State Complexity of Prefix Distance

Timothy Ng, David Rappaport, and Kai Salomaa(™

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{ng,daver ,ksalomaa}@cs.queensu. ca

Abstract. The prefix distance between strings = and y is the number
of symbol occurrences in the strings that do not belong to the longest
common prefix of z and y. The suffix and the substring distance are
defined analogously in terms of the longest common suffix and longest
common substring, respectively, of two strings. We show that the set of
strings within prefix distance k from an n state DFA (deterministic finite
automaton) language can be recognized by a DFA with (k+1)-n— k(kT'H)
states and this number of states is needed in the worst case. Also we
give tight bounds for the nondeterministic state complexity of the set
of strings within prefix, suffix or substring distance k from a regular
language.

1 Introduction

Various similarity measures between strings and languages have been consid-
ered for information transmission applications. The edit distance counts the
number of substitution, insertion and deletion operations that are needed to
transform one string to another. The Hamming distance counts the number of
positions in which two equal length strings differ. A distance measure between
words can be extended in various ways as a distance between sets of strings (or
languages) [3,4] and algorithms for computing the distance between languages
are important for error-detection and error-correction applications [4,9,10]. The
descriptional complexity of error/edit systems has been considered by Kari and
Konstantinidis [8]. Other types of sequence similarity measures have been con-
sidered e.g. by Apostolico [1].

Instead of counting the number of edit operations, the similarity of strings
can be defined by way of their longest common prefix, suffix, or substring, respec-
tively [4]. For example, the prefix distance of strings z and y is the sum of the
length of the suffix of x and the suffix of y that occurs after their longest com-
mon prefix. A parameterized prefix distance between regular languages has been
considered by Kutrib et al. [11] for estimating the fault tolerance of information
transmission applications.

The neighbourhood of radius k of a language L consists of all strings that
are within distance k from some string in L. Calude et al. [3] have shown that
the neighbourhood of a regular language with respect to an additive distance is
regular. A distance is said to be additive if it, in a certain sense, respects string
concatenation. This gives rise to the question how large is the (non)deterministic

© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 238-249, 2015.
DOI: 10.1007/978-3-319-22360-5_20

State Complexity of Prefix Distance 239

finite automaton (DFA, respectively, NFA) needed to recognize the neighbour-
hood of a regular language, that is, what is the state complexity of neighbour-
hoods of regular languages.

Povarov [15] has given an improved upper bound and a closely matching
lower bound for the state complexity of Hamming neighbourhoods of radius
one. Upper bounds for the state complexity of neighbourhoods with respect to
an additive distance or quasi-distance have been obtained by the authors [14,16]
using a construction based on weighted finite automata.

It follows from Choffrut and Pighizzini [4] that the prefix, suffix and substring
distance preserve regularity, that is, the neighbourhood of a regular language of
finite radius remains regular. Here we study the state complexity of these neigh-
bourhoods. We show that if L is recognized by a deterministic finite automaton
(DFA) of size n, the prefix neighbourhood of L of radius k < n has a DFA of
size (k+1)-n — @ and that this bound cannot be improved in the worst
case. Our lower bound construction uses an alphabet of size n + 1 and we show
that the general upper bound cannot be reached using languages defined over a
fixed alphabet.

We consider also the nondeterministic state complexity of prefix, suffix and
substring neighbourhoods. If L has a nondeterministic finite automaton (NFA)
of size n, the neighbourhood of L of radius k can be recognized by an NFA of
size n + k. The upper bound for the substring neighbourhood of L of radius & is
(k+1)-n+2k. In all cases we give matching lower bounds for nondeterministic
state complexity, and in the lower bound constructions L has, in fact, a DFA of
size n.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [17] or the survey by Yu [18]. A survey of distances
is given by Deza and Deza [5]. Recent surveys on descriptional complexity of
regular languages include [6,7,12].

