
Frank Drewes (Ed.)

 123

LN
CS

 9
22

3

20th International Conference, CIAA 2015
Umeå, Sweden, August 18–21, 2015
Proceedings

Implementation
and Application
of Automata

Lecture Notes in Computer Science 9223

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Frank Drewes (Ed.)

Implementation
and Application
of Automata
20th International Conference, CIAA 2015
Umeå, Sweden, August 18–21, 2015
Proceedings

123

Editor
Frank Drewes
Umeå University
Umeå
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22359-9 ISBN 978-3-319-22360-5 (eBook)
DOI 10.1007/978-3-319-22360-5

Library of Congress Control Number: 2015945122

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 20th International Conference on
Implementation and Application of Automata (CIAA 2015), which was organized by
the Department of Computing Science at Umeå University, Sweden, and took place at
Umeå Folkets hus during August 18–21, 2015.

The CIAA conference series is the major international venue for the dissemination
of new results in the implementation, application, and theory of automata. The previous
19 conferences were held in various locations all around the globe: Blois (2011),
Giessen (2014), Halifax (2013), Kingston (2004), London Ontario (WIA 1997, WIA
1996, and 2000), Nice (2005), Porto (2012), Potsdam (WIA 1999), Prague (2007),
Pretoria (2001), Rouen (WIA 1998), San Francisco (2008), Santa Barbara (2003),
Sydney (2009), Taipei (2006), Tours (2002), and Winnipeg (2010).

The topics of this volume include cover automata, counter automata, decision
algorithms on automata, descriptional complexity, expressive power of automata,
homing sequences, jumping finite automata, multidimensional languages, parsing and
pattern matching, quantum automata, realtime pushdown automata, random generation
of automata, regular expressions, security issues, sensors in automata, transducers,
transformation of automata, and weighted automata.

In total, 49 papers were submitted by authors in 20 different countries: Brazil,
Canada, Czech Republic, Finland, France, Germany, Hungary, India, Israel, Italy,
Japan, South Korea, Norway, Poland, Portugal, Russia, South Africa, Sweden, the UK,
and the USA. Each of these papers was reviewed by at least three reviewers and
thoroughly discussed by the Program Committee, which resulted in the selection of 22
papers for presentation at the conference and publication in this volume. Four invited
talks were given by Benedikt Bollig, Christof Löding, Andreas Maletti, and Bruce
Watson. In addition to these contributions, the volume contains two short papers about
tool demonstrations that were given at the conference.

I am very thankful to all invited speakers, authors of submitted papers, system
demonstrators, Program Committee members, and external reviewers for their valuable
contributions and help. Without them, CIAA 2015 could not have been realized. The
entire process from the original submissions to collecting the final versions of papers
was greatly simplified by the use of the EasyChair conference management system.

I would furthermore like to thank the editorial staff at Springer, and in particular
Alfred Hofmann and Anna Kramer, for their guidance and help during the process of
publishing this volume, and Camilla Andersson at the conference site Umeå Folkets
hus for her help with all the practical preparations.

CIAA 2015 was financially supported by (a) the Department of Computing Science
at Umeå University, (b) the conference fund of Umeå Municipality, the County
Council of Västerbotten and Umeå University, (c) the Faculty of Science and Tech-
nology at Umeå University, and (d) the Swedish Research Council, who provided
generous funding for invited speakers.

Last but by no means least, I wish to thank the local Organizing Committee con-
sisting of the members of the research group Foundations of Language Processing,
namely, Suna Bensch, Henrik and Johanna Björklund, Loek Cleophas, Petter Ericson,
Yonas Woldemariam, and Niklas Zechner for their help.

We are now looking forward to CIAA 2016 at Yonsei University, Seoul, in South
Korea.

August 2015 Frank Drewes

VI Preface

Organization

CIAA 2015 was organized by the Department of Computing Science at Umeå
University, Sweden, and took place at Umeå Folkets hus.

Invited Speakers

Benedikt Bollig Université Paris-Saclay, France
Christof Löding RWTH Aachen, Germany
Andreas Maletti University of Stuttgart, Germany
Bruce Watson University of Stellenbosch, South Africa

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Marie-Pierre Beal Université Paris-Est Marne-la-Vallée, France
Cezar Câmpeanu University of Prince Edward Island, Canada
Pascal Caron Université de Rouen, France
Jean-Marc Champarnaud Université de Rouen, France
David Chiang University of Notre Dame, USA
Stefano Crespi-Reghizzi Politecnico di Milano, Italy
Jürgen Dassow Otto von Guericke University Magdeburg, Germany
Frank Drewes Umeå University, Sweden
Rudolf Freund TU Wien, Austria
Yo-Sub Han Yonsei University, South Korea
Markus Holzer Justus Liebig University Giessen, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Helmut Jürgensen The University of Western Ontario, Canada
Martin Kutrib Justus Liebig University Giessen, Germany
Andreas Maletti University of Stuttgart, Germany
Sebastian Maneth University of Edinburgh, UK
Wim Martens Bayreuth University, Germany
Denis Maurel Université François Rabelais Tours, France
Carlo Mereghetti Università degli Studi di Milano, Italy
Brink van der Merwe University of Stellenbosch, South Africa
Cyril Nicaud Université Paris-Est, France
Alexander Okhotin University of Turku, Finnland
Daniel Reidenbach Loughborough University, UK
Rogerio Reis Universidade do Porto, Portugal
Kai T. Salomaa Queen’s University, Canada
Klaus Sutner Carnegie Mellon University, USA
Sophie Tison Université de Lille 1, France
György Vaszil University of Debrecen, Hungary

Heiko Vogler TU Dresden, Germany
Hsu-Chun Yen National Taiwan University, Taiwan

Steering Committee

Jean-Marc Champarnaud Université de Rouen, France
Markus Holzer Justus Liebig University Giessen, Germany
Oscar Ibarra University of California, Santa Barbara, USA
Denis Maurel Université François Rabelais Tours, France
Kai T. Salomaa Queen’s University, Canada
Hsu-Chun Yen National Taiwan University, Taiwan

External Reviewers

Cyriac Aiswarya
Mohamed Faouzi Atig
Johanna Björklund
Henrik Björklund
Benedikt Bollig
Sabine Broda
Cezar Campeanu
Arnaud Carayol
Yi-Jun Chang
Christian Choffrut
Julien Clément
Maxime Crochemore
Wojciech Czerwiński
Julien David
Toni Dietze
Francesco Dolce
Mike Domaratzki
Marianne Flouret

Travis Gagie
Lukas Holik
Sebastian Jakobi
Artur Jeż
Sang-Ki Ko
Marco Kuhlmann
Ondrej Lengal
Lvzhou Li
Sylvain Lombardy
Eva Maia
Andreas Malcher
Luca Manzoni
Tomas Masopust
Ian McQuillan
Katja Meckel
Ludovic Mignot
Nelma Moreira
Timothy Ng

Kim Nguyen
Florent Nicart
Damien Nouvel
Faissal Ouardi
Balasubramanian
Ravikumar

Klaus Reinhardt
Martin Schuster
Shinnosuke Seki
Jari Stenman
Till Tantau
Bianca Truthe
Vojtěch Vorel
Johannes Waldmann
Matthias Wendlandt
Lynette Van Zijl

Organizing Committee

Suna Bensch
Henrik Björklund
Johanna Björklund

Frank Drewes
Loek Cleophas
Petter Ericson

Yonas Woldemariam
Niklas Zechner

VIII Organization

Sponsoring Institutions

Department of Computing Science, Umeå University
Faculty of Science and Technology, Umeå University
Umeå Municipality, the County Council of Västerbotten and Umeå University
The Swedish Research Council

Organization IX

Invited Papers

Automata and Logics for Concurrent Systems:
Five Models in Five Pages

Benedikt Bollig

LSV, ENS Cachan, CNRS & Inria
bollig@lsv.ens-cachan.fr

Abstract. We survey various automata models of concurrent systems and their
connection with monadic second-order logic: finite automata, class memory
automata, nested-word automata, asynchronous automata, and message-passing
automata.

Resource Automatic Structures for Verification
of Boundedness Properties

Extended Abstract

Christof Löding

RWTH Aachen, Germany
loeding@cs.rwth-aachen.de

Automatic structures are (possibly infinite) structures that can be represented by means
of finite automata [1, 10]. The elements of the domain of the structure are encoded as
words and form a regular language. The relations of the structure are recognized by
synchronous automata with several input tapes (the number of the tapes corresponding
to the arity of the relation). A typical example of such a structure is ðN;þ;\Þ, the
natural numbers with addition and order. The natural numbers are encoded by words
corresponding to their binary representation (or any other base). The order and the
addition (as ternary relation) can then be accepted by synchronous automata with the
corresponding number of input tapes.

Another class of examples are configuration graphs of pushdown automata with
reachability relation. The vertices of a pushdown graph are naturally encoded as words (a
control state followed by a stack content). The set of reachable configurations (from the
initial configuration) forms a regular language [4], and more generally, the reachability
relation is automatic, that is, there is a finite two-tape automaton that accepts those pairs
of configurations such that the second one is reachable from the first one [7].1

Automatic structures are interesting in verification because their first-order theory
(FO) is decidable: the atomic formulas are already given by automata, and the closure
properties of finite automata can be used for an inductive translation of composed
formulas.

In [13] we have introduced the notion of resource automatic structures. In this
model of resource structures, a relation is not a set of tuples but a function that assigns
to each tuple a natural number or 1, where the value 1 corresponds to the classical
case of not being in the relation. A value n for a tuple can be seen as a cost for being in
the relation.

As an illustration, we extend the above example of pushdown graphs with reach-
ability relation: Assume that the transitions of the pushdown system are annotated with
operations on resources. For each type of resource, a transition can either consume one
unit of this resource, completely replenish the resource at once, or not use the resource
at all. Then we can associate the cost of a finite path through the pushdown graph to be
the maximal number of units consumed from a resource without being replenished in

1The result in [7] is for the more general case of ground term rewriting systems, which include
pushdown automata as special case.

between. This corresponds to the size of the reservoir required for the resource to
execute the path. We naturally obtain a resource relation that assigns to each pair of
configurations the cost of a cheapest path between these two configurations (and 1 if
there is no path between the configurations).

In [13] it is shown that this resource reachability relation for pushdown automata can
be defined by an automaton model called B-automata. The transitions of these automata
are annotated by actions on counters that either increment the counter, reset the counter
to value 0, or leave the counter unchanged. In this way, a cost is assigned to each input
word that is accepted by the automaton as follows. The cost of a run is the maximal
value that one of the counters assumes during the run. The cost of the input word is the
minimal cost of an accepting run for this input word (and1 if the word is not accepted).

The class of resource automatic structures [13] is defined to be the class of resource
structures that can be encoded by B-automata, thus pushdown graphs with the resource
reachability relation are resource automatic structures.

As logic over these structures, we consider FOþRR, first-order logic with resource
relations, which is standard FO logic without negation. Similar to the resource rela-
tions, a formula of FOþRR has a value (instead of being true or false). Intuitively, this
value corresponds to the cost for making this formula true: the value of the atomic
formulas is given by the resource relations, disjunction and conjunction are translated
to min and max, and existential and universal quantifiers are translated to inf and sup.

The intention of this logic is to be able to formalize and solve boundedness
properties for resource structures. Taking again the example of pushdown graphs with
resource reachability, a typical question would be the bounded reachability problem:
given two regular sets A, B of configurations, does there exist a bound K such that from
each configuration in A there is a path to a configuration in B with cost at most K. The
corresponding formula is

8x 2 A9y 2 B : x !� y

where !� is the resource reachability relation. According to the semantics of FOþRR,
the value of the formula is not 1 if, and only if, the above bounded reachability
property holds.

Similar to the translation of classical FO formulas over automatic structures into
finite automata, FOþRR formulas can be translated into B-automata preserving
boundedness [13] (using the closure of B-automata under the operations max, min, inf,
sup). Thus, for deciding whether the value of a formula is finite, it suffices to check the
boundedness property on B-automata.

Boundedness properties for finite automata have been studied in the context of the
star-height problem for regular expressions [8, 11]. Given a regular language and a
number h, the question of whether there exists a regular expression of star-height at
most h for this language, can be reduced to a boundedness question of B-automata. The
boundedness (or limitedness) problem for B-automata is the question whether there is a
bound on the cost of the accepted words. It is shown to be decidable in [11], where the
automata are called distance-desert automata. The name of B-automata originates from
a model introduced in [3] for describing boundedness properties of infinite words.
Based on the decidability results for B-automata, one obtains the decidability of the
boundedness problem for FOþRR formulas over resource automatic structures.

Resource Automatic Structures for Verification of Boundedness Properties XV

In [14] the class of resource automatic structures is studied in more detail. It is
shown that there is a complete resource automatic structure (each other resource
automatic structure can be obtained from this complete structure by interpretations in
FOþRR logic). Furthermore, connections between FOþRR over resource automatic
structures and cost monadic second-order logic (cost MSO) [5] and cost FO [12] over
words are established that generalize the standard setting over words without costs.

The model of B-automata and the corresponding decidability results can be
extended to finite trees [6], which leads to the class of resource tree automatic struc-
tures. In recent work [9], it is shown that an extension of FOþRR with an operator for
testing boundedness of formulas, can be used to capture weak cost MSO [5] and weak
MSO+U [2], obtaining alternative proofs for the decidability of these logics.

References

1. Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of the 15th IEEE Sym-
posium on Logic in Computer Science, LICS 2000, pp. 51–62. IEEE Computer Society Press
(2000)

2. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst. 48(3),
554–576 (2011). http://dx.doi.org/10.1007/s00224-010-9279-2

3. Bojańczyk, M., Colcombet, T.: Bounds in w-regularity. In: 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), Seattle, WA, USA, Proceedings, 12–15 August 2006,
pp. 285–296. IEEE Computer Society (2006)

4. Büchi, J.R.: Regular canonical system. Archiv für Mathematische Grundlagenforschung 6,
91–111 (1964)

5. Colcombet, T.: Regular cost functions, part I: logic and algebra over words. Log. Methods
Comput. Sci. 9(3) (2013). http://dx.doi.org/10.2168/LMCS-9(3:3)2013

6. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: Twenty-Fifth
Annual IEEE Symposium on Logic in Computer Science, LICS 2010, pp. 70–79. IEEE
Computer Society (2010)

7. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In: Proceedings
of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS 1990, pp. 242–
248. IEEE Computer Society Press (1990)

8. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput.
78(2), 124–169 (1988)

9. Kaiser, Ł., Lang, M., Löding, C., Leßenich, S.: A unified approach to boundedness properties
in MSO (2015, submitted)

10. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.)
LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

11. Kirsten, D.: Distance desert automata and the star height problem. RAIRO – Theor. Inf. Appl.
3(39), 455–509 (2005)

12. Kuperberg, D.: Study of classes of regular cost functions. Ph.D. thesis, LIAFA Paris,
December 2012

13. Lang, M., Löding, C.: Modeling and verification of infinite systems with resources. Log.
Methods Comput. Sci. 9(4) (2013)

14. Lang, M., Löding, C., Manuel, A.: Definability and transformations for cost logics and
automatic structures. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 390–401. Springer, Heidelberg (2014). http://dx.doi.org/10.
1007/978-3-662-44522-8

XVI C. Löding

http://dx.doi.org/10.1007/s00224-010-9279-2
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.1007/978-3-662-44522-8
http://dx.doi.org/10.1007/978-3-662-44522-8

Finite-State Technology
in Natural Language Processing

Extended Abstract

Andreas Maletti

Institute for Natural Language Processing, Universität Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
maletti@ims.uni-stuttgart.de

Finite-state technology is at the core of many standard approaches in natural language
processing [11, 15]. However, the terminology and the notations differ significantly
between theoretical computer science (TCS) [8] and natural language processing
(NLP) [13]. In this lecture, inspired by [11, 13], we plan to illustrate the close ties
between formal language theory as discussed in TCS and its use in mainstream
applications of NLP. In addition, we will try to match the different terminologies in
three example tasks. Overall, this lecture shall serve as an introduction to (i) these tasks
and (ii) the use of finite-state technology in NLP and shall encourage closer collabo-
ration between TCS and NLP.

We will start with the task of part-of-speech tagging [11, Chapter 5], in which given
a natural language sentence the task is to derive the word category (the part-of-speech,
e.g. noun, verb, adjective, etc.) for each occurring word in the sentence. The part-of-
speech information is essential for several downstream applications like co-reference
resolution [11, Chapter 21] (i.e., detecting which entities in a text refer to the same
entities), automatic keyword detection [11, Chapter 22] (i.e., finding relevant terms for
a document), and sentiment analysis [18] (i.e., the process of determining whether a
text speaks favorably or negatively about a subject). Along the historical development
of systems for this task [9] we will discuss the main performance breakthrough (in the
mid 80s) that led to the systems that are currently state-of-the-art for this task. This
breakthrough was achieved with the help of statistical finite-state systems commonly
called hidden Markov models [11, Chapter 6], which roughly equate to probabilistic
finite-state transducers [17]. We will outline the connection and also demonstrate how
various well-known algorithms like the forward and backward algorithms relate to TCS
concepts.

Second, we will discuss the task of parsing [11, Chapter 13], in which a sentence is
given and its syntactic structure is to be determined. The syntactic structure is beneficial
in several applications including syntax-based machine translation [14] or natural
language understanding [11, Chapter 18]. In parsing, a major performance break-
through was obtained in 2005 by adding finite-state information to probabilistic
context-free grammars [16]. The currently state-of-the-art models (for English) are

Supported by the German Research Foundation (DFG) grant MA/ 4959 / 1-1.

probabilistic context-free grammars with latent variables, which are known as prob-
abilistic finite-state tree automata [10] in TCS. We will review the standard process [7]
(expectation maximization), which determines the hidden finite-state information in the
hope that similar processes might be helpful also in the TCS community. In addition,
we will recall a spectral learning approach [6], which builds on the minimization of
nondeterministic field-weighted tree automata [3]. Similarly, advanced evaluation
mechanisms like coarse-to-fine parsing [19] that have been developed in NLP should
be considered in TCS.

Finally, we will cover an end-user application in NLP. The goal of machine
translation [14] is the provision of high-quality and automatic translations of input
sentences from one language into another language. The main formalisms used in NLP
in this area are probabilistic synchronous grammars [5], which originate from the
seminal syntax-based translation schemes of [1]. These grammars correspond to certain
subclasses of probabilistic finite-state transducers [17] or probabilistic tree transducers
[10]. So far, only local versions (grammars without latent variables) are used in
state-of-the-art systems, so the effective inclusion of finite-state information remains an
open problem in this task. However, the requirements of syntax-based machine
translation already spurred a lot of research in TCS because the models traditionally
studied had significant shortcomings [12]. In the other direction, advanced models like
multi bottom-up tree transducers [2] have made reasonable impact in syntax-based
machine translation [4].

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. Prentice Hall
(1972)

2. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput. Sci. 20,
33–93 (1982)

3. Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable series on
trees. Acta Informatica 28(4), 351–363 (1991)

4. Braune, F., Seemann, N., Quernheim, D., Maletti, A.: Shallow local multi-bottom-up tree
transducers in statistical machine translation. In: Proceedings of 51st ACL, pp. 811–821.
Association for Computer Linguistics (2013)

5. Chiang, D.: An introduction to synchronous grammars. In: Proceedings of 44th ACL.
Association for Computational Linguistics (2006), part of a tutorial given with Kevin Knight

6. Cohen, S.B., Stratos, K., Collins, M., Foster, D.P., Ungar, L.: Spectral learning of
latent-variable PCFGs. In: Proceedings of 50th ACL, pp. 223–231. Association for Com-
putational Linguistics (2012)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. J. Roy. Stat. Soc. Series B (Methodol.) 39(1), 1–38 (1977)

8. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)
9. Francis, W.N., Kučera, H., Mackie, A.W.: Frequency Analysis of English Usage: Lexicon

and Grammar. Houghton Mifflin (1982)
10. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste et al. [8],

chap. 9, pp. 313–403
11. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall (2008)

XVIII A. Maletti

12. Knight, K.: Capturing practical natural language transformations. Mach. Transl. 21(2), 121–
133 (2007)

13. Knight, K., May, J.: Applications of weighted automata in natural language processing. In:
Droste et al. [8], chap. 14, pp. 571–596

14. Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)
15. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT

Press (1999)
16. Matsuzaki, T., Miyao, Y., Tsujii, J.: Probabilistic CFG with latent annotations. In: Pro-

ceedings of 43rd ACL, pp. 75–82. Association for Computational Linguistics (2005)
17. Mohri, M.: Weighted automata algorithms. In: Droste et al. [8], chap. 6, pp. 213–254
18. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2),

1–135 (2008)
19. Petrov, S.: Coarse-to-Fine Natural Language Processing. Ph.D. thesis, University of Cali-

fornia at Bekeley, Berkeley, CA, USA (2009)

Finite-State Technology in Natural Language Processing XIX

Hardware Implementations
of Finite Automata and Regular Expressions

Extended Abstract

Bruce W. Watson

FASTAR Group, Department of Information Science
Stellenbosch University, South Africa

bruce@fastar.org

Abstract. This extended abstract sketches some of the most recent advances in
hardware implementations (and surrounding issues) of finite automata and
regular expressions. The traditional application areas for automata and regular
expressions are compilers, text editors, text programming languages (for
example Sed, AWK, but more recently Python, and Perl), and text processing in
general purpose languages (such as Java, C++ and C#). In all these cases, while
the regular expression implementation should be efficient, it rarely forms the
performance bottleneck in resulting programs and applications. Even more
exotic application areas such as computational biology are not particularly
taxing on the regular expression implementation — provided some care is taken
while crafting the regular expressions [5].

Contents

Invited Papers

Automata and Logics for Concurrent Systems: Five Models in Five Pages . . . 3
Benedikt Bollig

Hardware Implementations of Finite Automata and Regular Expressions
[Extended Abstract] . 13

Bruce W. Watson

Regular Papers

Complexity of Inferring Local Transition Functions of Discrete
Dynamical Systems . 21

Abhijin Adiga, Chris J. Kuhlman, Madhav V. Marathe, S.S. Ravi,
Daniel J. Rosenkrantz, and Richard E. Stearns

From Ambiguous Regular Expressions to Deterministic Parsing Automata . . . 35
Angelo Borsotti, Luca Breveglieri, Stefano Crespi Reghizzi,
and Angelo Morzenti

Deciding Synchronous Kleene Algebra with Derivatives 49
Sabine Broda, Sílvia Cavadas, Miguel Ferreira, and Nelma Moreira

On the Hierarchy of Block Deterministic Languages 63
Pascal Caron, Ludovic Mignot, and Clément Miklarz

Security of Numerical Sensors in Automata . 76
Zhe Dang, Dmitry Dementyev, Thomas R. Fischer,
and William J. Hutton III

Jumping Finite Automata: Characterizations and Complexity 89
Henning Fernau, Meenakshi Paramasivan, and Markus L. Schmid

Run-Length Encoded Nondeterministic KMP and Suffix Automata 102
Emanuele Giaquinta

More on Deterministic and Nondeterministic Finite Cover Automata
[Extended Abstract] . 114

Hermann Gruber, Markus Holzer, and Sebastian Jakobi

On the Number of Synchronizing Colorings of Digraphs 127
Vladimir V. Gusev and Marek Szykuła

http://dx.doi.org/10.1007/978-3-319-22360-5_1
http://dx.doi.org/10.1007/978-3-319-22360-5_2
http://dx.doi.org/10.1007/978-3-319-22360-5_2
http://dx.doi.org/10.1007/978-3-319-22360-5_3
http://dx.doi.org/10.1007/978-3-319-22360-5_3
http://dx.doi.org/10.1007/978-3-319-22360-5_4
http://dx.doi.org/10.1007/978-3-319-22360-5_5
http://dx.doi.org/10.1007/978-3-319-22360-5_6
http://dx.doi.org/10.1007/978-3-319-22360-5_7
http://dx.doi.org/10.1007/978-3-319-22360-5_8
http://dx.doi.org/10.1007/978-3-319-22360-5_9
http://dx.doi.org/10.1007/978-3-319-22360-5_10
http://dx.doi.org/10.1007/978-3-319-22360-5_10
http://dx.doi.org/10.1007/978-3-319-22360-5_11

On the Uniform Random Generation of Non Deterministic Automata
Up to Isomorphism . 140

Pierre-Cyrille Héam and Jean-Luc Joly

Random Generation and Enumeration of Accessible Deterministic
Real-Time Pushdown Automata . 153

Pierre-Cyrille Héam and Jean-Luc Joly

Subword Metrics for Infinite Words . 165
Stefan Hoffmann and Ludwig Staiger

From Two-Way to One-Way Finite Automata—Three Regular
Expression-Based Methods . 176

Mans Hulden

Describing Homing and Distinguishing Sequences for Nondeterministic
Finite State Machines via Synchronizing Automata 188

Natalia Kushik and Nina Yevtushenko

Expressive Capacity of Concatenation Freeness. 199
Martin Kutrib and Matthias Wendlandt

The Membership Problem for Linear and Regular Permutation Languages . . . 211
Grzegorz Madejski

Classical and Quantum Counter Automata on Promise Problems 224
Masaki Nakanishi and Abuzer Yakaryılmaz

State Complexity of Prefix Distance . 238
Timothy Ng, David Rappaport, and Kai Salomaa

(Un)decidability of the Emptiness Problem for Multi-dimensional
Context-Free Grammars . 250

Daniel Průša

On the Disambiguation of Weighted Automata . 263
Mehryar Mohri and Michael D. Riley

Checking Whether an Automaton Is Monotonic Is NP-complete 279
Marek Szykuła

On the Semantics of Regular Expression Parsing in the Wild 292
Martin Berglund and Brink van der Merwe

Tool Demonstration Papers

Introducing Code Adviser: A DFA-Driven Electronic Programming Tutor . . . 307
Abejide Ade-Ibijola, Sigrid Ewert, and Ian Sanders

XXII Contents

http://dx.doi.org/10.1007/978-3-319-22360-5_12
http://dx.doi.org/10.1007/978-3-319-22360-5_12
http://dx.doi.org/10.1007/978-3-319-22360-5_13
http://dx.doi.org/10.1007/978-3-319-22360-5_13
http://dx.doi.org/10.1007/978-3-319-22360-5_14
http://dx.doi.org/10.1007/978-3-319-22360-5_15
http://dx.doi.org/10.1007/978-3-319-22360-5_15
http://dx.doi.org/10.1007/978-3-319-22360-5_16
http://dx.doi.org/10.1007/978-3-319-22360-5_16
http://dx.doi.org/10.1007/978-3-319-22360-5_17
http://dx.doi.org/10.1007/978-3-319-22360-5_18
http://dx.doi.org/10.1007/978-3-319-22360-5_19
http://dx.doi.org/10.1007/978-3-319-22360-5_20
http://dx.doi.org/10.1007/978-3-319-22360-5_21
http://dx.doi.org/10.1007/978-3-319-22360-5_21
http://dx.doi.org/10.1007/978-3-319-22360-5_22
http://dx.doi.org/10.1007/978-3-319-22360-5_23
http://dx.doi.org/10.1007/978-3-319-22360-5_24
http://dx.doi.org/10.1007/978-3-319-22360-5_25

BSP: A Parsing Tool for Ambiguous Regular Expressions 313
Angelo Borsotti, Luca Breveglieri, Stefano Crespi Reghizzi,
and Angelo Morzenti

Author Index . 317

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-22360-5_26

Invited Papers

Automata and Logics for Concurrent Systems:
Five Models in Five Pages

Benedikt Bollig(B)

LSV, ENS Cachan, CNRS & Inria, Cachan, France
bollig@lsv.ens-cachan.fr

Abstract. We survey various automata models of concurrent systems
and their connection with monadic second-order logic: finite automata,
class memory automata, nested-word automata, asynchronous automata,
and message-passing automata.

1 Introduction

A variety of automata models have emerged over the years to provide a basis for
the study of various types of concurrent systems. These models capture several
communication paradigms such as shared memory or message passing, and they
can deal with finite-state or infinite-state processes. In this paper, we consider
several of these models in a unifying framework.

The study that we conduct here is driven by questions that arise in the
area of verification. Concurrent systems are often safety-critical and come with
a requirements specification to be fulfilled. In the automata-theoretic approach,
which we adopt here, a system is modeled as an automaton A, and the specifi-
cation is given as a formula ϕ in a high-level language such as temporal logic or
monadic second-order logic. In order for both, the system model and the spec-
ification, to be comparable, they should have a common domain. We associate
with an automaton its language L(A), representing the set of possible behav-
iors. Similarly, the specification determines a set L(ϕ) of models, namely the set
of behaviors that satisfy it. Then, correctness of the system can be expressed
as the inclusion problem L(A) ⊆ L(ϕ), which is commonly referred to as the
model-checking problem. In the different approach of realizability, only the spec-
ification ϕ is given, and we aim at an automaton A such that L(A) = L(ϕ).
In that case, A may serve as a system model that can be considered correct by
construction. The models that we cover here owe much of their success to the
fact that model checking and realizability have positive solutions. In particular,
they all enjoy logical characterizations in terms of (an expressive fragment of)
monadic second-order (MSO) logic and come, possibly under restrictions, with
a decidable emptiness problem.

But what is actually a behavior? A behavior is the collection of events that
we observe during an execution. There are essentially two approaches: In the

Not including introduction and references.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-22360-5 1

4 B. Bollig

interleaving approach, one imposes an order on a priori independent events.
In the graph-based approach, a behavior reveals causal dependencies between
them and explicitly records, in terms of edges/binary relations, any access to
a data structure such as the current state, a channel, or a stack. We adopt
here the graph-based approach. As argued convincingly in [1], it is more nat-
ural and expressive when one wants to reason about system properties beyond
reachability.

Signature. One crucial parameter of a system model and its behaviors is the
underlying signature, which consists of a nonempty finite set Σ of actions and
a nonempty finite set R of binary relation symbols. Intuitively, a letter a ∈ Σ
describes an action executed by a system such as “send request to the server”,
or “call procedure P”. Moreover, binary relations �r, with r ranging over R,
reflect the functionality of a system. To model message passing, for example, a
behavior comes with a binary relation that links a send event with the corre-
sponding receive event. In a system involving recursive processes, there will be a
binary relation connecting a procedure call with the corresponding return. Once
a signature is fixed, we obtain both a canonical automata model and a canonical
monadic second-order logic (see below).

Behavior. To give a meaning to the signature σ, we first have to define what a
behavior is, representing one possible execution of a system. A σ-behavior is a
tuple B = (E, λ, (�r)r∈R) where E is a nonempty finite set of events, λ : E → Σ
is a labeling function, and �r ⊆ E × E is a binary relation, for every r ∈ R. We
interpret each �r as edge relation and call its elements r-edges. As a behavior
describes the progress of an execution, it is natural to require that

⋃
r∈R �r is

acyclic (and, in particular, irreflexive). Moreover, we assume that access to a
data structure is well-defined: for all r ∈ R, each event has at most one outgoing
r-edge and at most one incoming r-edge. Example behaviors can be found in
Figs. 1, 2, 3 and 4. Later, depending on the automata model that we consider,
we will restrict σ-behaviors further (e.g., to model FIFO queues or pushdown
stacks).

We conclude this paragraph with a definition that will be useful later on. For
Q ⊆ R, we say that behavior B is disconnected wrt. Q if, informally speaking,
each event belongs to at most one Q-edge: for all r, r′ ∈ Q, (e, f) ∈ �r, and
(e′, f ′) ∈ �r′ , either r = r′ ∧ e = e′ ∧ f = f ′ or {e, f} ∩ {e′, f ′} = ∅.

Automata. A σ-automaton A has a finite set of states S. A run of A on a
σ-behavior B = (E, λ, (�r)r∈R) is just a mapping ρ : E → S. Intuitively, for
e ∈ E, ρ(e) is the state taken after executing e. Of course, this assignment
has to conform with a finite set of transitions. Actually, when executing e, the
automaton A has access to some states taken previously in the run, and this
access is determined by the relations associated with R. In fact, a transition is
a triple (pred , a, s) where a ∈ Σ, s ∈ S, and pred : R ⇀ S is a partial mapping
that allows the automaton to access the state taken at a �r-predecessor of e.
Formally, we require that, for every e ∈ E, there is a transition (pred , a, s) such
that λ(e) = a, ρ(e) = s, and, for all r ∈ R, the following hold:

Automata and Logics for Concurrent Systems: Five Models in Five Pages 5

– if e does not have a �r-predecessor, then pred(r) is undefined, and
– if e has a �r-predecessor f (which is then unique), then ρ(f) = pred(r).

Note that initial states can be implicitly modeled by functions pred that are
partially or entirely undefined. To take into account several automata models
in a unifying framework, we assume a quite general acceptance condition, which
is a set of tuples (O, (Tr)r∈R) where O ⊆ Σ and Tr ⊆ S for all r ∈ R. Run ρ
is accepting if the acceptance condition contains some tuple (O, (Tr)r∈R) such
that O = {λ(e) | e ∈ E} and, for all r ∈ R and events e without �r-successor,
we have ρ(e) ∈ Tr. In some of the settings discussed below, the occurrence set
O can be used to guarantee that a process makes at least one move. Note that,
in the simple framework of finite automata, an acceptance condition will be no
more expressive than just assuming a single set of final states and requiring that
a run ends in a final state. To summarize, a σ-automaton consists of a finite set
of states, a finite set of transitions, and an acceptance condition. By L(A), we
denote the set of σ-behaviors that allow for an accepting run of A.

Logic. Given a signature σ, we assume the canonical MSO logic for σ, which
we denote by MSO(σ). There are infinite supplies of first-order variables x, y, . . .
and second-order variables X,Y, . . . They allow us to quantify over events and
sets of events, respectively, using formulas ∃xϕ and ∃Xϕ (where ϕ is again
an MSO(σ) formula). Furthermore, we can use the boolean operators negation
and disjunction (and, therefore, conjunction and universal quantification). The
formula λ(x) = a expresses that event x executes a ∈ Σ. Finally, we have access
to the binary relations in terms of formulas x �r y, with r ∈ R, and we include
x = y with the obvious meaning. The set of σ-behaviors that satisfy a given
MSO(σ) sentence ϕ (without free variables) is defined as usual and denoted by
L(ϕ). We refer the reader to [21] for an introduction to MSO logic.

Later, we may have to consider fragments of MSO logic to match the expres-
sive power of an automata model. The existential fragment of MSO(σ), denoted
by EMSO(σ), contains the formulas of the form ∃X1 . . . ∃Xnϕ where ϕ does not
use any second-order quantifier. When, in addition, we use only two first-order
variables (which, however, can occur several times in a formula), we deal with the
fragment EMSO2(σ) of EMSO(σ). In those fragments, it is sometimes impossible,
or not obvious, to encode the reflexive transitive closure of a binary predicate. We
may add such predicates explicitly and write, for example, EMSO2(σ+�∗

r1+�∗
r2)

when we allow access to �∗
r1 and �∗

r2 .

Realizability and Emptiness Checking. Each of the following sections will
describe a particular system model. For each setting, we proceed as follows. We
will first fix a signature σ and define a class B of σ-behaviors. Recall that both
an automata model and MSO logic are already determined by σ.

For a set F ⊆ MSO(σ), we will then state two kinds of results: When we
write σ-automata and F are expressively equivalent over B, we mean that, for
all L ⊆ B, the following statements are equivalent:

– There is a σ-automaton A such that L(A) ∩ B = L.
– There is sentence ϕ ∈ F such that L(ϕ) ∩ B = L.

6 B. Bollig

In all the cases that we consider here, the transformations from formulas to
automata, and back, are effective. When we write emptiness of σ-automata over
Bis decidable, we mean that one can decide whether, for some given σ-automaton
A, we have L(A) ∩ B = ∅. We do not go into complexity considerations here, as
this would require a more detailed treatment of B.

Note that an effective translation of logic formulas into automata that have
a decidable emptiness problem usually allows us to solve, positively, the model-
checking problem (provided the logic is closed under negation and automata are
closed under intersection).

2 Finite Automata

To illustrate the general framework, we first recall the basic setting of finite
automata running on finite words. Apart from the finite alphabet Σ, the cor-
responding signature σw will just contain one single relation symbol succ to
represent the direct successor relation in a word, i.e., R = {succ}. Thus, a
word (structure) is a σw-behavior ({1, . . . , n}, λ,�succ), with n ≥ 1, such that
�succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}}. With this definition, a σw-automaton
running on words is just a finite automaton: in terms of �succ, it can only access
the current state, i.e., the state assigned to the previous position. In our frame-
work, the famous classical connection between finite automata and MSO logic
reads as follows:

Theorem 1 (Büchi-Elgot-Trakhtenbrot [9,11,22]). Finite automata (i.e.,
σw-automata), EMSO(σw), and MSO(σw) are expressively equivalent over words.

3 Class Memory Automata

In this section, we consider systems that consist of an unbounded number of
processes. An execution of such a system is naturally described as a data word.
Usually, a data word is defined as a word over an infinite alphabet, where the
latter is used to represent an unbounded number of process identifiers. In our
framework, however, it will be more convenient to equip a word over a finite
alphabet with an equivalence relation, where an equivalence class captures those
positions that are executed by one and the same process. The signature σdw con-
tains, apart from an arbitrary finite alphabet Σ, the relation symbols succ (with
the same meaning as in words) and class (connecting consecutive positions in an
equivalence class). Thus, R = {succ, class}. The idea is that a σdw-automaton
can access a sort of global state (in terms of �succ) and the current local state
of the executing process (in terms of �class). Note that the acceptance condition
of σdw actually allows us to fix a set of global final states and a set of local final
states.

Accordingly, a data word is a σdw-behavior B = ({1, . . . , n}, λ,�succ,�class),
with n ≥ 1, such that �succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}}. Note that
�∗

class∪(�−1
class)

∗ is the equivalence relation on {1, . . . , n} induced by �class. A data

Automata and Logics for Concurrent Systems: Five Models in Five Pages 7

a b b a c a b c a
succ succ succ

class

class

Fig. 1. A data word

word over Σ = {a, b, c} is depicted in Fig. 1. The straight arrows denote succ-
edges, and the curved arrows denote class-edges. Running on data words, σdw-
automata actually correspond to class memory automata [4].

Theorem 2 (Bojanczyk et al. [5]). Class memory automata (i.e., σdw-auto-
ata) and EMSO2(σdw+�∗

succ+�∗
class) are expressively equivalent over data words.

Moreover, emptiness of σdw-automata is decidable over data words.

Theorem 2 was actually shown for the model of data automata, which are
expressively equivalent to class memory automata [4]. Note that, over data
words, the logic EMSO2(σdw + �∗

succ + �∗
class) (and, therefore, σdw-automata)

is not closed under negation/complementation [5]. However, for model checking,
we can still use its first-order fragment.

4 Nested-Word Automata

We will now consider a setting with a fixed finite set of recursive processes,
which are usually modeled as pushdown automata or, equivalently, nested-word
automata. Nested-word automata have access to binary nesting (or call-return)
relations, which link a function call with the corresponding return position. Since
we have several processes, this gives rise to the notion of multiply nested words,
which come with one nesting relation per process.

Formally, we assume a finite set Proc = {1, . . . , m} of processes with m ≥ 1.
The signature σnw consists of any finite alphabet Σ as well as the relation sym-
bols R = {succ, cr1, . . . , crm}. Then, a (multiply) nested word is a σnw-behavior
B = ({1, . . . , n}, λ,�succ,�cr1 , . . . ,�crm), with n ≥ 1, such that

– �succ = {(e, e + 1) | e ∈ {1, . . . , n − 1}} (as usual),
– for each p ∈ Proc, the relation �crp is well-nested: if e �crp f , e′ �crp f ′, and

e < e′ < f , then f ′ < f (where < is the canonical strict total order on
{1, . . . , n}),

– B is disconnected wrt. {cr1, . . . , crm}.

A nested word with m = 2 and Σ = {a, b, c}, is depicted in Fig. 2.

Theorem 3 (Alur-Madhusudan [2]). Suppose m = 1, i.e., there is only one
nesting relation. In that case, nested-word automata (i.e., σnw-automata) and
MSO(σnw) are expressively equivalent over nested words. Moreover, emptiness
of σnw-automata is decidable over nested words.

8 B. Bollig

a b c a b c a b c b b
succ

succ

cr1

cr2

cr1

cr2

Fig. 2. A nested word

Theorem 4. Suppose m ≥ 2. Then, MSO(σnw) is strictly more expressive than
σnw-automata over nested words [6]. Moreover, emptiness of σnw-automata is
undecidable over nested words (as one can easily simulate a Minsky machine).

Theorem 5. Suppose m = 2. Then, σnw-automata and EMSO(σnw) are expres-
sively equivalent over nested words [6].

To recover a robust automata model in the presence of multiple stacks/
nesting relations, a fruitful approach has been to restrict (i.e., under-
approximate) the set of possible behaviors. We will present only one restriction
here. However, note that a variety of other restrictions have been considered in
the literature, which essentially lead to the same positive results [3,10,15–18].

Namely, we impose a bound on the number k ≥ 1 of phases that a nested
word may traverse. In a phase, only one dedicated process is allowed to perform
a return/pop. Let B = ({1, . . . , n}, λ,�succ,�cr1 , . . . ,�crm) be a nested word. An
interval of B is a set of events of the form {e, e + 1, . . . , f} where e ≤ f . An
interval I is called a phase if, for all e, e′ ∈ {1, . . . , n}, f, f ′ ∈ I, and p, p′ ∈ Proc
such that e�crp f and e′ �crp′ f ′, we have p = p′. Finally, B is k-phase-bounded if
there are phases I1, . . . , Ik of B such that I1 ∪ . . . ∪ Ik = {1, . . . , n}. The nested
word from Fig. 2 is 2-phase-bounded, witnessed by the phases {1, . . . , 9} and
{10, 11}.

Theorem 6 (La Torre-Madhusudan-Parlato [14]). Let k ≥ 1. Then, σnw-
automata and MSO(σnw) are expressively equivalent over k-phase-bounded nested
words. Moreover, emptiness of σnw-automata is decidable over k-phase-bounded
nested words.

5 Asynchronous Automata

In this section, we deal with asynchronous automata [23], whose behaviors are
Mazurkiewicz traces. As opposed to the previous models, asynchronous automata
have a rather distributed flavor, since we will no longer assume that events of
a behavior are totally ordered in terms of some relation �succ. We fix a finite
set of processes Proc = {1, . . . , m}, m ≥ 1, and a nonempty finite set A. Let us
define the signature σt. The alphabet Σ consists of all pairs (a, P) where a ∈ A
and P ⊆ Proc is a nonempty set of processes. The idea is that P contains those

Automata and Logics for Concurrent Systems: Five Models in Five Pages 9

a, {1}
c, {1, 2}

b, {2}

a, {1}
c, {1, 2}

b, {2}

1 1

2

1

2 2

Fig. 3. A trace

processes that are involved in the execution of an event. This may indeed model
common access to a shared resource. Moreover, we set R = Proc. For p ∈ R, the
relation �p will connect two consecutive events that are executed by process p.
Note that we may have e �p f and e �p′ f for distinct processes p and p′.

Consider a σt-behavior B = (E, λ,�1, . . . ,�m). For p ∈ R, let Ep := {e ∈ E |
λ(e) = (a, P) for some (a, P) ∈ Σ such that p ∈ P}. Then, B is a (Mazurkiewicz)
trace if, for all p ∈ R, �p is the direct-successor relation of a total order on Ep.
An example of a trace, where m = 2 and A = {a, b, c}, is depicted in Fig. 3.

When running on traces, σt-automata are actually asynchronous automata
or asynchronous cellular automata [23].

Theorem 7 (Thomas [19]). Asynchronous automata (i.e., σt-automata) are
expressively equivalent to MSO(σt) over traces.

Note that emptiness of σt-automata over traces is easily shown decidable,
since asynchronous automata are essentially finite-state systems.

6 Message-Passing Automata

The last model that we consider adopts the message-passing paradigm and goes
back to Brand and Zafiropulo [8]. It is the natural counterpart of asynchro-
nous automata in a message-passing environment. Again, we fix a finite set of
processes Proc = {1, . . . , m} (but now assuming m ≥ 2). The set Proc deter-
mines the set Ch = {(p, q) ∈ Proc × Proc | p �= q} of channels, which we
assume to be reliable, FIFO, and (a priori) unbounded. The set of labels is
Σ = {p!q | (p, q) ∈ Ch} ∪ {q?p | (p, q) ∈ Ch}. Here, p!q will label an event of
process p that sends a message to q. The complementary receive event is then
labeled by q?p. The behaviors that we consider have two kinds of edges. For
p ∈ Proc, the relation �p connects consecutive events executed by p. Moreover,
for (p, q) ∈ Ch, the relation �(p,q) links a send event with a receive event, which
models the exchange of a message sent from p to q through the channel (p, q).
Thus, our signature σmsc assumes the set of relation symbols R = Proc ∪ Ch.

Let B = (E, λ, (�r)r∈R) be a σmsc-behavior. For p ∈ Proc, we set Ep := {e ∈
E | there is q ∈ Proc \ {p} such that λ(e) ∈ {p!q, p?q}}. We call B a message
sequence chart if

– for every p ∈ Proc, �p is the direct-successor relation of a total order on Ep,
– for all (p, q) ∈ Ch and (e, f) ∈ �(p,q), we have λ(e) = p!q and λ(f) = q?p,

10 B. Bollig

1!2 1!2 1?2 1!2

2?1 2!1 2?1 2?1

1 1 1

2 2 2

(1,2) (1,2)
(1,2)

(2,1)

Fig. 4. A message sequence chart

– for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ �(p,q), we have e�∗
p e′ iff f �∗

q f ′ (which
models FIFO),

– for every e ∈ E, there are (p, q) ∈ Ch and f ∈ E such that e �(p,q) f or
f �(p,q) e (i.e., every event is either a send or a receive event), and

– B is disconnected wrt. Ch.

Fig. 4 depicts a message sequence chart where m = 2.
A σmsc-automaton running over message sequence charts is essentially a

message-passing automaton, aka communicating automaton or communicating
finite-state machine [8].

Theorem 8. Message-passing automata (i.e., σmsc-automata) are expressively
equivalent to EMSO(σmsc) over message sequence charts, but strictly less expres-
sive than MSO(σmsc) [7]. Emptiness of σmsc-automata over message sequence
charts is undecidable [8].

It is an open problem whether message-passing automata are expressively
equivalent to EMSO(σmsc + �∗

1 + . . . + �∗
m) over message sequence charts.

Again, restricting the set of message sequence charts further, one obtains
positive results wrt. MSO logic and model-/emptiness-checking. The restrictions
we consider here rely on the notion of a linearization of a message sequence chart
B = (E, λ, (�r)r∈R), which is any total order
 on E such that (

⋃
r∈R �r)∗ ⊆
.

For k ≥ 1, linearization
 is called k-bounded, if, for all (p, q) ∈ Ch,

max
g∈E

|{(e, f) ∈ �(p,q) | e
 g ≺ f}| ≤ k .

Intuitively, along the linearization, there are, at any time and in any channel,
no more than k pending messages. We call B universally k-bounded if every of
its linearizations is k-bounded. Accordingly, we call B existentially k-bounded
if at least one of its linearizations is k-bounded. The message sequence chart
from Fig. 4 is universally 2-bounded (but not universally 1-bounded), and it is
existentially 1-bounded.

Theorem 9 (Henriksen-Mukund-NarayanKumar-Sohoni-Thiagarajan
[13]). Let k ≥ 1. Message-passing automata (i.e., σmsc-automata) are expres-
sively equivalent to MSO(σmsc) over universally k-bounded message sequence
charts. Moreover, emptiness of σmsc-automata over universally k-bounded mes-
sage sequence charts is decidable.

Automata and Logics for Concurrent Systems: Five Models in Five Pages 11

Theorem 10 (Genest-Kuske-Muscholl [12]). Let k ≥ 1. Message-passing
automata (i.e., σmsc-automata) are expressively equivalent to MSO(σmsc) over
existentially k-bounded message sequence charts. Moreover, emptiness of σmsc-
automata over existentially k-bounded message sequence charts is decidable.

7 Conclusion

Note that many more automata models enjoy logical characterizations in terms
of (fragments of) MSO logic, such as tree automata or certain automata running
on graphs [20]. In this paper, however, we focused on automata that may serve as
models of concurrent systems and whose semantics is a set of possible executions.
The apparent similarities between these models suggest that more general meta
results may be possible. It would be interesting to identify signatures σ and
general classes of σ-behaviors for which σ-automata and MSO(σ) (or suitable
fragments) are expressively equivalent.

References

1. Aiswarya, C., Gastin, P.: Reasoning about distributed systems: WYSIWYG. In:
FSTTCS 2014, Leibniz International Proceedings in Informatics, vol. 29, pp. 11–30.
Leibniz-Zentrum für Informatik (2014)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata Is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

4. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4–5), 702–715 (2010)

5. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

6. Bollig, B.: On the expressive power of 2-stack visibly pushdown automata. Logical
Methods in Computer Science 4(4:16), 1–35 (2008)

7. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to
EMSO logic. Theor. Comput. Sci. 358(2–3), 150–172 (2006)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Büchi, J.: Weak second order logic and finite automata. Z. Math. Logik, Grundlag.
Math. 5, 62–66 (1960)

10. Cyriac, A., Gastin, P., Naryanan Kumar, K.: MSO decidability of multi-pushdown
systems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 547–561. Springer, Heidelberg (2012)

11. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soci. 98, 21–52 (1961)

12. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Infor. Comput. 204(6),
920–956 (2006)

12 B. Bollig

13. Henriksen, J.G., Mukund, M., Narayan, K., Sohoni, M., Thiagarajan, P.S.: A the-
ory of regular MSC languages. Infor. Comput. 202(1), 1–38 (2005)

14. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE Computer Society Press (2007)

15. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp.
96–107. Springer, Heidelberg (2010)

16. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer,
Heidelberg (2014)

17. La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014)

18. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL 2011,
pp. 283–294. ACM (2011)

19. Thomas, W.: On logical definability of trace languages. In: Proceedings of Alge-
braic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002,
Technical University of Munich, pp. 172–182 (1990)

20. Thomas, W.: Elements of an automata theory over partial orders. In: POMIV 1996,
vol. 29, DIMACS. AMS (1996)

21. Thomas, W.: Languages, automata and logic. In: Salomaa, A., Rozenberg, G. (eds.)
Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

22. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Siberian
Math. J. 3, 103–131 (1962); In Russian; English translation in Amer. Math. Soc.
Transl. 59, 23–55 (1966)

23. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Informatique
Théorique et Applications 21, 99–135 (1987)

Hardware Implementations of Finite Automata
and Regular Expressions

Extended Abstract

Bruce W. Watson(B)

FASTAR Group, Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

bruce@fastar.org

1 Introduction

This extended abstract sketches some of the most recent advances in hardware
implementations (and surrounding issues) of finite automata and regular expres-
sions. The traditional application areas for automata and regular expressions are
compilers, text editors, text programming languages (for example Sed, AWK,
but more recently Python, and Perl), and text processing in general purpose
languages (such as Java, C++ and C#). In all these cases, while the regular
expression implementation should be efficient, it rarely forms the performance
bottleneck in resulting programs and applications. Even more exotic application
areas such as computational biology are not particularly taxing on the regular
expression implementation — provided some care is taken while crafting the
regular expressions [5].

One application domain stands out in its requirement of very high perfor-
mance — regular expression processing of network traffic. Such processing is
required in a variety of contexts: network security (intrusion detection and pre-
vention), protocol detection, policy enforcement, load balancing/traffic differen-
tiation, and quality of service. Given that it usually involves regular expression
pattern matching over the network packet ‘payload’, it is often known as deep
packet inspection (DPI). Currently, all network equipment vendors (and several
software vendors) provide DPI products using regular expressions. Despite its
age, [11] still gives the best introduction to the algorithmic and implementation
intricacies of networks.

Current network speeds at a typical switch are 40 Gbits/s. Full regular
expression processing must therefore be done at 4 Gbytes/s after accounting
for overheads — one byte per clock cycle on a fast 4 GHz processor. The
latency requirements vary per application (e.g. telephony and banking require
low latency, while video and music streaming can allow for higher latency pro-
vided the variability is low) — meaning that significantly delaying a packet
for processing is typically unacceptable. Network packet sizes vary dramatically
from hundreds of bytes to tens of kilobytes. Packets from various network flows
(e.g. some from a web-browsing session, ftp, mail, and a web application) are
interspersed and may arrive out of order, implying that any regular expression
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 13–17, 2015.
DOI: 10.1007/978-3-319-22360-5 2

14 B.W. Watson

processor must ‘context switch’ appropriate at the beginning and end of a new
packet. Lastly, the number of regular expressions (relatively small Perl-like reg-
ular expressions) being matched is usually in the range from a few hundred to a
few thousand, making it infeasible to deal with them individually. Occasionally,
the regular expression set changes, giving the additional challenge of updating
the processor, either in batch mode or incrementally when only few of the regular
expressions have been edited.

Unfortunately, from a performance perspective, network speed and volume
has been outpacing Moore’s law for computational performance.

2 Typical Solutions

As mentioned earlier, Varghese [11] remains an excellent introduction to the algo-
rithmics and implementation aspects of high-performance networking, including
regular expression processing. Recently, [14] gives an overview of the latest devel-
opments in DPI for networking in virtualized (and cloud-based) environments.
Essentially, all solutions share a common set of abstractions grounded in formal
languages, and then vary based on implementation.

2.1 Abstractions

While occasional attempts have been made to implement regular expressions
directly in hardware1, most require the ‘compilation’ of the regular expression(s)
to some form of finite automaton, with the predictable tradeoffs:

– Nondeterministic automata — requiring space linear in the size of the regular
expressions. DPI does not allow for backtracking simulation of the automaton,
meaning that all paths are pursued in parallel (processing a byte can take
up to time linear in the size of the automaton) and the ‘current state set’ is
a significant data-structure overhead which must be stored/restored during
context (also potentially taking time linear in the size of the automaton).

– Deterministic automata — requiring space potentially exponential in the size
of the regular expression. Processing a byte of network traffic requires a small
number of clock cycles (largely independent in the size of the automaton,
though memory caching can affect this slightly), as does a context switch.

2.2 Implementations

The above-mentioned abstractions underlie most of the software implementa-
tions of DPI2. While there is some variation in the CPU speed, cache memory,

1 Most such attempts decompose the regular expressions in a set of much smaller ones
which are then mapped to content-addressable memory (CAM) implementations.
None of these implementations have yet proven competitive in practice.

2 See [13] for one of many treatments of automata and regular expression implemen-
tations in software.

Hardware Implementations of FAs and REs 15

etc., eventually all such implementations are outpaced by the network traffic,
leading DPI implementers to consider acceleration options.

The first option is to use the graphics processing unit (GPU) [8]. Numerous
such DPI accelerations can be found in the literature (indeed, it appears to be
a favourite student project), all showing impressive performance improvements
in large packets arriving in-order. The architecture of the GPU (SIMD, mean-
ing that numerous smaller processing elements execute the same instructions
in lockstep) and the interface to the CPU (network traffic being transferred
over this interface) impair the performance in realistic networks, which involve
widely varying packet sizes and frequent context switches. This largely limits
GPU accelerations to open-source and software only DPI.

Instead of a general purpose CPU, most network equipment vendors use
domain-specific network processing units (NPUs)3. Most NPUs have been
designed for the breadth of packet processing tasks (routing, packet verification,
etc.), with relatively little memory and silicon real-estate devoted to DPI, and
such DPI implementations tend to suffer from the same performance limitations
as on CPUs4.

Any remaining acceleration is only achievable with custom hardware, which
broadly falls into two categories: reconfigurable hardware5 and application specific
integrated circuits (ASICs). Several vendors provide for FPGA solutions, and
the relatively low cost of implementation makes it also an attractive student
project [7, Chapter 34]. The regular expression set is usually compiled on a
CPU (see [12] for a variety of such compilation algorithms) to an automaton
or to circuit structures encoding the automaton, which are then downloaded to
the FPGA. The chosen circuit structures are usually optimized for high-speed
processing (fewest clock cycles per byte of network traffic), or least silicon real-
estate — though the cost of updating the regular expressions is usually high due
to the compilation on the CPU and the CPU-FPGA bandwidth for reconfiguring
the FPGA.

ASIC solutions typically use a circuit structure resembling a generic automa-
ton (with additional circuitry to simulate it), allowing for rapid updating of the
automaton as the regular expressions are changed. As such, the ASIC solution
has only a few advantages over FPGAs: higher density and performance, lower
volume costs and lower power consumption, but much higher development costs.

2.3 Gaps in Current Solutions

Clearly, all current solutions involve trading off byte-processing time against
silicon real-estate, and the ease of updating the regular expression set.

3 See the websites of prominent vendors such as Cisco, Netronome (which took over
Intel’s NPU product line) and IBM.

4 A notable exception is Netronome’s NPU which includes SIMD processing — in turn
having the same performance characteristics as DPI on GPUs.

5 In the form of field programmable gate arrays (FPGAs).

16 B.W. Watson

3 New Implementations

Homogeneous automata6 are (not necessarily deterministic) ones in which any
given state has in-transitions on the same alphabet symbol (byte). This allows
for an efficient encoding of the transition relation — without node labels, as an
adjacency matrix — and with a mapping from each state to ‘its symbol’. The
bit-matrix and -vector operations (see [13] for implementation details, then in
software) map extremely efficiently to digital circuits and will be discussed in
detail in this talk. In particular, the bit vectors are linear in the total regular
expression size and allow for single clock cycle bit-vector operations to pursue all
nondeterministic automaton paths simultaneously. Furthermore, context switch-
ing can be done rapidly using burst transfers of the bit-vector to/from memory.

Interestingly, dual homogeneous automata7 enjoy a similarly compact encod-
ing. The resulting mapping is subtly different from that of homogeneous
automata, with occasional circuit real-estate and power savings.

The compilation algorithm mapping a regular expression to a homogeneous
automaton is virtually identical to that mapping to a dual homogeneous one.
Our most recent work (included in this talk) encodes the compilation algorithm
in the circuitry with a minimal overhead. For the first time, this enables an
embedded DPI device to be fed regular expressions for compilation directly in
silicon — a significant win over first compiling on a CPU and then downloading
the automaton (which is typically much larger than the regular expression).

4 Ongoing and Future Work

Brzozowski’s algorithm for constructing a deterministic automaton are both ele-
gant and efficient in practice [3]. Recent work led by Strauss and Kourie [10]
has given a parallel version of Brzozowski’s algorithm as communicating sequen-
tial processes (CSP). Coincidentally, Brzozowski’s career has included lines of
research into mapping CSP-like programs to delay-insensitive (unclocked) cir-
cuits — see [4], though numerous others have also worked on such mappings
and circuitry. This talk also covers the use of such mappings to directly compile
Brzozowski’s construction algorithm to a delay-insensitive circuit.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading (1988)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical Comput. Sci. 48, 117–126 (1986)

6 These automata (and variants thereof) were discovered by [1,2,6,9] and are detailed
in most treatments of automata construction algorithms.

7 Where any given state has out-transitions on the same alphabet symbol, see [12]
where they are referred to as reduced finite automata.

Hardware Implementations of FAs and REs 17

3. Brzozowski, J.A.: Regular expression techniques for sequential circuits. Ph.D.
thesis, Princeton University, Princeton, New Jersey, June 1962

4. Brzozowski, J.A., Seger, C.J.: Asynchronous Circuits. Springer (1995)
5. Friedl, J.: Mastering Regular Expressions, 3rd edn. O’Reilly Media Inc., Sebastopol

(2006)
6. Glushkov, V.: The abstract theory of automata. Russ. Math. Surveys 16, 1–53

(1961)
7. Hauck, S., DeHon, A. (eds.): Reconfigurable Computing: The Theory and Practice

of FPGA-Based Computation. Morgan Kaufmann, San Francisco (2007)
8. Kirk, D.B., Hwu, W.M.W.: Programming Massively Parallel Processors: A Hands-

On Approach. Morgan Kaufmann, San Francisco (2010)
9. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IEEE Trans. Electron. Comput. 9(1), 39–47 (1960)
10. Strauss, T., Kourie, D.G., Watson, B.W.: A concurrent specification of Brzo-

zowski’s DFA construction algorithm. Int. J. Found. Comput. Sci. 19(1), 125–135
(2008)

11. Varghese, G.: Network Algorithmics: An Interdisciplinary Approach to Designing
Fast Networked Devices. Morgan Kaufmann, San Francisco (2004)

12. Watson, B.W.: A taxonomy of finite automata construction algorithms. Technical
Report 43, Faculty of Computing Science, Eindhoven University of Technology, the
Netherlands (1993)

13. Watson, B.W.: The design of the FIRE Engine: A C++ toolkit for FInite automata
and Regular Expressions. Technical Report 22, Faculty of Computing Science,
Eindhoven University of Technology, the Netherlands (1994)

14. Watson, B.W.: Elastic deep packet inspection. In: Brangetto, P., Maybaum, M.,
Stinissen, J. (eds.) 6th International Conference on Cyber Conflict, pp. 241–253.
IEEE, Tallinn (2014)

Regular Papers

Complexity of Inferring Local Transition
Functions of Discrete Dynamical Systems

Abhijin Adiga1(B), Chris J. Kuhlman1, Madhav V. Marathe1, S.S. Ravi2,
Daniel J. Rosenkrantz2, and Richard E. Stearns2

1 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
{abhijin,ckuhlman,mmarathe}@vbi.vt.edu

2 Computer Science Department, University at Albany – SUNY, Albany, NY, USA
sravi@albany.edu, {drosenkrantz,thestearns2}@gmail.com

Abstract. We consider the problem of inferring the local transition
functions of discrete dynamical systems from observed behavior. Our
focus is on synchronous systems whose local transition functions are
threshold functions. We assume that the topology of the system is known
and that the goal is to infer a threshold value for each node so that
the system produces the observed behavior. We show that some of these
inference problems are efficiently solvable while others are NP-complete,
even when the underlying graph of the dynamical system is a simple path.
We also identify a fixed parameter tractable problem in this context.

1 Introduction

1.1 Motivation

Methods that use observations of systems to calibrate or infer models and model
properties arise in many contexts. These properties help explain system behav-
iors, and parameterized models may be transferable to other contexts [29]. A case
in point is a protest in Spain in 2011, in which people demonstrated against eco-
nomic austerity measures [13]. In that work on information spread via Twitter,
threshold behavior was used to model tweeting about the protest. If a person v
received tv tweets (from unique users that she followed) about the event, and
then tweeted for the first time before v received the (tv + 1)’th tweet, that
person’s threshold for participation was chosen as tv. The inference of thresh-
olds enabled the full specification of a model for the underlying socio-technical
phenomenon. Several other studies along the same lines have also been carried
out (e.g., [25,30]). The threshold model for social networks, introduced in [15],
is used in many applications (see e.g. [9]). Discrete dynamical systems [4,22],
which generalize cellular automata, represent a rigorous and convenient abstract
model to study socio-technical phenomena.

The problem of inferring the components of a system from observed behavior
has also received a lot of attention in the theoretical computer science literature.
For example, many researchers have studied the problem of learning automata
from sets of accepted strings (see e.g. [23]). Likewise, the problem of learning
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 21–34, 2015.
DOI: 10.1007/978-3-319-22360-5 3

22 A. Adiga et al.

CNF and DNF formulas have also been studied extensively in the literature (see
e.g. [18]). Additional information on these topics will be provided in Sect. 1.3.

1.2 Problems Considered and Summary of Results

Here, we consider an inference problem that arises in the context of discrete
dynamical systems. In particular, we focus on one such model, namely synchro-
nous discrete dynamical systems (SyDSs). We provide an informal description
of a SyDS here; a formal description is given later. A SyDS consists of an undi-
rected graph whose vertices represent entities (agents) and edges represent local
interactions among entities. Each vertex has a state value chosen from a finite
domain (e.g. {0,1}). In addition, each vertex v also has a local transition function
whose inputs are the current state of v and those of its neighbors; the output
of this function is the next state of v. The vector consisting of the state values
of all the nodes at each time instant is referred to as the configuration of the
system at that instant. In each time step, all nodes of a SyDS compute and
update their states synchronously. Starting from a (given) initial configuration,
the time evolution of a SyDS consists of a sequence of successive configurations.
Models similar to SyDSs have been used in several applications, including the
propagation of diseases and social phenomena (e.g. [9,21]).

Several researchers have studied the complexity of various analysis prob-
lems for discrete dynamical systems (e.g. [3,5,16,20,28]). Informally, the goal
of an analysis problem is to predict the behavior of a system given its static
description. An example of an analysis problem is that of reachability: given
a SyDS S and two configurations C1 and C2, will S reach C2 starting from C1?
Such analysis questions are studied by considering the phase space of the SyDS,
which is a directed graph with one vertex for each possible configuration and a
directed edge (x, y) from a vertex x to vertex y if the SyDS can transition from
the configuration corresponding to x to the one corresponding to y in one time
step. In such a case, y is the successor of x and x is a predecessor of y. Each
self loop in the phase space of a SyDS represents a stable configuration or a
fixed point of the system1 (i.e., a configuration in which the system will stay
forever). Any configuration C whose successor is different from C is called an
unstable configuration. A trajectory in phase space is a directed path with
one or more edges. Also, any vertex in the phase space with no incoming edges
represents a Garden–of–Eden (GE) configuration which can arise only as the
initial configuration of the system.

Here, our focus is on a problem which may be considered as an inverse of the
analysis problem. In such a problem, the goal is to infer some aspect of the struc-
ture of a partially specified system given a description of its observed behavior. In
particular, we focus on inferring the local transition functions of a SyDS, given
the underlying graph and appropriate behavior patterns. We consider several

1 We will use the term “stable configuration” instead of “fixed point” throughout this
paper since we will be using the word “fixed” in the context of fixed parameter
tractability.

Inferring Local Transition Functions 23

different behavior patterns (e.g. collection of stable configurations, collection of
trajectories, collection of unstable configurations) and study the complexity of
identifying the local transition functions that can explain the observed behavior.
In particular, we assume that each local transition function fi is a ri-threshold
function for some non-negative integer ri (see Sect. 2 for the definition of thresh-
old functions).

We present results for threshold inference problems for two categories of
observed behavior, namely homogeneous collections (e.g. a set of stable config-
urations, a set of unstable configurations) and heterogeneous collections (e.g.
a collection of stable configurations and a set of unstable configurations). Our
results establish the complexity of the corresponding decision and optimization
problems (see Sects. 3 and 4). For heterogeneous behavior specifications, we also
establish a fixed parameter tractability result (see Sect. 4.2). Thus, our results
provide insights regarding the efficient solvability and computational intractabil-
ity of threshold inference problems for SyDSs. For space reasons, proofs of some
results are omitted in this version; they can be found in [2].

1.3 Related Work

Several inference problems have been explored in the context of disease, infor-
mation and meme spread. One direction of work considers estimating model
parameters given the traces of a diffusion process, network and a class of mod-
els (e.g. Bailon et al. [13]). Abraho et al. [1], Gomez et al. [12], Soundarajan and
Hopcroft [27] consider the problem of inferring the network structure given the
model. Recently, there has been a lot of work on source detection, where the goal
is to find the source of infection given limited information about the network,
diffusion model and the set of infected nodes [26]. Most of the these problems
turn out to be hard even for simple models (such as progressive systems [19])
and networks.

Learning finite automata and Boolean functions are two rich areas which
consider problems with a similar flavor. In the case of learning finite automata,
the problem is to infer a finite (stochastic) automaton given a set of strings
labeled as either in the language or not [18,23]. Similarly, in concept learning
(or learning Boolean functions), the task is to infer a Boolean function given
information about its values on some points, together with the knowledge that
it belongs to a particular class of functions [18].

As mentioned earlier, many researchers have addressed the computational
aspects of testing phase space properties of discrete dynamical systems. Goles
and Mart́ınez [11] provide bounds on the lengths of transients (i.e., trajectories
that end in stable configurations) and cycles in threshold dynamical systems.
The complexity of determining whether a given configuration y of a deterministic
SyDS has a predecessor has been studied in [5]. Problems similar to predecessor
existence have also been considered in the context of cellular automata [8,16].
Researchers have also studied various questions for dynamical systems under the
sequential update model, where the vertex functions are applied according to a
specified order [6,20,22].

24 A. Adiga et al.

2 Definitions and Problem Formulation

2.1 Formal Definition of the SyDS Model

Let B denote the Boolean domain {0,1}. A Synchronous Dynamical System
(SyDS) S over B is specified as a pair S = (G,), where

(a) G(V,E), an undirected graph with |V | = n, represents the underlying graph
of the SyDS, and

(b) = {f1, f2, . . . , fn} is a collection of functions in the system, with fi denot-
ing the local transition function associated with node vi, 1 ≤ i ≤ n.

Each node of G has a state value from B. Each function fi specifies the local
interaction between node vi and its neighbors in G. The inputs to function fi

are the state of vi and those of the neighbors of vi in G; function fi maps each
combination of inputs to a value in B. This value becomes the next state of
node vi. It is assumed that each local function can be computed efficiently. In
a SyDS, all nodes compute and update their next state synchronously. Other
update disciplines (e.g. sequential updates) for discrete dynamical systems have
also been considered in the literature (e.g. [3,22]). At any time t, the configu-
ration C of a SyDS is the n-vector (st

1, s
t
2, . . . , s

t
n), where st

i ∈ B is the state of
node vi at time t (1 ≤ i ≤ n).

The local function fv associated with node v of a SyDS S is a tv-threshold
function for some integer tv ≥ 0 if the following condition holds: the value of fv

is 1 if the number of 1’s in the input to fv is at least tv; otherwise, the value
of the function is 0. Thus, the state of a node may change from 0 to 1 or from
1 to 0. Throughout this paper, we assume that the local transition function for
each node is a threshold function.

We let dv denote the degree of node v, and tv denote the threshold of node v.
The number of inputs to the function fv varies from 1 to dv + 1. We assume
without loss of generality that 0 ≤ tv ≤ dv + 2. (The threshold values 0 and
dv + 2 allow us to realize functions that always output 1 and 0 respectively.)

Example: Consider the graph shown in Fig. 1. Suppose the local transition
functions at each of the nodes v1, v4, v5, v6 is the 1-threshold function, the
function at v3 is the 2-threshold function and that at v2 is the 3-threshold
function. Assume that initially, v1, v4 and v6 are in state 1 and all other nodes
are in state 0. During the first time step, the state of node v5 changes to 1 since
its neighbor v6 is in state 1; the states of other nodes do not change. The con-
figurations at subsequent time steps are shown in the figure. The configuration
(1, 1, 1, 1, 1, 1) at time step 3 is a stable configuration for this system. ��

2.2 Additional Terminology and Notation

A trajectory of a SyDS S is a sequence of configurations 〈C1, C2, . . . , Cr〉, with
r ≥ 2, such that Ci+1 is the successor of Ci, for 1 ≤ i ≤ r − 1. When the last
two configurations in a trajectory are identical, the trajectory ends in a stable

Inferring Local Transition Functions 25

v1 v2 v3 v4

v5

v6

Initial Configuration: (1, 0, 0, 1, 0, 1)
Configuration at time 1: (1, 0, 0, 1, 1, 1)
Configuration at time 2: (1, 0, 1, 1, 1, 1)
Configuration at time 3: (1, 1, 1, 1, 1, 1)

Note: Each configuration has the form (s1, s2, s3, s4, s5, s6), where si is the state of
node vi, 1 ≤ i ≤ 6. The configuration at time 3 is a stable configuration.

Fig. 1. An example of a SyDS

configuration. A stable configuration can be thought of as a special trajectory
consisting of two identical configurations. Given a configuration C and a node v,
we let C(v) denote the value of v in C, and Cv denote the number of 1’s in the
input to fv in C.

A problem is fixed parameter tractable (FPT) with respect to a para-
meter k if there is an algorithm for the problem with a running time of
O(h(k)NO(1)), where N is the size of the problem instance and the function
h(k) depends only on k (see e.g. [24]). In particular, the function h does not
depend on N . Many combinatorial problems are known to be fixed parameter
tractable [24]. In Sect. 4 we show that one of the inference problems for SyDSs
is fixed parameter tractable.

Given a bipartite graph G(V1, V2, E), a matching in G is a subset M of
edges such that no two edges of M share an end point. A matching of largest
cardinality is called a maximum matching. It is well known that for any
bipartite graph with n nodes and m edges, a maximum matching can be found
in O(m

√
n) time [7]. We will use this result in Sect. 4.2.

2.3 Problem Formulations

In all of the threshold inference problems considered in this paper, it is assumed
that the underlying graph of the SyDS is given and that each local function is a
threshold function with an unknown threshold value. We start with the defini-
tions of threshold inference problems with homogeneous behavior specifications.
In this case, the input representing behavior is a set Q along with a type tag;
all elements of Q are of the type specified by the tag. For example, a set Q
with type tag “stable configuration” indicates that each element of Q is a stable
configuration. Similar interpretations can be given for the type tags “unstable
configuration”, “trajectory” and “GE configuration”. We say that a SyDS S
exhibits the behavior specified by Q if S satisfies the property specified
by the type tag of Q for each element of Q. For example, if the type tag of Q
is “stable configuration”, then S exhibits the behavior specified by Q if each

26 A. Adiga et al.

element of Q is a stable configuration of S. The general problem formulation for
the homogeneous case can now be stated as follows.

Inferring Thresholds from Homogeneous Behavior Specifications

Given: A partially specified SyDS S over {0, 1} consisting of the underlying
graph G and a set Q with a type tag.

Question: Is there an assignment of threshold values to the nodes of S such
that the resulting fully specified SyDS S exhibits the behavior corresponding to
the type tag of Q?

A number of specific problems can be derived from the above general defi-
nition. For example, when the type tag of Q is “stable configuration”, we refer
to the resulting problem as Inferring Thresholds from Stable Configura-
tions (ITSC). Likewise, when the type tag of Q is “trajectory” or “unstable
configuration” or “GE configuration”, we refer to the corresponding problems as
Inferring Thresholds from Trajectories (ITT), Unstable Configurations (ITUC)
and GE Configurations (ITGE) respectively.

When the answer to an instance of a decision problem such as ITSC is “no”, it
is natural to consider a maximization version where the goal is to find a threshold
assignment that makes a largest subset of Q to be stable configurations. We use
the prefix “Max” in naming these problems. Thus, we denote the maximization
versions of ITSC, ITT, ITUC and ITGE by Max-ITSC, Max-ITT, Max-ITUC
and Max-ITGE respectively.

When the behavior specification consists of two or more sets, each with
a different type tag, we obtain inference problems for heterogeneous behavior
specifications. Many such inference problems can be formulated by considering
combinations of type tags. Here, we focus on the problem where the observed
behavior is specified by two sets Q1 and Q2 with type tags “stable configuration”
and “unstable configuration” respectively. We say that a SyDS S exhibits the
behavior specified by Q1 and Q2 if S exhibits the behavior specified by Q1 as
well as Q2. We refer to the corresponding problem as Inferring Thresholds
from Stable and Unstable Configurations (ITSUC).

2.4 Preliminary Results

Here, we present some preliminary results which will be used throughout this
paper. Proofs of these results appear in [2].

Lemma 1. Every SyDS S where each local transition function is a threshold
function has at least one stable configuration. Furthermore, a stable configuration
can be found in polynomial time.

Lemma 2. Given the underlying graph G of a SyDS S over {0, 1} and a config-
uration D of S, there is a linear time algorithm for constructing an assignment
of threshold values to the nodes of S such that D is the successor of every con-
figuration of S.

Inferring Local Transition Functions 27

3 Threshold Inference from Homogeneous Behavior
Specifications

3.1 Inferring Thresholds from Stable Configurations

In this section, we present an efficient algorithm for the problem of inferring
thresholds from stable configurations (ITSC). We also show that Max-ITSC is
NP-complete and that it cannot be approximated to within any nontrivial ratio
unless P = NP.

Theorem 1. The ITSC problem can be solved efficiently. When there is a solu-
tion, an assignment of threshold values to the nodes can also be obtained effi-
ciently.

Proof: Let Q = {C1, C2, . . . , Cr} be the given set with type tag “stable configu-
ration”. We can consider the threshold assignment separately for each node. For
any node v, let Q0

v (Q1
v) be the subset of Q such that for each configuration in

Q0
v (Q1

v) the value of v is 0 (1). We use fv to denote the threshold function at
node v.

1. If Q0
v is nonempty, we consider each configuration Ci ∈ Q0

v. Since Ci is a
stable configuration, the threshold tv must satisfy the condition tv > Cv

i , i.e.,
tv ≥ Cv

i + 1. Let tlow
v = 1 + max

Ci∈Q0
v

Cv
i . If Q0

v is empty, we let tlow
v = 0.

2. If Q1
v is nonempty, we consider each configuration Cj ∈ Q1

v. Since Cj is a
stable configuration, the threshold tv must satisfy the condition tv ≤ Cv

j . Let
thigh
v = min

Cj∈Q1
v

Cv
j . If Q1

v is empty, we let thigh
v = dv + 2.

3. The two steps above provide a collection of constraints that can be satisfied
provided tlow

v ≤ thigh
v . When there is a solution, any value for tv can be chosen

such that tlow
v ≤ tv ≤ thigh

v .

Clearly, the above computations can be done in polynomial time. �
Also note that for a given node v, if Q0

v is nonempty, then tlow
v ≥ 1; and if

Q1
v is nonempty, then thigh

v ≤ dv + 1. Thus, if there is a solution, then there is a
solution where none of the local functions are constant functions, i.e., there is a
solution where for each node v, 1 ≤ tv ≤ dv + 1.

