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Abstract. The space of one-sided infinite words plays a crucial rôle in
several parts of Theoretical Computer Science. Usually, it is convenient to
regard this space as a metric space, the Cantor-space. It turned out that
for several purposes topologies other than the one of the Cantor-space
are useful, e.g. for studying fragments of first-order logic over infinite
words or for a topological characterisation of random infinite words.

Continuing the work of [14], here we consider two different refinements
of the Cantor-space, given by measuring common factors, and common
factors occurring infinitely often. In particular we investigate the rela-
tion of these topologies to the sets of infinite words definable by finite
automata, that is, to regular ω-languages.

Keywords: Metric spaces · ω-words · Subwords · Shift-invariance · Sub-
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1 Introduction

The space of one-sided infinite words plays a crucial rôle in several parts of
Theoretical Computer Science (see the surveys [18,23]). Usually, it is convenient
to regard this space as a topological space provided with the Cantor topology.
This topology can be also considered as the natural continuation of the left
topology of the prefix relation on the space of finite words (cf. [3]).

It turned out that for several purposes other topologies on the space of infinite
words are also useful [12,16], e.g. for investigations in first-order logic [4], to
characterise the set of random infinite words [2] or the set of disjunctive infinite
words [20] and to describe the converging behaviour of not necessarily hyperbolic
iterative function systems [6,19].

Most of these approaches use topologies on the space of infinite words which
are refinements of the Cantor topology showing a certain kind of shift invari-
ance. In [14] a unified treatment of those shift invariant topologies is given, and
here we built on this work, introducing two new topologies arising naturally from
the consideration of finite subwords occurring in infinite words.
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2 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
|X| ≥ 2, and X∗ be the set (monoid) of words on X, including the empty
word e, and Xω be the set of infinite sequences (ω-words) over X. For w ∈ X∗

and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation product
extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗ ∪ Xω. For a
language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by W , and

by Wω := {w1 · · · wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and pref(P ) (infix(P )) is the set of all finite prefixes (infixes) of
strings in P ⊆ X∗ ∪Xω, in particular, pref(P ) ⊆ infix(P ). We shall abbreviate
w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w � η. If ξ ∈ Xω by infix∞(ξ) ⊆ infix(ξ) we
denote the set of infixes occurring infinitely often in ξ.

Further we denote by P/w := {η : w · η ∈ P} the left derivative or state
of the set P ⊆ X∗ ∪ Xω generated by the word w. We refer to P as finite-
state provided the set of states {P/w : w ∈ X∗} is finite. It is well-known that a
language W ⊆ X∗ is finite state if and only if it is accepted by a finite automaton,
that is, it is a regular language.1

In the case of ω-languages regular ω-languages, that is, ω-languages accepted
by finite automata, are the finite unions of sets of the form W · V ω, where W
and V are regular languages (cf. e.g. [18]). Every regular ω-language is finite-
state, but, as it was observed in [25], not every finite-state ω-language is regular
(cf. also [15]).

It is well-known that the families of regular or finite-state ω-languages are
closed under Boolean operations (see [11,18,23,24] or [15]).

3 The CANTOR Topology and Regular ω-Languages

In this section we list some properties of the Cantor topology on Xω and
regular ω-languages (see [18,23]).

3.1 Basic Properties of the CANTOR Topology

We consider the space of infinite words (ω-words) Xω as a metric space with
metric ρ defined as follows

ρ(ξ, η) := sup{r1−|w| : w ∈ pref(ξ) Δpref(η)} (1)

Here r > 1 is a real number2, Δ denotes the symmetric difference of sets and
we set sup ∅ := 0, that is, ρ(ξ, η) = 0 if and only of ξ = η.
1 Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the Nerode right

congruence of P .
2 It is convenient to choose r = |X|. Then every ball of radius r−n is partitioned into

exactly r balls of radius r−(n+1).
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Since pref(ξ) Δpref(η) ⊆ (
pref(ξ) Δpref(ζ)

) ∪ (
pref(ζ) Δpref(η)

)
, the

metric ρ satisfies the ultra-metric inequality

ρ(ξ, η) ≤ max{ρ(ξ, ζ), ρ(ζ, η)} .

A subset E ⊆ Xω is open if for every ξ ∈ E there is an ε > 0 such that
η ∈ E for all η with ρ(ξ, η) < ε. Complements of open sets are called closed. The
smallest closed set containing a given set F ⊆ Xω, C(F ), is referred to as the
closure of F .