In the following > is always a finite alphabet, the set of strings of ¥ is ¥*
and € is the empty string. The reversal of a string z € ¥* is «®. The set of
nonnegative integers is Ny. The cardinality of a finite set S is denoted |S| and
the powerset of S is 2%. A string w € ¥* is a substring or factor of x if there
exist strings u,v € ¥* such that x = wwv. If u = €, then w is a prefiz of x. If
v =g, then w is a suffiz of x.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, %, 9, Qo, F)
where (@ is a finite set of states, ¥ is an alphabet, ¢ is a multi-valued transition
function § : Q x ¥ — 29, Qo C Q is a set of initial states, and F C Q is a set
of final states. We extend the transition function § to Q x ©* — 2% in the usual
way. A string w € 3* is accepted by A if, for some gy € Qo, §(go, w) N F # §) and
the language recognized by A consists of all strings accepted by A. An e-NFA
is an extension of an NFA where transitions can be labeled by the empty string

240 T. Ng et al.

e [17,18], i.e., § is a function Q x (X U {e}) — 2@. It is known that every e-
NFA has an equivalent NFA without e-transitions and with the same number of
states. An NFA A = (Q,%,0,Qo, F) is a deterministic finite automaton (DFA)
if |Qo| =1 and, for all ¢ € Q and a € X, (g, a) either consists of one state or is
undefined. Two states p and ¢ of a DFA A are equivalent if §(p, w) € F if and
only if §(q, w) € F for every string w € ¥*. A DFA A is minimal if each state
q € Q is reachable from the initial state and no two states are equivalent.

Note that our definition of a DFA allows some transitions to be undefined,
that is, by a DFA we mean an incomplete DFA. It is well known that, for a regular
language L, the sizes of the minimal incomplete and complete DFAs differ by at
most one. The constructions in Sect.3 are more convenient to formulate using
incomplete DFAs but our results would not change in any significant way if we
were to require that all DFAs are complete.

The (incomplete deterministic) state complezity of a regular language L,
sc(L), is the size of the minimal DFA recognizing L. The nondeterministic state
complexity of L, nsc(L), is the size of the minimal NFA recognizing L. The
minimal NFA recognizing a regular language need not be unique. A common
way of establishing lower bounds for nondeterministic state complexity relies on
fooling sets.

Definition 1. A set of pair of strings S = {(x1,y1)y .-, (T, Ym)}, Tiyyi € XF,
i=1,...,m, is a fooling set for a language L if x;y; € L, i =1,...,m and, for
all<i<j<m,zy; €L orxy; € L.

Proposition 1 ([2,7]). If L has a fooling set S then nsc(L) > |S].

To conclude this section, we recall definitions of the distance measures used
in the following. Generally, a function d : ¥* x ¥* — [0,00) is a distance if
it satisfies for all z,y, 2z € ¥*, the conditions d(z,y) = 0 if and only if x = y,
d(z,y) = d(y, z), and d(z, z) < d(x,y)+d(y, z). The neighbourhood of a language
L of radius k& with respect to a distance d is the set

E(L,d,k)={weX" |z € L)d(w,z) < k}.

Let z,y € ¥*. The prefiz distance of x and y counts the number of symbols
which do not belong to the longest common prefix of x and y [4]. It is defined by

dy(@,y) = |z +|y| = 2- max{|z| | 2,y € 227}

Similarly, the suffiz distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

The substring distance measures the similarity of x and y based on their longest
common continuous substring (or factor) and is defined

dy(z,y) = la| + ly| = 2- max{|z| | 2,y € B"2%"}.

State Complexity of Prefix Distance 241

The paper [4] refers to d; as the subword distance. The term “subword dis-
tance” has been used also for a distance defined in terms of the longest common
noncontinuous subword [13].

3 State Complexity of Prefix Neighbourhoods

In this section we consider the deterministic state complexity of prefix neigh-
bourhoods. We construct a DFA for the neighbourhood of radius & with respect
to the prefix distance d,. After that we show that the construction is optimal by
giving a matching lower bound. The lower bound construction uses an alphabet
of size n+1 where n is the number of states of the DFA. We show that the upper
bound cannot be reached by languages defined over a constant size alphabet.

Proposition 2. Let n > k > 0 and L be a regular language recognized by a
DFA with n states. Then there is a DFA recognizing E(L,d,, k) with at most

n-(k+1)— @ states.

