
Automata and Logics for Concurrent Systems:
Five Models in Five Pages

Benedikt Bollig(B)

LSV, ENS Cachan, CNRS & Inria, Cachan, France
bollig@lsv.ens-cachan.fr

Abstract. We survey various automata models of concurrent systems
and their connection with monadic second-order logic: finite automata,
class memory automata, nested-word automata, asynchronous automata,
and message-passing automata.

1 Introduction

A variety of automata models have emerged over the years to provide a basis for
the study of various types of concurrent systems. These models capture several
communication paradigms such as shared memory or message passing, and they
can deal with finite-state or infinite-state processes. In this paper, we consider
several of these models in a unifying framework.

The study that we conduct here is driven by questions that arise in the
area of verification. Concurrent systems are often safety-critical and come with
a requirements specification to be fulfilled. In the automata-theoretic approach,
which we adopt here, a system is modeled as an automaton A, and the specifi-
cation is given as a formula ϕ in a high-level language such as temporal logic or
monadic second-order logic. In order for both, the system model and the spec-
ification, to be comparable, they should have a common domain. We associate
with an automaton its language L(A), representing the set of possible behav-
iors. Similarly, the specification determines a set L(ϕ) of models, namely the set
of behaviors that satisfy it. Then, correctness of the system can be expressed
as the inclusion problem L(A) ⊆ L(ϕ), which is commonly referred to as the
model-checking problem. In the different approach of realizability, only the spec-
ification ϕ is given, and we aim at an automaton A such that L(A) = L(ϕ).
In that case, A may serve as a system model that can be considered correct by
construction. The models that we cover here owe much of their success to the
fact that model checking and realizability have positive solutions. In particular,
they all enjoy logical characterizations in terms of (an expressive fragment of)
monadic second-order (MSO) logic and come, possibly under restrictions, with
a decidable emptiness problem.

But what is actually a behavior? A behavior is the collection of events that
we observe during an execution. There are essentially two approaches: In the

Not including introduction and references.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-22360-5 1

4 B. Bollig

interleaving approach, one imposes an order on a priori independent events.
In the graph-based approach, a behavior reveals causal dependencies between
them and explicitly records, in terms of edges/binary relations, any access to
a data structure such as the current state, a channel, or a stack. We adopt
here the graph-based approach. As argued convincingly in [1], it is more nat-
ural and expressive when one wants to reason about system properties beyond
reachability.

Signature. One crucial parameter of a system model and its behaviors is the
underlying signature, which consists of a nonempty finite set Σ of actions and
a nonempty finite set R of binary relation symbols. Intuitively, a letter a ∈ Σ
describes an action executed by a system such as “send request to the server”,
or “call procedure P”. Moreover, binary relations �r, with r ranging over R,
reflect the functionality of a system. To model message passing, for example, a
behavior comes with a binary relation that links a send event with the corre-
sponding receive event. In a system involving recursive processes, there will be a
binary relation connecting a procedure call with the corresponding return. Once
a signature is fixed, we obtain both a canonical automata model and a canonical
monadic second-order logic (see below).

Behavior. To give a meaning to the signature σ, we first have to define what a
behavior is, representing one possible execution of a system. A σ-behavior is a
tuple B = (E, λ, (�r)r∈R) where E is a nonempty finite set of events, λ : E → Σ
is a labeling function, and �r ⊆ E × E is a binary relation, for every r ∈ R. We
interpret each �r as edge relation and call its elements r-edges. As a behavior
describes the progress of an execution, it is natural to require that

⋃
r∈R �r is

acyclic (and, in particular, irreflexive). Moreover, we assume that access to a
data structure is well-defined: for all r ∈ R, each event has at most one outgoing
r-edge and at most one incoming r-edge. Example behaviors can be found in
Figs. 1, 2, 3 and 4. Later, depending on the automata model that we consider,
we will restrict σ-behaviors further (e.g., to model FIFO queues or pushdown
stacks).