Gδ-sets are countable intersections of open sets and Fσ-sets are countable
unions of closed sets. In a metric space every open set is an Fσ-set, and every
closed set is a Gδ-set.

We list some further well-known properties of the metric space (Xω, ρ).

Property 1. The following is true.

1. The non-empty sets w · Xω are open balls with radius r−|w| in the metric
space (Xω, ρ).3 These balls are simultaneously closed.

2. Open sets in (Xω, ρ) are of the form W · Xω where W ⊆ X∗.
3. A subset E ⊆ Xω is open and closed (clopen) in (Xω, ρ) if and only if

E = W · Xω where W ⊆ X∗ is finite.
4. A subset F ⊆ Xω is closed in (Xω, ρ) if and only if F = {ξ : pref(ξ) ⊆

pref(F )}.
5. The closure of F satisfies C(F ) := {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ pref(F )} =⋂

n∈IN

(pref(F ) ∩ Xn) · Xω.

The space (Xω, ρ) is a complete space, that is, every sequence4 (ξi)i∈IN where
ρ(ξj , ξk) < r−i whenever i ≤ j, k converges to some ξ ∈ Xω. Moreover, (Xω, ρ)
is a compact space, that is, for every family of open sets (Ei)i∈J such that⋃

i∈J Ei = Xω there is a finite sub-family (Ei)i∈J ′ satisfying
⋃

i∈J ′ Ei = Xω.

3.2 Regular ω-Languages

As a last part of this section we mention some facts on regular ω-languages
known from the literature, e.g. [11,18,23]. Regular ω-languages are well-known
for being the ω-languages definable by finite automata. We will not refer to this
feature, instead we list some basic properties of this family of ω-languages.

The first one shows among other properties the importance of ultimately
periodic ω-words. Denote by Ult := {w ·vω : w, v ∈ X∗\{e}} the set of ultimately
periodic ω-words.

Theorem 1 (Büchi [1]). The family of regular ω-languages is a Boolean alge-
bra, and if F ⊆ Xω is regular, then u · F and F/w are also regular.

Every non-empty regular ω-language contains an ultimately periodic ω-word,
and regular ω-languages E,F ⊆ Xω coincide if and only if E ∩ Ult = F ∩ Ult.
3 Observe that e /∈ pref(ξ) Δpref(η) and Eq. (1) imply ρ(ξ, η) = inf{r−|w| : w �

ξ ∧ w � η}.
4 Those sequences are usually referred to as Cauchy sequences.
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For regular ω-languages we have the following topological characterisations anal-
ogous to Property 1.

Property 2. Let F ⊆ Xω be regular and E ⊆ Xω be finite-state. Then in Can-
tor topology the following hold true.

1. F is open if and only if F = W · Xω where W ⊆ X∗ is a regular language.
2. F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )} and pref(F ) is

regular.
3. pref(E) is a regular language.
4. C(E) is a regular ω-language.

Finally, we provide an example of a regular ω-language which is not a Gδ-set and
a necessary and sufficient topological condition when finite-state ω-languages are
regular.

Example 1 (Landweber [8]). For u ∈ X∗ \ {e} the ω-language X∗ · uω is regular,
an Fσ-set but not a Gδ-set. �

Theorem 2 ([15]). Every finite-state ω-language in the class Fσ ∩ Gδ is a
Boolean combination of regular ω-languages open in (Xω, ρ), thus, in particular,
a regular ω-language.

4 Topologies Defined by Subword Metrics

It was shown that regular ω-languages are closely related to the (asymptotic)
subword complexity of infinite words (cf. [17, Sect. 5] and [21]). Therefore, as
other refinements of the Cantor topology we introduce two topologies defined
via metrics on Xω which are based on the sets of subwords occurring or occurring
infinitely often in the ω-words, respectively.