Proof. Let A = (Q,X%,6,q0, F') be the DFA that recognizes L. We define the
function ¢ : Q@ — Ny by

w@%igg{wlﬂmwef?

The function ¢(q) gives the length of the shortest path from a state g to the
closest, or next, reachable final state. Note that under this definition, if ¢ € F,
then ¢(q) = 0.

We construct a DFA A’ = (@', %, 4§, ¢}, F') that recognizes the neighbour-
hood E(L,d,, k). We define the state set

Q/:((Q_F)X{]-a7k+1})UFU{p1a7pk}

Note that some states of Q' are always unreachable and at the end of the proof
we calculate an upper bound for the number of reachable states. The initial state
qf is defined

05 if go € F;
9 = 4 (90, 0(q0)) if qo € F and ¢(qo) < k;
(qo,k+1) if go ¢ Fand ¢(qo) > k.

The set of final states is given by

F'=(Q—-F)x{l,....,k Y UFU{p1,...,pr}-

Let g;.q = 6(i,a) for i € Q and a € X, if §(¢, a) is defined. Then for all a € &,
the transition function ¢’ is defined for states ¢« € F' by

((Ii,aa 1)7 lf qi,a S Q - Fa

8'(i,a) = 1 Gia if ¢;.q € F;
P1, if 6(¢,a) is undefined.

242

T. Ng et al.

For states (i,7) € Q — F x {1,...,k+ 1}, & is defined

Qi if gi.a € F;

5/((2-’3-)’@) _ (Qi,a,min{j + 1790(%,(1)})7 ?f @(Qi,a) or]Jrl < k;
(Gi,a, k+1), if (i) and j+ 1> k;
Pj+1, if 0(4,a) is undefined.

Finally, we define §’ for states p; for £ = 1,...,k — 1 by §'(pe,a) = pes1. The

ma

chine A’ has three types of states. The first type consists of final states of A.

The second type are new states py, which form a chain of error states. When a
transition that was undefined in A is encountered during some computation, A’

ist

aken to the chain of error states p;. The third type of states consists of states

of A which are not final states and are paired with a counter. For a state (4, j),

the

counter component j keeps track of the distance of the current computation

to the closest final state of A.

On input w € ¥*, there are three cases to consider. Let x € L be a closest

string to w according to the prefix distance d,,.

1.

First, suppose that © = wa’ for some 2’ € £*. Then w € E(L,dp, k) if and
only if |z'| < k. Consider the computation on w, which must end in some
state (i,7). Otherwise, the computation either ends in a final state, in which
case * = w, or it ends in some state py, which cannot be the case as w is
a proper prefix of a word in L. Since x is the closest word in L to w, there
must be a shortest path of length |2/| in the original DFA A from state i to
a final state of A. By definition, (i, j) is a final state if j = ¢(¢) < k. Thus,
Jj = (i) = |2'| and (i, 7) is a final state if and only if j = |2/| < k.

. Next, suppose that w = zw’ for some w’ € ¥*. In this case, w € E(L,dp, k)

if |w’| < k. The machine reaches some final state f of A once it reads all of

2. Then the machine continues reading w’ until it reaches some state ¢ € Q.

The state ¢ is either a state (¢,7) or a state py, since otherwise, ¢ € F' and

w =e.

(a) Consider ¢ = (i, 7). By definition, (,7) is a final state if j < k. Since x
is a closest word in L to w, j = |w’| must be the distance of the current
computation from the closest final state f unless |w’'| > k, in which case
j = k+ 1. Otherwise, there was some state (¢/,;’) that was encountered
during the computation of w’ with a final state f’ that was closer than f.
Thus, if |w’| > k, then j = k41 and (¢, j) is not a final state. Otherwise,
j=|w| <kand (i,7) is a final state.