We conclude this paragraph with a definition that will be useful later on. For
Q ⊆ R, we say that behavior B is disconnected wrt. Q if, informally speaking,
each event belongs to at most one Q-edge: for all r, r′ ∈ Q, (e, f) ∈ �r, and
(e′, f ′) ∈ �r′ , either r = r′ ∧ e = e′ ∧ f = f ′ or {e, f} ∩ {e′, f ′} = ∅.

Automata. A σ-automaton A has a finite set of states S. A run of A on a
σ-behavior B = (E, λ, (�r)r∈R) is just a mapping ρ : E → S. Intuitively, for
e ∈ E, ρ(e) is the state taken after executing e. Of course, this assignment
has to conform with a finite set of transitions. Actually, when executing e, the
automaton A has access to some states taken previously in the run, and this
access is determined by the relations associated with R. In fact, a transition is
a triple (pred , a, s) where a ∈ Σ, s ∈ S, and pred : R ⇀ S is a partial mapping
that allows the automaton to access the state taken at a �r-predecessor of e.
Formally, we require that, for every e ∈ E, there is a transition (pred , a, s) such
that λ(e) = a, ρ(e) = s, and, for all r ∈ R, the following hold:

Automata and Logics for Concurrent Systems: Five Models in Five Pages 5

– if e does not have a �r-predecessor, then pred(r) is undefined, and
– if e has a �r-predecessor f (which is then unique), then ρ(f) = pred(r).

Note that initial states can be implicitly modeled by functions pred that are
partially or entirely undefined. To take into account several automata models
in a unifying framework, we assume a quite general acceptance condition, which
is a set of tuples (O, (Tr)r∈R) where O ⊆ Σ and Tr ⊆ S for all r ∈ R. Run ρ
is accepting if the acceptance condition contains some tuple (O, (Tr)r∈R) such
that O = {λ(e) | e ∈ E} and, for all r ∈ R and events e without �r-successor,
we have ρ(e) ∈ Tr. In some of the settings discussed below, the occurrence set
O can be used to guarantee that a process makes at least one move. Note that,
in the simple framework of finite automata, an acceptance condition will be no
more expressive than just assuming a single set of final states and requiring that
a run ends in a final state. To summarize, a σ-automaton consists of a finite set
of states, a finite set of transitions, and an acceptance condition. By L(A), we
denote the set of σ-behaviors that allow for an accepting run of A.

Logic. Given a signature σ, we assume the canonical MSO logic for σ, which
we denote by MSO(σ). There are infinite supplies of first-order variables x, y, . . .
and second-order variables X,Y, . . . They allow us to quantify over events and
sets of events, respectively, using formulas ∃xϕ and ∃Xϕ (where ϕ is again
an MSO(σ) formula). Furthermore, we can use the boolean operators negation
and disjunction (and, therefore, conjunction and universal quantification). The
formula λ(x) = a expresses that event x executes a ∈ Σ. Finally, we have access
to the binary relations in terms of formulas x �r y, with r ∈ R, and we include
x = y with the obvious meaning. The set of σ-behaviors that satisfy a given
MSO(σ) sentence ϕ (without free variables) is defined as usual and denoted by
L(ϕ). We refer the reader to [21] for an introduction to MSO logic.

Later, we may have to consider fragments of MSO logic to match the expres-
sive power of an automata model. The existential fragment of MSO(σ), denoted
by EMSO(σ), contains the formulas of the form ∃X1 . . . ∃Xnϕ where ϕ does not
use any second-order quantifier. When, in addition, we use only two first-order
variables (which, however, can occur several times in a formula), we deal with the
fragment EMSO2(σ) of EMSO(σ). In those fragments, it is sometimes impossible,
or not obvious, to encode the reflexive transitive closure of a binary predicate. We
may add such predicates explicitly and write, for example, EMSO2(σ+�∗

r1+�∗
r2)

when we allow access to �∗
r1 and �∗

r2 .

Realizability and Emptiness Checking. Each of the following sections will
describe a particular system model. For each setting, we proceed as follows. We
will first fix a signature σ and define a class B of σ-behaviors. Recall that both
an automata model and MSO logic are already determined by σ.

