)k−1b(a + b)n−k:1 ≤ k ≤ n}, which are
prefixes of L. Thus, while our disambiguation algorithm leaves the automaton
of Fig. 5 unchanged, determinization would result in this case in an automaton
with more than 2n states.

7 Conclusion

We presented an algorithm for the disambiguation of WFAs. The algorithm
applies to a family of WFAs defined over the tropical semiring verifying a suffi-
cient condition that we described, which includes all acyclic and, more generally,
all determinizable WFAs. Our experiments showed the favorable properties of
this algorithm in applications related to speech recognition and machine trans-
lation. The algorithm is likely to admit a large number of applications in areas
such as natural language processing, speech processing, computational biology,
and many other areas where WFAs are commonly used. The study of the theo-
retical properties we initiated raises a number of novel questions which include
the following: the decidability of the weak twins property for arbitrary WFAs,
the characterization of WFAs that admit an equivalent unambiguous WFA, the
characterization of WFAs to which our algorithm can apply and perhaps an

On the Disambiguation of Weighted Automata 277

extension of our algorithm to a wider domain, and finally the proof and study
of these questions for other semirings than the tropical semiring.

Acknowledgments. We thank Cyril Allauzen for discussions about the topic of this
research. This work was partly funded by the NSF award IIS-1117591.

References

1. Albert, J., Kari, J.: Digital image compression. In: Handbook of Weighted
Automata. Springer, Heidelberg (2009)

2. Allauzen, C., Benson, E., Chelba, C., Riley, M., Schalkwyk, J.: Voice query refine-
ment. In: Interspeech (2012)

3. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Automata, Lang. Comb. 8(2), 117–144 (2003)

4. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst Library
(2007). http://www.openfst.org

5. Breuel, T.M.: The OCRopus open source OCR system. In: Proceedings of
IS&T/SPIE 20th Annual Symposium (2008)

6. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Camb. Univ. Press, Cambridge
(1998)

7. Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York
(1974)

8. Eppstein, D.: Finding the k shortest paths. SIAM J. Comp. 28(2), 652–673 (1998)
9. Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., Riley, M.: Hierarchical

phrase-based translation representations. In: Proceedings of EMNLP, pp. 1373–
1383 (2011)

10. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Comput.
Linguist. 20(3), 331–378 (1994)

11. Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for
polynomially ambiguous min-plus-automata. ITA 42(3), 553–581 (2008)

12. Kirsten, D.: Decidability, undecidability, and pspace-completeness of the twins
property in the tropical semiring. Theor. Comput. Sci. 420, 56–63 (2012)

13. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In: STACS, pp. 589–600 (2009)

14. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

15. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Germany (1986)

16. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

17. Mohri, M.: On the disambiguation of finite automata and functional transducers.
Int. J. Found. Comput. Sci. 24(6), 847–862 (2013)

18. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-
state transducers. In: Handbook on Speech Proc. and Speech Comm. Springer,
Heidelberg (2008)

19. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem. In
Interspeech (2002)

http://www.openfst.org

278 M. Mohri and M.D. Riley

20. Mohri, M., Riley, M.D.: On the disambiguation of weighted automata. ArXiv
1405.0500, May 2014

21. Schalkwyk, J., Beeferman, D., Beaufays, F., Byrne, B., Chelba, C., Cohen, M.,
Kamvar, M., Strope, B.: Your word is my command: Google search by voice: A
case study. In: Advances in Speech Recognition, pp. 61–90. Springer, Heidelberg
(2010)

22. Schmidt, E.M.: Succinctness of description of context-free, regular and unambigu-
ous languages. Ph.D. thesis, Dept. of Comp. Sci., University of Aarhus (1978)

	On the Disambiguation of Weighted Automata
	1 Introduction
	2 Preliminaries
	3 R-Pre-disambiguation of Weighted Automata
	3.1 Relation R over Q Q
	3.2 Construction
	3.3 Properties of the Resulting WFA

	4 Disambiguation Algorithm
	5 Sufficient Conditions
	6 Experiments
	7 Conclusion
	References