(b) Now consider when ¢ # (7, j) and let w’ = wjw}. The computation from
f on w} reaches some state ¢’ = (i’,j’) for which there is no transition
in A defined for the first symbol of wj. By the same reasoning as above,
j' = |wi] < k. Since an undefined transition was encountered on the first
symbol of w), the machine goes to state Dlw)|+1- From state pj, 11, the
machine reads the rest of w). Now, if |w’'| > k, then |wj| > k — |w]| and
the computation on the rest of w) fails when it reaches py and there are

State Complexity of Prefix Distance 243

no further transitions. Otherwise, |w'| < k and the computation of w}
ends in a state DIk, [+1K)] which is a final state since |w'| = |w] |+|wj| < k.
3. Finally, suppose that w = pw’ and x = px’ with p,w’, 2’ € ¥* such that p is
the longest common prefix of w and x. Note that if w’ = ¢, then it becomes
Case 1, and if 2’ = ¢, then Case 2 applies. Thus w € E(L,d,, k) if and only
if |w'| + |2'| < k. In this case, A’ reads w until it reaches a state (ip,j,) on
the prefix p. At this point, reading ' from (i, j,) will take the machine to
some final state f, while reading w’ from (i, j,) takes the machine to some
other state ¢ € Q’. Note that |z'| < k, since otherwise |z/| + |w'| > k, and
Jp = @(ip) = |2'|, since otherwise & would not be a closest word to w. Now,
q is either of the form (7,) or a state py.
(a) Suppose g is of the form (4,7). Then j is either |w'| + |2/| or k + 1.
If |w'| > k —|2'|, then j = k+ 1 and (4,7) is not a final state. If
J < |w'|+]2'|, then there must be some final state f’ closer to a state on
the computation path of w’ from (i, j,) which cannot be the case if x is
a closest word to w. Thus, j = |w'| + |2/| < k and (7,5) is a final state.
(b) Now, suppose q¢ # (4,j) and let w’ = wjwj. The computation from
(ip, jp) on w} reaches some state ¢' = (i, 5') for which there is no tran-
sition in A on the first symbol of wj. By the same reasoning as above,
Jj' = |wi| < k — |2'|. Since an undefined transition was encountered on
the first symbol of w), the machine goes to state Plw)|+|a’|+1- From state
Dlw)|+]a’|+1> the rest of wy is read. If |wy| > k — (Jwy] + [2'[), then the
computation of w} falls off at pg. Otherwise, the computation ends in
state Djw | +|w! |+]a’ |- We have

jwh| + [wi] + [a'| = [w'| + |2/ <k
and thus, plw’2|+|wi|+\w’\ is a final state.

The set of states @' has (n— f)-(k+ 1)+ k+ f elements but they cannot all
be reachable. Based on the definition of the transitions of ¢’ we observe that if
there is a transition entering a state (q,7), ¢ € Q@ — F, 1 < j < k + 1, then ¢(q)
must be at least j. Thus, all elements of the set

Sur={(@.)) |4€Q-F1<j<k+1,j>p()}

are unreachable as states of A’. Since increasing the number of final states of
A by one decreases the cardinality of Q" by k and decreases the cardinality of
Sur by at most k, it is clear that an upper bound for the cardinality of the set
of potentially reachable states Q' — Sy, is obtained by choosing f = 1. Using
the observation that all useful states must reach a final state, in the case when
F = {qy} is a singleton set, the cardinality of S, is minimized when, in the
DFA A for each 1 < i < k, exactly one non-final state g; has a shortest path of
length ¢ that reaches gy. In this case Sy, = {(¢;,J) |1 <j<k+1,i=1,....k}
and |Sy,| = %

We have verified that at most n-(k—l—l)—@ states of A’ can be reachable. O

244 T. Ng et al.

The lower bound construction that we present uses an alphabet with variable
size. We will show later that it is impossible to reach the upper bound (for all n)
with an alphabet of fixed size.

Lemma 1. Forn > k € N, there exists a DFA A,, with n states over an alphabet
of size n+ 1 such that

k(k+ 1)
-

Proof. We define a DFA A,, = (Qn, X0, 0n, o, F) (Fig. 1) by choosing

sc(B(L(A), dy, k) > n - (k + 1) -

Qn:{07"'an_1}7 Zn:{aabacla"'acnfl}ﬁ
qgo =0, F = {0}, and the transition function is given by
— dn(g,a) =q for all g € @y,
- 0n(g,0) =q+1 modnforq:l,...,n—l7
6n(Ocl)—zforZ—1 Ln=1,

Note that for every state ¢ € @, we have ¢(q) =n — q.