For a set F ⊆ MSO(σ), we will then state two kinds of results: When we
write σ-automata and F are expressively equivalent over B, we mean that, for
all L ⊆ B, the following statements are equivalent:

– There is a σ-automaton A such that L(A) ∩ B = L.
– There is sentence ϕ ∈ F such that L(ϕ) ∩ B = L.

6 B. Bollig

In all the cases that we consider here, the transformations from formulas to
automata, and back, are effective. When we write emptiness of σ-automata over
Bis decidable, we mean that one can decide whether, for some given σ-automaton
A, we have L(A) ∩ B = ∅. We do not go into complexity considerations here, as
this would require a more detailed treatment of B.

Note that an effective translation of logic formulas into automata that have
a decidable emptiness problem usually allows us to solve, positively, the model-
checking problem (provided the logic is closed under negation and automata are
closed under intersection).

2 Finite Automata

To illustrate the general framework, we first recall the basic setting of finite
automata running on finite words. Apart from the finite alphabet Σ, the cor-
responding signature σw will just contain one single relation symbol succ to
represent the direct successor relation in a word, i.e., R = {succ}. Thus, a
word (structure) is a σw-behavior ({1, . . . , n}, λ,�succ), with n ≥ 1, such that
�succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}}. With this definition, a σw-automaton
running on words is just a finite automaton: in terms of �succ, it can only access
the current state, i.e., the state assigned to the previous position. In our frame-
work, the famous classical connection between finite automata and MSO logic
reads as follows:

Theorem 1 (Büchi-Elgot-Trakhtenbrot [9,11,22]). Finite automata (i.e.,
σw-automata), EMSO(σw), and MSO(σw) are expressively equivalent over words.

3 Class Memory Automata

In this section, we consider systems that consist of an unbounded number of
processes. An execution of such a system is naturally described as a data word.
Usually, a data word is defined as a word over an infinite alphabet, where the
latter is used to represent an unbounded number of process identifiers. In our
framework, however, it will be more convenient to equip a word over a finite
alphabet with an equivalence relation, where an equivalence class captures those
positions that are executed by one and the same process. The signature σdw con-
tains, apart from an arbitrary finite alphabet Σ, the relation symbols succ (with
the same meaning as in words) and class (connecting consecutive positions in an
equivalence class). Thus, R = {succ, class}. The idea is that a σdw-automaton
can access a sort of global state (in terms of �succ) and the current local state
of the executing process (in terms of �class). Note that the acceptance condition
of σdw actually allows us to fix a set of global final states and a set of local final
states.

Accordingly, a data word is a σdw-behavior B = ({1, . . . , n}, λ,�succ,�class),
with n ≥ 1, such that �succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}}. Note that
�∗

class∪(�−1
class)

∗ is the equivalence relation on {1, . . . , n} induced by �class. A data

Automata and Logics for Concurrent Systems: Five Models in Five Pages 7

a b b a c a b c a
succ succ succ

class

class

Fig. 1. A data word

word over Σ = {a, b, c} is depicted in Fig. 1. The straight arrows denote succ-
edges, and the curved arrows denote class-edges. Running on data words, σdw-
automata actually correspond to class memory automata [4].

Theorem 2 (Bojanczyk et al. [5]). Class memory automata (i.e., σdw-auto-
ata) and EMSO2(σdw+�∗

succ+�∗
class) are expressively equivalent over data words.

Moreover, emptiness of σdw-automata is decidable over data words.

Theorem 2 was actually shown for the model of data automata, which are
expressively equivalent to class memory automata [4]. Note that, over data
words, the logic EMSO2(σdw + �∗

succ + �∗
class) (and, therefore, σdw-automata)

is not closed under negation/complementation [5]. However, for model checking,
we can still use its first-order fragment.

4 Nested-Word Automata

We will now consider a setting with a fixed finite set of recursive processes,
which are usually modeled as pushdown automata or, equivalently, nested-word
automata. Nested-word automata have access to binary nesting (or call-return)
relations, which link a function call with the corresponding return position. Since
we have several processes, this gives rise to the notion of multiply nested words,
which come with one nesting relation per process.