Recall that in the Max-ITSC problem, the goal is to choose threshold values
so that a maximum number of elements in the set Q are stable points of S.
We now show a hardness result for this problem which holds even when the
underlying graph of a SyDS is a simple path.

The idea behind the proof is the following. Let us say that two configurations
Ci and Cj conflict if there is a node v such that Ci(v) = 0, Cj(v) = 1, and Cv

i ≥ Cv
j .

Note that if Ci and Cj conflict, then there is no assignment of thresholds under
which both Ci and Cj are stable. On the other hand, if a set of configurations is
conflict-free (i.e., no pair of configurations in the set conflict), then thresholds
can be assigned so that all the configurations in the set are stable. Given an
ITSC problem instance, define the conflict graph for the instance to be the

28 A. Adiga et al.

undirected graph with a node for each configuration in Q and an edge between
each pair of nodes whose corresponding configurations conflict. Each maximum
independent set [10] in the conflict graph gives a maximum cardinality subset
Q′ of Q of configurations that can be made stable.

Theorem 2. Max-ITSC is NP-complete. Further, for any ε > 0, there is no
polynomial time O(n1−ε) approximation algorithm for Max-ITSC, unless P =
NP. (Here n is the number of configurations in the given set Q.) These results
hold even when the underlying graph of the SyDS is a simple path.

Proof: It can be seen that Max-ITSC is in NP. To establish NP-hardness,
we use a reduction from the Maximum Independent Set (MIS) problem: given
an undirected graph H(VH , EH) and an integer K ≤ |VH |, does H have an
independent set of size at least K? MIS is known to be NP-complete [10].

The key to the NP-hardness reduction is to construct an ITSC problem
instance from the MIS in such a way that the conflict graph (defined above)
for the constructed Max-ITSC problem instance is identical to the graph in the
given MIS problem instance. We do this as follows. There is a configuration for
each node of H, with configuration Ci corresponding to node vi ∈ VH . We let
Q = {C1, C2, . . . , Cn}, where n = |VH |. Let EH = {e1, e2, . . . , em}. For each edge
ek ∈ EH , the underlying graph G for SyDS S has two nodes denoted by w1

k and
w2

k along with the edge {w1
k, w2

k}. Suppose the edge ek ∈ EH joins nodes vi and
vj of H. We set Ci(w1

k) = 0, Ci(w2
k) = 1, Cj(w1

k) = 1, and Cj(w2
k) = 0. All other

configurations in Q have value 0 for both w1
k and w2

k. Nodes w1
k and w2

k induce a
conflict between Ci and Cj , but do not induce a conflict between any other pair
of configurations. Thus, any independent set of VH corresponds to a conflict-free
subset of configurations of S and vice versa.

To ensure that the underlying graph of SyDS S is a simple path, we add
m−1 new nodes denoted by z1, z2, . . ., zm−1. For each j, 1 ≤ j ≤ m−1, node zj

is adjacent to w2
j and w1

j+1. In each of the n configurations constructed above,
the values of the nodes z1, z2, . . ., zm−1 are all 0.

It can be verified that H has an independent set of size ≥ K if and only if
there is a conflict-free subset of Q with at least K configurations. This proves
the NP-hardness of Max-ITSC.

It is well known that for any ε > 0, there is no polynomial time O(n1−ε)-
approximation algorithm for the MIS problem, unless P = NP [17]. Since our
construction preserves approximations (i.e., for each r, any independent set of
size r in H leads to a subset of r conflict-free configurations of S), the same
negative result holds for Max-ITS as well. �

Results similar to Theorems 1 and 2 can also be proven when the set Q
consists of trajectories; see [2].

3.2 Inferring Thresholds from Unstable Configurations

Here, we consider the ITUC problem where the goal is to infer thresholds from
a given set Q of unstable configurations. In this case, we show that both ITUC
and Max-ITUC can be solved efficiently.

Inferring Local Transition Functions 29

Theorem 3. The ITUC problem can be solved efficiently. When there is a
solution, an assignment of threshold values to the nodes can also be obtained
efficiently.

Proof: If Q contains every possible configuration of S, (i.e., |Q| = 2n, where n
is the number of nodes in the underlying graph of S), then, by Lemma 1, there
is no solution to the problem.

Suppose that Q excludes at least one configuration of S. Then there is always
a solution to the problem, as outlined below. Let C be a configuration that is not
in Q. From Lemma 2, we can set the thresholds so that the successor of every
configuration is the configuration C; that is, every configuration other than C is
an unstable configuration. �

The following result for Max-ITUC is a simple consequence of the above
theorem.

Corollary 1. Max-ITUC is efficiently solvable.

Results similar to Theorem 3 and Corollary 1 can also be proven when the
set Q consists of Garden of Eden configurations. These results appear in [2].

4 Inference from Heterogeneous Collections of Behavior

4.1 The Complexity of ITSUC

We now consider the ITSUC problem, where there are two sets Q1 and Q2 of
configurations, and the requirement is to find a threshold value for each node of
S such that each configuration in Q1 is stable and each configuration in Q2 is
unstable. As indicated in the following theorem, this decision problem is NP-
complete, even when the underlying graph of S is a simple path.

Theorem 4. The ITSUC problem is NP-complete even when the underlying
graph of the given SyDS is a simple path.

Proof Idea: A reduction from 3SAT [10] appears in [2]. �

4.2 Fixed Parameter Tractability of ITSUC

We now show that ITSUC is fixed parameter tractable with respect to the
number of unstable configurations specified in the problem instance, with no
restrictions on the underlying graph of the given SyDS. Given a set A =
{a1, a2, . . . , ar}, let P (A) denote a partition of A. Let each subset in P (A)
be called a block. We use π(A) to denote the collection of all partitions of A.
For a set A with r elements, it is known that |π(A)| = O((r/ log r)r) [14].

Let Q1 and Q2 denote the set of stable and unstable configurations respec-
tively in the given ITSUC instance. Let q = |Q2| and let n be the number of
nodes in the given SyDS S. From the proof of Theorem 1, it can be seen that
the configurations in Q1 impose constraints on the threshold value of each node

30 A. Adiga et al.

of S. Given any configuration C = (s1, s2, . . . , sn) in Q2, we can try to make C
an unstable configuration by choosing a threshold tvi

for node vi so that in the
successor C′ of C, the state of vi is different from si, 1 ≤ i ≤ n. Such a choice
must also satisfy the constraints imposed on tvi

by the configurations of Q1.
Given an instance of ITSUC, we say that a node v of S is compatible with a
configuration C ∈ Q2 if a value for tv can be chosen so that (i) tv satisfies all the
constraints imposed by the collection Q1 and (ii) this choice makes C an unstable
configuration (regardless of the threshold values assigned to the other nodes).
Extending this definition, we say that a node v is compatible with a subset R
of Q2 if v is compatible with every configuration in R. These definitions are used
in our algorithm (Alg-ITSUC) shown in Fig. 2. We now establish the correctness
of the algorithm and its running time.

Input: Graph G(V, E) of a SyDS S, and two sets of configurations Q1 and Q2 of S.

Requirement: Output “Yes” if there is a threshold value tv for each v ∈ V such that
in the resulting SyDS, all the configurations in Q1 are stable and all the configurations
in Q2 are unstable. Otherwise, output “No”.

Steps:

1. for each partition P in π(Q2) do
(a) Let k denote the number of blocks in P and let B1, B2, . . . Bk denote the

blocks themselves.
(b) Construct the bipartite graph HP (V, VP , EP) where VP has one node for each

block in P and EP = {{x, y} : x ∈ V , y ∈ VP and node x of S is compatible
with the block of P represented by node y }.

(c) if HP has a matching with k edges then output “Yes” and stop.
endfor

2. Output “No”.

Fig. 2. Algorithm Alg-ITSUC to show the fixed parameter tractability of ITSUC

Lemma 3. Algorithm Alg-ITSUC given in Fig. 2 correctly decides whether the
ITSUC instance has a solution.

Proof: We first consider the case where the algorithm returns the answer “Yes”
and show that there is a solution to the ITSUC instance. From the description
of the algorithm, we note that in this case, there is a partition P of Q2 with k
blocks such that there is a matching with k edges in the corresponding bipartite
graph HP . In such a matching, each node y that corresponds to block Py of
P is matched to some node x of the SyDS S. By our construction, node x is
compatible with block Py. By the definition of compatibility, there is a threshold
value tx for node x such that tx satisfies all the constraints imposed by the con-
figurations in Q1, and further, this value of tx for x makes all the configurations
in Py unstable. Since every block of P is matched to a distinct node of S, it
follows that threshold values can be chosen for each node of S independently to

Inferring Local Transition Functions 31

satisfy the required conditions. In other words, there is a solution to the ITSUC
instance.

We now consider the case when the algorithm returns the answer “No” and
show that there is no solution to the ITSUC instance. The proof is by contra-
diction. Suppose there is a solution to the ITSUC instance which assigns the
threshold value tvi

for each node vi of S. Consider the following bipartite graph
W (V1, V2, EW).

(1) V1 and V2 are in one-to-one correspondence with V and Q2 respectively. Let
xi ∈ V1 be the node corresponding to vi ∈ V and let yj ∈ V2 be the node
corresponding to Cj ∈ Q2.

(2) Let EW = {{xi, yj} : the threshold value tvi
assigned by the given solution

to node vi of S allows vi to be compatible with Cj}.

Since the given threshold assignment is a solution to ITSUC, each node yj ∈ V2

must have at least one edge to some node in V1. For each node yj ∈ V2, choose
one such edge {xi, yj} of EW arbitrarily; let us call xi the “dominator” of yj . By
this method, we assign a (possibly empty) subset, say Di, of V2 to each node xi of
V1. (The subset Di contains all the nodes that are dominated by xi.) Since each
node of V2 was assigned only one dominator, the collection of subsets D1, D2,
. . ., Dn is pairwise disjoint. Thus, the non-empty subsets in this collection create
a partition of V2 or equivalently a partition of Q2. Let P denote this partition of
Q2. Further, for each dominator xi, the threshold value tvi

of the corresponding
node vi ∈ V ensures that vi is compatible with all the configurations of Q2

in the block assigned to vi. That is, each block of P has a dominator in V
and no two blocks have the same dominator. Since Alg-ITSUC considers all the
partitions of Q2, when it considers P , the bipartite graph HP constructed from
P has a matching with k edges, where k is the number of blocks of P . Thus, the
algorithm will output the answer “Yes”, contradicting our initial assumption.
This completes the proof of the lemma. �

Lemma 4. Algorithm Alg-ITSUC can be implemented to run in time O(h(q)
NO(1)), where q is the number of unstable configurations, N is the size of the
problem instance and the function h depends only on q.

Proof: Let Q1 (configurations to be made stable) contain r configurations. We
first discuss some preprocessing steps. For any node v and any configuration C
in Q1, the constraint on the threshold tv of v imposed by C can be found in O(n)
time (since each configuration has n state values). Thus, the constraints on tv
imposed by all r configurations in Q1 can be found on O(nr) time. As indicated
in the proof of Theorem 1, all of these constraints can be combined into a single
constraint of the form av ≤ tv ≤ bv for appropriate integers av and bv in O(nr)
time. Thus, obtaining such a single constraint for each of the n nodes can be
done in O(n2r) time. These preprocessing steps can be done before starting the
execution of the for loop in Step 1 of the algorithm.

We now estimate the time needed to check whether a node v is compatible
with a configuration C in Q2. For a node v, the constraint on tv needed to make C

32 A. Adiga et al.

an unstable configuration (regardless of the threshold values of the other nodes)
can be determined in O(n) time. Checking whether this constraint also satisfies
the constraint on tv obtained by considering the configurations in Q1 can be done
in O(1) time. Thus, checking whether a node v is compatible with a configuration
in Q2 can be done in O(n) time. The results from these compatibility checks can
be stored in an n × q Boolean matrix M so that during the execution of the for
loop of the algorithm, we can determine whether a node v is compatible with a
configuration C of Q2 in O(1) time.

We now estimate the time used for each iteration of the for loop of Fig. 2.
For each partition P in π(Q2), the algorithm constructs an appropriate bipartite
graph HP and checks whether the graph has a matching whose size is equal to the
number of blocks of P . If P has k blocks, the number of nodes and edges in HP

is n+k and the number of edges is at most nk. For each node x ∈ V , the blocks
with which x is compatible can be found in O(q) time from the precomputed
matrix M . Thus, constructing the graph HP can be done in time O(nkq) =
O(nq2) since k ≤ q. Since HP has n + k ≤ n + q nodes and at most nk ≤ nq
edges, as mentioned in Sect. 2.2, a maximum matching in HP can be found in
O(nq

√
n + q) time. Thus, each iteration of the for loop can be implemented to

run in time O(nq2 + nq
√

n + q) time.
Since the number of iterations of the for loop is at most |π(Q2)|, the running

time of Step 1 is O(|π(Q2)|nq2+nq
√

n + q). The overall running time of the algo-
rithm, including the preprocessing steps, is O(n2(r+q)+|π(Q2)|nq2+nq

√
n + q).

As mentioned earlier, |π(Q2)| = O((q/ log q)q). Since n + r + q ≤ N , where N is
the size of the given ITSUC instance, it follows that the running time of our algo-
rithm for ITSUC has the form O(h(q)NO(1)), where h(q) = (q/ log q)q depends
only on q. �

The following theorem is a direct consequence of Lemmas 3 and 4.

Theorem 5. The ITSUC problem is fixed parameter tractable where the para-
meter is the number of unstable configurations. �

5 Future Research Directions

We conclude by mentioning two general directions for future work. One direction
is to consider inference problems for other forms of observed behavior such as a
collection of snapshots of the system, where each snapshot specifies a time and
the configuration of the system at that time. Another direction is to consider
inference problems assuming more powerful local functions.

Acknowledgments. We thank the reviewers for carefully reading the manuscript
and providing valuable suggestions. This work has been partially supported by DTRA
Grant HDTRA1-11-1-0016 and DTRA CNIMS Contract HDTRA1-11-D-0016-0010,
NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677 and NIH MIDAS
Grant 5U01GM070694-11.

Inferring Local Transition Functions 33

References

1. Abrahao, B., Chierichetti, F., Kleinberg, R., Panconesi, A.: Trace complexity of
network inference. In: Proceedings of the 19th ACM SIGKDD, pp. 491–499. ACM
(2013)

2. Adiga, A., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns,
R.E.: Complexity of inferring local transition functions of discrete dynamical sys-
tems. Technical report NDSSL-TR-15-048, NDSSL, Virginia Bioinformatics Insti-
tute, Virginia Tech, Blacksburg, VA, June 2015

3. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical
systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)

4. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: Modeling and analyzing social network dynamics using stochas-
tic discrete graphical dynamical systems. Theo. Comput. Sci. 412(30), 3932–3946
(2011)

5. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete
dynamical systems. Theo. Comput. Sci. 386(1–2), 3–37 (2007)

6. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E., Tosic, P.T.: Gardens of Eden and fixed points in sequential dynam-
ical systems. In: DM-CCG, pp. 95–110 (2001)

7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
Press and McGraw-Hill, Cambridge (2009)

8. Durand, B.: A random NP-complete problem for inversion of 2D cellular automata.
Theor. Comput. Sci. 148(1), 19–32 (1995)

9. Easley, D., Kleinberg, J.: Networks, crowds and markets: reasoning about a highly
connected world. Cambridge University Press, New York (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman and Co., San Francisco (1979)

11. Goles, E., Mart́ınez, S.: Neural and automata networks. Kluwer, Dordrecht (1990)
12. Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and

influence. In: Proceedings of the 16th ACM SIGKDD, pp. 1019–1028. ACM (2010)
13. Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The Dynamics

of Protest Recruitment Through an Online Network. In: Nature Scientific Reports,
pp. 1–7 (2011), doi:10.1038/srep00197

14. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison-Wesley,
Reading (1994)

15. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6),
1420–1443 (1978)

16. Green, F.: NP-complete problems in cellular automata. Complex Syst. 1(3),
453–474 (1987)

17. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

18. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

19. Kleinberg, J.: Cascading behavior in networks: Algorithmic and economic issues.
In: Nissan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Graph
Theory. ch. 24. Cambridge University Press, New York (2008)

http://dx.doi.org/10.1038/srep00197

34 A. Adiga et al.

20. Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in Boolean
dynamical systems. In: Proceedings of the ICTCS, pp. 163–174 (2007)

21. Macy, M., Willer, R.: From factors to actors: Computational sociology and agent-
based modeling. Ann. Rev. Sociol. 28, 143–166 (2002)

22. Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems.
Springer, Heidelberg (2007)

23. Murphy, K.P.: Passively learning finite automata. Technical report, Computer
Science Department, UC Davis (1995)

24. Neidermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University
Press, New York (2006)

25. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th WWW, pp. 695–704. ACM (2011)

26. Shah, D., Zaman, T.: Rumors in a network: Who’s the culprit? IEEE Trans. Inf.
Theory 57(8), 5163–5181 (2011)

27. Soundarajan, S., Hopcroft, J.E.: Recovering social networks from contagion infor-
mation. In: Kratochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS,
vol. 6108, pp. 419–430. Springer, Heidelberg (2010)

28. Sutner, K.: Computational classification of cellular automata. Int. J. Gen. Syst.
41(6), 595–607 (2012)

29. Trucano, T.G., Swiler, L.P., Igusa, T., Oberkampf, W.L., Pilch, M.: Calibration,
validation and sensitivity analysis: What is what. Reliab. Eng. Syst. Saf. 91,
1331–1357 (2006)

30. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social
contagion. PNAS 109(9), 5962–5966 (2012)

From Ambiguous Regular Expressions
to Deterministic Parsing Automata

Angelo Borsotti1, Luca Breveglieri1, Stefano Crespi Reghizzi2(B),
and Angelo Morzenti1

1 Dip. di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, Piazza Leonardo Da Vinci N. 32,

20133 Milano, Italy
angelo.borsotti@mail.polimi.it, {luca.breveglieri,
stefano.crespireghizzi,angelo.morzenti}@polimi.it

2 Dip. di Elettronica, Informazione e Bioingegneria (DEIB),
CNR-IEIIT, Politecnico di Milano, Piazza Leonardo Da Vinci N. 32,

20133 Milano, Italy

Abstract. This new parser generator for ambiguous regular expressions
(RE) formally extends the Berry-Sethi (BS) algorithm into a finite-state
device that specifies the syntax tree(s). We extend the local testability
property of the marked RE ’s from terminal strings to linearized syntax
trees. The generator supports disambiguation, i.e., selecting a preferred
tree in case of ambiguity. The selection is parametric with respect to
the Greedy or POSIX criterion. The parser is proved correct and has
linear-time complexity. The generator is available as an interactive SW
tool (on GitHub - see http://github.com/breveglieri/ebs/README).

Keywords: Regular expression · RE · Syntax tree · Berry-Sethi · Ambi-
guity · Parsing

1 Introduction

The popularity of regular expressions (RE) as a formalism for specifying a text
pattern comes from the efficient algorithms available for string recognition; see
e.g., [1] for a partial survey. Most such methods transform a RE into a finite
automaton, deterministic (DFA) or not (NFA), which acts as language recog-
nizer, i.e., a yes/no algorithm. This is not enough for modern applications, which
additionally require to build the syntax tree(s) of the input and, when the RE
is ambiguous, to select one tree in accordance with a predefined criterion, most
often either the Greedy or the POSIX one.

In the course of time, the parsers for RE ’s have progressed from the original
naive and inefficient idea of exploiting a nondeterministic push-down parser for
the language generated by an ambiguous RE. Progress has brought more com-
pact representations of parse trees, linear-time complexity, and clever methods

Work partially supported by PRIN “Automi e Linguaggi Formali”, Italy.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 35–48, 2015.
DOI: 10.1007/978-3-319-22360-5 4

http://github.com/breveglieri/ebs/README

36 A. Borsotti et al.

for directly building the tree of interest while skipping all the others. Space pre-
vents us from fully discussing former valuable proposals, and we briefly explain
how our research goes beyond them.

Our distinguishing feature is that we formally extend the well known Berry-
Sethi (BS) Algorithm [2] for constructing a DFA recognizer of an RE. With a
minimal overhead and the same conceptual approach based on local languages
[3], we transform the BS recognizer into a device that acts as a parser and builds
the linearized syntax tree. Other proposals have been based, as well, on classic
construction methods: a Thompson-based NFA recognizer [6] or the Brzozowski
derivative method [11]. But their use of a recognizer-construction method is
limited: just as a conceptual reference, or as a sort of subsystem on top of which
they provide the methods to build the tree. A notable exception is in [9], which
has inspired our work yet differs from it by using an NFA instead of a DFA. We
also refer to [5] for a similar approach for extended BNF grammars.

A so-called “problematic” RE yields infinitely many syntax trees for a string,
when it contains a Kleene star with a nullable argument. Our solution (similar
to former ones) uniformly deals with any RE, and the resulting parser just skips
the irrelevant ambiguous trees, by means of a simple test that dismisses repeated
empty strings. Parametricity with respect to the ambiguity resolution criterion is
a feature unavailable in the existing proposals, which are either Greedy-oriented
[7] or POSIX -oriented [9,11]. Each disambiguation criterion assigns a priority to
the partial tree it builds, as first shown for the Greedy case in [7]. Our algorithm
and tool express the Greedy and POSIX criteria for selecting a tree node.

About efficiency, our parser works in linear time as all the recent ones do, yet
it is faster and, on unambiguous strings, it has a reduced overhead. An interactive
light-weight parser generator SW tool is available to demonstrate our method.

Paper Organization. Section 2 lists the basic definitions, shows a running
example (Fig. 1) and introduces the marked RE ’s, wherein terminals and meta-
symbols are made distinct to obtain a local language. Section 3 presents the
parser generator algorithm and hints at the correctness proof of the recognizer.
Section 4 explains how to build the syntax tree and to deal with infinite ambigu-
ity, and it also includes complexity analysis. Section 5 formalizes parsing ambi-
guity, explains how to detect it, and outlines the technique used for selecting
one out of the ambiguous trees, by the Greedy or POSIX criterion. The parser
generator SW tool is briefly described. Section 6 summarizes the main results.

2 Basic Definitions

Since the basic concepts of the theory of regular expressions (RE) are well-known
and easily available, e.g., in [10], it suffices to list the terms and notation we use
here. The powerset of a finite set S is denoted by ℘ (S). The terminal alphabet
Σ contains the terminal symbols, denoted by a, b, . . . , and the end-of-text by �.
The empty string is denoted by ε. The length of a string x is denoted by |x | ≥ 0
and the number of occurrences of a symbol a in x is denoted by |x |a ≥ 0.

From Ambiguous Regular Expressions to Deterministic Parsing Automata 37

The metasymbol alphabet is M = { 0, 1, ‘ | ’, ‘ · ’, ‘ ∗ ’, ‘+ ’, ‘ (’, ‘) ’ } and its
elements are generically denoted by m. Symbols 0 and 1 denote the empty
set ∅ and the string ε, respectively. Symbols “ | ”, “ · ”, “ ∗ ” and “+ ” denote
union, concatenation (optional), and the Kleene star and cross, respectively.
Assume that it holds Σ ∩ M = ∅ and define a new alphabet Ω = Σ ∪ M . The
elements of the alphabet Ω are generically denoted by s.

We will consider RE ’s, denoted as usual, over the alphabet Ω. Union and
concatenation are associative and may form chains of any length. The operator
priority is this: union (lowest), concatenation, and Kleene star / cross (highest).
The argument of an iterative operator (star / cross) is always parenthesized,
e.g., (a)∗. A RE e generates a language L (e) ⊆ Σ∗, and both are nullable if
ε ∈ L (e).

abstract syntax tree - AST
abstract syntax tree with structural marking

in dotted form - marked AST

•

()∗

|

()+

a

•

b a

•

a b a

b

•
Λ

1 ()∗
1

|
1.1

1.1.1 ()+1.1.1

a
1.1.1.1

•
1.1.2

b
1.1.2.1

a
1.1.2.2

•
1.1.3

a
1.1.3.1

b
1.1.3.2

a
1.1.3.3

b
2

unmarked syntax trees of “a b a b”

•

()∗

|

()+

a

|

•

b a

b

Greedy tree

•

()∗

|

•

a b a

b

POSIX tree

structurally marked LST’s ωτ of string “ a b a b ”

Greedy

ωτ1 =
1 1.1.1

a
1.1.1.1 1.1.1

b
1.1.2.1

a
1.1.2.2 1

b
2

ωτ2 =
1

a
1.1.3.1

b
1.1.3.2

a
1.1.3.3 1

b
2

POSIX

numerically marked LST’s ωτ of string “ a b a b ”

ωτ1 =
1 2

a
3 2

b
4

a
5 1

b
9

Greedy

ωτ2 =
1

a
6

b
7

a
8 1

b
9

POSIX

RUNNING
EXAMPLE

Fig. 1. Abstract syntax trees of the RE e =
(
(a)+ | b a | a b a

)∗
b (top); syntax trees

and linearized trees of the ambiguous string a b a b ∈ L (e) (bottom).

The structure of a RE e can be represented as an abstract syntax tree called
AST, or as a marked AST, as shown in Fig. 1 (top left and right, respectively).

38 A. Borsotti et al.

In the structurally marked form, each node subscript represents the path from
the tree root (subscript Λ) to the node itself, in a dotted notation (the prefix
“ Λ ” is always omitted). A subexpression (s.e.) is a well-formed substring of e
that corresponds to a subtree in the whole AST of e.

Every string in the language L (e) has (at least) one syntax tree, representable
as an AST ; if the string has two or more syntax trees, it is ambiguous, as well
as the RE e itself. By a pre-order tree visit, we obtain a linearized syntax tree
or LST. Two syntax trees for string a b a b ∈ L (e) and the corresponding LST ’s
are shown in Fig. 1 (bottom); more explanations come later in Sect. 5.

We have chosen two tree selection criteria often adopted: Greedy and POSIX
[8]. Actually some versions of Greedy exist, e.g., the ones of [7] (we use this)
and of the Java class “regex”, which behave differently, whereas POSIX is a “de
facto” standard. The next definition and example outline the two criteria.

Definition 1 (Tree selection criterion). Given an ambiguous RE e, if in
matching a string of L (e), two or more s.e.’s are able to match in a string
position, or one s.e. but in different ways, then the Greedy [7] and POSIX [8]
selection criteria specify how to choose. Features common to both criteria: (i)
among alternative s.e.’s, the leftmost s.e. has priority, unless overruled by (iv);
(ii) if two iterative s.e.’s (Kleene star or cross) are nested, then maximizing the
number of iterations of the inner s.e. has priority over the outer s.e.; (iii) if an
iterative s.e. has a nullable argument unable to match a non-empty substring (in
that string position), then it iterates once matching the empty string.

POSIX additionally prescribes: (iv) for one s.e. the longest match has pri-
ority, and among alternative s.e.’s, a s.e. able to match a longer substring has
priority over a s.e. able to match a shorter one, overruling (i) if necessary. 	

Example 1. Figure 1 (bottom left) shows two trees for a b a b. Greedy [7] prefers the
left tree, as s.e. (a)+ is on the left of s.e. a b a, see (i). POSIX [8] prefers the right
tree, as s.e. a b a has a match longer than s.e. (a)+, see (iv). RE

(
(a)∗)∗ matches

string a a as
(
(a a)

)
by both [7,8], see (ii), but as

(
(a) (a)

)
by java.regex. 	

For a language L ⊆ Σ+, recall the classic definitions of the initial, final and
digram (substring of length two) sets, as well as that of the follow set, of a
terminal a ∈ Σ, which are respectively denoted by Ini (L), Fin (L), Fol (L, a) ⊆
Σ, and by Dig (L) ⊆ Σ2, as follows:

Ini (L) = { a | a x ∈ L } Fin (L) = { b | x b ∈ L }
Dig (L) = { a b | x a b y ∈ L } Fol (L, a) = { b | a b ∈ Dig (L) } (1)

where x, y ∈ Σ∗. If it holds L = L (e), we denote these sets by Ini (e), etc. In
Eq. (2) we recall the classic Definition [3] of local (or 2-strictly locally testable)
language L ⊆ Σ+. For some fixed sets Ini, Fin and Dig, the strings of L start
and end by a letter in Ini and Fin, respectively, and contain only digrams in
Dig :

L = Ini · Σ∗ ∩ Σ∗ · Fin −
(

Σ∗ · (
Σ2 − Dig

) · Σ∗
)

(2)

It is well known [2,3] how to compute the sets Eq. (1) for a RE or subexpression,
and how to construct a DFA for the local language defined by Eq. (2).

From Ambiguous Regular Expressions to Deterministic Parsing Automata 39

Definition 2 (Marked RE). Let e be a RE over the terminal alphabet Σ. Let
ê be the string obtained from e by replacing each (terminal or meta) symbol s ∈ Ω
that occurs in e at position h, with the marked symbol sh. String ê is called “fully
marked RE”. If only the symbols a ∈ Σ are marked, the resulting RE is called
“terminally marked” and is denoted by ē. A RE is said to be “marked” if it is
fully or terminally marked. The set Ω̂ = Σ̂ ∪ M̂ of all the marked symbols in ê
is called “extended marked alphabet”: it is the union of the marked terminals Σ̂
and marked metasymbols M̂ . The marked alphabets depend on the RE e, but the
dependence is left understood. The unmarking function unmark : Ω̂ → Ω is defined
as sh

unmark�−−−−−→ s for any s, sssand extended to strings in the natural way. 	

Marking yields a new RE ê (or ē) from e, with no repeated marked symbols.
Provided it is so, any rule that assigns marks to symbols is acceptable: the root-
to-node structural rule or the left-to-right numerical one are just two options.
To clarify Definition 2, we take the unmarked RE e Eq. (3) and we show how to
structurally Eq. (4), numerically Eq. (5) and terminally Eq. (6) mark it (see also
Fig. 1). Notice that both forms Eqs. (4) and (5) are fully marked:

e =
(

(a)+ | b a | a b a
)∗

b (3)

ê =
1

(

1.1.1

(
a

1.1.1.1

)+

1.1.1
|

1.1
b

1.1.2.1
·

1.1.2
a

1.1.2.2
|

1.1
a

1.1.3.1
·

1.1.3
b

1.1.3.2
·

1.1.3
a

1.1.3.3

)∗

1

·
Λ

b
2

(4)

ê =
1

(

2 (a3)+4 |
5

b6 ·
7

a8 |
9

a10 ·
11

b12 ·
13

a14

)∗

15

b16 (5)

ē =
(

(a1)+ | b2 a3 | a4 b5 a6

)∗
b7 (6)

Remarks. The associative operators in the form Eq. (4) have an identical root-
to-node subscript (mark) as they map to one tree node, the union and concate-
nation metasymbols are uniquely pinpointed by their adjacent marked symbols,
and parentheses come in matching pairs. This permits to somewhat simplify
form Eq. (4) and similarly Eq. (5): drop all the union and concatenation marks,
and unify the two marks of matching parentheses. Thus we obtain a partially
marked RE, which we may continue to call fully marked, e.g., from Eq. (5):

ê =
1

(

2 (a3)+2 | b4 a5 | a6 b7 a8

)∗

1
b9 (7)

In the next examples, for legibility we use such a simplified numerical marking.
Also, as the end-of-text � occurs only once in a RE, it can be left unmarked.

Next we extend the sets Ini, Fin, Dig and Fol Eq. (1) to a fully marked
RE. The key idea is to consider the metasymbols as terminal symbols. Thus
a fully marked RE ê is viewed as a well-formed string over the alphabet Ω̂
(Definition 2), e.g., Eq. (7). Yet, ê is not a valid RE, as the marked parentheses do
not act as metasymbols any longer. So we put them back into the RE, but under
another representation. The reintroduction rules Eq. (8) show how to rewrite a
parenthesis pair in ê ∈ Ω̂+, as well as the empty set:

40 A. Borsotti et al.

parenthesis pair reintroduction rule - yields reparenthesized RE ĕ

h (ê)h with no ∗ or +
h

([
ê
])

h
and 0h is rewritten as 0h ∅

h (ê)∗
h and h (ê)+h

[

h

([
ê
]+

)

h
| 1h

]
and

h

([
ê
]+

)

h

(8)

In this reparenthesized RE, denoted by ĕ, it is the square brackets ‘ [‘, ‘] ‘ and
the empty set ∅ that truly act as metasymbols. Notice the new marked meta-
symbol 1h added to M̂ , to represent the empty string included in the Kleene
star (the cross does not need it). Thus, the reintroduction rules Eq. (8) enlarge
the alphabets M̂ and Ω̂ (which remain finite). From now on, we assume that the
alphabets M̂ and Ω̂ are always completed in this way.

Example 2. Applying the reintroduction rules Eq. (8), RE ê Eq. (7) becomes
(Fig. 1):

ĕ =
[

1

([

2

(
[a3]+

)
2

| b4 a5 | a6 b7 a8

]+)

1
| 11

]
b9 (9)

The reparentesized RE ĕ has these sets of initials and digrams (not all shown):

Ini (ĕ) = {1(, 11} Dig (ĕ) =
{
1
(2(, 1(b4, 1(a6, 11b9, 2(a3, a3a3, a3)2, . . .

} 	

Clearly the language L (ĕ) generated by the reparenthesized RE ĕ over the com-
pleted alphabet Ω̂ is local Eqs. (1-2) and is defined by the sets Ini, Fin, Dig of ĕ.

3 Parser Construction

The classical Berry-Sethi algorithm builds a DFA of language L (e). We recall
this algorithm (described, e.g., in [2,3]), then we suitably extend it into a parser.

Classical Berry-Sethi Recognizer (BS). Given a RE e, the BS algorithm
works as follows: it takes the terminally marked RE ē, it concatenates the end-
of-text � to ē, and from ē � it builds a DFA for the language L (e). Each DFA
state q is identified by a set TI (q) ⊆ Σ̂ of marked letters ah called terminal
items. The initial state q0 has the item set TI (q0) = Ini (ē �), which is empty if,
and only if (iff), it holds L (e) = ∅. No other state q
= q0 has an empty item set
TI (q). A state q is final iff its item set TI (q) contains the end-of-text �.

For an unmarked letter a (different from �) and a state q, the subset TIa (q) ⊆
TI (q) contains the terminal items ah such that it holds a = unmark (ah), which
from now on are called “items of class a”. For some pairs (a, q) the set TIa (q)
of items of class a may be empty. Else the DFA has an arc labeled a from q to
the state q′ identified by:

TI (q′) = { bk | ∃ ah ∈ TIa (q) such that bk ∈ Fol (ē �, ah) } (10)

The state q′ is identified by the follow sets of the terminal items of class a. The
proof that this BS DFA recognizes the language L (e) is in [2], simplified in [3].

From Ambiguous Regular Expressions to Deterministic Parsing Automata 41

BS Recognizer with Parser (BSP). Now we construct a DFA, called BSP,
that not only recognizes the language L (e), but also builds the parse tree(s). We
enrich the previous BS DFA by adding to it syntactic information represented
by marked metasymbols and by certain pointers. To this purpose, we extend the
definitions of initial and follow sets to specify the metasymbols that precede a
terminal symbol in a fully marked RE.

Definition 3 (Finished initial and follow sets). A marked non-empty string
ζ ∈ Ω̂+ is called finished if it is the concatenation of a possibly empty prefix μ
of metasymbols that does not contain either an empty set 0l or two identically
marked symbols 1l, and of a marked terminal ah. The formal definition of ζ is:

ζ = μah with μ, ah ∈ M̂∗, Σ̂ and ∀ 0l, 1l ∈ M̂ |μ |0l = 0 and |μ |1l ≤ 1
(11)

The marked terminal ah is called the “end-letter“ of ζ (ah may be �). The
finished initial set of a RE e, denoted by Ini fin, is the finite set of finished
strings:

Ini fin (e) = { μah | Ini (μah) ⊆ Ini (ĕ) ∧ Dig (μah) ⊆ Dig (ĕ) } (12)

The finished follow set of a marked terminal symbol ah ∈ Σ̂ (ah may not be �)
in a RE e, denoted by Fol fin, is the finite set of finished strings:

Fol fin (e, ah) = { μ bk | Dig (ah μ bk) ⊆ Dig (ĕ) } (13)

Both sets use the RE ĕ Eq. (8). The set of all finished strings ζ is denoted by Ẑ.
	

The prefix μ of a finished string is a possibly empty metasymbol sequence that
encodes an acyclic path between the end-letters ah and bk in ĕ. The constraints
stated in (11) prevent infinite string ambiguity: in particular, the null string ε
defined by a Kleene star (or cross) with a nullable argument, such as for instance
(1)∗, may not iterate two or more times; see Sect. 4 and Examples 5 and 7 for
more discussion and details. For brevity we skip the computation of the number
of finished strings for a given RE.

The new BSP we want to construct for a fully marked RE is a DFA A similar
to the classical BS DFA ABS for a terminally marked RE. Every state of A is
identified by a set of items that enrich the terminal items with some syntactic
information. Moreover, within a state each item is identified by an item identifier
(e.g., an integer) to be later used for building the parse tree(s). The set of all
the item identifiers is denoted by ID.

Definition 4 (Item). An item is a pair ι = 〈 ζ, Π 〉, where ζ ∈ Ẑ is a finished
string and Π ⊆ ID is a (possibly empty) set of item identifiers. An item is final
if the end-letter of ζ is the end-of-text �. An item set I is a binary relation
included in the set product Ẑ × ℘ (ID). 	

Let X and Y be finite sets, and pose W = X × ℘ (Y). We define an operation
Eq. (14) called group-byX that collects all the pairs (x, Y) ∈ W that have the
same left element x ∈ X. For a set R ⊆ W of such pairs to be collected, define:

42 A. Borsotti et al.

R group-byX�−−−−−−−→
{

(x, Yx) | Yx = { y | ∃ (x, Y) ∈ R y ∈ Y }
}

(14)

Algorithm 1. (BS recognizer with Parser - BSP) Construction of the
the DFA A that recognizes a string in L (e) and builds its parse tree(s).
Input: the sets Ini fin and Fol fin of a RE e � over a terminal alphabet Σ
Output: a recognizer-parser DFA A = (Σ, Q, q0, δ, F) of the RE e
I (q0) :=

{ 〈 ζ, ∅ 〉 | ζ ∈ Inifin (e �) } untagged // initial state q0 (12)

Q := { q0 } δ := ∅ // initialize state set Q and transition set δ
while ∃ state q ∈ Q that is untagged do // scan all states q

set state q tagged // tag source state q
foreach unmarked letter a ∈ Σ (�=�) do // scan all letters a (�=�)

I (q′) := ∅ untagged // temporary target state q′
foreach item ι = 〈 ζ, Π 〉 ∈ Ia (q) do // scan items of class a

foreach

(
finished string ζ′ such that

ζ′ ∈ Folfin (e �, end-letter ζ)

)

do //

scan the set
of followers
of end-letter
of str. ζ (13)

ι′ := 〈 ζ′, { item identifier of ι in q } 〉 // make new item ι′
I (q′) := I (q′) ∪ { ι′

}
// add item ι′ to state q′

if I (q′) �= ∅ then // state q′ is not empty

I (q′) := group-by
̂Z
(I (q′)) // group items of q′ (14)

if q′ �∈ Q then // state q′ is a new one

Q := Q ∪ { q′ } // add new target state q′

δ := δ ∪ { q
a−→ q′ } // add new a-transition

F := { q ∈ Q | ∃ item ι ∈ I (q) that is final } // final state set F

TheBSP of aRE e is aDFAA = (Σ, Q, q0, δ, F) constructed byAlgorithm1.
The states of A extend those of the classical BS. Each state q ∈ Q is identified
by a set I (q) ⊆ Ẑ × ℘ (ID) of items grouped through the operation group-by

̂Z .
For an unmarked letter a (different from �) the subset Ia (q) ⊆ I (q) contains
the items ι = 〈 ζ, Π 〉 with ζ = μah such that it holds a = unmark (ah), called
“items of class a” (as for BS).

The core of Algorithm 1 is the innermost for loop that checks the set Fol fin

and finds all the finished strings that follow the current one (Definition 3). The
destination state q′ of the a-arc q

a−→ q′ is identified by the finished follow sets
Eq. (13) of the items (Definition 4) of class a in the source state q. The new item
ι′ has syntactic information represented by the (prefix μ′ of the) finished string
ζ ′ and has a backward pointer to the source item ι. The two information pieces
are unnecessary for string recognition, but specify the parse tree(s).

The states are tagged to avoid reexamining them. If it holds L (e) = ∅, then
Algorithm 1 creates only the initial state q0 with I (q0) = ∅ and no arcs. Else, it
creates the non-empty state q0 and possibly more states, none empty, with the
connecting arcs. Every state is both accessible and co-accessible by construction
(A is trim). No item has a finished string that contains the empty set 0h (see
rules Eq. (8) and Definition 3). The items in q0 do not have any backward link,
whereas all the others are linked back to their source items.

From Ambiguous Regular Expressions to Deterministic Parsing Automata 43

Table 1. Finished initial and follow sets Ini fin and Fol fin of RE e Eq. (3), marking
Eq. (7).

1 2 (a3

1
2 b4

3 a6

4) 1 b9

1 2 (a3

1 3
2 b4

3 a6

4) 1 b9

a5
a5

a8

a3

b4
a6

b9

a3

b4
a6

b9
b7

[q0 q5 q6]
[q1 q2]

[q3]
[q4]

ABS →
a

b a

a

ba

1 a5 2

2 4

1 a5 3

2 5

3 a8 6

[q0 q1 q2 q5 q6] [q3 q4]

↑
Amin

→
b

a

a

1 1 (2 (a3

it
e
m

ba
c
k
p
tr
s

2 1 (b4

3 1 (a6

4 11 b9

1 a3

1

2) 2 2 (a3

3) 2 b4

4) 2 a6

5) 2) 1 b9

6 b7 3

1 a3

1 2

2) 2 2 (a3

3) 2 b4

4) 2 a6

5) 2) 1 b9

6 b7 4

q0

q1 q2

q3 q4

q5 q6

↑
A

→ →

it
e
m

id
s

fi
n
is
h
ed

st
ri
n
g
s

a a

a

b b

a b a

b

a

a

b

cla
ssica

l
B
erry-S

eth
i
D
F
A

minimal DFA

ν======⇒
hom.

BSP DFA A of the RE e (3) constructed by Alg. 1

Fig. 2. BSP DFA A of the RE e Eq. (7), with the equivalent BS and minimal DFA’s.

The BSP DFA A recognizes the language L (e) of RE e, since the BS DFA
ABS = (Σ, QBS, qBS0 , δBS, FBS) is a homomorphic image of A, as it is proved
in the following Proposition 1.

44 A. Borsotti et al.

Proposition 1 (Equivalence of DFA’s). Given a RE e, the DFA’s A and
ABS of e are equivalent, i.e., they recognize the language L (e). 	

Sketch of Proof. There is a DFA homomorphism ν that maps the BSP A onto
the pure recognizer ABS by canceling the syntactic information represented by
the metasymbols and the pointers in the (items of the) states of A, whence the
DFA A is equivalent to the DFA ABS. In general the BSP A is not minimal and
has more states than ABS, which may be not minimal either. 	

Example 3. The sets Ini fin and Fol fin of the RE e � Eq. (3) with marking
Eq. (7) are shown in Table 1 . The BSP A for e is shown in Fig. 2, along with
the pure recognizer ABS = ν (A) (image of A through the homomorphism ν),
and the minimal equivalent DFA Amin. Although the recognizer ABS has fewer
states than the BSP A (4 vs 7), it is not minimal. 	

A general property of the BSP is that, for every state q and every item pair
〈 ζ, Π 〉, 〈 ζ ′, Π ′ 〉 in I (q), the pointer sets Π and Π ′ are either identical or dis-
joint, e.g., see Fig. 2. This makes tree disambiguation more efficient to compute.

4 Tree and Complexity

Now we show how to build the syntax tree and analyze the complexity. Consider
a transition t : q

a−→ q′ of the BSP A and two items ι, ι′ ∈ Ia (q), I (q′) with
ι, ι′ = 〈 ζ, Π 〉, 〈 ζ ′, Π ′ 〉. We say they are linked by t if it holds (identifier of ι
in q) ∈ Π ′, i.e., ι is a predecessor of ι′ (Definitions 3 and 4). Every transition t
links at least one item pair. Next take a string w ∈ L (A) of length |w | = n ≥ 0.
If it holds w
= ε then there is one w-labeled transition sequence t1 . . . tn and
qn ∈ F ; else it holds w = ε and q0 ∈ F . We associate to w a non-empty set of
item sequences ISw, defined as follows:

ISw =
{

ι0 . . . ιn
∀ i ∈ [1 . . . n] items ιi−1, ιi are linked by trans. ti
and item ιn is final

}

∪ { ι0 | n = 0 and item ι0 is final }
(15)

Pose the item sequence τ = ι0 . . . ιn ∈ ISw. The extended string ωτ is defined
as ωτ = ζ0 . . . ζn ∈ Ω̂+, where ιi = 〈 ζi, Πi 〉 (0 ≤ i ≤ n). Then pose the set
ωw = { ωτ | τ ∈ ISw }. Every string w ∈ L (A) has at least one corresponding
item sequence τ and extended string ωτ , so the string set ωw is not empty.

Given a RE e, reparentesized as ĕ, every marked string ωτ ∈ L (ĕ) is a
linearized syntax tree (LST) of an unmarked string w ∈ L (e), which is obtained
by unmarking string ωτ and canceling the metasymbols. Conversely, every string
w ∈ L (e) has one LST ωτ ∈ L (ĕ), or more than one if it is ambiguous.

The important fact is that the language L (ĕ) is local, see Eqs. (2) and (8) in
Sect. 2, and that it contains the LST ’s of language L (e).

Example 4. Figure 1 (bottom right) shows the LST ’s of the ambiguous string
a b a b for the RE e Eq. (3). Observe the structurally and numerically marked
LST ’s for the marked forms Eqs. (4) and (7) of e, respectively. See Example 1
for the distinction between the Greedy and POSIX forms of the syntax tree. 	

From Ambiguous Regular Expressions to Deterministic Parsing Automata 45

Definition 5 (Extended language). Given a BSP A, this language L̂ (A):

L̂ (A) =
⋃

w ∈ L (A)

ωw ⊆ Ω̂+

is called the “extended language” of the BSP A, over the marked alphabet Ω̂. 	

Notice that the extended language L̂ (A) contains the LST ’s of language L (A).
The next proposition characterizes infinite ambiguity (the proof is omitted).

Proposition 2 (Infinite ambiguity). A string w is infinitely ambiguous iff it
has a LST ωτ that contains a substring 1l μ 1l, for some mark l and μ ∈ M̂∗. 	

Example 5. The RE (1)∗, marked 1 (12)∗

1, has LST 1 (12 12) 1. The RE (1 (a |
1))∗, marked

1
(12 3 (a4 | 15) 3)∗

1
, has LST

1
(12 3 (15) 3 12 3 (15) 3)

1
. 	

We define the regular language N̂ = Ω̂∗ − ⋃
∀ null string 1l

Ω̂∗ 1l M̂
∗ 1l Ω̂ of all the

strings not containing any substring 1l μ 1l, for any mark l and μ ∈ M̂∗.

Theorem 1 (Linearized parse tree). Let e be a RE and let A be the BSP
of e. The extended language L̂ (A) coincides with the intersection L (ĕ) ∩ N̂ . 	

Proof. For each string w ∈ L (A), the BSP A creates one or more item sequences
τ = ι0 . . . ιn ∈ ISw Eq. (15) and as many extended strings ωτ = ζ0 . . . ζn, where
each finished string ζi (0 ≤ i ≤ n = |w |) is an element of the finished initial or
follow set Ini fin or Fol fin (Definition 3) of the RE e �. By (12-13) such sets
have the same initial and digram sets Ini and Dig as the RE ĕ �. Now let ahi

be the end-letter of ζi. For 1 ≤ i ≤ n, two strings ζi−1 and ζi are concatenated
in ωτ if the digrams of ahi−1 ζi are included in Dig (ĕ �), see Eq. (13). Hence
the digrams of ωτ originating from concatenation are the same as those of ĕ �.
Furthermore, since substring ζn is final (n ≥ 0), the final set of ωτ is Fin = {� }.
Whence the extended language L̂ (A) (disregarding the ∅ case) is defined by the
sets Ini, Fin = {� } and Dig of ĕ �, with the constraint of not containing any
substring with two identically-marked null strings 1l, as specified in Definition 3.

Language L (ĕ �) is defined by the sets Ini, Fin = {� } and Dig of the RE
ĕ � (Sect. 3). Language L̂ (A) is defined by the same sets Ini, Fin and Dig of
ĕ �, and the constraint above is identical to Proposition 2, modeled by language
N̂ (see above). Thus it follows that L̂ (A) = L (ĕ �) ∩ N̂ , even without �. 	

Since by Proposition 1 it holds L (A) = L (e), Theorem 1 states that the BSP A
specifies, by means of its extended language L̂ (A), the linearized syntax trees of
language L (e), except those that iterate a Kleene star (or cross) with a nullable
argument twice or more times. By Proposition 2 such LST ’s are those of the
infinitely ambiguous strings of L (e).

Example 6. The string a a b ∈ L (A) of the running example (Fig. 1) has two
item sequences: 1, 1, 5, 2 and 1, 2, 5, 2. Its extended strings ωτ , i.e., LST ’s, are
immediately visible as link chains in Fig. 3, in the state sequence of a a b. 	

46 A. Borsotti et al.

1 1 (2 (a3

2 1 (b4

3 1 (a6

4 11 b9

1 a3

1

2) 2 2 (a3

3) 2 b4

4) 2 a6

5) 2) 1 b9

6 b7 3

1 a3

1 2

2) 2 2 (a3

3) 2 b4

4) 2 a6

5) 2) 1 b9

6 b7 4

1 a5 3

2 5

3 a8 6

q0

q1 q2

q4

state sequence
q0 q1 q2 q4

PO
SIX

Gr
eed

y

P
O
SIX

G
reedy

PO
SIX

Greedy

a
a b

Fig. 3. The ISaab of the ambiguous string a a b ∈ L
((

(a)+ | b a | a b a
)∗

b
)
.

We examine the computational cost for Algorithm 1 to construct the BSP of
a RE e, and the computational cost for the BSP of e to build a syntax tree for
a string in the language L (e). Clearly, as the BSP is a DFA, it recognizes the
language L (e) in real-time.

As the metasymbol prefix μ of a finished string ζ = μah does not contain any
repeated identically-marked null strings 1l (Definition 3), it does not contain any
repeated open-closed parenthesis pairs either, else repeating a 1l is unavoidable.
Thus the number of items in a state of the BSP A is bounded from above by a
constant K = | Ẑ | × | ID | that depends only on the alphabet Ω̂, and the size of
A is bounded from above by 2K . Hence the time complexity of Algorithm 1 is
at least exponential in the size of Ω̂.

The sets Ini fin and Fol fin (Definition 3) that drive Algorithm 1 have to be
pre-computed from the sets Ini, Fin = {�} and Dig of ĕ �. It suffices to find the
acyclic paths in the DFA specified by such sets of ĕ � via Eq. (1), e.g., by means
of the Dijkstra algorithm, in a time that depends only on Ω̂.

If a string w of language L (e) is not ambiguous, to build its unique LST
ωτ we trace back the item sequence ISw by following the item links from the
final one and concatenating the LST pieces on the way. The time complexity for
building the LST is linear in the string length.

5 Disambiguation Criteria

First, we state conditions for string unambiguity, then we discuss how to select
a syntax tree for an ambiguous string in accordance with the existing disam-
biguation criteria. Since [4] it has been known that the ambiguity of a RE is
a decidable property, but it is interesting to state how the RE ambiguity is
detected in the related BSP. The next proposition does so (proof omitted).

Proposition 3 (String and RE ambiguity). A string w ∈ L (e) is unam-
biguous if and only if, for every BSP state q that lies on the path of w, the next
conditions are met:

(a) for every item 〈 ζ,Π 〉 ∈ q, it holds |Π | ≤ 1
(b) the last state contains only one final item

From Ambiguous Regular Expressions to Deterministic Parsing Automata 47

Furthermore, a RE e is unambiguous if and only if every state q of the BSP
satisfies (a) and every final state of the BSP contains only one final item. 	

Clearly, applying Proposition 3 to a string or RE to decide if it is ambiguous,
requires linear-time in the parser size (state number). This test eliminates any
overhead needed for an ambiguous string when the string is not.

Example 7. In Fig. 2, the RE e Eq. (3) violates part (a) of Proposition 3 in the
states q2, q6, and is (finitely) ambiguous (Fig. 1). The infinitely ambiguous RE
(1)∗ marked as 1 (12)∗

1 violates part (b), as its only state q0 is identified by
these final items: 〈 11 �, ∅ 〉 and 〈 1 (12) 1 �, ∅ 〉; instead item 〈 1 (12 12) 1 �, ∅ 〉
is excluded, as it models two iterations of the Kleene star. For the infinitely
ambiguous RE ’s, Algorithm 1 only specifies the Kleene star iterations with ∗ =
0, 1, which still suffice to verify the ambiguity of such RE ’s. 	

Adding Disambiguation Criteria. When the user of a RE parser specifies a
pattern to be matched by means of an ambiguous RE, he typically does not want
to see all the syntax trees of a string, but just the one that he considers more
relevant. Practical relevance is defined by either one of the two disambiguation
criteria introduced in Definition 1. Notice that each of them assigns different
priorities to almost identical comparisons. By exploiting the similarities, our tool
is able to cover both criteria. When scanning an input string, the BSP traverses
its state diagram from the initial to a final state and remembers the sequence of
states encountered, unlike a pure recognizer. The result is a state sequence that
contains items linked by identifiers (id ’s). Such items are the nodes of a directed
graph, their id ’s are the edges, and the paths from final to initial items are the
item sequences Eq. (15) of all the parse trees (LST ’s). The tree builder algorithm
visits such a graph from the final item(s) and marks all the touched items. Then
it scans the marked items from the initial one(s): it considers the items that
have two or more successors, selects one successor (or one of two initial items)
according to the chosen disambiguation criterion, and discards all the others.
Eventually it reaches a final item after building only one item sequence, which
is the parse tree that fulfills the criterion.

Example 8. Figure 3 shows Greedy / POSIX IS ’s of aab of ((a)+ | ba |
aba)∗b. 	

We have implemented the POSIX criterion, as well as the Greedy one [7], by the
Okui and Suzuki method [9] suitably modified. The method works by computing
dynamic data to choose a prior path at each bifurcation point. Since the size of
such data is determined by the number of id ’s in a BSP state, which is bounded
by the maximum number of items and depends only on the RE complexity,
each choice is taken in a constant time and the overall time complexity of tree
building is linear in the input length. Notice that our approach allows us to use
different disambiguation criteria seamlessly.

6 Conclusion

We have extended the classic approach by Berry and Sethi to construct a DFA
for a RE, to obtain a parser and to check if the RE is ambiguous. The time

48 A. Borsotti et al.

complexities for string matching and tree building are linear in the input size.
The existing Greedy and POSIX criteria to choose a syntax tree for an ambiguous
string are easily incorporated into the parser. We have also implemented in Java
both our parser and the parser by [9], to compare their performances: early
measurements substantiate our expectation that BSP is significantly faster.

A future development is to implement the mixed parser/recognizer mode,
in the sense that a user can specify the so-called capturing or non-capturing
subexpressions for which he respectively wants, or does not, the syntax tree
to be computed. For this, the parser generator has to leave the non-capturing
subexpressions unmarked.

To demonstrate our method, an interactive HTML/JavaScript parser genera-
tor and parsing tool for RE ’s is on GitHub (http://github.com/breveglieri/ebs).

References

1. Allauzen, C., Mohri, M.: A unified construction of the glushkov, follow, and
antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48(1), 117–126 (1986)

3. Berstel, J., Pin, J.E.: Local languages and the Berry-Sethi algorithm. Theor. Com-
put. Sci. 155(2), 439–446 (1996)

4. Book, R., Even, S., Greibach, S., Ott, G.: Ambiguity in graphs and expressions.
IEEE Trans. on Comp. C-20(2), 149–153 (1971)

5. Breveglieri, L., Crespi Reghizzi, S., Morzenti, A.: Shift-reduce parsers for transition
networks. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 222–235. Springer, Heidelberg (2014)

6. Dubè, D., Feeley, M.: Efficiently building a parse tree from a regular expression.
Acta Inf. 37(2), 121–144 (2000)

7. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

8. IEEE: std. 1003.2, POSIX, regular expression notation, section 2.8 (1992)
9. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position

automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011)

10. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

11. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Heidelberg (2014)

http://github.com/breveglieri/ebs

Deciding Synchronous Kleene Algebra
with Derivatives

Sabine Broda(B), Śılvia Cavadas, Miguel Ferreira, and Nelma Moreira

CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{sbb,nam}@dcc.fc.up.pt, {silviacavadas,miguelferreira108}@gmail.com

Abstract. Synchronous Kleene algebra (SKA) is a decidable framework
that combines Kleene algebra (KA) with a synchrony model of concur-
rency. Elements of SKA can be seen as processes taking place within a
fixed discrete time frame and that, at each time step, may execute one
or more basic actions or then come to a halt. The synchronous Kleene
algebra with tests (SKAT) combines SKA with a Boolean algebra. Both
algebras were introduced by Prisacariu, who proved the decidability of
the equational theory, through a Kleene theorem based on the classical
Thompson ε-NFA construction. Using the notion of partial derivatives,
we present a new decision procedure for equivalence between SKA terms.
The results are extended for SKAT considering automata with transi-
tions labeled by Boolean expressions instead of atoms. This work con-
tinous previous research done for KA and KAT, where derivative based
methods were used in feasible algorithms for testing terms equivalence.

Keywords: Synchronous Kleene algebra · Concurrency · Equivalence ·
Derivative

1 Introduction

Synchronous Kleene algebra (SKA) combines Kleene algebra (KA) with the
synchrony model of concurrency of Milner’s Synchronous Calculus of Com-
munication Systems (SCCS) [20]. Synchronous here means that two concur-
rent processes execute a single action simultaneously at each time instant of a
unique global clock. Although this synchrony model seems to be a very weak
model of concurrency when compared with asynchronous interleaving models,
its equational theory is powerful and the SCCS calculus includes the Calculus
of Communication Systems (CCS) as a sub-calculus. It also models the Esterel
programming language [5], a tool used by the industry [29].

This work was partially supported by CMUP (UID/MAT/00144/2013), which is
funded by FCT (Portugal) with national (MEC) and European structural funds
through the programs FEDER, under the partnership agreement PT2020, and
through the programme COMPETE and by the Portuguese Government through
the FCT under project FCOMP-01-0124-FEDER-020486.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 49–62, 2015.
DOI: 10.1007/978-3-319-22360-5 5

50 S. Broda et al.

SKA was introduced by Prisacariu [25]. It consists of a KA to which a syn-
chrony operator and a notion of basic action are added. Using a Kleene’s style
theorem, Prisacariu proved the decidability of the equational theory. He also
generalized Kleene algebra with tests (KAT) [15], an equational system that
extends Kleene algebra with Boolean algebra. KAT is specially suited to cap-
ture and verify properties of simple imperative programs and, in particular,
subsumes propositional Hoare logic [16]. For the resulting algebra, called syn-
chronous Kleene algebra with tests (SKAT), the models considered were sets of
guarded synchronous strings and decidability was also proved using the so called
automata on guarded synchronous strings. SKAT can be seen as an alternative
to Hoare logic for reasoning about parallel programs with shared variables in a
synchronous system.

Decision procedures for Kleene algebra terms equivalence have been a sub-
ject of intense research in recent years [1,7,12,19,21,22,27]. This is partially
motivated by the fact that regular expressions can be seen as a program logic
that allows to express nondeterministic choice, sequence, and finite iteration
of programs. Many proposed procedures decide equivalence based on the com-
putation of a bisimulation (or a bisimulation up-to) between the two expres-
sions [1,7,21,27]. Broda et al. studied the average size of derivative based
automata both for KA and KAT [9]. For KAT terms, a coalgebraic decision proce-
dure was presented by Kozen [18]. There, derivatives are considered with respect
to symbols vσ where σ is an action symbol but v corresponds to a valuation of
the Boolean tests. This induces an exponential blow-up on the number of states
or transitions of the automata and an accentuated exponential complexity when
testing the equivalence of two KAT expressions (as noted in [3,23]). A. Silva [28]
introduced a class of automata over guarded strings that avoids that blow-up.
Broda et al. studied the average size of some automata of that class [9] and
extended finite automata equivalence decision procedures to that class [10]. In
this paper we continue this line of work and present new decision procedures for
SKA and SKAT equivalence, based on the notion of partial derivatives. For SKA
an ε-free NFA construction is presented which leads to smaller automata than
the one given by Prisacariu. For SKAT we introduce a class of automata over
guarded synchronous strings where transitions are labeled by Boolean expres-
sions instead of valuations. This feature significally improves the performance of
the associated methods. For both methods some experimental results are pre-
sented and discussed.

2 Deciding Synchronous Kleene Algebra

First we review some concepts related with SKA. A Kleene algebra (KA) is an
algebraic structure (A,+, ·, ∗, 0, 1), where + and · are binary operations on A,
∗ is a unary operation on A, and 0 and 1 belong to A, such that (A,+, ·, 0, 1)
is an idempotent semiring, and ∗ satisfies axioms (10)-(13) below. The natural
order ≤ in (A,+, ·, 0, 1) is defined by α ≤ β if and only if α + β = β.

1 + αα∗ ≤ α∗ α + β · γ ≤ γ → β∗ · α ≤ γ
1 + α∗α ≤ α∗ α + γ · β ≤ γ → α · β∗ ≤ γ

Deciding Synchronous Kleene Algebra with Derivatives 51

A synchronous Kleene algebra (SKA) over a finite set AB is given by a structure
(A,+, ·,×, ∗, 0, 1,AB), where AB ⊆ A, (A,+, ·, ∗, 0, 1) is a Kleene algebra, and ×
is a binary operator that is associative, commutative, distributive over +, with
absorvent element 0 and identity 1. Furthermore, it satisfies a×a = a ∀a ∈ AB,
as well as the synchrony axiom

(α× · α) × (β× · β) = (α× × β×) · (α × β) ∀α×, β× ∈ A×
B ,

where the set A×
B is the smallest subset of A that contains AB and is closed

for ×. As usual, we will omit the operator · whenever it does not give rise to any
ambiguity and use the following precedence over the operators: + < · < × < ∗.

We think of the elements of SKA as processes taking place within a fixed
discrete time frame and that, at each time step, may execute one or more basic
actions in AB or then come to a halt.

The standard model of an SKA over AB is the set of languages over the
alphabet Σ = P(AB) \ {∅}, which we will call synchronous languages. Each
synchronous language represents a process described by its possible executions,
which are given by the words over Σ, each one a sequence of sets of basic actions
executed in a single time step. We call σ ∈ Σ a (synchronous) concurrent action.
The synchronous product of two words x = σ1 · · · σm and y = τ1 · · · τn, with
n ≥ m, is defined by

x × y = y × x = (σ1 ∪ τ1 · · · σm ∪ τm)τm+1 · · · τn.

In particular, the synchronous product of two letters in Σ is their union. The
synchronous product of two languages L1 and L2 is defined by

L1 × L2 = { x × y |x ∈ L1, y ∈ L2 }.

It is clear that the synchronous regular languages over AB contain the regular
languages over Σ. It turns out that they are exactly the same set, i.e., the regular
languages over Σ are also closed for ×. In [25], the classical Thompson construc-
tion for regular languages [30] is extended to build an automaton accepting the
synchronous product of two languages given by their automata.

We now introduce the SKA analogue of the regular expressions. We denote
by TSKA the set of SKA terms, containing 0 plus all terms generated by the
grammar

α → 1 | a | α + α | α · α | α × α | α∗ (a ∈ AB). (1)

Note that we do not include in TSKA compound expressions that have 0 as a
subexpression. Given α ∈ TSKA, the language L(α) denoted by α is inductively
defined as follows, L(a) = {{a}}, L(0) = ∅, L(1) = {ε}, L(α∗) = L(α)∗, L(α +
β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), L(α × β) = L(α) × L(β).

Example 1. Let AB = {a, b}, hence Σ = {{a}, {b}, {a, b}}, and consider the SKA
term α = (a(b + a)∗) × (a + bb)∗ over AB. Then

L(α) = {{a}, {a}{a}, {a}{b}, . . .} × {ε, {a}, {a}{a}, {b}{b}, . . .}
= {{a}, {a}{a}, {a}{b}, {a}{a, b}, {a, b}{b}, {a, b}{a, b}, . . .}.

52 S. Broda et al.

Given α, β ∈ TSKA, we say that they are equivalent if they denote the same
language, i.e., L(α) = L(β). We also define ε(α) = 1 if ε ∈ L(α), and ε(α) = 0
otherwise. A recursive definition of ε : TSKA −→ {0, 1} is given by the following,
ε(a) = ε(0) = 0, ε(1) = ε(α∗) = 1, ε(α + β) = ε(α) + ε(β), and ε(αβ) =
ε(α × β) = ε(α) · ε(β). We generalize ε for sets S ⊆ TSKA by ε(S) =

∑
α∈S ε(α).

2.1 Partial Derivative Automata for SKA

A nondeterministic finite automaton (NFA) is a tuple A = 〈S,Σ, S0, δ, F 〉, where
S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial states,
δ : S × Σ −→ P(S) the transition function, and F ⊆ S a set of final states. The
transition function δ is extended to words and sets of states in the natural way.
A word x ∈ Σ∗ is accepted by A if and only if δ(S0, x) ∩ F
= ∅. The language of
A is the set of words accepted by A and denoted by L(A).

In the context of SKA, we consider the alphabet Σ = P(AB)\{∅} and call the
NFA a nondeterministic automaton on synchronous strings. Prisacariu presented
a method of converting an SKA expression into an equivalent ε-NFA (in an ε-NFA
transitions may be labelled by ε), based on the classical Thompson construction.
Due to the local behaviour of the synchronization operator, in each step it is
necessary to eliminate all ε-transitions except those entering the final state. The
step for the synchronous product α × β involves the construction of a classic
product automaton from the automata corresponding to α and β, respectively.
This leads easily to large automata for relatively small expressions. We present
now a new method of converting of an SKA expression into an equivalent ε-free
NFA. This method extends the classical partial derivative automata construction
for regular expressions [4] and provides a new proof that the set of synchronous
regular languages over AB is precisely the set of regular languages over Σ.

As usual, the left-quotient of a synchronous language L w.r.t. a synchronous
concurrent action σ is the set σ−1L = { x | σx ∈ L }. The left quotient of
L w.r.t. a word x ∈ Σ∗ is inductively defined by ε−1L = L and (xσ)−1L =
σ−1(x−1L). Antimirov [4] introduced the notion of partial derivatives which we
now generalize to the set TSKA. Given sets S, T ⊆ TSKA, let S � T = { αβ | α ∈
S\{0}, β ∈ T\{0} } and S ⊗ T = { α × β | α ∈ S\{0}, β ∈ T\{0} }. We consider
α � S = {α} � S, and similarly for S � α, α ⊗ S and S ⊗ α. These definitions
serve the following.

Definition 2. The set of partial derivatives of a term α ∈ TSKA w.r.t. the letter
σ ∈ Σ, denoted by ∂σ(α), is inductively defined by

∂σ(0) = ∂σ(1) = ∅
∂σ(a) =

{
{1} if σ = {a}
∅ otherwise

∂σ(α∗) = ∂σ(α) � α∗

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α) � β ∪ ε(α) � ∂σ(β)

∂σ(α × β) =
(⋃

σ1×σ2=σ ∂σ1(α) ⊗ ∂σ2(β)
) ∪ ε(α) ⊗ ∂σ(β) ∪ ε(β) ⊗ ∂σ(α).

The set of partial derivatives of α ∈ TSKA w.r.t. a word x ∈ Σ∗ is inductively
defined by ∂ε(α) = {α} and ∂xσ(α) = ∂σ(∂x(α)), where, given a set S ⊆ TSKA,
∂σ(S) =

⋃
α∈S ∂σ(α).

Deciding Synchronous Kleene Algebra with Derivatives 53

We denote by ∂(α) the set of all partial derivatives of α, ∂(α) =
⋃

x∈Σ∗ ∂x(α),
and by ∂+(α) the set of partial derivatives excluding the trivial derivative by ε,
∂+(α) =

⋃
x∈Σ+ ∂x(α). Given a set S ⊆ TSKA, we define L(S) =

⋃
α∈S L(α). It

is straightforward to show that for every TSKA term α and word x, L(∂x(α)) =
x−1L(α). The following lemma will be used to show that ∂(α) is finite, as in the
case for standard regular expressions.

Lemma 3. The set ∂+(α) satisfies the following.

∂+(0) = ∂+(1) = ∅
∂+(a) = {1} (a ∈ AB)

∂+(α∗) ⊆ ∂+(α) � α∗

∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β)
∂+(αβ) ⊆ ∂+(α) � β ∪ ∂+(β)

∂+(α × β) ⊆ ∂+(α) ⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β).

Proof. The proof proceeds by induction on the structure of α. It is clear that
for ∂+(0), ∂+(1) and, for ∂+(a), a ∈ AB, the result is true. Now, suppose the
claim is true for α and β, with |α|AB

= 0 and |β|AB

= 0. Otherwise, one has

|∂+(α)| = 0 and/or |∂+(β)| = 0, simplifying the arguments below. There are
four induction cases to consider, in which we will make use of the fact that,
for any SKA expression γ and letter σ ∈ Σ, the set ∂+(γ) is closed for taking
derivatives w.r.t. σ, i.e., ∂σ(∂+(γ)) ⊆ ∂+(γ).

i. One can check by induction on the length of x that, for x ∈ Σ+, ∂x(α+β) =
∂x(α) ∪ ∂x(β). Hence, ∂+(α + β) = ∂+(α) ∪ ∂+(β).

ii. We will prove by induction on the length of x that ∂x(αβ) ⊆ ∂+(α) � β ∪
∂+(β) for every word x ∈ Σ+. The claim is true for σ ∈ Σ since ∂σ(αβ) =
∂σ(α)�β ∪ε(α)�∂σ(β). Assuming it is true for x, ∂xσ(αβ) = ∂σ(∂x(αβ)) ⊆
∂σ(∂+(α) � β ∪ ∂+(β)) ⊆ ∂σ(∂+(α)) � β ∪ ∂σ(β) ∪ ∂σ(∂+(β)) ⊆ ∂+(α) � β ∪
∂+(β).

iii. We prove by induction on the length of x that, for every word x ∈ Σ+, ∂x(α×
β) ⊆ ∂+(α) ⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β). The claim is true for σ ∈ Σ because
∂σ(α×β) =

⋃
σ1×σ2=σ ∂σ1(α)⊗∂σ2(β)∪ε(α)⊗∂σ(β)∪ε(β)⊗∂σ(α); supposing

it is true for x, ∂xσ(α × β) = ∂σ(∂x(α × β)) ⊆ ∂σ(∂+(α) ⊗ ∂+(β) ∪ ∂+(α) ∪
∂+(β)) ⊆ (

⋃
σ1×σ2=σ ∂σ1(∂

+(α)) ⊗ ∂σ2(∂
+(β))) ∪ ∂σ(∂+(α)) ∪ ∂σ(∂+(β)) ⊆

∂+(α) ⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β).
iv. We show by induction on the length of x that ∂x(α∗) ⊆ ∂+(α) � α∗ for

x ∈ Σ+. It is true for σ ∈ Σ because ∂σ(α∗) = ∂σ(α) � α∗; supposing the
claim true for x, ∂σx(α∗) = ∂σ(∂x(α∗)) ⊆ ∂σ(∂+(α) � α∗) ⊆ ∂σ(∂+(α)) �
α∗ ∪ ∂σ(α∗) ⊆ ∂+(α) � α∗ ∪ ∂σ(α) � α∗ ⊆ ∂+(α) � α∗. ��
Now, it is easy to obtain the following upper bound for the size of ∂+(α).

Proposition 4. Given α ∈ TSKA, |∂+(α)| ≤ 2|α|AB − 1, where |α|AB
denotes the

number of occurrences of elements of AB in α. Thus, |∂(α)| ≤ 2|α|AB .

We note that this upper bound is exactly the same obtained for the number
of partial derivatives for regular expressions with the shuffle operator [11]. In the
latter case, however, the correspondent version of Lemma 3 establishes equalities
instead of inclusions.

54 S. Broda et al.

We extend to SKA terms the standard Antimirov automaton or partial deriva-
tive automaton. Given α ∈ TSKA, we define the partial derivative automaton asso-
ciated to α by A(α) = 〈∂(α), Σ, {α}, δα, Fα〉, where Fα = { γ ∈ ∂(α) | ε(γ) = 1 }
and δα(γ, σ) = ∂σ(γ). Then, it is easy to see that L(A(α)) = L(α).

Example 5. Consider again the expression α from Example 1 and let β = (b +
a)∗ and γ = (a + bb)∗, i.e. α = (aβ) × γ. Furthermore, let α0 = α, α1 =
β × γ, α2 = β × (bγ), α3 = β, α4 = bγ, and α5 = γ. The nonempty sets
of partial derivatives of α are the following: ∂{a}(α0) = {α1, α3}, ∂{a,b}(α0) =
{α2}, ∂{a}(α1) = {α1, α3, α5}, ∂{b}(α1) = {α2, α3, α4}, ∂{a,b}(α1) = {α1, α2},
∂{b}(α2) = {α1, α5}, ∂{a,b}(α2) = {α1}, ∂{a}(α3) = ∂{b}(α3) = {α3}, ∂{b}(α4) =
∂{a}(α5) = {α5}, ∂{b}(α5) = {α4}. Then, A(α) is the following.

α0

α3

α1

α2

α4

α5

{a}

{a}

{a, b}

{a}, {b}

{a}, {a, b}

{b}

{a}

{b}, {a, b}
{b}, {a, b}

{b}

{b}

{a}, {b} {a}

{b}

It is worthwhile to note that this automaton has 6 states and 19 transitions,
while the one obtained using Prisacariu’s Thompson-based construction has 16
states and 73 transitions, even after some necessary ε-transition eliminations.

2.2 Equivalence of SKA Expressions

We are interested in an algorithm that decides whether or not two SKA terms
represent the same regular language. Since we already know how to construct an
NFA that accepts a given SKA term, the problem is tantamount to deciding the
language equivalence of two automata. One possible approach is to search for
the existence of a bisimulation in the determinized NFAs (DFAs), as presented
by Hopcroft and Karp [14]. This algorithm can be easily extended to NFAs as
in Almeida et al. [1]. A presentation of this algorithm and an improved variant,
together with proofs of correctness, can be found in Bonchi and Pous [6].

2.3 Implementation and Experimental Results

A Python module for manipulating SKA terms and automata over synchronous
strings was implemented within the FAdo library [26], which includes several
algorithms for regular expressions and finite automata. For the efficient com-
putation of the set of partial derivatives of a term w.r.t. a symbol, in FAdo a
function is used, that given an expression α computes the set of pairs (σ, ∂σ(α))
with σ ∈ Σ [4]. We extended it to the synchronous product,

Deciding Synchronous Kleene Algebra with Derivatives 55

f : TSKA → P(Σ × P(TSKA))
f(0) = f(1) = ∅ f(a) = {({a}, ε)} f(α∗) = f(α) · α∗

f(α + β) = f(α) ∪ f(β) f(αβ) = f(α) � β ∪ f(β) � ε(α)

f(α × β) = { (σ1 ∪ σ2, α1 × α2) | (σ1, α1) ∈ f(α), (σ2, α2) ∈ f(β) }
∪ f(β) � ε(α) ∪ f(α) � ε(β)

where, as before, for α
= 1, Γ � α = { (σ, α′α) | (σ, α′) ∈ Γ }.
For running some experiments we uniformly random generated SKA terms.

The FAdo random generator has as input a grammar, the size k of the alphabet,
and the size n of the words to be generated. A prefix notation version of the
grammar (1) was used in order to obtain terms, uniformly generated in the size
|α| of the syntactic tree (i.e. parentheses not counted). For each size, n = |α| and
k = |AB|, samples of 1000 terms were generated. We compared the sizes of the
partial derivative automata A(α) and the automata proposed by Prisacariu, a
variant of the Thompson construction, (Stho, Σ, Itho, δtho, Ftho). Table 1 presents
average values obtained for n ∈ {50, 100} and k ∈ {5, 10, 20}.

Table 1. Experimental results for uniform random generated TSKA expressions

k |α| |Stho| |δtho| |∂(α)| |δα| |∂(α)|
|Stho|

|δα|
|δtho|

5 50 59 496 23 159 0.389 0.321

5 100 491 47288 128 4133 0.261 0.087

10 50 49 271 18 97 0.364 0.358

10 100 358 15096 96 1691 0.268 0.112

20 50 44 165 16 69 0.364 0.418

20 100 194 2126 60 559 0.309 0.263

Analyzing the table, it seems that the partial derivative automaton is always
smaller than the Thompson-like construction, and that the exponential blow up
of the automaton size may not occur on average. For regular expressions it is
known that after eliminating ε-transitions from the Thompson automaton one
obtains the Glushkov automaton [13], of which the partial derivative automaton
is a quotient. Asymptotically and on average the size of the partial derivative
automaton is half the size of the Glushkov automaton [8], which on the other
hand is linear on the size of the expression. As noticed before, for the synchro-
nous product the Thompson construction considers a product automaton and
thus a quadratic number of transitions is expected. We also note that for every
synchronisation ε-transitions are eliminated, reducing the size of the resulting
automata that otherwise should be much larger. No such procedures are needed
for the partial derivative automata. For testing the equivalence of SKA terms we
can use one of the algorithms mentioned above.