Fig. 1. The DFA A,,.

We transform A,, into the DFA A/ = (Q),%,,d,q(, F’) by following the
construction from Proposition 2. To determine the reachable states of Q! , we
first consider states of the form (i,7) € (Qn — {qo}) x {1,...,k + 1}. For states
i € Qn — {qo} with ¢(i) > k, we can reach state (4,7) via the word c;a’ for

State Complexity of Prefix Distance 245

j=1,...,k+ 1. For states i € Q,, — {qo} with ¢(i) < k, we can reach state
(i,7) via the word c;a? for j = 1,...,¢(i). However, states (i,) with j > ¢(4)
are unreachable by definition of A’ . Thus the number of unreachable states in
(Qn _{qO}) X {177k+1} is

n—1 k

. . . k(k + 1
SN x{el) +1,. b+ 1} =) i+ 1,...,k+1}| = Zz— -
i=n—k i=1
Now consider states p1, ..., p. The state py is reachable on the word b¢. Finally,
0 is reachable since it is the initial state. Thus, the number of reachable states is
k(k+1 k(k+1
(n=1)- (1)~ FEXD i egr) - BEED,

Now, we show that all reachable states are pairwise inequivalent. First, note
that 0 can be distinguished from any other state by the word . Next, we dis-
tinguish states of the form (4, 5) from states of the form p; via the word a*b"~*.
From state (i,j), reading a* takes the machine to state (i, min{¢(i),k + 1}).
Subsequently reading b” ¢ takes the machine to the final state 0. However, for
every state py, reading a* forces the machine beyond state py., after which there
are no transitions defined.

Next, without loss of generality, we let £ < £/ and consider states p, and py.
From above, the state py can be reached by a word b’ and py is reached by a
word b%. Choose z = a*~*. The string z takes state py to the state py, where
it is accepted. However, the computation on string z from state py is undefined
since ! +k — £ > k.

Finally, we consider states of the form (7, 7). Let ¢ < ¢’ and consider states
(i,7) and (¢, j"). Recall ‘that (i,7) can be reached by a word c;a’ and (i’,5’) is
reached by a Word cal’ . Let z = b"~ % From state (,7), the word z goes to
state 0 on b"~*. Then by reading b* from state 0, we reach state p; and thus,
c;al -z € E(L(Ay),dp, k). However, when reading 2 from state (i, '), we reach
state 0 on "% since i’ > i. We are then left with b" ~“**_ Reading b* takes us
to state pg, where we still have b~ and no further defined transitions. Thus,
cial -2 ¢ B(L(A,),dy, k).

Next, we fix i and let j < j'. The state (i,7) is reachable by the word c;a’
and (i, §') is reachable by ¢;a". First, consider the case when ¢(i) > k. Then let
z = a® — j. Reading z from (i, j) takes us to state (i, k), which is a final state,
so we have ¢;a’ - 2 € E(L(A,),dp, k). However, from (i, j'), reading z brings us
to state (i,k + 1) and we have ¢;a?” - 2 & E(L(A,), dp, k).

Now, consider the case when ¢(i) < k. Let z = ¢;a*~7~!. From state (i, j),
reading c; takes the machine to state p;4; and reading a®=7=1 puts the machine
in state py. Thus, ¢;a’ - z € E(L(Ay),dy, k). From (i, j'), reading z takes us to
state pg with a?’ 9 still unread since 7' +k—j—1>k and thus with no further
transitions available, we have ¢;a? - z & E(L(Ay), dp, k).

Thus, we have shown that there are n- (k+1) — @ reachable states and
that all reachable states are pairwise inequivalent. a

246 T. Ng et al.

Taking Proposition 2 together with Lemma 1, we get the following theorem.
Theorem 1. Forn >k >0, if sc(L) = n then

k(k+ 1)

Se(B(Lydy, B)) < - (b 1) = 2

and this bound can be reached in the worst case.

The proof of Lemma 1 uses an alphabet of size n+ 1. To conclude this section
we observe that the general upper bound cannot be reached by languages defined
over a fixed alphabet.