Definition 1 (Subword metrics)

ρI(ξ, η) := sup{r1−|w| : w ∈ (pref(ξ) Δpref(η)) ∪ (infix(ξ) Δ infix(η))}
ρ∞(ξ, η) := sup{r1−|w| : w ∈ (pref(ξ) Δpref(η)) ∪ (infix∞(ξ) Δ infix∞(η))}

These metrics respect except for the length of a shortest non-common prefix of ξ
and η also the length of a shortest non-common subword (non-common subword
occurring infinitely often). Thus

ρI(ξ, η) ≥ ρ(ξ, η) and ρ∞(ξ, η) ≥ ρ(ξ, η), (2)
ρI(ξ, η) = max

{
ρ(ξ, η), sup{r1−|u| : u ∈ infix(ξ) Δ infix(η)}}

, and (3)

ρ∞(ξ, η) = max
{
ρ(ξ, η), sup{r1−|u| : u ∈ infix∞(ξ) Δ infix∞(η)}}

. (4)

Similar to the case of ρ one can verify that ρI and ρ∞ satisfy the ultra-metric
inequality. Therefore, balls in the metric spaces (Xω, ρI) and (Xω, ρ∞) are
simultaneously open and closed. Moreover, Eq. (2) shows that both topologies
refine the Cantor topology of Xω, that is, ω-languages open (closed) in Can-
tor topology are likewise open (closed, respectively) in both spaces (Xω, ρI)
and (Xω, ρ∞).
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4.1 Shift-Invariance

We call a metric space (Xω, ρ′) shift invariant if for every open set E ⊆ Xω and
every word w ∈ X∗ the sets w · E and E/w are also open. In this part we show
that the metric spaces (Xω, ρ∞) and (Xω, ρI) are shift-invariant. According to
Corollary 2 of [14] this property guarantees that the closure of a finite-state
ω-language is again finite-state (cf. the stronger Property 2.4 for the Cantor
topology).

To this end we derive some simple properties of the metrics.

Lemma 1. Let u ∈ X∗ and v, w ∈ Xm. Then

ρ∞(u · ξ, u · η) ≤ ρ∞(ξ, η), (5)
ρ∞(ξ, η) ≤ rm · ρ∞(w · ξ, v · η), (6)

ρI(u · ξ, u · η) ≤ ρI(ξ, η), and (7)
ρI(ξ, η) ≤ rm · ρI(w · ξ, v · η). (8)

Proof. All inequalities are trivially satisfied if ξ = η. So, in the following, we
may assume ξ �= η.

As infix∞(ξ) = infix∞(u · ξ), Eqs. (5) and (6) follow from Eq. (4) and the
respective properties of the metric ρ of the Cantor topology ρ(u · ξ, u · η) ≤
ρ(ξ, η) and ρ(w · ξ, v · η) ≥ ρ(w · ξ, w · η) = r−|w| · ρ(ξ, η).

Let ρI(ξ, η) = r−n, that is, infix(ξ) ∩ Xn = infix(η) ∩ Xn and w � ξ and
w � η for some w ∈ Xn. Then, obviously, v � u · ξ and v � u · η for some
v ∈ Xn. Moreover, infix(u · ξ) ∩ Xn = (infix(u · w) ∩ Xn) ∪ (infix(ξ) ∩ Xn) =
infix(u · η) ∩ Xn. This proves Eq. (7).

If w �= v then in view of ρ(w ·ξ, v ·η) ≥ r−(m−1), Eq. (8) is obvious. Let w = v
and ρI(ξ, η) = r−n for some n ∈ IN. We have to show that ρI(w · ξ, w · η) ≥
r−(n+m).

If ρ(ξ, η) = r−n then ρ(w · ξ, w · η) = r−(n+m) and Eq. (3) proves ρI(w · ξ, w ·
η) ≥ r−(n+m).

If ρ(ξ, η) < r−n in view of ρI(ξ, η) = r−n we have (infix(ξ) Δ infix(η)) ∩
Xn+1 �= ∅, that is, u ∈ (infix(ξ) Δ infix(η)) ∩ Xn+1 for some u ∈ infix(ξ),
say. Now, it suffices to show (infix(wξ) Δ infix(wη)) ∩ Xn+m+1 �= ∅. Assume
v′u /∈ infix(wξ) Δ infix(wη) for all v′ ∈ Xm. Then u ∈ infix(ξ) implies v′u ∈
infix(wξ) ∩ infix(wη) for some v′ ∈ Xm. Since |w| = |v′| = m, we have u ∈
infix(η), a contradiction. �

As a consequence we obtain our result.

Corollary 1. The topologies (Xω, ρI) and (Xω, ρ∞) are shift invariant.

Proof. We use the fact that, in view of Lemma 1, the mappings Φu and Φm

defined by Φu(ξ) := u · ξ and Φm(w · ξ) := ξ for w ∈ Xm are continuous w.r.t.
the metrics ρI and ρ∞, respectively.