56 S. Broda et al.

3 Deciding Synchronous Kleene Algebra with Tests

Synchronous Kleene algebra with tests (SKAT) was also introduced by Prisacariu
as a natural extension of the Kleene algebra with tests to the synchronous setting.
The SKA axiomatization was extended to SKAT, whose standard models are
sets of guarded synchronous strings. Prisacariu defined automata over guarded
synchronous strings that were based on the ones considered by Kozen for guarded
strings [17]. In the synchronous case, automata were built in two layers: one that
processed a synchronous string and another to represent the valuations of the
boolean tests (called atoms, as defined below). Our contribution in this section
is to consider a much simpler notion of automata and to show that the derivative
based methods developed in the previous section for SKA can be extended to
SKAT. We use standard finite automata where transitions are labeled both with
action symbols and boolean tests (instead of atoms). This kind of automata for
KAT terms were introduced by Silva [28] and Broda et al. [9,10]. In the next
subsection, we revise the notions of SKAT and guarded synchronous strings.

3.1 SKAT and Guarded Synchronous Strings

Formally, an SKAT is a structure (A,B,+, ·,×, ∗,¬, 0, 1,AB,T), where T ⊆ B ⊆
A and AB and T are disjoint finite sets, (A,+, ·,×, ∗, 0, 1,AB ∪ T) is an SKA,
(B,+, ·,¬, 0, 1) and (B,+,×,¬, 0, 1) are Boolean algebras, and (B,+, ·,×, 0, 1) is
a subalgebra of (A,+, ·,×, 0, 1).

Similar to what was done for SKA, we consider the set BSKAT of boolean
expressions and the set TSKAT of SKAT expressions over AB ∪ T. BSKAT is the
set of terms finitely generated from T ∪ {0, 1} and operators +, ·,×,¬, while
TSKAT denotes the set of terms finitely generated from AB ∪ BSKAT and oper-
ators +, ·,×, ∗. Elements of BSKAT and TSKAT will be denoted by b, b1, . . . and
α, β, α1, . . ., respectively, and are generated by the following grammar

b → 0 | 1 | t | b + b | b · b | b × b | ¬b (t ∈ T),
α → a | b | α + α | α · α | α × α | α∗ (a ∈ AB).

The set At of atoms over T = {t0, . . . , tl−1}, with l ≥ 1, is the set of
all boolean assignments to all elements of T, i.e. At = { x0 · · · xl−1 | xi ∈
{ti, ti}, ti ∈ T }. We denote elements of At by v, v1, etc. Note that each atom
v ∈ At has associated a binary word of l bits (w0 · · · wl−1) where wi = 0 if
ti ∈ v, and wi = 1 if ti ∈ v. The standard model of SKAT consists of the sets of
guarded synchronous strings. The set of guarded synchronous strings over AB∪T
is GSS = (At ·Σ)∗ ·At, where, as before, Σ = P(AB)\{∅}. For x = v0σ1 · · · σmvm

and y = v′
0σ

′
1 · · · σ′

nv
′
n ∈ GSS, where m,n ≥ 0, vi, v′

j ∈ At and σi, σ
′
j ∈ Σ, we

define the fusion product x�y = v0σ1 · · · σmvmσ′
1 · · · σ′

nv
′
n, if vm = v′

0, leaving it
undefined otherwise. Similarly, for m ≤ n the product x×y = y×x is defined only
if v0 = v′

0, . . . , vm = v′
m by x × y = v0(σ1 ∪ σ′

1) · · · (σm ∪ σ′
m)vmσ′

m+1 · · · σ′
nv

′
n.

For sets X,Y ⊆ GSS, X � Y = { x � y | x ∈ X, y ∈ Y, x � y exists } and

Deciding Synchronous Kleene Algebra with Derivatives 57

X × Y = { x × y | x ∈ X, y ∈ Y, x × y exists }. Finally, let X0 = At and
Xn+1 = X � Xn, for n ≥ 0, and define X∗ =

⋃
n≥0 Xn.

Given a SKAT expression α, we define GSS(α) ⊆ GSS inductively as follows,

GSS(a) = { v1{a}v2 | v1, v2 ∈ At }
GSS(b) = { v | v ∈ At ∧ v ≤ b }
GSS(α + β) = GSS(α) ∪ GSS(β)

GSS(α · β) = GSS(α) � GSS(β)
GSS(α × β) = GSS(α) × GSS(β)
GSS(α∗) = GSS(α)∗,

where v ≤ b if v → b is a propositional tautology. For T ⊆ TSKAT, let
GSS(T) =

⋃
α∈TGSS(α). Given two TSKAT expressions α and β, we say that

they are equivalent if GSS(α) = GSS(β).

3.2 Automata for Guarded Synchronous Strings

We extend to for guarded synchronous strings the automata defined for KAT
in [9,10,28]. Besides their simplicity when compared with the two-level automata
of Prisacariu, their transitions are labeled with tests instead of atoms, avoiding in
this way the inevitable exponential blow-up on the size of the automata induced
by the number of valuations of tests.

A (nondeterministic) automaton with tests (NTA) over the alphabets Σ and
T is a tuple A = 〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the initial
state, o : S → BSKAT is the output function, and δ ⊆ P(S × (BSKAT × Σ) × S) is
the transition relation. A synchronous guarded string v0σ1 . . . σnvn, with n ≥ 0,
is accepted by the automaton A if and only if there is a sequence of states
s0, s1, . . . , sn ∈ S, where s0 is the initial state, and, for i = 0, . . . , n − 1, one
has vi ≤ bi for some (si, (bi, σi+1), si+1) ∈ δ, and vn ≤ o(sn). The set of all
guarded strings accepted by A is denoted by GSS(A). We say that an SKAT
expression α ∈ TSKAT is equivalent to an automaton A, and write α = A, if
GSS(A) = GSS(α).

3.3 Partial Derivatives for SKAT

In the following, we extend the notion of partial derivative, previously defined
in [10] for KAT, to SKAT expressions. The main novelty of the approach in [10]
is that derivatives are considered only w.r.t. action symbols σ instead of all
combinations vσ for v ∈ At and σ ∈ Σ.

Definition 6. For α ∈ TSKAT and σ ∈ Σ, the set ∂σ(α) of partial derivatives
of α w.r.t. σ is a subset of BSKAT × TSKAT inductively defined as follows,

∂σ(a) =
{{(1, 1)} if σ = {a}

∅ otherwise
∂σ(b) = ∅

∂σ(α∗) = ∂σ(α) � α∗

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α) � β ∪ out(α) � ∂σ(β)

∂σ(α × β) =
(⋃

σ1×σ2=σ ∂σ1(α) ⊗ ∂σ2(β)
) ∪ out(α) ⊗ ∂σ(β) ∪ out(β) ⊗ ∂σ(α),

where out : TSKAT −→ BSKAT is defined by

out(a) = 0 out(b) = b out(α∗) = 1 out(α + β) = out(α) + out(β)
out(α · β) = out(α) · out(β) out(α × β) = out(α) × out(β),

58 S. Broda et al.

and for S, T ⊆ BSKAT × TSKAT, α
= 0 in TSKAT, and b
= 0 in BSKAT, S � α =
{ (b′, α′α) | (b′, α′) ∈ S, α′
= 0 }, b � S = { (b · b′, α′) | (b′, α′) ∈ S, b′
= 0 },
S�0 = 0�S = ∅ and S⊗T = { (b×b′, α×α′) | (b, α) ∈ S, (b′, α′) ∈ T, b, b′, α, α′
=
0 }. Given α ∈ TSKAT and σ ∈ Σ we define the set of expressions derived from
α w.r.t. a letter σ by Δσ(α) = { α′ | (b, α′) ∈ ∂σ(α) for some b }. The functions
∂σ, out, and Δσ are naturally extended to sets of SKAT expressions and words
∈ Σ�.

Let Δ(α) =
⋃

x∈Σ∗ Δx(α). Given α ∈ TSKAT, we define the partial derivative
automaton associated to α by A(α) = 〈Δ(α), α, out, δα〉, where

δα = { (γ, (b, σ), γ′) | γ ∈ Δ(α), (b, γ′) ∈ ∂σ(γ) }.

In order to justify the correctness of the partial derivative automaton, i.e., to
show that GSS(A(α)) = GSS(α), we first note that, using an almost identical
proof as for Proposition 4 in Sect. 2, one can show by induction on the structure of
α ∈ TSKAT that |Δ+(α)| ≤ 2|α|AB −1, where again Δ+(α) is the set of expressions
derived from α excluding the trivial derivation w.r.t. the empty word ε. Thus,
Δ(α) is finite. Finally, the correctness of the partial derivative automaton is
guaranteed by the following result.

Proposition 7. Let γ ∈ SKAT and x ∈ (At×Σ)∗ ·At. If x = v, then x ∈ GSS(γ)
if and only if v ≤ out(γ). Furthermore, if x = vσx′, then x ∈ GSS(γ) if and only
if there is some (b, γ′) ∈ ∂σ(γ), such that v ≤ b and x′ ∈ GSS(γ′).

Proof. The proof is by induction on the structure of γ. We only present for ii. the
cases for γ = αβ and γ = α×β. Let γ = αβ and x = vσx′. One has x ∈ GSS(αβ)
iff x ∈ GSS(α)�GSS(β). This means that either, v ∈ GSS(α) and x ∈ GSS(β), or
or x′ = x1�x2, with vσx1 ∈ GSS(α) and x2 ∈ GSS(β). The former is equivalent to
v ≤ out(α), v ≤ b and x′ ∈ GSS(γ′) for some (b, γ′) ∈ ∂σ(β), i.e. to v ≤ out(α)b
and x′ ∈ GSS(γ′) for some (out(α)b, γ′) ∈ ∂σ(αβ). The latter is equivalent to
v ≤ b, x1 ∈ GSS(γ′) and x2 ∈ GSS(β) for some (b, γ′) ∈ ∂σ(α), i.e. to v ≤ b and
x′ = x1 � x2 ∈ GSS(γ′) � GSS(β) = GSS(γ′β) for some (b, γ′β) ∈ ∂σ(αβ).

Consider γ = α × β and x = vσx′. One has x ∈ GSS(α × β) iff x ∈ GSS(α) ×
GSS(β). This means that either, x = (vσ1x1)×(vσ2x2) for some vσ1x1 ∈ GSS(α),
vσ2x2 ∈ GSS(β) such that σ = σ1 ∪ σ2 and x′ = x1 × x2, or v ∈ GSS(α)
and x ∈ GSS(β), or v ∈ GSS(β) and x ∈ GSS(α). The proof for the two last
cases are analogous to the first case for the concatenation. On the other hand,
vσ1x1 ∈ GSS(α) and vσ2x2 ∈ GSS(β) is equivalent to v ≤ b1, x1 ∈ GSS(γ′

1),
v ≤ b2 and x2 ∈ GSS(γ′

2) for some (b1, γ′
1) ∈ ∂σ1(α) and (b2, γ′

2) ∈ ∂σ2(β), i.e. to
v ≤ b1 × b2 , x′ = x1 × x2 ∈ GSS(γ′

1) × GSS(γ′
2) = GSS(γ′

1 × γ′
2) for some

(b1 × b2, γ
′
1 × γ′

2) ∈ ∂σ(α × β). ��
Example 8. Consider the expressions α = (t1p)�¬t1 and β = (t2pq+¬t2q), which
represent the programs while t1 do p and if t2 then p; q else q, respectively.
The partial derivative automaton for α × β, corresponding to the synchronous
execution of both programs is the following.

Deciding Synchronous Kleene Algebra with Derivatives 59

α × β q

α × q 1α

(¬t1t2, {p})

(t1t2, {p})

(¬t1¬t2, {q})
(t1¬t2, {p, q})

(1, {q})

(¬t1, {q})

(t1, {p, q})

1

(t1, {p})

¬t1

To test the equivalence of SKAT terms we can consider the algorithm that
tests the equivalence of NTAs as presented by Broda et al. [10], and implicitly
use the definition of the partial derivative automaton associated to an SKAT
expression.

4 Experimental Results

We implemented (in Python) the algorithm by Broda et al. for testing NTAs
equivalence and performed some experiments1. The implementation uses BDDs
(binary decision diagrams) for dealing with boolean functions. To compare the
performance of the new NTAs with respect to the ones that use explicitly deriv-
atives w.r.t vσ ∈ AtΣ we considered the same experiments as in Almeida
[2, Sect. 3.5.2]. Each sample has 10000 KAT expressions generated uniformly at
random of a given size. For each sample we performed two experiments: (1) we
tested the equivalence of each KAT expression against itself; (2) we tested the
equivalence of two consecutively generated KAT expressions. For each pair of
KAT expressions we measured: the number of pairs of derivatives generated (H),
the number of iterations (it), which gives an estimate of the boolean assignments
that must be tested for each program symbol, and the number (|α|T) of tests of
T in each expression. Table 2 summarizes both the results obtained and the ones
obtained by Almeida. Each row corresponds to a sample, where the three first
columns characterize the sample, respectively, |AB| (k), |T| (l), and the length
of each KAT expression generated. Rows a. to e. contain our results, and corre-
sponding ones obtained by Almeida are listed in rows f. to j. Column four has
the number of elements of T in each expression (|α|T). Columns five and seven
give the average size of H in the experiment (1) and (2), respectively. Columns
six and eight have the number of iterations. These two columns have no entries
for Almeida’s results, as in that algorithm all assignments of |At| are considered
for each symbol of |AB|. Finally, the last two columns are the average times, in
seconds, of each experiment. For Almeida’s results the implementation was in
Ocaml and the values where obtained with an Intel R© Xeon R© 5140 at 2.33 GHz
with 4 GB of RAM, whereas the new values were obtained with an AMD R©

1 Source code at http://www.dcc.fc.up.pt/∼nam/web/resources/katexp.tgz.

http://www.dcc.fc.up.pt/~nam/web/resources/katexp.tgz

60 S. Broda et al.

Phenom(tm) R© II X4 955 ar 3.20 GHz with 32 GB of RAM. The most significa-
tive cases are the two last ones, in d. and e. and in i. and j. respectively, where
a substantial performance improvement was achieved with the new algorithm.

Table 2. Experimental results for uniformly random generated KAT expressions

1 2 3 4 5 6 7 8 9 10

k l |α| |α|T H(1) it(1) H(2) it(2) Time(1) Time(2)

a 5 5 50 10.33 9.21 149 0.49 0.19 0.08552 0.00148

b 5 5 100 19.55 15.74 2854 0.66 0.88 2.7256 0.00278

c 10 10 50 10.32 11.61 59.56 0.30 0.03 0.05424 0.0035

d 10 10 100 19.89 20.87 516 0.35 0.09 1.1969 0.01274

e 15 15 50 10.31 12.78 50.7 0.25 0.013 0.0616 0.00738

f 5 5 50 9.98 7.35 n.a 0.53 n.a 0.0097 0.00087

g 5 5 100 19.71 15.74 n.a 0.76 n.a 0.0875 0.00223

h 10 10 50 11.12 8.30 n.a 0.50 n.a 0.5050 0.30963

i 10 10 100 21.93 16.78 n.a 0.67 n.a 20.45 1.31263

j 15 15 50 11.57 8.47 n.a 0.47 n.a 6.4578 55.22

Damien Pous developed an equivalence test for symbolic automata [31] and
performed some tests for KAT terms [24]. To ensure equivalence of a pair of KAT
terms (α1, α2) he added AB

� to each term. We ran a similar test considering a
sample of 10000 pairs of KAT terms with k = 7, l = 7 and |α| = 100. The values
obtained were |α|T = 18.58, H = 41.34, it = 1745 and Time = 1.9456, which
are competitive with the ones in [24] (for Antimirov’s algorithm).

5 Conclusion

In this paper we extended the notion of derivative to sets of (guarded) synchro-
nous strings and showed that the methods based on derivatives lead to simple
and elegant decision procedures for testing SKA and SKAT expressions equiva-
lence. Based on our experiments, it may be worthwhile to study the average-case
size of the SKA automata, in the analytic combinatorics framework. We also
implemented the new class of SKAT automata based on NTAs automata. As the
performance of testing NTA equivalence seems competitive we believe that our
extension to SKAT automata is also much more efficient than the one proposed
by Prisacariu.

References

1. Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. J.
Automata Lang. Comb. 15(1/2), 7–25 (2010)

Deciding Synchronous Kleene Algebra with Derivatives 61

2. Almeida, R.: Decision algorithms for Kleene algebra with tests and Hoare logic.
Master’s thesis, Faculdade de Ciências da Universidade do Porto, July 2012. http://
www.dcc.fc.up.pt/∼nam/web/resources/docs/thesisRA.pdf

3. Almeida, R., Broda, S., Moreira, N.: Deciding KAT and Hoare logic with deriv-
atives. In: Faella, M., Murano, A. (eds.) 3rd GANDALF. EPTCS, vol. 96, pp.
127–140 (2012)

4. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

5. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

6. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Giacobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 457–468. ACM (2013)

7. Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods Comput.
Sci. 8(1), 1–42 (2012)

8. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)

9. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and equation automata for KAT expressions. In: G ↪asieniec, L., Wolter, F. (eds.)
FCT 2013. LNCS, vol. 8070, pp. 72–83. Springer, Heidelberg (2013)

10. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the equivalence of automata
for KAT-expressions. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE
2014. LNCS, vol. 8493, pp. 73–83. Springer, Heidelberg (2014)

11. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Partial derivative automaton for
regular expressions with shuffle. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015.
LNCS, vol. 9118, pp. 21–32. Springer, Heidelberg (2015)

12. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in
type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp.
119–134. Springer, Heidelberg (2011)

13. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

14. Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report TR 71–114, University of California, Berkeley,
California (1971)

15. Kozen, D.: Kleene algebra with tests. Trans. Prog. Lang. Syst. 19(3), 427–443
(1997)

16. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log. 1(1), 60–76 (2000)

17. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

18. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical report,
Cornell University (2008). http://hdl.handle.net/1813/10173

19. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation
algebra. J. Autom. Reasoning 49, 95–109 (2011)

20. Milner, R.: Communication and concurrency. PHI Series in computer science.
Prentice Hall, Upper Saddle River (1989)

21. Moreira, N., Pereira, D., Melo de Sousa, S.: Deciding regular expressions (in-)
equivalence in Coq. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol.
7560, pp. 98–113. Springer, Heidelberg (2012)

22. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equiv-
alence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466.
Springer, Heidelberg (2014). Archive of Formal Proofs 2014

http://www.dcc.fc.up.pt/~nam/web/resources/docs/thesisRA.pdf
http://www.dcc.fc.up.pt/~nam/web/resources/docs/thesisRA.pdf
http://hdl.handle.net/1813/10173

62 S. Broda et al.

23. Pereira, D.: Towards certified program logics for the verification of imperative
programs. Ph.D. thesis, University of Porto (2013)

24. Pous, D.: Symbolic algorithms for language equivalence and Kleene algebra with
tests. In: Rajamani, S.K., Walker, D. (eds.) 42nd POPL 2015, pp. 357–368. ACM
(2015)

25. Prisacariu, C.: Synchronous Kleene algebra. J. Log. Algebr. Program. 79(7),
608–635 (2010)

26. Project FAdo: FAdo: tools for formal languages manipulation. http://fado.dcc.fc.
up.pt/. (Accessed on 01 April 2015)

27. Rot, J., Bonsangue, M., Rutten, J.: Coinductive proof techniques for language
equivalence. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013.
LNCS, vol. 7810, pp. 480–492. Springer, Heidelberg (2013)

28. Silva, A.: Position automata for Kleene algebra with tests. Sci. Ann. Comp. Sci.
22(2), 367–394 (2012)

29. Synopsys: Esterel studio. http://www.synopsys.com/home.aspx
30. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6),

410–422 (1968)
31. Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.)

CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)

http://fado.dcc.fc.up.pt/
http://fado.dcc.fc.up.pt/
http://www.synopsys.com/home.aspx

On the Hierarchy of Block Deterministic
Languages

Pascal Caron, Ludovic Mignot(B), and Clément Miklarz

LITIS, Université de Rouen, 76801 Saint-Étienne du Rouvray Cedex, France
{pascal.caron,ludovic.mignot,clement.miklarz1}@univ-rouen.fr

Abstract. A regular language is k-block deterministic if it is specified
by a k-block deterministic regular expression. This subclass of regular
languages has been introduced by Giammarresi et al. as a possible exten-
sion of one-unambiguous regular languages defined and characterized by
Brüggemann-Klein and Wood. We first show that each k-block determin-
istic regular language is the alphabetic image of some one-unambiguous
regular language. Moreover, we show that the conversion from a minimal
DFA of a k-block deterministic regular language to a k-block determin-
istic automaton not only requires state elimination, and that the proof
given by Han and Wood of a proper hierarchy in k-block deterministic
languages based on this result is erroneous. Despite these results, we
show by giving a parameterized family that there is a proper hierarchy
in k-block deterministic regular languages.

1 Introduction

A Document Type Definition (DTD) containing a grammar is used to know
whether an XML file fits some specification. These grammars are made of rules
whose right-hand part is a restricted regular expression. Brüggemann-Klein and
Wood have formalized these regular expressions and have shown that the set of
languages specified is strictly included in the set of regular ones. The distinctive
aspect of such expressions is the one-to-one correspondence between each letter of
the input word and a unique position in them. The resulting Glushkov automaton
is deterministic. The languages specified are called one-unambiguous regular
languages.

Several extensions of one-unambiguous expressions have been considered:

– k-block deterministic regular expressions [4] are such that while reading an
input word, there is a one-to-one correspondence between the next at most
k input symbols and the same number of symbols of the expression. These
expressions have particular Glushkov automata. The transitions of these
automata can be labeled by words of length at most k and for every cou-
ple of words labeling two output transitions of a single state, these words are
not prefix from each other.

– k-lookahead regular expressions form another generalization. This time, the
reading of the next k symbols of the input word allows one to know the next
position in the expression. This extension has been proposed in [6].

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 63–75, 2015.
DOI: 10.1007/978-3-319-22360-5 6

64 P. Caron et al.

– (k, l)-unambiguous regular expressions [3] is another extension of one-unam-
biguity, where the next k symbols may induce several paths, but with at most
one common state.

These three families of expressions fit together as families of languages in the
way that a language is k-block deterministic (resp. k-lookahead deterministic,
(k, l)-unambiguous) if there exists a k-block deterministic (resp. k-lookahead
deterministic, (k, l)-unambiguous) expression to represent it.

Preliminaries are gathered in Sect. 2. In Sect. 3, we recall several results
from [4,6] on which we question their truthfulness. Indeed, we show in Sect. 4
that, due to an erroneous statement of Lemma 4, the witness family given as
a proof of Theorem 3 is invalid; and present an alternative family, proving the
infinite hierarchy of k-block deterministic regular languages w.r.t. k.

2 Preliminaries

2.1 Languages and Automata Basics

Let Σ be a non-empty finite alphabet. A word w over Σ is a finite sequence of
symbols from Σ. The length of a word w is denoted by |w|, and the empty word
is denoted by ε. The word x is a prefix of w if there exists a word u such that
w = xu. The set of all prefixes of w is denoted by Pref(w).

Let Σ∗ denote the set of all words over Σ. A language over Σ is a subset of
Σ∗. Let L and L′ be two languages over Σ. The following operations are defined:

– the union: L ∪ L′ = {w | w ∈ L ∨ w ∈ L′}
– the concatenation: L · L′ = {w · w′ | w ∈ L ∧ w′ ∈ L′}
– the Kleene star : L∗ =

⋃
k∈N

Lk with L0 = {ε} and Lk+1 = L · Lk

A regular expression over Σ is built from ∅ (the empty set), ε, and symbols
in Σ using the binary operators + and ·, and the unary operator ∗. The language
L(E) specified by a regular expression E is defined as follows:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a},

L(F + G) = L(F) ∪ L(G), L(F · G) = L(F) · L(G), L(F ∗) = L(F)∗,

with a ∈ Σ, and F , G some regular expressions over Σ. Given a language L,
if there exists a regular expression E such that L(E) = L, then L is a regular
language.

A finite automaton A is a 5-tuple (Σ,Q, I, F, δ) where: Q is a finite set of
states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of final states, and
δ ⊂ Q × Σ × Q is a set of transitions. The set δ is equivalent to a function
of Q × Σ → 2Q : (p, a, q) ∈ δ ⇐⇒ q ∈ δ(p, a). This function can be extended
to 2Q × Σ∗ → 2Q as follows: for any subset Q′ ⊂ Q, for any symbol a ∈ Σ,
for any word w ∈ Σ∗: δ(Q′, ε) = Q′, δ(Q′, a) =

⋃
q∈Q′ δ(q, a), δ(Q′, a · w) =

δ(δ(Q′, a), w); finally, we set δ(q, w) = δ({q}, w). The language L(A) recognized
by A is the set {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. Two automata are equivalent if they

On the Hierarchy of Block Deterministic Languages 65

recognize the same language. The right language of a state q of A is denoted by
Lq(A) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅}. Two states are equivalent if they have the
same right language.

An automaton A = (Σ,Q, I, F, δ) is standard if |I| = 1 and ∀q ∈ Q,∀a ∈
Σ, δ(q, a)∩I = ∅. If A is not a standard automaton, then it is possible to compute
an equivalent standard automaton (Σ,Qs, Is, Fs, δs) as follows:

– Qs = Q ∪ {is} with is /∈ Q
– Is = {is}
– Fs = F ∪ {is} if I ∩ F �= ∅, F otherwise
– δs = δ ∪ {(is, a, q) | ∃i ∈ I, (i, a, q) ∈ δ}
This operation is called standardization.

An automaton A = (Σ,Q, I, F, δ) is deterministic if |I| = 1 and ∀t1 =
(p, a, q1), t2 = (p, b, q2) ∈ δ, (t1 �= t2) =⇒ (a �= b). If A is not deterministic,
it is possible to compute an equivalent deterministic automaton by using the
powerset construction described in [10].

A deterministic automaton A = (Σ,QA, {iA}, FA, δA) is minimal if there
is no equivalent deterministic automaton B = (Σ,QB , {iB}, FB , δB) such that
|QB | < |QA|. If A is not minimal, it is possible to compute an equivalent minimal
deterministic automaton by merging equivalent states [7,9]. Notice that two
equivalent minimal deterministic automata are isomorphic.

Kleene’s Theorem [8] asserts that the set of the languages specified by regular
expressions is the same as the set of languages recognized by finite automata.
The conversion of regular expressions into automata has been deeply studied,
e.g. by Glushkov [5]. To differentiate each occurence of the same symbol in a
regular expression, a marking of all the symbols of the alphabet is performed by
indexing them with their relative position in the expression. The marking of a
regular expression E produces a new regular expression denoted by E� over the
alphabet of indexed symbols denoted by ΠE where each indexed symbol occurs
at most once in E�. The reverse of marking is the dropping of subscripts, denoted
by �, such that if x ∈ ΠE and x = ak, then x� = a.

Let E be a regular expression over an alphabet Σ. The following functions
are defined:

– Null(E) = {ε} if ε ∈ L(E), ∅ otherwise
– First(E) = {x ∈ Σ | ∃w ∈ Σ∗, xw ∈ L(E)}
– Last(E) = {x ∈ Σ | ∃w ∈ Σ∗, wx ∈ L(E)}
– Follow(E, x) = {y ∈ Σ | ∃u, v ∈ Σ∗, uxyv ∈ L(E)}, ∀x ∈ Σ

From these functions, an automaton recognizing L(E) can be computed:

Definition 1. The Glushkov automaton of a regular expression E over an
alphabet Σ is denoted by GE = (Σ,QE , IE , FE , δE) with:

– QE = ΠE ∪ {i}
– IE = {i}
– FE = Last(E�) ∪ {i} if Null(E�) = {ε}, Last(E�) otherwise

66 P. Caron et al.

– δE = {(x, a, y) ∈ ΠE × Σ × ΠE | y ∈ Follow(E�, x) ∧ a = y�}
∪{(i, a, y) ∈ {i} × Σ × ΠE | y ∈ First(E�) ∧ a = y�}

Finally, an automaton is a Glushkov automaton if it is the Glushkov automaton
of a regular expression E.

Example 1. Let E = (a + b)∗a + ε. Then E� = (a1 + b2)∗a3 + ε with ΠE =
{a1, b2, a3}, and GE is given in Fig. 1.

i a3

a1

b2

a

a

b

a

b

a

b

a

a

Fig. 1. The Glushkov automaton GE of E = (a + b)∗a + ε

2.2 One-Unambiguous Regular Languages

We present the notion of one-unambiguity introduced in [1].

Definition 2. A regular expression E is one-unambiguous if GE is determin-
istic. A regular language is one-unambiguous if it is specified by some one-
unambiguous regular expression.

Brüggemann-Klein and Wood showed that the one-unambiguity of a regular
language is stucturally decidable over its minimal DFA. This decision procedure
is related to the strongly connected components of the underlying graph and to
their links with the remaining parts.

Let A = (Σ,Q, I, F, δ) be a deterministic automaton. A set O ⊂ Q is called
an orbit if it is a strongly connected component. An orbit is trivial if it consists
of only one state and there is no transition from it to itself in A. The orbit of a
state q, denoted by O(q) is the orbit to which q belongs. The set of orbits of A
is denoted by OA. Let O ∈ OA be an orbit and p ∈ O be a state. The state p is
a gate of O if (p ∈ F) ∨ (∃a ∈ Σ,∃q ∈ (Q \ O), q ∈ δ(p, a)). The set of gates of
O is denoted by G(O). The automaton A has the orbit property if all the gates
of each orbit have identical connections to the outside. More formally:

Definition 3. An automaton A = (Σ,Q, I, F, δ) has the orbit property if, for
any orbit O in OA, for any two states (p, q) in G(O), the two following conditions
are satisfied:

On the Hierarchy of Block Deterministic Languages 67

– p ∈ F =⇒ q ∈ F ,
– ∀r ∈ (Q \ O),∀a ∈ Σ, r ∈ δ(p, a) =⇒ r ∈ δ(q, a).

Let q ∈ Q be a state. The orbit automaton Aq of the state q in A is the automaton
obtained by restricting the states and the transitions of A to O(q) with initial
state q and final states G(O(q)). For any state q ∈ Q, the languages L(Aq) are
called the orbit languages of A. A symbol a ∈ Σ is A-consistent if there exists
a state qa ∈ Q such that all final states of A have a transition labelled by a to
qa. A set S of symbols is A-consistent if each symbol in S is A-consistent. The
S-cut AS of A is constructed from A by removing, for each a ∈ S, all transitions
labelled by a that leave a final state of A. All these notions can be used to
characterize one-unambiguous regular languages:

Theorem 1 ([1]). Let M be a minimal deterministic automaton and S be a
M -consistent set of symbols. Then, L(M) is one-unambiguous if and only if:

1. the S-cut MS of M has the orbit property
2. all orbit languages of MS are one-unambiguous.

Furthermore, if M consists of a single non-trivial orbit and L(M) is one-unambi-
guous, M has at least one M -consistent symbol.

This theorem suggests an inductive algorithm to decide, given a minimal deter-
ministic automaton M whether L(M) is one-unambiguous: the BKW test. Fur-
thermore, the theorem defines a sufficient condition over non-minimal determin-
istic automaton:

Lemma 1 ([1]). Let A be a deterministic automaton and M be its equivalent
minimal deterministic automaton.

1. If A has the orbit property, then so does M
2. If all orbit languages of A are one-unambiguous, then so are all orbit lan-

guages of M .

Consequently, the BKW test is extended to deterministic automata which are
not minimal. Reinterpreting the results in [1], it can be shown that

Lemma 2. The Glushkov automaton of a one-unambiguous regular expression
passes the BKW test.

2.3 Block Deterministic Regular Languages

We present the notion of block determinism introduced in [4].
Let Σ be an alphabet and k be an integer. The set of blocks BΣ,k is the set

{w | w ∈ Σ∗ ∧ 1 ≤ |w| ≤ k}. The notions of regular expression and automaton
can be extended to ones over set of blocks. Let E be a regular expression over
Γ and A = (Γ,Q, I, F, δ) be an automaton. Let Σ be an alphabet and k be an
integer, if Γ ⊂ BΣ,k then E and A are (Σ, k)-block. And since Γ ⊂ BΣ,k ⊂ Σ∗, a

68 P. Caron et al.

language over Γ is also a language over Σ. To distinguish blocks as syntactic com-
ponents in a regular expression, we write them between square brackets. Those
are omitted for one letter blocks. The notion of determinism can be extended to
block-determinism.

Definition 4. An automaton A = (Γ,Q, I, F, δ) is k-block deterministic if the
following conditions hold:

– there exists an alphabet Σ such that A is (Σ, k)-block,
– |I| = 1,
– ∀t1 = (p, b1, q1), t2 = (p, b2, q2) ∈ δ, (t1 �= t2) =⇒ (b1 /∈ Pref(b2)).

Since Σ = BΣ,1, regular expressions and automata can be considered as ones over
a set of blocks. Moreover, the blocks can be treated as single symbols, as we do
when we refer to the elements of an alphabet. With this assumption, the marking
of block regular expressions induces the construction of a Glushkov automaton
from a block regular expression, and the usual automaton transformations such
as determinization and minimization can be easily performed.

Example 2. Let E = [aa]∗([ab]b + ba)b∗. Then E� = [aa]∗1([ab]2b3 + b4a5)b∗
6, and

GE is given in Fig. 2.

i

[aa]1b4 [ab]2

b3b5 b6

aa
b

ab

aa

b ab

b

b

a

b

b

Fig. 2. The (Σ, 2)-block Glushkov automaton GE

Finally, the block determinism of a Glushkov automaton can be used to
extend the block determinism to block expression:

Definition 5. A block regular expression E is k-block deterministic if GE is k-
block deterministic. A regular language is k-block deterministic if it is specified
by some k-block deterministic regular expressions.

Example 3. Since the Glushkov automaton in Fig. 2 is 2-block deterministic,
L([aa]∗([ab]b + ba)b∗) is 2-block deterministic.

On the Hierarchy of Block Deterministic Languages 69

Let A = (Σ,Q, I, F, δ) be an automaton and Γ be a set. Then the automaton
B = (Γ,Q, I, F, δ′) is an alphabetic image of A if there exists an injection φ from
Σ to Γ such that δ′ = {(p, φ(a), q) | (p, a, q) ∈ δ}. In this case, we set B = φ(A).
Caron and Ziadi showed in [2] that an automaton is a Glushkov one if and only
if the two conditions hold:

– it is homogeneous (for any state q, for any two transitions (p, a, q) and (r, b, q),
the symbols a and b are the same);

– it satisfies some structural properties over the transition structure.

One can check that any injection φ from Σ to Γ preserves such conditions, since
the alphabetical image preserves the transition structure by only changing the
symbol labeling a transition. Therefore

Lemma 3. The alphabetic image of an automaton A is a Glushkov automaton
if and only if A is a Glushkov automaton.

Let us show that the BKW test can be used to characterize the k-block deter-
minism of a regular language:

Theorem 2. A regular language L is k-block deterministic if and only if it is
recognized by a k-block deterministic automaton K such that K is the alphabetic
image of a deterministic automaton which passes the BKW test.

Proof. Let us show the double implication.

1. Let L be a k-block deterministic regular language over Σ. Then there exists
a k-block deterministic Glushkov automaton K = (BΣ,k, Q, {i}, F, δK) that
recognizes L. Let Π = {[b] | b ∈ BΣ,k} be an alphabet, ϕ : Π → BΣ,k be the
bijection such that for every [b] ∈ Π,ϕ([b]) = b. Let A = (Π,Q, {i}, F, δA) be
a Glushkov automaton such that K = ϕ(A). Let us suppose that A is not
deterministic. Then, there exist two transitions (p, a, q), (p, a, r) ∈ δA such
that q �= r. Thus, (p, ϕ(a), q), (p, ϕ(a), r) ∈ δK , which contradicts the fact
that K is k-block deterministic. So, A is a deterministic Glushkov automaton,
and therefore passes the BKW test following Lemma 2.

2. Let A = (Π,QA, {iA}, FA, δA) be a deterministic automaton which passes the
BKW test, K = {Γ,QA, {iA}, FA, δK) be a k-block deterministic automaton,
and ϕ : Π → Γ be an injection such that K = ϕ(A). Now, ϕ : Π → Γ is
extended into the morphism ϕ : Π∗ → Γ ∗ such that for every letter a ∈ Π
and every word w ∈ Π∗ we have ϕ(a · w) = ϕ(a) · ϕ(w) and ϕ(ε) = ε. In this
case, L(K) = ϕ(L(A)). Since A passes the BKW test, there exists an equiva-
lent deterministic Glushkov automaton G = (Π,QG, {iG}, FG, δG). Following
Lemma 3, there also exists a Glushkov automaton H = (Γ,QG, {iG}, FG, δH)
such that H = ϕ(G) and L(H) = ϕ(L(G)). Since A and G are equivalent
deterministic automata, ϕ(L(G)) = ϕ(L(A)). And so L(H) = L(K). Let us
suppose that H is not k-block deterministic, then there exist two transitions
(pH , ϕ(a), qH), (pH , ϕ(b), rH) ∈ δH such that either (ϕ(a) = ϕ(b))∧(qH �= rH)

70 P. Caron et al.

or (ϕ(a) �= ϕ(b))∧(ϕ(a) ∈ Pref(ϕ(b))). By definition, (pH , a, qH), (pH , b, rH) ∈
δG. But since G and A are equivalent deterministic automata, there exist
two transitions (pA, a, qA), (pA, b, rA) ∈ δA, and by definition, (pA, ϕ(a), qA),
(pA, ϕ(b), rA) ∈ δK . Let us suppose that (ϕ(a) = ϕ(b)) ∧ (qh �= rh). Since
ϕ is an injection, (a = b) ∧ (qh �= rh), which contradicts the fact that G is
deterministic. So let us suppose that (ϕ(a) �= ϕ(b)) ∧ (ϕ(a) ∈ Pref(ϕ(b))), it
contradicts the fact that K is k-block deterministic. Therefore, H is a k-block
deterministic Glushkov automaton, and L(K) is k-block deterministic. ��

It has been proved that one-unambiguous regular languages are a proper
subfamily of k-block deterministic regular languages. Therefore one can wonder
whether there exists an infinite hierarchy in k-block deterministic regular lan-
guages regarding k. That has been achieved by Han and Wood [6], but with an
invalid assumption.

3 Previous Results on Block-Deterministic Languages

In [4], a method is presented for creating from a block automaton an equivalent
block automaton with larger blocks by eliminating states while preserving the
right language of every other states.

Let A = (Γ,Q, I, F, δ) be a block automaton. The state elimination of q in A
creates a new block automaton, denoted by S(A, q), computed as follows: first,
the state q and all transitions going in and out of it are removed; second, for
every two transitions (r, u, q) and (q, v, s) in δ, the transition (r, uv, s) is added.
This transformation is illustrated in Fig. 3.

q

r1

r2

s1

s2

u1

u2

v1

v2

w

r1

r2

s1

s2

u1v1

u1v2
u2v1

u2v2

wv1

wv2

Fig. 3. The state elimination of the state q

Definition 6. Let A = (Γ,Q, I, F, δ) be a block automaton. A state q ∈ Q
satisfies the state elimination precondition if it is neither an initial state nor a
final state and it has no self-loops.

The state elimination is extended to a set S ⊂ Q of states if every state in
S satisfies the state elimination precondition, and the subgraph induced by S is

On the Hierarchy of Block Deterministic Languages 71

acyclic. In this case, we can eliminate the states in S in any order. Giammarresi
et al. [4] suggest that state elimination is sufficient to decide the k-block deter-
minism of a regular language.

Lemma 4 ([4,6]). Let M be a minimal deterministic automaton of a k-block-
deterministic regular language. We can transform M to a k-block deterministic
automaton that satisfies the orbit property using state elimination.

Using this lemma, Han and Wood stated that:

Theorem 3 ([6]). There is a proper hierarchy in k-block-deterministic regular
languages.

Proof. Han and Wood exhibited the family of languages Lk specified by regular
expressions Ek = ([ak])∗([ak−1b]b+ba)b∗ whose minimal deterministic automata
Mk are represented in Fig. 4. Following Lemma 4, there is no other choice but
to eliminate states q1 to qk−1, in any order, to have the orbit property. Thus, Lk

is k-block deterministic and not (k − 1)-block deterministic. ��

qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

a

a

b

ba

b

qk

1 3 2

ak

b

ak−1b

ba

b

Fig. 4. The minimal deterministic automaton Mk and its equivalent k-block determi-
nistic automaton after having eliminated states q1 to qk−1

4 A Witness for the Infinite Hierarchy

In this section, we exhibit a counter-example for Lemma 4. We can find a k-block
deterministic language with a minimal deterministic automaton from which we
cannot get any k-block deterministic automaton that satisfies the orbit prop-
erty. In Fig. 5, the leftmost automaton is minimal and none of its states can be
eliminated. However, by applying standardization, we create an equivalent deter-
ministic automaton from which we can eliminate the state i to get the rightmost
equivalent 2-block deterministic automaton.

This clearly shows that the only action of state elimination is not enough
to decide whether a language is k-block deterministic. Using this operation, we
show that:

72 P. Caron et al.

i

1

2

a

b

b
i′ i

1

2

a

b

a

b

b
i′

1

2

a

b

ba

bb

Fig. 5. The counter-example

Proposition 1. ∀k ∈ N \ {0}, the language Lk is 2-block deterministic.

Proof. As shown in Fig. 6, we can always standardize Mk, proceed to the state
elimination of qk and get a 2-block deterministic automaton which respects the
conditions stated in Theorem 2. Thus, Lk is 2-block deterministic and is specified
by the regular expressions Fk = (ak−1([aa]ak−2)∗([ab]a + bb) + ba)b∗. ��

i qk

1

qk−1 qk−2 q3 q2

q1

23

a

b

a

b

a a

a

a

b

ba

b

i

1

qk−1 qk−2 q3 q2

q1

23

a

b

a a

aaa

ab b

ba

b

Fig. 6. The standardization of Mk followed by the state elimination of qk

However, Theorem 3 is still correct since we can give proper details about
the proof with our own parameterized family of languages. Let k ∈ N \ {0} be
an integer and Ak = (Σ,Qk, Ik, Fk, δk) be the automaton (given in Fig. 7) such
that:

– Σ = {a, b, c}
– Qk = {f} ∪ {αj , βj | 1 ≤ j ≤ k}
– Ik = {βk}
– Fk = {f} ∪ {αk, βk}
– δk = Δk ∪ Γk with:

• Δk = {(βk, a, αk), (β1, b, f), (αk, a, αk), (α1, b, f), (α1, c, βk)}
• Γk = {(αj , b, αj−1), (βj , b, βj−1) | 2 ≤ j ≤ k}

First of all, let us notice that the word bj ∈ L(Ak) if and only if j = k. Thus,
for all k �= k′, L(Ak) �= L(Ak′). Furthermore,

On the Hierarchy of Block Deterministic Languages 73

βk βk−1 βk−2 β2 β1

αk αk−1 αk−2 α2 α1

f

b

a

b b

b

a
b b b

b

c

Fig. 7. The k-block deterministic automaton Ak

Proposition 2. ∀k ∈ N \ {0}, L(Ak) is k-block deterministic.

Proof. By construction, for all k, Ak is trimmed and deterministic. So, any
automaton that we can get from eliminating states such that the state elimina-
tion precondition is respected is a block deterministic automaton.

For any integer k in N \ {0}, we can eliminate the set of states {αj , βj | 1 ≤
j ≤ k − 1} because none of these states are initial or final and their induced
subgraph is acyclic. Thus, we can get a k-block deterministic automaton Bk,
such that L(Bk) = L(Ak), shown in Fig. 8. Obviously Bk respects the conditions
stated in Theorem 2, so L(Ak) is k-block deterministic. Furthermore, it can be
checked that L(Ak) is specified by the k-block deterministic regular expression
(a(ε + [bk−1c]))∗(ε + [bk]). ��

βk

αk

f

bk

a

a bk

bk−1c

Fig. 8. The k-block deterministic automaton Bk

Finally, let us show that the index cannot be reduced:

Proposition 3. ∀k ∈ N \ {0}, L(Ak) is not (k − 1)-block deterministic.

Proof. Let B = (BΣ,k−1, QB , {iB}, FB , δB) be a (k − 1)-block deterministic
automaton equivalent to Ak.

We first show that there exists a non-trivial orbit O ⊂ QB and two states
α, β ∈ O such that Lα(B) = Lαk

(Ak) and Lβ(B) = Lβk
(Ak). Let us con-

sider the following state sequences: (αk,j)j∈N ⊂ FB and (βk,j)j∈N ⊂ FB , such
that βk,0 = iB , δB(βk,j , a) = αk,j and δB(αk,j , b

k−1c) = βk,j+1. It follows
that δB(iB , (abk−1c)j) = βk,j and δB(iB , (abk−1c)ja) = αk,j . Notice that the
existence of αk,j and βk,j is ensured by the fact that L(B) = L(Ak). Let us

74 P. Caron et al.

suppose that there exists j ∈ N such that Lβk,j
(B) �= Lβk

(Ak). Then there
exists w ∈ Σ∗ such that w ∈ Lβk,j

(B) � Lβk
(Ak), where for any two sets

X and Y , X � Y = (X \ Y) ∪ (Y \ X). And since δk(βk, (abk−1c)j) = βk,
(abk−1c)j · w ∈ L(B) � L(Ak). Thus, L(B) �= L(Ak) which is contradictory. So,
for every j ∈ N, we have Lβk,j

(B) = Lβk
(Ak). The proof that for every j ∈ N,

we have Lαk,j
(B) = Lαk

(Ak), is done in the same way. Now, let us suppose that
for every j �= j′ ∈ N, we have αk,j �= αk,j′ and βk,j �= βk,j′ . Then QB would be
infinite, which would contradict the fact that B is a finite automaton. So, there
exist j < j′ ∈ N such that αk,j = αk,j′ or βk,j = βk,j′ . Thus, either there exists
a path going from βk,j to αk,j and a path going from αk,j to βk,j′ = βk,j , and
βk,j and αk,j belong to the same orbit; or there exists a path going from αk,j to
βk,j+1 and a path going from βk,j+1 to αk,j′ = αk,j , and αk,j and βk,j+1 belong
to the same orbit.

Finally, let us focus on such an orbit O with two gates α and β such that
Lα(B) = Lαk

(Ak) and Lβ(B) = Lβk
(Ak). We know that for every i ∈ N such

that 1 ≤ i < k, we have δk(βk, bi) = βk−i with |Lβk−i
(Ak)| < ∞. Since Lβ(B) =

Lβk
(Ak) and B is (k − 1)-block deterministic, there exist j ∈ N and p ∈ QB

such that 1 ≤ j < k, δB(β, [bj]) = p and Lp(B) = Lβk−j
(Ak). This means that

|Lp(B)| < ∞, so p /∈ O. Now, if there does not exist a state q ∈ QB such that
δB(α, [bj]) = q, then B does not have the orbit property. So, let us suppose that
such a state exists. We know that for every i ∈ N such that 1 ≤ i < k, we
have δk(αk, bi) = αk−i with |Lαk−i

(Ak)| = ∞. Since Lα(B) = Lαk
(Ak), we have

Lq(B) = Lαk−j
(Ak) and |Lq(B)| = ∞. So p �= q and B does not have the orbit

property.
Since L(Ak) cannot be recognized by a (k−1)-block deterministic alphabetic

image of an automaton passing the BKW test, following Theorem 2 it holds that
L(Ak) is not (k − 1)-block deterministic. ��

References

1. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf.
Comput. 140(2), 229–253 (1998). http://dx.doi.org/10.1006/inco.1997.2688

2. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1–2), 75–90 (2000)

3. Caron, P., Flouret, M., Mignot, L.: (k,l)-unambiguity and quasi-deterministic
structures: an alternative for the determinization. In: Dediu, A.-H., Mart́ın-Vide,
C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 260–272. Springer, Heidelberg (2014)

4. Giammarresi, D., Montalbano, R., Wood, D.: Block-deterministic regular lan-
guages. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001.
LNCS, vol. 2202, pp. 184–196. Springer, Heidelberg (2001)

5. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

6. Han, Y.S., Wood, D.: Generalizations of 1-deterministic regular languages. Inf.
Comput. 206(9–10), 1117–1125 (2008)

http://dx.doi.org/10.1006/inco.1997.2688

On the Hierarchy of Block Deterministic Languages 75

7. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automa-
ton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196.
Academic Press, New York (1971)

8. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,
C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press,
Princeton (1956). Annals of Mathematics Studies 34

9. Moore, E.F.: Gedanken experiments on sequential machines. In: Shannon, C.,
McCarthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press,
Princeton (1956)

10. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
3(2), 115–125 (1959)

Security of Numerical Sensors in Automata

Zhe Dang, Dmitry Dementyev, Thomas R. Fischer,
and William J. Hutton III(B)

School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

william.hutton@gmail.com

Abstract. Numerical sensors are numerical functions applied on mem-
ory contents. We study the computability of the mutual information rate
between two sensors in various forms of automata, including nondeter-
ministic pushdown automata augmented with reversal-bounded counters
as well as discrete timed automata. The computed mutual information
rate can be used to determine whether it is the case that there is essen-
tially no information flow between a low sensor and a high sensor and
hence could provide a way to quantitatively and algorithmically analyze
some covert channels.

1 Introduction

An automaton is an abstract computing device that works on a memory and
interacts with its environment (through input and/or output). A large part of
traditional automata theory focuses on the language aspect of automata; e.g.,
what kind of languages an automaton accepts when it runs and what kind of
properties the languages have (for instance; decidability of emptiness, equiva-
lence, etc.). In this paper, we investigate the security aspect of automata with
a focus on confidentiality. Automata are a fundamental model for all modern
programs and software systems. This paper will provide insight for practitioners
working on software and systems security.

In our setting, a sensor is a (many-to-one) function applied to memory con-
tents. When the range of the function is vectors of numbers, we call the sensor
numerical. For instance, for a pushdown automaton, a sensor that maps a stack
content to its height is obviously a numerical sensor. Suppose that we are given
an automaton M and two sensors low and high. For every reachable configu-
ration C of M , we may obtain a pair of measurements, (low(C) and high(C)).
We can then define an (often infinite) set of measurements containing all such
pairs. We seek to compute the maximal mutual information rate between the
two sensors from the measurements set. The rate characterizes the amount of
information (bit rate) that flows between the two sensors. We borrow the names
of the sensors from software security [19,21], where a high variable and a low
variable are often used to identify memory contents that are private and pub-
lic, respectively, so that the information flow between the two is expected to be
almost zero. Herein, we generalize the concept from variables to sensors in the
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 76–88, 2015.
DOI: 10.1007/978-3-319-22360-5 7

Security of Numerical Sensors in Automata 77

sense that the content high(C) to be kept private may be an abstract form (e.g.,
the sum x1 + x2 of two counter values in the automaton) of C instead of being
part (e.g., x1) of C.

It turns out that computing the mutual information rate from a given mea-
surements set is a difficult problem since the set can be infinite (e.g., for an
infinite state automaton). Our approach is as follows. When the measurements
set is finite, we can treat it as a bipartite graph G which also defines a chan-
nel. We find that the maximal mutual information between the sender and the
receiver in the channel is related to, but different from the traditional chan-
nel capacity studied in information theory [6]. To compute the maximal mutual
information, we show two fundamental results. First, the (estimated) maximal
mutual information can be approximated with a small error by log NleftNright

E ,
where Nleft and Nright are respectively the numbers of left nodes and the num-
ber of right nodes in the bipartite graph G and E ≥ max(Nleft, Nright) is the
number of edges in G. This approximation holds with high probability for a ran-
dom G (i.e. the probability goes to 1 as G gets infinitely large). Second, the exact
value of the maximal information can be computed as the logarithm of the size of
maximum matching in G. Then, for an infinite set of measurements, the mutual
information rate can be computed asymptotically using the estimated maximal
mutual information. Notice that a computable mutual information rate directly
leads to an algorithmic solution to the problem whether low and high sensors
are secure (in the sense of information secrecy) in an automaton. We shall point
out that our results do not depend on a predefined probability model, which, in
practice, is hard to obtain.

We show an intimate relationship between mutual information rate (between
two numerical sensors) and information rate of a formal language [5,7,8,18,20].
Using this result, we show that the mutual information rate is computable for
a variety of infinite state automata including reversal-bounded multicounter
machines [15] with linear numerical sensors (over the counter values). In partic-
ular, we show that our definition of the numerical sensors is also flexible enough
to be used on an abstract “memory”such as time. To this end, we show that
the mutual information rate is also computable in discrete timed automata [1],
when the sensors are durations of certain events. In this way, we give a formal
and quantified treatment of a time-based covert channel embedded in a real-time
system. We believe that the approach can also be used in fundamental studies
for other forms of covert channels.

In the context of software security [19,21], traditional approaches [2,3,22] in
software security use static code analysis and/or an explicit probability model to
calculate information dependency of variables in a program. As stated previously,
such a probability is usually very hard to obtain in practice. Some work also does
not depend on an explicit probability model (e.g., min-entropy in [26]). Our
work handles asymptotic mutual information and does not assume a uniform
distribution on the low and/or high sensors. Also, unlike our recent work [11,20]
that studies a long-term mutual information rate (which is measured over a
sequence of activities in a program that extends to infinity), we focus on short
term mutual information rate in this paper.

78 Z. Dang et al.

2 Preliminaries

Let N be the set of nonnegative integers. V ⊆ N
k is a linear set if V = {v :

v = v0 + t1v1 + · · · + tivm, t1, · · · , tm ≥ 0} where v0, · · · ,vm are constant k-
arity vectors in N

k, for some m ≥ 0. V is a semilinear set if it is the union of
finitely many linear sets. Every finite subset of Nk is semilinear – it is a finite
union of linear sets whose generators are constant vectors. Clearly, semilinear
sets are closed under union and projection. It is also known that semilinear sets
are closed under intersection and complementation.

Let Y be a finite set of integer variables. An atomic Presburger formula on
Y is either a linear constraint

∑
y∈Y ayy < b, or a mod constraint x ≡d c, where

ay, b, c and d are integers with 0 ≤ c < d. A Presburger formula can always
be constructed from atomic Presburger formulas using ¬ and ∧. Presburger
formulas are closed under quantification. Let S be a set of k-tuples in Nk. S
is Presburger definable if there is a Presburger formula P (y1, · · · , yk) such that
the set of non-negative integer solutions is exactly S. It is well-known that S is
a semilinear set iff S is Presburger definable. It can be shown that V ⊆ Z

k is a
semilinear set iff V is Presburger definable.

Let Σ = {a1, · · · , ak} be an alphabet. For each word α ∈ Σ∗, define the
Parikh map of α to be the vector #(α) = (#a1(α), · · · ,#ak

(α)), where each
symbol count #ai

(α) denotes the number of symbol ai’s in α. For a language
L ⊆ Σ∗, the Parikh map of L is the set #(L) = {#(α) : α ∈ L}. The language
L is semilinear if #(L) is a semilinear set.

A counter is a non-negative integer variable that can be incremented by 1,
decremented by 1, or remain unchanged. Additionally, a counter can be tested for
equality with 0. A reversal-bounded NCM M is a one-way non-deterministic finite
automaton augmented with k (for some k) reversal-bounded counters. A counter
is reversal-bounded if it makes at most r (a fixed constant like 3) alternations
between non-decreasing and non-increasing modes in any computation. It is
known that the language L(M) accepted by M is semilinear [15]. The semilinear-
ity remains when M is a reversal-bounded NPCM [15], that is a nondeterministic
pushdown automaton M augmented with a number of reversal-bounded coun-
ters. (A reversal-bounded NCM is a special case of a reversal-bounded NPCM.)

Reversal-bounded NCMs have been extensively studied since their intro-
duction in 1978 [15]; many generalizations are identified; e.g., multiple tapes,
two-way tapes, stacks, etc. In particular, reversal-bounded NCMs have found
applications in areas like Alur and Dill’s [1] time-automata [9,10], Paun’s [23]
membrane computing systems [16], and Diophantine equations [27].

3 Maximal Mutual Information

A multi-bipartite graph Ĝ is a bipartite graph where an edge between node i and
node j is labeled by a multiplicity k(i, j) ≥ 0. In this case, the edge is counted as
k(i, j) edges. Suppose that Ĝ has Nleft left nodes and Nright right nodes, and Ê
edges (the sum of all multiplicities). Let X and Y be random variables on the left

Security of Numerical Sensors in Automata 79

and on the right nodes, respectively. The joint distribution p(X,Y) is uniform on
all the Ê edges; i.e. p(X,Y) = k(X,Y)

Ê
. We require that Ê ≥ max(Nleft, Nright).

From this definition of joint distribution, we can compute the entropy H(X),
the entropy H(Y), the joint entropy H(X,Y), and the mutual information
I(X;Y) = H(X) + H(Y) − H(X,Y), denoted by HL(Ĝ),HR(Ĝ),H(Ĝ) and
I(Ĝ), respectively. Finally, we define λĜ = log NleftNright

Ê
.

The multi-bipartite graph Ĝ induced a bipartite graph G obviously: in G,
(i, j) is an edge iff k(i, j) > 0, where, the i and the j ranges over the left
and the right nodes, respectively. Suppose that the bipartite graph G has E
edges. Recall that λG = log NleftNright

E . The joint distribution p(X,Y) of the Ĝ
naturally induces a joint distribution for G. From this latter joint distribution,
we can define the mutual information of G (induced from Ĝ), denoted IĜ(G)
and have

IĜ(G) = I(Ĝ). (1)

Let Ĝ be a “random” (defined in a moment) multi-bipartite graph with Nleft

left nodes, Nright right nodes, and NleftNright ≥ Ê ≥ N = max(Nleft, Nright)
edges. Herein, Nleft, Nright and Ê are constants, instead of random variables.
Suppose that the left nodes are l1, · · · , lNleft

and the right nodes are r1, · · · ,
rNright

. Define U = {(li, rj) : 1 ≤ i ≤ Nleft, 1 ≤ j ≤ Nright} to be the set of
all possible edges between left nodes and right nodes. We now uniformly and
independently select Ê edges from the U (each edge is selected with probability

1
NleftNright

). The result forms a random multi-bipartite graph Ĝ. (An edge in U

can be selected multiple times, so we end up with a multi graph instead of a
graph). We now state our main result so far as follows.

Theorem 1. With high probability (w.h.p, i.e. the probability goes to 1 as the
value min(Nleft, Nright) → ∞),

|I(Ĝ) − λĜ| = O(log log N) and |IĜ(G) − λG| = O(log log N), (2)

where the O(log log N) terms, as usual, is bounded by c log log N for some con-
stant c.

Let G be a bipartite graph where all the E edges are given. We can now
treat the G as a channel. Now, we define I(G) as max I(X;Y) where the max is
over all the probability distributions over the E edges of the graph G. We use
M to denote the size of maximum matching in G (i.e. the number of pairs in
the matching).

Theorem 2. For any bipartite graph G, I(G) = log M .

4 Secure Numerical Sensing in Automata

An automaton is a device that is equipped with a piece of (potentially
unbounded) memory. After reading an input symbol, an automaton may make a

80 Z. Dang et al.

move. The result of this move may update the content of the automaton’s mem-
ory. The simplest class of automata are finite automata. Finite memory stores
one control state. In the more complex case of pushdown automata, memory
stores both a control state and the content of the stack. By convention, control
states are finitely many, which correspond to line labels in a modern program.

Therefore, a run of automaton M is a sequence C0
a1→· · · an→Cn, for some n,

where the input symbols read so far are w = a1 · · · an, and each Ci is the content
of memory at step i, and C0 is the initial memory content, which is given usually
in the definition of M. In this case, we say that Cn is reachable.

At a high level, the memory contents can be understood as a value of one or
more data structures. For instance, in case of a pushdown automaton, the mem-
ory would be a dynamic array where its first element stores a control state and
its second element stores the bottom symbol of the stack and the rest of the
array stores the stack content with the top symbol of the stack being at the end
of the array.

Let C be the set of all the reachable memory contents and High and Low be
two sets. We are now given two functions low : C → Low and high : C → High,
which are called sensors. For a C ∈ C, the results low(C) and high(C) are called
measurements.

In practice, low (respectively, high) is to specify certain information about
the memory that is public (respectively, private). For instance, in a pushdown
automaton, low(C) can be defined as the top symbol of the stack specified in
the C ∈ C, while high(C) can be defined as the control state specified in the
C ∈ C. Following these two definitions, an attacker therefore can only observe
the top symbol of the stack in a C.

We look at another example. Consider a multicounter automaton M. A reach-
able memory content C therefore contains s (the control state) and v1, · · · , vk

(nonnegative integer values for counters x1, · · · , xk). We can define low(C) to be
k∑

i=0

vi and high(C) = (v1, · · · , vk). From these definitions, it is interesting to see,

when an attacker can measure the sum of all the counter values at a moment
during a run of M, whether the attacker can deduce some information of the
individual counter values v1, · · · , vk. In particular, we would like to compute the
amount of the information; i.e. the mutual information between the two sensors.

Notice that the attacker can measure low(C) without directly observing the
C (this is why the function is called a sensor). For each C ∈ C, we use |low(C)|
and |high(C)| to denote the sizes (in bits or another given unit) of low(C) and
high(C). For a given size n, we use Cn to denote all the C’s in C such that
both |low(C)| and |high(C)| are at most n. Now, for the Cn, we construct a
bipartite graph Gn where, for each C ∈ Cn, there is an edge from the left node
llow(C) to the right node rhigh(C). Notice that the number of edges E in Gn is
the cardinality of the following set

Rn = {(low(C), high(C)) : C ∈ Cn}. (3)

Security of Numerical Sensors in Automata 81

We use Nleft and Nright to denote the number of left nodes and right nodes
in Gn, respectively, with N = max(Nleft, Nright). Recall that

λGn
= log

NleftNright

E
. (4)

We now assume that min(Nleft, Nright) goes to ∞ as n → ∞. That is, both
Low = {low(C) : C ∈ C} and High = {high(C) : C ∈ C} are an infinite set. In
this case, because of (2), λGn

indeed provides a good estimation of the mutual
information between the left node low(C) and the right node high(C), when C
is drawn from Cn, with at most O(log log N) bits of error. In fact, if we consider
estimated mutual information rate λGn

n , then the error goes to 0 asymptotically.
Hence, we now define

I(low;high) = lim sup
λGn

n
(5)

and called it (estimated) mutual information rate between the two sensors low
and high.

However, when one or both of Low and High are finite sets, one can verify
that I(low;high) is still defined and is simply 0. This is consistent with our
intuition since now the mutual information between the left node low(C) and
the right node high(C) can not be larger than log min(|Low|, |High|) which is a
finite constant. Hence, the mutual information rate has to be zero asymptotically.

Recall that we used I(Gn) to denote the maximal mutual information in Gn,
which, according to Theorem 2, equals log M where M is the size of maximum
matching in Gn. When one or both of Low and High are finite sets, maxn I(Gn)
is a finite value. In this case, we define C(low;high) as the maximal mutual
information between the two sensors low and high. In this case, once the defi-
nitions of low and high are computed from the definition of automaton M, the
maximal mutual information can be precisely computed using Theorem 2.

In the rest of the paper, we focus on how to compute I(low;high), which
is a much harder problem (because Low and High are infinite sets). In reality,
it is assumed that a low sensor should not deduce any nontrivial amount of
information in the high sensor. Clearly, the computability of I(low;high) and
C(low;high) leads directly to algorithmic solutions of the problem, regardless of
if this assumption is true or false.

4.1 Secure Numerical Sensing w.r.t. Estimated
Mutual Information Rate

For a language L, we use Sn(L) to denote the number of words with length n in
L, λL, to denote the information rate of L, and lim sup log Sn(L)

n to denote the
limit superior, which always exists. Whenever an actual limit (instead of lim sup)
exists, we say that L is converging.

The definition of information rate comes from Shannon [25] in describing a
channel capacity. Before proceeding further, we must explain the intuition behind
Shannon’s definition. log Sn(L)

n specifies the average number of bits needed per

82 Z. Dang et al.

symbol (i.e. bit rate) if a word of length n in L is losslessly compressed. The
information rate λL is simply the asymptotic bit rate. In other words, λL is the
average amount of information per symbol contained in a word in L.

The following theorem is a fundamental result:

Theorem 3. The information rate of a regular language is computable [5].

As pointed out in [5], the information rate can actually be efficiently computed
using a matrix algorithm. A language is suffix-closed if, for every word w in the
language, there is a word w′ = wa, for some symbol a, in the language.

Theorem 4. A suffix-closed regular language is converging.

We now prove a fundamental result. Let k be a constant. For a nonnegative
integer v < 2n, we use [v, n] to denote its n-bit binary representation (in reverse
order). For instance, when v is 4, [v; 6] is 001000 (it is the reverse of 000100 = 4).
For a vector of k nonnegative integers v = (v1, · · · , vk), we say that it is 2n-
bounded if each vi < 2n. In this case, we use [v1, · · · , vk;n] to denote its n-bit
representation, which is a k-track word, where, for each 1 ≤ i ≤ k, the i-th track
is [vi;n]. Let V be a set of vectors v = (v1, · · · , vk) of k nonnegative integers. We
use [V;n] to denote the set of n-bit representations of its 2n-bounded elements;
i.e. [V;n] = {[v;n] : v is 2n-bounded, v ∈ V}. Notice that [V;n] is a language
of k-track words on bits with length n. We use [V] to denote ∪n[V;n]. Now we
can show that:

Theorem 5. For a semilinear set V, [V] is a converging regular language.

We now consider numerical sensors. That is, the sensors low and high return
nonnegative integer vectors as their measurements. In this case, the measure-
ments set {(low(C), high(C)) : C ∈ C} is simply a set of vectors, denoted
by Vlow,high.

Theorem 6. For numerical sensors low and high, when their set of measure-
ments Vlow,high is effectively a semilinear set (i.e. the description of the semilin-
ear set can be computed), the mutual information rate I(low;high) is computable.

When a numerical sensor returns integer (instead of nonnegative integer)
vectors as measurements, we add a sign bit to each measurement; e.g., −5 is
treated as (1, 5) while +5 is treated as (0,5). In this way, such an integer numer-
ical sensor can be considered a numerical sensor returning nonnegative integer
vectors. More precisely, an integer vector v ∈ Z

k is now encoded as a nonneg-
ative integer vector v̂ in N

2k, after adding k sign bits. For a set V ⊆ Z
k, we

call it an integer semilinear set when {v̂ : v ∈ V} is a semilinear set in N
2k.

The mapping between v and v̂ is one-to-one and length preserving. Therefore,
Theorem 6 can be straightforwardly generalized.

Theorem 7. For integer numerical sensors low and high, when their measure-
ments set Vlow,high is effectively Presburger definable (i.e. the description of the
Presburger formula can be computed), the mutual information rate I(low;high)
is computable.

Security of Numerical Sensors in Automata 83

4.2 Secure Numerical Sensing in Automata

Below, we will show how to use Theorem 6 to establish some decidability results
on secure sensing of various computational models.

We consider a reversal-bounded NPCM M (with input tape and with
reversal-bounded counters x1, · · · , xk). A linear numerical sensor is an inte-
ger linear combination of the counters x1, · · · , xk; e.g., 2x1 − 3x2 + 4x3. Such
a sensor is also an integer numerical sensor. Suppose that low and high are
linear numerical sensors. Now, the measurements set Vlow,high is the set of
all (low(x1, · · · , xk), high(x1, · · · , xk)) whenever counter values x1, · · · , xk are
reachable in M . Since it can be shown that the measurements set Vlow,high is
an integer semilinear set, from Theorem 7, the following result is immediate:

Theorem 8. Suppose that low and high are linear numerical sensors in a
reversal-bounded NPCM M . Then, the mutual information rate I(low;high) is
computable.

For a word w of even length, low observes the number of a’s in the first half
while high observes the number of b’s in the second half. When w is drawn from
a language L accepted by an NPCM (e.g., L is a context-free language), the
mutual information rate I(low;high) is computable, using Theorem 8. Notice
that for the context-free language {anbn : n ≥ 0}, the rate is 1 bit (i.e. low
and high share the complete information), while for the context-free language
{amckbn : m, k, n ≥ 0,m + k = n}, the rate is 0 bit (asymptotically, low and
high share no information).

We now consider an automaton working on multiple input tapes. In practice,
such tapes can be used to model a system’s input, internal states, or even its
output. For instance, consider a printer that accepts user input and prints out
a file. Herein, the user input and the output file can be modeled as two input
tapes to an abstract automaton. In this case, an output (write) action of the
printer is simulated by an input (read) action of the automaton.

Let M be a 2-tape NFA which has two input tapes. Let low and high be
numerical sensors on first and the second tapes respectively. We define R(M) =
{x♥y : M on input (x, y) accepts}, where ♥ is a delimiter (a new symbol). At
each step, the transition of M is of the form q : (a, b) → p, where a, b ∈ Σ ∪ {ε}
(ε is the null symbol). The transition means that M in state q reading a and b
on the two tapes enters state p.

Let the numerical sensors low and high return the Parikh maps of the two
inputs; i.e. low(x) = #(x) and high(y) = #(y). In this case, the measurements
set Vlow,high for the M is defined as Vlow,high = {(low(x), high(y)) : x♥y ∈
R(M)}. We can show that R(M) is a semilinear set. Hence:

Theorem 9. For a 2-tape NFA M , its mutual information rate I(low;high) is
computable when the numerical sensors low and high are defined above.

The above can further be generalized to k-tape NFA M with reversal-
bounded counters in a straightforward way. In this case, M can perform counter

84 Z. Dang et al.

operations while reading input symbols from the tapes. Let low and high be
Parikh maps of some of the tapes (e.g., low is for the first �k

2
 tapes while high
for the rest). Then, Theorem 9 still holds for k-tape NFA:

Theorem 10. For a k-tape NFA M augmented with reversal-bounded counters,
its mutual information rate I(low;high) is computable when the numerical sen-
sors low and high are defined above.

Notice that R(M) is quite complex for a multi-tape NFA M . For instance,
the language L = {x♥y♥xy : x, y ∈ (a+b)∗} is the R(M) of a 3-tape DFA, which
is not even a context-free language. One can slightly generalize the L as follows:
L′ = {x♥y♥xy : x, y ∈ (a + b)∗, x ∈ L1, y ∈ L2, xy ∈ L3,#a(x) = #b(y)} where
L1, L2, L3 are some given regular languages (#a(x) is the number of symbol a’s
in word x). In this case, L′ is still the R(M ′) for some 3-tape NFA augmented
with reversal-bounded counters. Suppose that, for a word w = x♥y♥xy ∈ L′,
low(w) = (|x|,#a(x)) and high(w) = (|y|,#b(y)). Then, from Theorem 10, the
mutual information rate I(low;high) of L′ can be computed.

There are cases when the mutual information rate I(low;high) is not com-
putable. For example, a 2-head DFA M is a DFA with two one-way heads. The
move of the machine depends on the state and the symbols scanned by the
two heads. In a move, the machine changes state and moves each head (inde-
pendently) at most one cell to the right. For a word x ∈ L(M), we define
low(x) = #a(x) and high(x) = #b(x). In this case, the measurements set
Vlow,high for the M is defined as Vlow,high = {(low(x), high(y)) : x ∈ L(M)}.

Proposition 1. The mutual information rate I(low;high) for a 2-head DFA is
not computable when the numerical sensors low and high are defined above.

As mentioned earlier, the two sensors low and high establish an abstract
communication channel and the mutual information rate I(low;high) measures
the amount of information “flowing”over the channel. Communication is mostly
direct; i.e. sending a message from one party to another. However, in the setting
of a covert channel, a party can indirectly send a “message” using an unex-
pected channel (for instance, file sizes and time durations can be used to encode
some information). Herein, numerical sensors are measured over abstract “mem-
ory”such as time. This is interesting, since time is often used as a media for
covert channel that leaks information in a clever way.

“A covert channel is a path of communication that was not designed to
be used for communication [4].” Covert channels can include both explicit and
implicit communication. Deliberate communication between two or more entities
is explicit. Implicit communication can occur when an entity is not aware that
they are communicating information with one or more entities. The use of a com-
mon resource, such as the Linux /tmp directory, which is usually both readable
and writable by all users of the system, is an example of explicit communication.
That communication becomes covert when the entities use the resource to com-
municate in a way that is was not designed for. For example, sending a message
one character at a time by converting each character to its UTF-8 decimal value,

Security of Numerical Sensors in Automata 85

then creating a file of corresponding size using random data. The file creation
date of each file is used to determine the order to convert the file sizes back into
UTF-8 characters to read the message. If the entities synchronize their commu-
nication using a simple protocol, they could use a single file, changing its size
after the previous character was acknowledged by the receiver. Of course the
previously mentioned low(C) and high(C) sensors could easily detect this covert
channel by observing the rate of change of the file’s modification timestamp.

The case of implicit communication is also interesting. Consider a user that
is using a web site to generate a strong password. The user refreshes (reloads)
the page to generate a new password until he sees one he likes, then writes it
down. In an effort to obfuscate the fact that the last page requested contains his
password, he refreshes the web page a few more times. The low(C) and high(C)
sensors could be used to compare the time between configuration changes to
infer which of the received password was the selected password.

We now investigate numerical sensors for time durations in a real-time sys-
tems. When a real-time system is modeled as a timed automaton, the mutual
information rate of some time intervals (between events) can be algorithmically
computed, as we will show. This opens the possibility for automatically analyzing
covert time channels in such systems. But first, some definitions are required.

A timed automaton [1] is a finite state transition system augmented with a
number of real-valued clocks. All the clocks progress synchronously with rate 1,
except that a clock can be reset to 0 at some transition. A discrete timed automa-
ton is the case when all the clocks take nonnegative integer values.

A clock constraint is a Boolean combination of atomic clock constraints, each
of which is either in the form of x#c or in the form of x−y#c, where # denotes
≤,≥, <,>, or =, c is an integer, x, y are clocks. That is, clock constraints allow
us to compare a single clock or the difference of two clocks against an integer
constant.

A discrete timed automaton M is specified by (Σ,Q,X, T), where Σ is a finite
set of observable event alphabet. We use τ to denote an unobservable event (i.e.
silent event), which corresponds to ε (empty symbol) in automata theory. The
Q is a finite set of (control) states with a designated initial state and the X is a
finite set of clocks x1, · · · , xk, for some k. Finally, T ⊆ Q×(Σ∪{τ})×2X ×CX×Q
is a finite set of transitions, where CX is the set of clock constraints over clocks
x1, · · · , xk. Each transition 〈q, a, r, δ, q′〉 leads from state q to state q′ with event
a (either observable or unobservable), the enabling condition δ, which is a clock
constraint, and clock reset set r ⊆ X.

A configuration α is a tuple of a state and k clock values. For a transition
t = 〈q, a, r, δ, q′〉, if α is at state q, and the enabling condition δ is satisfied by the
clock values specified in α, we use α →t β, called one-step transition, to denote
the fact that the transition sends configuration from α to β, where the state in β
is q′, event a is observed if a ∈ Σ, and the new clock values are in β: if r = ∅ (no
clock resets on the transition), then every old clock value in α is incremented by
1; if r �= ∅, then every old clock value in α is unchanged except for those clocks
in r, which are reset to value 0.

86 Z. Dang et al.

A timestamp is a value of the now clock that never resets. We assume that M
contains such a clock. When this is the case, a timed word [1] is used to record,
when it runs, a sequence of observable events along with the timestamps when
the events are observed. We only consider finite timed words. For example, the
timed word (a, 7)(b, 8)(a, 12) says that events a, b, a are observed at times 7, 8, 12,
respectively. More precisely, let ŵ be a timed word. We say that configuration
α can reach configuration β through time word ŵ, written α �ŵ

M β, if there
are α = α0, · · · , αn = β, for some n, such that αi →ti αi+1 holds for every
0 ≤ i < n and some transition ti. In particular, the observable events along with
their timestamps collected from t0, · · · , tn−1 (in this order) are exactly ŵ.

For a timed word ŵ, we use D(ŵ, a) to denote the time elapse (dura-
tion) between the first a-event and the last a-event in ŵ (when there is no
such event, D(ŵ, a) = 0.). For instance, for the aforementioned timed word
ŵ = (a, 7)(b, 8)(a, 12), D(ŵ, a) = 5 and D(ŵ, b) = 0. Suppose that we are inter-
ested in two sets of events, say {l1, · · · , lu} and {h1, · · · , hv}. For a timed word
ŵ, the low sensor is defined as low(ŵ) = (D(ŵ, l1), · · · ,D(ŵ, lu)) and the high
sensor is defined similarly as high(ŵ) = (D(ŵ, h1), · · · ,D(ŵ, hv)). Such sensors
are called duration sensors. M can also generalize to discrete pushdown timed
automaton in a straightforward way [9,10]. We are now given two sets of config-
urations A and B and the set of measurements

Vlow,high = {(low(ŵ), high(ŵ)) : α �ŵ
M β, α ∈ A and β ∈ B}. (6)

Theorem 11. The mutual information rate I(low;high) for Vlow,high defined
in (6), where A and B are Presburger-definable and low and high are duration
sensors, is computable for a discrete pushdown timed automaton M .