Formally, we assume a finite set Proc = {1, . . . , m} of processes with m ≥ 1.
The signature σnw consists of any finite alphabet Σ as well as the relation sym-
bols R = {succ, cr1, . . . , crm}. Then, a (multiply) nested word is a σnw-behavior
B = ({1, . . . , n}, λ,�succ,�cr1 , . . . ,�crm), with n ≥ 1, such that

– �succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}} (as usual),
– for each p ∈ Proc, the relation �crp is well-nested: if e �crp f , e′ �crp f ′, and

e < e′ < f , then f ′ < f (where < is the canonical strict total order on
{1, . . . , n}),

– B is disconnected wrt. {cr1, . . . , crm}.

A nested word with m = 2 and Σ = {a, b, c}, is depicted in Fig. 2.

Theorem 3 (Alur-Madhusudan [2]). Suppose m = 1, i.e., there is only one
nesting relation. In that case, nested-word automata (i.e., σnw-automata) and
MSO(σnw) are expressively equivalent over nested words. Moreover, emptiness
of σnw-automata is decidable over nested words.

8 B. Bollig

a b c a b c a b c b b
succ

succ

cr1

cr2

cr1

cr2

Fig. 2. A nested word

Theorem 4. Suppose m ≥ 2. Then, MSO(σnw) is strictly more expressive than
σnw-automata over nested words [6]. Moreover, emptiness of σnw-automata is
undecidable over nested words (as one can easily simulate a Minsky machine).

Theorem 5. Suppose m = 2. Then, σnw-automata and EMSO(σnw) are expres-
sively equivalent over nested words [6].

To recover a robust automata model in the presence of multiple stacks/
nesting relations, a fruitful approach has been to restrict (i.e., under-
approximate) the set of possible behaviors. We will present only one restriction
here. However, note that a variety of other restrictions have been considered in
the literature, which essentially lead to the same positive results [3,10,15–18].

Namely, we impose a bound on the number k ≥ 1 of phases that a nested
word may traverse. In a phase, only one dedicated process is allowed to perform
a return/pop. Let B = ({1, . . . , n}, λ,�succ,�cr1 , . . . ,�crm) be a nested word. An
interval of B is a set of events of the form {e, e + 1, . . . , f} where e ≤ f . An
interval I is called a phase if, for all e, e′ ∈ {1, . . . , n}, f, f ′ ∈ I, and p, p′ ∈ Proc
such that e�crp f and e′ �crp′ f ′, we have p = p′. Finally, B is k-phase-bounded if
there are phases I1, . . . , Ik of B such that I1 ∪ . . . ∪ Ik = {1, . . . , n}. The nested
word from Fig. 2 is 2-phase-bounded, witnessed by the phases {1, . . . , 9} and
{10, 11}.

Theorem 6 (La Torre-Madhusudan-Parlato [14]). Let k ≥ 1. Then, σnw-
automata and MSO(σnw) are expressively equivalent over k-phase-bounded nested
words. Moreover, emptiness of σnw-automata is decidable over k-phase-bounded
nested words.

5 Asynchronous Automata

In this section, we deal with asynchronous automata [23], whose behaviors are
Mazurkiewicz traces. As opposed to the previous models, asynchronous automata
have a rather distributed flavor, since we will no longer assume that events of
a behavior are totally ordered in terms of some relation �succ. We fix a finite
set of processes Proc = {1, . . . , m}, m ≥ 1, and a nonempty finite set A. Let us
define the signature σt. The alphabet Σ consists of all pairs (a, P) where a ∈ A
and P ⊆ Proc is a nonempty set of processes. The idea is that P contains those

Automata and Logics for Concurrent Systems: Five Models in Five Pages 9

a, {1}
c, {1, 2}

b, {2}

a, {1}
c, {1, 2}

b, {2}

1 1

2

1

2 2

Fig. 3. A trace

processes that are involved in the execution of an event. This may indeed model
common access to a shared resource. Moreover, we set R = Proc. For p ∈ R, the
relation �p will connect two consecutive events that are executed by process p.
Note that we may have e �p f and e �p′ f for distinct processes p and p′.