Thus, if F ⊆ Xω is open in (Xω, ρI) or (Xω, ρ∞) the preimage Φ−1
u (F ) = F/u

and, for m = |w|, also w · F = Φ−1
m (F ) ∩ w · Xω are open sets. �
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4.2 Balls in (Xω, ρI) and (Xω, ρ∞)

Denote by KI(ξ, r−n) and K∞(ξ, r−n) the open balls5 of radius r−n around ξ
in the spaces (Xω, ρI) and (Xω, ρ∞), respectively. For w � ξ with |w| = n + 1
and W := Xn+1 ∩ infix(ξ), V := Xn+1 ∩ infix∞(ξ), W := Xn+1 \ infix(ξ) and
V := Xn+1 \ infix∞(ξ) we obtain the following description of balls via regular
ω-languages.

KI(ξ, r−n) = w · Xω ∩ ⋂

u∈W

X∗ · u · Xω \ ⋃

u∈W

X∗ · u · Xω, and (9)

K∞(ξ, r−n) = w · Xω ∩ X∗ · (
(

∏

u∈V

X∗ · u)ω \ ⋃

u∈V

X∗ · u · Xω
)
. (10)

In Eq. (10) the order of the words u ∈ V can be arbitrarily chosen. In partic-
ular, Eqs. (9) and (10) show that balls in (Xω, ρI) and (Xω, ρ∞) are regular
ω-languages. Thus every non-empty open subset in each of the spaces contains
an ultimately periodic ω-word.

An immediate consequence of the representations in Eqs. (9) and (10) is the
following relation between the space (Xω, ρI) and the Cantor space (Xω, ρ).

Lemma 2

1. Every ball KI(ξ, r−n) is a Boolean combination of regular ω-languages open in
(Xω, ρ), therefore, simultaneously an Fσ- and a Gδ-set in Cantor topology.

2. Every open set in (Xω, ρI) is an Fσ-set in Cantor topology.

Proof

1. It is well-known know that open sets in a metric space are simultaneously
Fσ- and Gδ-sets. Then, according to Property 1, the set KI(ξ, r−n) is simul-
taneously an Fσ- and Gδ-set in the Cantor topology.

2. is a consequence of 1 and the fact that there are only countably many open
balls in (Xω, ρI). �

Equations (9) and (10) and Lemma 2 show a connection between certain regular
ω-languages and the open sets in (Xω, ρI). It would be interesting if we could
characterise some regular ω-languages open in (Xω, ρI) using Cantor topology.
The next example considering the simple case of closed sets, however, shows that
not every regular ω-language closed in Cantor topology is open in (Xω, ρI).

Example 2 ( [7]). Consider the regular ω-language F = {1, 00}ω ⊆ {0, 1}ω which
is closed in the Cantor topology. Assume F to be open in (Xω, ρI). Then
η =

∏
i∈IN 102i ∈ F and, therefore, KI(η, r−n) ⊆ F for some n ∈ IN, n ≥ 1.

Consider ξ =
∏n

i=0 102i · ∏∞
i=2n+1 10i /∈ F . Then we have

∏n
i=0 102i � η,

∏n
i=0 102i � ξ and, moreover,

infix(ξ) ∩ {0, 1}2n =
(
infix(

∏n
i=0 102i) ∪ 0∗ · 1 · 0∗ ∪ 0∗) ∩ {0, 1}2n

= infix(η) ∩ {0, 1}2n.

It follows ρI(ξ, η) ≤ r−2n, that is, ξ ∈ KI(η, r−n) ⊆ {1, 00}ω, a contradiction. �
5 They are also closed balls of radius r−(n+1).
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Using the Morse-Hedlund Theorem (cf. also the proof of Theorem 1.3.13 of [9])
one obtains special representations of small balls containing ultimately periodic
ω-words. To this end we derive the following lemma.

Lemma 3. Let w, u ∈ X∗, u �= e and ξ ∈ Xω. Then w · u � ξ and infix(ξ) ∩
X |w·u| = infix(w · uω) ∩ X |w·u| imply ξ = w · uω.