Proposition 3. Let A be a DFA with n states. If the state complexity of
E(L(A),dp,n) equals n - (k+1) — k(k;l), then the alphabet of A needs at least
n — 1 letters.

4 Nondeterministic State Complexity

We consider the nondeterministic state complexity of neighbourhoods of a reg-
ular language with respect to the prefix-, the suffix- and the substring distance,
respectively.

4.1 Prefix and Suffix Distance

We consider first neighbourhoods with respect to the prefix distance, and the
results for the suffix distance are obtained as a consequence of the fact that
the nondeterministic state complexity of a regular language L is the same as the
nondeterministic state complexity of the reversal of L and using the observation
ds(z,y) = dp(xf,y®) for all strings x and y.

We give an upper bound for the nondeterministic state complexity of the
neighbourhood of radius k& with respect to the prefix distance d, and give a
matching lower bound construction.

Proposition 4. Let k > 0 and L be a regular language recognized by an NFA
with n states. Then there is an NFA recognizing E(L, dy, k) with at most n + k
states.

Proof. Let A = (Q,%,0,Qo, F) be the NFA recognizing L. We define an NFA
A= (Q',%,d,1,F) for the language E(L,d,, k) by

- Q/:Qu{pla"'7pk}7I:QOa
- F'=FU{p,....;x} U{g € Q| p(q) < k}.

Recall that for ¢ € Q, ¢(q) denotes the length of the shortest string that takes
q to a final state. The transition function is defined for all a € ¥ by

State Complexity of Prefix Distance 247

— 0'(g,a) = d(q,a) U{p;} for all ¢ € F,
~ 0'(q,a) = 0(q,a) U{py(g)+1} for all ¢ € Q with p(q) <k,
- d(pi,a)=pip1 fori=1,... .k — 1.

Using the fooling sets of Proposition 1 we get a matching lower bound.

Lemma 2. For n,k € N, there exists a DFA A with n states over ¥ = {a, b}
such that any NFA for E(L(A),d,, k) requires n + k states.

Theorem 2. For a reqular language L C X* recognized by an NFA with n states
and an integer k > 0,
nsc(E(L, dy, k) < n+k.

There exists a DFA A with n states such that for all k > 0,
nsc(E(L(A), dy, k) =n+ k.

We get the results for the suffix distance neighbourhoods as a corollary
of Theorem 2 and the observation that, for all strings z and y, ds(x,y) =
dp(x B, yTt).

Corollary 1. Let k > 0 and L be a regular language recognized by a DFA with
n states. Then there is an NFA recognizing E(L,ds, k) with at most n+k states.

The following lemma is a symmetric variant of the lower bound construc-
tion for prefix distance neighbourhoods. As a consequence of Corollary 1 and
Lemma 3 we then get a tight bound for the nondeterministic state complexity
of suffix neighbourhoods.

Lemma 3. For n,k € N, there exists a DFA A with n states over ¥ = {a, b}
such that any NFA for E(L(A),ds, k) requires n + k states.

Theorem 3. For a regular language L C ¥* recognized by an NFA with n states
and an integer k > 0,
nsc(E(L, ds, k) < n+ k.

There exists a DFA A with n states such that for all k > 0,

nsc(E(L(A),ds, k) =n + k.

4.2 Substring Distance Neighbourhoods

A neighbourhood with respect to the substring distance can be recognized by
an NFA that, roughly speaking, makes k + 1 copies of the NFA A recognizing
the original language. Later we will show that the construction is optimal.

Lemma 4. If A is an n-state NFA and k € Ny, the neighbourhood
E(L(A),ds, k) can be recognized by an NFA with (k+ 1) - n+ 2k states.

248 T. Ng et al.

Proof sketch. Combining the constructions used for Proposition 4 and Corol-
lary 1, an NFA B for the language E(L(A), ds, k) uses a chain of k states both
at the beginning and at the end of the computation to keep track of the length
of the nonmatching prefixes (respectively, suffixes) of the input and a word of
L(A). After processing the prefixes, the NFA B has to “remember” the sum of
the lengths of the nonmatching prefixes (which can be up to k), and for this
reason B is equipped with k + 1 copies of the original NFA A. |

Although both the upper bound and the construction used in the proof of
Lemma 4 differ significantly from the corresponding bound and construction
for prefix distance (or suffix distance) neighbourhoods, it turns out that for the
lower bound, we can use the same cyclic languages.