For example, let Pl and Ph be two real-time processes that access a finite
shared memory C, which is the critical region. We are interested in read events
in Pl and write events in Ph. A common setup would be the party Ph leaks
some information to the party Pl through the content of the critical region that
Ph writes (and later read by Pl). However, Ph could set up a time-based covert
channel with Pl by controlling the duration xab between two special events, say,
write(a) and write(b). In the meanwhile, the party Pl uses the duration yab

between two events, say, read(a) and read(b), to recover the part or all of the
information “sent” by Ph through xab. When the concurrent real-time system of
Pl and Ph is specified by a timed automaton (or even discrete pushdown timed
automaton), the information rate that Ph sends to Pl through the time covert
channel can be computed, using Theorem 11 (after renaming events properly).

5 Conclusions

Numerical sensors are numerical functions applied to memory contents. We study
the computability of the mutual information rate between two sensors in various
forms of automata, including nondeterministic pushdown automata augmented

Security of Numerical Sensors in Automata 87

with reversal-bounded counters as well as discrete timed automata. The com-
puted mutual information rate can be used to determine whether it is the case
that there is essentially no information flow between a low sensor and a high sen-
sor and hence could provide a way to quantitatively and algorithmically analyze
some type of covert channels.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Alvim, M.. Andrs, M., Palamidessi, C.: Probabilistic information flow. In: LICS
2010, pp. 314–321

3. Backes, M., Berg, M., Köpf, B.: Non-uniform distributions in quantitative
information-flow. In: ASIACCS 2011, pp. 367–375

4. Bishop, M.: Introduction to Computer Security. Addison-Wesley, Reading (2011)
5. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1, 91–112 (1958)
6. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-

Interscience, New York (2006)
7. Cui, C., Dang, Z., Fischer, V, Ibarra, O.H.: Execution information rate for some

classes of automata. Information and Computation (accepted)
8. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information Rate of Some Classes of

Nonregular Languages: An Automata-Theoretic Approach, Information and Com-
putation (conditionally accepted)

9. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability
analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 65–84. Springer, Heidelberg (2000)

10. Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theoret. Comput. Sci. 302(13), 93–121 (2003)

11. Dang, Z., Fischer, T., Hutton, W., Ibarra, O., Li, Q.: Quantifying communication
in synchronized languages. In: COCOON 2015 (to appear)

12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

13. Gonnet, G.H.: Expected length of the longest probe sequence in hash code search-
ing. J. ACM 28, 289–304 (1981)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company, Reading (1979)

15. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

16. Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic
membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS,
vol. 2747, pp. 480–489. Springer, Heidelberg (2003)

17. Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive
languages. Inf. Comput. 17(2), 175–182 (1970)

18. Kuich, W.: On the entropy of context-free languages. Inf. Control 16(2), 173–200
(1970)

19. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based infor-
mation flow analysis. IEEE TSE 36(5), 719–734 (2010)

20. Li, Q., Dang, Z.: Sampling automata and programs. Theoret. Comput. Sci. 577,
125–140 (2015)

88 Z. Dang et al.

21. Lowe, G.: Defining information flow quantity. J. Comput. Secur. 12(3–4), 619–653
(2004)

22. Mu, C., Clark, D.: Quantitative analysis of secure information flow via probabilistic
semantics. In: ARES 2009, pp. 49–57

23. Paun, G.: Membrane Computing: An Introduction. Springer, Berlin (2000)
24. Raab, M., Steger, A.: “Balls into Bins” - a simple and tight analysis. In: Rolim,

J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, p. 159.
Springer, Heidelberg (1998)

25. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Champaign (1949)

26. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

27. Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equa-
tions with applications to verification of infinite-state systems. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719.
Springer, Heidelberg (2003)

Jumping Finite Automata: Characterizations
and Complexity

Henning Fernau, Meenakshi Paramasivan(B), and Markus L. Schmid

Fachbereich 4 – Abteilung Informatik, Universität Trier, 54286 Trier, Germany
{Fernau,Paramasivan,MSchmid}@uni-trier.de

Abstract. We characterize the class of languages described by jump-
ing finite automata (i. e., finite automata, for which the input head after
reading (and consuming) a symbol, can jump to an arbitrary position
of the remaining input) in terms of special shuffle expressions. We can
characterize some interesting subclasses of this language class. The com-
plexity of parsing these languages is also investigated.

1 Introduction

Throughout the history of automata theory, the classical finite automaton has
been extended in many different ways: two-way automata, multi-head automata,
automata with additional resources (counters, stacks, etc.) and so on. However,
for all these variants, it is always the case that the input is read in a continuous
fashion. On the other hand, there exist models that are closer to the classical
model in terms of computational resources, but that differ in how the input is
processed (e. g., restarting automata [17] and biautomata [13]). One such model
that has drawn comparatively little attention are the jumping finite automata
(JFA) introduced by Meduna and Zemek [15,16], which are like classical finite
automata with the only difference that after reading (i. e., consuming) a symbol
and changing in a new state, the input head can jump to an arbitrary position
of the remaining input.

We provide a characterization of the JFA-languages in terms of expressions
using shuffle, union and iterated shuffle, which enables us to put them into the
context of classical formal language results from around 1980. This also resolves
an open problem in [15]. By showing that any such expression is equivalent to
one with a star-height (with respect to iterated shuffle) of at most 1, we obtain a
normal form for this language class. If we interpret general finite automata, i. e.,
finite automata the transitions of which can be labeled by words instead of single
symbols, as jumping automata, then we obtain a much more powerful model.
This is demonstrated by showing that the universal word problem for JFA can
be solved in polynomial time (for fixed alphabets), whereas it is NP-complete
for general JFA, even for finite languages over a fixed binary alphabet.

Due to space restrictions, results marked with (∗) are not proven here.

Jumping Finite Automata. Following Meduna and Zemek, we denote a gen-
eral finite machine as M = (Q,Σ,R, s, F), where Q is a finite set of states, Σ

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 89–101, 2015.
DOI: 10.1007/978-3-319-22360-5 8

90 H. Fernau et al.

is the input alphabet, Σ ∩ Q = ∅, R is a finite set of rules of the form py → q
where p, q ∈ Q and y ∈ Σ∗, s ∈ Q is the start state and F ⊆ Q is a set of final
states. If all rules py → q ∈ R satisfy |y| ≤ 1, then M is a finite machine.

We interpret M in two ways:

– As a (general) finite automaton, a configuration of M is any string in QΣ∗.
The binary move relation on QΣ∗, written as ⇒, is defined as follows:

pw ⇒ qz : ⇐⇒ ∃ py → q ∈ R : w = yz .

– As a (general) jumping finite automaton, a configuration of M is any string
in Σ∗QΣ∗. The binary jumping relation on Σ∗QΣ∗, written as �, satisfies:

vpw � v′qz′ : ⇐⇒ ∃ py → q ∈ R ∃ z ∈ Σ∗ : w = yz ∧ vz = v′z′ .

If M is a (general) finite machine, we can hence obtain the following languages:

LFA(M) = {w ∈ Σ∗ : ∃ f ∈ F : sw ⇒∗ f} and
LJFA(M) = {w ∈ Σ∗ : ∃ u, v ∈ Σ∗ ∃ f ∈ F : w = uv ∧ usv �

∗ f}.

This defines us the language classes REG (accepted by (generalized) finite
automata), JFA (accepted by jumping finite automata, or JFAs for short) and
GJFA (accepted by general jumping finite automata, or GJFAs for short). CFL
denotes the class of context-free languages.

2 Operations on Languages and Their Properties

The reader is assumed to be familiar with the standard operations on formal
languages, like catenation, union and iterated catenation, aka Kleene star.

Definition 1. Let u, v ∈ Σ∗, the shuffle operation, denoted by �, is a binary
operation on words, described by u�v = {x1y1x2y2 . . . xnyn : u = x1x2 . . . xn, v =
y1y2 . . . yn, xi, yi ∈ Σ∗, 1 ≤ i ≤ n, n ≥ 1}. It is extended on languages in the
natural way: for L1, L2 ⊆ Σ∗, L1 � L2 := {z : z ∈ x� y, x ∈ L1, y ∈ L2}.
Definition 2. For L ⊆ Σ∗, the iterated shuffle of L is defined by:

L�,∗ :=
∞⋃

n=0

L�,n where L�,0 = {ε} and L�,i := L�,i−1
� L.

Let us now recall the following computation rules from [8].

Proposition 1. Let M1,M2,M3 be arbitrary languages.

1. M1 �M2 = M2 �M1 (commutative law)
2. (M1 �M2)�M3 = M1 � (M2 �M3) (associative law)
3. M1 � (M2 ∪ M3) = M1 �M2 ∪ M1 �M3 (distributive law)
4. (M1 ∪ M2)

�,∗ = (M1)�,∗
� (M2)�,∗

Jumping Finite Automata: Characterizations and Complexity 91

5. (M1
�,∗)�,∗ = (M1)�,∗

6. (M1 �M2
�,∗)�,∗ = (M1 � (M1 ∪ M2)

�,∗) ∪ {ε}
The second, third and fifth rule are also true when you consider (iterated) cate-
nation instead of (iterated) shuffle. This is no coincidence, as we will see. The
sixth rule will play a crucial rôle in the proof of our main normal form result.

We can deduce from the first three computation rules the following:

Proposition 2. (*) (2Σ∗
,∪,�, ∅, {ε}) is a commutative semiring.

Definition 3. The set of all permutations of w, perm(w), is defined as follows:

perm(w) =

{
{ε}, |w| = 0
{a}� perm(u), w = a · u, a ∈ Σ, u ∈ Σ∗

For L ⊆ Σ∗, perm(L) =
⋃

w∈L perm(w).

We summarize two important properties of perm in the following two lemmas.

Lemma 1. perm : 2Σ∗ → 2Σ∗
is a hull operator, i.e., it is extensive, (monotone)

increasing and idempotent.

By the well-known correspondence between hull operators and (systems of)
closed sets, we will also speak of perm-closed languages in the following, i.e.,
languages L satisfying perm(L) = L. Such languages are also called commuta-
tive.

Lemma 2. The set {perm(w) : w ∈ Σ∗} is a partition of Σ∗. There is a nat-
ural bijection between this partition and the set of functions N

Σ, given by the
Parikh mapping πΣ : Σ∗ → N

Σ , w �→ (a �→ |w|a), where |w|a is the number of
occurrences of a in w. Namely, {perm(w) : w ∈ Σ∗} = π−

Σ(πΣ(w)).

Due to Lemma 2, we conclude:

Proposition 3. For L1, L2 ⊆ Σ∗, perm(L1) = perm(L2) iff πΣ(L1) = πΣ(L2).

By the definition of the work of a jumping finite automaton M , it is clear that w ∈
LJFA(M) implies that perm(w) ⊆ LJFA(M), i.e., perm(LJFA(M)) ⊆ LJFA(M).
Since perm is extensive as a hull operator, we can conclude:

Corollary 1. If L ∈ JFA, then L is perm-closed.

This also follows by results in [15]. In particular, we mention the following impor-
tant characterization theorem from [16], that we enrich by combining it with the
well-known theorem of Parikh [18], using Proposition 3.

Theorem 1. JFA = perm(REG) = perm(CFL).

This theorem also generalizes the main result of [14]. According to the analysis
indicated in [5], Parikh’s original proof would produce, starting from a context-

free grammar G with n variables, a regular expression E of length O
(
22

n2)

such that perm(L(G)) = perm(L(E)), whose corresponding NFA is even bigger,
while the construction of [5] results in an NFA A with only 4n states, satisfying
perm(L(G)) = perm(L(A)).

92 H. Fernau et al.

Corollary 2. Let L be a finite language. Then, L ∈ JFA iff L is perm-closed.

This also shows that all finite JFA languages are so-called commutative regular
languages as studied by Ehrenfeucht, Haussler and Rozenberg in [4]. We will
come back to this issue later.

The relation between (iterated) catenation and (iterated) shuffle can now be
neatly expressed as follows.

Theorem 2. (*) perm : 2Σ∗ → 2Σ∗
is a semiring morphism from the semiring

(2Σ∗
,∪, ·, ∅, {ε}) to the semiring (2Σ∗

,∪,�, ∅, {ε}) that also respects the iterated
catenation resp. shuffle operation.

Clearly, perm cannot be an isomorphism, as the catenation semiring is not com-
mutative, while the shuffle semiring is, see Proposition 2.

3 Alphabetic Shuffle Expressions

Shuffle expressions and variants thereof have been an active field of study over
decades; we only point the reader to [9–11]. Here, we describe one special variant
tightly linked to jumping finite automata. We hence give an inductive definition
of what we call alphabetic shuffle expressions, or α-SHUF expressions for short,
in the following.

Definition 4. The symbols ∅, ε and each a ∈ Σ are α-SHUF expressions (base
case). If S1, S2 are α-SHUF expressions, then (S1 + S2), (S1 � S2) and S1

�,∗

are α-SHUF expressions.

The semantics of α-SHUF expressions is defined in the expected way. For
instance, L((a + b)�,∗) = {a, b}�,∗. The corresponding class of languages was
termed L3 in [7]. If S1, S2 are two expressions, then S1 ≡ S2 means that
they are equivalent, i.e., they describe the same language, or, more formally,
L(S1) = L(S2). Sometimes, to avoid confusion with arithmetics, we also write ∪
in expressions instead of +.

Notice that we could introduce (classical) regular expressions in the very
same way. Clearly, these characterize the regular languages.

Definition 5. The symbols ∅, ε and each a ∈ Σ are regular expressions. If S1, S2

are regular expressions, then (S1 +S2), (S1 ·S2) and S1
∗ are regular expressions.

Lemma 3. Let R′ be a regular expression. Let the α-SHUF expression R be
obtained from R′ by consequently replacing all · by �, and all ∗ by �,∗ in R′.
Then, perm(L(R′)) = L(R).

Proof. Let R′ be a regular expression. By definition, this means that L(R′) = K,
where K is some expression over the languages ∅, {ε} and {a}, a ∈ Σ, using only
union, catenation and Kleene-star. By Theorem 2, perm(K) can be transformed
into an equivalent expression K ′ using only union, shuffle and iterated shuffle.
Furthermore, in K ′, the operation perm only applies to languages of the form ∅,
{ε} and {a}, a ∈ Σ, which means that by simply removing all perm operators,

Jumping Finite Automata: Characterizations and Complexity 93

we obtain an equivalent expression K ′′ of languages ∅, {ε} and {a}, a ∈ Σ, using
only union, shuffle and iterated shuffle. This expression directly translates into
the α-SHUF expression R with L(R) = perm(L(R′)). ��
We are now ready to prove our characterization theorem for JFA.

Theorem 3. A language L ⊆ Σ∗ is in JFA if and only if there is some α-SHUF
expression R such that L = L(R).

Proof. If L ∈ JFA, then there exists a regular language L′ such that L =
perm(L′) by Theorem 1. L′ can be described by some regular expression R′. By
Lemma 3, we find an α-SHUF expression R such that L = perm(L(R′)) = L(R).

Conversely, if L is described by some α-SHUF expression R, i.e., L = L(R),
then construct the regular expression R′ by consequently replacing all � by ·
and all �,∗ by ∗ in R. Clearly, we face the situation described in Lemma 3, so
that we conclude that perm(L(R′)) = L(R) = L. As L(R′) is a regular language,
perm(L(R′)) = L ∈ JFA by Theorem 1. ��
Since α-SHUF languages are closed under iterated shuffle, we obtain the fol-
lowing corollary as a consequence of Theorem 3, adding to the list of closure
properties given in [15].

Corollary 3. JFA is closed under iterated shuffle.

Let us finally mention a second characterization (recall the first characterization
from Corollary 2) of the finite perm-closed sets.

Proposition 4. Let L be some language. Then, L is finite and perm-closed if
and only if there is an α-SHUF expression R, with L = L(R), that does not
contain the iterated shuffle operator.

Proof. Let L be a finite language with L = perm(L). Clearly, there is a regular
expression RL, with L(RL) = L, that uses only the catenation and union oper-
ations. As L is perm-closed, the α-SHUF expression R obtained from RL by
replacing all catenation by shuffle operators satisfies L(R) = perm(L(RL)) = L
by Lemma 3 and does not contain the iterated shuffle operator. Conversely, let
R be an α-SHUF expression that does not contain the iterated shuffle operator.
By combining Theorem 3 with Corollary 1, we know that L(R) is perm-closed.
It is rather straightforward that L(R) is also finite. ��
Let us now see an example for the class JFA.

Example 1. The finite machine M =
({s, r, t, f}, {a, b}, R, s, {f}) with R =
{sa → r, sb → f, ra → t, rb →
r, ta → f, tb → s, fa → r, fb → s}
accepts (in terms of traditional regular
expressions) L = LFA(M) with L =
L

(
((ab∗ab)∗((ab∗aa)+b)(ab∗aa)∗((ab∗ab)+

b))∗(ab∗ab)∗((ab∗aa) + b)(ab∗aa)∗).

sstart

f

r

t

a

b a

b

a

b

a

b

94 H. Fernau et al.

The same M accepts (in terms of α-SHUF expressions) L = LJFA(M) with
L = L(((a� b�,∗

�a� b)�,∗
� ((a� b�,∗

�a�a)+ b)� (a� b�,∗
�a�a)�,∗

�

((a� b�,∗
� a� b) + b))�,∗

� (a� b�,∗
� a� b)�,∗

� ((a� b�,∗
� a� a) + b)�

(a� b�,∗
� a� a)�,∗).

4 Representations and Normal Forms

Our desired representation theorem can be stated as follows.

Theorem 4. Let L ∈ JFA. Then there exists a number n ≥ 1 and finite sets
Mi, Ni for 1 ≤ i ≤ n, so that the following representation is valid.

L =
n⋃

i=1

perm(Mi)� (perm(Ni))�,∗ (1)

We will prove this representation theorem on the level of α-SHUF expressions,
so that we actually get a normal form theorem for these. A central tool in the
proofs of this normal form theorem is the following notion that corresponds to
the well-known star-height of regular expressions.

Definition 6. We can inductively associate the (shuffle iteration) height h to
any α-SHUF expression S as follows.

– If S is a base case, then h(S) = 0.
– If S = (S1 + S2) or S = (S1 � S2), then h(S) = max{h(S1), h(S2)}.
– If S = S�,∗

1 , then h(S) = h(S1) + 1.

The shuffle iteration height of a JFA-language L is then the smallest shuffle
iteration height of any α-SHUF expression S describing L.

Let us mention the following interesting consequence obtained by combining
Theorem 4 with Theorem 3, Lemma 3 and Theorem 1.

Corollary 4. L ∈ JFA if and only if there is a regular language R of star height
at most one such that L = perm(R).

Immediately from the Definition 6, we obtain from Proposition 4:

Corollary 5. A language is finite and perm-closed if and only if it can be
described by some α-SHUF expression of shuffle iteration height zero.

Combining Corollary 5 with Theorem 1 and the well-known fact that finiteness
of regular expressions can be decided, we immediately obtain the following, as
Theorem 4 guarantees that the height of JFA languages is zero or one:

Corollary 6. It is decidable, given some JFA and some integer k, whether or
not this JFA describes a language of shuffle iteration height at most k.

Jumping Finite Automata: Characterizations and Complexity 95

Notice that we have formulated, in this corollary, the shuffle analogue of the
famous star height problem, which has been a major open problem for regular
languages [6]. Recall that Eggan’s Theorem [3] relates the star height of a regular
language to its so-called cycle rank, which formalizes loop-nesting in NFA’s.
Again, the characterization theorems that we derived allow us to conclude that,
in short, for any L ∈ JFA there exists some finite machine M of cycle rank at
most one such that LJFA(M) = L.

Corollary 5 means that, in order to show Theorem 4, it is sufficient (and in a
sense stronger) to prove the following normal form theorem for α-SHUF expres-
sions. The proof resembles the one given by Jantzen [8] for a different variant
of shuffle expressions, but we keep it here, as it shows several technicalities with
these notions.

Theorem 5. For any α-SHUF expression R, an equivalent α-SHUF expression
S with h(S) = 1 can be constructed that is the union of n α-SHUF expressions
S1, . . . , Sn such that Si = Fi � G�,∗

i , where h(Fi) = h(Gi) = 0, 1 ≤ i ≤ n.
Moreover, we can assume that Fi =

⋃n(i)
j=1 uj and Gi =

⋃m(i)
j=1 vj, where all uj

and vj are α-SHUF expressions with � as their only operators.

Proof. We show the claim by induction on the height of R. If h(R) = 0, then
S = R� ∅�,∗ is an equivalent expression in the desired normal form. Let h > 0.
Assume now that the result is true for all α-SHUF expressions of height less
than h and consider some α-SHUF expression R with h(R) = h. By repeatedly
applying the distributive law, we can obtain an equivalent α-SHUF expression
R′ that is of the following form:

R′ =
m⋃

j=1

k(j)

�
k=1

Sj,k ,

where each expression Sj,k contains only the operators shuffle and iterated shuf-
fle. In a first step, by applying the commutative law of the shuffle, we can order
the Sj,k such that, slightly abusing notation, Sj,1, . . . , Sj,b(j) are base cases, and
Sj,b(j)+1, . . . , Sj,k(j) are of the form Sj,i = (Tj,i)�,∗. To simplify the further dis-
cussions, we can assume that none of the base cases Sj,1, . . . , Sj,b(j) is ∅, as this
would mean that the language L(�

k(j)
k=1 Sj,k) is empty, and we can omit this

part immediately from the union. In the next step, we form F ′
j :=�

b(j)
k=1 Sj,k.

Notice that, by Corollary 5, each F ′
j represents a finite perm-closed set. More-

over, we define α-SHUF expressions G′
j of iteration height less than h as follows.

If b(j) = k(j), then G′
j := ∅. Otherwise, G′

j :=
⋃k(j)

i=b(j)+1 Tj,i. By using Rule 4
from Proposition 1, one can see that

R′′ :=
m⋃

j=1

F ′
j � (G′

j)
�,∗

96 H. Fernau et al.

is equivalent to R′. As all G′
j have iteration height less than h, we can apply the

induction hypothesis to them and replace G′
j by equivalent expressions

n(j)⋃

i=1

Fj,i �G�,∗
j,i ,

where each Fj,i and each Gj,i are α-SHUF expressions of height zero. Rule 4
now yields the following equivalent expression:

R′′′ :=
m⋃

j=1

F ′
j �

n(j)

�
i=1

(
Fj,i �G�,∗

j,i

)�,∗

Now, we can apply Rule 6 to avoid nesting of the iterated shuffle. Hence, the
following expression is again equivalent:

Riv :=
m⋃

j=1

F ′
j �

n(j)

�
i=1

(Fj,i � (Fj,i ∪ Gj,i)�,∗ ∪ {ε})

Finally, setting Fj,I := F ′
j ��i∈I F ′

j,i and Gj,I :=
⋃

i∈I(Fj,i ∪ Gj,i) for
I ⊆ I(j) := {1, . . . , n(j)}, with Fj,∅ = F ′

j and Gj,∅ = ∅, and observing that also
these α-SHUF expressions are of height zero, we define

S :=
m⋃

j=1

⋃

I⊆I(j)

Fj,I �G�,∗
j,I .

By the commutative and distributive laws and by Rule 4, S is equivalent to Riv and
satisfies all the properties of the theorem, possibly apart from the last sentence,
which can be enforced by exhaustively applying the distributive law. ��
Unfortunately, the construction of Theorem 5 could blow up the size of the
resulting expression exponentially. This does not harm the statement of the
theorem, and also Theorem 4 follows immediately. For algorithmic purposes,
this is indeed a drawback, because this also means that the running time of an
algorithm (derived from the proof of Theorem 5) would be exponential in the
length of the input expression.

Therefore, we establish the following weaker normal form result that can be,
however, obtained in time that can be described within the framework of para-
meterized complexity [2]. In this framework, certain parts of the input are singled
out as so-called parameters. In our case, it will be the number of iterated shuffle
operator occurrences, as well as the shuffle iteration height of the expression. We
will then present an algorithm whose only exponential-time dependencies is on
these two parts of the input. In other words, if both are fixed (or if we consider
only expressions with a certain upper bound on these parameters as inputs), we
obtain a polynomial-time transformation algorithm.

This is an interesting fact in itself, as it also raises the descriptional complex-
ity question if the blow-up formally described below is indeed necessary. We are

Jumping Finite Automata: Characterizations and Complexity 97

not aware of any work that can be considered as “parameterized descriptional
complexity”, which might be therefore an interesting (new) subject on its own,
motivated by the construction below.

Let us first describe the idea and some of the details of the construction
that we have in mind here. As we are aiming at obtaining some equivalent
α-SHUF expression of shuffle iteration height at most one, we can assume that
the expression that we start with has a height of at least two. When we want to
measure the size of an α-SHUF expression E, we simply count the number of all
occurrences of operators in the expression, and we denote this by s(E). Clearly,
if we consider E as a word over Σ (plus operator symbols and parentheses), then
the length of E is bounded by a linear function in s(E). First of all, observe that
each iterated shuffle operator occurrence in some α-SHUF expression E can be
viewed as the outermost operator of a subexpression F of E that is of a certain
shuffle iteration height h(F). For the sake of convenience, we can hence associate
a shuffle iteration height also to occurrences of shuffle operators. Let ISO(E)
collect all iterated shuffle operator occurrences of expression E and ISOh(E)
those of shuffle iteration height h. Hence,

ISO(E) =
h(E)⋃

h=1

ISOh(E) .

If E is an α-SHUF expresssion over the alphabet Σ, then let Σ1, . . . , Σh(E)

be fresh alphabets containing new letters, with |Σi| = |ISOi(E)| and hence a
natural bijection ψi : ISOi(E) → Σi. Now, consider the α-SHUF expresssion
E′ obtained from E by replacing, for h = 1, . . . , h(E) − 2, the subexpression
whose outermost operator is some iterated shuffle occurrence j ∈ ISOh(E) by
the letter ψh(j), for all occurrences in ISOh(E). As by our assumption h(E) ≥ 2,
h(E′) = 2. So, ISOh(E)(E) = ISO2(E′) and ISOh(E)−1(E) = ISO1(E′). In the
following, we are considering all 2|ISO1(E

′)| many subsets of ISO1(E′). We will
convert accordingly derived expressions into equivalent ones of star height one.
Proceeding inductively, we can finally show:

Theorem 6. (*) For any α-SHUF expression R, an equivalent α-SHUF
expression S with h(S) ≤ 1 can be constructed in time O∗(2|ISO(R)|2h(R)); the
resulting expression could be as big as this.

Notice that the O∗-notation suppresses polynomial factors, which is a very suit-
able notation in the area of Parameterized Complexity. This shows that the
transformation of R into normal form is in FPT, with parameter |ISO(R)|.

5 Comparing JFA and REG

By the results of Meduna and Zemek, we know that JFA and REG are two
incomparable families of languages. Above, we already derived several charac-
terizations of JFA∩FIN ⊂ REG. Let us first explicitly write up a characterization
of JFA ∩ REG that can be easily deduced from our previous results.

98 H. Fernau et al.

Proposition 5. L ∈ JFA ∩ REG iff L ∈ REG and L is perm-closed.

We mention this, as the class JFA ∩ REG can be also characterized as follows
according to Ehrenfeucht, Haussler and Rozenberg [4]. Namely, they describe
this class of (what they call) commutative regular languages as finite unions of
periodic languages. We are not giving a definition of this notion here, but rather
state an immediate consequence of their characterization in our terminology.

Theorem 7. Let L ⊆ Σ∗. Then, L ∈ JFA ∩ REG if and only if there exists a
number n ≥ 1, words wi and finite sets Ni for 1 ≤ i ≤ n, where each Ni is given
as

⋃
a∈Σi

ani(a) for some Σi ⊆ Σ and some ni : Σi → N, so that the following
representation is valid.

L =
n⋃

i=1

perm(wi)� (perm(Ni))�,∗

Let us finally mention that yet another characterization of JFA ∩ REGwas derived
in [14, Theorem 3].

6 Complexity of Parsing

For a fixed JFA M , we can decide, for a given word w, whether w ∈ L(M) ⊆
Σ∗ in the following way. We scan over w and construct its Parikh mapping
πΣ(w). Then we simulate a computation of M on w by nondeterministically
choosing in every state the transition labelled by some symbol and decrementing
the corresponding component of πΣ(w). If we reach an accepting state with all
components of πΣ(w) being 0, then we conclude w ∈ L(M). In this procedure,
we only have to store the Parikh mapping, which only requires logarithmic space;
thus, this shows JFA ⊆ NL ⊆ P1.

These considerations show that the fixed word problem can be solved in
polynomial time. In the following, we look at the universal word problem for
(generalized) jumping finite automata, which is to decide for a given (general)
finite machine M with input alphabet Σ and a word w ∈ Σ∗, whether or not
w ∈ LJFA(M). The study of this problem was explicitly suggested in [15], where
only the mere decidability status was resolved.

We first show that the universal word problem for jumping finite automata
can be solved in polynomial time, provided that the alphabet is fixed.

Theorem 8. For any fixed alphabet, the universal word problem for jumping
finite automata is polynomial-time solvable.

Proof. Let M = (Q,Σ,R, s, F) be a finite machine over Σ = {a1, a2, . . . , ak} and
let w ∈ Σ∗. We define a directed graph GM = (VM , EM), where VM contains all
elements (p, (�1, �2, . . . , �k)) with p ∈ Q and, for every i, 1 ≤ i ≤ k, 0 ≤ �i ≤ |w|ai

,
1 We wish to point out that this also follows from results in [1], where containment in
NP is shown for a superclass of JFA.

Jumping Finite Automata: Characterizations and Complexity 99

and EM ⊆ VM × VM contains all pairs ((p, (�1, �2, . . . , �k)), (p′, (�′
1, �

′
2, . . . , �

′
k)))

such that there is a rule pai → p′ ∈ R, �′
i = �i − 1 and, for every j, 1 ≤ j ≤ k,

with i �= j, �′
j = �j . We note that |GM | ≤ (|w|k|Q|)2 and that GM can be

constructed in time O(|GM |). The graph GM corresponds to the computation of
M on input w: a vertex is a configuration consisting of the current state and
the Parikh mapping of the remaining input and there is an edge between two
configurations if it is possible to reach one from the other by the application
of a rule. Hence, w ∈ LJFA(M) if and only if there exists a path in GM from
(s, πΣ(w)) to some vertex (q, (0, 0, . . . , 0)) with q ∈ F . This property can be
decided in time O(|GM |). ��
The decision procedure of Theorem 8 is only polynomial if the alphabet size is a
constant, which for most real-world applications is the case. From a theoretical
point of view, it would nevertheless be interesting to know whether a polynomial
time procedure for unbounded alphabets is possible.

Next, we show that if the JFA-language is given as an α-SHUF expression in
the normal form of Theorem 5, then the universal word problem can be solved
in polynomial time also for unbounded alphabets.

Theorem 9. The universal word problem is polynomial-time solvable for
α-SHUF expressions in normal form.

Proof. Let R =
⋃n

i=1 Ri � (R′
i)
�,∗ be the α-SHUF expression in the normal

form of Theorem 5. Moreover, we define Mi = L(R̂i) and Ni = L(R̂′
i), where R̂i

and R̂′
i are the regular expressions obtained from Ri and R′

i by replacing every
shuffle operation by a catenation operation. We can convert each of the n parts
of the union into linear equations as follows. Let w ∈ Σ∗ be the input word.
Then, w ∈ L(Ri� (R′

i)
�,∗) if and only if there is a non-negative integer solution

of one of the linear equations

πΣ(w) = πΣ(u) +
∑

v∈Ni

xvπΣ(v) ,

where u ∈ Mi. Since the expressions Ri, R′
i are unions of shuffles of single

symbols,
∑

u∈Mi
|u| and

∑
v∈Ni

|v| are linear in |Ri| and |R′
i|, respectively. Thus,

each of the equations is of polynomial size in terms of the size of R. Each of these
linear equations can be analyzed by Gaussian elimination in polynomial time.
Altogether, this proves the claim. ��
If the input finite machine is allowed to be a general finite machine, then the com-
plexity of the universal word problem increases considerably, i. e., it becomes NP-
complete even for general finite machines accepting finite language over binary
alphabets.

Theorem 10. The universal word problem is NP-complete for generalized jump-
ing finite automata (even for finite languages over binary alphabets).

100 H. Fernau et al.

We can simulate a given generalized jumping finite automaton on a word by
guessing where to jump and which rules to apply. Since the number of guesses
is cleary bounded by the length of the input word, this shows that the universal
word problem is in NP.

It remains to prove the NP-hardness of this problem, which can be done by
a reduction from the following problem.

Exact Block Cover (EBC)
Instance: Words u1, u2, . . . , uk and v over some alphabet Σ.
Question: Does there exist a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} such
that v = uπ(1)uπ(2) . . . uπ(k)?

By EBC2, we denote the restricted version of EBC, where Σ is a fixed binary
alphabet. It has recently been shown in [12] that EBC2 is NP-complete.

Let u1, u2, . . . , uk, v ∈ Σ∗ be an instance of EBC2, where Σ = {a, b}. For
the sake of convenience, we define ui = si,1si,2 . . . si,�i , si,j ∈ Σ, 1 ≤ i ≤ k,
1 ≤ j ≤ �i, and v = t1t2 . . . tm, tj ∈ Σ, 1 ≤ j ≤ m. Furthermore, for every j,
1 ≤ j ≤ 2m, we define the jth separator �j = a bj+m a. For every i, 1 ≤ i ≤ k, ui

is transformed into Ai = {�j si,1 �j+1 si,2 . . . �j+�i−1 si,�i : 1 ≤ j ≤ m} and v is
transformed into v̂ = �1 t1 �2 t2 . . . �m tm. We note that, for every j, 1 ≤ j ≤ m,
there is exactly one unique occurrence of the jth separator in v̂ and all these
occurrences of separators are non-overlapping. Finally, we define a general finite
machine M = (Q,Σ,R, q0, F) by Q = {q0, q1, q2, . . . , qk}, R =

⋃k
i=1{qi−1w →

qi : w ∈ Ai} and F = {qk}. This reduction is obviously polynomial.
We give a proof sketch for the correctness of this reduction. To this end, let

(u1, u2, . . . , uk, v) be a positive instance of EBC2. Then v = uπ(1) . . . uπ(k) for
some permutation π : {1, 2, . . . , k} → {1, 2, . . . , k}. If we insert the jth separator
after the jth symbol of uπ(1) . . . uπ(k), then we obtain v̂ = wπ(1)wπ(2) . . . wπ(k)

with wπ(i) ∈ Aπ(i), 1 ≤ i ≤ k; thus, v̂ ∈ LJFA(M), which yields the following.

Lemma 4. (*) If (u1, u2, . . . , uk, v) ∈ EBC2, then v̂ ∈ LJFA(M).

If, on the other hand, v̂ ∈ LJFA(M), then v = uπ(1)uπ(2) . . . uπ(k) can only be
concluded if M never erases a factor that does not correspond to an original
factor of v̂ (or, equivalently, if M never erases a factor that contains consecutive
symbols that do not correspond to consecutive symbols of v̂). This property is
enforced by the separator words; thus, we can conlude the following.

Lemma 5. (*) If v̂ ∈ LJFA(M), then (u1, u2, . . . , uk, v) ∈ EBC2.

Theorems 8 and 10 point out that the difference between finite machines and
general finite machines is crucial if we interpret them as jumping finite automata.
In contrast to this, the universal word problem for (classical) finite automata on
the one hand and (classical) general finite automata on the other is very similar
in terms of complexity, i. e., in both cases it can be solved in polynomial time.

Jumping Finite Automata: Characterizations and Complexity 101

References

1. Crespi-Reghizzi, S., San Pietro, P.: Commutative languages and their composition
by consensual methods. In: Ésik, V., Fülöp, Z. (eds.) Proceedings 14th Interna-
tional Conference on Automata and Formal Languages (AFL), vol. 151 of EPTCS,
pp. 216–230 (2014)

2. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013)

3. Eggan, L.C.: Transition graphs and the star-height of regular events. Mich. Math.
J. 10(4), 385–397 (1963)

4. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theor. Comput. Sci. 27, 311–332 (1983)

5. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)

6. Hashiguchi, K.: Algorithms for determining relative star height and star height.
Inf. Comput. 78(2), 124–169 (1988)

7. Höpner, M., Opp, M.: About three equations classes of languages built up by shuffle
operations. In: Mazurkiewicz, A.W. (ed.) MFCS 1976. LNCS, vol. 45, pp. 337–344.
Springer, Heidelberg (1976)

8. Jantzen, M.: Eigenschaften von Petrinetzsprachen. Technical report IFI-HH-B-64,
Fachbereich Informatik, Universität Hamburg, Germany (1979)

9. Jantzen, M.: The power of synchronizing operations on strings. Theor. Comput.
Sci. 14, 127–154 (1981)

10. Jantzen, M.: Extending regular expressions with iterated shuffle. Theor. Comput.
Sci. 38, 223–247 (1985)

11. Jedrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theor. Comput. Sci.
250(1–2), 31–53 (2001)

12. Jiang, H., Su, B., Xiao, M., Xu, Y., Zhong, F., Zhu, B.: On the exact block cover
problem. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp.
13–22. Springer, Heidelberg (2014)

13. Kĺıma, O., Polák, L.: On biautomata. RAIRO Informatique théorique et Appl.
Theor. Inf. Appl. 46, 573–592 (2012)

14. Latteux, M., Rozenberg, G.: Commutative one-counter languages are regular. J.
Comput. Sys. Sci. 1, 54–57 (1984)

15. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012)

16. Meduna, A., Zemek, P.: Chapter 17: Jumping finite automata. In: Meduna, A.,
Zemek, P. (eds.) Regulated Grammars and Automata, pp. 567–585. Springer, New
York (2014)

17. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
FCT 1995, vol. 965, pp. 269–303. Springer, Heidelberg (2006)

18. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

Run-Length Encoded Nondeterministic
KMP and Suffix Automata

Emanuele Giaquinta(B)

Department of Computer Science, Aalto University, Espoo, Finland
emanuele.giaquinta@aalto.fi

Abstract. We present a novel bit-parallel representation, based on the
run-length encoding, of the nondeterministic KMP and suffix automata
for a string P with at least two distinct symbols. Our encoding requires
O((σ + m)�ρ/w�) space and allows one to simulate the automata on a
string in time O(�ρ/w�) per transition, where σ is the alphabet size, m
is the length of P , ρ is the length of the run-length encoding of P and w
is the machine word size in bits. The input string can be given in either
unencoded or run-length encoded form. Finally, we present practical vari-
ants of the Shift-And and BNDM algorithms based on this encoding.

1 Introduction

The string matching problem consists in finding all the occurrences of a string P
of length m in a string T of length n, both over a finite alphabet Σ of size σ. The
matching can be either exact or approximate, according to some metric which
measures the closeness of a match. The finite automata for the languages Σ∗P
(prefix automaton) and Suff (P) (suffix automaton), where Suff (P) is the set of
suffixes of P , are the main building blocks of very efficient algorithms for the
exact and approximate string matching problem. Two fundamental algorithms
for the exact problem, based on the deterministic version of these automata, are
the KMP and BDM algorithms, which run in O(n) and O(nm) worst-case time,
respectively, using O(m) space [6,14]. In the average case, the BDM algorithm
achieves the optimal O(n logσ(m)/m) time bound. The nondeterministic version
of the prefix and suffix automata can be simulated using an encoding, known as
bit-parallelism, based on bit-vectors and word-level parallelism [16]. The vari-
ants of the KMP algorithm based on the nondeterministic prefix automaton,
known as Shift-Or and Shift-And, run in O(n�m/w�) worst-case time and use
O(σ�m/w�) space, where w is the machine word size in bits [2,18]. Similarly, the
variant of the BDM algorithm based on the nondeterministic suffix automaton,
known as BNDM, runs in O(nm�m/w�) worst-case time and uses O(σ�m/w�)
space [15]. In the average case, the BNDM algorithm runs in O(n logσ(m)/w)
time, which is suboptimal for patterns whose length is greater than w. There
also exist practical variants of BNDM [7,17], and a variant of Shift-Or which
achieves O(n logσ(m)/w) time in the average case [10]. As for the approximate
string matching problem, there are also various algorithms based on the nonde-
terministic prefix and suffix automata [3,9,11,12,15,18].
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 102–113, 2015.
DOI: 10.1007/978-3-319-22360-5 9

Run-Length Encoded Nondeterministic KMP and Suffix Automata 103

In general, the bit-parallel algorithms are suboptimal if compared to their
“deterministic” counterparts in the case m > w, because of the additional �m/w�
term in the time complexity. A way to overcome this problem is to use a filtering
method, namely, searching for the prefix of P of length w and verifying each
occurrence with a naive algorithm. Assuming uniformly random strings, the
average time complexity of Shift-And and BNDM with this method is O(n)
and O(n logσ w/w), respectively. Recently, a few approaches were proposed to
improve the case of long patterns. In 2010 Durian et al. presented three variants
of BNDM tuned for the case of long patterns, two of which are optimal in the
average case [8]. In the same year, Cantone et al. presented a different encoding
of the prefix and suffix automata, based on word-level parallelism and on a
particular factorization on strings [5]. The general approach is to devise, given
a factorization f on strings, a bit-parallel encoding of the automata based on
f such that one transition can be performed in O(�|f(P)|/w�) time instead of
O(�m/w�), at the price of more space. The gain is two-fold: i) if |f(P)| < m, then
the overhead of the simulation is reduced. In particular, there is no overhead if
|f(P)| ≤ w, which is preferable if |f(P)| < m; ii) if we use the filtering method,
we can search for the longest substring P ′ of P such that |f(P ′)| ≤ w. This yields
O(n logσ |P ′|/|P ′|) average time for BNDM, which is preferable if |P ′| > w. The
factorization introduced by Cantone et al. is such that �m/σ� ≤ |f(P)| ≤ m and
their encoding requires O(σ2�|f(P)|/w�) space.

In this paper we present a novel encoding of the prefix and suffix automata,
based on this approach, where f(P) is the run-length encoding of P , provided
that P has at least two distinct symbols. The run-length encoding of a string is
a simple encoding where each maximal consecutive sequence of the same symbol
is encoded as a pair consisting of the symbol plus the length of the sequence.
Our encoding requires O((σ + m)�ρ/w�) space and allows one to simulate the
automata in O(�ρ/w�) time per transition, where ρ is the length of the run-
length encoding of P . While the present algorithm uses the run-length encoding,
the input string can be given in either unencoded or run-length encoded form.
Finally, we present practical variants of the Shift-And and BNDM algorithms
based on this encoding.

2 Notions and Basic Definitions

Let Σ be a finite alphabet of symbols and let Σ∗ be the set of all strings over Σ.
The empty string ε is a string of length 0. Given a string S, we denote by |S| the
length of S and by S[i] the i-th symbol of S, for 0 ≤ i < |S|. The concatenation
of two strings S and S̄ is denoted by SS̄. Given two strings S and S̄, S is a
substring of S̄ if there are indices 0 ≤ i, j < |S| such that S̄ = S[i]...S[j]. If i = 0
(j = |S|−1) then S̄ is a prefix (suffix) of S. The set Suff (S) is the set of all suffixes
of S. We denote by S[i .. j] the substring S[i]...S[j] of S. For i > j S[i .. j] = ε.
We denote by Sk the concatenation of k strings S’s, for S ∈ Σ∗ and k ≥ 1.
The string SR is the reverse of the string S, i.e., SR = S[|S|−1]S[|S|−2] . . . S[0].
A pattern with character classes is a sequence C1C2 . . . Cm where Ci ⊆ Σ. Given
a string S, we write C1C2 . . . Cm = S if |S| = m and S[i−1] ∈ Ci, for 1 ≤ i ≤ m.

104 E. Giaquinta

Given a string P ∈ Σ∗ of length m, we denote by A(P) = (Q,Σ, δ, q0, F) the
nondeterministic finite automaton (NFA) for the language Σ∗P of all strings in
Σ∗ whose suffix of length m is P , where:

– Q = {q0, q1, . . . , qm} (q0 is the initial state)
– the transition function δ : Q × Σ −→ P(Q) is defined by:

δ(qi, c) =Def

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{q0, q1} if i = 0 and c = P [0]
{q0} if i = 0 and c 	= P [0]
{qi+1} if 1 ≤ i < m and c = P [i]
∅ otherwise

– F = {qm} (F is the set of final states).

Similarly, we denote by S(P) = (Q,Σ, δ, I, F) the nondeterministic suffix
automaton with ε-transitions for the language Suff (P) of the suffixes of P , where:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– the transition function δ : Q × (Σ ∪ {ε}) −→ P(Q) is defined by:

δ(q, c) =Def

⎧
⎪⎨

⎪⎩

{qi+1} if q = qi and c = P [i] (0 ≤ i < m)
Q if q = I and c = ε

∅ otherwise

– F = {qm} (F is the set of final states).

We use the notation qI to indicate the initial state of the automaton, i.e., qI

is q0 for A(P) and I for S(P). The valid configurations δ∗(qI , S) which are reach-
able by the automata A(P) and S(P) on input S ∈ Σ∗ are defined recursively
as follows:

δ∗(qI , S) =Def

{
E(qI) if S = ε,
⋃

q′∈δ∗(qI ,S′) δ(q′, c) if S = S′c, for some c ∈ Σ and S′ ∈ Σ∗.

where E(qI) denotes the ε-closure of qI .
Given a string P , a run of P is a maximal substring of P containing exactly

one distinct symbol. The run-length encoding (RLE) of a string P , denoted
by rle(P), is a sequence of pairs (runs) 〈(c0, l0), (c1, l1), . . . , (cρ−1, lρ−1)〉 such
that ci ∈ Σ, li ≥ 1, ci 	= ci+1 for 0 ≤ i < ρ, and P = cl0

0 cl1
1 . . . c

lρ−1
ρ−1 . The

starting and ending position in P of the run (ci, li) are αP (i) =
∑i−1

j=0 lj and
βP (i) =

∑i
j=0 lj − 1, for i = 0, . . . , ρ − 1. We also put αP (ρ) = |P |. The length

of the run (ci, li) is denoted by 	P (i).
Finally, we recall the notation of some bitwise infix operators on computer

words, namely the bitwise and “&”, the bitwise or “|”, the left shift “�”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

Run-Length Encoded Nondeterministic KMP and Suffix Automata 105

0 (1) 2 (3) 4 (5) (6)
c

Σ

t t c c t
0

I

(1) 2 (3) 4 (5) (6)
c t t c c t

ε

ε
ε

ε
ε

ε
ε

Fig. 1. (a) The automata A(P) and S(P) for the pattern P = cttcct. The state labels
corresponding to the starting positions of the runs of rle(P) are in parentheses.

3 The Shift-And and BNDM Algorithms

In this section we briefly describe the Shift-And and BNDM algorithms. Given
a pattern P of length m and a text T of length n, the Shift-And and BNDM
algorithms find all the occurrences of P in T . The Shift-And algorithm works
by simulating the A(P) automaton on T and reporting all the positions j in T
such that the final state of A(P) is active in the corresponding configuration
δ∗(qI , T [0 .. j]). Instead, the BNDM algorithm works by sliding a window of
length m along T . For a given window ending at position j, the algorithm simu-
lates the automaton S(PR) on (T [j −m+1 .. j])R. Based on the simulation, the
algorithm computes the length k and k′ of the longest suffix of T [j − m + 1 .. j]
which is a prefix and a proper prefix, respectively, of P (i.e., a suffix of PR). If
k = m then T [j − m + 1 .. j] = P and the algorithm reports an occurrence of
P at position j. The window is then shifted by m − k′ positions to the right,
so as to align it with the longest proper prefix of P found. The automata are
simulated using an encoding based on bit-vectors and word-level parallelism.
The algorithms run in O(n�m/w�) and O(nm�m/w�) time, respectively, using
O(σ�m/w�) space, where w is the word size in bits. The automata and the asso-
ciated encoding can also be extended to the case of a pattern with character
classes.

4 RLE-Based Encoding of the Nondeterministic KMP
and Suffix Automata

Given a string P of length m defined over an alphabet Σ of size σ, let
rle(P) = 〈(c0, l0), (c1, l1,), . . . , (cρ−1, lρ−1)〉 be the run-length encoding of P . In
the following, we describe how to simulate the A(P) and S(P) automata, using
word-level parallelism, on a string S of length n in O(�ρ/w�) time per transition
and O((m + σ)�ρ/w�) space. We recall that the simulation of the automaton
A(P) on a string S detects all the prefixes of S whose suffix of length m is P .
Similarly, the simulation of the automaton S(P) detects all the prefixes of S
which are suffixes of P .

Let I(S) = {αS(i) | 0 ≤ i ≤ |rle(S)|} be the set of starting positions of the
runs of S, for a given string S. Note that 0 ∈ I(S). Given a string S, we denote
by Dj = δ∗(qI , S[0 .. j − 1]) the configuration of A(P) or S(P) after reading
S[0 .. j − 1], for any 0 ≤ j ≤ |S|. We start with the following Lemma:

106 E. Giaquinta

Lemma 1. Let j ∈ I(S). Then, for any qi ∈ Dj such that i /∈ I(P), we have
δ(qi, S[j]) = ∅.
Proof. Let qi ∈ Dj with i /∈ I(P). By definition of qi and by i /∈ I(P) it follows
that S[j − 1] = P [i− 1] and P [i− 1] = P [i], respectively. Moreover, by j ∈ I(S),
we have S[j] 	= S[j − 1]. Suppose that δ(qi, S[j]) 	= ∅, which implies S[j] = P [i].
Then we have S[j] = P [i] = P [i − 1] = S[j − 1], which yields a contradiction. ��
This Lemma states that, for any j ∈ I(S), any state qi ∈ Dj with i /∈ I(P) is
dead, as no transition is possible from it on S[j]. Figure 1 shows the automata
A(P) and S(P) for P = cttcct; the state labels corresponding to indexes in I(P)
are in parentheses. In this case I(P) = {0, 1, 3, 5, 6} and therefore states q2 and
q4 are dead in any configuration Dj with j ∈ I(S).

We assume that P has at least two distinct symbols, i.e., ρ ≥ 2. The following
Lemma shows that, under this assumption, there can be at most one prefix of S
in the language of A(P) or of S(P) ending in a position between αS(i) and βS(i)
in S, for any 1 ≤ i ≤ |rle(S)| (note that i ≥ 1 implies that the corresponding
prefix of S in the language has at least two distinct symbols).

Lemma 2. Let i ∈ {1, . . . , |rle(S)| − 1}. If ρ ≥ 2, there exists at most one j in
the interval [αS(i), βS(i)] such that qm ∈ δ∗(qI , S[0 .. j]).

Proof. The claim follows by observing that for any two strings S1 and S2 in
the language with at least two distinct symbols we have 	S1(|rle(S1)| − 1) =
	S2(|rle(S2)| − 1).

Specifically, the only prefix in the language, if any, corresponds to index αS(i)+
lρ−1 − 1. For i = 0 it is easy to see that: i) in the case of the prefix automaton,
since ρ ≥ 2, S[0 .. j] is not in the language for j ∈ [αS(0), βS(0)]; ii) in the case
of the suffix automaton, if S[0] = P [m − 1] then S[0 .. j] is in the language for
0 ≤ j < min(S(0), lρ−1), and is not otherwise. Hence, in the case of the suffix
automaton, we can detect all the prefixes of S in the language with one distinct
symbol by comparing the first run of S with the last run of P .

By definition of Dj and by Lemma 1, we have

DαS(j+1) = δ∗(qI , S[0 .. βS(j)])
=

⋃
q∈DαS(j)

δ∗(q, S[αS(j) .. βS(j)])
=

⋃
q∈DαS(j)∩{qi | i∈I(P)} δ∗(q, S[αS(j)]�S(j))

for any position αS(j + 1). The idea is to compute the configurations Dj ,
restricted to the states with index in I(P), corresponding to positions j ∈ I(S)
only by reading S run-wise. Observe that it is not possible to detect the single
prefix of S in the language, if any, ending at a position between αS(j − 1) and
βS(j−1) using DαS(j), because qm /∈ DαS(j) if the prefix does not end at position
βS(j − 1), or equivalently if 	S(j − 1) > lρ−1.

Let D̄j be the set such that i ∈ D̄j iff qαP (i) ∈ DαS(j), for 1 ≤ i < ρ,
and ρ ∈ D̄j iff j ≥ 2 and qm ∈ DαS(j−1)+1 ∪ . . . ∪ DαS(j). The set D̄j is the

Run-Length Encoded Nondeterministic KMP and Suffix Automata 107

encoding of the configuration of A(P) or S(P) after reading S[0 .. βS(j − 1)],
for 0 ≤ j ≤ |rle(S)|, such that ρ is present iff a prefix of S in the interval
[αS(j − 1), βS(j − 1)] with at least two distinct symbols is in the language.
Observe that, if ρ ∈ D̄j , then ρ /∈ D̄j+1, since S[αS(j)] 	= S[αS(j + 1)].

The following example shows the configurations D̄j of A(P) on S, for P =
cttcct and S = cttccttcct, and the starting positions of the runs of P and S:

P = cttcct

S = cttccttcct

D̄1 = {1} D̄2 = {2}
D̄3 = {1, 3} D̄4 = {2, 4}
D̄5 = {1, 3} D̄6 = {4}

i 0 1 2 3 4

αP (i) 0 1 3 5 6

i 0 1 2 3 4 5 6

αS(i) 0 1 3 5 7 9 10

Note that q0 is not represented and that D̄0 is equal to ∅ and {1, . . . , ρ} for
A(P) and S(P), respectively. We now describe how to compute the configura-
tions D̄j .

4.1 Computation of D̄j

Let Pa = P [αP (0)]P [αP (1)] . . . P [αP (ρ−1)] and Pb = 	P (0)	P (1) . . . 	P (ρ−1) be
the strings corresponding to the concatenation of the symbols and lengths of the
runs in the run-length encoding of P , respectively. For example, if P = cttcct we
have Pa = ctct and Pb = 1221. Let Sa and Sb be defined analogously. Observe
that the strings Sa and Sb can be computed on the fly in constant space from S.
It is well known that the string matching problem on rle(S) can be reduced to
that of searching for Pa in Sa and for Pb in Sb [1]. Indeed, we have the following
Lemma:

Lemma 3. Let i ∈ {1, . . . , |rle(S)| − 1}. We have P = S[j − m + 1 .. j], for
some j ∈ [αS(i), βS(i)], iff the following conditions hold:

1. Pa = Sa[i − ρ + 1 .. i];
2. Pb[1 .. ρ − 2] = Sb[i − ρ + 2 .. i − 1];
3. Pb[ρ − 1] ≤ Sb[i];
4. Pb[0] ≤ Sb[i − ρ + 1].

Suppose now that we want to determine whether a prefix of S matches a suffix of
P with at least two distinct symbols. In this case, we have the following Lemma:

Lemma 4. Let i ∈ {1, . . . , |rle(S)| − 1} and i′ ∈ {0, . . . , ρ − 2}. We have
P [j′ ..m − 1] = S[0 .. j], for some j ∈ [αS(i), βS(i)] and j′ ∈ [αP (i′), βP (i′)], iff
the following conditions hold:

108 E. Giaquinta

0

I

(1) 2 (3) 4 (5) (6)
c

c
t t c c t

ε

ε

ε

ε
ε

Fig. 2. (a) The automaton Sr(P) for the pattern P = cttcct.

1. Pa[i′ .. ρ − 1] = Sa[0 .. i];
2. Pb[i′ + 1 .. ρ − 2] = Sb[1 .. i − 1];
3. Pb[ρ − 1] ≤ Sb[i];
4. Sb[0] ≤ Pb[i′].

Let Sb′ be the string of length n such that Sb′ [i] = min(S(i),m + 1). The
string Sb′ corresponds to the concatenation of the run lengths of rle(S) such
that lengths longer than m are replaced with m + 1. The idea is to perform
the computation of D̄j by means of a joint simulation of A(Pa) on Sa and of a
modified version of A(Pb) on Sb′ , and analogously for S(P).

Consider the automata A(Pa) and A(Pb). Observe that both automata have
ρ + 1 states and are defined over the alphabet Σ and {1, 2, . . . ,m}, respectively.
Let A′(Pb) be the automaton A(Pb) modified by augmenting the transition func-
tion as follows:

– δ(qρ−1, l) = {qρ}, for Pb[ρ − 1] + 1 ≤ l ≤ m + 1;
– δ(q0, l) = {q0, q1}, for Pb[0] + 1 ≤ l ≤ m + 1.

Similarly, Let S ′(Pb) be the automaton S(Pb) modified by augmenting the tran-
sition function as follows:

– δ(qρ−1, l) = {qρ}, for Pb[ρ − 1] + 1 ≤ l ≤ m + 1;
– δ(I, l) = {qi | i ≤ ρ − 1 ∧ l ≤ Pb[i]}, for 1 ≤ l ≤ m.

The first and second changes to A(Pb) (S(Pb)) correspond to handling conditions
3 and 4 of Lemma 3 (4), respectively. In other words, by means of character
classes, we turn condition 3 of Lemmas 3 and 4 into the equivalent condition
Sb′ [i] ∈ {Pb[ρ − 1], Pb[ρ − 1] + 1, . . . ,m + 1}, condition 4 of Lemma 3 in Sb′ [i −
ρ + 1] ∈ {Pb[0], Pb[0] + 1, . . . ,m + 1} and condition 4 of Lemma 4 in Sb′ [0] ∈
{1, 2, . . . , Pb[i′]}.

Let D̄a
j = {1 ≤ i ≤ ρ | qa

i ∈ δ∗(qa
I , Sa[0 .. j])} be the configuration of A(Pa)

or S(Pa) after reading Sa[0 .. j] and analogously for D̄b
j . It is not hard to verify

that
D̄j = D̄a

j ∩ D̄b
j (1)

and, therefore, the computation of the configurations D̄j can be reduced to the
simulation of A(Pa) on Sa and of A′(Pb) on Sb′ , and analogously for S(P).

Let Pb′ be the pattern with character classes {	P (0), 	P (0) + 1, . . . ,m +
1}	P (1) . . . 	P (ρ − 2){	P (ρ − 1), 	P (ρ − 1) + 1, . . . ,m + 1}. Observe that the
automaton A′(Pb) corresponds to A(Pb′). Instead, if we replace S ′(Pb) with
S(Pb′), we obtain a simulation of the automaton Sr(P) whose language is the

Run-Length Encoded Nondeterministic KMP and Suffix Automata 109

subset of Suff (P) {P [i ..m − 1] | i ≥ 1 ∧ P [i] 	= P [i − 1]} plus P [0]∗P and whose
transition function is defined as follows:

δ(q, c) =Def

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{q0, q1} if q = q0 and c = P [0]

{qi+1} if q = qi and c = P [i] (0 ≤ i < m)

{qi | i = 0 ∨ P [i] �= P [i − 1]} if q = I and c = ε

∅ otherwise

Fig. 2 shows the automaton Sr(P) for P = cttcct.
We now describe the encoding of A(P) and S(P). Let

B1(c) = {1 ≤ i ≤ ρ | c = Pa[i − 1]} ,

for any c ∈ Σ. The set B1(c) includes the indices of all the runs whose symbol
is equal to c. It is well known that for A(Pa) we have

D̄a
j+1 = {i + 1 | i ∈ D̄a

j ∪ {0}} ∩ B1(Sa[j])

for j ≥ 0, while for S(Pa) we have

D̄a
1 = B1(Sa[0])

D̄a
j+1 = {i + 1 | i ∈ D̄a

j } ∩ B1(Sa[j])

for j ≥ 1. Consider now the automata A′(Pb) and S ′(Pb), and let B2(l) = {1 ≤
i ≤ ρ | l = Pb[i − 1]}. The set B2(l) includes the indices of all the runs whose
length is equal to l. Note that B2(l) = ∅, for any l > m; thus, we can define
B2 up to m + 1 and map any integer greater than m onto m + 1. By using B2

in place of B1 we simulate the automaton A(Pb). To account for the first and
second change in A′(Pb) we add ρ to B2(l), for Pb[ρ − 1] + 1 ≤ l ≤ m + 1, and 1
to B2(l), for Pb[0] + 1 ≤ l ≤ m + 1, respectively. For example, for P = cttcct we
have:

B1(c) = {1, 3} B2(1) = {1, 4}
B1(t) = {2, 4} B2(2) = {1, 2, 3, 4}

and B2(l) = {1, 4}, for 3 ≤ l ≤ 7. Concerning S ′(Pb), while the first change is the
same as for A′(Pb), the second change is different and affects the first transition
only. To account for the first change we add ρ to B2(l), for Pb[ρ − 1] + 1 ≤ l ≤
m + 1. Instead, to account for the second change, we define the set

B3(l) = {1 ≤ i ≤ ρ − 1 | l ≤ Pb[i − 1]}
for 1 ≤ l ≤ m + 1 and use it to compute D̄b

1. The set B3(l) includes the indices
of all the runs, except the last, whose length is not less than l.

We now show how to implement Eq. 1 efficiently using word-level parallelism.
We represent the configurations D̄ and the sets B as bit-vectors of ρ bits, denoted
by D and B, respectively. Based on the encodings described above, Eq. 1 for A(P)
can be written as

110 E. Giaquinta

D̄j+1 = {i + 1 | i ∈ D̄j ∪ {0}} ∩ B1(Sa[j]) ∩ B2(Sb′ [j]) ,

which corresponds to the following bitwise operations

Dj+1 = ((Dj � 1) | 0ρ−11) & B1(Sa[j]) & B2(Sb′ [j]) .

Similarly, in the case of S(P) we have

D̄1 = B1(Sa[0]) ∩ B3(Sb′ [0]) ,
D̄j+1 = {i + 1 | i ∈ D̄j} ∩ B1(Sa[j]) ∩ B2(Sb′ [j]) ,

which corresponds to the following bitwise operations

D1 = B1(Sa[0]) & B3(Sb′ [0]) ,
Dj+1 = (Dj � 1) & B1(Sa[j]) & B2(Sb′ [j]) .

We now analyze the complexity of the described encodings. The computation
of a single configuration D̄j requires O(�ρ/w�) time. The total time complexity
of the simulation is thus O(|S|�ρ/w�), as the total number of configurations is
|rle(S)| ≤ |S|. The bit-vectors B can be preprocessed in O(m + (σ + m)�ρ/w�)
time and require O((σ + m)�ρ/w�) space. The string P or S can be given in
either unencoded or run-length encoded form. In the former case its run-length
encoding does not need to be stored. It can be computed on the fly in O(m) or
O(|S|) time, using constant space, during the preprocessing or searching phase.

5 The Variants of Shift-And and BNDM

The variants of the Shift-And and BNDM algorithms based on the encod-
ing described in the previous section run in O(n�ρ/w�) and O(nm�ρ/w�) time,
respectively, using O((σ + m)�ρ/w�) space. The encoding of the suffix automa-
ton is however not ideal in practice, due to the different first transition. We now
describe a variant of BNDM, based on Lemma 3, where the first transition of
the automaton is equal to the subsequent ones. The idea is to search for Pa in Sa

and Pb′ in Sb′ with the BNDM algorithm maintaining a single window in both
strings. For a given window of length ρ ending at position j in Sa and in Sb′ , we
compute the largest k′ ≤ ρ−1 and k ≤ ρ such that Pa[0 .. k′−1] = Sa[j−k′+1 .. j]
and Pb′ [0 .. k′ − 1] = Sb′ [j − k′ + 1 .. j], and analogously for k.

Let k̄′ be the length of the longest suffix of S[αS(j − ρ + 1) .. βS(j)] which is
a proper prefix of P and such that P [k̄′ − 1] 	= P [k̄′]. It is not hard to see that
k′ = |rle(P [0 .. k̄′ − 1])|. Observe that, if P [k̄′ − 1] = P [k̄′], then the window
starting at position βS(j) − k̄′ + 1 does not contain an occurrence of P , because
P [k̄′ −1] = S[βS(j)] and S[βS(j)] 	= S[βS(j)+1]. Therefore, ρ−k′ is a safe shift
and we can thus slide the window in Sa and Sb′ by ρ − k′. Concerning k, either
k < ρ and k = k′ or S[i − m + 1 .. i] = P , where i = αS(j) + 	P (ρ − 1) − 1.
The lengths k′ and k can be found by computing the intersection D̄a

i ∩ D̄b′
i , for

j −ρ+1 ≤ i ≤ j, of the configurations of the automata S(Pa) and S(Pb′), which
is equivalent to simulating the automaton Sr(PR) on (S[αS(j−ρ+1) .. βS(j)])R.
The pseudocode of the variants of the Shift-And and BNDM algorithms based
on the run-length encoding is shown in Fig. 3.

Run-Length Encoded Nondeterministic KMP and Suffix Automata 111

rl-preprocess(P)

1. ρ ← |rle(P)|
2. for c ∈ Σ do B1[c] ← 0ρ

3. for i ← 1 to |P | + 1 do B2[i] ← 0ρ

4. i ← 0

5. for (c, l) ∈ rle(P) do
6. H ← 0ρ−11 � i

7. B1[c] ← B1[c] | H
8. if i = 0 or i = ρ − 1 then
9. � = l

10. for j ← l to |P | + 1 do
11. B2[j] ← B2[j] | H
12. else B2[l] ← B2[l] | H
13. i ← i + 1

14. return(B1, B2, ρ, �)

rl-shift-and(P, T)

1. (B1, B2, ρ, �) ← rl-preprocess(P)

2. D ← 0ρ

3. j ← 0

4. for (c, l) ∈ rle(T) do
5. D ← ((D � 1) | 0ρ−11) & B1[c]

6. D ← D & B2 l, |P | + 1)]

7. if D & 10ρ−1 	= 0ρ then
8. Output(j + �)

9. j ← j + l

rl-bndm(P, T)

1. (B1, B2, ρ, �) ← rl-preprocess(P R)

2. s ← |P | − 1

3. while s < |T | do
4. D ← 1ρ

5. b ← s − |P | + 1

6. while s + 1 < |T | and T [s] = T [s + 1] do
7. s ← s + 1

8. j ← 0, k ← 1

9. for (c, l) ∈ rle(T [b .. s]R) do
10. D ← D & B1[c]

11. D ← D & B2 l, |P | + 1)]

12. if D & 10ρ−1 	= 0ρ then
13. if (j + � ≥ |P |) then
14. Output(s − j − �)

15. else k ← j + �

16. D ← D � 1

17. j ← j + l

18. s ← s + |P | − k

Fig. 3. The variants of Shift-And and BNDM based on the run-length encoding.

6 Comparison with the 1-Factorization Encoding

Consider the greedy 1-factorization proposed by Cantone et al., that is defined
as follows:

Definition 1. The greedy 1-factorization of a string P is the sequence 〈u1, u2,
. . . , uk〉 of nonempty substrings of P such that:

(a) P = u1u2 . . . uk ;
(b) uj is the longest prefix of P [i .. |P | − 1] that contains at most one occurrence

of any of the symbols in the alphabet Σ, where i = |u1u2 . . . uj−1|, for j =
1, . . . , k .

Let P be a string of length m and let ΣP be the set of symbols occurring in
P . The size k of the greedy 1-factorization of P satisfies the condition

⌈
m

|ΣP |
⌉

≤
k ≤ m. Instead the size ρ of the run-length encoding of P satisfies the condition

112 E. Giaquinta

|ΣP | ≤ ρ ≤ m. If |ΣP | = m, as in the case P = acg, we have k = 1 and ρ = m.
Instead, if |ΣP | = 1, as in the case P = aaa, we have k = m and ρ = 1. In
other words, the best case, with respect to size, for the greedy 1-factorization
is the worst case for the run-length encoding, and vice versa. Assume now that
P is a uniformly random string and let X and X’ be the random variables
corresponding to the length of a factor in the 1-factorization and run-length
encoding, respectively. It is easy to verify that Pr[X ≥ i] = (σ−1)!

(σ−i)!σi−1 and
Pr[X ′ ≥ i] = 1

σi−1 . Then, we have E[X] = Q(σ) = Θ(
√

σ) by Knuth’s analysis
of the Q(n) function [13, 1.2.11.3], and E[X ′] = σ/(σ − 1). Therefore, in the
case of uniformly random strings, k is smaller than ρ on average, as we have
k = Θ(n/

√
σ) and ρ = Θ(n). In many common domains of real strings, such

as DNA, protein and natural language sequences, k is also smaller than ρ on
average. For this reason, we do not provide experimental results, even though we
have implemented the algorithms and experimentally verified their correctness:
in the general case the proposed algorithms are not preferable. However, they
can be useful in specific application domains where the run-length encoding is
effective, such as the ones of bi-level images and of time series analysis using
clipping [4].

One potential way to exploit the run-length encoding in the general case could
be to combine it with the 1-factorization, by computing the 1-factorization of the
string induced by the run-length encoding (over the alphabet of distinct pairs in
the sequence). The challenge here is to devise a combination of the algorithms
based on the two encodings which still is simple enough to be practical and fast.

7 Conclusions

In this paper we have shown that the nondeterministic KMP and suffix automata
of a string P can be simulated, using an encoding based on word-level parallelism,
in O(�ρ/w�) time per transition, where ρ is the length of the run-length encoding
of P . We have also presented practical variants of the Shift-And and BNDM
algorithms based on this encoding. An open problem is whether there exist other
factorizations which can be used to obtain similar efficient encodings.

Acknowledgments. The author thanks Jorma Tarhio, Djamal Belazzougui and the
anonymous reviewers for helpful comments.

References

1. Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling. J.
Algorithms 13(1), 2–32 (1992)

2. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Commun.
ACM 35(10), 74–82 (1992)

3. Baeza-Yates, R.A., Navarro, G.: Faster approximate string matching. Algorithmica
23(2), 127–158 (1999)

Run-Length Encoded Nondeterministic KMP and Suffix Automata 113

4. Bagnall, A.J., Ratanamahatana, C.A., Keogh, E.J., Lonardi, S., Janacek, G.J.: A
bit level representation for time series data mining with shape based similarity.
Data Min. Knowl. Discov. 13(1), 11–40 (2006)

5. Cantone, D., Faro, S., Giaquinta, E.: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach. Inf. Comput. 213, 3–12 (2012)

6. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York
(1994)

7. Durian, B., Holub, J., Peltola, H., Tarhio, J.: Improving practical exact string
matching. Inf. Process. Lett. 110(4), 148–152 (2010)

8. Ďurian, B., Peltola, H., Salmela, L., Tarhio, J.: Bit-parallel search algorithms for
long patterns. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 129–140. Springer,
Heidelberg (2010)

9. Fredriksson, K., Giaquinta, E.: On a compact encoding of the swap automaton.
Inf. Process. Lett. 114(7), 392–396 (2014)

10. Fredriksson, K., Grabowski, S.: Average-optimal string matching. J. Discrete Algo-
rithms 7(4), 579–594 (2009)

11. Hyyrö, H.: Improving the bit-parallel NFA of Baeza-Yates and Navarro for approx-
imate string matching. Inf. Process. Lett. 108(5), 313–319 (2008)

12. Hyyrö, H., Navarro, G.: Bit-parallel witnesses and their applications to approxi-
mate string matching. Algorithmica 41(3), 203–231 (2005)

13. Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental Algo-
rithms, 2nd edn. Addison-Wesley, Boston (1973)

14. Knuth, D.E., Pratt, V.R., Morris Jr., J.H.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

15. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM J. Exp. Algorithmics 5, 4 (2000)

16. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings - Practical on-
Line Search Algorithms for Texts and Biological Sequences. Cambridge University
Press, Cambridge (2002)

17. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching. In:
Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol.
2857, pp. 80–93. Springer, Heidelberg (2003)

18. Wu, S., Manber, U.: Fast text searching allowing errors. Commun. ACM 35(10),
83–91 (1992)

More on Deterministic and Nondeterministic
Finite Cover Automata

Extended Abstract

Hermann Gruber1, Markus Holzer2(B), and Sebastian Jakobi2

1 Knowledgepark AG, Leonrodstr. 68, 80636 Munich, Germany
hermann.gruber@knowledgepark-ag.de

2 Institut für Informatik, Universität Giessen, Arndtstr. 2,
35392 Giessen, Germany

{holzer,sebastian.jakobi}@informatik.uni-giessen.de

Abstract. Finite languages are an important sub-regular language
family, which were intensively studied during the last two decades in
particular from a descriptional complexity perspective. An important
contribution to the theory of finite languages are the deterministic and
the recently introduced nondeterministic finite cover automata (DFCAs
and NFCAs, respectively) as an alternative representation of finite lan-
guages by ordinary finite automata. We compare these two types of cover
automata from a descriptional complexity point of view, showing that
these devices have a lot in common with ordinary finite automata. In
particular, we study how to adapt lower bound techniques for nonde-
terministic finite automata to NFCAs such as, e.g., the biclique edge
cover technique, solving an open problem from the literature. More-
over, the trade-off of conversions between DFCAs and NFCAs as well
as between finite cover automata and ordinary finite automata are inves-
tigated. Finally, we present some results on the average size of finite cover
automata.

1 Introduction

If one tries to describe formal objects such as, e.g., Boolean functions, graphs,
trees, languages, as compact as possible we are faced with the question, which
representation to use. This quest for compact representations of formal objects
dates back to the early beginnings of theoretical computer science. For instance,
one can prove by a simple counting argument that most Boolean functions have
exponential circuit complexity [27]. For other representations of Boolean func-
tions than circuits, such as formulas, ordered binary decision diagrams, etc. a
similar result applies. This incompressibility is inherent in almost all possible
representations of formal objects.

Part of the work was done while the first author was at Institut für Informatik,
Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 München,
Germany and the second author was at Institut für Informatik, Technische Uni-
versität München, Boltzmannstraße 3, 85748 Garching bei München, Germany.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 114–126, 2015.
DOI: 10.1007/978-3-319-22360-5 10

More on Deterministic and Nondeterministic Finite Cover Automata 115

When considering formal languages, automata are the preferred choice of
representation. In particular, for regular languages and subfamilies one may use
deterministic (DFAs) or nondeterministic finite automata (NFAs) or variants
thereof to describe these languages. It is well known that these two formalisms
are equivalent. The obvious way to obtain a DFA form a given NFA is by apply-
ing the subset or power-set construction [24]. This construction allows to show
an upper bound of 2n states in the DFA obtained from an n-state NFA, and
this bound is known to be tight. For finite languages a slightly smaller bound
on the determinization problem is given in [25]. Here the tight bound depends
on the alphabet size k and reads as Θ(k

n
1+log2 k). Thus, for a two-letter input

alphabet Θ(2
n
2) states are sufficient and necessary in the worst case for a DFA

to accept a language specified by an n-state NFA. There are a lot of other results
known for finite automata accepting finite languages such as, e.g., the maximal
number of states of the minimal DFA accepting a subset of Σ� or Σ≤� [5,12],
or the average case size of DFAs and NFAs w.r.t. the number of states and
transitions accepting a subset of Σ� or Σ≤� [17].

Since regular languages and finite automata are widely used in applications,
and most of them use actually finite languages only, it is worth considering fur-
ther representations for finite languages that may be more compact, but still bare
nice handling in applications. Such a representation is based on finite automata
and is known as finite cover automata. The idea is quite simple, namely a finite
cover automaton A of a finite language L ⊆ Σ∗ is a finite automaton that
accepts all words in L and possibly other words that are longer than any word
in L. Formally, this reads as L = L(A) ∩ Σ≤�, where � is the length of the
longest word(s) in L; then we say that A covers the finite language L. Originally
deterministic finite cover automata (DFCAs) were introduced in [10], where an
efficient minimization algorithm for these devices was given. Further results on
important aspects of DFCAs can be found in, e.g., [8–11,21]. Recently, DFCAs
were generalized to nondeterministic finite cover automata (NFCAs) in [4] and
it was shown that they can even give a more compact representation of finite
languages than both NFAs and DFCAs. To our knowledge this was the first
systematic study on this subject, although it has been suggested already earlier
in a survey paper on cover automata [28].

We further develop the theory of finite cover automata in this paper. At
first we introduce the necessary definitions in the next section. Then we briefly
recall what is known on lower bound techniques for both types of finite cover
automata. In particular, we first reconsider the fooling set techniques known for
nondeterministic finite automata (NFAs) and secondly we show how to alter the
biclique edge cover technique from [16] to make it applicable for NFCAs, too.
This positively answers a question stated in [4], whether the biclique edge cover
technique can be used at all to prove lower bounds for NFCAs. As a byprod-
uct we develop a lower bound method for E-equivalent NFAs. This concept was
recently introduced in [19]. Two languages are E-equivalent if their symmetric
difference lies in the so called error language E. Thus, E-equivalence is a gen-
eralization of ordinary equivalence and also of cover-automata. In particular,
setting E = Σ>�, thus not taking care of words that are too long, we are back

116 H. Gruber et al.

to covering languages and cover automata. Section 4 is devoted to conversions
between finite automata and finite cover automata. First we provide a large
family of languages where cover state complexity meets ordinary state complex-
ity (up to one state for deterministic devices). Hence, for the conversions from
finite automata to finite cover automata not much state savings are possible.
For the opposite direction we show that an n-state finite cover automaton for
a language of order � can be converted to an equivalent finite automaton with
about n · � states; the exact bounds are shown to be tight for all n and �. In
particular, this shows that roughly speaking the number of states of a finite
cover automaton is at least an �-th fraction of the state size of the equivalent
finite automaton. Then we take a closer look on determinizing NFCAs by the
well known power-set construction. We show that here the state blow-up heavily
depends on the order � of the finite language represented by the NFCA. When
the order is large enough, we get a tight exponential blow-up of 2n, just as in
the case of ordinary finite automata. We give a range of conditions that imply
sub-exponential, polynomial, and even linear determinization blow-ups. These
results are presented in Sect. 5. In the penultimate section, we perform average
case comparisons of the descriptional complexity of finite cover automata. For
ordinary finite automata this was already done in, e.g., [17], where it was shown
that almost all DFAs accepting finite languages of order � over a binary input
alphabet have state complexity Θ(2�/�), while NFAs are shown to perform bet-
ter, namely the nondeterministic state complexity is in Θ(

√
2�). Interestingly,

in both cases the aforementioned bounds are asymptotically like in the worst
case. For finite cover automata exactly the same picture as for ordinary finite
automata emerges. Finally, we summarize our results in the conclusions section
and state some open problems for future research. Due to space limitations all
proofs are omitted.