Proof. First observe that |infix(w · uω) ∩ X |w·u|| = |infix(w · uω) ∩ X |w·u|+1|.
Thus, for every v ∈ infix(w · uω) ∩ X |w·u|, there is a unique v′ ∈ infix(w · uω) ∩
X |w·u| such that v � a · v′ for some a ∈ X. Consequently, the ω-word ξ ∈ Xω

with w ·u � ξ and infix(ξ)∩X |w·u| = infix(w · uω)∩X |w·u| is uniquely specified.

Lemma 4. Let w · uω ∈ Xω where |w| ≤ |u|, |u| > 0, and let m > |w| + |u| and
n > |u|. Then

KI(w · uω, r−m) = {w · uω}, and (11)
K∞(w · uω, r−n) = w′ · X∗ · uω where w′ � w · un and |w′| = n. (12)

Proof. Every ξ ∈ KI(w · uω, r−m) satisfies w · u � ξ and infix(ξ) ∩ Xm =
infix(w · uω) ∩ Xm, and the assertion of Eq. (11) follows from Lemma 3.

If ξ ∈ K∞(w · uω, r−n) then there is a tail ξ′ of ξ such that u � ξ′ and
infix∞(ξ) ∩ Xn = infix(ξ′) ∩ Xn = infix(uω) ∩ Xn whence, again by Lemma 3,
ξ′ = uω. �

This allows us to state the following property concerning isolated points6 in
the spaces (Xω, ρI) and (Xω, ρ∞). The additional Item 3 in connection with
Lemma 2.2 shows a further difference between both spaces.

Corollary 2

1. The set of isolated points of the space (Xω, ρI) is Ult.
2. The space (Xω, ρ∞) has no isolated points and all sets of the form X∗ · uω

are simultaneously closed and open.
3. In the space (Xω, ρ∞) there are open sets which are not Fσ-sets in Cantor

topology.

Proof. Since every non-empty open subset of (Xω, ρI) and also (Xω, ρ∞) con-
tains an ultimately periodic ω-word, every isolated point has to be ultimately
periodic. Now Eq. (11) shows that every w · uω is an isolated point in (Xω, ρI),
and Eq. (12) proves that (Xω, ρ∞) has no isolated points. The remaining part
of Item 2 follows from Eq. (12) and X∗ · uω =

⋃
w∈Xn w · X∗ · uω.

Finally, it is known that Xω \ X∗ · uω is not an Fσ-set in Cantor topology
(cf. Example 1). �
6 A point ξ is referred to as isolated if ρ′(ξ, η) ≥ εξ for all η �= ξ. Here the distance

εξ > 0 may depend on ξ.
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4.3 Non-Preservation of Regular ω-Languages

In this section we investigate whether similar to the Cantor topology the clo-
sure of a finite-state ω-language is always regular in the spaces (Xω, ρI) and
(Xω, ρ∞).

In contrast to the Cantor topology it is, however, not true that the closure
of finite-state ω-languages are regular. We can even show that in both spaces
(Xω, ρI) and (Xω, ρ∞) there are regular ω-languages with non-regular closures.

Since we do not have a characterisation like the Property 1.5 for the closures
CI and C∞ in the spaces (Xω, ρI) and (Xω, ρ∞), respectivly, we circumvent this
obstacle by presenting examples where the closure CI(F ) or C∞(F ) of a regular
ω-language F is shown to be larger than F but does not contain more ultimately
periodic ω-words than F . In view of Theorem 1 this implies that the closures
cannot be regular ω-languages.

For the closure CI we use that, according to Example 1 the ω-language {0, 1}∗·
0ω is no Gδ-set in the Cantor topology, thus in view of Lemma2.2 not closed
in (Xω, ρI).

Example 3. We show that CI({0, 1}∗ · 0ω) ∩ Ult = {0, 1}∗ · 0ω. Let w · uω /∈
{0, 1}∗ · 0ω. Then u /∈ {0}∗ and 0|w·u| /∈ infix(w · uω). Now Eq. (9) yields KI(w ·
uω, r−|w·u|)∩X∗ · 0|w·u| ·Xω = ∅. Thus ρI(w ·uω, v · 0ω) ≥ r−|w·u| for all v ∈ X∗

whence w · uω /∈ CI({0, 1}∗ · 0ω). The other inclusion being trivial.
Assume CI({0, 1}∗ · 0ω) were a regular ω-language. Then Theorem 1 implies

CI({0, 1}∗ · 0ω) = {0, 1}∗ · 0ω, that is, {0, 1}∗ · 0ω is closed in (Xω, ρI), a contra-
diction to Lemma 2.2 �

Since {0, 1}∗ · 0ω is closed in (Xω, ρ∞), we cannot use this ω-language in that
case.