Consider a σt-behavior B = (E, λ,�1, . . . ,�m). For p ∈ R, let Ep := {e ∈ E |
λ(e) = (a, P) for some (a, P) ∈ Σ such that p ∈ P}. Then, B is a (Mazurkiewicz)
trace if, for all p ∈ R, �p is the direct-successor relation of a total order on Ep.
An example of a trace, where m = 2 and A = {a, b, c}, is depicted in Fig. 3.

When running on traces, σt-automata are actually asynchronous automata
or asynchronous cellular automata [23].

Theorem 7 (Thomas [19]). Asynchronous automata (i.e., σt-automata) are
expressively equivalent to MSO(σt) over traces.

Note that emptiness of σt-automata over traces is easily shown decidable,
since asynchronous automata are essentially finite-state systems.

6 Message-Passing Automata

The last model that we consider adopts the message-passing paradigm and goes
back to Brand and Zafiropulo [8]. It is the natural counterpart of asynchro-
nous automata in a message-passing environment. Again, we fix a finite set of
processes Proc = {1, . . . , m} (but now assuming m ≥ 2). The set Proc deter-
mines the set Ch = {(p, q) ∈ Proc × Proc | p �= q} of channels, which we
assume to be reliable, FIFO, and (a priori) unbounded. The set of labels is
Σ = {p!q | (p, q) ∈ Ch} ∪ {q?p | (p, q) ∈ Ch}. Here, p!q will label an event of
process p that sends a message to q. The complementary receive event is then
labeled by q?p. The behaviors that we consider have two kinds of edges. For
p ∈ Proc, the relation �p connects consecutive events executed by p. Moreover,
for (p, q) ∈ Ch, the relation �(p,q) links a send event with a receive event, which
models the exchange of a message sent from p to q through the channel (p, q).
Thus, our signature σmsc assumes the set of relation symbols R = Proc ∪ Ch.

Let B = (E, λ, (�r)r∈R) be a σmsc-behavior. For p ∈ Proc, we set Ep := {e ∈
E | there is q ∈ Proc \ {p} such that λ(e) ∈ {p!q, p?q}}. We call B a message
sequence chart if

– for every p ∈ Proc, �p is the direct-successor relation of a total order on Ep,
– for all (p, q) ∈ Ch and (e, f) ∈ �(p,q), we have λ(e) = p!q and λ(f) = q?p,

10 B. Bollig

1!2 1!2 1?2 1!2

2?1 2!1 2?1 2?1

1 1 1

2 2 2

(1,2) (1,2)
(1,2)

(2,1)

Fig. 4. A message sequence chart

– for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ �(p,q), we have e�∗
p e′ iff f �∗

q f ′ (which
models FIFO),

– for every e ∈ E, there are (p, q) ∈ Ch and f ∈ E such that e �(p,q) f or
f �(p,q) e (i.e., every event is either a send or a receive event), and

– B is disconnected wrt. Ch.

Fig. 4 depicts a message sequence chart where m = 2.
A σmsc-automaton running over message sequence charts is essentially a

message-passing automaton, aka communicating automaton or communicating
finite-state machine [8].

Theorem 8. Message-passing automata (i.e., σmsc-automata) are expressively
equivalent to EMSO(σmsc) over message sequence charts, but strictly less expres-
sive than MSO(σmsc) [7]. Emptiness of σmsc-automata over message sequence
charts is undecidable [8].

It is an open problem whether message-passing automata are expressively
equivalent to EMSO(σmsc + �∗

1 + . . . + �∗
m) over message sequence charts.

Again, restricting the set of message sequence charts further, one obtains
positive results wrt. MSO logic and model-/emptiness-checking. The restrictions
we consider here rely on the notion of a linearization of a message sequence chart
B = (E, λ, (�r)r∈R), which is any total order
 on E such that (

⋃
r∈R �r)∗ ⊆
.