2 Preliminaries

We recall some definitions on finite automata as contained in [18]. A nondeter-
ministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q is
the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q is the transition
function. The language accepted by the NFA A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ },

where the transition function is recursively extended to δ : Q×Σ∗ → 2Q. An NFA
is deterministic (DFA), if and only if |δ(q, a)| = 1, for every q ∈ Q and a ∈ Σ. In
this case we simply write δ(q, a) = p instead of δ(q, a) = {p}, assuming that the
transition function δ : Q × Σ → Q is a total mapping. Two automata A and B
are equivalent if they accept the same language, that is, L(A) = L(B). An NFA
(DFA, respectively) A is minimal if any equivalent NFA (DFA, respectively)
needs at least as many states as A. It is a well known fact that minimal DFAs
are unique up to isomorphism, while minimal NFAs are not necessarily unique in

More on Deterministic and Nondeterministic Finite Cover Automata 117

general. Let nsc(L) (sc(L), respectively) refer to the number of states a minimal
NFA (DFA, respectively) needs to accept the language L. By definition and
the seminal result in [24] we have nsc(L) ≤ sc(L) ≤ 2nsc(L), if L is a language
accepted by a finite automaton. Proving lower bounds for nsc(L) can be done
by applying, e.g., the extended fooling set technique, which reads as follows [1]:

Theorem 1. Let L ⊆ Σ∗ be a regular language and suppose there exists a set
of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that (i) xiyi ∈ L, for 1 ≤ i ≤ n
and (ii) i �= j implies xiyj �∈ L or xjyi �∈ L, for 1 ≤ i, j ≤ n. Then any
nondeterministic finite automaton for L has at least n states, i.e., n ≤ nsc(L).
Here S is called an extended fooling set for L.

A non-empty finite language L ⊆ Σ∗ is said to be of order �, if � is the length
of the longest word(s) in the set L, i.e., L ⊆ Σ≤�, where Σ≤� refers to the set
{w ∈ Σ∗ | |w| ≤ � }, where |w| denotes the length of the word w. In particular,
the length of the empty word λ is zero. A deterministic finite cover automaton
(DFCA) for a language L ⊆ Σ∗ of order � is a DFA A such that L(A)∩Σ≤� = L;
these devices were introduced in [10]. This definition naturally carries over to
NFAs, hence leading to nondeterministic finite cover automata (NFCA), which
were recently introduced in [4]. Two cover automata A and B are equivalent if
they cover the same finite language L ⊆ Σ∗, that is, L(A) ∩ Σ≤� = L(B) ∩ Σ≤�,
where � is the order of L. A DFCA (NFCA, respectively) A for a finite language L
is minimal if any equivalent automaton of same type needs at least as many
states as A. Let ncsc(L) (csc(L), respectively) refer to the number of states a
minimal NFCA (DFCA, respectively) needs to accept the finite language L. By
definition we have ncsc(L) ≤ csc(L), if L is a finite language. Moreover, since
any cover automaton can be at most as large as an ordinary finite automaton
of the same type for a finite language L, we have csc(L) ≤ sc(L) as well as
ncsc(L) ≤ nsc(L). A useful tool for the study of minimal DFCAs is the notion
the similarity relation, which plays a similar role as the Myhill-Nerode relation1

in case of DFAs. For a finite language L ⊆ Σ∗ of order � the similarity relation ≈L

on words is defined as follows: for u, v ∈ Σ∗ let u ≈L v if and only if we have
uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗, whenever |uw| ≤ � and |vw| ≤ �. Observe,
that ≈L is not a equivalence relation in general. The relation ≈L can also be
defined for states of a DFCA A = (Q,Σ, δ, q0, F). Two states p and q are similar,
denoted by p ≈L q, if δ(p,w) ∈ F ⇐⇒ δ(q, w) ∈ F holds for all w ∈ Σ≤�−m,
with m = max(levA(p), levA(q))—here levA(p) = min{ |u| | δ(q0, u) = p }. If
p �≈L q then p and q are dissimilar. It is known [10] that a DFCA is minimal if
all its states are pairwise dissimilar.

3 Lower Bound Techniques for Cover Automata

The problem to estimate the necessary number of states of a minimal NFA
accepting a given regular language is complicated. Several authors have intro-
duced methods for proving lower bounds. The most widely used lower bound
1 For a language L ⊆ Σ∗ define the Myhill-Nerode relation ≡L on words as follows:

for u, v ∈ Σ∗ let u ≡L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗.

118 H. Gruber et al.

techniques for NFAs are the so-called fooling set techniques—the fooling set
technique [14] and the extended fooling set method [1]. Recently, in [4] both
fooling set methods were adapted to work for NFCAs as well. Here we first
reconsider the fooling set techniques and then show how to modify yet another
lower bound method, the biclique edge cover technique of [16], to work with
NFCAs. Whether this latter technique can be generalized to NFCAs was stated
as an open problem in [4].

In [4] it was argued that there is no doubt that any fooling set type technique
used to prove a lower bound for NFCAs must explicitly consider the order of
the language under consideration. In this vein, both fooling set techniques were
adapted. In fact, we show that the original fooling set technique of [14] (not
the extended version of [1]) already gives a lower bound for NFCAs without
modifying the technique to explicitly deal with the order of the language under
consideration.

Theorem 2. Let L ⊆ Σ∗ be a finite language and suppose there exists a set of
pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that (i) xiyi ∈ L, for 1 ≤ i ≤ n, and
(ii) xiyj �∈ L, for 1 ≤ i, j ≤ n, and i �= j. Then any nondeterministic finite
cover automaton for L has at least n states, i.e., n ≤ ncsc(L). Here S is called
a fooling set for L.
�
In contrast the more powerful extended fooling set technique presented in [1]
does not work as a lower bound technique for NFCAs as the following example
illustrates, and therefore the modification of this technique presented in [4] is
the right generalization.

Example 3. Consider the unary finite language L = {a}≤�, for � ≥ 1. Clearly,
this language can be covered by an NFCA with a single state. However, the set
S = { (ai, a�−i) | 0 ≤ i ≤ � } is an extended fooling set for L, proving a lower
bound of � + 1 on the nondeterministic state complexity of L.
�
In the remainder of this subsection we turn our attention to the biclique edge
cover technique from [16]. A central role in this technique plays the notion of
the bipartite dimension dim(G) of a bipartite graph G, which is the minimum
number of bicliques in G needed to cover all edges of G. The following example
shows that this technique cannot be applied to NFCAs without any modification.

Example 4. Let � ≥ 1 and consider the finite language L = {a}≤�. Clearly the
single-state DFA accepting for the language {a}∗ is a cover automaton for L,
hence we have ncsc(L) = 1. However, the bipartite dimension of the graph
G = (X,Y,E), with X = Y = L and E = { (x, y) ∈ X×Y | xy ∈ L }, is �+1 > 1.
This can be seen as follows. Notice that (ai, aj) ∈ E if and only if i + j ≤ �.
In particular, for 0 ≤ i ≤ �, the edge ei = (ai, a�−i) belongs to E. Therefore,
every such ei has to be covered by some biclique Hi = (Xi, Yi, Ei) with ai ∈ Xi,
a�−i ∈ Yi, and Ei = Xi × Yi. Now we see that distinct edges ei and ej must be
covered by distinct bicliques, that is, Hi �= Hj , for 1 ≤ i, j ≤ �, with i �= j: if
Hi = Hj then we have ai, aj ∈ Xi and a�−i, a�−j ∈ Yi, and since Hi is a biclique,
its set of edges Ei contains both (ai, a�−j) and (aj , a�−i). But since i �= j, either

More on Deterministic and Nondeterministic Finite Cover Automata 119

i + � − j > � or j + � − i > �, which means that one of the two edges does not
belong to E—a contradiction to H0,H1, . . . H� being a biclique edge cover. This
shows that the bipartite dimension of G is at least �+1. Equality is witnessed by
the bicliques Hi = (Xi, Yi, Ei) with Xi = {ai}, Yi = {a}≤�−i, and Ei = Xi × Yi,
for 0 ≤ i ≤ �.
�
In the following we want to generalize the biclique edge cover technique so that
it can also be used to prove lower bounds for the size of NFCAs. In fact, we
present a generalization that can be used even for the more general notion of
E-equivalent automata, which was recently introduced in [19]. In order to avoid
confusion with the set of edges of a graph, we use here the term D-equivalence
instead of E-equivalence. Let D ⊆ Σ∗ be some language, the so called error
language. Two languages L and L′ over the alphabet Σ are called D-equivalent
if they differ only on elements from the error language D, that is, if

(L \ L′) ∪ (L′ \ L) ⊆ D.

In this case we write L ∼D L′. Similarly, two automata A and B are D-
equivalent, if L(A) ∼D L(B). The connection between D-equivalence and cover
automata is as follows. Assume L ⊆ Σ≤� is some finite language of order �. Then
a language L′ ⊆ Σ∗ is a cover language for L if and only if L ∼D L′, for the
error language D = Σ>�. In other words, any two cover languages L′ and L′′ for
a finite language of order � are D-equivalent, for D = Σ>�.

We now come to our generalization of the biclique edge cover technique. In
the original technique we have to find bicliques Hi = (Xi, Yi, Ei) with 1 ≤ i ≤ k,
for some k, of a bipartite graph G = (X,Y,E), such that E =

⋃k
i=1 Ei. In our

generalization, we use two sets of edges in the bipartite graph G, namely a set E
of edges that must be covered, and a set E, with E ⊆ E, of edges that may
be covered by bicliques. We use the notation G = (X,Y,E,E) to denote such a
bipartite graph. Now an (E,E)-approximation of G is a collection of bicliques
Hi = (Xi, Yi, Ei) of G, with 1 ≤ i ≤ k for some k, such that

E ⊆
k⋃

i=1

Ei ⊆ E.

The (E,E)-dimension of G, denoted by dim∗(G), is defined as the minimal
number of bicliques that constitute an (E,E)-approximation of G.

Now we are ready to present our lower bound technique for D-equivalent
automata. Notice that the sets E and E of edges of graph G in the following
theorem depend on the given language L and error set D by definition.

Theorem 5. Let L and D be languages over some alphabet Σ. Moreover, let
X,Y ⊆ Σ∗ and G = (X,Y,E,E), with E = { (x, y) ∈ X × Y | xy ∈ L \ D }
and E = { (x, y) ∈ X × Y | xy ∈ L ∪ D }. Then the number of states of any
nondeterministic finite automaton A, with L(A) ∼D L, is at least dim∗(G).
�

120 H. Gruber et al.

Notice that Theorem 5 yields the original biclique edge cover technique when
choosing the error language D = ∅, that is, when considering the special case of
classical language equivalence. Moreover, with the error language D = Σ>� we
obtain the following technique for proving lower bounds on the state complexity
of nondeterministic cover automata for finite languages of order �.

Corollary 6. Let L ⊆ Σ∗ be some finite language of order �. Moreover, let
X,Y ⊆ Σ∗ and G = (X,Y,E,E), with E = { (x, y) ∈ X × Y | xy ∈ L }
and E = { (x, y) ∈ X × Y | xy ∈ L ∪ Σ>�, }. Then the number of states of
any nondeterministic finite cover automaton for L is at least dim∗(G), that is,
dim∗(G) ≤ ncsc(L).
�

4 Conversions Between Finite Automata and Cover
Automata

In this section we compare the descriptional complexity of finite automata and
cover automata, by studying the cost of conversions between these models. We
consider nondeterministic as well as deterministic automata.

4.1 From Finite Automata to Cover Automata

Clearly, a finite automaton for a finite language L is also a cover automaton
for that language. So the bounds ncsc(L) ≤ nsc(L) and csc(L) ≤ sc(L) are
obvious. However, the question is whether these bounds are tight in the following
sense: does there exist, for every integer n ≥ 1, a regular language Ln that is
accepted by a DFA (NFA, respectively) with n states such that the minimal
DFCA (NFCA, respectively) needs n states, too? The next result answers this
question in the affirmative for nondeterministic automata, while for deterministic
devices the bound is off by one.

Theorem 7. If L is a finite language with all words having the same length �,
then ncsc(L) = nsc(L) and csc(L) = sc(L) − 1.
�
From Theorem 7 and the obvious upper bound ncsc(L) ≤ nsc(L) we obtain the
following result. In fact, Theorem 7 provides the lower bound already by unary
witness languages.

Corollary 8. Let n ≥ 1 and L be a finite language accepted by a nondetermin-
istic finite automaton with n states. Then n states are sufficient and necessary
in the worst case for a nondeterministic finite cover automaton to accept L. This
bound is tight already for a unary alphabet.
�
Next we want to close the gap between the lower and upper bound for the
conversion from DFAs to DFCAs.

Theorem 9. Let L be a finite language accepted by a deterministic finite
automaton with n states. If n = 1 or n ≥ 4 then n states are sufficient and
necessary in the worst case for a deterministic finite cover automaton to accept L.
These bounds are tight already for binary alphabets. If n ∈ {2, 3}, or if n ≥ 2
and L is a unary language, then n − 1 states are sufficient and necessary in the
worst case.
�

More on Deterministic and Nondeterministic Finite Cover Automata 121

We also note that the conversion from NFAs to DFCAs was investigated already
in [6]. They present binary languages Ln that can be accepted by an n-state NFA,
while 2n−t − 2t−2 + 2t − 1 states are necessary, with t = �n

2 �, for a deterministic
finite cover automaton to accept Ln. Then they generalize their examples to
larger alphabets. The lower bound is known to be tight if n is even, but the
tight bound for odd n remains to be determined.

4.2 From Cover Automata to Finite Automata

In the previous subsection we have seen that there are finite languages where
the description size cannot be reduced when changing the descriptional model
from finite automata to cover automata. In this section we now consider the
inverse conversion: given a cover automaton for a finite language, how large can
a minimal finite automaton for that language become? In this setting we will
see that the number of states of a cover automaton alone is not a fair size
measure. In fact, we propose that a reasonable size measure for cover automata
must also take the cover length into account: for every integer � ≥ 0 the finite
language {a}≤� can be covered by a single-state cover automaton, but a NFA
for this language has at least � + 1 states. Therefore, if we start with a cover
automaton with n states that describes a finite language of order �, then the
number of states of an equivalent finite automaton should be a function in n
and �.

Since the language L described by a cover automaton A with cover length �
satisfies L = L(A) ∩ Σ≤�, a finite automaton for L can be obtained by applying
a cross product construction on A and an automaton for Σ≤�. The states of the
constructed automaton are pairs (q, i), where q is a state of A, and i is a counter
for the word length. This yields upper the upper bounds nsc(L) ≤ ncsc(L)·(�+1)
and sc(L) ≤ csc(L) · (� + 2) for finite languages L of order �. In the upcoming
lemma we show that these bounds can be slightly reduced. In the following we
do not consider languages of order � = 0, because the only such language is {λ},
which is accepted by a single-state NFA and a two-state DFA. Moreover, the
case where ncsc(L) = 1 is also omitted—here it is easy to see that the upper
bounds nsc(L) ≤ � + 1 and sc(L) ≤ � + 2 apply, and optimality is witnessed by
the language L = Σ≤�.

Lemma 10. Let n ≥ 2 and A be an n-state nondeterministic cover automaton
for a finite language L of order � ≥ 1. Then one can construct a nondeterministic
finite automaton for L that has at most n ·(�−1)+2 states. If A is deterministic,
then one can construct a deterministic finite automaton for L with n · (�−1)+3
states.
�
Next we show that the constructions from Lemma 10 cannot be improved
in general by providing a matching lower bounds. Observe that the following
lemma even provides a lower bound for the conversion from deterministic cover
automata to nondeterministic finite automata.

Lemma 11. For every integers n ≥ 2 and � ≥ 1 there exists a finite language L
of order � that is described by a deterministic n-state cover automaton, such that

122 H. Gruber et al.

any nondeterministic finite automaton for L needs n · (�− 1)+2 states, and any
deterministic finite automaton for L needs n · (� − 1) + 3 states.
�
From Lemmata 10 and 11 we obtain the following result.

Theorem 12. Let L be a finite language of order � ≥ 1 that is described by
a nondeterministic cover automaton A with n ≥ 2 states. Then n · (� − 1) + 2
states are sufficient and necessary in the worst case for a nondeterministic finite
automaton to accept L. Moreover, if A is a deterministic cover automaton for L,
then n · (� − 1) + 3 states are sufficient and necessary in the worst case for a
deterministic finite automaton to accept L.
�
The proof for the lower bound from Lemma 11 uses 2n − 2 alphabet symbols.
In fact, one can also show that the bounds nsc(L) ≤ ncsc(L) · (� − 1) + 2 and
sc(L) ≤ csc(L) · (� − 1) + 3 for the conversions from cover automata to finite
automata are not tight for languages over an alphabet of constant size. For the
deterministic case, this is easy to see: assuming a k-letter alphabet Σ, at most k
different states of the form (q, 1) are reachable from the initial state (q0, 0) in
the DFA constructed from a DFCA as shown in the proof of Lemma 10.

Although this argumentation does not hold for nondeterministic automata,
where every state of the given NFCA could be reachable in one step from the
initial state, the number of states of an equivalent minimal NFA still depends on
the number of alphabet symbols: when using the construction from Lemma 10
to obtain an NFA A′ for the language L ⊆ Σ≤�, the automaton A′ has a dis-
tinguished “last” accepting state (•, �), which has no outgoing transitions. This
state is only reachable from states of the form (q, � − 1), and from such states
no other state is reachable. Assume that two such states (p, � − 1) and (q, � − 1)
go to state (•, �) on the same set of input letters. If additionally p and q are of
same acceptance value, then clearly they can be merged into a single state. Since
a k-letter alphabet Σ has 2k − 1 non-empty subsets, the number of accepting
states of the form (q, � − 1) can always be reduced to 2k − 1, and similarly for
the non-accepting states. So in total there are at most 2 · (2k − 1) states of the
form (q, � − 1), which may be large compared to k, but it is still a constant.

5 Determinization of Finite Cover Automata

In this section we continue our descriptional complexity studies of cover
automata: we investigate the cost of determinization, that is, the conversion
from a nondeterministic to a deterministic cover automaton. A classical result
in the theory of finite automata is that every n-state NFA can be converted
by the so-called power-set construction to an equivalent DFA with at most 2n

states [24]. Moreover, it is known that this bound is tight in the sense that for
every n ≥ 1 there exists a language accepted by a minimal n-state NFA, and
for which the minimal DFA needs exactly 2n states [23]. Now the question is
to which extent these results carry over to cover automata. Clearly, since the
power-set construction for finite automata preserves the accepted language, it
can be used to convert an NFCA into an equivalent DFCA. Thus, the following
is immediate.

More on Deterministic and Nondeterministic Finite Cover Automata 123

Lemma 13. Let L be a finite language described by a nondeterministic cover
automaton with n ≥ 1 states. Then one can construct a deterministic cover
automaton for L that has at most 2n states.
�
Our next goal is to prove a matching lower bound of 2n states for the deter-
minization of n-state NFCAs. The next fact we present is useful to show that
a number of worst case results known for the state complexity of deterministic
finite automata carry over to the setting of cover automata.

Theorem 14. Assume L is a regular language over Σ with sc(L) = n, and let
L′ = L ∩ Σ≤n+2n

. Then csc(L′) = n.
�
Theorem 14 implies that if the order of the language is large compared to the size
of the NFA, then determinization of cover automata is as expensive as for usual
finite automata. In particular, classical examples for finite automata [23] show
that the full blow-up from n states to 2n states may be necessary for converting
an NFCA into an equivalent DFCA. Together with Lemma 13 we obtain the
following result.

Corollary 15. Let L be a finite language that is described by a nondeterministic
cover automaton with n ≥ 1 states. Then 2n states are sufficient and necessary
in the worst case for a deterministic cover automaton to accept L.
�
A natural question is now whether the full blow-up can be reached if the order
of the described language is small compared to the number of states in the
given NFCA. First, recall that every finite language L of order � over a k-letter
alphabet satisfies sc(L) ≤ (1 + o(1))k�+2

dk� with dk = (k − 1)2 log k; see [5]. This
shows that the full blow-up cannot be reached if � is too small compared to n.
From that result and the fact that csc(L) ≤ sc(L), the following bounds for the
size of a deterministic cover automaton can be derived. In fact, since the proof
of the next result only uses the above bound on sc(L), the statements also hold
for the determinization of finite automata.

Theorem 16. Let L be a finite language of order � over a k-letter alphabet Σ
and assume L is described by a nondeterministic finite cover automaton with n
states.

1. If (� + 2) · log k − log � + 1 < n, then csc(L) < 2n, for large enough n.
2. if � ∈ o(n), then csc(L) ∈ 2 o(n),
3. if � ∈ O(log n), then csc(L) ∈ nO(1),
4. if (� + 2) · log k − log � + 1 < log n, then csc(L) < n, for large enough n.
�
The fourth statement in the above theorem is of particular practical relevance: in
this case, the given n-state NFCA is not minimal, and determinization followed
by minimization yields a smaller cover automaton. In contrast to languages of
order less than n, where the blow-up of 2n states cannot be achieved, there
are quite natural examples reaching the full blow-up already for order linear in
the number of states of the NFCA. The example used in the following proof is
essentially due to [22, Lemma 2]:

124 H. Gruber et al.

Theorem 17. Let Ln =
(
a + (a · b∗)n−1 · a

)∗∩Σ≤5n−2. Then Lk can be covered
by an n-state nondeterministic cover automaton, but the smallest deterministic
cover automaton for Ln has at least 2n states.
�

6 Average Size Comparisons of Finite Cover Automata

This section is devoted to the average case state complexity of DFCAs and
NFCAs, when choosing a finite language of a certain “size” � uniformly at random
from all finite languages of that particular size. Here size means that all words of
the language are either of the same length �, or of length at most �. This model
was used in [17] to compare the number of states or transitions of ordinary
finite automata on average. There it is shown that almost all DFAs accepting
finite languages over a binary input alphabet have state complexity Θ(2�/�),
while NFAs are shown to perform better, namely the nondeterministic state
complexity is in Θ(

√
2�). Interestingly, in both cases the aforementioned bounds

are asymptotically like in the worst case. As we will see, a similar situation
emerges for finite cover automata as well. The first theorem gives us the expected
number of states a DFCA has on average, if we assume that all finite languages
from P(Σ≤�), that is, the power-set of Σ≤�, are equiprobable.

Theorem 18. Let Σ be an alphabet of size k and ck = (k − 1) log k. Then
E[csc(L)] ≥ (1 − o(1)) k�

ck� , if L is a language drawn uniformly at random from
the power-set of Σ≤�.
�

Regarding an upper bound, it is known from [5] that sc(L) ≤ (1 + o(1))k�+2

dk� ,
as � tends to infinity, with dk = (k − 1)2 log2 k, for languages L ⊆ Σ≤� and
alphabet size k. This generalized a previous result of [12]. Recall that the size
of a minimum DFA for a finite language is an upper bound for the size of a
minimum DFCA; and the state complexity in the worst case is of course an
upper bound for the average state complexity. So the above average case result
is tight up to a factor of at most (1 + o(1)) k2

(k−1) . Next we turn our attention to
the average state complexity of NFCAs.

Theorem 19. Let Σ be an alphabet of size k. Then for large enough � we have
E[ncsc(L)] > k

�
2−1, if L is a language drawn uniformly at random from the

power-set of Σ≤�.
�
A worst case upper bound for the nondeterministic state complexity of subsets
of Σ≤� is given in [17] for binary alphabets. Generalizing this result to cover
automata and larger alphabets, the bound reads as follows:

Theorem 20. Let Σ be an alphabet of size k. Then ncsc(L) ≤ nsc(L) <
3

k−1

√
k�, if L is any subset of Σ≤�, i.e., L ⊆ Σ≤�.
�

More on Deterministic and Nondeterministic Finite Cover Automata 125

7 Conclusions

We completed the picture of lower bound techniques for nondeterministic finite
cover automata, and solved the problems left open in [4]. Then we determined
the precise best-case and worst-case bounds for conversions between DFCAs
and DFAs, as well as between NFCAs and NFAs. In [6], almost tight bounds for
the conversion between NFAs and DFCAs were given. Determining the precise
bound in this case remains an open problem.

When the length � of the longest word is much smaller than the number n
of states in a minimal cover automaton, then the succinctness gain offered by
finite cover automata over finite automata is very modest, even in the best case.
We note that this is the case in the area of natural language processing: in [20]
they construct a minimum 29317-state DFA accepting 81142 English words. Of
course, almost all common English words have � < 20. Similarly, in [26] they
construct an NFA accepting roughly 230000 Greek words.

Finally, a recent experimental study [7] showed that for binary finite lan-
guages, the expected reduction in the number of states provided by DFCAs is
negligible. Our analysis of the average case provides a theoretical underpinning
of their observations. One may study further random models of finite languages,
e.g., a Bernoulli-type model [17], and one based on the sum of word lengths [2].

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

2. Bassino, F., Giambruno, L., Nicaud, C.: The average state complexity of rational
operations on finite languages. Internat. J. Found. Comput. Sci. 21(4), 495–516
(2010)

3. Brzozowski, J.A.: Canonical Regular Expressions and Minimal State Graphs
for Definite Events. Mathematical Theory of Automata, MRI Symposia Series.
Polytechnic Press, New York (1962)

4. Câmpeanu, C.: Non-deterministic finite cover automata. Sci. Ann. Comput. Sci.
25(1), 3–28 (2015)

5. Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages. J.
Autom. Lang. Comb. 9(2–3), 189–202 (2004)

6. Câmpeanu, C., Kari, L., Păun, A.: Results on Transforming NFA into DFCA.
Fundam. Inform. 64(1–4), 53–63 (2005)

7. Câmpeanu, C., Moreira, N., Reis, R.: Expected compression ratio for DFCA:
experimental average case analysis. Universidade do Porto (2011), Technical report
DCC-2011-07

8. Câmpeanu, C., Păun, A., Smith, J.R.: Tight bounds for the state complexity of
deterministic cover automata. In: Leung, H., Pighizzini, G. (eds.) Proceedings of
the 8th Workshop on Descriptional Complexity of Formal Systems, pp. 223–231,
Las Cruces (2006), Computer Science Technical report NMSU-CS-2006-001

9. Câmpeanu, C., Păun, A., Yu, S.: An efficient algorithm for constructing minimal
cover automata for finite languages. Internat. J. Found. Comput. Sci. 13(1), 83–97
(2002)

126 H. Gruber et al.

10. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoret. Comput. Sci. 267(1–2), 3–16 (2001)

11. Champarnaud, J.M., Guingne, F., Hansel, G.: Similarity relations and cover
automata. RAIRO-Informatique théorique et Appl. Theor. Inform. Appl. 39(1),
115–123 (2005)

12. Champarnaud, J.M., Pin, J.E.: A maxmin problem on finite automata. Discrete
Appl. Math. 23, 91–96 (1989)

13. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages
accepted by finite automata with n states. J. Autom. Lang. Comb. 7(4), 469–486
(2002)

14. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

15. Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput.
System Sci. 73(6), 908–923 (2007)

16. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

17. Gruber, H., Holzer, M.: Results on the average state and transition complexity of
finite automata accepting finite languages. Theoret. Comput. Sci. 387(2), 155–166
(2007)

18. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley,
Newyork (1978)

19. Holzer, M., Jakobi, S.: From equivalence to almost-equivalence, and beyond: min-
imizing automata with errors. Internat. J. Found. Comput. Sci. 24(7), 1083–1134
(2013)

20. Lucchesi, C.L., Kowaltowski, T.: Applications of finite automata representing large
vocabularies. Softw. Pract. Exper. 23(1), 15–30 (1993)

21. Körner, H.: A time and space efficient algorithm for minimizing cover automata
for finite languages. Internat. J. Found. Comput. Sci. 14(6), 1071–1086 (2003)

22. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

23. Lupanov, O.B.: Über den Vergleich zweier Typen endlicher Quellen. Probleme der
Kybernetik 6, 328–335 (1966)

24. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

25. Salomaa, K., Yu, S.: NFA to DFA transformation for finite language over arbitrary
alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1997)

26. Sgarbas, K.N., Fakotakis, N.D., Kokkinakis, G.K.: Incremental construction of
compact acyclic NFAs. In: 39th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 482–489. Association for Computational Linguistics (2001)

27. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Sys. Tech. J.
28(1), 59–98 (1949)

28. Yu, S.: Cover automata for finite language. Bull. EATCS 92, 65–74 (2007)

On the Number of Synchronizing
Colorings of Digraphs

Vladimir V. Gusev1,2(B) and Marek Szyku�la3(B)

1 ICTEAM Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

vl.gusev@gmail.com
2 Institute of Mathematics and Computer Science, Ural Federal University,

Ekaterinburg, Russia
3 Institute of Computer Science, University of Wroc�law,

Wroc�law, Poland
msz@cs.uni.wroc.pl

Abstract. We deal with k-out-regular directed multigraphs with loops
(called simply digraphs). The edges of such a digraph can be colored by
elements of some fixed k-element set in such a way that outgoing edges of
every vertex have different colors. Such a coloring corresponds naturally
to an automaton. The road coloring theorem states that every primitive
digraph has a synchronizing coloring.

In the present paper we study how many synchronizing colorings can
exist for a digraph with n vertices. We performed an extensive exper-
imental investigation of digraphs with small number of vertices. This
was done by using our dedicated algorithm exhaustively enumerating all
small digraphs. We also present a series of digraphs whose fraction of
synchronizing colorings is equal to 1 − 1/kd, for every d ≥ 1 and the
number of vertices large enough.

On the basis of our results we state several conjectures and open
problems. In particular, we conjecture that 1 − 1/k is the smallest pos-
sible fraction of synchronizing colorings, except for a single exceptional
example on 6 vertices for k = 2.

1 Introduction

Throughout the paper we deal with directed multigraphs G = 〈V,E〉 of a fixed
out-degree k with loops, where V is a finite set of n vertices and E is a finite
multiset of edges. For each v ∈ V there are exactly k outgoing edges (v, w) ∈ E.

V.V. Gusev—Supported by the Communauté française de Belgique - Actions de
Recherche Concertées, by the Belgian Programme on Interuniversity Attraction
Poles, by the Russian foundation for basic research (grant 13-01-00852), Ministry
of Education and Science of the Russian Federation (project no. 1.1999.2014/K),
Presidential Program for Young Researchers (grant MK-3160.2014.1) and the Com-
petitiveness Program of Ural Federal University.
M. Szyku�la—Supported in part by Polish NCN grant DEC-2013/09/N/ST6/01194.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 127–139, 2015.
DOI: 10.1007/978-3-319-22360-5 11

128 V.V. Gusev and M. Szyku�la

These are simply called digraphs throughout the paper. For every vertex v ∈ V
of a digraph G, the k outgoing edges can be colored differently by one of the k
colors from a finite set Σ, giving raise to a deterministic finite (semi)automaton
A = 〈V,Σ, δ〉 with the set of states V , the alphabet Σ, and the transition
function δ, where δ(v, a) = w whenever an edge (v, w) ∈ E was colored by a.
Every such automaton A is called a coloring of the digraph G. Thus we identify
automata with colorings of their underlying digraphs. We extend the transition
function δ : V ×Σ → V to δ : 2V ×Σ∗ → 2V on subsets and words in the natural
way. For δ(S,w), where S ⊆ V and w ∈ Σ∗, we also write shortly Sw.

Automaton A is called synchronizing if there exist a word w and a state p
such that for every state q ∈ Q we have δ(q, w) = p. Such a word w is called
reset (or synchronizing) word for A . The length of the shortest synchronizing
word of A is called reset threshold and is denoted by rt(A). Recent surveys of
the theory of synchronizing automata may be found in [11,20].

Call a digraph primitive (or aperiodic) if it is strongly connected and the
gcd of all its cycles is equal to 1. It is easy to show that an underlying digraph
of a synchronizing automaton is primitive. In 1977 Adler, Goodwyn and Weiss
conjectured [1] that every primitive digraph has a synchronizing coloring. This
conjecture became widely known as the road coloring problem. It was arguably
one of the most important conjectures in automata theory until it was finally
proved by Trahtman in 2007 [18]. One of the goals of the present paper is to find
the right quantitative formulation of the road coloring theorem.

Another part of our motivation comes from the algorithmic issues related
to the road coloring problem. How to find a synchronizing coloring of a given
digraph? A non-trivial algorithm working in time O(kn2) is known for this
task [3]. On the other hand, M.-P. Béal suggested during her talk at CANT
2012 that a random sampling of colorings in a search for a synchronizing one
may lead to a simple and practically effective algorithm for the problem. Since
one can check whether a coloring is synchronizing in O(kn2) time, it remains
to show that a random coloring is synchronizing with high probability. In our
research we were partially motivated by this observation.

There are other computational problems related to the synchronizing color-
ings of digraphs, such as deciding existence of a synchronizing coloring for a fixed
reset word [21], or for a fixed reset threshold [16]. Also, several open problems
concerning synchronizing automata and the road coloring problem have been
stated by M.V. Volkov [19].

For a given k-out-regular digraph G with n vertices, the synchronizing ratio
is the number of synchronizing colorings to the number (k!)n of all possible
colorings. Note that we distinguish edges of G, i.e. two colorings are the same if
all edges have the same color. Therefore, there is always exactly (k!)n different
colorings of G. A digraph G is totally synchronizing if its synchronizing ratio of
G is equal to 1.

In this paper we perform an experimental and theoretical study on the syn-
chronizing ratio of digraphs. Our main contributions are as follows:

1. We developed an efficient algorithm for enumerating and checking synchro-
nizing ratios of nonisomorphic digraphs.

On the Number of Synchronizing Colorings of Digraphs 129

2. Using the algorithm, we performed extensive experiments revealing various
phenomena concerning the synchronizing ratio. These provide evidence to
state several conjectures and form a basis for further investigation.

3. We found out that for small n and k there are no primitive strongly con-
nected digraphs with synchronizing ratio less than 1−1/k, except for a single
particular example for n = 6 and k = 2.

4. We constructed digraphs with synchronizing ratio 1−1/kd, for every d ≥ 1 and
n ≥ 3d. This shows that there are many examples with different synchronizing
ratio in the range [1 − 1/k, 1].

2 General Statements

A strongly connected component S of a digraph G = 〈V,E〉 is called a sink
component if there are no edges going from S to V \ S. It is reachable if for any
vertex v ∈ V there is a directed path from v to a vertex in S.

Proposition 1. If a digraph G has a synchronizing coloring then it has a unique
reachable sink component S. Furthermore, the synchronizing ratio of G is equal
to the synchronizing ratio of the digraph induced by S.

Proof. The proof of the first statement belongs to folklore. It is not hard to
see that an arbitrary coloring A of digraph G is synchronizing if and only if the
subautomaton A ′ induced by the sink component S is synchronizing. Therefore,
the set of all colorings of G can be divided into groups of equal size, each group
containing the colorings with the same induced subcoloring of S. Since colorings
from each group are altogether synchronizing or non-synchronizing, we obtain
that the synchronizing ratio of G is equal to the synchronizing ratio of the digraph
induced by S. �	
Since a one-vertex digraph is totally synchronizing we have the following
corollary:

Corollary 1. A digraph with a sink state is either totally synchronizing or none
of its colorings is synchronizing.

Due to Proposition 1 the study of synchronizing ratios and totally synchronizing
digraphs can be reduced to the case of strongly connected digraphs.

Surprisingly, the underlying digraphs of several automata presented in the
literature appear to be totally synchronizing. One important example of such
a digraph is well known to the community, see for example [19]. Recall that
the Černý automaton Cn ([6]) can be defined as 〈{0, . . . , n − 1}, {a, b}, δ〉, where
δ(i, a) = i + 1 for i < n − 1, δ(n − 1, a) = 0, δ(n − 1, b) = 0, and δ(i, b) = i for
i < n − 1. The proof of the following folklore result has not yet appeared in the
literature.

130 V.V. Gusev and M. Szyku�la

Proposition 2. The underlying digraph of Cn is totally synchronizing.

Proof. Let C ′
n be an arbitrary coloring of the underlying digraph of Cn. It is

well known that an automaton is synchronizing if and only if every pair of states
i, j is synchronizing, i.e. there is a word w such that iw = jw (see [6], or [20,
Proposition 2.1]).

We will show that any pair of states (i, j) of C ′
n satisfy this condition. Let

d(i, j) be the length of the shortest path from i to j. We will proceed by induction
on d(i, j). Consider a pair (i, j); without loss of generality we may assume that
d(i, j) ≤ d(j, i).

If j = n − 1 then let y be the letter on the edge from i to i + 1. We apply y
so (iy, jy) = (i + 1, 0), and d(i, j) = d(i + 1, 0).

Consider the case j �= n − 1. Let x be the letter on the loop on the state
j. If i < n − 1 then let y be the letter on the edge from i to i + 1; otherwise
let y = x. If x = y then d(ix, jx) = d(iy, j) < d(i, j). Otherwise we apply
the letter y, and in the same manner consider the pair (iy, jy) = (i + 1, j + 1).
Note that d(i, j) = d(i + 1, j + 1). Following in this way, after at most n − 1 − i
steps, we will reach a pair (n − 1, k). For (n − 1, k) we choose y = x, we obtain
d((n − 1)x, kx) = d(0, k) < d(n − 1, k). �	
Underlying digraphs of many other automata that appeared in literature are
also totally synchronizing. In a similar fashion one can show that the underlying
digraphs of the series of slowly synchronizing automata (see [2,13]) are totally
synchronizing. Also, almost all presented examples of automata with two cycle
lengths have this property [9].

For the sake of completeness we mention the following notions from related
topics. A word w is called totally synchronizing if w is a reset word for any coloring
of totally synchronizing digraph G. See [5] for an analysis of totally synchronizing
digraphs and words in some special classes of digraphs. A word over an alphabet Σ
is called n-synchronizing if it is a reset word for all synchronizing automata with
n + 1 states over the alphabet Σ. See [7] for the introduction to the topic.

3 Experimental Investigation of Digraphs

We performed a series of experiments to reveal some properties of the synchro-
nizing ratio of digraphs. These include both exhaustive enumeration of small
digraphs and larger random digraphs. We are interested mostly in primitive
strongly connected digraphs (cf. Proposition 1). In the case of exhaustive enu-
meration we checked the synchronizing ratio of all nonisomorphic k-out-regular
digraphs with a given n vertices.

3.1 Algorithms

To check as many cases as possible and obtain a large data set, we needed
to design and implement our algorithms carefully. This is especially important
during the exhaustive search, since the number of digraphs grows very fast with

On the Number of Synchronizing Colorings of Digraphs 131

n and k. Here we briefly describe our algorithms, skipping numerous technical
improvements and tricks in the implementation. Some of our ideas are based
on [12], where the Černý conjecture was verified by an exhaustive enumeration
for all binary automata up to n ≤ 11 states.

To determine the synchronizing ratio of a digraph, we can just enumerate
all its colorings and count the synchronizing ones. Checking whether a coloring
(automaton) is synchronizing can be easily done in O(kn2) time [6,8]. Note
that in many cases, some colorings give rise to the same particular automaton
(e.g. if there are two or more parallel edges (v, w) then we can permute its colors
obtaining the same automaton). Also, every coloring has k! equivalent colorings
obtained only by permuting the colors. Using these facts we could greatly reduce
the total number of really checked colorings for synchronization.

Checking whether a digraph is strongly connected and the gcd of its cycles
is 1 can be effectively done in O(kn) time basing on the algorithms from [10,17]
respectively.

Now, computing the synchronizing ratios of a set of random digraphs follows
easily, and we can proceed this in parallel on a grid. However, in an exhaus-
tive enumeration, the number of digraphs grows very fast in terms of n and k
(see Table 2), and the main problem was to deal with it.

Algorithm 1. Exhaustive checking of digraphs.
Require: n – the number of vertices (states)
Require: k – the out-degree (size of the alphabet)
1: Gn ← the set of all simple graphs with n vertices.
2: for all simple graphs G ∈ Gn do � In parallel
3: CanSet ← EmptySet
4: for all digraphs Dn,k with underlying graph G do � Orient and multiply the

edges of G, and add loops
5: if Dn,k is primitive then
6: Rn,k ← the canonical representation of Dn,k.
7: if Rn,k �∈ CanSet then
8: CanSet .insert(Rn,k)
9: Count synchronizing colorings of Rn,k.

10: end if
11: end if
12: end for
13: end for

Our algorithm for exhaustive checking of digraphs is summarized in
Algorithm 1. First, in line 1, we generate all nonisomorphic simple graphs with
n vertices. A simple graph is a graph with undirected edges joining two distinct
vertices. This can be done effectively by the algorithm from [14], implemented
in package nauty. Now, we can process each such a simple graph in parallel. In
line 4, for every simple graph G we orient and multiply its edges so that there
are at most k outgoing edges for each vertex. Then we interpret the missing

132 V.V. Gusev and M. Szyku�la

edges as loops. Clearly, an isomorphic copy of every digraph can be obtained in
this way from its underlying simple graph, and the digraphs obtained from two
nonisomorphic simple graphs are also nonisomorphic. We can, however, obtain
isomorphic digraphs from the same simple graph. In line 5 we skip non-strongly
connected and non-primitive digraphs. In line 6 we compute the canonical rep-
resentation of a generated digraph Dn,k; this is the lexicographically minimal
representation among all digraphs isomorphic to Dn,k (cf. [14]). To skip isomor-
phic copies obtained from the same simple graph, in line 3 we introduce the set
CanSet of canonical representations of generated digraphs. Then in line 7, we
check if an isomorphic copy of the digraph Dn,k was already generated; if not,
in line 8 we insert it to the set. The set CanSet can be effectively implemented
as a radix trie, allowing to perform both membership test and insertion in linear
time, and providing some compression (which is also important in view of the
number of generated digraphs). Finally, we can count synchronizing colorings of
the generated digraph (line 9).

3.2 Experimental Results from Exhaustive Enumeration

The algorithms in C++ and compiled with GCC 4.8.1. The computations
were performed in parallel on a small grid consisted of computers with 8 proces-
sors Quad-Core AMD Opteron(tm) 8350 (2 GHz) and 64GB of RAM.

We were able to check all 2-out-regular digraphs with up to 10 vertices,
3-out-regular up to 7 states, 4-out-regular up to 5 states, and 5-out-regular up to
4 states. In the case of k = 2-out-regular digraphs with n = 10 states, the total
processor time was more than 60 days (about 1 day of parallelized computation).
The case of k = 3 and n = 7 took even more, about 72 days; the total number
of colorings was ∼ 7 × 1014, but, thanks to optimization, we required to check
only ∼ 1013 automata.

The results concerning synchronizing ratios are summarized in Table 1. In
Table 2 we present the exact number of strongly connected aperiodic digraphs,
and totally synchronizing digraphs. We observe that the fraction of totally syn-
chronizing digraphs within the class of strongly connected aperiodic digraphs is
growing.

In Table 3, for k = 2 and n = 8, we present the number of nonisomorphic
digraphs with particular numbers of synchronizing colorings. Interestingly, there
are several graphs in the distribution, and the gaps grow for smaller number of
synchronizing colorings. This picture is similar for the other values of n and k
that we checked. The number of gaps seems to grow with n and k.

3.3 Experiments on Random Digraphs

To deal also with larger digraphs, we performed additional experiments with
random digraphs. We used the uniform model of a random digraph, that is, for
every outgoing edge from a vertex v we choose the destination vertex uniformly
at random and independently from the other choices.

On the Number of Synchronizing Colorings of Digraphs 133

Table 1. The minimum, average, and standard deviation of the number of synchroniz-
ing colorings of all strongly connected aperiodic k-out-regular digraphs with n vertices

k n Min Min ratio Avg Avg ratio Std dev

2 2 2 0.5 3 0.750 1.000

2 3 4 0.5 6.833 0.854 1.280

2 4 8 0.5 14.640 0.915 2.243

2 5 16 0.5 30.987 0.968 2.146

2 6 30 0.469 63.139 0.986 2.381

2 7 64 0.5 127.365 0.995 2.033

2 8 128 0.5 255.483 0.998 1.866

2 9 256 0.5 511.563 0.999 1.617

2 10 512 0.5 1,023.607 ≈ 1.000 1.468

3 2 24 0.667 31.2 0.867 5.879

3 3 144 0.667 208.800 0.967 14.163

3 4 864 0.667 1,284.987 0.991 36.346

3 5 5,184 0.667 7,765.775 0.999 50.091

3 6 31,104 0.667 46,643.953 ≈ 1.000 78.679

3 7 186,624 0.667 279,921.191 ≈ 1.000 108.167

4 2 432 0.75 533.333 0.926 61.738

4 3 10,368 0.75 13,704.874 0.991 367.767

4 4 248,832 0.75 331,421.072 0.999 2,233.171

4 5 5,971,968 0.75 7,961,941.49 ≈ 1.000 7,104.373

5 2 11,520 0.75 13,782.857 0.957 1,048.941

5 3 1,382,400 0.75 1,723,468.312 0.997 720,951.433

5 4 165,888,000 0.75 207,324,196.845 ≈ 1.000 412,162.118

For k = 2 we checked 1000, 000 digraphs for every n = 4, . . . , 15, and 100, 000
for n = 16, . . . , 27. Since the number of possible colorings grow very fast with
k, for k = 3 we tested n = 4, . . . , 12, and for k = 4 we tested only n = 4, . . . , 8.
We additionally checked the same numbers of random of digraphs in the class
of strongly connected aperiodic digraphs, within the same range of n and k.

The results from random tests for larger n show the same patterns as observed
in those from exhaustive search. Figure 1 shows the fraction of totally synchro-
nizing digraphs in random samples of strongly connected aperiodic digraphs.
The picture is very similar in the class of all digraphs.

4 Digraphs with Specific Synchronizing Ratios

In this section we present different examples of digraphs with particular values of
the synchronizing ratio. According to our computational experiments the small-
est possible value of the synchronizing ratio among all digraphs is equal to 30

64 .

134 V.V. Gusev and M. Szyku�la

Table 2. The number of nonisomorphic strongly connected aperiodic digraphs, the
number of totally synchronizing digraphs, and their fraction

k n S.c. aperiodic Totally synchronizing Fraction

2 2 2 1 0.500

2 3 12 6 0.500

2 4 100 66 0.660

2 5 1220 890 0.729

2 6 19,064 14,973 0.785

2 7 361,157 296,303 0.82

2 8 8,001,589 6,754,895 0.844

2 9 202,635,930 174,246,295 0.860

2 10 5,765,318,112 5,026,305,042 0.872

3 2 5 3 0.600

3 3 85 63 0.741

3 4 3,148 2,672 0.849

3 5 199,489 182,326 0.914

3 6 19,059,581 18,006,297 0.945

3 7 2,537,475,117 2,443,850,969 0.963

4 2 9 6 0.666

4 3 357 302 0.846

4 4 39,680 36,762 0.926

4 5 9,089,413 8,779,342 0.966

5 2 14 10 0.714

5 3 1,102 990 0.898

5 4 304,082 291,530 0.959

Table 3. The number of nonisomorphic digraphs with the given number of synchro-
nizing colorings for k = 2 and n = 8

On the Number of Synchronizing Colorings of Digraphs 135

The number of vertices
4 6 8 10 12 14 16 18 20 22 24

F
ra

ct
io

n
of

 to
ta

lly
 s

yn
ch

ro
ni

zi
ng

 d
ig

ra
ph

s

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

2-out-regular
3-out-regular
4-out-regular

Fig. 1. The fraction of totally synchronizing digraphs in the class of strongly connected
and aperiodic digraphs

This value is achieved by the digraph G30 (Fig. 2). By direct computation one
can verify that only 30 colorings of G30 are synchronizing.

Proposition 3. There is a 2-out-regular digraph with 6 states and the synchro-
nizing ratio 30

64 .

The exceptional example G30 seems to be unique. We did not find any other
digraph with this particular value of the synchronizing ratio. Furthermore,
according to our computational experiments the smallest value of the synchro-
nizing ratio among all other k-out-regular digraphs seems to be equal to k−1

k .
There are many examples that reach this bound, and in the following theorem
we construct a series of digraphs with this property.

Theorem 1. For every n > 3 there is a k-out-regular digraph with n vertices
and the synchronizing ratio k−1

k .

Proof. We will define the digraph Gn,k as follows; see Fig. 3. The set of vertices
V is {0, 1, . . . n − 1}. The edges (0, 1) and (1, 2) are of multiplicity 1, the edges
(1, 1) and (0, 2) are of multiplicity k − 1, and the edges (2, 3), (3, 4), . . . , (i, i +
1), . . . , (n − 1, 0) are of multiplicity k.

Consider now an arbitrary coloring of the digraph Gn,k. Let x be the letter
on the edge (0, 1) and y be the letter on the edge (1, 2). If x = y then every letter
acts as a permutation, and so the automaton is not synchronizing. If x �= y then
xn−1 is a reset word for the given coloring. Hence, a coloring is synchronizing if
and only if x = y. Therefore, the synchronizing ratio of Gn,k is equal to k−1

k . �	
We generalize the above result to obtain digraphs with different values of the
synchronizing ratio.

136 V.V. Gusev and M. Szyku�la

1

2

34

5

6

Fig. 2. Digraph G30.

1

0 2

3n−1

. . .

1

0 2

3n−1

. . .

Fig. 3. The digraphs Gn,2 and Gn,3.

Theorem 2. For every integers d ≥ 1 and n ≥ 3d there is a k-out-regular
digraph with n vertices and the synchronizing ratio 1 − 1

kd .

Proof. We will define a digraph Hd
n,k as follows; see Fig. 4. The set of vertices V is

{0, 1, . . . n−1}. There are edges (i, i+1) of multiplicity k for every 2d ≤ i ≤ n−1.
There are edges (i, i + 1) of multiplicity k − 1 for every 0 ≤ i < 2d. For every
0 ≤ i < d the vertex 2i + 1 has a loop. The remaining edges of multiplicity 1 are
of the form (2i, 2i + 2) for every 0 ≤ i < d.

Consider now an arbitrary coloring H d
n,k of the digraph Hd

n,k. Let xi be the
letter of the edge (2i, 2i+2) and yi be the letter of the loop 2i+1, for 0 ≤ i < d.
We will show that the automaton H d

n,k is synchronizing if and only if xi = yi for
every i. It will immediately imply that the synchronizing ratio of Hd

n,k is equal
to 1 − 1

kd .
If xi = yi for every i then every letter acts as a permutation; thus the

automaton is not synchronizing. Assume now that there is � such x� �= y�, and
let � be the smallest integer with this property. In order to show that H d

n,k is
synchronizing it remains to prove that any pair can be synchronized. Let p and q
be a pair of states. Since the automaton is strongly connected, there is a word u
mapping p to 2d. Let q′ = δ(q, u). Let v be a shortest word mapping q′ to a state
in D = {i ∈ V | i ≥ 2d} ∪ {0}. Note that |v| ≤ d. Now we have δ(q, uv) ∈ D,
and also δ(p, uv) = δ(2d, v) ∈ D, because n ≥ 3d. By the fact that � is the

On the Number of Synchronizing Colorings of Digraphs 137

1

0 2

n−2

3

4 2d−2

2d−1

2d

2d+1

2d+2

n−1

. . .

. . .

Fig. 4. The digraph Hd
n,3.

smallest integer with the property x� �= y� we obtain δ(s′, yn
�) = δ(t′, yn

�), which
concludes the proof. �	

Remark 1. There exist many other digraphs with synchronizing ratio 1 − 1
kd .

Note that we can replace the k-path (2d, . . . , n − 1, 0) of Hd
n,k with any acyclic

multigraph such that: any vertex is reachable from the vertex 2d; from any vertex
we can reach the vertex 0; and every path from 2d to 0 is of the same length
≥ 3d.

5 Conclusions and Open Problems

In this section we summarize all the conjectures and open problems. All of the
conjectures are supported by experimental evidence.

Conjecture 1. The minimum value of the synchronizing ratio among all k-out-
regular digraphs with n vertices is equal to k−1

k , except for the case k = 2 and
n = 6 when it is equal to 30

64 .

The conjecture was verified for small values of n and k (see Table 1). It implies
that a uniformly random coloring of a primitive strongly connected digraph
is synchronizing with probability at least 1/2, and hence it would justify the
algorithm finding synchronizing coloring randomly.

To state the next conjecture, let say that a gap in the distribution of the
number of synchronizing colorings is a maximal interval of integers divisible by
k!, such that there are no digraphs with the number of synchronizing colorings
in this interval. Thus the conjecture above states that for every k and n �= 6
large enough there is the gap [k!, k−1

k (k!)n − k!].

Conjecture 2. For every k and g ≥ 1, there is an n large enough such that there
are at least g gaps in the distribution of the number of synchronizing colorings
of k-out-regular digraphs with n vertices.

The following conjecture can be stated either in the class of strongly connected
and aperiodic digraphs, or in the class of all digraphs.

138 V.V. Gusev and M. Szyku�la

Conjecture 3. For every k ≥ 2, the fraction of totally synchronizing digraphs
among all k-out-regular digraphs with n vertices tends to 1 as n goes to infinity.

A recent non-trivial theorem states that a random automaton is synchronizing
with high probability [4,15]. Conjecture 3 can be seen as a further development
of this statement.

We conclude with the following problem related to computing the number of
synchronizing colorings.

Problem 1. Given a k-out-regular digraph G with n vertices, what is the com-
putational complexity of checking whether G is totally synchronizing.

Acknowledgment. The authors want to thank Mikhail Volkov for his significant
contributions to the theory of synchronizing automata on the occasion of his 60th

birthday.

References

1. Adler, R.L., Goodwyn, L.W., Weiss, B.: Equivalence of topological Markov shifts.
Israel J. Math. 27(1), 49–63 (1977)

2. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

3. Béal, M.-P., Perrin, D.: A quadratic algorithm for road coloring. Discrete Appl.
Math. 169, 15–29 (2014)

4. Berlinkov, M.V.: On the probability of being synchronizable (2013).
http://arxiv.org/abs/1304.5774

5. Cardoso, Â.: The Černý Conjecture and Other Synchronization Problems. Ph.D.
thesis, University of Porto, Portugal (2014). http://hdl.handle.net/10216/73496

6. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964).
In Slovak

7. Cherubini, A.: Synchronizing and collapsing words. Milan J. Math. 75(1), 305–321
(2007)

8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

9. Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle
lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–
210. Springer, Heidelberg (2014)

10. Jarvis, J.P., Shier, D.R.: Applied Mathematical Modeling: A Multidisciplinary
Approach. Graph-theoretic analysis of finite Markov chains. CRC Press, Boca
Raton (1996)

11. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In:
Handbook of Automata. European Science Foundation, to appear

12. Kisielewicz, A., Szyku�la, M.: Generating small automata and the Černý conjecture.
In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer,
Heidelberg (2013)

13. Kisielewicz, A., Szyku�la, M.: Synchronizing Automata with Large Reset Lengths
(2014). http://arxiv.org/abs/1404.3311

http://arxiv.org/abs/1304.5774
http://hdl.handle.net/10216/73496
http://arxiv.org/abs/1404.3311

On the Number of Synchronizing Colorings of Digraphs 139

14. McKay, B.D., Piperno, A.: Practical graph isomorphism II. J. Symbolic Comput.
60, 94–112 (2014)

15. Nicaud, C.: Fast synchronization of random automata (2014). http://arxiv.
org/abs/1404.6962

16. Roman, A.: P–NP threshold for synchronizing road coloring. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 480–489. Springer,
Heidelberg (2012)

17. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

18. Trahtman, A.N.: The road coloring problem. Isr. J. Math. 172(1), 51–60 (2009)
19. Volkov, M.V.: Open problems on synchronizing automata. Workshop “Around

the Černý conjecture”, Wroc�law (2008). http://csseminar.kadm.usu.ru/SLIDES/
WroclawABCD2008/volkov abcd problems.pdf

20. Volkov, M.V.: Synchronizing automata and the černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

21. Vorel, V., Roman, A.: Complexity of road coloring with prescribed reset words. In:
Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS,
vol. 8977, pp. 161–172. Springer, Heidelberg (2015)

http://arxiv.org/abs/1404.6962
http://arxiv.org/abs/1404.6962
http://csseminar.kadm.usu.ru/SLIDES/WroclawABCD2008/volkov_abcd_problems.pdf
http://csseminar.kadm.usu.ru/SLIDES/WroclawABCD2008/volkov_abcd_problems.pdf

On the Uniform Random Generation of Non
Deterministic Automata Up to Isomorphism

Pierre-Cyrille Héam(B) and Jean-Luc Joly

FEMTO-ST, CNRS UMR 6174, Université de Franche-Comté,
INRIA 16 Route de Gray, 25030 Besançon Cedex, France

{pheam,jean-luc.joly}@femto-st.fr

Abstract. In this paper we address the problem of the uniform random
generation of non deterministic automata (NFA) up to isomorphism.
First, we show how to use a Monte-Carlo approach to uniformly sample
a NFA. Secondly, we show how to use the Metropolis-Hastings Algo-
rithm to uniformly generate NFAs up to isomorphism. Using labeling
techniques, we show that in practice it is possible to move into the mod-
ified Markov Chain efficiently, allowing the random generation of NFAs
up to isomorphism with dozens of states. This general approach is also
applied to several interesting subclasses of NFAs (up to isomorphism),
such as NFAs having a unique initial states and a bounded output degree.
Finally, we prove that for these interesting subclasses of NFAs, mov-
ing into the Metropolis Markov chain can be done in polynomial time.
Promising experimental results constitute a practical contribution.

1 Introduction

Finite automata play a central role in the field of formal language theory and
are intensively used to address algorithmic problems from model-checking to
text processing. Many automata based algorithms have been developed and
are still being developed, proposing new approaches and heuristics, even for
basic problems like the inclusion problem1. Evaluating new algorithms is a
challenging problem that cannot be addressed only by the theoretical compu-
tation of the worst case complexity. Several other complementary techniques
can be used to measure the efficiency of an algorithm: average complexity,
generic case complexity, benchmarking, evaluation on hard instances, evalu-
ations on random instances. The first two approaches are hard theoretical
problems, particularly for algorithms using heuristics and optimizations. Bench-
marks, as well as known hard instances, are not always available. Nevertheless,
in practice, random generation of inputs is a good way to estimate the effi-
ciency of an algorithm. Designing uniform random generator for classes of finite
automata is a challenging problem that has been addressed mostly for deter-
ministic automata [CP05,BN07,AMR07,CN12] -the interested reader is referred
to [Nic14] for a recent survey. However, the problem of uniform random gener-
ation of non deterministic automata (NFAs) is more complex, particularly for a
1 see http://www.languageinclusion.org/.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 140–152, 2015.
DOI: 10.1007/978-3-319-22360-5 12

http://www.languageinclusion.org/

On the Uniform Random Generation of Non Deterministic Automata 141

random generation up to isomorphism: the size of the automorphism group of a
n-state non deterministic automata may vary from 1 to n!. For most applications,
the complexity of the algorithm is related to the structure of the automata, not
to the names of the states: randomly generated NFAs, regardless of the num-
ber of isomorphic automata, may therefore lead to an over representation of
some isomorphism classes of automata. Moreover, as discussed in the conclusion
of [Nic14], the random generation of non deterministic automata has to be done
on particular subclasses of automata in order to obtain a better sampler for the
evaluation of algorithm (since most of the NFAs, for the uniform distribution,
will accept all words).

In this paper we address the problem of the uniform generation of some
classes of non deterministic automata (up to isomorphism) by using Monte-Carlo
techniques. We propose this approach for the class of n-state non deterministic
automata as well as for (a priori) more interesting sub-classes. Determining the
most interesting subclasses of NFAs for testing practical applications is not the
purpose of this paper. We would like to point out that Monte Carlo approaches
are very flexible and can be applied quite easily for many classes of NFAs. More
precisely:

1. We propose in Sect. 2 several ergodic Markov Chains whose stationary dis-
tributions are respectively uniform on the set of n-state NFAs, n-state NFAs
with a fixed maximal output degree and n-state NFAs with a fixed maximal
output degree for each letter. In addition, these tools can be adapted for these
three classes including automata with a fixed single initial state. Moving into
these Markov chains can be done in time polynomial in n.

2. The main idea of this paper is exposed in Sect. 3.1, where we show how
to modify these Markov Chains using the Metropolis-Hastings Algorithm in
order to obtain stationary distributions that are uniform for the given classes
of automata but up to isomorphism. Moving into these new Markov chains
requires computing the sizes of the automorphism group of the occurring
NFAs.

3. The main contributions of this paper are given in Sect. 3. We show in Sect. 3.2
that, for the classes with a bounded output degree, moving into the modified
Markov chains can be done in polynomial time. In Sect. 3.4 we explain how to
use labeling techniques to do it efficiently in practice for all NFAs. Promising
experiments are described in Sect. 3.5.

The random generation of non deterministic automata is explored in [TV05]
using random graph techniques (without considering the obtained distribution
relative to automata or to the isomorphism classes). In [CHPZ02], the random
generation of NFAs is performed using bitstream generation. In [Nic09,NPR10]
NFAs are obtained by the random generation of a regular expression and by
transforming it into an equivalent automaton using Glushkov Algorithm. The
use of Markov chains based techniques to randomly generate finite automata
was introduced in [CF11,CF12] for acyclic automata.

142 P.-C. Héam and J.-L. Joly

1.1 Theoretical Background on NFA

For a general reference on finite automata see [HU79]. In this paper Σ is a fixed
finite alphabet of cardinal |Σ| ≥ 2, and m is an integer satisfying m ≥ 2.

A non-deterministic automaton (NFA) on Σ is a tuple (Q,Δ, I, F) where Q
is a finite set of states, Σ is a finite alphabet, Δ ⊂ Q × Σ × Q is the set of
transitions, F ⊂ Q is the set of final states and I ⊆ Q is the set of initial states.
For any state p and any letter a, we denote by p · a the set of states q such that
(p, a, q) ∈ Δ. The set of transitions Δ is deterministic if for every pair (p, a) in
Q×Σ there is at most one q ∈ Q such that (p, a, q) ∈ Δ. Two NFAs are depicted
on Fig. 1. A NFA is complete if for every pair (p, a) in Q × Σ there is at least
one q ∈ Q such that (p, a, q) ∈ Δ. A path in a NFA is a sequence of transitions
(p0, a0, q0)(p1, a1, q1) . . . (pk, ak, qk) such that qi = pi+1. The word a0 . . . ak is the
label of the path and k its length. If p0 ∈ I and qk ∈ F the path is successful.
A word is accepted by a NFA if it’s the label of a successful path. A NFA is
accessible (resp. co-accessible) if for every state q there exists a path from an
initial state to q (resp. if for every state q there exists a path from q to a final
state). A NFA is trim if it is both accessible and co-accessible A deterministic
automaton is a NFA where |I| = 1 and whose set of transitions is deterministic.

Let A(n) be the class of finite automata whose set of states is {0, . . . , n − 1}.
Let N(n) be the subclass of A(n) of trim finite automata. Let Nm(n) be the class
of finite automata in N(n) such that, for each state p, there is at most m pairs
(a, q) such that (p, a, q) is a transition. Let N′

m(n) be the class of finite automata
in Nm(n) such that, for each state p and each letter a, there is at most m states
q such that (p, a, q) is a transition. For any class X of finite automata, we denote
by X• the subclass of X of automata whose set of initial states is reduced to {1}.
One has

Nm(n) ⊆ N′
m(n) ⊆ N(n) ⊆ A(n).

Two NFAs are isomorphic if there exists a bijection between their sets of
states preserving the sets initial states, final states and transitions. More pre-
cisely, let A = (Q,Σ,Δ, I, F) and let ϕ be a bijection from Q into a finite
set ϕ(Q). We denote by ϕ(A) the automaton (ϕ(Q), Σ,Δ′, ϕ(I), ϕ(F)), with
Δ′ = {(ϕ(p), a, ϕ(q)) | (p, a, q) ∈ Δ}. Two automata A1 and A2 are isomorphic
if there exists a bijection ϕ such that ϕ(A1) = A2.

1 2 3

a

a b

b
2 1 3

a

a b

b

Fig. 1. Two isomorphic automata

Two isomorphic NFAs have the same number of states and are equal, up to
the states names. The relation is isomorphic to is an equivalence relation.

On the Uniform Random Generation of Non Deterministic Automata 143

For instance, the two automata depicted on Fig. 1 are isomorphic, with ϕ(1) = 2,
ϕ(2) = 1 and ϕ(3) = 3. An automorphism for a NFA is an isomorphism between
this NFA and itself. Given a NFA A = (Q,Σ,Δ, I, F), the set of automor-
phisms of A is a finite group denoted Aut(A). For Q′ ⊆ Q, AutQ′(A) denotes
the subset of Aut(A) of automorphisms φ fixing each element of Q′: for each
q ∈ Q′, φ(q) = q. Particularly Aut∅(A) = Aut(A), and AutQ(A) is reduce to the
identity. For instance, the automorphism group of the automaton depicted on
Fig. 1(a) has two elements, the identity and the isomorphism switching 2 and 3.

The size of the automorphism group of a non deterministic n-state automaton
may vary from 1 to n!. For instance, any deterministic trim automaton whose
states are all final has an automorphism group reduce to the identity. The non
deterministic n-state automaton with no transition and where all states are both
initial and final has for automorphism group the symmetric group.

The isomorphism problem consists in deciding whether two finite automata
are isomorphic. It is investigated for deterministic automata in [Boo78]. It is
naturally closed to the same problem for directed graph and the following
result [Luk82] will be useful in this paper.

Theorem 1. Let m be a fixed positive integer. The isomorphism problem for
directed graphs with degree bounded by m is polynomial.

1.2 Theoretical Background on Markov Chains

For a general reference on Markov Chains see [DLW08]. Basic probability notions
will not be defined in this paper. The reader is referred for instance to [MU05].

Let Ω be a finite set. A Markov chain on Ω is a sequence X0, . . . , Xt, . . .
of random variables on Ω such that P(Xt+1 = xt+1 | Xt = xt) = P(Xt+1 =
xt+1 | Xt = xt, . . . , Xi = xi, . . . , X0 = x0), for all xi ∈ Ω. A Markov chain is
defined by its transition matrix M , which is a function from Ω × Ω into [0, 1]
satisfying M(x, y) = P(Xt+1 = y | Xt = x). The underlying graph of a Markov
chain is the graph whose set of vertices is Ω and there is an edge from x to y
if M(x, y) �= 0. A Markov chain is irreducible if its underlying graph is strongly
connected. It is aperiodic if for all node x, the gcd of the lengths of all cycles
visiting x is 1. Particularly, if for each x, M(x, x) �= 0, the Markov chain is
aperiodic. A Markov chain is ergodic if it is irreducible and aperiodic. A Markov
chain is symmetric if M(x, y) = M(y, x) for all x, y ∈ Ω. A distribution π on Ω
is a stationary distribution for the Markov Chain if πM = π. It is known that an
ergodic Markov chain has a unique stationary distribution [DLW08, Chapter 1].
Moreover, if the chain is symmetric, this distribution is the uniform distribution
on Ω.

Given an ergodic Markov chain X0, . . . , Xt, . . . with stationary distribution π,
it is known that, whatever is the value of X0, the distribution of Xt converges to
π when t → +∞: max‖M t(x, ·)−π‖TV →

t→+∞ 0, where ‖‖TV designates the total

variation distance between two distributions [DLW08, Chapter 4]. This leads to
the Monte-Carlo technique to randomly generate elements of Ω according to the
distribution π by choosing arbitrarily X0, computing X1,X2, . . ., and returning

144 P.-C. Héam and J.-L. Joly

Xt for t large enough. The convergence rate is known to be exponential, but
computing the constants is a very difficult problem: choosing the step t to stop
is a challenging question depending both on how close to π we want to be and
on the convergence rate of M t(x, ·) to π. For this purpose, the ε-mixing time of
an ergodic Markov chain of matrix M and stationary distribution π is defined
by tmix(ε) = min{t | maxx∈Ω‖Pt(x, ·) − π‖TV ≤ ε}. Computing mixing time
bounds is a central question on Markov Chains.

The Metropolis-Hasting Algorithm is based on the Monte-Carlo technique
and aims at modifying the transition matrix of the Markov chain in order to
obtain a particular stationary distribution [DLW08, Chapter 3]. Suppose that
M is an ergodic symmetric transition matrix of a symmetric Markov chain on
Ω and ν is a distribution on Ω. The transition matrix Pν for ν is defined by:

Pν(x, y) =

⎧
⎨

⎩

min
{

1, ν(y)
ν(x)

}
M(x, y) if x �= y,

1 − ∑
z �=x min

{
1, ν(z)

ν(x)

}
M(x, z) if x = y.

The chain defined by Pν is called the Metropolis Chain for ν. It is known [DLW08,
Chapter 3] that it is an ergodic Markov chain whose stationary distribution is ν.

2 Random Generation of Non Deterministic Automata
Using Markov Chain

In this section, we propose families of symmetric ergodic Markov chains on A(n),
N(n), Nm(n) and N′

m(n), as well as on the respective corresponding doted classes
of NFAs.

Let A = (Q,Σ,Δ, I, F) be a finite automaton. For any q in Q and any (p, a, q)
in Q×Σ ×Q, the automata Chinit(A, q), Chfinal(A, q) and Chtrans.(A, (p, a, q)) are
defined as follows:

– If q ∈ I, then Chinit(A, q) = (Q,Σ,Δ, I \ {q}, F) and Chinit(A, q) = (Q,Σ,Δ,
I ∪ {q}, F) otherwise.

– If q ∈ F , then Chfinal(A, q) = (Q,Σ,Δ, I, F \ {q}), and Chfinal(A, q) =
(Q,Σ,Δ, I, F ∪ {q}) otherwise.

– If (p, a, q) ∈ Δ, then Chtrans.(A, (p, a, q)) = (Q,Σ,Δ \ {(p, a, q)}, I, F), and
Chtrans.(A, (p, a, q)) = (Q,Σ,Δ ∪ {(p, a, q)}, I, F) otherwise.

Let ρ1, ρ2, ρ3 be three real numbers satisfying 0 ≤ ρi ≤ 1 and ρ1 + ρ2 + ρ3 ≤ 1.
Let X be a class of automata whose set of states is Q. We define the transition
matrix SX

ρ1,ρ2,ρ3
(x, y) on X by:

– If there exists q such that y = Chinit(x, q), then SX
ρ1,ρ2,ρ3

(x, y) = ρ1
|Q| .

– If there exists q such that y = Chfinal(x, q), then SX
ρ1,ρ2,ρ3

(x, y) = ρ2
|Q| .

– If there exists (p, a, q) ∈ Q × Σ × Q such that y = Chtrans.(x, q), then
SX

ρ1,ρ2,ρ3
(x, y) = ρ3

|Σ|.|Q|2 .
– If y is different of x and has not one of the above forms, SX

ρ1,ρ2,ρ3
(x, y) = 0.

– SX
ρ1,ρ2,ρ3

(x, x) = 1 − ∑
y �=x SX

ρ1,ρ2,ρ3
(x, y).

On the Uniform Random Generation of Non Deterministic Automata 145

Now for X ∈ {N(n),Nm(n),N′
m(n)}, and 0 < ρ < 1 we define the transition

matrix SX•
ρ on X• by SX•

ρ = SX
0,ρ,1−ρ.

Lemma 1. Let m,n be fixed positive integers, with m ≥ 2. If 1 > ρ > 0, ρ1 > 0,
ρ2 > 0 and ρ3 > 0, then S

N(n)
ρ1,ρ2,ρ3 , S

Nm(n)
ρ1,ρ2,ρ3 and S

N′
m(n)

ρ1,ρ2,ρ3 are irreducible, as well
as S

N(n)•
ρ , S

Nm(n)•
ρ and S

N′
m(n)•

ρ .

Proof. Without loss of generality, we assume that Q = {1, . . . , n}. Let X ∈
{N(n),Nm(n),N′

m(n)} and x ∈ X. We denote by A0 the automaton (Q,Σ, ∅, Q,
Q). The automaton A0 is trim and is in X. We prove there is a path in X from x
to A0. Set x = (Q,Σ,Δ, I, F). Since adding initial or final states to x provides
automata that are still in X, there is a path from x to y = (Q,Σ,Δ,Q,Q) (using
Chinit and Chfinal). Now, since all states are both initial and final, there is a path
from y to A0 (by deleting all transitions). It follows there is a path in X from
x to A0. Since the graph of the Markov chain is symmetric, there is also a path
from A0 to x. Consequently, the Markov chains are irreducible. The proof for
S
N(n)•
ρ , S

Nm(n)•
ρ and S

N′
m(n)•

ρ are similar.

Lemma 2. Let m,n be two fixed positive integers. If 1 > ρ > 0, ρ1 > 0, ρ2 > 0
and ρ3 > 0, then S

N(n)
ρ1,ρ2,ρ3 , S

Nm(n)
ρ1,ρ2,ρ3 and S

N′
m(n)

ρ1,ρ2,ρ3 are aperiodic, as well as S
N(n)•
ρ ,

S
Nm(n)•
ρ and S

N′
m(n)•

ρ .

Proof. With the notations of the proof of Lemma 1, there is a path of length nx

from any x ∈ X to A0. Therefore there is a cycle of length 2nx visiting x.
Now, Chinit(A0, 1) /∈ X since 1 is not accessible in A0. It follows that SX(A0,

A0) �= 0. Therefore, there is also a cycle of length 2nx + 1 visiting x. Since the
gcd of 2nx and 2nx +1 is 1, the chain is aperiodic. The proof for S

N(n)•
ρ , S

Nm(n)•
ρ

and S
N′

m(n)•
ρ are similar.

Proposition 1. Let m,n be two fixed positive integers with m ≥ 2. The Markov
chains with matrix S

N(n)
ρ1,ρ2,ρ3 , S

Nm(n)
ρ1,ρ2,ρ3 and S

N′
m(n)

ρ1,ρ2,ρ3 are ergodic and their station-
ary distributions are the uniform distributions.

Proof. By Lemmas 1 and 2, the chain is ergodic. Since the matrix S
N(n)
ρ1,ρ2,ρ3 ,

S
Nm(n)
ρ1,ρ2,ρ3 and S

N′
m(n)

ρ1,ρ2,ρ3 are symmetric, their stationary distributions are the uni-
form distributions (over the respective family of automata).

In practice, computing Xt+1 from Xt is done in the following way: the first step
consists in choosing with probabilities ρ1, ρ2 and ρ3 whether we will change either
an initial state, a final state or a transition. In a second step and in each case,
all the possible changing operations are performed with the same probability. If
the obtained automaton is in the corresponding class, Xt+1 is set to this value.
Otherwise, Xt+1 = Xt. Since verifying that an automaton is in the desired class
(N(n), Nm(n) or N′

m(n)), can be performed in time polynomial in n, computing
Xt+1 from Xt can be done in time polynomial in n.

146 P.-C. Héam and J.-L. Joly

We define the lazy Markov chain on A(n) by L
A(n)
ρ1,ρ2,ρ3(x, y) = 1

2S
A(n)
ρ1,ρ2,ρ3(x, y)

if x �= y and L
A(n)
ρ1,ρ2,ρ3(x, x) = 1

2 + 1
2S

A(n)
ρ1,ρ2,ρ3(x, x). It is known that a symmetric

Markov chain and its associated lazy Markov chain have similar mixing times.

Proposition 2. The ε-mixing time τ(ε) of L
A(n)
ρ1,ρ2,ρ3 satisfies τ(ε) ≤ (1

ρ1
+

1
ρ2

)(n ln n +
n ln(ε−1)�) + 2|Σ|2n2

ρ3

(
ln(|Σ|n) +
ln(ε−1)�).

It follows that τ(ε) = O(n3) when |Σ| is considered as a constant. At this stage,
we are not able to compute bounds on the mixing times of the other Markov
chains. Practical experiments, with various sizes of alphabets, seems to show
that about 90 % of the automata generated by the above lazy Markov Chain
(using n3 as mixing bound) are trim. This observation leads us to consider, for
other experiments, to move n3 steps to sample automata. Of course, this is not
a proof, just an empirical estimation.

3 Random Generation of Non Deterministic Automata
upto Isomorphism

In this section we show how to use the Metropolis-Hastings algorithm to uni-
formly generate NFAs up to isomorphism and that, for this purpose, it suffices
to compute the sizes of the automorphism groups of involved NFAs. We prove
in Sect. 3.2 that this computation is polynomially equivalent to testing the iso-
morphism problem for the involving automata. For the classes Nm(n), Nm(n)•,
N′

m(n) and N′
m(n)•, we show that it can be done in time polynomial in n (if m

is fixed). In Sect. 3.4 we show how to practically compute the sizes of automor-
phism group using labellings techniques. Finally, experimental results are given
in Sect. 3.5.