Example 4. Let F := {0, 1}∗ · ((00)∗1)ω. As explained above, it suffices to show
that C∞(F ) ∩ Ult = F ∩ Ult and C∞(F ) ⊃ F .

Let w · uω ∈ C∞(F ). Then there is a ξ ∈ F such that ρ∞(w · uω, ξ) < r−|wu|.
According to Lemma 4 we have ξ ∈ w · X∗ · uω. Thus uω = u′ · η where η ∈
((00)∗1)ω whence w · uω = w · u′ · η ∈ F .

Finally, consider ζ =
∏∞

j=0 10j = 110100 · · · . Since ζ has infinitely many
infixes 10j1 where j is odd, ζ /∈ F . Moreover, infix∞(ζ) ∩ Xn = {0n} ∩ {0j · 1 ·
0n−j−1 : 0 ≤ j < n}. Consider the ω-words ξi :=

∏2i
j=0 10j · (1 · 02i)ω ∈ F . It

holds pref(ξi) ∩ Xn = pref(ζ) ∩ Xn and infix∞(ξi) ∩ Xn = infix∞(ζ) ∩ Xn for
n ≤ 2i + 1. This implies ρ∞(ξi, ζ) ≤ r−2i, that is, limi→∞ ξi = ζ ∈ C∞(F ) in
(Xω, ρ∞). �

5 Completeness and Compactness

Here we show that the spaces (Xω, ρI) and (Xω, ρ∞) are neither complete nor
compact.

To show that they are not complete we consider the sequence (ξi)i∈IN where
ξi :=

∏∞
j=i 0j1. This sequence converges in Cantor topology to the limit point
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0ω. Since (Xω, ρI) and (Xω, ρ∞) refine (Xω, ρ), the limit points, if they exist,
should be the same. But infix(ξi) and infix∞(ξi) both contain the word 1 which
is not in infix(0ω) = infix∞(0ω). Thus ρI(ξi, 0ω) = ρ∞(ξi, 0ω) = 1.

It remains to show that the sequence (ξi)i∈IN fulfils the Cauchy property.
To this end we observe that for j ≥ i we have 0i � ξj and infix(ξj) ∩ Xi =
infix∞(ξj) ∩ Xi = {0i} ∪ {0m10i−m−1 : 0 ≤ m < i}. Thus ρI(ξj , ξk) ≤ r−i and
ρ∞(ξj , ξk) ≤ r−i for j, k ≥ i.

In general it holds that no topology refining the Cantor topology is com-
pact. A proof uses Corollary 3.1.14 in [5]. Here we provide the more illustrative
and seemingly stronger examples of partitions of the whole space Xω into infi-
nitely many open subsets.

Example 5. Let X = {0, 1}. Then the sets 0i1 · Xω for i ∈ IN are open in the
Cantor topology, hence open in (Xω, ρI) and according to Corollary 2.1 the set
{0ω} is also open (Xω, ρI).

Then
{{0ω}} ∪ {

0i1 · Xω : i ∈ IN
}

is a partition of Xω into sets open in
(Xω, ρI). �

Example 6. Let X = {0, 1}. Then the sets 0i1 · Xω for i ∈ IN are open in the
Cantor topology, hence open in (Xω, ρ∞) and according to Corollary 2.2 the
set X∗ · 0ω is open and closed in (Xω, ρ∞).

Then
{
X∗ · 0ω

} ∪ {
0i1 · Xω \ X∗ · 0ω : i ∈ IN

}
is a partition of Xω into sets

open in (Xω, ρ∞). �

6 Subword Complexity

In Sect. 4 we mentioned that regular ω-languages are closely related to the
(asymptotic) subword complexity of infinite words. Adapting the metrics ρI

and ρ∞ to subwords we may draw some connections to the level sets F
(τ)
γ of the

asymptotic subword complexity (see [17,21]).
First we introduce the concept of asymptotic subword complexity.