Lemma 5. There exists a DFA A with n states such that, for all k > 0,
nsc(E(L(A),ds, k) > (k+1)-n+ 2k.

Proof sketch. By choosing ¥ = {a,b} and L = (a™)*, the minimal incomplete
DFA for L has n states. Define

Sy = {(b'a’, a" B |0<i<n—1,0< <k},
Sy ={(a", B*7) [1<j <k}, Sy={(), 0" 7a") |1 <)<k}
When k < n, it can be verified that S; U Sy U S3 is a fooling set for E(L,dy¢, k).

When n < k, we can modify the definition of Ss and S3 to construct a fooling
set of cardinality (k + 1) - n+ 2k for E(L,d;, k). O

As a consequence of Lemmas 4 and 5 we have an exact bound for the nonde-
terministic state complexity of neighbourhoods with respect to the substring
distance:

Theorem 4. If L has an NFA with n states and k € Ny,
nsc(E(L,dys, k) < (k+1)-n+2k.

For every n € N there exists a DFA A with n states such that for all k € Ny,
nsc(E(L(A),dy, k) = (k+1) -n+ 2k.

5 Conclusion

We have given a tight bound for the deterministic state complexity of neighbour-
hoods with respect to the prefix distance and tight bounds for the nondetermin-
istic state complexity of the prefix, suffix and substring distance neighbourhoods.

Due to the fact that the reversal of a regular language L can be recognized by
an NFA having the same size as an NFA for L, the bounds for the nondetermin-
istic state complexity of suffix neighbourhoods were obtained as a corollary of
the corresponding bounds for prefix neighbourhoods. The situation is essentially
different for DFAs since, for a DFA A with n states, the incomplete DFA recog-
nizing L(A)F needs in the worst case 2" — 1 states. Obtaining tight bounds for
the deterministic state complexity of neighbourhoods with respect to the suffix
distance, or the substring distance, remains an open problem.

State Complexity of Prefix Distance 249

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Apostolico, A.: Maximal words in sequence comparisons based on subword compo-
sition. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010.
LNCS, vol. 6060, pp. 34-44. Springer, Heidelberg (2010)

Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43, 185-190 (1992)

Calude, C.S., Salomaa, K., Yu, S.: Additive distances and quasi-distances between
words. J. Univ. Comput. Sci. 8(2), 141-152 (2002)

Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theor. Comput. Sci. 286(1), 117-138 (2002)

Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin Heidelberg
(2009)

Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual
operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-
2011-8 www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dec-2011-08.pdf to appear
in Computer Science Review

Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata — a survey. Inf. Comput. 209, 456-470 (2011)

Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J.
Automata Lang. Comb. 9, 293-309 (2004)

Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-
puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014)

Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.
205, 1307-1316 (2007)

Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between
regular languages. In: Geffert, V., Preneel, B., Rovan, B., Stuller, J., Tjoa, A.M.
(eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419-430. Springer, Heidelberg (2014)
Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS 111, 70-86 (2013)

Lothaire, M.: Applied Combinatorics on Words, Ch. 1 Algorithms on Words. Ency-
clopedia of Mathematics and It’s Applications 105. Cambridge University Press,
New York (2005)

Ng, T., Rappaport, D., Salomaa, K.: Quasi-distances and weighted finite automata.
In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 209-219.
Springer, Heidelberg (2015)

Povarov, G.: Descriptive complexity of the hamming neighborhood of a regular lan-
guage. In: Language and Automata Theory and Applications, pp. 509-520 (2007)
Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18(06), 1407-1416 (2007)

Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41-110. Springer-Verlag, Berlin (1997)

www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf

	State Complexity of Prefix Distance
	1 Introduction
	2 Preliminaries
	3 State Complexity of Prefix Neighbourhoods
	4 Nondeterministic State Complexity
	4.1 Prefix and Suffix Distance
	4.2 Substring Distance Neighbourhoods

	5 Conclusion
	References