3.1 Metropolis-Hastings Algorithm

For a class C of NFAs (closed by isomorphism) and n a positive integer, let C(n)
be the elements of C whose set of states is {1, . . . , n} and let γn be the number
of isomorphism classes on C(n). There are n! possible bijections on {1, . . . , n}. If
A ∈ C(n), Let ϕ1 and ϕ2 be two bijections on {1, . . . , n}. One has ϕ1(A) = ϕ2(A)
iff ϕ−1

2 ϕ1(A) = A, iff ϕ−1
2 ϕ1(A) ∈ Aut(A). It follows that the isomorphism

classes of A (in C(n)) has n!
|Aut(A)| elements. This leads to the following result.

Proposition 3. Randomly generating an element x of C(n) with probability
n!

γn|Aut(x)| provides a uniform random generator of the isomorphism classes of
C(n).

Proof. Let H be an isomorphism class of C(n); H is generated with probability

∑

x∈H

n!
γn|Aut(x)| =

∑

x∈H

n!
γn|H| =

1
γn|H|

∑

x∈H

1 =
|H|

γn|H| =
1
γn

.

On the Uniform Random Generation of Non Deterministic Automata 147

In order to compute Pν it is not necessary to compute γn, since ν(x)
ν(y) = |Aut(y)|

|Aut(x)| .
A direct use of the Metropolis-Hastings algorithm requires to compute all the
neighbors of x and the sizes of theirs automorphism groups to move from x.
Since a n-state automaton has about |Σ|n2 neighbors, it can be a quite huge
computation for each move. However, practical evaluations show that in most
cases the automorphism group of an automaton is quite small and, therefore, the
rejection approach exposed in [CG95] is more tractable. It consists in moving
from x to y using S(x, y) (the non-modified chain) and to accept y with prob-
ability min

{
1, ν(y)

ν(x)

}
. If it is not accepted, repeat the process (moving from x

to y using S with probability min
{

1, ν(y)
ν(x)

}
) until acceptance. In practice, we

observe a very small number of rejects.
The problem of computing the size of the automorphism group of a NFA is

investigated in the next session. Assuming it can be done in a reasonable time,
an alternative solution to randomly generate NFAs up to isomorphism may be
to use a rejection algorithm: randomly and uniformly generate a NFA A and
keep it with probability |Aut(A)|

n! . This way, each class of isomorphism is picked
up with the same probability. However, as we will observe in the experiments,
most of automata have a very small group of automorphisms, and the number
of rejects will be intractable, even for quite small n’s.

3.2 Counting Automorphisms

This section is dedicated to show how to compute |Aut(A)| by using a poly-
nomial number of calls to the isomorphism problem. It is an adaptation of a
corresponding result for directed graphs [Mat79].

Let A = (Q,Σ,Δ, I, F) be a NFA and Q′ ⊆ Q. Let σ be an arbitrary
bijective function from Q′ into {1, . . . , |Q′|}, a0 an arbitrary letter in Σ and
� = |Q| + |Q′| + 2. For each state r ∈ Q\Q′ we denote by AQ′

r the automaton
(Qr, Σ,Δr, I, F) where Qr = Q ∪ {(p, i) | p ∈ Q and 1 ≤ i ≤ �}, and Δr =
Δ ∪ {(p, a, (p, 1) | p ∈ Q} ∪ {((p, i), a0, (p, i + 1)) | p ∈ Q′ and 1 ≤ i < |Q| +
1 + σ(p)} ∪ {((r, i), a0, (r, i + 1)) | 1 ≤ i ≤ �} ∪ {((p, i), a0, (p, i + 1)) | p /∈
Q′ ∪ {r} and 1 < i ≤ |Q| + 1}. Note that the size of AQ′

r is polynomial in the
size of A.

The two next lemma show how to polynomially reduce the problem of count-
ing automorphisms to the isomorphism problem.

Lemma 3. Let A = (Q,Σ,Δ, I, F) be a NFA and Q′ a non-empty subset of Q.
For every q, q′ ∈ Q\Q′, there exists φ ∈ AutQ′(A) such that φ(q) = q′ iff AQ′

q

and AQ′
q′ are isomorphic.

Lemma 4. Let A = (Q,Σ,Δ, I, F) be a NFA and Q′ a non-empty subset of
Q. For every q ∈ Q′, there exists an integer d such that |AutQ′\{q}(A)| =
d|AutQ′(A)|. Moreover d can be computed with a polynomial number of iso-
morphism tests between automata of the form AQ′\{q}

r .

148 P.-C. Héam and J.-L. Joly

Lemma 4 provides a way to compute sizes of automorphism groups by testing
whether two NFAs are isomorphic. Indeed, since AutQ(A) is reduced to the
identity, and since Aut(A) = Aut∅(A), one has, by a direct induction using
Lemma 4, Aut(A) = d1 . . . d|Q|, where each di can be computed by a polynomial
number of isomorphism tests. Therefore, the problem of counting automorphism
reduces to test whether two automata are isomorphic.

3.3 Isomorphism Problem for Automata with a Bounded Degree

It is proved (not explicitly) in [Boo78] that the isomorphism problem for deter-
ministic automata is polynomially equivalent to the isomorphism problem for
directed finite graphs. We prove (Theorem 2) a similar result for NFAs, by using
an encoding preserving some bounds on the output degree. Therefore, combining
Theorem 2 and Lemma 4, it is possible to compute the size of the automorphism
group of an automaton in Nm(n), N′

m(n), Nm(n)• and N′
m(n)• in time polyno-

mial in n (assuming that m is a constant).

Theorem 2. Let m be a fixed integer. The isomorphism problem for automata
in Nm N′

m, Nm(n)• and N′
m(n)• can be solved in polynomial time.

Note that the proof is constructive but the exponents are too huge to provide an
efficient algorithm. It will be possible to work on a finer encoding but we prefer,
in practice, to use labeling techniques described in the next section and that are
practically very efficient on graphs (see [Gal14] for a recent survey).

3.4 Practical Computation Using Labelings

For testing graph isomorphism, the most efficient currently used approach is
based on labeling [Gal14] and it works practically for large graphs. Intuitively, if
two n-state automata are isomorphic, then they have the same number of initial
states and of final states. Rather than testing potential n! possible bijections from
the automata to point out an isomorphism, it suffices to test n1!+n2!+n3!+n4!
where n1 is the number of states that are both initial and final, n2 the number
of final states (that are not initial), n3 the number of initial states (that are
not final), and n4 is the number of states that are neither initial, nor final.
With an optimal distribution, the number of tests falls from n! to 4(n/4)!. This
idea can be generalized by the notion of labeling; the goal is to point out easily
computable criteria that are stable by isomorphism to get a partition of the set of
states and to reduce the search. The approach can be directly adapted for finite
automata. A labeling is a computable function τ from N(n) × {1, . . . , n} into a
finite set D, such that for A1 = (Q,Σ,E1, I1, F1) and A2 = (Q,Σ,E2, I2, F2), if
ϕ is an isomorphism from A1 to A2, then, for every i ∈ {1, . . . , n}, τ(A1, i) =
τ(A2, ϕ(i)). The algorithm consists in looking for functions ϕ preserving τ . If
there exists α ∈ D such that |{i | τ(A1, i) = α}| �= |{i | τ(A2, i) = α}|,
then the two automata are not isomorphic. Otherwise, all possible bijections
preserving the labeling are tested. In the worst case, there are n! possibilities

On the Uniform Random Generation of Non Deterministic Automata 149

(the labeling doesn’t provide any refinement), but in practice, it works very well.
The algorithm is depicted in Fig. 2. Note that if τ1 and τ2 are two labellings,
then τ = (τ1, τ2) is a labeling to, allowing the combination of labeling. In our
work, we use the following labellings: the labeling testing whether a state is
initial, the one testing whether a state is final, the one testing whether a state
is both initial and final, the one returning, for each letter a, the number of
outgoing transitions labeled by a, the similar one with ongoing transitions, the
one returning the minimal word (in the lexical order) from the state to a final
state and the one returning the minimal word (in the lexical order) from an
initial state to the given state. Using these labellings the practical computation
of the sizes of automorphism groups can be done quite efficiently.

Fig. 2. Testing isomorphism using labellings

3.5 Experiments

The experiments were made on a personal computer with processor IntelCore
i3-4150 CPU 3.50GHz x 4, 7.7 GB of memory and running on a 64 bits Ubuntu
14.04 OS. The implementation is a non optimized prototype written in Python.

The first experimentation consists in measuring the time required to move
into the Metropolis chains for N(n) and Nm(m). Results are reported in Table 1.
The labellings used are those described in Sect. 3.4. These preliminary results
show that using a 2 or 3-letter alphabet does not seem to have a significant
influence. For each generation, the n3-th elements of the walk is returned, with
an arbitrary start. Moreover, bounding or not the degree does not seem to be

150 P.-C. Héam and J.-L. Joly

relevant for the computation time. Note that we do not use any optimization:
several computations on labellings may be reused when moving into the chain.
Moreover, Python is not an efficient programming language (compared to C or
Java). In practice, for directed graphs, the isomorphism problem is tractable
for large graphs (see for instance [FPSV09]). Note that the number of moves
(n3) is the major factor for the increasing computation time (relatively to n):
the average time for moving a single step is multiplied by about (only) 10 from
n = 20 to n = 90.

Table 1. Average Time (s) to Sample a NFA in N(n) (left) and in N′
m(n) (right).

n 10 20 50 70 90

|A| = 2 0.02 0.43 32.5 166.1 569.9
|A| = 3 0.02 0.56 47.1 248.4 848.1

n 10 20 50 70 90

m = 2, |A| = 2 0.2 0.43 32.5 166.1 566.8
m = 2, |A| = 3 0.2 0.57 47.0 246.7 847.2

m = 3, |A| = 2 0.2 0.43 33.0 167.8 561.9
m = 3, |A| = 3 0.2 0.57 47.2 248.6 851.3

In the second experiment, we also generate automata with n states by return-
ing the n3-th element of the walk in the Metropolis Chain. We use the algorithm
to estimate the sizes of the automorphism group. By generating 1000 automata
on a 2-letter alphabet, with 5, 7, 10, 15, 20 and 50 states, for each case, all the
automata have a trivial automorphism group but one or two automata that have
an automorphism group of size 2.

For the last experience, we propose to compare our generation for N′
2(n)•

with the generator proposed in [TV05] with a density of a-transitions of 2 and 3.
The parameter of the algorithm is a probability pf for final states and a density
σ on a-transitions: the set of states of the automaton is {1, . . . , n}, only 1 is the
initial state, each state is final with a probability pf and for each p and each a,
(p, a, q) is a transition with a probability σ

n . Therefore for each state and each
letter, the expected number of outgoing transitions labeled by this letter is σ. We
run this algorithm with pf = 0.2 and σ ∈ {1.5, 2, 3}. For each size, we compute
the average size s of the corresponding minimal automata. We use a two letter
alphabet and the average sizes (number of states) are obtained by sampling 1000
automata for each case. Results are reported in Table 2.

Table 2. Average sizes of deterministic and minimal automata corresponding to
automata sampling using [TV05] and in N′

2(n)•.

σ = 1.5, n = 5 8 11 14 17 20

s 1.5 4.3 4.7 3.8 3.1 2.7

σ = 2, n = 5 8 11 14 17 20

s 1.3 3.0 4.8 5.1 4.5 4.0

σ = 3, n = 5 8 11 14 17 20

s 2.8 4.8 4.7 3.8 3.4 3.0

N′
2(n)•, n = 5 8 11 14 17 20

s 3.7 6.1 7.9 10.0 11.5 13.9

On the Uniform Random Generation of Non Deterministic Automata 151

One can observe that the generator provides quite different automata. With
the Markov chain approach the sizes of the related minimal automata are greater,
even if there is no blow-up in both cases.

4 Conclusion

In this paper we proposed a Markov Chain approach to randomly generate non
deterministic automata (up to isomorphism) for several classes of NFAs. We
showed that moving into these Markov chains can be done quite quickly in prac-
tice and, in some interesting cases, in polynomial time. Experiments have been
performed whithin a non optimized prototype and, following known experimen-
tal results on group isomorphism, they allow us to think that the approach
can be used on much larger automata. Implementing such techniques using an
efficient programming language is a challenging perspective. Moreover, the pro-
posed approach is very flexible and can be applied to various classes of NFAs. An
interesting research direction is to design particular subclasses of NFAs that look
like NFAs occurring in practical applications, even if this last notion is hard to
define. We think that the classes N′

m(n)• and Nm(n)• constitute first attempts
in this direction. Theoretically -as often for Monte-Carlo approach-, computing
mixing and strong stationary times are crucial and difficult questions we plan to
investigate more deeply.

References

[AMR07] Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a
string automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)

[BN07] Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)

[Boo78] Booth, K.S.: Isomorphism testing for graphs, semigroups, and finite
automata are polynomially equivalent problems. SIAM J. Comput. 7(3),
273–279 (1978)

[CF11] Carnino, V., De Felice, S.: Random generation of deterministic acyclic
automata using markov chains. In: Bouchou-Markhoff, B., Caron, P.,
Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp.
65–75. Springer, Heidelberg (2011)

[CF12] Carnino, V., De Felice, S.: Sampling different kinds of acyclic automata
using markov chains. Theor. Comput. Sci. 450, 31–42 (2012)

[CG95] Chib, S., Greenberg, E.: Understanding the metropolis-hastings al- gorithm.
Am. Stat. 49, 327–335 (1995)

[CHPZ02] Champarnaud, J-M., Hansel, G., Paranthoën, T., Ziadi, D.: NFAS
bitstream-based random generation. In: Fourth International Workshop on
Descriptional Complexity of Formal Systems - DCFS (2002), pp. 81–94
(2002)

[CN12] Carayol, A., Nicaud, C.: Distribution of the number of accessible states in
a random deterministic automaton. In: STACS 2012, vol. 14 of LIPIcs, pp.
194–205 (2012)

152 P.-C. Héam and J.-L. Joly

[CP05] Champarnaud, J.-M., Paranthoën, Th: Random generation of dfas. Theor.
Comput. Sci. 330(2), 221–235 (2005)

[DLW08] Yuval Peres, D.A.L., Wilmer, E.L.: Markov Chain and Mixing Times.
American Mathematical Society (2008). http://pages.uoregon.edu/dlevin/
MARKOV/markovmixing.pdf

[FPSV09] Foggia, P., Percannella, G., Sansone, C., Vento, M.: Benchmarking graph-
based clustering algorithms. Image Vis. Comput. 27(7), 979–988 (2009)

[Gal14] Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal
of Combinatorics. 17 (2014)

[HU79] Hopcroft, J., Ullman, J.: Introduction to Automata Theory: Languages and
Computation. Addison-Wesley, Boston (1979)

[Luk82] Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)

[Mat79] Mathon, Rudolf: A note on the graph isomorphism counting problem. Inf.
Process. Lett. 8(3), 131–132 (1979)

[MU05] Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge Uni-
versity Press, Cambridge (2005)

[Nic09] Nicaud, C.: On the average size of glushkov’s automata. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp.
626–637. Springer, Heidelberg (2009)

[Nic14] Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 5–23. Springer, Heidelberg (2014)

[NPR10] Nicaud, C., Pivoteau, C., Razet, B.: Average analysis of glushkov automata
under a bst-like model. In: IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2010)
LIPIcs, pp. 388–399 (2010)

[TV05] Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata
constructions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS
(LNAI), vol. 3835, pp. 396–411. Springer, Heidelberg (2005)

http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

Random Generation and Enumeration
of Accessible Deterministic Real-Time

Pushdown Automata

Pierre-Cyrille Héam(B) and Jean-Luc Joly

FEMTO-ST, CNRS UMR 6174, Université de Franche-Comté, INRIA,
16 Route de Gray, 25030 Besançon Cedex, France

{pheam,jean-luc.joly}@femto-st.fr

Abstract. This paper presents a general framework for the uniform ran-
dom generation of deterministic real-time accessible pushdown automata.
A polynomial time algorithm to randomly generate a pushdown automa-
ton having a fixed stack operations total size is proposed. The influence
of the accepting condition (empty stack, final state) on the reachability
of the generated automata is investigated.

1 Introduction

Finite automata, of any kind, are widely used for their algorithmic proper-
ties in many fields of computer science like model-checking, pattern matching
and machine learning. Developing new efficient algorithms for finite automata
is therefore a challenging problem still addressed by many recent papers. New
algorithms are frequently motivated by improvement of worst cases bound. How-
ever, several examples, such as sorting algorithms, primality testing or solving
linear problems, show that worst case complexity is not always the right way
to evaluate the practical performance of an algorithm. When benchmarks are
not available, random testing, with a controlled distribution, represents an effi-
cient mean of performance testing. In this context, the problem of uniformly
generating finite automata is a challenging problem.

This paper tackles with the problem of the uniform random generation of
real-time deterministic pushdown automata. Using classical combinatorial tech-
niques, we expose how to extend existing works on the generation of finite deter-
ministic automata to pushdown automata. More precisely, we show in Sect. 3 how
to uniformly generate and enumerate (in the complete case) accessible real-time
deterministic pushdown automata. In Sect. 4, it is shown that using a rejection
algorithm it is possible to efficiently generate pushdown automata that don’t
accept an empty language. The influence of the accepting condition (final state
or empty-stack) on the reachability of the generated pushdown automata is also
experimentally studied in Sect. 4.

Related Work. The enumeration of deterministic finite automata has been first
investigated in [Vys59] and was applied to several subclasses of deterministic
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 153–164, 2015.
DOI: 10.1007/978-3-319-22360-5 13

154 P.-C. Héam and J.-L. Joly

finite automata [Kor78,Kor86,Rob85,Lis06]. The uniform random generation
of accessible deterministic complete automata was initially proposed in [Nic00]
for two-letter alphabets and the approach was extended to larger alphabets
in [CP05]. Better algorithms can be found in [BN07,CN12]. The random gen-
eration of possibly incomplete automata is analyzed in [BDN09]. The recent
paper [CF11] presents how to use Monte-Carlo approaches to generate deter-
ministic acyclic automata. As far as we know, the only work focusing on the
random generation of deterministic transducers is [HNS10]. This work can be
applied to the random generation of deterministic real-time pushdown automata
that can be possibly incomplete. However the requirement to fix the size of the
stack operation on each transition, represents a major restriction. The reader
interested in the random generation of deterministic automata is referred to the
survey [Nic14].

2 Formal Background

We assume that the reader is familiar with classical notions on formal languages.
For more information on automata theory or on pushdown automata the reader
is referred to [HU79] or to [Sak09]. For a general reference on random generation
and enumeration of combinatorial structures see [FZC94]. For any word w on an
alphabet Σ, |w| denotes its length. The empty word is denoted ε. The cardinal
of a finite set X is denoted |X|.

Deterministic Finite Automata. A deterministic finite automaton on Σ is a tuple
(Q,Σ, δ, qinit, F) where Q is a finite set of states, Σ is a finite alphabet, qinit ∈ Q
is the initial state, F ⊆ Q is the set of final states and δ is a partial function
from Q × Σ into Q. If δ is not partial, i.e., defined for each (q, a) ∈ Q × Σ,
the automaton is said complete. A triplet of the form (q, a, δ(p, a)) is called a
transition. A finite automaton is graphically represented by a labeled finite graph
whose vertices are the states of the automaton and edges are the transitions.
A deterministic finite automaton is accessible if for each state q there exists a
path from the initial state to q. Two finite automata (Q1, Σ, δ1, qinit1, F1) and
(Q2, Σ, δ2, qinit2, F2) are isomorphic if they are identical up to the state’s names,
formally if there exists a one-to-one function ϕ from Q1 into Q2 such that (1)
ϕ(qinit1) = qinit2, (2) ϕ(F1) = F2, and (3) δ1(q, a) = p iff δ2(ϕ(q), a) = ϕ(p).

Pushdown Automata. A real-time deterministic pushdown automaton, RDPDA
for short, is a tuple (Q,Σ, Γ, Zinit, δ, qinit, F) where Q is a finite set of states,
Σ and Γ are finite disjoint alphabets, qinit ∈ Q is the initial state, F ⊆ Q is
the set of final states, Zinit is the initial stack symbol and δ is a partial func-
tion from Q × (Σ × Γ) into Q × Γ ∗. If δ is not partial, i.e., defined for each
(q, (a,X)) ∈ Q × (Σ × Γ), the RDPDA is said to be complete. A triplet of the
form (q, (a,X), w, p) with δ(q, (a,X)) = (p,w) is called a transition and w is
the output of the transition. The output size of a transition (q, (a,X), w, p) is
the length of w. The output size of a RDPDA is the sum of the sizes of its

Generation of Real-Time Pushdown Automata 155

0 1

(a, X), Z

(b, X), ε
(a, Z), XZX

(a, Z), ZZX
(b, Z), ZX

(b, X), X

(a, X), XX
(b, Z), ε

Q = {0, 1}
Σ = {a, b}
Γ = {Z, X}
δ = {(0, (a, X)) �→ (1, Z), (0, (b, X)) �→ (0, X)

(0, (a, Z)) �→ (0, ZZX), (0, (b, Z)) �→ (0, ZX)
(1, (a, X)) �→ (1, XX), (1, (b, X)) �→ (0, ε)
(1, (a, Z)) �→ (0, XZX), (1, (b, Z)) �→ (1, ε)

qinit = 0, Zinit = Z, F = {1}

Fig. 1. Ptoy, a complete RDPDA.

transitions. The underlying automaton of an RDPDA, is the finite automaton
(Q,Σ × Γ, δ′, qinit, F), with δ′(q, (a,X)) = p iff δ((q, (a,X))) = (p,w) for some
w ∈ Γ ∗. An RDPDA is accessible if its underlying automaton is accessible.
A transition whose output is ε is called a pop transition. An example of a
complete accessible RDPDA is depicted in Fig. 1. The related underlying finite
automaton is depicted in Fig. 2.

A configuration of a RDPDA is an element of Q × Γ ∗. The initial configura-
tion is (qinit, Zinit). Two configurations (q1, w1) and (q2, w2) are a-consecutive,
denoted (q1, w1) |=a (q2, w2) if the following conditions are satisfied:

– w1 �= ε, and let w1 = w3X with X ∈ Γ ,
– δ(q1, (X, a)) = (q2, w4) and w2 = w3w4.

Two configurations are consecutive if there is a letter a such that there are a-
consecutive. A state p of a RDPDA is reachable if there exists a sequence of
consecutive configurations (p1, w1), . . . , (pn, wn) such that (p1, w1) is the initial
configuration and pn = p. Moreover, if wn = ε, p is said to be reachable with an
empty stack. A RDPDA is reachable if all its states are reachable. Consider for
instance the RDPDA of Fig. 3, where the initial stack symbol is X. State 3 is not
reachable since the transition from 0 to 3 cannot be fired. State 1 is reachable
with an empty stack. State 2 is reachable, but not reachable with an empty
stack. Note that a reachable state is accessible, but the converse is not true in
general: accessibility is a notion defined on the underlying finite automaton.

The configurations (1,XZ) and (2,XXZX) are a-consecutive on the
RDPDA depicted in Fig. 1.

There are three main kinds of accepting conditions for a word u = a1 . . . ak ∈
Σ∗ by an RDPDA:

– Under the empty-stack condition, u is accepted if there exists configura-
tions c1, . . . , ck+1 such that c1 is the initial configuration, ci and ci+1 are
ai-consecutive, and ck+1 is of the form (q, ε).

– Under the final-state condition, u is accepted if there exists configura-
tions c1, . . . , ck+1 such that c1 is the initial configuration, ci and ci+1 are
ai-consecutive, and ck+1 is of the form (q, w), with q ∈ F .

156 P.-C. Héam and J.-L. Joly

Fig. 2. Underlying automaton of Ptoy.

Fig. 3. Acceptance conditions.

– Under the final-state and empty-stack condition, u is accepted if there exists
configurations c1, . . . , ck+1 such that c1 is the initial configuration, ci and ci+1

are ai-consecutive, and ck+1 is of the form (q, ε), with q ∈ F .

Consider for instance the RDPDA of Fig. 3, where the initial stack symbol
is X. With the empty-stack condition only the word b is accepted, as well as
for the empty-stack and final state condition. With the final state condition, the
accepted language is a∗(b + bb).

Two RDPDA (Q1, Σ, Γ, δ1, qinit1, F1) and (Q2, Σ, Γ, δ2, qinit2, F2) are isomor-
phic if there exists a one-to-one function ϕ from Q1 into Q2 such that (i)
ϕ(qinit1) = qinit2, and (ii) ϕ(F1) = F2, and

(iii) δ1(q, (a,X)) = (p,w) iff δ2(ϕ(q), (a,X)) = (ϕ(p), w).

Note that if two RDPDA are isomorphic, then their underlying automata are
isomorphic too.

Generating Functions. A combinatorial class is a class C of objects associated
with a size function |.| from C into N such that for any integer n there are
finitely many elements of C of size n. The ordinary generating function for C is
C(z) =

∑
c∈C z|c|. The n-th coefficient of C(z) is exactly the number of objects

of size n and is denoted [zn]C(z). The reader is referred to [FS08] for the gen-
eral methodology of analytic combinatorics, ans especially the use of generating
functions to count objects. The following result [FS08, Theorem VIII.8] will be
useful in this paper.

Theorem 1. Let C(z) be an ordinary generating function satisfying: (1) C(z)
is analytic at 0 and have only positive coefficients, (2) C(0) �= 0 and (3) C(z) is

Generation of Real-Time Pushdown Automata 157

aperiodic. Let R be the radius of convergence of C(z) and T = limx→R− xC′(x)
C(x) .

Let λ ∈]0, T [and ζ be the unique solution of xC′(x)
C(x) = λ. Then, for N = λn an

integer, one has

[zN]C(z)n =
C(ζ)n

ζN+1
√

2πnξ
(1 + o(1)),

where ξ = d2

dz2 (log C(z) − λ log(z)) |z=ζ .

In the above theorem, T is called the spread of the C(z).

Rejection Algorithms. A rejection algorithm is a probabilistic algorithm to ran-
domly generate an element in a set X, using an algorithm A for generating an
element of Y in the simple way: repeat A until it returns an element of X. Such
an algorithm is tractable if the expected number of iterations can be kept under
control (for instance is fixed): the probability that an element of Y is in X has
to be large enough.

Random Generation. The theory of Generating Functions provides an efficient
way to randomly and uniformly generate an element of size n of a combinatorial
class C using a recursive approach [FS08]. It requires a O(n2) precomputation
time and each random sample is obtained in time O(n log n). Another efficient
way to uniformly generate element of C is to use Boltzmann samplers [DFLS04]:
the random generation of an object with a size about n (approximate sampling)
is performed in O(n), while the random generation of an object with a size
exactly n is performed in expected time O(n2) using a rejection algorithm (with-
out precomputation). Boltzmann samplers are quite easy to implement but are
restricted to a limited number of combinatorial constructions. They also require
the evaluation of some generating functions at some values of the variable.

3 Random Generation and Enumeration of RDPDA

In this section, Σ and Γ are fixed disjoint alphabets of respective cardinals α
and β. We denote by Ts,n,m combinatorial class of the RDPDA (on Σ,Γ) with n
states, s transitions and with an output size of m, up to isomorphism. Note that
this class is well defined since two isomorphic RDPDA have the same output
size. Let ρ = αβ.

3.1 Enumeration of RDPDA

We are interested in the random generation of accessible RDPDA up to isomor-
phism. The class of all isomorphic classes of accessible automata on Σ × Γ with
n states and s transitions is denoted As,n. Let ψ be the function from Ts,n,m into
As,n mapping RDPDA to their underlying automata. The number of elements of
ψ−1(A), where A is an element of As,n, is the number of possible output labelling
of the s transitions of A, which only depends on s and m and is independent of
A. We denote by cs,m this number of labelings. The following proposition is a
direct consequence of the above remark.

158 P.-C. Héam and J.-L. Joly

Proposition 1. One has |Ts,n,m| = |As,n| · cs,m.

Proposition 1 is the base of the enumeration for RDPDA. Let M(z) denote
the ordinary generating function of elements of Γ ∗. Then, using Proposition 1
and classical constructions on generating functions, one has

|Ts,n,m(M)| = |As,n|.[zm]M(z)s. (1)

Equation (1) will be exploited for complete finite automata using the follow-
ing result of [Kor78] – see also [BDN07].

Theorem 2 ([Kor78]). There exists a constant γρ, such that |Aρn,n| ∼
nγρ

{
ρn
n

}
, where

{
x
y

}
denotes the Stirling numbers of the second kind.

The case s = ρn corresponds to complete accessible automata. We will par-
ticularly focus throughout this paper on the complete case for a fixed average
size λ for the transitions: we assume that there is a fixed λ > 0 such that
m = λs = λnρ. In this context, Eq. (1) becomes

|Ts,n,m(M)| ∼ nγρ

{
ρn

n

}

[zλnρ]M(z)nρ. (2)

Since M(z) is the generating function of words on Γ , one has M(z) = 1
1−βz .

Therefore (see [FS08]), one has:

[zm]Fs(z) = βm s(s + 1)(s + 2) . . . (s + m − 1)
m!

. (3)

The generating function Fs satisfies the hypotheses of Theorem 1, with an
infinite spread. Therefore for any strictly positive λ and any integer m = λs, one
has

[
zλs

]
Fs(z) =

C(ζ)s

ζλs+1
√

2π s ξ
(1 + o(1)) , (4)

where C(z) =
1

1 − βz
and ζ =

λ

β (λ + 1)
is the unique solution of x

C ′(x)
C(x)

= λ.

It follows that

[zλs]Fs(z) =
(λ + 1)(λ+1)s+1βλs+1

λλs+1
√

2πsξ
(1 + o(1)). (5)

In addition

ξ =
d2

dz2
(log C(z) − λ log(z)) |z=ζ =

(λ + 1)3 β2

λ
. (6)

Consequently Eq. (5) can be rewritten as

[zλs]Fs(z) =
(λ + 1)(λ+1) s−1/2

βλ s

λλ s+1/2
√

2π s
(1 + o(1)). (7)

The following proposition is a direct consequence of the combination of Eq. (7),
Proposition 1 and Theorem 2.

Generation of Real-Time Pushdown Automata 159

Proposition 2. The number fλ,n of complete accessible RDPDA with n states
and with an output size of λn, with λ ≥ 1 a fixed rational number, satisfies

fλ,n = γρn

{
ρn

n

}
(λ + 1)(λ+1)n ρ−1/2

βλ n ρ

λλ nρ+1/2
√

2π n ρ
(1 + o(1)),

Note that fλ,n = |Tnρ,n,λρn|. The following result can be easily obtained.

Proposition 3. For RDPDA in Ts,n,m, the average number of pop transitions
is s(s−1)

s+m−1 .

Proof. We introduce the generating function Gs(z, u) =
(

1
1 − βz

− 1 + u

)s

counting RDPDA where z counts the output size and u the number of pop
transitions. Using [FS08, Proposition III.2], the average number of pop transi-

tions is
[zm] ∂

∂uGs(z, u)|u=1

[zm]Gs(z, 1)
. Since ∂

∂uGs(z, u) = sGs−1(z, u), the proposition is

a direct consequence of Eq. (3).

3.2 Random Generation

The random generation is also based on Proposition 1; the general schema for
the uniform random generation of an element of Ts,n,m consists of two steps:

1. Generate uniformly an element A of As,n.
2. Generate the output of the transitions of A such that the sum of their sizes

is m.

The first step can be performed in the general case using [HNS10]. For gen-
erating complete deterministic RDPDA – when s = nα – faster algorithms are
described in [BDN07,CN12]. In the general case, the complexity is O(n3) and
for the complete case, the complexity falls to O(n

3
2). The second step can be

easily done using the classical recursive approach as described in [FZC94] or
using Boltzmann samplers.

With a non-optimized Python implementation running on a 2.5 GHz personal
computer it is possible to generate 100 complete RDPDA with hundreds of states
in few minutes.

4 Influence of the Accepting Condition

Accessibility defined for a RDPDA does not mean that the accessible states
can be reached by a calculus. Therefore the random generation may produce
semantically RDPDA simpler than wanted. One of the requirements may be to
generate RDPDA accepting non empty languages. Another requirement is to
produce only reachable states. Finally, if the final state-empty stack accepting
condition is chosen, it is frequently required that final states are empty stack
reachable.

160 P.-C. Héam and J.-L. Joly

4.1 Emptiness of Accepted Languages

Proposition 4. Whatever the selected accepting condition, the probability that
an accessible RDPDA with n states, s transitions and an output size of m, accepts
a non empty language is greater or equal to s−1

2β(s+m−1) .

Proof. Since the considered RDPDA are accessible, there is at least one outgoing
transition from the initial state. We will evaluate the probability that this tran-
sition is of the form (qinit, a, Zinit, ε, p) with p final. There is no condition on a.
The probability that the stack symbol is Zinit is 1

β since all letters have the same
role. The probability that p is final is 1

2 (see [CP05,BN07]). By Proposition 3
the probability that this transition is a pop transition is s−1

s+m−1 . It follows that
the probability that the transition has the claimed form is s−1

2β(s+m−1) . If this
transition exists, the RDPDA accepts the word a, proving the proposition. �

By Proposition 4, if m = λs, for a fixed λ, then RDPDA accepting non-
empty languages can be randomly generated by a rejection algorithm, with an
expected constant number of rejects. Experiments show that most of the states
are reachable (see Tables 3 and 4).

4.2 Empty-Stack Reachability

Proposition 4 shows it is possible to generate complete RDPDA accepting a non-
empty language (if m and s are of the same order). However, it doesn’t suffice
since many states of generated automata can be unreachable. Under the final-
state and empty-stack condition of acceptance, a final state that is not reachable
with an empty stack is a useless final state, i.e. it cannot be used as a final state
to recognize a word – but it can be involved as any state for accepting a word.
Using for instance [FWW97], one can decide in polynomial time whether a state
is reachable with an empty stack.

Table 1 reports experiments on the average number of empty-stack reachable
states. For this experiment, we consider complete and accessible RDPDA with
α = 2, and β = 2. Since a state is final with a probability 1/2, dividing the num-
ber by 2 in the table provides the average number of final states reachable with

Table 1. Average number of reachable states with an empty stack, α = 2, β = 2

Number of states → 5 10 15 20 30 40 60 100

λ = 0.5 3.56 6.14 8.02 11.1 16.26 15 24.7 49.5

λ = 1 2.6 4.62 4.7 6.16 7.06 7.82 13.85 17.3

λ = 1.5 2.36 3.05 3.61 3.62 5.2 5.5 5.68 5.8

λ = 2 2.0 2.6 2.81 3.4 3.02 3.1 3.21 3.89

λ = 3 1.65 1.8 1.83 1.8 2.26 2.44 2.34 2.6

λ = 5 1.3 1.41 1.43 1.4 1.42 2.1 1.5 1.5

Generation of Real-Time Pushdown Automata 161

an empty stack. Experiments show that if λ is greater than 1, then the average
number of states reachable with an empty stack is quite small. Remind that λ is
the average size of the outputs. For each case, 100 complete RDPDA have been
generated. Clearly the random generation of complete accessible RDPDA based
on the sizes of the output will not produce enough pop-transitions to empty the
stack. Adding a criterion on a minimal number k of pop-transitions may be a
solution that can be achieved in the following way:

1. Choose uniformly k transitions of the underlying finite automata that will be
pop-transitions.

2. Decorate the s − k other transitions with strings for a total size of m.

The experiments reported in Table 1 has also been done for this procedure
to compare the number of rejects. We choose the case α = β = 2 again with at
least 40 % of pop-transitions. The results are reported in Table 2.

Table 2. Average number of reachable states (at least 40 % of pop transitions); α =
β = 2.

Number of states → 5 10 15 20 30 40 60 100

λ = 0.5 4.05 7.75 11.54 16.09 23.63 30.87 46.83 80.62

λ = 1 3.09 5.25 8.19 10.78 13.97 22.55 31.23 44.52

λ = 1.5 2.94 4.44 5.91 8.24 9.06 11.93 18.77 29.58

λ = 2 2.68 4.44 5.19 6.5 8.53 9.39 12.84 19.91

λ = 3 2.53 3.29 4.38 4.81 6.37 7.49 8.72 12.18

λ = 5 2.29 3.31 3.81 4.53 5.09 4.71 5.28 6.42

Imposing a minimal number of pop transitions improves the efficiency (rel-
ative to the number of reachable state) for small values of λ. However it is not
sufficient when λ ≥ 1.

4.3 Reachability (with No Stack Condition)

If we are now interested in the random generation with the final state con-
dition, regardless of the stack, it is interesting to know the number of reach-
able states (which is on average twice the number of final reachable states).
Using [FWW97], the average number of reachable states have been assessed
experimentally. Results are reported in Table 3 for α = 2 and β = 2 and in
Table 4 for α = 3 and β = 5.

For the random generation of complete accessible RDPDA with a final state
accepting condition, our framework seems to be suitable: most of the states
are reachable. For the two other accepting conditions, the value of λ has to be
small. Otherwise, there will be too few pop transitions to clean out the stack.
Proposition 3 confirms this outcome since averagely the number of pop transi-
tions is close to αβn

λ+1 .

162 P.-C. Héam and J.-L. Joly

Table 3. Average number of reachable states, α = 2 and β = 2.

Number of states → 10 20 30 40 50 60 80 100

λ = 1 8.29 14.89 21.5 26.93 32.48 35.55 44.4 52.86

λ = 2 8.73 16.35 25.3 33.45 39.56 47.99 62.32 81.02

λ = 3 8.84 17.67 27.14 36.19 45.7 54.69 73.35 89.26

λ = 5 9.23 18.3 28.06 37.47 47.61 56.7 76.11 95.15

Table 4. Average number of reachable states, α = 3 and β = 5.

Number of states → 10 20 30 40 50 60 80 100

λ = 1 9.72 19.48 29.34 39.71 49.16 59.49 79.6 99.4

λ = 2 9.9 19.7 29.9 39.8 49.4 59.6 79.7 99.5

λ = 3 9.93 19.9 29.92 39.9 49.81 59.9 79.6 99.1

λ = 5 9.95 19.96 29.93 39.9 49.86 59.89 79.79 99.75

Table 5. Average number of random generations to obtain a reachable RDPDA.

Number of states → 10 20 30 40 50 60 80 100

α = 2 λ = 1 293.1 - - - - - - -

β = 2 λ = 1.5 24.6 88.8 278.0 - - - - -

λ = 2 6.9 20.3 14.9 13.2 17.9 25.2 65.9 95.8

λ = 3 1.6 1.5 1.8 2.0 1.9 2.2 2.1 2.1

λ = 5 1.1 1.2 1.1 1.2 1.1 1.2 1.2 1.2

α = 4 λ = 1 3.8 5.5 9.4 15.7 38.4 39.3 76.9 76.9

β = 2 λ = 1.5 1.7 2.0 1.7 1.8 1.9 2.0 2.0 1.9

λ = 2 1.3 1.3 1.31 1.3 1.2 1.2 1.1 1.2

λ = 3 1.1 1.1 1.1 1.1 1.0 1.1 1.1 1.1

λ = 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

α = 2 λ = 1 2.3 5.5 16.9 23.8 20.1 44.1 80.4 214.2

β = 4 λ = 1.5 1.7 1.8 1.2 2.6 3.0 2.0 1.6 1.9

λ = 2 1.4 1.2 1.2 1.1 1.3 1.4 1.3 1.1

λ = 3 1.0 1.2 1.2 1.0 1.1 1.1 1.0 1.2

λ = 5 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

4.4 A Rejection Algorithm for Reachable Complete RDPDA

A natural question is to consider how to generate a complete accessible RDPDA
with exactly n reachable states. An easy way would be to use a rejection approach
by generating a complete accessible RDPDA with n states until obtaining a
reachable RDPDA. Results presented in Tables 3 and 4 seems to prove that this
approach might be fruitful for the parameters of Table 4 but more difficult for

Generation of Real-Time Pushdown Automata 163

Table 6. Random generation of RDPDA.

Accepting condition

Empty stack • General framework does not work: the number of states
reachable with an empty-stack is too small

• Fixing a minimal number of pop transitions (see Sect. 4.2)
works for λ < 1

Final states • General framework works: a significant number of states are
reachable

• A rejection approach is tractable for generating reachable
RDPDA, when both λ ≥ 1.5 and the alphabets are large
enough

the parameters of Table 3. Several experiments have been performed to evaluate
the average number of rejects and results are reported in Table 5: the average
number random generations of RDPDA used to produce 10 reachable RDPDA
was reported. When a “−” is reported in the table, it means that after 300
rejects, no such automata was obtained. These results seem to show that the
rejection approach is tracktable if λ ≥ 2 and if the alphabets are not too small.
With α = β = 2, it works for λ ≥ 3 and for smaller λ’s when the number of
states is small.

5 Conclusion

In this paper a general framework for generating accessible deterministic push-
down automata is proposed. We also experimentally showed that with some
accepting conditions, it is possible to generate pushdown automata where most
states are reachable. The results on the random generation are synthesized in
Table 6. In a future work we plan to investigate how to randomly generate
real-time deterministic automata, with an empty-stack accepting condition and
again, which most states are reachable. We also plan to remove the real-time
assumption, but it requires a deeper work on the underlying automata.

References

[BDN07] Bassino, F., David, J., Nicaud, C.: REGAL: a library to randomly and exhaus-
tively generate automata. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007.
LNCS, vol. 4783, pp. 303–305. Springer, Heidelberg (2007)

[BDN09] Bassino, F., David, J., Nicaud, C.: Enumeration and random generation
of possibly incomplete deterministic automata. Pure Math. Appl. 19, 1–16
(2009)

[BN07] Bassino, F., Nicaud, C.: Enumeration and random generation of accessible
automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)

164 P.-C. Héam and J.-L. Joly

[CF11] Carnino, V., De Felice, S.: Random generation of deterministic acyclic
automata using Markov chains. In: Bouchou-Markhoff, B., Caron, P.,
Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp.
65–75. Springer, Heidelberg (2011)

[CN12] Carayol, A., Nicaud, C.: Distribution of the number of accessible states in
a random deterministic automaton. In: STACS 2012, LIPIcs, vol. 14, pp.
194–205 (2012)

[CP05] Champarnaud, J.-M., Paranthoën, T.: Random generation of dfas. Theor.
Comput. Sci. 330(2), 221–235 (2005)

[DFLS04] Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers
for the random generation of combinatorial structures. Comb. Probab. Com-
put. 13(4–5), 577–625 (2004)

[FS08] Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press, Cambridge (2008)

[FWW97] Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model
checking pushdown systems (extended abstract). In: INFINITY 1997, Elec-
tronic Notes in Theoretical Computer Science, vol. 9 pp. 27–39 (1997)

[FZC94] Flajolet, P., Zimmermann, P., Van Cutsem, B.: A calculus for the random
generation of labelled combinatorial structures. Theor. Comput. Sci. 132(2),
1–35 (1994)

[HNS10] Héam, P.-C., Nicaud, C., Schmitz, S.: Parametric random generation of
deterministic tree automata. Theor. Comput. Sci. 411(38–39), 3469–3480
(2010)

[HU79] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

[Kor78] Korshunov, D.: Enumeration of finite automata. Problemy Kibernetiki 34,
5–82 (1978)

[Kor86] Korshunov, A.D.: On the number of non-isomorphic strongly connected
finite automata. Elektronische Informationsverarbeitung und Kybernetik
22(9), 459–462 (1986)

[Lis06] Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Dis-
cret. Appl. Math. 154(3), 537–551 (2006)

[Nic00] Nicaud, C.: Etude du comportement en moyenne des automate finis et des
langages rationnels. Ph.D. thesis, Université Paris VII (2000)

[Nic14] Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634,
pp. 5–23. Springer, Heidelberg (2014)

[Rob85] Robinson, R.: Counting strongly connected finite automata. In: Alavi, Y.
(ed.) Graph Theory with Applications to Algorithms and Computer Science,
pp. 671–685. Wiley, New York (1985)

[Sak09] Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009)

[Vys59] Vyssotsky, V.: A counting problem for finite automata. Technical report,
Bell Telephon Laboratories (1959)

Subword Metrics for Infinite Words

Stefan Hoffmann1,2 and Ludwig Staiger3(B)

1 Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg,
06099 Halle (Saale), Germany

st.hoffmann@student.uni-halle.de
2 Universität Trier, Fachbereich 4, Informatikwissenschaften, 54286 Trier, Germany

3 Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg,
06099 Halle (Saale), Germany

staiger@informatik.uni-halle.de

Abstract. The space of one-sided infinite words plays a crucial rôle in
several parts of Theoretical Computer Science. Usually, it is convenient to
regard this space as a metric space, the Cantor-space. It turned out that
for several purposes topologies other than the one of the Cantor-space
are useful, e.g. for studying fragments of first-order logic over infinite
words or for a topological characterisation of random infinite words.

Continuing the work of [14], here we consider two different refinements
of the Cantor-space, given by measuring common factors, and common
factors occurring infinitely often. In particular we investigate the rela-
tion of these topologies to the sets of infinite words definable by finite
automata, that is, to regular ω-languages.

Keywords: Metric spaces · ω-words · Subwords · Shift-invariance · Sub-
word complexity

1 Introduction

The space of one-sided infinite words plays a crucial rôle in several parts of
Theoretical Computer Science (see the surveys [18,23]). Usually, it is convenient
to regard this space as a topological space provided with the Cantor topology.
This topology can be also considered as the natural continuation of the left
topology of the prefix relation on the space of finite words (cf. [3]).

It turned out that for several purposes other topologies on the space of infinite
words are also useful [12,16], e.g. for investigations in first-order logic [4], to
characterise the set of random infinite words [2] or the set of disjunctive infinite
words [20] and to describe the converging behaviour of not necessarily hyperbolic
iterative function systems [6,19].

Most of these approaches use topologies on the space of infinite words which
are refinements of the Cantor topology showing a certain kind of shift invari-
ance. In [14] a unified treatment of those shift invariant topologies is given, and
here we built on this work, introducing two new topologies arising naturally from
the consideration of finite subwords occurring in infinite words.
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 165–175, 2015.
DOI: 10.1007/978-3-319-22360-5 14

166 S. Hoffmann and L. Staiger

2 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
|X| ≥ 2, and X∗ be the set (monoid) of words on X, including the empty
word e, and Xω be the set of infinite sequences (ω-words) over X. For w ∈ X∗

and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation product
extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗ ∪ Xω. For a
language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by W , and

by Wω := {w1 · · · wi · · · : wi ∈ W \ {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and pref(P) (infix(P)) is the set of all finite prefixes (infixes) of
strings in P ⊆ X∗ ∪Xω, in particular, pref(P) ⊆ infix(P). We shall abbreviate
w ∈ pref(η) (η ∈ X∗ ∪ Xω) by w � η. If ξ ∈ Xω by infix∞(ξ) ⊆ infix(ξ) we
denote the set of infixes occurring infinitely often in ξ.

Further we denote by P/w := {η : w · η ∈ P} the left derivative or state
of the set P ⊆ X∗ ∪ Xω generated by the word w. We refer to P as finite-
state provided the set of states {P/w : w ∈ X∗} is finite. It is well-known that a
language W ⊆ X∗ is finite state if and only if it is accepted by a finite automaton,
that is, it is a regular language.1

In the case of ω-languages regular ω-languages, that is, ω-languages accepted
by finite automata, are the finite unions of sets of the form W · V ω, where W
and V are regular languages (cf. e.g. [18]). Every regular ω-language is finite-
state, but, as it was observed in [25], not every finite-state ω-language is regular
(cf. also [15]).

It is well-known that the families of regular or finite-state ω-languages are
closed under Boolean operations (see [11,18,23,24] or [15]).

3 The CANTOR Topology and Regular ω-Languages

In this section we list some properties of the Cantor topology on Xω and
regular ω-languages (see [18,23]).

3.1 Basic Properties of the CANTOR Topology

We consider the space of infinite words (ω-words) Xω as a metric space with
metric ρ defined as follows

ρ(ξ, η) := sup{r1−|w| : w ∈ pref(ξ) Δpref(η)} (1)

Here r > 1 is a real number2, Δ denotes the symmetric difference of sets and
we set sup ∅ := 0, that is, ρ(ξ, η) = 0 if and only of ξ = η.
1 Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the Nerode right

congruence of P .
2 It is convenient to choose r = |X|. Then every ball of radius r−n is partitioned into

exactly r balls of radius r−(n+1).

Subword Metrics for Infinite Words 167

Since pref(ξ) Δpref(η) ⊆ (
pref(ξ) Δpref(ζ)

) ∪ (
pref(ζ) Δpref(η)

)
, the

metric ρ satisfies the ultra-metric inequality

ρ(ξ, η) ≤ max{ρ(ξ, ζ), ρ(ζ, η)} .

A subset E ⊆ Xω is open if for every ξ ∈ E there is an ε > 0 such that
η ∈ E for all η with ρ(ξ, η) < ε. Complements of open sets are called closed. The
smallest closed set containing a given set F ⊆ Xω, C(F), is referred to as the
closure of F .

Gδ-sets are countable intersections of open sets and Fσ-sets are countable
unions of closed sets. In a metric space every open set is an Fσ-set, and every
closed set is a Gδ-set.

We list some further well-known properties of the metric space (Xω, ρ).

Property 1. The following is true.

1. The non-empty sets w · Xω are open balls with radius r−|w| in the metric
space (Xω, ρ).3 These balls are simultaneously closed.

2. Open sets in (Xω, ρ) are of the form W · Xω where W ⊆ X∗.
3. A subset E ⊆ Xω is open and closed (clopen) in (Xω, ρ) if and only if

E = W · Xω where W ⊆ X∗ is finite.
4. A subset F ⊆ Xω is closed in (Xω, ρ) if and only if F = {ξ : pref(ξ) ⊆

pref(F)}.
5. The closure of F satisfies C(F) := {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ pref(F)} =⋂

n∈IN

(pref(F) ∩ Xn) · Xω.

The space (Xω, ρ) is a complete space, that is, every sequence4 (ξi)i∈IN where
ρ(ξj , ξk) < r−i whenever i ≤ j, k converges to some ξ ∈ Xω. Moreover, (Xω, ρ)
is a compact space, that is, for every family of open sets (Ei)i∈J such that⋃

i∈J Ei = Xω there is a finite sub-family (Ei)i∈J ′ satisfying
⋃

i∈J ′ Ei = Xω.

3.2 Regular ω-Languages

As a last part of this section we mention some facts on regular ω-languages
known from the literature, e.g. [11,18,23]. Regular ω-languages are well-known
for being the ω-languages definable by finite automata. We will not refer to this
feature, instead we list some basic properties of this family of ω-languages.

The first one shows among other properties the importance of ultimately
periodic ω-words. Denote by Ult := {w ·vω : w, v ∈ X∗\{e}} the set of ultimately
periodic ω-words.

Theorem 1 (Büchi [1]). The family of regular ω-languages is a Boolean alge-
bra, and if F ⊆ Xω is regular, then u · F and F/w are also regular.

Every non-empty regular ω-language contains an ultimately periodic ω-word,
and regular ω-languages E,F ⊆ Xω coincide if and only if E ∩ Ult = F ∩ Ult.
3 Observe that e /∈ pref(ξ) Δpref(η) and Eq. (1) imply ρ(ξ, η) = inf{r−|w| : w �

ξ ∧ w � η}.
4 Those sequences are usually referred to as Cauchy sequences.

168 S. Hoffmann and L. Staiger

For regular ω-languages we have the following topological characterisations anal-
ogous to Property 1.

Property 2. Let F ⊆ Xω be regular and E ⊆ Xω be finite-state. Then in Can-
tor topology the following hold true.

1. F is open if and only if F = W · Xω where W ⊆ X∗ is a regular language.
2. F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F)} and pref(F) is

regular.
3. pref(E) is a regular language.
4. C(E) is a regular ω-language.

Finally, we provide an example of a regular ω-language which is not a Gδ-set and
a necessary and sufficient topological condition when finite-state ω-languages are
regular.

Example 1 (Landweber [8]). For u ∈ X∗ \ {e} the ω-language X∗ · uω is regular,
an Fσ-set but not a Gδ-set. �

Theorem 2 ([15]). Every finite-state ω-language in the class Fσ ∩ Gδ is a
Boolean combination of regular ω-languages open in (Xω, ρ), thus, in particular,
a regular ω-language.

4 Topologies Defined by Subword Metrics

It was shown that regular ω-languages are closely related to the (asymptotic)
subword complexity of infinite words (cf. [17, Sect. 5] and [21]). Therefore, as
other refinements of the Cantor topology we introduce two topologies defined
via metrics on Xω which are based on the sets of subwords occurring or occurring
infinitely often in the ω-words, respectively.

Definition 1 (Subword metrics)

ρI(ξ, η) := sup{r1−|w| : w ∈ (pref(ξ) Δpref(η)) ∪ (infix(ξ) Δ infix(η))}
ρ∞(ξ, η) := sup{r1−|w| : w ∈ (pref(ξ) Δpref(η)) ∪ (infix∞(ξ) Δ infix∞(η))}

These metrics respect except for the length of a shortest non-common prefix of ξ
and η also the length of a shortest non-common subword (non-common subword
occurring infinitely often). Thus

ρI(ξ, η) ≥ ρ(ξ, η) and ρ∞(ξ, η) ≥ ρ(ξ, η), (2)
ρI(ξ, η) = max

{
ρ(ξ, η), sup{r1−|u| : u ∈ infix(ξ) Δ infix(η)}}, and (3)

ρ∞(ξ, η) = max
{
ρ(ξ, η), sup{r1−|u| : u ∈ infix∞(ξ) Δ infix∞(η)}}

. (4)

Similar to the case of ρ one can verify that ρI and ρ∞ satisfy the ultra-metric
inequality. Therefore, balls in the metric spaces (Xω, ρI) and (Xω, ρ∞) are
simultaneously open and closed. Moreover, Eq. (2) shows that both topologies
refine the Cantor topology of Xω, that is, ω-languages open (closed) in Can-
tor topology are likewise open (closed, respectively) in both spaces (Xω, ρI)
and (Xω, ρ∞).

Subword Metrics for Infinite Words 169

4.1 Shift-Invariance

We call a metric space (Xω, ρ′) shift invariant if for every open set E ⊆ Xω and
every word w ∈ X∗ the sets w · E and E/w are also open. In this part we show
that the metric spaces (Xω, ρ∞) and (Xω, ρI) are shift-invariant. According to
Corollary 2 of [14] this property guarantees that the closure of a finite-state
ω-language is again finite-state (cf. the stronger Property 2.4 for the Cantor
topology).

To this end we derive some simple properties of the metrics.

Lemma 1. Let u ∈ X∗ and v, w ∈ Xm. Then

ρ∞(u · ξ, u · η) ≤ ρ∞(ξ, η), (5)
ρ∞(ξ, η) ≤ rm · ρ∞(w · ξ, v · η), (6)

ρI(u · ξ, u · η) ≤ ρI(ξ, η), and (7)
ρI(ξ, η) ≤ rm · ρI(w · ξ, v · η). (8)

Proof. All inequalities are trivially satisfied if ξ = η. So, in the following, we
may assume ξ �= η.

As infix∞(ξ) = infix∞(u · ξ), Eqs. (5) and (6) follow from Eq. (4) and the
respective properties of the metric ρ of the Cantor topology ρ(u · ξ, u · η) ≤
ρ(ξ, η) and ρ(w · ξ, v · η) ≥ ρ(w · ξ, w · η) = r−|w| · ρ(ξ, η).

Let ρI(ξ, η) = r−n, that is, infix(ξ) ∩ Xn = infix(η) ∩ Xn and w � ξ and
w � η for some w ∈ Xn. Then, obviously, v � u · ξ and v � u · η for some
v ∈ Xn. Moreover, infix(u · ξ) ∩ Xn = (infix(u · w) ∩ Xn) ∪ (infix(ξ) ∩ Xn) =
infix(u · η) ∩ Xn. This proves Eq. (7).

If w �= v then in view of ρ(w ·ξ, v ·η) ≥ r−(m−1), Eq. (8) is obvious. Let w = v
and ρI(ξ, η) = r−n for some n ∈ IN. We have to show that ρI(w · ξ, w · η) ≥
r−(n+m).

If ρ(ξ, η) = r−n then ρ(w · ξ, w · η) = r−(n+m) and Eq. (3) proves ρI(w · ξ, w ·
η) ≥ r−(n+m).

If ρ(ξ, η) < r−n in view of ρI(ξ, η) = r−n we have (infix(ξ) Δ infix(η)) ∩
Xn+1 �= ∅, that is, u ∈ (infix(ξ) Δ infix(η)) ∩ Xn+1 for some u ∈ infix(ξ),
say. Now, it suffices to show (infix(wξ) Δ infix(wη)) ∩ Xn+m+1 �= ∅. Assume
v′u /∈ infix(wξ) Δ infix(wη) for all v′ ∈ Xm. Then u ∈ infix(ξ) implies v′u ∈
infix(wξ) ∩ infix(wη) for some v′ ∈ Xm. Since |w| = |v′| = m, we have u ∈
infix(η), a contradiction. �

As a consequence we obtain our result.

Corollary 1. The topologies (Xω, ρI) and (Xω, ρ∞) are shift invariant.

Proof. We use the fact that, in view of Lemma 1, the mappings Φu and Φm

defined by Φu(ξ) := u · ξ and Φm(w · ξ) := ξ for w ∈ Xm are continuous w.r.t.
the metrics ρI and ρ∞, respectively.

Thus, if F ⊆ Xω is open in (Xω, ρI) or (Xω, ρ∞) the preimage Φ−1
u (F) = F/u

and, for m = |w|, also w · F = Φ−1
m (F) ∩ w · Xω are open sets. �

170 S. Hoffmann and L. Staiger

4.2 Balls in (Xω, ρI) and (Xω, ρ∞)

Denote by KI(ξ, r−n) and K∞(ξ, r−n) the open balls5 of radius r−n around ξ
in the spaces (Xω, ρI) and (Xω, ρ∞), respectively. For w � ξ with |w| = n + 1
and W := Xn+1 ∩ infix(ξ), V := Xn+1 ∩ infix∞(ξ), W := Xn+1 \ infix(ξ) and
V := Xn+1 \ infix∞(ξ) we obtain the following description of balls via regular
ω-languages.

KI(ξ, r−n) = w · Xω ∩ ⋂

u∈W

X∗ · u · Xω \ ⋃

u∈W

X∗ · u · Xω, and (9)

K∞(ξ, r−n) = w · Xω ∩ X∗ · (
(

∏

u∈V

X∗ · u)ω \ ⋃

u∈V

X∗ · u · Xω
)
. (10)

In Eq. (10) the order of the words u ∈ V can be arbitrarily chosen. In partic-
ular, Eqs. (9) and (10) show that balls in (Xω, ρI) and (Xω, ρ∞) are regular
ω-languages. Thus every non-empty open subset in each of the spaces contains
an ultimately periodic ω-word.

An immediate consequence of the representations in Eqs. (9) and (10) is the
following relation between the space (Xω, ρI) and the Cantor space (Xω, ρ).

Lemma 2

1. Every ball KI(ξ, r−n) is a Boolean combination of regular ω-languages open in
(Xω, ρ), therefore, simultaneously an Fσ- and a Gδ-set in Cantor topology.

2. Every open set in (Xω, ρI) is an Fσ-set in Cantor topology.

Proof

1. It is well-known know that open sets in a metric space are simultaneously
Fσ- and Gδ-sets. Then, according to Property 1, the set KI(ξ, r−n) is simul-
taneously an Fσ- and Gδ-set in the Cantor topology.

2. is a consequence of 1 and the fact that there are only countably many open
balls in (Xω, ρI). �

Equations (9) and (10) and Lemma 2 show a connection between certain regular
ω-languages and the open sets in (Xω, ρI). It would be interesting if we could
characterise some regular ω-languages open in (Xω, ρI) using Cantor topology.
The next example considering the simple case of closed sets, however, shows that
not every regular ω-language closed in Cantor topology is open in (Xω, ρI).

Example 2 ([7]). Consider the regular ω-language F = {1, 00}ω ⊆ {0, 1}ω which
is closed in the Cantor topology. Assume F to be open in (Xω, ρI). Then
η =

∏
i∈IN 102i ∈ F and, therefore, KI(η, r−n) ⊆ F for some n ∈ IN, n ≥ 1.

Consider ξ =
∏n

i=0 102i · ∏∞
i=2n+1 10i /∈ F . Then we have

∏n
i=0 102i � η,

∏n
i=0 102i � ξ and, moreover,

infix(ξ) ∩ {0, 1}2n =
(
infix(

∏n
i=0 102i) ∪ 0∗ · 1 · 0∗ ∪ 0∗) ∩ {0, 1}2n

= infix(η) ∩ {0, 1}2n.

It follows ρI(ξ, η) ≤ r−2n, that is, ξ ∈ KI(η, r−n) ⊆ {1, 00}ω, a contradiction. �
5 They are also closed balls of radius r−(n+1).

Subword Metrics for Infinite Words 171

Using the Morse-Hedlund Theorem (cf. also the proof of Theorem 1.3.13 of [9])
one obtains special representations of small balls containing ultimately periodic
ω-words. To this end we derive the following lemma.

Lemma 3. Let w, u ∈ X∗, u �= e and ξ ∈ Xω. Then w · u � ξ and infix(ξ) ∩
X |w·u| = infix(w · uω) ∩ X |w·u| imply ξ = w · uω.

Proof. First observe that |infix(w · uω) ∩ X |w·u|| = |infix(w · uω) ∩ X |w·u|+1|.
Thus, for every v ∈ infix(w · uω) ∩ X |w·u|, there is a unique v′ ∈ infix(w · uω) ∩
X |w·u| such that v � a · v′ for some a ∈ X. Consequently, the ω-word ξ ∈ Xω

with w ·u � ξ and infix(ξ)∩X |w·u| = infix(w · uω)∩X |w·u| is uniquely specified.

Lemma 4. Let w · uω ∈ Xω where |w| ≤ |u|, |u| > 0, and let m > |w| + |u| and
n > |u|. Then

KI(w · uω, r−m) = {w · uω}, and (11)
K∞(w · uω, r−n) = w′ · X∗ · uω where w′ � w · un and |w′| = n. (12)

Proof. Every ξ ∈ KI(w · uω, r−m) satisfies w · u � ξ and infix(ξ) ∩ Xm =
infix(w · uω) ∩ Xm, and the assertion of Eq. (11) follows from Lemma 3.

If ξ ∈ K∞(w · uω, r−n) then there is a tail ξ′ of ξ such that u � ξ′ and
infix∞(ξ) ∩ Xn = infix(ξ′) ∩ Xn = infix(uω) ∩ Xn whence, again by Lemma 3,
ξ′ = uω. �

This allows us to state the following property concerning isolated points6 in
the spaces (Xω, ρI) and (Xω, ρ∞). The additional Item 3 in connection with
Lemma 2.2 shows a further difference between both spaces.

Corollary 2

1. The set of isolated points of the space (Xω, ρI) is Ult.
2. The space (Xω, ρ∞) has no isolated points and all sets of the form X∗ · uω

are simultaneously closed and open.
3. In the space (Xω, ρ∞) there are open sets which are not Fσ-sets in Cantor

topology.

Proof. Since every non-empty open subset of (Xω, ρI) and also (Xω, ρ∞) con-
tains an ultimately periodic ω-word, every isolated point has to be ultimately
periodic. Now Eq. (11) shows that every w · uω is an isolated point in (Xω, ρI),
and Eq. (12) proves that (Xω, ρ∞) has no isolated points. The remaining part
of Item 2 follows from Eq. (12) and X∗ · uω =

⋃
w∈Xn w · X∗ · uω.

Finally, it is known that Xω \ X∗ · uω is not an Fσ-set in Cantor topology
(cf. Example 1). �
6 A point ξ is referred to as isolated if ρ′(ξ, η) ≥ εξ for all η �= ξ. Here the distance

εξ > 0 may depend on ξ.

172 S. Hoffmann and L. Staiger

4.3 Non-Preservation of Regular ω-Languages

In this section we investigate whether similar to the Cantor topology the clo-
sure of a finite-state ω-language is always regular in the spaces (Xω, ρI) and
(Xω, ρ∞).

In contrast to the Cantor topology it is, however, not true that the closure
of finite-state ω-languages are regular. We can even show that in both spaces
(Xω, ρI) and (Xω, ρ∞) there are regular ω-languages with non-regular closures.

Since we do not have a characterisation like the Property 1.5 for the closures
CI and C∞ in the spaces (Xω, ρI) and (Xω, ρ∞), respectivly, we circumvent this
obstacle by presenting examples where the closure CI(F) or C∞(F) of a regular
ω-language F is shown to be larger than F but does not contain more ultimately
periodic ω-words than F . In view of Theorem 1 this implies that the closures
cannot be regular ω-languages.

For the closure CI we use that, according to Example 1 the ω-language {0, 1}∗·
0ω is no Gδ-set in the Cantor topology, thus in view of Lemma2.2 not closed
in (Xω, ρI).

Example 3. We show that CI({0, 1}∗ · 0ω) ∩ Ult = {0, 1}∗ · 0ω. Let w · uω /∈
{0, 1}∗ · 0ω. Then u /∈ {0}∗ and 0|w·u| /∈ infix(w · uω). Now Eq. (9) yields KI(w ·
uω, r−|w·u|)∩X∗ · 0|w·u| ·Xω = ∅. Thus ρI(w ·uω, v · 0ω) ≥ r−|w·u| for all v ∈ X∗

whence w · uω /∈ CI({0, 1}∗ · 0ω). The other inclusion being trivial.
Assume CI({0, 1}∗ · 0ω) were a regular ω-language. Then Theorem 1 implies

CI({0, 1}∗ · 0ω) = {0, 1}∗ · 0ω, that is, {0, 1}∗ · 0ω is closed in (Xω, ρI), a contra-
diction to Lemma 2.2 �

Since {0, 1}∗ · 0ω is closed in (Xω, ρ∞), we cannot use this ω-language in that
case.

Example 4. Let F := {0, 1}∗ · ((00)∗1)ω. As explained above, it suffices to show
that C∞(F) ∩ Ult = F ∩ Ult and C∞(F) ⊃ F .

Let w · uω ∈ C∞(F). Then there is a ξ ∈ F such that ρ∞(w · uω, ξ) < r−|wu|.
According to Lemma 4 we have ξ ∈ w · X∗ · uω. Thus uω = u′ · η where η ∈
((00)∗1)ω whence w · uω = w · u′ · η ∈ F .

Finally, consider ζ =
∏∞

j=0 10j = 110100 · · · . Since ζ has infinitely many
infixes 10j1 where j is odd, ζ /∈ F . Moreover, infix∞(ζ) ∩ Xn = {0n} ∩ {0j · 1 ·
0n−j−1 : 0 ≤ j < n}. Consider the ω-words ξi :=

∏2i
j=0 10j · (1 · 02i)ω ∈ F . It

holds pref(ξi) ∩ Xn = pref(ζ) ∩ Xn and infix∞(ξi) ∩ Xn = infix∞(ζ) ∩ Xn for
n ≤ 2i + 1. This implies ρ∞(ξi, ζ) ≤ r−2i, that is, limi→∞ ξi = ζ ∈ C∞(F) in
(Xω, ρ∞). �

5 Completeness and Compactness

Here we show that the spaces (Xω, ρI) and (Xω, ρ∞) are neither complete nor
compact.

To show that they are not complete we consider the sequence (ξi)i∈IN where
ξi :=

∏∞
j=i 0j1. This sequence converges in Cantor topology to the limit point

Subword Metrics for Infinite Words 173

0ω. Since (Xω, ρI) and (Xω, ρ∞) refine (Xω, ρ), the limit points, if they exist,
should be the same. But infix(ξi) and infix∞(ξi) both contain the word 1 which
is not in infix(0ω) = infix∞(0ω). Thus ρI(ξi, 0ω) = ρ∞(ξi, 0ω) = 1.

It remains to show that the sequence (ξi)i∈IN fulfils the Cauchy property.
To this end we observe that for j ≥ i we have 0i � ξj and infix(ξj) ∩ Xi =
infix∞(ξj) ∩ Xi = {0i} ∪ {0m10i−m−1 : 0 ≤ m < i}. Thus ρI(ξj , ξk) ≤ r−i and
ρ∞(ξj , ξk) ≤ r−i for j, k ≥ i.

In general it holds that no topology refining the Cantor topology is com-
pact. A proof uses Corollary 3.1.14 in [5]. Here we provide the more illustrative
and seemingly stronger examples of partitions of the whole space Xω into infi-
nitely many open subsets.

Example 5. Let X = {0, 1}. Then the sets 0i1 · Xω for i ∈ IN are open in the
Cantor topology, hence open in (Xω, ρI) and according to Corollary 2.1 the set
{0ω} is also open (Xω, ρI).

Then
{{0ω}} ∪ {

0i1 · Xω : i ∈ IN
}

is a partition of Xω into sets open in
(Xω, ρI). �

Example 6. Let X = {0, 1}. Then the sets 0i1 · Xω for i ∈ IN are open in the
Cantor topology, hence open in (Xω, ρ∞) and according to Corollary 2.2 the
set X∗ · 0ω is open and closed in (Xω, ρ∞).

Then
{
X∗ · 0ω

} ∪ {
0i1 · Xω \ X∗ · 0ω : i ∈ IN

}
is a partition of Xω into sets

open in (Xω, ρ∞). �

6 Subword Complexity

In Sect. 4 we mentioned that regular ω-languages are closely related to the
(asymptotic) subword complexity of infinite words. Adapting the metrics ρI

and ρ∞ to subwords we may draw some connections to the level sets F
(τ)
γ of the

asymptotic subword complexity (see [17,21]).
First we introduce the concept of asymptotic subword complexity.

Definition 2 (Asymptotic subword complexity). τ(ξ) := lim
n→∞

log|X| |infix(ξ)∩Xn|
n

Using the inequality |infix(ξ) ∩ Xn+m| ≤ |infix(ξ) ∩ Xn| · |infix(ξ) ∩ Xm| it is
easy to see that the limit in Definition 2 exists and

τ(ξ) = inf
{ log|X| |infix(ξ) ∩ Xn|

n
: n ∈ IN ∧ n ≥ 1

}
. (13)

Equation (5.2) of [17] shows that in Definition 2 and Eq. (13) one can replace
the term infix(ξ) by infix∞(ξ).

Let, for 0 < γ ≤ 1, F
(τ)
γ := {ξ : ξ ∈ Xω ∧ τ(ξ) < γ} be the lower level sets

of the asymptotic subword complexity. For γ = 0 we set F
(τ)
0 := Ult (instead of

F
(τ)
0 = ∅). We want to show that these sets are open in (Xω, ρI) and (Xω, ρ∞).

As a preparatory result we derive the subsequent Lemma 5.

174 S. Hoffmann and L. Staiger

Let En(ξ) := {η : infix(η) ∩ Xn ⊆ infix(ξ)} and E′
n(ξ) := {η : infix∞(η) ∩

Xn ⊆ infix∞(ξ)} be the sets of ω-words having only infixes or infixes occurring
infinitely often of length n of ξ, respectively. These sets can be equivalently
described as

En(ξ) = Xω \ X∗ · (Xn \ infix(ξ)) · Xω and
E′

n(ξ) = X∗ · (
Xω \ X∗ · (Xn \ infix∞(ξ)) · Xω

)
, respectively

which resembles in some sense the characterisation of open balls in Eqs. (9) and
(10). In fact, it appears that the sets En(ξ) and E′

n(ξ) are open in the respective
spaces (Xω, ρI) and (Xω, ρ∞).

Lemma 5. Let ξ ∈ Xω. Then ξ ∈ En(ξ) ∩ E′
n(ξ), the set En(ξ) is open in

(Xω, ρI) and the set E′
n(ξ) is open in (Xω, ρ∞).

Proof. The first assertion is obvious. For a proof of the second one we show that
η ∈ En(ξ) implies that the ball KI(η, r−n) is contained in En(ξ).

Let η ∈ En(ξ) and ζ ∈ KI(η, r−n). Then, ρI(η, ζ) < r−n, that is, in particu-
lar, infix(η) ∩ Xn = infix(ζ) ∩ Xn, whence ζ ∈ En(ξ).

The proof for E′
n(ξ) is similar. �

This much preparation enables us to show that the level sets are open sets.

Theorem 3. Let 0 ≤ γ ≤ 1. Then the sets F
(τ)
γ are open in (Xω, ρI) and

(Xω, ρ∞).

Proof. For γ = 0 we have F
(τ)
γ = Ult which, according to Corollary 2, is open in

(Xω, ρI) as well as in (Xω, ρ∞).
Let γ > 0 and τ(ξ) < γ. We show that then En(ξ) ⊆ F

(τ)
γ and E′

n(ξ) ⊆ F
(τ)
γ

for some n ∈ IN. Together with Lemma 5 this shows that F
(τ)
γ contains, with

every ξ, open sets containing this ξ.
If τ(ξ) < γ then in view of Eq. (13) we have

log|X| |infix(ξ)∩Xn|
n < γ for some

n ∈ IN. Then for every η ∈ En(ξ) it holds τ(η) ≤ log|X| |infix(ξ)∩Xn|
n < γ and,

consequently, En(ξ) ⊆ F
(τ)
γ .

The proof for (Xω, ρ∞) is similar using infix(∞) instead of infix and the
respective modification of Eq. (13) whose validity was mentioned above. �

The proof shows also that ξ ∈ F
(τ)
γ implies that Xω \X∗ · (Xn \ infix(ξ)) ·Xω ⊆

F
(τ)
γ for some n > 0. Thus F

(τ)
γ is a countable union of regular ω-languages closed

in Cantor topology, hence an Fσ-set in Cantor topology. The sets F
(τ)
γ are

finite-state7 non-regular ω-languages because their complement Xω \F
(τ)
γ is non-

empty and does not contain any ultimately periodic ω-word. Thus, in view of
Theorem 2, they are not Gδ-sets in Cantor-space and they are examples of sets
open in (Xω, ρI) and (Xω, ρ∞) which are non-regular Fσ-sets in Cantor-space.

7 In particular, they satisfy F
(τ)
γ /w = F

(τ)
γ for all w ∈ X∗.

Subword Metrics for Infinite Words 175

References

1. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the 1960 International Congress for Logic, pp. 1–11. Stanford Univ.
Press, Stanford (1962)

2. Calude, C.S., Marcus, S., Staiger, L.: A topological characterization of random
sequences. Inform. Process. Lett. 88, 245–250 (2003)

3. Calude, C.S., Jürgensen, H., Staiger, L.: Topology on words. Theoret. Comput.
Sci. 410, 2323–2335 (2009)

4. Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. In:
Albers, S., Marion, J.-Y. (eds.) Proceedings of the STACS 2009, pp. 325–336.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2009)

5. Engelking, R.: General Topology. Państwowe wydawnictwo naukowe, Warszawa
(1977)

6. Fernau, H., Staiger, L.: Iterated function systems and control languages. Inform.
Comput. 168, 125–143 (2001)

7. Hoffmann, S.: Metriken zur Verfeinerung des Cantor-Raumes auf Xω. Diploma
thesis, Martin-Luther-Universität Halle-Wittenberg (2014)

8. Landweber, L.H.: Decision problems for ω-automata. Math. Syst. Theory 3, 376–
384 (1969)

9. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

10. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Inform. Control 9, 521–530 (1966)

11. Perrin, D., Pin, J.-E.: Infinite Words. Elsevier, Amsterdam (2004)
12. Redziejowski, R.R.: Infinite word languages and continuous mappings. Theoret.

Comput. Sci. 43, 59–79 (1986)
13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,

Berlin (1997)
14. Schwarz, S., Staiger, L.: Topologies refining the Cantor topology on Xω. In: Calude,

C.S., Sassone, V. (eds.) Theoretical Computer Science. IFIP, vol. 323, pp. 271–285.
Springer, Berlin (2010)

15. Staiger, L.: Finite-state ω-languages. J. Comput. Syst. Sci. 27, 434–448 (1983)
16. Staiger, L.: Sequential mappings of ω-languages. ITA 21, 147–173 (1987)
17. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103,

159–194 (1993)
18. Staiger, L.: ω-languages. In: [13], vol. 3, pp. 339–387
19. Staiger, L.: Weighted finite automata and metrics in Cantor Space. J. Automata

Lang. Comb. 8, 353–360 (2003)
20. Staiger, L.: Topologies for the set of disjunctive ω-words. Acta Cybern. 17, 43–51

(2005)
21. Staiger, L.: Asymptotic subword complexity. In: Bordihn, H., Kutrib, M., Truthe,

B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 236–245. Springer, Heidelberg
(2012)

22. Staiger, L., Wagner, K.: Automatentheoretische und automatenfreie Charakter-
isierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informa-
tionsverarbeitung und Kybernetik 10, 379–392 (1974)

23. Thomas, W.: Automata on infinite objects. In: Van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

24. Thomas, W.: Languages, automata, and logic. In: [13], vol. 3, pp. 389–455
25. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Sibirsk. Mat.

Ž. 3, 103–131 (1962). (Russian; English translation: AMS Transl. 59, 23–55, (1966))

From Two-Way to One-Way Finite
Automata—Three Regular Expression-Based

Methods

Mans Hulden(B)

University of Colorado Boulder, Boulder, USA
mans.hulden@colorado.edu

Abstract. We describe three regular expression-based methods to char-
acterize as a regular language the language defined by a two-way automa-
ton. The construction methods yield relatively simple techniques to
directly construct one-way automata that simulate the behavior of
two-way automata. The approaches also offer conceptually uncompli-
cated alternative equivalence proofs of two-way automata and one-way
automata, particularly in the deterministic case.