Definition 2 (Asymptotic subword complexity). τ(ξ) := lim
n→∞

log|X| |infix(ξ)∩Xn|
n

Using the inequality |infix(ξ) ∩ Xn+m| ≤ |infix(ξ) ∩ Xn| · |infix(ξ) ∩ Xm| it is
easy to see that the limit in Definition 2 exists and

τ(ξ) = inf
{ log|X| |infix(ξ) ∩ Xn|

n
: n ∈ IN ∧ n ≥ 1

}
. (13)

Equation (5.2) of [17] shows that in Definition 2 and Eq. (13) one can replace
the term infix(ξ) by infix∞(ξ).

Let, for 0 < γ ≤ 1, F
(τ)
γ := {ξ : ξ ∈ Xω ∧ τ(ξ) < γ} be the lower level sets

of the asymptotic subword complexity. For γ = 0 we set F
(τ)
0 := Ult (instead of

F
(τ)
0 = ∅). We want to show that these sets are open in (Xω, ρI) and (Xω, ρ∞).

As a preparatory result we derive the subsequent Lemma 5.
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Let En(ξ) := {η : infix(η) ∩ Xn ⊆ infix(ξ)} and E′
n(ξ) := {η : infix∞(η) ∩

Xn ⊆ infix∞(ξ)} be the sets of ω-words having only infixes or infixes occurring
infinitely often of length n of ξ, respectively. These sets can be equivalently
described as

En(ξ) = Xω \ X∗ · (Xn \ infix(ξ)) · Xω and
E′

n(ξ) = X∗ · (
Xω \ X∗ · (Xn \ infix∞(ξ)) · Xω

)
, respectively

which resembles in some sense the characterisation of open balls in Eqs. (9) and
(10). In fact, it appears that the sets En(ξ) and E′

n(ξ) are open in the respective
spaces (Xω, ρI) and (Xω, ρ∞).

Lemma 5. Let ξ ∈ Xω. Then ξ ∈ En(ξ) ∩ E′
n(ξ), the set En(ξ) is open in

(Xω, ρI) and the set E′
n(ξ) is open in (Xω, ρ∞).

Proof. The first assertion is obvious. For a proof of the second one we show that
η ∈ En(ξ) implies that the ball KI(η, r−n) is contained in En(ξ).

Let η ∈ En(ξ) and ζ ∈ KI(η, r−n). Then, ρI(η, ζ) < r−n, that is, in particu-
lar, infix(η) ∩ Xn = infix(ζ) ∩ Xn, whence ζ ∈ En(ξ).

The proof for E′
n(ξ) is similar. �

This much preparation enables us to show that the level sets are open sets.

Theorem 3. Let 0 ≤ γ ≤ 1. Then the sets F
(τ)
γ are open in (Xω, ρI) and

(Xω, ρ∞).

Proof. For γ = 0 we have F
(τ)
γ = Ult which, according to Corollary 2, is open in

(Xω, ρI) as well as in (Xω, ρ∞).
Let γ > 0 and τ(ξ) < γ. We show that then En(ξ) ⊆ F

(τ)
γ and E′

n(ξ) ⊆ F
(τ)
γ

for some n ∈ IN. Together with Lemma 5 this shows that F
(τ)
γ contains, with

every ξ, open sets containing this ξ.
If τ(ξ) < γ then in view of Eq. (13) we have

log|X| |infix(ξ)∩Xn|
n < γ for some

n ∈ IN. Then for every η ∈ En(ξ) it holds τ(η) ≤ log|X| |infix(ξ)∩Xn|
n < γ and,

consequently, En(ξ) ⊆ F
(τ)
γ .

The proof for (Xω, ρ∞) is similar using infix(∞) instead of infix and the
respective modification of Eq. (13) whose validity was mentioned above. �

The proof shows also that ξ ∈ F
(τ)
γ implies that Xω \X∗ · (Xn \ infix(ξ)) ·Xω ⊆

F
(τ)
γ for some n > 0. Thus F

(τ)
γ is a countable union of regular ω-languages closed

in Cantor topology, hence an Fσ-set in Cantor topology. The sets F
(τ)
γ are

finite-state7 non-regular ω-languages because their complement Xω \F
(τ)
γ is non-

empty and does not contain any ultimately periodic ω-word. Thus, in view of
Theorem 2, they are not Gδ-sets in Cantor-space and they are examples of sets
open in (Xω, ρI) and (Xω, ρ∞) which are non-regular Fσ-sets in Cantor-space.

7 In particular, they satisfy F
(τ)
γ /w = F

(τ)
γ for all w ∈ X∗.
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