For k ≥ 1, linearization
 is called k-bounded, if, for all (p, q) ∈ Ch,

max
g∈E

|{(e, f) ∈ �(p,q) | e
 g ≺ f}| ≤ k .

Intuitively, along the linearization, there are, at any time and in any channel,
no more than k pending messages. We call B universally k-bounded if every of
its linearizations is k-bounded. Accordingly, we call B existentially k-bounded
if at least one of its linearizations is k-bounded. The message sequence chart
from Fig. 4 is universally 2-bounded (but not universally 1-bounded), and it is
existentially 1-bounded.

Theorem 9 (Henriksen-Mukund-NarayanKumar-Sohoni-Thiagarajan
[13]). Let k ≥ 1. Message-passing automata (i.e., σmsc-automata) are expres-
sively equivalent to MSO(σmsc) over universally k-bounded message sequence
charts. Moreover, emptiness of σmsc-automata over universally k-bounded mes-
sage sequence charts is decidable.

Automata and Logics for Concurrent Systems: Five Models in Five Pages 11

Theorem 10 (Genest-Kuske-Muscholl [12]). Let k ≥ 1. Message-passing
automata (i.e., σmsc-automata) are expressively equivalent to MSO(σmsc) over
existentially k-bounded message sequence charts. Moreover, emptiness of σmsc-
automata over existentially k-bounded message sequence charts is decidable.

7 Conclusion

Note that many more automata models enjoy logical characterizations in terms
of (fragments of) MSO logic, such as tree automata or certain automata running
on graphs [20]. In this paper, however, we focused on automata that may serve as
models of concurrent systems and whose semantics is a set of possible executions.
The apparent similarities between these models suggest that more general meta
results may be possible. It would be interesting to identify signatures σ and
general classes of σ-behaviors for which σ-automata and MSO(σ) (or suitable
fragments) are expressively equivalent.

References

1. Aiswarya, C., Gastin, P.: Reasoning about distributed systems: WYSIWYG. In:
FSTTCS 2014, Leibniz International Proceedings in Informatics, vol. 29, pp. 11–30.
Leibniz-Zentrum für Informatik (2014)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata Is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

4. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4–5), 702–715 (2010)

5. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

6. Bollig, B.: On the expressive power of 2-stack visibly pushdown automata. Logical
Methods in Computer Science 4(4:16), 1–35 (2008)

7. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to
EMSO logic. Theor. Comput. Sci. 358(2–3), 150–172 (2006)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Büchi, J.: Weak second order logic and finite automata. Z. Math. Logik, Grundlag.
Math. 5, 62–66 (1960)

10. Cyriac, A., Gastin, P., Naryanan Kumar, K.: MSO decidability of multi-pushdown
systems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 547–561. Springer, Heidelberg (2012)

11. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soci. 98, 21–52 (1961)

12. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Infor. Comput. 204(6),
920–956 (2006)

12 B. Bollig

13. Henriksen, J.G., Mukund, M., Narayan, K., Sohoni, M., Thiagarajan, P.S.: A the-
ory of regular MSC languages. Infor. Comput. 202(1), 1–38 (2005)

14. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE Computer Society Press (2007)

15. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

16. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer,
Heidelberg (2014)

17. La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014)

18. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL 2011,
pp. 283–294. ACM (2011)

19. Thomas, W.: On logical definability of trace languages. In: Proceedings of Alge-
braic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002,
Technical University of Munich, pp. 172–182 (1990)

20. Thomas, W.: Elements of an automata theory over partial orders. In: POMIV 1996,
vol. 29, DIMACS. AMS (1996)

21. Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.)
Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

22. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian
Math. J. 3, 103–131 (1962); In Russian; English translation in Amer. Math. Soc.
Transl. 59, 23–55 (1966)

23. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Informatique
Théorique et Applications 21, 99–135 (1987)

	Automata and Logics for Concurrent Systems: Five Models in Five Pages
	1 Introduction
	2 Finite Automata
	3 Class Memory Automata
	4 Nested-Word Automata
	5 Asynchronous Automata
	6 Message-Passing Automata
	7 Conclusion
	References