1 Introduction

An early result in automata theory is that of the equivalence of two-way and
one-way finite automata. Rabin and Scott [13] outlined a proof of this equiva-
lence by analyzing the so-called crossing sequences that occur during the accep-
tance of a string by a two-way automaton. This proof was slightly simplified by
Shepherdson [15]. Later, Vardi [16] has shown equivalence through a subset con-
struction that is used to characterize the complement of the language accepted
by a two-way nondeterministic automaton. The crossing sequences proof and
construction is more involved if one wants to include non-deterministic two-way
automata (2NFA) in addition to deterministic ones (2DFA). While these meth-
ods in principle allow for the construction of the equivalent one-way automaton,
the calculations involved are rather complex. In the crossing sequences approach,
this calls for the analysis of the possible crossing sequences for possible prefixes of
strings, and the complement construction requires laborious bookkeeping. While
two-way automata have been analyzed intensely, especially as regards theoret-
ical size bounds in conversions from two-way to one-way automata and state
complexity of operations [3,4,7,8,10–12], practical conversion algorithms have
received less attention. The intricacies involved in previous conversion methods
may also be reflected in the paucity of actual implementations for converting
arbitrary two-way to one-way automata.

In this paper, we describe a new method to characterize the language
accepted by some two-way automata (2DFA/2NFA). Our approach is very direct:
we model the set of accepting computation sequences of a two-way automaton
as strings in a regular language that includes annotations about the behavior of
a two-way automaton. Following this, a homomorphism is applied to delete the
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 176–187, 2015.
DOI: 10.1007/978-3-319-22360-5 15

From Two-Way to One-Way Finite Automata 177

annotations, yielding the set of actual strings accepted by a two-way automaton.
Central to the modeling is a compact simulation of the accepting sequences of
a given 2DFA/2NFA. Apart from providing a construction method, the app-
roach also gives an alternative to the equivalence proofs of one-way and two-way
automata customarily provided in most textbooks on automata (e.g. [5,9,14]).

2 Notation and Definitions

We define a 2NFA M the standard way as a 5-tuple (Σ,Q,Q0, δ, F), where Σ
denotes the alphabet, Q the finite set of states, a set of initial states Q0 ⊆ Q.
The transition function is denoted by δ : Q × Σ → 2Q×{L,S,R}, and the set of
final states by F ⊆ Q. If |δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ and |Q0| = 1,
the automaton is deterministic. We say M accepts a string w whenever there
is a transition path in M from an initial state to a final state such that M
at each state moves its read head in the direction specified by the transition
function (to the left (L), right (R), or staying (S)) and ends up at the right edge
of w. Formally, we can define acceptance as a specific series of configurations
using strings of the format Σ∗QΣ∗. A string wqx describes the circumstance
where the input string is wx and q is the current state when M is scanning the
first symbol of x. We say wpax � waqx is a permitted change of configuration
if (q,R) ∈ δ(p, a), as is wbpax � wpbax if (q, L) ∈ δ(p, a) and |b| = 1, and
wpax � wqax if (q, S) ∈ δ(p, a). We say M accepts w if there exists some choice
of a sequence of configuration changes such that pw � . . . � wq, where p ∈ Q0

and q ∈ F .
In the following, we also make use of extended regular expressions to denote

operations on regular languages. We will make use of the following standard
notational devices in regular expressions: a is a single symbol drawn from an
alphabet, ε is the empty string, and ∅ the empty language. Additionally we use
the following operators: L1L2 (denoting concatenation), L1∪L2 (union), L1∩L2

(intersection), ¬ L1 (complement), L1 − L2 (subtraction), L∗
1 (Kleene closure)

and L+
1 (Kleene plus). We also make use of the fact that regular languages are

closed under homomorphisms h : Γ ∗ → Σ∗.

0

a,R
1b,R

a,R

2

b,L

b,L

a,R

Fig. 1. Example (deterministic) 2DFA M with initial state 0. The language described
is (a|ba)∗(b|ε).

178 M. Hulden

3 Overview

The general idea behind the three methods given below is to simulate accepting
or nonaccepting move sequences of a two-way automaton by a specific string
representation, the correctness of which is locally checkable, that is, verifiable
by a one-way automaton. The verification can be modeled through regular
expressions.

We model the set of accepting computations of a two-way automaton M oper-
ating over the alphabet Σ as a regular set of strings over an auxiliary alphabet
Γ and the original alphabet Σ. In particular, strings in this language consist of
symbols from Σ (the alphabet of M), interspersed with auxiliary substrings that
characterize relevant movements of the 2DFA/2NFA. The auxiliary alphabet Γ
consists of symbols representing states in Q as well as symbols corresponding to
possible moves {L, S,R,C}, i.e. Γ = {q0, . . . , qn, L, S,R,C}. The symbol C is a
move that models a crash (only used in the second construction method). We
enforce that these auxiliary substrings always come in triplet-size chunks where
the three-symbol sequence encodes a move by M in the order (1) the source
state, (2) the target state, and (3) the direction of movement (left, right, stay).

Fig. 2. Example of an accepting sequence for the 2DFA in Fig. 1 in our string encod-
ing (a). The arrows show which source-target-direction triplets license the presence of
others in the first construction method. The figure (b) illustrates the computation of
the 2DFA the the string effectively encodes.

Figure 2 shows such a sequence in our encoding. The intuition behind the
constructions is that, out of all possible sequences over (Γ ∪ Σ)∗, we want to
characterize all and only those that fulfill criteria that correspond to acceptance
or non-acceptance of a string over Σ by some two-way automaton M . We do so
by providing additional local constraints on these strings to simulate the legal
movements in a 2DFA/2NFA.

In such an string, we say that any subsequence of symbols from Γ is in the
same position as another subsequence from Γ so long as there are no intervening
symbols from Σ between the two. For example, in Fig. 2, 11R and 20R are in the
same position, while 20R is in the position preceding 12L.

From Two-Way to One-Way Finite Automata 179

4 Method 1: 2DFA to 1NFA/1DFA

In this construction method, which applies to deterministic two-way automata
only, the idea is to declare a language over (Γ ∪ Σ)∗ in such a way that the first
Γ -triplet at the left edge corresponds to movement from an initial state, and that
any other two-symbol sequences representing state pairs present at any position
need to all be ‘licensed’ by some previous move from a previous position. We
also require that all strings end in a qq sequence, reflecting a halt in a final state
at the right edge of a string.

More formally, the conditions for well-formedness of a string w in our encod-
ing for an accepting sequence by a 2DFA M can be specified as follows:

(1) The string w is of the form (T+a)∗ Tend, where T is any three-symbol
sequence pqD representing transitions of M where p and q correspond to
a valid transition p → q in M between states in Q using symbol a, and
D ∈ {L, S,R} denotes the corresponding direction of movement in M . Tend

is a two-symbol string qq, where q is any final state in M .
(2) Additionally, when w contains a two-symbol sequence pq, then at least one

the following holds:
(i) p corresponds to the initial state Q0 in the definition of M and is at the

left edge of w.
(ii) there is a substring pS in the same position in w.
(iii) there is a substring pL in the following position in w.
(iv) there is a substring pR in the preceding position in w.

For example, in Fig. 2, the first occurrence of 01 is permitted since it occurs
at the left edge of the word and 0 is an initial state in M (by condition (2i)),
while the second occurrence is permitted because the preceding position contains
0R (by condition (2iv)). Likewise, 20 is permitted because it is followed by 2L in
the following position (condition (2iii)), etc.

Note that the constraints above say nothing about the order in which the
triplets themselves are permitted. There may also be arbitrary repetitions of the
same triplets within a position, so long as their presence is allowed by conditions
(1) and (2i-iv); these two questions are irrelevant for purposes of the encoding.
By the same token, the encoding says nothing about the specific order in which
the moves actually occur when M accepts a word w—only that each substring
representing a move or halting be licensed by some other substring representing
another move, save for the base case of the initial state symbol, which is always
allowed as the first symbol in the string.

The sets of strings that satisfy (1) and (2i-iv) is regular, and an automaton
that accepts the sets is easily constructed (see below for precise regular expres-
sions).

If we call the language where all strings fulfill condition (1) Lbase and the
language where all strings fulfill conditions (2i-iv) Llicense, we have, for a homo-
morphism that deletes symbols in Γ , h(a) = ε for all a in Γ :

L1 = h(Lbase ∩ Llicense) (1)

180 M. Hulden

Theorem 1. M accepts a word w iff w ∈ L1.

Proof. First, consider the case where M accepts w. By induction on the num-
ber of steps in the computation of M , we see that (Lbase ∩ Llicense) then con-
tains a string ending in qq, for some final state q, and hence that w ∈ L1.
In the other direction: all strings in (Lbase ∩ Llicense) end in the sequence
qq (by definition). Now, such a string qq is only permitted by the presence
of some other move encoding at some position which in turn is permitted by
some previous move, etc. (by 2ii-iv), forming a sequence of position-state pairs
(p1, q1) ← (p2, q2) . . . ← (pk, qk), tracing the computation backward. In such
a sequence no position-state pair may repeat, since—by assumption—the two-
way automaton is deterministic. In other words, repetition of a state-position
pair (pi, qj) with symbol a at position pi would imply that |δ(qi, a)| > 1. Since
there are only |Q|n possible unique position-state pairs for a string of length n,
this sequence must terminate, which is only possible by (2i). Hence, the final
substring qq must ultimately be licensed by the initial state and the sequence
describes a legitimate accepting path in M . ��

5 Construction Details

The construction described above can be immediately implemented for an arbi-
trary 2DFA M .

We use the alphabets:

• Σ (of M)
• Γ = {q0, . . . , qn, L, S,R}
• Δ = Σ ∪ Γ (as shorthand)

The language Lbase, which enforces the general structure of the string, can
be defined as:

Lbase =
(
T+
a1

a1 ∪ . . . ∪ T+
an

an

)∗
Lend (2)

for symbols a1, . . . , an ∈ Q. Here, Tai
contains all three-symbol strings pqD

corresponding to M ’s transitions p → q reading symbol ai and moving in the
direction D. Formally, pqD ∈ Tai

iff (q,D) ∈ δ(p, ai).
Lend is the set of two-symbol strings qq, where q is a halting state in M .

That is, qq ∈ Lend iff q ∈ F .
To describe Llicense, we make use of the regular expression idiom

¬(¬S T ¬U)

to convey the idea that strings drawn from the set T must either be preceded
by some string from the set S or followed by some string from U . This allows us
to express the relevant parts of (2i-iv) above concisely. We assume that we have
a set of single symbols Q ⊂ Γ , representing the states of M . Now conditions
(2i-iv) for some state q are expressed as:

From Two-Way to One-Way Finite Automata 181

Llicenceq = ¬(¬(Z ∪ Δ∗qSΓ ∗
︸ ︷︷ ︸
‘stay’ move

in same

position to

the left

∪ Δ∗qRΓ ∗ΣΓ ∗)
︸ ︷︷ ︸
‘right’ move in

previous position

qQ¬(Γ ∗ΣΓ ∗qLΔ∗
︸ ︷︷ ︸
‘left’ move in

following posi-

tion

∪ Γ ∗qSΔ∗)
︸ ︷︷ ︸

‘stay’ move in

same position

to the right

)

(3)
Here,

Z =

{
ε if q ∈ Q0

∅ otherwise
(4)

In other words, a sequence qQ (the symbol for state q followed by any other
state symbol), must be preceded by right move in the previous position or a stay
move in the same position with target state q, or followed by a stay move in
the same position or a left move in the following position with target state q.
Note that the ‘stay’ move is brought up twice in the expression because within a
position, the moves listed are in arbitrary order, and we must therefore account
for the possibility that an S-move can occur either to the left or the right of the
relevant state symbol q. Additionally, symbols representing an initial state may
always occur initially in the string (modeled by Z).

For a 2DFA M with states Q = q0, . . . , qn, the language L1 is then

h(Lbase ∩ Llicense0 ∩ . . . ∩ Llicensen) (5)

6 Method 2: 2NFA to 1DFA by Complement
Construction

The previous method cannot be used to convert a nondeterministic two-way
automaton to a 1DFA as is seen from the correctness argument which hinges
on the two-way automaton being deterministic. However, we can use the same
string encoding to create a similar setup where we model as a regular set all and
only the words the are rejected by some 2NFA, i.e. the complement of accep-
tance.

The only minor change to the encoding used previously is in the auxiliary
alphabet, which now becomes Γ = {q0, . . . , qn, L, S,R,C}. the symbols L, S,R
are as before, and the symbol C is an extra arbitrary symbol we use to denote a
‘crash’ configuration—either a state that has no outgoing transitions with some
symbol, or a nonfinal state at the right edge.

In this construction, the idea is to capture all possible failing paths as a reg-
ular language by (1) insisting that all initial states be present as source states in
the first position of the string encoding, and (2) requiring that each move encod-
ing be followed by another move encoding or a crash—note that this enforce-
ment is different from method 1 where we permitted a state-pair in the string if
it resulted from a legitimate previous move; here we require a subsequent move
for any state-pair. In other words, the presence of each transition triplet pqD

182 M. Hulden

requires the presence of all legal transition triplets qrD in the following, preced-
ing, or the current positions (for moves right, left, stay). For any state q without
an outgoing transition with the symbol in that position, this requirement will
also be satisfied by a triplet qqC. Such crash triplets do not themselves require
a follow-up move. This encoding ensures that if a valid path through a 2NFA M
exists, that path cannot be encoded in our string representation, since we lack
a halting configuration. Conversely, the encoding contains all invalid paths.

Here, we have the following requirements on the well-formedness of a string
w in the encoding:

(1) The string w is of the form (T1 . . . Tkai)∗ Tend, where the T s are three-
symbol transition sequences of the form p1q1D1, . . . , pkqkDk corresponding
to all transitions from p in M using symbol a, and moving to q, and D ∈
{L, S,R,C} denotes the corresponding direction of movement in M . In case
a state has no transition with a, ppC may be present. Tend is a three-symbol
string qqC, where q is any nonfinal state in M . Also, the first position in
string w contains all sequences pq where p ∈ Q0 and some q ∈ Q.

(2) Additionally, when w contains a two-symbol sequence pD where p ∈ Q
(representing a state in Q) and D ∈ {L, S,R}, then the following holds:
(i) if D is L there is a substring pq in the preceding position in w, where

q ∈ Q, or pD is in the leftmost position.
(ii) if D is R there is a substring pq in the following position in w, where

q ∈ Q.
(iii) if D is S there is a substring pq in the current position in w, where q ∈ Q.

Condition (1) enforces the general well-formedness of the strings, assuring
that each symbol in Σ is surrounded by sequences of triplets corresponding to
valid transitions in M . Also, if one triplet pqD is present, all other possible
outgoing transitions from p also need to be listed. It also sets up the base case
that all initial states are represented at the first position. Conditions (1) and
(2) also ensure that any transition modeled is followed by all possible outgoing
transitions from the target state, or, in the case that the target state has no
valid outgoing transitions and is nonfinal, that fact is marked by a ppC, where
p is the state with no outgoing transitions with the symbol at hand.

Again, the conditions (1)–(3) are all local and easily testable by DFA(s) and
hence the set of strings that fulfill all conditions is a regular set.

We now claim, using the same pattern as before, that the language where
all strings fulfill condition (1) Lbase and the language where all strings fulfill
conditions (2i-iii) Llicense, we have for a homomorphism h(a) = ε for all a in Γ :

L2 = Σ∗ − h(Lbase ∩ Llicense) (6)

Theorem 2. A 2NFA M accepts a word w iff w ∈ L2.

Proof. Suppose M accepts w. Then the accepting path through M will be mod-
eled by (1) and (2i-iii) in Lbase ∩ Llicense with the exception of the accepting
move which is never permitted, and so w is not in h(Lbase ∩ Llicense). M can

From Two-Way to One-Way Finite Automata 183

reject a word w if all paths in the computation eventually lack a transition for
the symbol being read, end up at the right edge of a word in a nonfinal state,
or try to transition left at the left edge. All such configurations are accepted by
Lbase ∩ Llicense, and hence w is in the language h(Lbase ∩ Llicense). ��
Details of the actual construction are very similar to that of the first method
and are omitted here.

6.1 A Note on the Construction

This approach bears similarities to the method suggested by Vardi [16]. In that
work, a type of subset construction is used that directly constructs the states in
the complement language accepted by a 2NFA. That construction relies on the
following lemma:

Lemma 1 (Vardi, 1989). Let M = (Σ,Q,Q0, δ, F) be a two-way automaton,
and w = a0, . . . , an be a word in Σ∗. M does not accept w if and only if there
exists a sequence T0, . . . , Tn+1 of subsets of Q such that the following conditions
hold:

1. Q0 ⊆ T0

2. Tn+1 ∩ F = ∅
3. for 0 ≤ i ≤ n, if q ∈ Ti, (q′, k) ∈ δ(q, a), and i + k > 0, then q′ ∈ Ti+k

It is assumed here that k is an integer {−1, 0, 1} corresponding to the direc-
tions of movement in the transition function ({L, S,R} in our notation).

One of the consequences of this more abstract construction is that it cannot
directly be used to model the set of strings accepted by a 2NFA, and requires
the complement construction.1 Our regular language 2NFA-1DFA construction,
however, can be modified to do precisely that which is alluded to in [16]; we
present the details of this additional construction method below.

7 Method 3: 2NFA to 1DFA Directly

With the 2NFA-1DFA construction above, is it not possible to directly model the
set of accepting sequences by a 2NFA M , instead of modeling the complement?
That is, can one not combine the techniques in method 1 and method 2 and
construct a language that contains the same triplets that mark transitions in such
a way as to only contain valid computation sequences of M that end in a final
state. This would mean, in addition to enforcing the overall format of the strings,

1 “It may be tempting to think that it is easy to get a similar condition to acceptance of
w by A. It seems that all we have to do is to change the second clause in [the lemma]
to Tn+1 ∩ F �= ∅. Unfortunately, this is not the case; to characterize acceptance we
also have to demand that the Ti’s be minimal. While the conditions in the lemma
are local, and therefore checkable by a finite-state automaton, minimality is a global
condition.” [16], p. 3.

184 M. Hulden

requiring that all well-formed strings have initial states represented at the left
edge, and that each transition pqD ‘require’ that a subsequent transition from
q be present in the appropriate position, except for a final qq, at the right edge.
Additionally, any ‘crash’ configuration would of course not be in the language.
The problem with such an idea is exactly what is touched upon in [16]—that
one must also require that any accepting path be minimal. This is illustrated
in Fig. 3. Here (a) exemplifies a nonminimal path that leads to acceptance since
the path of computation from the left edge fulfills the criteria by ending in
a loop. Additionally, there is a spurious transition triplet before y leading to
acceptance. In (b) we see the corresponding minimal path induced by the same
string, showing a case of non-acceptance.

Fig. 3. Illustration of a nonminimal path starting from the initial state with a spurious
path which causes nonminimality, together with the corresponding minimal path.

The idea behind this third construction is to modify the construction so
that only minimal paths are in the simulation. To do this, consider the lan-
guage L = Lbase ∩ Llicense that contains strings over Σ (with interspersed path
descriptions) if M accepts, but that also includes spurious nonminimal paths.
Now, consider the homomorphism h(a) = ε for all a in Γ . Define an operation
insert(L): {y | x ∈ L ∧ h−1(x) = y ∧ |x| < |y|}, i.e. the inverse homomorphism
with the additional requirement that at least one symbol from Γ is inserted. If
L is regular, so is obviously insert(L). In practice, we model this by composition
of the identity transducer for L with a transducer Ins (see Fig. 4) that inserts at
least one symbol from Γ , and reconvert to an automaton by taking the output
projection: proj 2(Id(L) ◦ Ins(Γ)).

Fig. 4. Illustration of insertion transducer Ins.

The insert-operation can be used to remove the nonminimal paths in some
language L that represents computations in the string encoding, and we can
define the set of accepting strings by a 2NFA directly as:

L3 = h(L − Insert(L)) (7)

From Two-Way to One-Way Finite Automata 185

Taking advantage of this, we can define the conditions for any w as follows,
and then use our ability to enforce minimality.

Here, we have the following requirements on the well-formedness of a string
w in the encoding:

(1) The string w is of the form (T ∗a)∗ (Tend∪ε), where T is a set of three-symbol
transition sequences of the form pqD corresponding to some transitions p in
M using symbol a, and moving to q, and D ∈ {L, S,R} denotes the corre-
sponding direction of movement in M . Tend is a set of two-symbol strings qq,
where q is any final state in M . Also, the first position in string w contains
a sequence pq for all p ∈ Q0 and some q ∈ Q

(2) Additionally, when w contains a two-symbol sequence pD where p ∈ Q
(representing a state in Q) and D ∈ {L, S,R}, then the following holds:
(i) if D is L there is a substring pq in the preceding position in w, where

q ∈ Q.
(ii) if D is R there is a substring pq in the following position in w, where

q ∈ Q.
(iii) if D is S there is a substring pq in the current position in w, where q ∈ Q.

In essence, we have modified method 2 to remove the possibility of including
any ‘crash’ moves, and added the possibility of having qq substrings at the right
edge to signal what would be an accepting path in M . We have also removed
the requirement of follow-up states to moves carrying all possible transitions,
i.e. we’re not exploring paths in parallel with the model.

Again, call the language that conforms to (1) and (2) L, which is obviously
regular, and we may construct the following language:

L3 = h((L − Insert(L)) ∩ (Δ∗QQ)) (8)

Theorem 3. M accepts a word w iff w ∈ L3.

Proof. Suppose M accepts w. Then, by induction we see that L contains a string
ending in qq and so w ∈ L3. Conversely, if the language L contains a string u
that ends in qq, then either (1) M accepts h(u) or (2) running M on h(u) would
end in a nonterminating loop, and additional symbols are present in u that
model another path ending in qq that does not start from an initial state. But
then, in the latter case, L also accepts a shorter string u′ that does not contain
the subpath ending in qq. But this implies that u is not in h((L − Insert(L)) ∩
(Δ∗QQ)), and that M accepts w. ��

8 Implementations

The methods above are practical and relatively straightforward to implement
in very little space, assuming one has access to a compiler for regular expres-
sions. We have developed a simple conversion tool that reads descriptions of
2DFAs/2NFAs and converts them into regular expressions as defined above,

186 M. Hulden

which can then be compiled into one-way automata.2 For the implementation
we rely on the regular expression formalism supported by the PARC Finite-State
Tool [1] and the finite-state toolkit foma [6].

Fig. 5. Two-way automaton.

Table 1. Illustration of the growth in states when intersecting the sublanguages in
suboptimal order (right) and the more efficient order that includes the Lbase (left)
with method 1, compiling the 2DFA in Fig. 5. The final 1DFA has 66 states.

k size(Lbase ∩ Llicense0 ∩ . . . ∩ Llicensek) size(Llicense0 ∩ . . . ∩ Llicensek)

0 33 58

1 77 1,394

2 112 29,634

3 166 589,570

4 204 11,271,170

5 226 NF

6 210 NF

7 131 NF

8 138 NF

9 181 NF

9 Practical Concerns

In an actual implementation it is important to calculate the intersections
Lbase ∩ Llicense0 ∩ . . . ∩ Llicensek in left-to-right order to avoid undesired expo-
nential growth in the number of states. The Llicense-languages (except for the
0-case) are symmetrical and therefore of the same size (n states) and so, in the
worst case, the size of the minimal DFA result of intersection is nk [2]. Sepa-
rately constructing Lbase and Llicense0 ∩ . . . ∩ Llicensen is suboptimal in practice
and quickly leads to unnecessary growth in the result, which would often be
curbed had the general structure of Lbase been imposed first. This is illustrated
in Table 1. There we also see that the maximal partial result in the example is
not substantially larger than the resulting final minimized DFA, if intersection
is done in the proposed order. It is, of course, also advisable to minimize partial
results through standard DFA-minimization. Additional optimizations not pre-
sented above for the sake of clarity include constraining the positions between
the symbols from Σ to not contain repetitions of triplets representing transitions.
2 Available at https://github.com/mhulden/2nfa.

https://github.com/mhulden/2nfa

From Two-Way to One-Way Finite Automata 187

10 Conclusion

We have presented three variants of a basic approach to converting 2DFA/2NFA
to one-way automata. The construction methods offer a way to leverage the exis-
tence of efficient tools for compiling extended regular expressions into one-way
automata, and thus makes it practicable to integrate two-way specifications into
practical applications. We expect that the simulation method can be extended to
cover more specific and constrained variants of two-way automata and two-way
transducers.

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications,
Stanford (2003)

2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185–190 (1992)

3. Birget, J.C.: State-complexity of finite-state devices, state compressibility and
incompressibility. Math. Syst. Theor. 26(3), 237–269 (1993)

4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

6. Hulden, M.: Foma: a finite-state compiler and library. In: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 29–32. Association for Computational Linguistics (2009)

7. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–
555. Springer, Heidelberg (2005)

8. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009)

9. Kozen, D.C.: Automata and Computability. Springer, New York (1997)
10. Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite

automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT
2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011)

11. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way non-
deterministic finite automata. Fundamenta Informaticae 110(1), 231–239 (2011)

12. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30(6), 1976–1992 (2001)

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. 3(2),
114–125 (1959)

14. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2008)

15. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3, 198–200 (1959)

16. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata.
Inf. Process. Lett. 30(5), 261–264 (1989)

Describing Homing and Distinguishing
Sequences for Nondeterministic Finite State

Machines via Synchronizing Automata

Natalia Kushik(B) and Nina Yevtushenko

Tomsk State University, Tomsk, Russia
ngkushik@gmail.com, yevtushenko@sibmail.com

Abstract. There is a long standing problem of the study of homing and
distinguishing sequences for deterministic and nondeterministic Finite
State Machines (FSMs) which are widely used in many applications.
A homing sequence allows establishing the state of the given FSM after
applying the sequence while a distinguishing sequence allows learning the
state of the given FSM before the sequence is applied. On the other hand,
other sequences, namely, synchronizing sequences, have been thoroughly
studied for finite automata. For a synchronizing automaton, there is a
state such that a synchronizing sequence takes the automaton from any
state to this state. There are many papers reported on such automata
as well as on the complexity of synchronizing sequences. In this paper,
given a complete nondeterministic FSM, we propose a method for deriv-
ing a corresponding finite automaton such that the set of all homing
(or distinguishing) sequences coincides with the set of all synchronizing
sequences of the derived automaton.

Keywords: Nondeterministic finite state machines · Homing sequence
(homing word) · Distinguishing sequence (distinguishing word) · Syn-
chronizing sequence (synchronizing word)

1 Introduction

There is a long standing problem of the study of homing and distinguishing
sequences for deterministic and nondeterministic Finite State Machines (FSMs)
which are widely used in many applications (see, for example, [1,4,13,17]).
A homing sequence allows establishing the state of the given FSM after apply-
ing the sequence while a distinguishing sequence allows learning the state of the
given FSM before the sequence is applied. The problem has been well studied for
complete deterministic FSMs where for each pair ‘state/input’ there is exactly
one pair ‘output/next state’. A number of papers have been published where
homing and distinguishing (also called separating) sequences are derived for non-
deterministic FSMs [1,14,16,20]. On the other hand, other sequences, namely,

The work is partially supported by RFBR grant No. 15-58-46013 CT a.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 188–198, 2015.
DOI: 10.1007/978-3-319-22360-5 16

Describing HSs and DSs for NFSMs via Synchronizing Automata 189

synchronizing sequences, have been thoroughly studied for finite automata [15]
that can be somehow considered as FSMs with no outputs. For a synchroniz-
ing automaton, there is a state such that a synchronizing sequence takes the
automaton from any state to this state. There are many papers reported on
such automata, the length of synchronizing sequences and the complexity of
methods for checking the existence of such sequences (see, for example, [19]). In
this paper, we fill a gap between homing and distinguishing sequences (words)
for nondeterministic FSMs and synchronizing sequences for finite automata. In
fact, given a complete nondeterministic FSM, we propose a method for deriving
a corresponding finite automaton such that the set of all homing (or distinguish-
ing) sequences of the FSM coincides with the set of all synchronizing sequences
of the derived automaton and thus, the complexity of checking the existence of a
homing (or a distinguishing) sequence for a complete nondeterministic observable
FSM coincides with that for synchronizing sequences for partial nondeterminis-
tic automata. The automaton has the same set of inputs as the initial FSM and
the number of states of the automaton is at most n(n−1)/2+1 for an FSM with
n states. Therefore, despite the fact that the length of a homing (or a distin-
guishing) sequence can be exponential w.r.t. the number of FSM states [9], the
problem of checking the existence of a distinguishing sequence is PSPACE. The
completeness of this problem is directly implied by the fact that the problem of
checking the existence of a preset distinguishing sequence for deterministic FSMs
is PSPACE-complete [11]. For a homing sequence the same result for nondeter-
ministic FSMs was obtained in a different way in [10]. However, the coincidence
of the set of all homing (or distinguishing) sequences with the set of all synchro-
nizing sequences of the corresponding automaton allows to use all the knowledge
about synchronizing sequences for deriving homing and distinguishing sequences
for complete nondeterministic FSMs. Moreover, to the best of our knowledge,
there have not been obtained any results regarding such coincidence for homing
sequences, neither for deterministic, nor for nondeterministic FSMs.

The paper is organized as follows. Section 2 contains preliminaries. Sections 3
and 4 present an idea behind the approach how to synthesize an automaton for a
nondeterministic FSM such that the set of all homing/distinguishing sequences
for the FSM coincides with the set of all synchronizing sequences of the automa-
ton. Section 5 concludes the paper.

2 Preliminaries

In this section, we address the classical notions of homing, distinguishing and
synchronizing sequences mostly taken from [9] and [8].

A (non-initialized) Finite State Machine (FSM) S is a 4-tuple (S, I,O, hS),
where S is a finite set of states; I and O are finite non-empty disjoint sets of
inputs and outputs; hS ⊆ S × I × O × S is a transition relation where a 4-tuple
(s, i, o, s′) ∈ hS is a transition.

An FSM S = (S, I,O, hS) is complete if for each pair (s, i) ∈ S×I there exists
a pair (o, s′) ∈ O×S such that (s, i, o, s′) ∈ hS ; otherwise, the machine is partial.

190 N. Kushik and N. Yevtushenko

Given a partial FSM S, an input i is a defined input at state s if there exists a pair
(o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS . FSM S is nondeterministic if for some
pair (s, i) ∈ S × I, there exist at least two transitions (s, i, o1, s1), (s, i, o2, s2) ∈
hS , such that o1 �= o2 or s1 �= s2. FSM S is observable if for each two transitions
(s, i, o, s1), (s, i, o, s2) ∈ hS it holds that s1 = s2. All machines considered in
this paper are assumed to be complete. They may be nondeterministic, but are
assumed to be observable. A trace of S at state s is a sequence of input/output
pairs of sequential transitions starting from state s. Given a trace i1o1 . . . ikok

at state s, i1 . . . ik is the input projection of the trace while o1 . . . ok is an output
response to the input sequence i1 . . . ik at state s. The set of all traces of S at
state s including the empty trace is Tr(S/s). As usual, for state s and a sequence
γ ∈ (IO)� of input/output pairs, the γ-successor of state s is the set of all states
that are reached from s by trace γ. If γ is not a trace at state s then the γ-
successor of state s is empty. For an observable FSM S, the cardinality of the
γ-successor of state s is at most one for any string γ ∈ (IO)�. Given a nonempty
subset S′ of states of the FSM S and γ ∈ (IO)�, the γ-successor of the set S′

is the union of γ-successors over all s ∈ S′. An input sequence α is a homing
sequence for FSM S if for each trace γ ∈ (IO)� with the input projection α the
γ-successor of the set S is empty or is a singleton {s′}. The set of all homing
sequences of S is denoted Lhome(S). If an FSM has a homing sequence then the
FSM is homing. An input sequence α is a distinguishing sequence (also called a
separating sequence for nondeterministic FSMs) for FSM S if the sets of output
responses to this input sequence at any two different states of S do not intersect.
The set of all distinguishing sequences of S is denoted Ldist(S). If an FSM has
a distinguishing sequence then the FSM is distinguishing.

The notion of an FSM is very close to the automaton model [18] that does
not support output responses, i.e., automaton transitions are labeled by actions
that are not divided into inputs and outputs and usually these actions are called
inputs or, simply, letters [12]. One may eliminate outputs at each transition of
a given FSM in order to get the underlying automaton that can be nondeter-
ministic for a nondeterministic FSM. In this paper, similar to non-initialized
FSMs, we consider non-initialized finite automata. A sequence α is a synchro-
nizing sequence (a synchronizing word) for a given automaton A if there exists
a state a′ such that α takes the automaton from any state to state a′.

If an automaton has a synchronizing sequence then the automaton is syn-
chronizing [19]. The set of all synchronizing sequences is denoted as Lsynch(A).
Synchronizing sequences for automata have been well studied. In particular, it
has been shown that the length of a synchronizing word for a complete deter-
ministic automaton with n states is bounded by a polynomial of degree three
while for a nondeterministic automaton it is of the order 2n [2,5,6]. For partial
automata, as well as for nondeterministic automata the length of a synchronizing
sequence (if it exists) is also of the order 2n [5,12]. The complexity of the problem
of checking whether a given automaton is synchronizing is PSPACE-complete
independently whether the automaton is complete or not [12,15].

Describing HSs and DSs for NFSMs via Synchronizing Automata 191

We show how the known results for synchronizing automata can be applied
to efficiently check if a nondeterministic complete observable FSM has a homing
or a distinguishing sequence as it is done for deterministic FSMs in [3]. For this
reason, we briefly sketch the algorithm for deriving a homing / distinguishing
sequence (HS / DS). Since both algorithms are almost the same we describe the
algorithm for deriving a HS making then a corresponding remark about the DS
derivation.

Algorithm 1. for deriving a shortest HS for an FSM
Input : S = (S, I,O, hS)
Output: A shortest HS for S or the message “ the FSM S is not

homing”
Derive a truncated successor tree for the FSM S. The root of the tree
is labeled with the set of the pairs sp, sq, where sp, sq ∈ S, sp �= sq; the
nodes of the tree are labeled by sets of pairs of the set S. Edges of the tree
are labeled by inputs and there exists an edge labeled by i from a node
P of level j, j ≥ 0, to a node Q such that a pair sp, sq ∈ Q if this pair
is an io-successor of some pair from P . The set Q contains a singleton if
io-successors of some pair of P coincide for some o ∈ O. If the input i
distinguishes each pair of states of P , then the set Q is empty.

Given a node P at the level k, k > 0, the node is terminal if one of
the following conditions holds.

Rule-1: P is the empty set.
Rule-2: P contains a set R without singletons that labels a node at a

level j, j < k.
Rule-3: P has only singletons.
if the successor tree has no nodes labeled with a set of singletons or with
the empty set, i.e., is not truncated using Rules 1 or 3 then

Return the message “FSM S is not homing”.
else

Determine a path with minimal length from the root to a node
labeled with a set of singletons or with the empty set;
Return HS as the input sequence α that labels the selected path.
end

By construction of the successor tree in Algorithm 1, the following statements
can be established by induction [7].

Proposition 1. Given a path of the truncated successor tree derived by Algo-
rithm1 from the root to a node labeled with the set P of state pairs, let the path
carry an input sequence α. The set P contains the pair sp, sq if and only if there
exists a trace γ ∈ (IO)� with the input projection α such that sp and sq are
γ-successors of some state pair of the FSM S.

Proposition 2. Given a path of the truncated successor tree derived by Algo-
rithm1 from the root to a node labeled with the set of singletons or with the

192 N. Kushik and N. Yevtushenko

empty set, let the path carry an input sequence α. The sequence α is a HS for
the FSM S.

Proposition 3. Each HS of FSM S is the prolongation of an input sequence
that labels a path of the successor tree from the root to a node labeled with the
set of singletons or with the empty set.

An example of a truncated successor tree can be found in Fig. 1 for an FSM
S taken from [9]. Table 1 has transitions of FSM S with four states 0,1,2,3, the
set I = {i0, i1, i2} of inputs, and the set O = {(j, k), (j < k)&(j, k ∈ {0, 1, 2, 3})}
of outputs.

Table 1. FSM S

Input/State 0 1 2 3

i0 3/(0, 3) 1/(0, 3) 2/(0, 3) 3/(0, 3)

i1 1/(0, 2) 0/(0, 2) 2/(0, 2) 3/(0, 3)

1/(0, 3) 0/(0, 3) 2/(1, 2) 3/(1, 3)

1/(2, 3) 2/(2, 3) 3/(2, 3)

i2 2/(0, 1) 2/(0, 1) 0/(0, 1) 3/(0, 3)

2/(0, 3) 2/(0, 3) 0/(0, 3) 3/(1, 3)

2/(1, 3) 2/(1, 3) 1/(1, 3) 3/(2, 3)

1/(0, 1)

When Algorithm 1 is used for deriving a DS, Rule 3 and the above proposi-
tions are slightly modified in the following way.

Given a node P at the level k, k > 0, the node is terminal if one of the
following conditions holds.

Rule-1: P is the empty set.
Rule-2: P contains the subset R′ of all pairs of the set that labels a node at a
level j, j < k.
Rule-3′: P has a singleton.

If the successor tree has no nodes labeled with the empty set, i.e., is not
truncated using Rule 1 then return the message “FSM S is not distinguishing”.
Otherwise, determine a path with minimal length from the root to a node labeled
with the empty set; Return DS as the input sequence α that labels the selected
path.

Correspondingly, the following propositions hold.

Proposition 4. Given a path of the truncated successor tree derived by modified
Algorithm1 from the root to a node labeled with the empty set, let the path carry
an input sequence α. The sequence α is a DS for the FSM S.

Proposition 5. Each DS of FSM S is the prolongation of an input sequence
that labels a path of the truncated successor tree derived by modified Algorithm1
from the root to a node labeled with the empty set.

Describing HSs and DSs for NFSMs via Synchronizing Automata 193

Fig. 1. The truncated tree for an FSM with a flow table in Table 1

The successor tree derived by Procedure 1 can be naturally considered for
deriving a transition diagram of a special automaton where states are pairs of
states of the FSM S together with the designated state sink . The transitions of
the automaton are defined according to the tree branches where the state sink
is reached under input i when a corresponding pair is distinguished by the input
i or for some o ∈ O, the io-successor is a singleton. According to Proposition 2,
a homing sequence exists for the FSM S if and only if the obtained automaton
has a synchronizing sequence to the sink state.

When deriving such automaton for the set of all distinguishing sequences,
the automaton can become partial when, given a pair sp, sq, for some input i
there exists o such that the io-successor of sp, sq is a singleton (Rule 3′).

3 Describing the Set of All Homing Sequences
of a Nondeterministic FSM via a Synchronizing
Automaton

Consider a nondeterministic FSM S = (S, I,O, hS), S = {s1, . . . , sn}, derive
an automaton S2

home such that the set of all synchronizing sequences of this
automaton coincides with the set of all homing sequences of FSM S, i.e.,
Lhome(S) = Lsynch(S2

home).
By construction, the automaton S2

home has the following features.

194 N. Kushik and N. Yevtushenko

Algorithm 2. for deriving the automaton S2
home

Input : Complete observable FSM S = (S, I,O, hS)
Output: Automaton S2

home

States of S2
home are pairs sj , sk, j < k, and the designated state sink while

actions are inputs of the FSM S (letters);
for each input i ∈ I do

for each state sj , sk of the automaton S2
home do

if {sp, st} is the io-successor of the set {sj , sk} for some output
o ∈ O, p < t and j < k then

Add to the automaton S2
home the transition (sj , sk, i, sp, st)

end
if for each output o ∈ O the io-successor of the pair sj , sk is a
singleton or states sj and sk are distinguished by the input i then

Add to the automaton S2
home the transition (sj , sk, i, sink)

end

end

end

Proposition 6. Given a complete observable nondeterministic FSM S = (S, I,
O, hS), the automaton S2

home derived by Algorithm2 can be nondeterministic.

Proof. The automaton S2
home can be nondeterministic, since given a pair sj , sk,

j < k, of states of FSM S, there can be transitions to different pairs under the
same input i according to different io1-successors and io2-successors, o1 �= o2, of
the pair sj , sk.

Proposition 7. Given a sequence α ∈ I�, a pair sp, sq, sp, sq ∈ S, sp �= sq, α
takes the automaton S2

home from the pair sp, sq to the sink state if and only for
each trace γ ∈ (IO)� with the input projection α, the γ-successor of sp, sq is the
empty set or a singleton.

The statement can be easily proven by induction on the length of the sequence α.
The next theorem that is based on Proposition 7, shows that the set of syn-

chronizing sequences of the automaton S2
home coincides with the set of all hom-

ing sequences of the FSM S.

Theorem 1. An input sequence α is a homing sequence for the FSM S if and
only if α is a synchronizing sequence for S2

home.

Proof. By construction, state sink has a self-loop, and thus, if the automaton
S2

home has a synchronizing sequence then this sequence takes the automaton
from each state to the state sink . Moreover, given a sequence α ∈ I� and a pair
sp, sq, sp, sq ∈ S, sp < sq, α takes the automaton S2

home from the pair sp, sq to
the sink state if and only for any trace γ ∈ (IO)� with the input projection α, the
γ-successor of sp, sq is the empty set or a singleton. Thus, due to Proposition 2,
α is a synchronizing sequence for the automaton S2

home if and only if α is a
homing sequence for FSM S.

Describing HSs and DSs for NFSMs via Synchronizing Automata 195

Corollary 1. The set of all homing sequences of the FSM S is equal to the
set of all synchronizing sequences of the automaton S2

home, i.e., Lhome(S) =
Lsynch(S2

home).

Corollary 2. FSM S is homing if and only if the automaton S2
home is syn-

chronizing.

As an example, consider again an FSM from [9], for which a homing sequence
is a prolongation of a shortest homing sequence with the length that is exponen-
tial w.r.t. the number of FSM states. The flow table of the automaton S2

home

returned by Algorithm2 is shown in Table 2.

Table 2. The flow table of the automaton S2
home for the FSM S from Table 1

Input/State 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3 sink

i0 1, 3 2, 3 sink 1, 2 1, 3 2, 3 sink

i1 0, 1 1, 2 1, 3 0, 2 0, 3 2, 3 sink

i2 sink 0, 2 2, 3 0, 2 1, 2 0, 1 sink

1, 2 1, 2 2, 3 0, 3

1, 3

For example, consider transitions from state 2, 3. For inputs i0 and i1, there
are transitions to state 2, 3; there are transitions to states 0, 1, 1, 3, and 0, 3
under input i2. By direct inspection, one can assure that for the automaton
S2

home, a shortest synchronizing sequence is the sequence i0i1i0i2i0i1i0, and
this sequence is a shortest homing sequence for FSM S [9]. Any prolongation
of this sequence is a synchronizing sequence for the automaton S2

home and a
homing sequence for the FSM S.

4 Describing the Set of All Distinguishing Sequences
of a Nondeterministic FSM via a Synchronizing
Automaton

In order to describe the set of all distinguishing sequences we remind that the
procedure for deriving a distinguishing sequence is also based on a truncated
successor tree that is very close to that derived when using Algorithm 1 . The
only difference is that when for some o ∈ O, the io-successors of states of some
pair of P coincide there is no edge from the node labeled by i to the next tree
level. For this reason, we can derive the automaton almost in the same manner:
the only difference is that the automaton has undefined transitions, i.e., the
automaton can become partial.

Similar to the statements of the previous section, the following results can
be established.

Theorem 2. An input sequence α is a distinguishing sequence for the FSM S
if and only if α is a synchronizing sequence for S2

dist.

196 N. Kushik and N. Yevtushenko

Algorithm 3. for deriving the automaton S2
dist

Input : Complete observable FSM S = (S, I,O, hS)
Output: Automaton S2

dist

States of S2
dist are pairs sj , sk, j < k, and the designated state sink while

actions are inputs of the FSM S;
for each input i ∈ I do

for each state state sj , sk of the automaton S2
dist do

if states sj and sk are separated by input i then
Add to the automaton S2

dist the transition (sj , sk, i, sink)
end
if for each o ∈ O, the io-successors of states sj and sk do not
coincide and {sp, st} is the io′-successor of the set {sj , sk} for
some o′ ∈ O, p < t and j < k then

Add to the automaton S2
dist the transition (sj , sk, i, sp, st)

end

end
Add to the automaton S2

dist the transition (sink , i, sink);
end

Corollary 3. The set of all distinguishing sequences of the FSM S coin-
cides with the set of all synchronizing sequences of the automaton S2

dist, i.e.,
Ldist(S) = Lsynch(S2

dist).

Given a complete observable nondeterministic FSM S, the automaton S2
dist

derived by Algorithm3 can be not only nondeterministic but also partial, since
for some pair sj , sk, j < k, of states of FSM S, there can be no transition
under input i if states sj and sk have the same nonempty io-successor for some
output o.

Theorem 3. The problem of checking the existence of a distinguishing sequence
is PSPACE-complete for complete observable nondeterministic FSMs.

Proof. By definition, the problem of deriving the automaton S2
dist is in P, and

this automaton has a polynomial number of transitions. Indeed, the maximum
number of states of S2

dist equals n(n−1)/2+1, where n is the number of states
of the FSM S. Since S is observable, the maximum number of transitions at
each state under each input is at most n(n − 1)/2. Correspondingly, the num-
ber of transitions of the automaton does not exceed |I| · n2(n − 1)2, and the
problem of checking the existence of a distinguishing sequence for an observable
complete nondeterministic FSM can be reduced in a polynomial time to the one
of synchronizing sequence for (partial) nondeterministic automaton. The lat-
ter is PSPACE, while the problem of checking the existence of a distinguishing
sequence is PSPACE-complete for deterministic FSMs [11]. Therefore, the prob-
lem of checking the existence of a distinguishing sequence is PSPACE-complete
for observable complete nondeterministic FSMs as well.

Describing HSs and DSs for NFSMs via Synchronizing Automata 197

As an example, consider an FSM with Table 3 as the flow table. Given FSM
S, we derive the corresponding automaton S2

dist (Table 4). By direct inspection,
one can assure that there exists a shortest synchronizing sequence i0i1i2i2i1 for
S2

dist and thus, this sequence is a shortest distinguishing sequence for the initial
FSM S.

Table 3. FSM S

Input/State 0 1 2 3

i0 3/o1, 0/o5 1/o1, 0/o7 2/o5, 2/o7 3/o5, 3/o7

i1 1/o2, o6 0/o3 2/o6, o5, o3 3/o5

i2 2/o1, 2/o6 2/o3, 3/o6 0/o4, o6, 1/o5 3/o3, 2/o5

Table 4. The flow table of the automaton S2
dist for the FSM S from Table 3

Input/State 0, 1 0, 2 0, 3 1, 2 1, 3 2, 3 sink

i0 1, 3 0, 2 0, 3 0, 2 0, 3 2, 3 sink

i1 sink 1, 2 sink 0, 2 sink 2, 3 sink

i2 2, 3 0, 2 sink 0, 3 2, 3 1, 2 sink

5 Conclusion

In this paper, when deriving homing or distinguishing sequences for a nondeter-
ministic FSM, we reduce this problem to a problem of deriving a synchronizing
sequence for a nondeterministic, possibly, partial automaton. We have shown
that the set of all homing (distinguishing) sequences of a given FSM is equal to
the set of (all) synchronizing sequences of an appropriate finite automaton that
has at most n(n − 1)/2 + 1 states for an FSM with n states and the same input
alphabet. Using corresponding results for synchronizing automata and deter-
ministic FSMs we can conclude that, similar to homing sequences, the problem
of checking the existence of a distinguishing sequence for a nondeterministic
complete observable FSM is PSPACE-complete.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-
istic and probabilistic machines. In: Proceedings of the 27th ACM Symposium on
Theory of Computing, pp. 363–372 (1995)

2. Cern’y, H.: Pozn’amka k homog’ennym eksperimentom s konecn’ymi avtomatami.
Mat. Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964). (in Slovak)

198 N. Kushik and N. Yevtushenko

3. Güniçen, C., İnan, K., Türker, U.C., Yenigün, H.: The relation between preset
distinguishing sequences and synchronizing sequences. Formal Aspects Comput.
26(6), 1153–1167 (2014)

4. Hierons, R.M., Jourdan, G.V., Ural, H., Yenigun, H.: Using adaptive distinguishing
sequences in checking sequence constructions. In: Proceedings of the 2008 ACM
Symposium on Applied Computing, pp. 682–687 (2008)

5. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113,
pp. 125–133. Springer, Heidelberg (2004)

6. Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: In extremal combinatorial problem
associated with the bound on the length of a synchronizing word in an automaton.
Cybernetics 23, 165–171 (1987)

7. Kushik, N.: Methods for deriving homing and distinguishing experiments for non-
deterministic FSMs. Ph.D. thesis, Tomsk State University (2013)

8. Kushik, N., El-Fakih, K., Yevtushenko, N., Cavalli, A.: On adaptive experiments
for nondeterministic finite state machines. Int. J. Softw. Tools Technol. Transf.
(2014) (in press)

9. Kushik, N., Yevtushenko, N.: On the length of homing sequences for nondetermin-
istic finite state machines. In: Proceedings of the 18th International Conference on
Implementation and Application of Automata. pp. 220–231 (2013)

10. Kushik, N.G., Kulyamin, V.V., Evtushenko, N.V.: On the complexity of existence
of homing sequences for nondeterministic finite state machines. Program. Comput.
Softw. 40, 333–336 (2014)

11. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

12. Martugin, P.V.: Lower bounds for the length of the shortest carefully synchronizing
words for two- and three-letter partial automata. J. Appl. Ind. Math 4(15), 44–56
(2008). (in Russian)

13. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag, Berlin (1980)
14. Petrenko, A., Yevtushenko, N.: Adaptive testing of deterministic implementations

specified by nondeterministic FSMs. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 162–178. Springer, Heidelberg (2011)

15. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

16. Spitsyna, N., El-Fakih, K., Yevtushenko, N.: Studying the separability relation
between finite state machines. Softw. Test. Verification Reliab. 17(4), 227–241
(2007)

17. Starke, P.: Abstract Automata. American Elsevier, North-Holland (1972)
18. Trahtenbrot, B., Barzdin, J.: Finite Automata: Behavior and Synthesis. Nauka,

Moscow (1970)
19. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

20. Zhang, F., Cheung, T.: Optimal transfer trees and distinguishing trees for testing
observable nondeterministic finite-state machines. IEEE Trans. Softw. Eng. 19(1),
1–14 (2003)

Expressive Capacity of Concatenation Freeness

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. The expressive capacity of regular expressions without con-
catenation, but with complementation and a finite set of words as literals
is studied. In particular, a characterization of unary concatenation-free
languages by the Boolean closure of certain sets of languages is shown.
The characterization is then used to derive regular languages that are
not concatenation free. Closure properties of the family of concatenation-
free languages are derived. Furthermore, the position of the family in the
subregular hierarchy is considered and settled for the unary case. In par-
ticular, there are concatenation-free languages that do not belong to all
of the families in the hierarchy. Moreover, except for comets, all of the
families in the subregular hierarchy considered are strictly included in
the family of concatenation-free languages.

1 Introduction

The investigation of regular expressions originates in [8]. They allow a set-
theoretic characterization of languages accepted by finite automata. Compared
to automata, regular expressions may be better suited for human users and
therefore are often used as interfaces to specify certain patterns or languages.
For example, regular(-like) expressions can be found in many software tools,
where the syntax used to represent them may vary, but the concepts are very
much the same everywhere. The leading idea is to describe languages by using
constants and operator symbols. Classically, the constants are literals from the
underlying alphabet and the symbol for the empty set, together with the oper-
ations union, concatenation, and Kleene star. However, the regular languages
are closed under many more operations. So, adding these operations to regular
expressions cannot increase their expressive power. On the other hand, remov-
ing an operation or replacing it by another may decrease the expressive capacity.
For example, replacing the star by complementation yields the well-known and
important subregular family of star-free (or regular non-counting) languages [4].
This family obeys nice characterizations, for example, in terms of aperiodic syn-
tactic monoids [12], permutation-free DFA [9], and loop-free alternating finite
automata [11]. See [6] for a recent survey on the complexity of regular(-like)
expressions.

Here we study the expressive power of regular expressions without concate-
nation, but with complementation. In analogy with the star-free expressions we
call them concatenation-free expressions. However, in order to allow non-trivial
languages to be expressed, we allow any finite set of words as literals.
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 199–210, 2015.
DOI: 10.1007/978-3-319-22360-5 17

200 M. Kutrib and M. Wendlandt

The paper is organized as follows. In the next section, we present the
basic notations and definitions, and provide an introductory example. Section 3
is devoted to explore the limits of the expressive capacity of concatenation-
free expressions. The basic question is whether or not they capture the reg-
ular languages. The question is answered negatively. To this end, the unary
concatenation-free languages are characterized by the Boolean closure of certain
sets of languages. The characterization is then used to derive regular languages
that are not concatenation free. Furthermore, it is shown that just one con-
catenation operation suffices to describe all unary regular languages. The obvi-
ous closure properties of the family of concatenation-free languages are comple-
mented in Sect. 4. The properties are summarized in Table 1. Finally, in Sect. 5
the position of the family of concatenation-free languages in the hierarchy of
several subregular language families (see Fig. 2) is considered. It turns out that
there are concatenation-free languages that do not belong to any other of the
subregular families. For the special case of unary languages the precise position
can be settled. In detail, though unary concatenation-free expressions are not
as expressive as general regular expressions, they yield a language family that
strictly includes all of the families in the subregular hierarchy depicted in Fig. 2,
except for the (two-sided) comets to which it is incomparable.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ. For the length of w we write |w|. We use ⊆ for inclusions and ⊂
for strict inclusions. The complement of a language L over alphabet Σ is again a
language over alphabet Σ which is denoted by L. The family of finite languages
is denoted by FIN.

The regular expressions over an alphabet Σ and the languages they describe
are defined inductively in the usual way: ∅ and every word (of length one) v ∈ Σ
are regular expressions, and when s and t are regular expressions, then (s ∪ t),
(s · t), and (s)∗ are also regular expressions. The language L(r) defined by a
regular expression r is defined as follows: L(∅) = ∅, L(v) = {v}, L(s ∪ t) =
L(s) ∪ L(t), L(s · t) = L(s) · L(t), and L(s∗) = L(s)∗.

Since the regular languages are closed under many more operations, the app-
roach to add operations like intersection (∩), complementation (), or squar-
ing (2) does not increase the expressive power of regular expressions. However,
replacing operations by others may decrease the expressive power. So, in general,
RE(Σ,Λ,Φ), where Λ ⊂ Σ∗ is a finite set of initial words, and Φ is a set of (regu-
larity preserving) operations, denotes all regular(-like) expressions over Λ using
only operations from Φ. Hence RE(Σ,Σ, {∪, ·, ∗}) refers to the set of all ordinary
regular expressions, and RE(Σ,Σ, {∪, ·, }) defines the star-free languages.

Here we study the expressive power of regular expressions without concatena-
tion but with complementation, that is, RE(Σ,Λ, {∪, ∗, }), and call the family
of languages represented by such expressions concatenation-free languages. This
definition nicely complements the definition of star-free languages except for the

Expressive Capacity of Concatenation Freeness 201

set of initial words. Since in the presence of concatenation, every word in Λ can
be obtained by concatenating letters from Σ, the set Λ can be created for free.
Here, however, we do not have concatenation and, thus, provide initially a finite
set of words. For convenience, parentheses in regular expressions are sometimes
omitted, where it is understood that the unary operations complementation and
star have a higher priority than union.

In order to clarify our notion, we continue with an example.

Example 1. Let L ⊆ {a, b}∗ be the language of words that either begin with an a
and have at least two consecutive b, or begin with a b.

Language L is described by the concatenation-free expression r = (a ∪ ab)∗.
The subexpression (a ∪ ab)∗ gives all words over the alphabet {a, b} beginning
with an a that do not have the factor bb. The complement of r describes L. �

3 Limits of Concatenation-Free Expressions

In this section, we investigate the expressive limits of concatenation-free expres-
sions. The basic question is whether or not all regular languages can be described
by such an expression. We are going to answer the question negatively. To this
end, first the representable unary languages are characterized. We recall a well-
known useful fact on unary languages, which is related to number theory:

Lemma 2. Let p, q ≥ 1 be two integers which are relatively prime, that is, the
greatest common divisor gcd(p, q) equals 1. Then the biggest integer that cannot
be written as a linear combination of these two integers is pq − p − q.

A cofinite unary language L is stretched in the following sense. For m ≥ 1,
we set

L(m) = {w | |w| = m · |v|, for some v ∈ L }.

Now the family of all unary languages that are either finite or have a represen-
tation as cofinite language stretched by m ≥ 1 joint with a finite language is
denoted by U(m). The union of all of these families is U =

⋃
m≥1 U(m).

In the following, we are particularly interested in the family UKF of languages
that is defined to be the Boolean closure of U . So, UKF is the least family of
languages which contains all members of U and is closed under complementation
and union (and, thus, under intersection).

Each language L ∈ UKF has a representation
⋃

1≤i≤k

⋂

1≤j≤li

Li,j , where k, l1, l2, . . . , lk ≥ 0 and Li,j ∈ U or Li,j ∈ U .

First we consider the closure of UKF under star.

Lemma 3. The family UKF is closed under star.

202 M. Kutrib and M. Wendlandt

Proof. Let L ⊆ {a}∗ be a language from the family UKF. If L = ∅ or L = {λ},
then in each case L∗ = {λ} is a finite language that belongs to UKF as well. We
distinguish three further cases.

First, assume that L = {am}, for some m ≥ 1, is a singleton. Then we obtain
L∗ = { am·n | n ≥ 0 } ∈ U(m) and, thus, L∗ ∈ UKF.

Second, if L contains two words whose lengths p and q are relatively prime,
then L∗ ⊇ { an | n > pq − p − q } follows by Lemma 2. This implies L∗ ∈ U(1)

and, thus, L∗ ∈ UKF.
For the last case we assume that the lengths of each two different words in L

are not relatively prime. Moreover, we denote the greatest common divisor of
the lengths of all words in L by m, where it may happen that m = 1. Now we
consider the language of words of L whose lengths are divided by m: L〈m〉 =
{ an | am·n ∈ L }. A simple example is L = {a12, a20, a30}, where m = 2 and
L〈m〉 = {a6, a10, a15}. In general, if L〈m〉 contains two words w1 and w2 so that
gcd(|w1|, |w2|) = 1 (which is always true when L〈m〉 contains only two words),
then L∗

〈m〉 ⊇ { an | n > |w1||w2|− |w1|− |w2| } follows by Lemma 2. This implies
L∗

〈m〉 ∈ U(1) and, therefore, L∗ = { am·n | an ∈ L〈m〉 }∗ ∈ U(m). This implies
L∗ ∈ UKF.

Finally, let also the lengths of each two different words in L〈m〉 be not rel-
atively prime. Then L〈m〉 contains always three different words w1, w2, and w3

so that gcd(|w1|, |w2|, |w3|) = 1. Now we denote the greatest common divisor
of |w1| and |w2| by d (which is greater than 1 by assumption). So, we have the
representation |w1| = x · d and |w2| = y · d, for some x, y ≥ 1. Moreover, x
and y are relatively prime. By Lemma 2, for any power dk of d greater than
xy − x − y there are i and j so that ix + jy = dk. Since wi

1w
j
2 ∈ L∗

〈m〉 and

i|w1| + j|w2| = i · x · d + j · y · d = dk+1, the word adk+1
belongs to L∗

〈m〉. From
gcd(|w1|, |w2|, |w3|) = 1 we derive that d and |w3| are relatively prime. So, dk+1

and |w3| are relatively prime and both words belong to L∗
〈m〉. We conclude that

L∗
〈m〉 ⊇ { an | n > dk+1|w3| − dk+1 − |w3| }. As before, this implies L∗

〈m〉 ∈ U(1)

and, therefore, L∗ ∈ U(m). This shows L∗ ∈ UKF. ��
Now we are prepared to prove the characterization of unary concatenation-free
languages.

Theorem 4. A unary language is concatenation free if and only if it belongs to
the family UKF, that is, to the Boolean closure of U .

Proof. Let L be a unary concatenation-free language given by a regular expres-
sion r from RE(Σ,Λ, {∪, ∗, }). Then r is built from elements of Λ by finitely
many applications of the operations union, star, and complementation. Since all
finite sets belong to U and, thus, to UKF, and the family UKF is by definition
closed under union and complementation and by Lemma 3 closed under star,
language L represented by r belongs to UKF as well.

Now consider a unary language from UKF having a representation of the
form

⋃
1≤i≤k

⋂
1≤j≤li

Li,j , where k, l1, l2, . . . , lk ≥ 0 and Li,j ∈ U or Li,j ∈ U .
Since the intersection can be simulated by union and complementation, this

Expressive Capacity of Concatenation Freeness 203

representation can immediately be converted into a concatenation-free regular
expression, provided the languages Li,j are concatenation free. So, it remains to
be shown that any language from U is concatenation free.

If L ∈ U , then there exists an m ≥ 1, so that L ∈ U(m). Since any finite
language belongs to U(m), we consider L to be a cofinite language stretched by m
joint with a finite language Lf , say L = Ls ∪ Lf . Without loss of generality, we
assume Σ = {a}. The stretching of Ls is undone by setting L′

s = { ai | am·i ∈
Ls }. Let l be the length of the longest word not belonging to L′

s. Then all words
with lengths up to l are removed from L′

s thus obtaining a cofinite language L′′
s

containing all words whose lengths are at least l + 1 and no shorter words. The
finitely many words removed from L′

s are stretched again and are included in Lf

thus obtaining a finite language L′
f . The stretching of L′′

s is now implemented
as r = { aj | j < m · (l + 1) } ∩ {am}∗.

Altogether we have L = L(r)∪L′
f . Since expression r contains only finite lan-

guages and the intersection can be implemented by union and complementation,
we obtain a concatenation-free expression for L. ��
Next we turn to show that there are regular languages which are not
concatenation-free. So, the concatenation-free languages form a strict subregular
family. We use languages of the form { an | n ≡ x (mod y) } where 1 ≤ x < y
and x �= y

2 as witnesses. Clearly, the later restriction is always met for odd y.
In the following, for i ≥ 1, the ith prime number is denoted by pi, where

p1 = 2.

Lemma 5. Let 1 ≤ x < y be two integers with x �= y
2 . Then the language

L = { an | n ≡ x (mod y) } is not concatenation free.

Proof. In contrast to the assertion assume that L is concatenation free. Then it
belongs to UKF and has a representation of the form

⋃
1≤i≤k Li with languages

Li =
⋂

1≤j≤li
Li,j , for k, l1, l2, . . . , lk ≥ 0 and Li,j ∈ U or Li,j ∈ U .

For any prime number p ≥ y, the word of length x + x · p! belongs to L. We
choose one of the languages Li = Li,1∩Li,2∩· · ·∩Li,t ∩Li,t+1∩Li,t+2∩· · ·∩Li,li

with Li,j ∈ U for 1 ≤ j ≤ t, and Li,j ∈ U for t + 1 ≤ j ≤ li, that contains
infinitely many of these words. In particular, this implies that all languages Li,j ,
1 ≤ j ≤ li, contain infinitely many of these words.

First we consider the languages Li,j belonging to U . Since they are infinite
they must be representable by the union of a finite language and a cofinite lan-
guage stretched by some mj ≥ 1. Moreover, for infinitely many prime numbers p
greater than y, and mj , the word of length x + x · p! belongs to Li,j . The word
length x + x · p! = x(p! + 1) is divisible only by x and possibly by other num-
bers having only additional prime factors greater than p which, in turn, is greater
than mj . However, all but finitely many word lengths in Li,j are multiples of mj .
This implies that mj is a divisor of x. Therefore, all but finitely many multiples
of x are word lengths in the intersection Li,1 ∩ Li,2 ∩ · · · ∩ Li,t.

Since Li ⊆ L, words whose lengths are multiples of x that do not belong
to L have to be excluded by intersection with Li,t+1 ∩ Li,t+2 ∩ · · · ∩ Li,li , that

204 M. Kutrib and M. Wendlandt

is, the languages Li,j whose complements belong to U . In particular, the words
of length x(p!− 1) have to excluded, where p is any prime number large enough.
Since p! is divisible by y we have x(p! − 1) ≡ y − x (mod y) which is not equal
to x due to x �= y

2 . So, these words do not belong to L. Therefore, there is at least
one of the languages Li,t+1, Li,t+2, . . . , Li,li , say Li,s, so that infinitely many of
these words are not contained in Li,s. We consider the complement Li,s which
contains infinitely many of these words and belongs to U . So, it is representable
by the union of a finite language and a cofinite language stretched by some
ms ≥ 1. Similar as before, we argue that the word length x(p! − 1) is divisible
only by x and possibly by other numbers having only additional prime factors
greater than p which, in turn, is greater than ms. However, all but finitely many
word lengths in Li,s are multiples of ms. This implies that ms is a divisor of x.
Therefore, all but finitely many multiples of x are word lengths in Li,s and, in
turn, only finitely many multiples of x are word lengths in Li,s. This implies
that only finitely many multiples of x are word lengths in Li. Since Li has been
chosen to contain infinitely many words with length of the form x + x · p!, we
obtain a contradiction. ��
The next examples show that the conditions 1 ≤ x < y and x �= y

2 of Lemma 5
are in fact necessary.

Example 6. Let y ≥ 1 be an integer. Then the concatenation-free regular expres-
sion r = (ay)∗ represents the language L(r) = { an | n ≡ 0 (mod y) }. �

Example 7. Let 1 ≤ x < y be two integers with x = y
2 . Then the concatenation-

free regular expression r = (ax)∗ ∪ (ay)∗ represents the language

L(r) = { an | n ≡ x (mod y) }. �

Lemma 5 immediately implies the next theorem.

Theorem 8. The (unary) concatenation-free languages are strictly included in
the (unary) regular languages.

Since the family of concatenation-free languages is properly included in the
regular languages, it can be extended by allowing concatenations. But how many
applications of concatenations are necessary to obtain all regular languages. Next
we show that one concatenation suffices to obtain all unary regular languages.
To this end, we use the following notation. For any fixed integer k ≥ 0, the set of
extended concatenation-free expressions that may contain at most k applications
of the operation concatenation is referred to as concatenation-free expressions
of degree k. The family of languages represented by such expressions is referred
to by concatenation-free languages of degree k.

Theorem 9. Every unary regular language can be represented by a
concatenation-free expression of degree 1.

Expressive Capacity of Concatenation Freeness 205

s0 s1 · · · sp−1 sp

sp+1

sp+2

sp+3

sp+4

sp+q−1

a

a a

a

a

a

a

a a a astart

Fig. 1. General structure of a DFA accepting a unary language

Proof. Let L be a unary regular language. If L is finite it is concatenation free.
So, we assume that L is infinite. A DFA accepting L has the general structure
as depicted in Fig. 1. After an initial tail of p ≥ 0 states, it runs through a cycle
of some length q ≥ 1. Any state may be accepting or rejecting.

Let M be a DFA accepting L, where s0 is the initial state, F denotes the
set of accepting states, S1 = {s1, s2, . . . , sp−1} are the states of the initial tail,
and S2 = {sp, sp+1, . . . , sp+q−1} are the states of the cycle (see Fig. 1). The set
of accepting states on the initial tail S1 ∩ F are denoted by F1 and the set of
remaining accepting states S2 ∩ F by F2.

Two concatenation-free expressions r1 and r2 are constructed as follows.
Expression r1 describes the finitely many words from L that are accepted on
the initial tail. That is, L(r1) = { ai | si ∈ F1 }.

Next, for any si ∈ F2, we define r(si) = {ai} · { a�·q | � ≥ 0 }. The union of
all L(r(si)) can be written as

r2 = (aq)∗ ·
⋃

si∈F2

{ai}.

So, the expression r1 ∪ r2 is concatenation free of degree 1.
We claim that L is the language L(r1 ∪ r2). It follows immediately from

the construction that r1 represents exactly the finitely many words in L whose
length is at most p− 1. Therefore, it remains to show the claim for words whose
length is at least p.

Let w ∈ L(M) with |w| ≥ p. Then w is accepted by M with a final state
from F2. Therefore, w belongs to the set { ai+�·q | si ∈ F2, � ≥ 0 }. In particular,
there is a si0 ∈ F2 so that w ∈ { ai0+�·q | � ≥ 0 }. The latter set can be written as
(aq)∗ ·{ai0}. By construction, we derive that w belongs to L(r(si0)). Therefore, w
belongs to L(r2) and, hence, to L(r1 ∪ r2).

Next, let w ∈ L(r1 ∪ r2) with |w| ≥ p. Since all words in L(r1) are shorter
than p, we have w ∈ L(r2). So, there is a state si1 ∈ F2 such that w is of the
form (aq)∗ · {ai1}. We conclude that a computation of M on input w ends in
state si1 ∈ F2 and the word w is accepted by M . ��
We conclude the section by discussing another property of concatenation-free
languages. The question is whether additional symbols in the alphabet, that

206 M. Kutrib and M. Wendlandt

never occur in a word of the language, can help to increase the expressive capac-
ity. For example, let r = (a ∪ b)∗ ∪ (a ∪ c)∗ be a concatenation-free expression
over alphabet Σ = {a, b, c} so that L(r) is a language over a strict subset
Σ′ = {a} ⊂ Σ only. In general, is there always a concatenation-free expres-
sion r′ over alphabet Σ′ describing L(r)? Or else, can the additional symbols be
reasonably utilized?

Lemma 10. Let r be a concatenation-free expression over alphabet Σ, so that
L(r) is a language over a strict subset Σ′ of Σ. Then a concatenation-free expres-
sion r′ over alphabet Σ′ describing L(r) can effectively be constructed.

Proof. Let r ∈ RE(Σ,Λ, {∪, ∗, }) be a concatenation-free regular expression,
and Σ′ ⊂ Σ so that L(r) ⊆ Σ′∗. The construction of a concatenation-free regular
expression r′ in RE(Σ′, Λ′, {∪, ∗, }) is as follows.

We have L(r) = L(r) ∩ Σ′∗ and consider the intersection with Σ′∗ as opera-
tion. This operation commutes with union and star:

(L1 ∪ L2) ∩ Σ′∗ = (L1 ∩ Σ′∗) ∪ (L2 ∩ Σ′∗) and L∗ ∩ Σ′∗ = (L ∩ Σ′∗)∗.

For complementation, we provide the rule L ∩ Σ′∗ = L ∪ Σ′∗.
So, we start with L(r) ∩ Σ′∗ and apply these rules repeatedly to move the

intersections with Σ′∗ towards the words from Λ and possibly the symbol ∅.
Then the intersections are applied yielding either empty sets or the words from Λ
unchanged. In this way the language described is not changed, and the regular
expression r′ thus constructed belongs to RE(Σ′, Λ′, {∪, ∗, }). ��

4 Closure Properties

Since some of the closure properties of concatenation-free languages follow
already from their definition, this short section is devoted to summarize and
complement the properties.

Theorem 11. The family of concatenation-free languages is closed under
inverse λ-free homomorphism.

Proof. Let r ∈ RE(Σ,Λ, {∪, ∗, }) be a concatenation-free regular expression,
and h : Γ ∗ → Σ∗ be a λ-free homomorphism. We are going to construct a
concatenation-free regular expression r′ for the language h−1(L(r)). The inverse
homomorphism h−1 commutes with each of the operations union, star, and
complementation. This means, we have h−1(L1 ∪ L2) = h−1(L1) ∪ h−1(L2),
h−1(L∗) = (h−1(L))∗, and h−1(L) = h−1(L).

Since any concatenation-free regular expression is built from words of Λ and
the symbol ∅ by a finite number of applications of union, star, and complemen-
tation, we may start with h−1(L(r)) and apply these rules repeatedly to move
the application of the inverse homomorphism towards the words from Λ and the
symbol ∅. Then h−1 is applied to the occurrences of words from Λ and ∅ thus
obtaining sets h−1(w) = {u ∈ Γ ∗ | h(u) = w } for all w ∈ Λ, and h−1(∅) = ∅.
Since h is λ-free all these sets are finite. Finally, every such set is replaced by
the union of its elements. This concludes the construction of r′. ��

Expressive Capacity of Concatenation Freeness 207

Theorem 12. The family of concatenation-free languages is closed under injec-
tive homomorphism.

Proof. Let r ∈ RE(Σ,Λ, {∪, ∗, }) be a concatenation-free regular expression,
and h : Σ∗ → Γ ∗ be an injective homomorphism. Similar as in the proof of
Theorem 11 we construct a concatenation-free regular expression r′ for the lan-
guage h(L(r)). The injective homomorphism h commutes with the operations
union and star: h(L1 ∪ L2) = h(L1) ∪ h(L2) and h(L∗) = (h(L))∗.

In general, even injective homomorphisms do not commute with complemen-
tation. However, we claim the following rule: h(L) = h(L) ∩ (h(Σ))∗.

To give evidence of the claim, let w /∈ L. Then h(w) /∈ h(L) which implies
h(w) ∈ h(L). Since h(w) ∈ (h(Σ))∗ is trivial one direction of the claim follows.
Now let v ∈ (h(Σ))∗. Since h is injective the preimage w = h−1(v) is unique. If,
in addition, v ∈ h(L) then h(w) ∈ h(L) which in turn implies h(w) /∈ h(L). We
conclude w /∈ L and, thus, w ∈ L. Therefore, we have h(w) ∈ h(L) and, finally,
v ∈ h(L). So, the other direction and, hence, the claim follows.

The rest of the construction is as in the proof of Theorem 11 using the trans-
formed rule h(L) = h(L) ∩ (h(Σ))∗ = h(L) ∪ (h(Σ))∗ for complementations. ��
Theorem 13. The family of concatenation-free languages is not closed under
concatenation.

Proof. The singleton language {a} is clearly concatenation free. Let y ≥ 3 be
some integer. Example 6 shows that { an | n ≡ 0 (mod y) } is concatenation
free as well. However, the concatenation {a} · { an | n ≡ 0 (mod y) } is equal to
{ an | n ≡ 1 (mod y) } which is not concatenation free by Lemma 5. ��
Theorem 14. The family of concatenation-free languages is closed under
reversal.

Proof. Since the reversal operation commutes with union, star, and complemen-
tation, the claim follows along the line of the proof of Theorem 11. ��
Theorem 15. The family of concatenation-free languages is not closed under
intersection with regular languages.

Proof. The language a∗ is concatenation free. Its intersection with any unary
regular language L ⊆ {a}∗ gives L. Since the unary concatenation-free languages
are properly included in the unary regular languages the non-closure follows. ��

5 Relations with Other Subregular Families

Relations between several subregular language families are studied in [5]. These
subfamilies are well motivated by their representations as finite automata or reg-
ular expressions. Just to mention a few of them: finite languages (are accepted
by acyclic finite automata), definite languages [1,10] (can be realized by a reg-
ister and a combinational circuit), star-free languages or regular non-counting

208 M. Kutrib and M. Wendlandt

Table 1. Closure properties of the family of concatenation-free languages

∪ ∩ ∩REG · ∗ hinjective hλ h h−1
λ R

yes yes yes no no yes yes ? ? yes yes

languages [4,9] (which can be described by regular(-like) expressions using only
union, concatenation, and complement and which have nice characterizations
in terms of aperiodic monoids and permutation-free DFA [9]), combinational
languages (are accepted by automata modeling combinational circuits), locally
testable languages (where the set of factors of a given length obtained from a
word uniquely determines whether or not the word belongs to the language),
star languages [2], and (two-sided) comet languages [3]. The hierarchy of these
and some other subregular language families is depicted in Fig. 2.

regular

two-sided
comets

star-free

comets
symmetric
definite

locally
testable

generalized
definite

ultimate
definite

strictly locally
testable

definite

noninitial
definite

stars combinational finite

Fig. 2. Hierarchy of subregular language families under investigation. The inclusions
are strict, where for stars the inclusion does not apply to the language {λ}.

Next we turn to discuss the position of the family of concatenation-free lan-
guages in that hierarchy. For the special case of unary languages the precise
position can be settled. On the right branch, we obtain a family properly in
between the regular and star-free languages. Since a unary language is star free

Expressive Capacity of Concatenation Freeness 209

if and only if it is either finite or cofinite [7], the unary concatenation-free regular
expressions are strictly more expressive the unary star-free regular expressions.

Theorem 16. The family of unary star-free languages is strictly included in the
family of unary concatenation-free languages.

Proof. Every unary language is star-free if and only if it is either finite or cofinite.
Since all finite and cofinite languages belong to UKF, they are concatenation free
(Theorem 4). On the other hand, Example 6 gives a unary concatenation-free
language, that is neither finite nor cofinite. ��
A language L ⊆ Σ∗ is a star language if and only if it can be written as L = G∗,
for some regular language G ⊆ Σ∗, L ⊆ Σ∗ is a comet language if and only if it
can be represented as concatenation G∗H of a regular star language G∗ ⊆ Σ∗

and a regular language H ⊆ Σ∗, such that G �= {λ} and G �= ∅, and L ⊆ Σ∗ is a
two-sided comet language if and only if L = EG∗H, for a regular star language
G∗ ⊆ Σ∗ and regular languages E,H ⊆ Σ∗, such that G �= {λ} and G �= ∅.

Theorem 17. The families of unary concatenation-free languages and unary
(two-sided) comet languages are incomparable.

Proof. It follows immediately from the definitions that any (two-sided) comet
language that contains at least one nonempty word is infinite. On the other
hand, any finite language is concatenation free.

Conversely, by Lemma 5 the language L = { an | n ≡ 1 (mod 3) } is not
concatenation free. On the other hand, it is described by {a3}∗{a} and, thus, a
comet language. ��
The next theorem completes the comparisons with the families on the left branch
of the hierarchy. Its proof follows immediately from the proof of Lemma 3. In
fact, the proof of the lemma does not utilize any property of the given language
except for being unary. It is well known that the star of any unary language is
regular. The proof of Lemma 3 shows that it is even concatenation free.

Theorem 18. The family of unary star languages is strictly included in the
family of unary concatenation-free languages.

Concerning the middle branch of the hierarchy we know already that the fam-
ily of concatenation-free languages is incomparable with the family of two-sided
comet languages. One aspect of the definition of symmetric definite languages
is to relax the condition of finiteness to arbitrary regular languages. A language
L ⊆ Σ∗ is symmetric definite if and only if L = GΣ∗H, for some regular lan-
guages G,H ⊆ Σ∗.

Theorem 19. The family of unary symmetric definite languages is strictly
included in the family of unary concatenation-free languages.

210 M. Kutrib and M. Wendlandt

Proof. Let L = G{a}∗H be symmetric definite. If G or H is the empty language,
then L is empty and, thus, concatenation free. Otherwise, L contains all words
whose length is at least the sum of the lengths of the shortest words in G and H.
So, L is cofinite and, therefore, concatenation free. ��
The results show that unary concatenation-free expressions are very powerful.
Though they are not as expressive as general regular expressions, they yield
a language family that strictly includes all of the families in the subregular
hierarchy depicted in Fig. 2, except for the (two-sided) comets to which it is
incomparable.

References

1. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for defi-
nite events. In: Mathematical Theory of Automata, pp. 529–561. Polytechnic Insti-
tute of Brooklyn (1962)

2. Brzozowski, J.A.: Roots of star events. J. ACM 14, 466–477 (1967)
3. Brzozowski, J.A., Cohen, R.S.: On decompositions of regular events. J. ACM 16,

132–144 (1969)
4. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. Syst. Sci.

5, 1–16 (1971)
5. Havel, I.M.: The theory of regular events II. Kybernetica 6, 520–544 (1969)
6. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. Int. J. Found.

Comput. Sci. 22, 1533–1548 (2011)
7. Holzer, M., Kutrib, M., Meckel, K.: Nondeterministic state complexity of star-free

languages. Theoret. Comput. Sci. 450, 68–80 (2012)
8. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:

Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton Uni-
versity Press, Princeton (1956)

9. McNaughton, R., Papert, S.: Counter-Free Automata. Research Monographs, vol.
65. MIT Press, Cambridge (1971)

10. Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans.
Electr. Comput. EC-12, 233–243 (1963)

11. Salomaa, K., Yu, S.: Alternating finite automata and star-free languages. Theoret.
Comput. Sci. 234, 167–176 (2000)

12. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform.
Control 8, 190–194 (1965)

The Membership Problem for Linear
and Regular Permutation Languages

Grzegorz Madejski(B)

Institute of Informatics, University of Gdańsk,
Wita Stwosza 57, 80-952 Gdańsk, Poland

gmadejsk@inf.ug.edu.pl

Abstract. We analyze the complexity of membership problem for two
subclasses of permutation languages: PermReg and PermLin. These
are languages generated by regular and linear grammars respectively,
extended by rules that allow to permute symbols in derivation, such as
abX → bXa. We prove two NP-hardness results and analyze parameter-
ized complexity of the problem.

1 Introduction

Context-free and context-sensitive languages are one of the most thoroughly
studied language classes in the formal language theory. There are, however, such
phenomena that cannot be modeled with a good accuracy or speed by either of
these two. Therefore, many families of languages were introduced that extend
context-free languages, but are contained within context-sensitive class.

One of such extensions is the family of permutation languages PermCF ,
introduced in [11] and also studied in [10,12]. This class consists of languages
generated by context-free grammars extended with special interchange rules,
that allow to permute symbols in the process of deriving a word. This class is
particularly interesting because of its relation to concurrency theory. Indeed,
permutation rules, as we see in upcoming proofs, can be used to model shuffle
expressions, which are known to be useful in the interleaving of processes [4–6].
In addition, a subclass of permutation languages called partially-commutative
context-free languages (PCCFL) was studied in terms of finding a good sub-
stitute for the Process Algebra [2]. Finally, permutation grammars could be
studied in relation with natural languages with a relatively free word order, such
as Finnish [9].

To be of practical use, a class of languages (or grammars) must have several
good properties. One of the most important property of a grammar is to be
parsable in polynomial time. Therefore, it is one of the priorities to investigate
the complexity of the uniform membership problem:

Input: a language L ⊆ A∗, a word w ∈ A∗,
Question: w ∈ L?

where A is an alphabet.
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 211–223, 2015.
DOI: 10.1007/978-3-319-22360-5 18

212 G. Madejski

The uniformity of this problem comes from the fact that the representation
of language L is also given as input. One could also consider a simpler mem-
bership problem, called non-uniform, where language L ⊆ A∗ is fixed and its
representation is not given as input:

Input: a word w ∈ A∗,
Question: w ∈ L?

Notice that investigating complexity of the above problem actually corresponds
to the question: what is the complexity class of L? Another important observa-
tion is that the uniform version is harder (or to be precise: not easier) to solve
than the non-uniform. There are classes, such as shuffle languages, for which
the non-uniform membership problem is solvable in polynomial time [8] but the
uniform version is NP-complete [13].

Unfortunately these problems seem to be hard for the permutation languages.
There exist languages in PermCF that are NP-hard which can be shown using
the results in [13], or [1] as was mentioned in [10]. In our effort to make the
languages recognizable in polynomial time we restrict the context-free rules only
to be linear or regular. Thus, two subclasses of PermCF emerge: PermLin and
PermReg. We find a language in PermLin for which the non-uniform mem-
bership is NP-complete and prove that the uniform membership problem for
PermReg is NP-hard. Only the non-uniform version for PermReg is not studied
and remains an open problem. The results are summarized in the table together
with numbers of the theorems.

Membership Problem PermLin PermReg

Non-Uniform NP-complete[Theorem 1] ?

Uniform NP-hard NP-hard[Theorem 2]

The runtime of the above problems is measured in terms of the input size only.
It would be interesting to know if the runtime is polynomial in the input size and
exponential or worse in a parameter k, where k is the number of occurrences of
permutation rules in derivation. With time bounded by a function f(k)p(|input|),
for some polynomial p : N → N and computable function f : N → N this problem
would be fixed-parameter tractable. We could then try to minimize f(k) to try
to make the problem solvable not in polynomial, but yet in decent time. We show
however that this problem is W [1]-hard which contradicts the above statements,
unless W [1] = FTP .

The paper is organized as follows. In Sect. 2 we give some preliminary defini-
tions and examples. In Sect. 3 we prove the NP-completeness of the non-uniform
membership problem for PermLin. Section 4 contains the NP-hardness proof for
the uniform membership problem for PermReg. In Sect. 5 the W [1]-hardness of
the uniform problem for PermReg is proved. We conclude the paper with Sect. 6
containing some final remarks and open problems.

The Membership Problem for Linear and Regular Permutation Languages 213

2 Preliminaries

We assume the reader is familiar with the basics of formal language theory. If
not, please consider reading [7] beforehand.

We quickly recall the definition of a Parikh mapping Ψ : A∗ → N
|A| over an

alphabet A = {t1, ..., tn}. For each word in A∗ this function returns a vector of
occurrences of letters in the word Ψ(w) = (|w|t1 , |w|t2 , ..., |w|tn), where |w|t is
the number of occurrences of letter t in w. For example for alphabet {a, b, c, d}:
Ψ(abad) = (2, 1, 0, 1).

Let G = (N,A, P, S) be a grammar with N as the set of variables, A as the
alphabet, P as the set of rules and S ∈ N as a start symbol. In this paper we
will only consider the following rules.

– A context-free rule is of the form X → α, where X ∈ N , α ∈ (A ∪ N)∗.
– A linear rule is of the form X → uY v or X → u, where X,Y ∈ N , u, v ∈ A∗.
– A regular rule is of the form X → uY or X → u, where X,Y ∈ N , u ∈ A∗.
– A permutation (or interchange) rule is of the form α → β, where α, β ∈

(N ∪ A)∗
N (N ∪ A)∗, α �= β, Ψ(α) = Ψ(β) for a Parikh mapping Ψ over the

alphabet N ∪A. Also, two permutation rules α → β and β → α will be shortly
denoted as α ↔ β.

Let PermCF stand for the family of permutation languages, i.e. languages gen-
erated by permutation grammars which contain context-free and permutation
rules. The linear permutation languages PermLin and regular permutation lan-
guages PermReg are defined by analogy using linear permutation grammars
(linear and permutation rules) and regular permutation grammars (regular and
permutation rules) respectively.

Observe that from the above definitions the following containment is obvious:

PermReg ⊆ PermLin ⊆ PermCF.

We also recall the notion of a shuffle and shuffle closure operations (see [8]).
We define the shuffle operation of two words inductively

λ � λ = {λ}, λ � u = u � λ = {u}, au � bv = a(u � bv) ∪ b(au � v)

where u, v ∈ A∗, a, b ∈ A. A shuffle of two languages is a set L�K = {u�v : u ∈
L, v ∈ K}, whereas by L�i we denote a language L � L�(i−1) and L�0 = {λ}.
A shuffle closure of a language is a set L⊗ =

⋃
i∈N

L�i.
For example for the alphabet {a, b, c}, we denote the language L = {w ∈

{a, b, c}∗ : |w|a = |w|b = |w|c}. The rules needed to derive all words are the
following:

S → aX, X → bY, Y → c | cS, S → λ,

Sa ↔ aS, Sb ↔ bS, Sc ↔ cS,

Xa ↔ aX, Xb ↔ bX, Xc ↔ cX,

Y a ↔ aY, Y b ↔ bY, Y c ↔ cY.

214 G. Madejski

A word acb is derived in four steps:

S ⇒ aX ⇒ abY ⇒ aY b ⇒ acb.

Finally, let us clarify some basic concepts of parameterized complexity.
Let A be an alphabet. A language L ⊆ A∗ × N is a parameterized language.

If (x, k) ∈ L, then k is called a parameter.
Having defined a parameterized language, we are ready to define a notion of

reducibility. We will only take into account a standard parameterized reduction
(or shortly FPT -reduction). In order to read more on this topic and compare
with other definitions please refer to [3].

Definition 1. We say that L ⊆ A∗ × N reduces to K ⊆ B∗ × N by a stan-
dard parameterized reduction if there are computable functions f, g : N → N, a
polynomial p : N → N and a function F : A∗ × N → B∗ such that:

1. F : (x, k)
→ x′ is computable in time g(k)p(|x|),
2. (x, k) ∈ L ⇔ (x′, f(k)) ∈ K.

We say that a parameterized language L ⊆ A∗ × N is fixed-parameter
tractable if there exists a Turing machine that decides L and for every input
(x, k) ∈ L it runs in time f(k)p(|x|), where f : N → N is a computable function
and p : N → N is a polynomial.

Fixed-parameter tractable language class (FPT) is closed under standard
parameterized reduction and, as was mentioned in the previous section, has some
good properties. On the other hand, there is a bigger family of parameterized
languages called W [1], i.e. FPT ⊆ W [1] (the equality of classes is highly unlikely,
but it was not proved). These are languages for which the input reduces by a
standard parameterized reduction to a combinatorial circuit that has weft at
most 1. For more detailed definitions, see [3].

3 The Non-uniform Membership Problem for PermLin

Let A = {a, b, c, d, e, f} be an alphabet. The language L = {abkcdekf : k ≥
0}⊗ over A is known to be NP-complete [13]. We show that it reduces to the
language L$ ∈ PermLin. Before we go into technical details, let us have a quick
motivational preface.

It is hard to show that L ∈ PermLin. The major problem in construct-
ing a linear grammar with permutations generating this language is that the
interchange rules can move the symbols too freely, resulting in such words as
abcbbacdeefdef , which is not in L. In other words, while shuffling the sub-
word abbcdeef into what was already generated (abcdef), there is a risk that
the letters from this word change their order and that is not allowed.

In order to prevent that from happening, we add a special, guarding symbol
$ to the alphabet. Each time a letter from A is generated, it will come with
the symbol $ as a neighbor and only together it will be possible for this pair of
symbols to be shuffled into already generated string of symbols. Then, after the

The Membership Problem for Linear and Regular Permutation Languages 215

shuffling of the new subword is done, the guarding symbols can be pushed to
the sides of the configuration to prevent them from hindering the next steps of
derivation process. Let us illustrate these steps on an example.

We want to shuffle abbcdeef into abcdef to get aabbbccddeeeff .

Generate the first subword. abc$$def
Push the $-signs to the left. $6abcdef
Generate the first letter of the new subword. $6abcdefa$
Move it left, but do not pass any $-signs. $6aa$bcdef
Generate the last letter of the new subword. $6aa$$fbcdef
Move it right, but do not pass any $-signs. $6aa$bcde$ff
Generate the second letter of the new subword. $6aa$bcdeb$$ff
Move it left, but do not pass any $-signs. $6aa$b$bcde$ff

We repeat these steps for all letters of the new subword:

$6aa$bbbccddeee$ff

and after that push the $-signs to the left: $14aabbbccddeeeff .
There are a few important observations to be made. The letters are generated

in an alternating manner: the first one, the last one, the second one, the one before
last and so on. The letters from the first half of the word (a, b, c) are always pushed
left and they have their guarding symbol $ on the right. The other letters (d, e, f)
are pushed right and have their $ on the left side. Such positions of the $-signs are
important: a letter b is moved left, but it cannot pass the letter a from the same
subword. Therefore, a is protected with the $ from the right. Imagine a worker
sitting in a middle of the word, pushing letters left and right without being able
to move past the letters he already placed in their position. This worker is actually
a variable from the grammar that we now define.

The language with the guarding symbols over the alphabet A ∪ {$} is L$ =⋃
w∈L,|w|=n w � $n+1. Observe that when we use an erasing homomorphism

h$(t) = t for t ∈ A and h$($) = λ (empty word) we acquire h(L$) = L. Now
we construct a linear permutation grammar G$ = ({S,X1,X2,X3,X4,X5}, A ∪
{$}, P, S) generating L$. The set P contains the following linear rules:

S
0→ $, S

1→ a$X1, X1
2→ X2$f, X2

3→ b$X3,

X3
4→ X2$e, X2

5→ c$X4, X4
6→ X5$d, X5

7→ S,

and for arbitrary t ∈ A the following permutation rules:

St
8↔ tS, S$ 9↔ S, tS 10↔ $St,

ta$X1
11→ a$X1t, X2$ft

12→ tX2f, tbX3
13→ b$X3t,

X2$et
14→ tX2e, tcX4

15→ c$X4t, X5$dt
16→ tX5$d.

The numbers above the arrows are just a notation to simplify the clarifi-
cation of the derivation process. Let us look briefly at how the word w =
$14aabbbccddeeeff from previous example is derived:

216 G. Madejski

S
1−6=⇒ ...

1−6=⇒ abc$X5$def
7=⇒ abcSdef

8−10=⇒ ...
8−10=⇒ $6abcdefS

1=⇒ $6abcdefa$X1
11=⇒ ...

11=⇒ $6aa$X1bcdef
2=⇒

2=⇒ $6aa$X2$fbcdef
12=⇒ ...

12=⇒ $6aa$bcdeX2$ff
3=⇒

3=⇒ $6aa$bcdeb$X3$ff
13=⇒ ...

13=⇒ $6aa$b$X3bcde$ff =⇒
... =⇒ $6aa$bbbccSddeee$ff

8−10=⇒ ...
0=⇒ w.

We show now that the grammar G$ indeed generates the language L$.

Lemma 1. L$ = L(G$)

Proof. We start with proving ⊆. Let w ∈ L$. We prove that w ∈ L(G$). By
definition of the L$ language w ∈ u � $|u|+1, where u ∈ L. We may additionally
assume that:

u ∈ (((abn1cden1f
︸ ︷︷ ︸

u1

� abn2cden2f
︸ ︷︷ ︸

u2

) � abn3cden3f
︸ ︷︷ ︸

u3

) � ...) � abnpcdenpf
︸ ︷︷ ︸

up

.

The idea of the proof is similar to the one presented in the above mentioned exam-
ples.

Using the rules 1–6, we generate u1 with dollar signs a$(b$)n1cSd($e)n1$f .
Then we use permutations 8–10 to move all $-signs left: $2n1+4abn1cden1fS. Next,
we want to shuffle u2 into u1. We use the rule 1 and permutation 11 at most
2n1 + 4 times to put the letter a in the desired place. We then use the rule
2 and permutation 12 to put f in an arbitrary position. With rule 3 we can
add a letter b, but it cannot go before the letter a of u2, since permutations do
not go past $-signs. We continue do so until all letters of u2 are placed. Then
we use permutations 8–10 to clean up the dollars getting a string of the form:
$2n1+2n2+8(abn1cden1f � abn2cden2f)S. The procedure continues until we reach
$|u|uS. We use the permutation 8–10 to move $-signs wherever we need and place
the final $ with the rule 0, obtaining w.

Let us now prove ⊇. It suffices to prove that if w ∈ L(G$), then in the one
before last step of the derivation the string is in the set S � w � $k, where w ∈ L
and |w| = k. Then, one uses the rule 0 to end the derivation and the outcome is,
by definition, a word of L$.

Observe that each derivation in G$ contains a loop, which starts with rule 1,
contains rules 2–6 and possibly permutations 11–16. The loop ends with rule 7
and possibly permutations 8–10 afterwards. We call this an S-loop. Below, there
is a derivation with strings γ1, γ2 after the two first S-loops.

S ⇒ ... ⇒ γ1︸︷︷︸
∈S�u1�$|u1|

⇒ ... ⇒ γ2︸︷︷︸
∈S�u1�u2�$|u1�u2|

⇒ ...

We show inductively over the number of S-loops that the derived string after each
S-loop is of the form S � w � $k, where w ∈ L and |w| = k.

In the base case, for n = 0 we omit all the productions and we are left with
symbol S only. The derived string S � λ is of the desired form.

The Membership Problem for Linear and Regular Permutation Languages 217

Suppose that the statement is true for i and we acquired some string from the
set S�wi�$k, where wi ∈ L1, |wi| = k. Having symbol S in the current derivation
step, we can use permutation rules 8–10. As we already know, these rules are used
to move S in the configuration and move the $-symbols to arbitrary positions.
However afterwards the configuration is still of the form S � wi � $k.

Let S be in the following position in the derived string α$y0Sy1$β, where
α, β ∈ (A ∪ $)∗, y0, y1 ∈ A∗. Other cases of strings (α$y0Sy1 and y0Sy1$β) are
treated analogously. After using rule 1 we get α$y0a$X1y1$β. Now we can use per-
mutation 11 maximum |y0| times, because we cannot surpass symbol $. We get the
following string of symbols α$z1a$X1y2$β, where y0y1 = z1y2. In analogy to the
step before, we use rule 2 and permutation 12 (maximum |y2| times) and get the
following string α$z1a$y3X2$fz2$β, where y0y1 = z1y2 = z1y3z2.

For an arbitrary m ≥ 0 we continue to do so for 2m+4 steps (linear productions
with their following permutations) to finally get:

α$z1a$z3b$...z2m+1b$z2m+3c$y2m+5X5$dz2m+4$ez2m+2...$ez4$fz2$β.

where y0y1 = z1y2 = z1y3z2 = ... = z1z3z5...z2m+3y2m+5z2m+4...z6z4z2.
We see that the word (a$)(b$)m(c$)($d)($e)m($f) was shuffled into y0y1-part

of wi. We can use rule 7 to switch to S. Then the permutations 8–10 move the
$-signs to arbitrary positions. The string in derivation is of the form S � wi �
abmcdemf � $k+2m+4. We clearly see that wi+1 ∈ wi � abmcdemf and wi+1 ∈ L.
The length |wi+1| = k + 2m + 4 is the number of $-signs in the derivation step.

The induction proof is complete.

Since we proved that L$ ∈ PermLin, we are ready to show its NP-completeness.

Theorem 1. L$ ∈ PermLin is an NP-complete language.

Proof. Let f : A∗ → (A ∪ {$})∗ be a polynomial-time reduction from L to L$

given with the formula f(w) = $k+1w, where |w| = k. Because L is NP-hard [13],
then so is L$.

It is easy to construct a non-deterministic Turing machine so that it mimics
G$ and accepts L$ in polynomial time. On the input tape we keep the word, on the
second tape we guess and write the derivation of the word, for example, the num-
bers of the rules. On the third tape we derive a word using the encoded derivation.
Finally we check whether the words from tape 1 and tape 3 are the same.

It is important to observe that the derivation of a word of length n requires
polynomial(n) steps. After each linear rule 1–6 we use the permutations 11–16
at most n times. After rule 7 is applied, the symbol S moves the $-signs in an
arbitrary order using permutation rules 8–10. This can be done in O(n3) time.
We find a $-sign in O(n) time and move it to a desired place in O(n) steps. This
procedure is done for O(n) $-signs.

Thus, we have proved the NP-completeness.

218 G. Madejski

4 The UniformMembership Problem for PermReg

In this section, we show that the uniform membership problem for PermReg is
NP-hard.

Input: a grammar G, a word w,
Question: w ∈ L(G)?

We do this by a reduction from the k-Clique problem, which is known to be NP-
complete.

Input: a graph H, a number k
Question: Does graph H have a k-clique as subgraph?

The graph H = (VH , EH) (where |VH | = n, |EH | = m) is undirected and we
will not encode it as a standard adjacency list, but as a string V ′

H#E′
H , where

V ′
H = v1v2 · · · vn is a string containing all vertices sorted in an ascending manner

in respect to their indices, E′
H =

⊗
vivj∈EH ,i<j vivj$ is a string of edges also sorted

in this way with respect to both indices of the vertices in the edge and separated
with the $-signs.

We assume that the alphabet is proportional to the number of vertices. One
could encode each vertex as a binary number enabling the alphabet to be of con-
stant size. This has a slight impact on the complexity. However, for the sake of
clarity, we consider each vertex symbol to be a single sign.

The k-clique cannot consist of more edges than the graph, so we additionally
assume that m ≥ k(k−1)

2 .
We construct a grammar GH = (N,A, P, S), where

N = {S,X1,X2, ...,Xk, Y, T1, T2, ..., Tm− k(k−1)
2

}, A = {v1, v2, ..., vn, $} and the
set P contains the following rules:

– the starting rule,
S → $

k(k−1)
2 X1

– the X-rules, which guess the vertices of the k-clique and generate k−1 of copies
for each vertex:

X1 → vk−1
1 X2 | vk−1

2 X2 | ... | vk−1
n X2,

X2 → vk−1
1 X3 | vk−1

2 X3 | ... | vk−1
n X3,

...

Xk → vk−1
1 Y | vk−1

2 Y | ... | vk−1
n Y,

– the Y-permutations, which reorder all symbols in an arbitrary manner:

a1a2Y → a2a1Y, a1Y ↔ Y a1, where a1, a2 ∈ A, a1 �= a2,

– the T-rules, which generate all edges outside of k-clique:

Y → λ|T1,

T1 → vivj$T2, T2 → vivj$T3, ..., T
m− k(k−1)

2
→ vivj$

where 1 ≤ i < j ≤ n and vivj ∈ EH .

The Membership Problem for Linear and Regular Permutation Languages 219

– the T-permutations, which allow to put the missing edges in correct places

Tlvivj$ → vivj$Tl, where l ∈ {1, 2, ...,m − k(k − 1)

2
}, 1 ≤ i < j ≤ n, vivj ∈ EH

Before we go into details of the proof let us present an example. Sup-
pose we have the following graph and we ask whether it contains a 4-clique.

v1 v2 v3

v4

v5v6

The derivation consists of three major steps:

1. We can nondeterministically guess that the 4-clique consists of vertices
v2, v3, v5, v6. Using the X-rules we generate a string $6v3

2v
3
3v

3
5v

3
6Y .

2. Using the Y -permutations, we reorder the string to contain 6 edges that form
the 4-clique: Y v2v3$v2v5$v2v6$v3v5$v3v6$v5v6$.

3. We can generate all the 3 missing edges (bold font) which are not part of the
k-clique. This is done with T -rules and T -permutations:
T1v2v3$v2v5$v2v6$v3v5$v3v6$v5v6$ ⇒
v1v2$T2v2v3$v2v5$v2v6$v3v5$v3v6$v5v6$ ⇒ ... ⇒
v1v2$v2v3$v2v5$v2v6$T2v3v5$v3v6$v5v6$ ⇒
v1v2$v2v3$v2v5$v2v6$v3v4$T3v3v5$v3v6$v5v6$ ⇒ ... ⇒
v1v2$v2v3$v2v5$v2v6$v3v4$v3v5$v3v6$T3v5v6$ ⇒
v1v2$v2v3$v2v5$v2v6$v3v4$v3v5$v3v6$v4v5$v5v6$

With some intuition gained, we are ready to prove the following lemma.

Lemma 2. Let H = (VH , EH) be an undirected graph and k ≥ 1. Then: H con-
tains a k-clique ⇔ E′

H ∈ L(GH).

Proof. The right implication is easy to follow, once the above example is under-
stood, so we only sketch the proof. Let C be the k-clique of H. By analogy to the
graph H, we define VC , V ′

C , EC and E′
C .

1. We start the derivation and using k X-rules we generate a string: S ⇒ ... ⇒
$

k(k−1)
2 vk−1

i1
vk−1
i2

· · · vk−1
ir

Y , where VC = {vi1 , ..., vir}.
2. We use the Y -permutations to mix the vertices and $-signs to get a string Y E′

C .
It is important to move the symbol Y to the left. Thus, in the next step edges
can be put inbetween any of the edges of C.

3. Using m − k(k−1)
2 T -rules and at most k(k−1)

2 T -permutations we add all the
edges of H that are not in EC . We derive the desired word: E′

H .

220 G. Madejski

Notice that due to the freedom to move symbol by Y - and T -permutations, we are
able to order the edges in the correct order.

We prove the implication in the other direction. We show that if E′
H ∈ L(GH)

is a valid string of edges, then H has a k-clique. A few key observations should be
made:

– The starting rule, X-rules and Y -permutations, up to the point where Y → T1

is used, must generate a valid list of edges of a subgraph of H. The symbols
cannot be reordered later.

– The X-rules generate a total number of k(k − 1) copies of vertices. Using Y -
permutations we reorder these symbols to form k(k−1)

2 edges.
– Since the X-rules generate at most k vertices (each has many copies) and we

have a total number of k(k−1)
2 edges, we conclude that each X-rule chooses a

different vertex. Otherwise we would have copies of the same edge or loops of
the form vivi, which is not allowed.

– Each vertex must form an edge with the other k − 1 vertices and therefore, it
is within k − 1 edges. Together they form a clique of size k.

The fact above should give us a clear image that the string generated is either a
proper set of edges of a k-clique or a word that is not valid and cannot be translated
to a graph.

After that, T -rules generate m− k(k−1)
2 missing edges from H to complete the

list E′
H .

Theorem 2. The uniform membership problem for PermReg is NP-hard.

Proof. NP-hardness follows from Lemma 2.

5 Parameterized Complexity of the Uniform
Membership Problem

In the previous section NP-hardness of the uniform membership problem was
proved for the class PermReg. As was already said in the introductory section
of this paper, such result does not give much information, because the time com-
plexity is only considered with respect to the length of the input. Therefore, we
investigate a parameterized version of this problem, which also takes into consid-
eration a parameter k. Let us rewrite the problem from the previous section:

Input: a grammar G, a word w,
Parameter: k,
Question: Can w be derived in grammar G using permutation rules at most

k times?

From practical point of view, it would be good, if this problem were in FPT class,
as that would perhaps allow a certain degree of scalability. This is however not
true, unless FPT = W [1]. We show that the problem is W [1]-hard.

We prove this using an FPT-reduction from the parameterized k-clique prob-
lem, which is known to be W [1]-hard.

The Membership Problem for Linear and Regular Permutation Languages 221

Input: a graph H,
Parameter: k,
Question: Does graph H have a k-clique as subgraph?
We prove the following lemma:

Lemma 3. The parameterized k-clique problem reduces by a standard parameter-
ized reduction to the parameterized uniform membership problem for PermReg.

Proof. We need to check if both conditions of the Definition 1 are fulfilled.

1. The function F translates the input of one problem to another. The graph H
(given as a string V ′

H#E′
H) with parameter k should be transformed into a word

with a grammar w#GH . The part with w is a straightforward copy of E′
H and

can be written in linear time.
It is easy to estimate that encoding GH is polynomial over the length of the

input. We roughly asses the number of steps we need to make.
We add k ·n X-rules, each with k symbols, which makes around k2 ·n steps.

There are n+1 symbols in the alphabet (vertices and the symbol $), so the total
number of Y -permutations is n(n+1)

2 +2(n+1), each written in constant time.

Written in constant time are also all m− k(k−1)
2 T -rules and

(
m − k(k−1)

2

)
·m

T -permutations, because all the edges are encoded in E′
H . When we sum the

numbers, we get

k2 · n +
n(n + 1)

2
+ 2(n + 1) + m − k(k − 1)

2
+

(

m − k(k − 1)
2

)

· m.

Since n, k,m ≤ |input|, the time needed to encode everything is O(|input|3).
2. The equivalence follows directly from Lemma 2. It suffices to show that the

function f properly translates the parameter k between problems, i.e., f : (size
of the clique)
→ (number of permutations used in derivation). It is important
to show that f is only dependent on k and not on other parameters such as n
or m.

Having a clique of size k, the starting rule and X-rules generate a string of
length k(k−1)

2 +k(k−1) = 3k(k−1)
2 . To reorder symbols in this string in an arbi-

trary manner, for every of the 3k(k−1)
2 symbols the variable Y must move itself

to the desired place within 3k(k−1)
2 steps and move this symbol to the right place

using Y -permutation at most 2 · 3k(k−1)
2 times. This results in 27k3(k−1)3

4 appli-
cations of Y -permutations. We move Y to the beginning of the string (3k(k−1)

2

steps) and use T -permutations at most k(k−1)
2 times, since that is the maximal

number of generated edges of the clique. Thus, in the end we get the formula:
f(k) = k6(k−1)3

4 + 3k(k−1)
2 + k(k−1)

2 .
That is of course a rough estimation but is sufficient to show that f(k) is a
polynomial over k and is not dependent on other parameters.

From the W [1]-hardness of k-clique the theorem follows immediately.

Theorem 3. The parameterized uniformmembership problem for PermReg with
the number of applications of permutation rules set as parameter is W [1]-hard.

222 G. Madejski

6 Conclusions

We have proved that the non-uniform membership problem for a certain language
in PermLin is NP-complete. We have also shown NP-hardness of the uniform
membership problem for PermReg. These results shed some light on the problems
relating to recognizing permutation languages. It seems that imposing restrictions
on context-free rules does not make the problem tractable. Therefore, it would be
interesting to know if there existed a restriction on permutation rules that made
the problem solvable in polynomial time.

We have also proved that uniform membership problem for PermReg is W [1]-
hard with the number of occurrences of permutation rules in derivation set as para-
meter. Due to this result, we know that these problems do not lie in FPT class,
unless FPT = W [1]. There are, however, other possibilities of setting the para-
meter k to be studied, such as the number of permutation rules in grammar or the
number of applications of context-free rules in derivation.

Notice also, that since the language L$ from Sect. 3 is NP -complete, the
uniform membership problem for PermLin is NP-hard, but the completeness
is not proved. It was shown that L$ ∈ NP , but the complexity of the whole
class PermLin or PermReg was not analyzed. It would be interesting to show
that PermLin, PermReg ⊆ NP or perhaps prove an even stronger fact, that
PermReg ⊆ P . PermReg bears some resemblance to the shuffle languages which
lie in P . Both rely on regular languages (either regular grammar or regular expres-
sion) with an interleaving mechanism (permutation rules or shuffle operation).

Finally, other decision problems could be analyzed in terms of decidability and
complexity.

References

1. Berglund, M., Björklund, H., Björklund, J.: Shuffled languages - representation and
recognition. Theor. Comput. Sci. 489–490, 1–20 (2013)

2. Czerwinski, W., Lasota, S.: Partially-commutative context-free languages.
EXPRESS/SOS, pp. 35–48 (2012)

3. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013)

4. Esparza, J.: Petri nets, commutative context-free languages, and basic parallel
processes. Fundam. Inform. 30, 23–41 (1997)

5. Garg, V., Ragunath, M.: Concurrent regular expressions and their relationship to
petri nets. Theor. Comput. Sci. 96(2), 285–304 (1992)

6. Gischer, J.: Shuffle languages, petri nets, and context-sensitive grammars. Commun.
ACM 24(9), 597–605 (1981)

7. Hopcroft, J.E., Ullmann, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Cambridge (1979)

8. J ↪edrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theor. Comput. Sci.
250(1–2), 31–53 (2001)

9. Karttunen, L., Kay, M.: Parsing in a free word order language. In: Dowty, D.R., et al.
(eds.) Natural Language Parsing: Psychological, Computational, and Theoretical
Perspectives, pp. 279–306. Cambridge University Press, Cambridge (2005)

The Membership Problem for Linear and Regular Permutation Languages 223

10. Madejski, G.: Infinite hierarchy of permutation languages. Fundam. Inform. 130(3),
263–274 (2014)

11. Nagy, B.: Languages generated by context-free grammars extended by type AB →
BA rules. J. Autom. Lang. Comb. 14(2), 175–186 (2009)

12. Nagy, B.: On a hierarchy of permutation languages. In: Ito, M., Kobayashi, Y., Shoji,
K., (eds.) Automata, Formal Languages and Algebraic Systems, pp. 163–178. World
Scientific, Singapore (2010)

13. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. J. Comput.
Syst. Sci. 28(3), 345–358 (1984)

Classical and Quantum Counter Automata
on Promise Problems

Masaki Nakanishi1(B) and Abuzer Yakaryılmaz2

1 Faculty of Education, Art and Science, Yamagata University,
Yamagata 990-8560, Japan

masaki@cs.e.yamagata-u.ac.jp
2 National Laboratory for Scientific Computing, Petrópolis, Rj 25651-075, Brazil

abuzer@lncc.br

Abstract. In this paper, we show that one-way quantum one-counter
automaton with zero-error is more powerful than its probabilistic coun-
terpart on promise problems. Then, we obtain a similar separation result
between Las Vegas one-way probabilistic one-counter automaton and
one-way deterministic one-counter automaton. Lastly, it was conjectured
that one-way probabilistic one blind-counter automata cannot recognize
Kleene closure of equality language [A. Yakaryilmaz: Superiority of one-
way and realtime quantum machines. RAIRO - Theor. Inf. and Applic.
46(4): 615–641 (2012)]. We show that this conjecture is false.

Keywords: Quantum automata · Counter automata · Promise prob-
lems · Blind counter · Exact Probabilistic and quantum computation

1 Introduction

Quantum computation is a generalization of probabilistic computation which
is a generalization of deterministic computation. It is natural to ask whether a
quantum model is more powerful than its probabilistic counterpart and similarly
whether a probabilistic model is more powerful than its deterministic counter-
part. For a fair comparison between these three types of models, bounded-error
models of quantum and probabilistic should be considered, as we do in this paper.

Quantum automata models can be regarded as restricted models of quantum
Turing machines; usually we restrict its memory and/or the direction of head
movement. By analyzing such restricted models, we can find where the power of
quantum computation comes from and what kinds of restrictions spoil advan-
tages of quantum computation. In our case, we investigate how counter resources
benefit from quantum computation.

We have a more complete picture for constant-space models (finite state
automata) when compared to models using memories (finite state automata

M. Nakanishi—Partially supported by JSPS KAKENHI Grant Numbers 24500003
and 24106009, and also by the Asahi Glass Foundation.
A. Yakaryılmaz—Partially supported by CAPES with grant 88881.030338/2013-01.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 224–237, 2015.
DOI: 10.1007/978-3-319-22360-5 19

Classical and Quantum Counter Automata on Promise Problems 225

augmented with counter(s), stack(s), tape(s), etc.). For example, one-way1 deter-
ministic finite automata (1DFAs) are equivalent to one-way probabilistic finite
automata (1PFAs) and one-way quantum finite automata (1QFAs) – they define
the class of regular languages [15,20,25]. On the other hand, in the case of
two-way models2 abbreviated respectively 2DFA, 2PFA, and 2QFA, 2DFAs are
equivalent to 1DFAs, 2PFAs are more powerful than 2DFAs, and 2QFAs are more
powerful than 2PFAs. [2,7,13,24]. As a special case, one-way with ε-moves3 (1ε)
quantum finite automata (1εQFAs) can recognize some non-regular languages
if the head is allowed to be in a superposition [1]. Note that ε-moves can be
easily removed for the classical finite automata without increasing the number
of states.

When considering finite automata using memory, there are more unanswered
cases. The most challenging ones seem to be between quantum and probabilistic
models. For example, 1PFAs with a counter (1P1CAs) are more powerful than
1DFAs with a counter (1D1CAs) [6] but we do not know whether 1QFAs with a
counter (1Q1CAs) are more powerful than 1P1CAs – we have only an affirma-
tive answer for one-sided bounded-error [22]. For two-way models, abbreviated
respectively 2D1CAs, 2P1CAs, and 2Q1CAs, only 2Q1CAs were shown to be
more powerful than 2D1CAs [28] and the other cases are still open. For one-way
pushdown automata models, abbreviated respectively 1DPDAs, 1PPDAs, and
1QPDAs, 1DPDAs were shown to be weaker than even Las Vegas restriction
of 1PPDAs [12] and the question is open between quantum and probabilistic
models [29].

All mentioned results above are regarding language recognition. When con-
sidering solving promise problems, a generalization of language recognition such
that the aim is to separate two disjoint languages that do not necessarily form the
set of all strings, the picture can dramatically change [9,17,18,21]. The separa-
tion results can be obtained even for one-way models or the case of zero-error – a
very restricted case is that unary QFAs are more powerful than unary PFAs [8].
Also as pointed out in [9], the effects of randomness and quantumness can be more
easily shown with promise problems and some open problems defined on language
recognition can be answered in the case of solving promise problems. In [17,18],
exact4 1εQPDAs are shown to be more powerful than exact 1εPPDAs, which are
1εDPDAs. In this paper, we obtain the same result between 1Q1CAs and 1P1CAs.
That is, we show that exact 1Q1CAs can solve a certain promise problem that can-
not be solved by exact 1P1CAs,which are 1D1CAs.Asmentioned above, LasVegas
1εPPDAs are more powerful than 1εDPDAs on language recognition. As the sec-
ond separation, we obtain the same result for Las Vegas 1P1CAs and 1D1CAs on

1 The input is read as a stream from left to right and a single symbol is fed to the
machine in each step. We also use two end-markers to allow the machine making
some pre- and post-processing.

2 The input is written on a single-head read-only tape between two end-markers and
the head can move in both directions or stay in the same tape square in each step.

3 It is a restricted version of two-wayness such that the head cannot move to the left.
4 A single answer is given with probability 1.

226 M. Nakanishi and A. Yakaryılmaz

promise problems. In each separation, we define a new promise problem and give
an algorithm for the more powerful model, and then, we show the impossibility
result for the weaker model.

Additionally, we disprove the conjecture defined by Yakaryılmaz [27], in which
the author separated 1QFAs with a blind counter from 1DFAs with a blind
counter by using the language EQ∗, the Kleene closure of EQ = {anbn | n > 0}.
Then he conjectured that the same language cannot be recognized by 1PFAs
with a blind counter. However, we provide an algorithm for 1PFAs with a blind
counter that recognizes EQ∗.

In the next section, we provide the required background and then we present
our main results under three subsections.

2 Definitions

We use the following notations: Σ, not containing ¢ and $ (the left and the right
end-markers, respectively), denotes the input alphabet; Σ̃ = Σ ∪{¢, $}; Q is the
set of (internal) states; Qa ⊆ Q (resp. Qr ⊆ Q) is the set of accepting (resp.
rejecting) states; q0 is the initial state. For any w ∈ Σ̃∗, w(i) is the i-th symbol
of w.

For all models, the input w ∈ Σ∗ is placed on a read-only one-way infinite
tape as w̃ = ¢w$ between the cells indexed by 1 to |w̃|. At the beginning, the
head is initially placed on the cell indexed by 1 and the value of the counter is
set to zero. Also, in the following definitions, m denotes the maximum value by
which the counter may be increased or decreased at each step.

A one-way probabilistic one-counter automaton (1P1CA) is a 5-tuple M =
(Q,Σ, δ, q0, Qa), where δ : Q × Σ × {Z,NZ} × Q × {−m, ...,m} −→ [0, 1] is a
transition function such that δ(q, σ, z, q′, c) = p means that the transition from
q ∈ Q to q′ ∈ Q increasing the counter value by c ∈ {−m, ...,m} occurs with
probability p ∈ [0, 1] if the scanned symbol is σ ∈ Σ̃ and the status of the counter
value is z, where Z (resp. NZ) means zero (resp. non-zero). The transition
function must satisfy the following condition since the overall probabilities must
be 1 during the computation: ∀(q, σ, z),

∑

q′∈Q,c∈{−m,...,m}
δ(q, σ, z, q′, c) = 1.

The computation is terminated after reading ¢w$ and the automaton accepts
(resp. rejects) the input if the final state is in Qa (resp. Q \ Qa). Then, for each
input, the acceptance (resp. rejection) probability can be calculated by summing
up the probabilities of all the accepting (resp. rejecting) paths.

A one-way probabilistic blind one-counter automaton (1P1BCA) is a 1P1CA
such that it cannot see the status of the counter during the computation and
the input is automatically rejected if the value of the counter is non-zero [10].
A 1P1BCA is a 5-tuple M = (Q,Σ, δ, q0, Qa), where δ : Q × Σ × Q ×
{−m, ...,m} −→ [0, 1] is a transition function such that δ(q, σ, q′, c) = p means

Classical and Quantum Counter Automata on Promise Problems 227

that the transition from q ∈ Q to q′ ∈ Q increasing the counter value by
c ∈ {−m, ...,m} occurs with probability p ∈ [0, 1] if the scanned symbol is
σ ∈ Σ̃. As described above, the transition function must satisfy the following
condition: ∀(q, σ),

∑

q′∈Q,c∈{−m,...,m}
δ(q, σ, q′, c) = 1.

The computation is terminated after reading ¢w$ and the automaton accepts
the input if the counter value is zero and the state is in Qa, otherwise it rejects
the input.

A configuration of a counter automaton (regardless of whether blind or not)
is a pair (q, v) of the current state and the current counter value. Here we do not
consider the head position. In our proofs, this will not lead to any confusion.

For each of the above two models, we can define its deterministic version
where the range of the transition function is restricted to {0, 1}. We abbreviate
them respectively as 1D1CA and 1D1BCA.

Moreover, a one-way nondeterministic blind one-counter automaton (1N-
1BCA) can be defined as a 1P1BCA with a special acceptance mode such that it
accepts an input if the accepting probability is non-zero and it rejects the input
if the accepting probability is zero. Here, each probabilistic choice (the probabil-
ities are insignificant and can be removed) is called as a nondeterministic choice.
Then, an input is accepted if and only if there is a path reaching an accepting
condition.

Similarly, we can define a one-way universal blind one-counter automaton
(1U1BCA) where the automaton accepts the input if the accepting probability
is 1 and it rejects the input if the accepting probability is less than 1. In this case,
each probabilistic choice (the probabilities are insignificant and can be removed)
is called as a universal choice. Then, an input is accepted if and only if each path
reaches an accepting condition.

A Las Vegas probabilistic machine is a probabilistic machine that (i) can also
give the decision of “don’t know” besides “accepting” and “rejection” and (ii)
gives only one of decisions “accepting” and “rejection” on any input. For one-
way Las Vegas automaton model, we split the set of states into three disjoint
sets: the accepting, the rejecting, and neutral states. The automaton says “don’t
know” when it finishes its computation in a neutral state.

Since quantum computation is a generalization of probabilistic computation
[26], any quantum model is expected to simulate its classical counterpart exactly.
However, the earlier quantum finite automata (QFAs) models (e.g. [13,16]) were
defined in a restrictive way and they do not reflect the full power of quantum
computation. Even though they were shown to be more powerful than their
classical counterparts in some special cases, these QFAs models cannot simulate
classical finite automata. The first quantum counter automata model was defined
based on these restricted models [14], and so, they were also shown not to be able
to simulate its classical counterparts [31]. Nowadays, we know how to define gen-
eral quantum automata models that generalize probabilistic automata [11,30].

228 M. Nakanishi and A. Yakaryılmaz

Therefore, even a superiority result of a restricted model, as given in this paper,
serves as a separation between the quantum and probabilistic model. Due to its
simplicity, we give the definition of a restricted model that allows to represent
our algorithm and we refer the reader to [22] for the definition of general quan-
tum model. We assume the reader familiar with basics of quantum computation
(see [23] for a short introduction and [19] for complete references).

A one-way quantum one-counter automaton (1Q1CA) is a 5-tuple M =
(Q,Σ, δ, q0, Qa), where δ : Q × Σ × {Z,NZ} × Q × {−m, ...,m} −→ C is a
transition function; δ(q, σ, z, q′, c) = p means that the transition from q to q′

increasing the counter value by c occurs with probability amplitude p if the
scanned symbol is σ and the status of the counter value is z.

|q, v〉 (resp. 〈q, v|), called a ket (resp. bra), denotes the column (resp. row)
vector where the entry corresponding to (q, v) is one and the remaining entries
are zeros. That is, {|q, v〉} is an orthonormal basis of l2(Q× Z). For each σ ∈ Σ̃,
we define a time evolution operator Uσ as follows:

Uσ|q, v〉 =
∑

(q′,c)∈Q×{−m,...,m}
δ(q, σ, z(v), q′, c)|q′, v + c〉,

where z(v) = Z (resp. z(v) = NZ) if v = 0 (resp. v 	= 0). In order to be a
well-formed automaton, Uσ’s must be unitary. The computation of an 1Q1CA
is described by |Ψ〉 = Uw̃(|w̃|)Uw̃(|w̃|−1) · · · Uw̃(1)|q0, 0〉. The following projective
measurement P is applied to |Ψ〉 at the end of the computation:

P = {Pa = Σq∈Qa,v∈Z|q, v〉〈q, v|, Pr = Σq �∈Qa,v∈Z|q, v〉〈q, v|}.
Then, we have “a” (resp. “r”) with probability 〈Ψ |Pa|Ψ〉 (resp. 〈Ψ |Pr|Ψ〉). The
automaton accepts (resp. rejects) the input if we have “a” (resp. “r”) as the
outcome.

A promise problem P = (Pyes, Pno) defined on an alphabet Σ is composed by
two disjoint languages Pyes ⊆ Σ∗ and Pno ⊆ Σ∗, called respectively the set of
yes-instances and the set of no-instances.

A promise problem P = (Pyes, Pno) is said to be solved by a (probabilistic or
quantum) machine M with error bound ε < 1

2 if any yes-instance is accepted
with probability at least 1 − ε and any no-instance is rejected with probability
at least 1 − ε. It is also said that P is solved by M with bounded-error. If yes-
instances (resp. no-instances) are accepted (resp. rejected) exactly, then it is said
that P is solved by M with negative (resp. positive) one-sided error bound ε. If
ε = 0, then it is said that the promise problem is solved exactly.

A promise problem P = (Pyes, Pno) is said to be solved by a Las Vegas machine
with success probability p > 0 if

– any yes-instance is accepted with probability at least p and rejected with 0
probability, and,

– any no-instance is rejected with probability at least p and accepted with 0
probability.

Remark that all non-accepting or non-rejecting probabilities go to the decision
of “don’t know”.

Classical and Quantum Counter Automata on Promise Problems 229

3 Main Results

We start with the separation of exact quantum models from deterministic one
and then we give the separation of Las Vegas probabilistic model from deter-
ministic one. Lastly, we give our algorithm for 1P1BCA and also discuss other
classical models.

3.1 Separation of Exact 1Q1CAs and 1D1CAs

We show that there exists a promise problem that can be solved by 1Q1CAs
exactly but not by any 1D1CAs. For our purpose, we calculate XOR value of
two comparisons. Let a, b, c, and d be four even positive numbers. Our first
comparison is whether a = c and the second one is whether b = d, and, our aim
is to decide whether

((a = c)XOR (b = d))

is true or false. Remark that this expression takes the value of true if and only
if exactly one of the comparisons fails.

In order to implement this decision procedure by 1Q1CAs, we give the
numbers as 0a#0b#0c#0d. However, due to some technical difficulties, we also
append four more numbers as #0k1#0k2#0l1#0l2 , which will help the automaton
to set the counter to zero at the end of the computation so that an appropriate
quantum interference can be done between the different configurations, i.e. two
configurations having different counter values do not interfere.

Formally, we define our promise problem as follows. Let XOR-EQ be the set of
strings of the form 0a#0b#0c#0d#0k1#0k2#0l1#0l2 such that a, b, c, and d are
even and satisfy the following:

a − c − (−1)δa,c(k1 − k2) = b − d − (−1)δb,d(l1 − l2),

where δu,v = 1 if u = v, and δu,v = 0 otherwise. Then, the set XOR-EQ is our
promise. We define yes-instances (XOR-EQyes) as the set of strings in XOR-EQ such
that ((a = c) xor (b = d)) takes the value of true. Then, no-instances (XOR-EQno)
are the ones taking the value of false, or equivalently XOR-EQ \ XOR-EQyes.

Theorem 1. The promise problem XOR-EQ can be solved by 1Q1CAs exactly.

Proof. We can construct a one-way deterministic reversible one-counter automa-
ton M1, which is a special case of the 1Q1CA model,5 that decides whether a = c
as follows.

1. M1 reads the first block 0a and increases the counter by one in each transition.
2. M1 skips the second block 0b.

5 A classical reversible operation defined on the set of configurations is a unitary
operator containing only 0 s and 1s.

230 M. Nakanishi and A. Yakaryılmaz

3. M1 reads the third block 0c and decreases the counter by one in each transi-
tion. At the end of this block, M1 decides whether a = c or not.

4. M1 skips the fourth block 0d.
5. M1 reads the fifth block 0k1 and increases the counter by one if a 	= c

(decreases the counter by one if a = c) in each transition.
6. M1 reads the sixth block 0k2 and decreases the counter by one if a 	= c

(increases the counter by one if a = c) in each transition.
7. M1 skips the seventh and the eighth blocks.

Similarly, we can construct a 1Q1CA M2 that decides whether b = d by compar-
ing b with d using the counter and then the counter is set to zero after reading
0l1 and 0l2 . We illustrate M1 and M2 in Fig. 1.

Fig. 1. Subautomata M1 and M2

In the figure, each label of the edges is of the form (σ, z/c), where σ ∈ Σ,
z ∈ {Z,NZ}, and c ∈ {−1, 0,+1}. A label (σ, z/c) means that the transition
occurs when the input symbol is σ and the status of the counter value is z (∗
denotes a wild card which matches any of Z and NZ), and the counter value is
updated by c ∈ {−1, 0,+1}. The initial state is q11/q21 for M1/M2, respectively.
The set of accepting states is {q18}/{q28} for M1/M2, respectively. Also the set
of rejecting states is {q′1

8 }/{q′2
8 } for M1/M2, respectively. It is easy to see that

if we set the initial state to q′1
1 for M1 (q′2

1 for M2), the output is inverted.
We use the algorithm in [3] (the improved Deutsch-Jozsa algorithm [5]) to

compute the exclusive-or exactly using the two sub-automata as the oracle for
Deutsch’s problem [4]. Note that the counter values are the same between M1

and M2 at the moment of reading the last input symbol. Thus, we can construct a

Classical and Quantum Counter Automata on Promise Problems 231

Fig. 2. Simulation of the Deutsch-Jozsa algorithm

1Q1CA that solves XOR-EQ by simulating the improved Deutsch-Jozsa algorithm
[3] on it by running M1 and M2 in a superposition, which is illustrated in Fig. 2.
In the figure, the value on each edge represents the amplitude associated with
the transition. The first and the last transitions occur when it reads the left and
the right end-markers, respectively. It is straightforward to see that the time
evolution operators can be extended to unitary operators by adding dummy
states and/or transitions. ��

Theorem 2. No 1D1CA can solve XOR-EQ.

Proof. We assume that there exists a 1D1CA M that solves XOR-EQ. Note that
M can have at most O(n) possible configurations for a string whose length is
less than n; a constant number of possible states with O(n) possible counter val-
ues. Also note that there are Θ(n2) possible partial inputs of the form 0a#0b#
whose length is less than n. Thus, there exist two distinct partial inputs 0a#0b#
and 0a′

#0b′
such that the configurations after reading them are the same. We

will show that there exists a postfix string, 0c#0d#0k1#0k2#0l1#0l2 , such that
either (i) u1 = 0a#0b#0c#0d#0k1#0k2#0l1#0l2 is a yes-instance and u2 =
0a′

#0b′
#0c#0d#0k1#0k2#0l1#0l2 is a no-instance, or, (ii) vice versa. How-

ever, M cannot distinguish u1 and u2 since the two configurations after reading
0a#0b# and 0a′

#0b′
#, respectively, are the same. This is a contradiction.

Now, we show how to obtain the required u1 and u2. We start with the
case of a 	= a′. We set l1 and l2 so that b 	= d, b′ 	= d, and d is even
for d = b+b′+a−a′

2 + (l1 − l2). Note that this is possible since a, b, a′, and
b′ are even. We also set k1 and k2 so that −(k1 − k2) = b − d + (l1 − l2).
Thus, both u1 and u2, respectively, 0a#0b#0a#0d#0k1#0k2#0l1#0l2 and
0a′

#0b′
#0a#0d#0k1#0k2#0l1#0l2 , become promised input strings since −(k1−

k2) = b − d + (l1 − l2) and a′ − a + (k1 − k2) = b′ − d + (l1 − l2). In this setting,
the former one is a yes-instance and the latter one is a no-instance.

In the following, we show how to obtain the required u1 and u2 when a = a′.
Note that, in this case, b 	= b′.

We set k1 and k2 so that a 	= c, a′ 	= c, and c is even for c = a+a′+b−b′
2 +

(k1 − k2). Note that this is possible since a, b, a′, and b′ are even. We also set l1
and l2 so that a− c+(k1 −k2) = −(l1 − l2). Thus, both u1 and u2, respectively,

232 M. Nakanishi and A. Yakaryılmaz

0a#0b#0c#0b#0k1#0k2#0l1#0l2 and 0a′
#0b′

#0c#0b#0k1#0k2#0l1#0l2 ,

become promised input strings since a − c + (k1 − k2) = −(l1 − l2) and a′ − c +
(k1−k2) = b′ −b+(l1− l2). In this setting, again the former one is a yes-instance
and the latter one is a no-instance. ��

3.2 Separation of Las Vegas 1P1CAs and 1D1CAs

We show that there exists a promise problem that Las Vegas 1P1CAs can solve
but 1D1CAs cannot. Our idea is inspired from [21].

Let ONE ⊂ {a, b, c}∗d be the set of strings such that the numbers of symbols
are equal for exactly one pair: (a, b), (b, c), or (c, a). Let NONE ⊂ {a, b, c}∗d be the
set of strings such that the numbers of symbols are equal for none of the pairs.

We define a promise problem ONE-NONE where ONE-NONEyes, composed by yes
instances, is formed by the concatenation ONE · NONE and ONE-NONEno, composed
by no instances, is formed by the concatenation NONE · ONE.
Theorem 3. Promise problem ONE-NONE can be solved by a Las Vegas 1P1CA
with success probability 1

6 .

Proof. Let udvd ⊆ {a, b, c}∗d{a, b, c}∗d be a promised input. The details of the
automaton are as follows. At the beginning, the computation splits into 6 dif-
ferent paths with equal probabilities. The first three paths operate on ud and
the last three paths operate on vd. Each of the first three paths compares the
numbers of symbols for one of the three pairs, (a, b), (b, c) or (c, a), on u. If it
finds equal number of symbols, then the automaton accepts the input in this
path. Each of the last three paths makes a similar comparison on v, but, if it
finds equal number of symbols, then the automaton rejects the input in this
path. In all the other cases, the automaton says “don’t know”.

If the input is a yes instance, then the numbers of symbols are equal only for
a single pair of u. Then, the input is accepted with probability 1

6 in one of the
first three paths, and the computation ends in a neutral state in all the other
cases. Similarly, if the input is a no instance, then it is rejected with probability
1
6 and the automaton says “don’t know” with probability 5

6 . ��
Theorem 4. No 1D1CAs can solve ONE-NONE.

Proof. We assume that there exists a 1D1CA M that solves ONE-NONE. Let c(w)
and v(w) be the configuration and the value of the counter of M after reading
the partial input string ¢w, respectively. We consider the following two cases.

Case 1: There exists a 1D1CA M that solves ONE-NONE such that for at least
one of {a, b, c}, say u, |v(un)| ∈ ω(1).

In this case, we set m = f(n) such that |v(uf(n))| ∈ ω(n). Without loss of
generality, we pick u = a . We consider the input string ambicjdakbld (i, j, k, l ∈
O(n)). Note that M can increase or decrease the counter value by at most
a constant amount at a single transition. Thus, the counter value cannot be

Classical and Quantum Counter Automata on Promise Problems 233

zero during reading bicjdakbld since |v(am)| ∈ ω(n). This implies the counter
is useless during reading bicjdakbld, i.e. the status of the counter is always the
same. Thus, by omitting the value of the counter, we define cfa(w) as the current
state after reading the partial input string ¢w.

For t > |Q|, we consider the sequence of states cfa(amb), cfa(amb2), . . . ,
cfa(ambt). Then, cfa(ambn1) = cfa(ambn2) for some distinct n1, n2 < t. Also for
t′ > |Q|, we consider the sequence of states cfa(ambn1cn1da), cfa(ambn1cn1da2),
. . . , cfa(ambn1cn1dat′

). Then, cfa(ambn1cn1dan′
1) = cfa(ambn1cn1dan′

2) for some
distinct n′

1, n
′
2 < t′. Note that cfa(ambn2cn1dan′

1) = cfa(ambn1cn1dan′
1), and

thus, cfa(ambn2cn1dan′
1) = cfa(ambn1cn1dan′

2). Therefore, cfa(ambn2cn1dan′
1

bn′
1) = cfa(ambn1cn1dan′

2bn′
1). However, the former is a no-instance and the

latter is a yes-instance. This is a contradiction.

Case 2: For any 1D1CA M that solves ONE-NONE, M satisfies that for all u ∈
{a, b, c}, |v(un)| ∈ O(1).

In this case, there exist n1 and n2 (n1 < n2) such that c(an1) = c(an2)
since the number of possible configurations is constant when the counter value
is bounded by O(1). Thus, c(an1bn1d) = c(an2bn1d).

Now, we define another promise problem ONEORNONE such that ONE forms
yes-instances and NONE forms no-instances.

The fact that c(an1bn1d) = c(an2bn1d) implies that the decision of acceptance
depends only on the second half of the input of ONE-NONE. Thus, based on M , we
can build a 1D1CA M ′ that solves ONEORNONE; the subautomaton of M that
starts in the configuration c(an1bn1d) can be regarded as the automaton M ′ that
solves ONEORNONE. Obviously M ′ can be extended to solve ONE-NONE, say M ′′, as
follows: it executes M ′ on the first half of the input of ONE-NONE and ignores the
second half. To sum up, if M satisfying Case 2 solves ONE-NONE, then M ′′ satisfying
Case 2 solves ONE-NONE by reading the input only until the first d. Due to Case 2,
M ′′ also satisfies that |v(an)| ∈ O(1). By using the same reasoning above, we can
follow that there exist n′

1 and n′
2 for M ′′ such that c(an′

1bn′
1d) = c(an′

2bn′
1d) and so

M ′′ gives the same decisions to the strings an′
1bn′

1dan′
2bn′

1d and an′
2bn′

1dan′
1bn′

1d.
This is a contradiction and so M cannot solve ONE-NONE. ��
To get a better error bound, we can use the promise problem ONE-NONE(t) where
yes-instances (ONE-NONEyes(t)) are formed by (ONE-NONEyes)t and no-instances
(ONE-NONEno(t)) are formed by (ONE-NONEno)t. That is, the error bound can be
reduced to 1

6t for 1P1CAs, where t > 1. We leave as a future work whether
1D1CA can solve the promise problem ONE-NONE(t).

3.3 A New Result on Blind Counter Automata

In this section, we present a 1P1BCA algorithm for the Kleene closure of unary
equality language:

EQ∗ = {ε} ∪ {an1bn1 · · · ankbnk |ni > 0(1 ≤ i ≤ k), k ≥ 1},

234 M. Nakanishi and A. Yakaryılmaz

which was shown not to be recognized by any one-way deterministic finite
automaton with multi blind counters [10]. Recently, Yakaryılmaz presented a
negative one-sided error 1Q1BCA algorithm for this language and he conjec-
tured that it cannot be recognized by 1P1BCA [27]. Now, we show that this
conjecture is false. It is also surprising that our new algorithm is kind of a prob-
abilistic adaptation of the quantum algorithm given by Yakaryılmaz.

Theorem 5. The language EQ∗ can be recognized by a 1P1BCA M with negative
one-sided error bound 1

3 .

Proof. We assume that the input is of the form an1bm1 · · · ankbmk . Otherwise,
M rejects the input deterministically (exactly). At the beginning of each block
anlbml (1 ≤ l ≤ k), M selects one of the following three paths (Pathi’s) with
equal probability:

Pathi(1 ≤ i ≤ 3) : M increases (resp. decreases) the counter by i
each time reading an a (resp. a b) of the block.

The computation always ends in an accepting state (except the deterministic
check mentioned at the beginning). Thus, the input is accepted if and only if
the value of counter is zero. It is obvious that M accepts any member of EQ∗

with certainty. We consider the case that the input w 	∈ EQ∗. Let imax be the
greatest index satisfying nimax

	= mimax
, i.e., animax bmimax is the last block

satisfying nimax
	= mimax

. Let path′ be a probabilistic path before reading the
imax-th block having the counter value c. This path will split into three sub-paths
subpath′

1, subpath′
2, and subpath′

3 and each subpath reads the block as described
above. Let c1, c2, and c3 be the counter values of these sub-paths, respectively,
after reading the block. Any computation starts from subpath′

i will have the
same counter value of ci at the end of the computation since the remaining
blocks have the same numbers of a’s and b’s, where 1 ≤ i ≤ 3. Assume that
subpath′

i leads to a decision of acceptance. This is possible only if ci = 0. Let
d = nimax

− mimax
	= 0. Then the values of c1, c2, and c3 are c + d, c + 2d,

and c + 3d, respectively. Therefore, only one of them can be zero. That is, the
maximum accepting probability that path′ can contribute is 1

3 . This is the case
also for all other probabilistic paths that exist just before reading the imax-th
block. Therefore the overall accepting path can be bounded by 1

3 . ��
It is clear from the analysis given in the proof that the error bound can be reduced
to 1

k for any k by spiting into k probabilistic paths on each block instead of 3.

Corollary 1. The language EQ∗ can be recognized by a 1P1BCA M with any
negative one-sided error bound ε ≤ 1

2 .

Even though any number of blind counters is useless for a 1DFA, a single
non-blind counter is enough to recognize EQ∗, i.e. 1D1CA can recognize EQ∗.
Another related result is that Freivalds [6] proved that EQ3 = {anbncn | n ≥ 0}
can be recognized by a 1P1BCAs with arbitrary small one-sided error bound and
this non-context free language, of course, cannot be recognized by a 1D1CA.

Classical and Quantum Counter Automata on Promise Problems 235

Fig. 3. Hierarchy of various models of counter automata

Our above result implies that L(1D1BCA) � L(1P1BCA) ∩ L(1D1CA),
where L(Model) is the class of languages recognized by Model. We represent
our result with known facts in Fig. 3, from which it is seen that the whole pic-
ture is still incomplete. Moreover, we still do not know whether bounded-error
1Q1BCAs are more powerful than bounded-error 1P1BCAs.

We close the section with some discussions on nondeterministic and universal
models. The language EQ∗ can be recognized by a 1U1BCA: it universally picks
each block of a+b+ and then deterministically determines whether the numbers
of a’s and b’s are equal. The input is accepted if and only if each block has equal
number of a’s and b’s. One may ask whether we can recognize the complement
of EQ∗. Here any input that is not of the form (a+b+)+ can be deterministically
detected. The difficult task is to detect a block of a+b+ having different number
of a’s and b’s. Currently, we know only a 1εN1BCA to catch such a block: It
nondeterministically picks such a block and then increases (resp. decreases) the
counter for each a (resp. b). Let the counter value after reading the block be c.
Then, the automaton switches to an accepting state after nondeterministically
setting the value of counter to one of . . . , c−2, c−1, c+1, c+2, One of these
values must be zero if c is not zero. (Note that, none of these values is zero if c
is zero.) Thus, our one-way with ε-move machine can recognize the language.

Here we find interesting to identify whether there is an alternation hierarchy
for one-way blind-counter automata with and without ε-moves. We also leave
this as a future work.

Acknowledgement. We thank Klaus Reinhardt for answering our question regarding
the subject matter of this paper.

References

1. Amano, M., Iwama, K.: Undecidability on quantum finite automata. In: STOC
1999: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, pp. 368–375 (1999)

236 M. Nakanishi and A. Yakaryılmaz

2. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical
states. Theoret. Comput. Sci. 287(1), 299–311 (2002)

3. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited.
Proc. R. Soc. A 454, 339–354 (1998)

4. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-
tum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

5. Deutsch, D., Jozsa, R.: Rapid solution of problem by quantum computation. Proc.
R. Soc. A 439, 553–558 (1992)

6. Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) Mathematical Foun-
dations of Computer Science 1979. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg
(1979)

7. Freivalds, R.: Probabilistic two-way machines. In: Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, pp. 33–45 (1981)

8. Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata
on promise problems. In: Developments in Language Theory, LNCS, vol. 9168, pp.
252–263. Springer International Publishing (2015). (arXiv:1502.01462)

9. Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. In:
Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614,
pp. 126–137. Springer, Heidelberg (2014). (ECCC:TR14-136)

10. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter
machines. Theoret. Comput. Sci. 7, 311–324 (1978)

11. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comput.
1(1), 70–85 (2010)

12. Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Comput.
208(8), 982–995 (2010)

13. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
FOCS 1997, pp. 66–75 (1997)

14. Kravtsev, M.: Quantum finite one-counter automata. In: Bartosek, M., Tel, G.,
Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, p. 431. Springer, Heidelberg
(1999)

15. Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way
general quantum finite automata. Theoret. Comput. Sci. 419, 73–91 (2012)

16. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoret.
Comput. Sci. 237(1–2), 275–306 (2000)

17. Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus clas-
sical pushdown automata in exact computation. IPSJ Digit. Cour. 1, 426–435
(2005)

18. Nakanishi, M.: Quantum pushdown automata with a garbage tape. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 352–363. Springer, Heidelberg (2015).
arXiv:1402.3449

19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

20. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)
21. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextual-

ity. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331.
Springer, Heidelberg (2014). arXiv:1404.2761

22. Say, A.C.C., Yakaryılmaz, A.: Quantum counter automata. Int. J. Found. Comput.
Sci. 23(5), 1099–1116 (2012)

http://arxiv.org/abs/1402.3449
http://arxiv.org/abs/1404.2761

Classical and Quantum Counter Automata on Promise Problems 237

23. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: A modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol.
8808, pp. 208–222. Springer, Heidelberg (2014)

24. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3, 198–200 (1959)

25. Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course
Technology, USA (2006)

26. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and System Science. Springer, New york (2009).
arXiv:0804.3401

27. Yakaryılmaz, A.: Superiority of one-way and realtime quantum machines. RAIRO
Theoret. Inf. Appl. 46(4), 615–641 (2012)

28. Yakaryılmaz, A.: One-counter verifiers for decidable languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 366–377. Springer, Heidelberg
(2013)

29. Yakaryılmaz, A., Freivalds, R., Say, A.C.C., Agadzanyan, R.: Quantum computa-
tion with write-only memory. Nat. Comput. 11(1), 81–94 (2012)

30. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Inf. Comput. 279(6), 873–892 (2011)

31. Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter
automata. Theoret. Comput. Sci. 334(1–3), 275–297 (2005)

http://arxiv.org/abs/0804.3401

State Complexity of Prefix Distance

Timothy Ng, David Rappaport, and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{ng,daver,ksalomaa}@cs.queensu.ca

Abstract. The prefix distance between strings x and y is the number
of symbol occurrences in the strings that do not belong to the longest
common prefix of x and y. The suffix and the substring distance are
defined analogously in terms of the longest common suffix and longest
common substring, respectively, of two strings. We show that the set of
strings within prefix distance k from an n state DFA (deterministic finite

automaton) language can be recognized by a DFA with (k+1)·n− k(k+1)
2

states and this number of states is needed in the worst case. Also we
give tight bounds for the nondeterministic state complexity of the set
of strings within prefix, suffix or substring distance k from a regular
language.

1 Introduction

Various similarity measures between strings and languages have been consid-
ered for information transmission applications. The edit distance counts the
number of substitution, insertion and deletion operations that are needed to
transform one string to another. The Hamming distance counts the number of
positions in which two equal length strings differ. A distance measure between
words can be extended in various ways as a distance between sets of strings (or
languages) [3,4] and algorithms for computing the distance between languages
are important for error-detection and error-correction applications [4,9,10]. The
descriptional complexity of error/edit systems has been considered by Kari and
Konstantinidis [8]. Other types of sequence similarity measures have been con-
sidered e.g. by Apostolico [1].

Instead of counting the number of edit operations, the similarity of strings
can be defined by way of their longest common prefix, suffix, or substring, respec-
tively [4]. For example, the prefix distance of strings x and y is the sum of the
length of the suffix of x and the suffix of y that occurs after their longest com-
mon prefix. A parameterized prefix distance between regular languages has been
considered by Kutrib et al. [11] for estimating the fault tolerance of information
transmission applications.

The neighbourhood of radius k of a language L consists of all strings that
are within distance k from some string in L. Calude et al. [3] have shown that
the neighbourhood of a regular language with respect to an additive distance is
regular. A distance is said to be additive if it, in a certain sense, respects string
concatenation. This gives rise to the question how large is the (non)deterministic
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 238–249, 2015.
DOI: 10.1007/978-3-319-22360-5 20

State Complexity of Prefix Distance 239

finite automaton (DFA, respectively, NFA) needed to recognize the neighbour-
hood of a regular language, that is, what is the state complexity of neighbour-
hoods of regular languages.

Povarov [15] has given an improved upper bound and a closely matching
lower bound for the state complexity of Hamming neighbourhoods of radius
one. Upper bounds for the state complexity of neighbourhoods with respect to
an additive distance or quasi-distance have been obtained by the authors [14,16]
using a construction based on weighted finite automata.

It follows from Choffrut and Pighizzini [4] that the prefix, suffix and substring
distance preserve regularity, that is, the neighbourhood of a regular language of
finite radius remains regular. Here we study the state complexity of these neigh-
bourhoods. We show that if L is recognized by a deterministic finite automaton
(DFA) of size n, the prefix neighbourhood of L of radius k < n has a DFA of
size (k + 1) · n − k(k+1)

2 and that this bound cannot be improved in the worst
case. Our lower bound construction uses an alphabet of size n + 1 and we show
that the general upper bound cannot be reached using languages defined over a
fixed alphabet.

We consider also the nondeterministic state complexity of prefix, suffix and
substring neighbourhoods. If L has a nondeterministic finite automaton (NFA)
of size n, the neighbourhood of L of radius k can be recognized by an NFA of
size n + k. The upper bound for the substring neighbourhood of L of radius k is
(k + 1) · n + 2k. In all cases we give matching lower bounds for nondeterministic
state complexity, and in the lower bound constructions L has, in fact, a DFA of
size n.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [17] or the survey by Yu [18]. A survey of distances
is given by Deza and Deza [5]. Recent surveys on descriptional complexity of
regular languages include [6,7,12].

In the following Σ is always a finite alphabet, the set of strings of Σ is Σ∗

and ε is the empty string. The reversal of a string x ∈ Σ∗ is xR. The set of
nonnegative integers is N0. The cardinality of a finite set S is denoted |S| and
the powerset of S is 2S . A string w ∈ Σ∗ is a substring or factor of x if there
exist strings u, v ∈ Σ∗ such that x = uwv. If u = ε, then w is a prefix of x. If
v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ,Q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q × Σ → 2Q, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set
of final states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual
way. A string w ∈ Σ∗ is accepted by A if, for some q0 ∈ Q0, δ(q0, w)∩F �= ∅ and
the language recognized by A consists of all strings accepted by A. An ε-NFA
is an extension of an NFA where transitions can be labeled by the empty string

240 T. Ng et al.

ε [17,18], i.e., δ is a function Q × (Σ ∪ {ε}) → 2Q. It is known that every ε-
NFA has an equivalent NFA without ε-transitions and with the same number of
states. An NFA A = (Q,Σ, δ,Q0, F) is a deterministic finite automaton (DFA)
if |Q0| = 1 and, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one state or is
undefined. Two states p and q of a DFA A are equivalent if δ(p,w) ∈ F if and
only if δ(q, w) ∈ F for every string w ∈ Σ∗. A DFA A is minimal if each state
q ∈ Q is reachable from the initial state and no two states are equivalent.

Note that our definition of a DFA allows some transitions to be undefined,
that is, by a DFA we mean an incomplete DFA. It is well known that, for a regular
language L, the sizes of the minimal incomplete and complete DFAs differ by at
most one. The constructions in Sect. 3 are more convenient to formulate using
incomplete DFAs but our results would not change in any significant way if we
were to require that all DFAs are complete.

The (incomplete deterministic) state complexity of a regular language L,
sc(L), is the size of the minimal DFA recognizing L. The nondeterministic state
complexity of L, nsc(L), is the size of the minimal NFA recognizing L. The
minimal NFA recognizing a regular language need not be unique. A common
way of establishing lower bounds for nondeterministic state complexity relies on
fooling sets.

Definition 1. A set of pair of strings S = {(x1, y1), . . . , (xm, ym)}, xi, yi ∈ Σ∗,
i = 1, . . . , m, is a fooling set for a language L if xiyi ∈ L, i = 1, . . . ,m and, for
all 1 ≤ i < j ≤ m, xiyj �∈ L or xjyi �∈ L.

Proposition 1 ([2,7]). If L has a fooling set S then nsc(L) ≥ |S|.
To conclude this section, we recall definitions of the distance measures used

in the following. Generally, a function d : Σ∗ × Σ∗ → [0,∞) is a distance if
it satisfies for all x, y, z ∈ Σ∗, the conditions d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y)+d(y, z). The neighbourhood of a language
L of radius k with respect to a distance d is the set

E(L, d, k) = {w ∈ Σ∗ | (∃x ∈ L)d(w, x) ≤ k}.

Let x, y ∈ Σ∗. The prefix distance of x and y counts the number of symbols
which do not belong to the longest common prefix of x and y [4]. It is defined by

dp(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

Similarly, the suffix distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

ds(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗z}.

The substring distance measures the similarity of x and y based on their longest
common continuous substring (or factor) and is defined

df (x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗zΣ∗}.

State Complexity of Prefix Distance 241

The paper [4] refers to df as the subword distance. The term “subword dis-
tance” has been used also for a distance defined in terms of the longest common
noncontinuous subword [13].

3 State Complexity of Prefix Neighbourhoods

In this section we consider the deterministic state complexity of prefix neigh-
bourhoods. We construct a DFA for the neighbourhood of radius k with respect
to the prefix distance dp. After that we show that the construction is optimal by
giving a matching lower bound. The lower bound construction uses an alphabet
of size n+1 where n is the number of states of the DFA. We show that the upper
bound cannot be reached by languages defined over a constant size alphabet.

Proposition 2. Let n > k ≥ 0 and L be a regular language recognized by a
DFA with n states. Then there is a DFA recognizing E(L, dp, k) with at most
n · (k + 1) − k(k+1)

2 states.

Proof. Let A = (Q,Σ, δ, q0, F) be the DFA that recognizes L. We define the
function ϕ : Q → N0 by

ϕ(q) = min
w∈Σ∗

{|w| | δ(q, w) ∈ F}.

The function ϕ(q) gives the length of the shortest path from a state q to the
closest, or next, reachable final state. Note that under this definition, if q ∈ F ,
then ϕ(q) = 0.

We construct a DFA A′ = (Q′,Σ, δ′, q′
0, F

′) that recognizes the neighbour-
hood E(L, dp, k). We define the state set

Q′ = ((Q − F) × {1, . . . , k + 1}) ∪ F ∪ {p1, . . . , pk}.

Note that some states of Q′ are always unreachable and at the end of the proof
we calculate an upper bound for the number of reachable states. The initial state
q′
0 is defined

q′
0 =

⎧
⎪⎨

⎪⎩

q0, if q0 ∈ F ;
(q0, ϕ(q0)) if q0 �∈ F and ϕ(q0) ≤ k;
(q0, k + 1) if q0 �∈ F and ϕ(q0) > k.

The set of final states is given by

F ′ = ((Q − F) × {1, . . . , k}) ∪ F ∪ {p1, . . . , pk}.

Let qi,a = δ(i, a) for i ∈ Q and a ∈ Σ, if δ(i, a) is defined. Then for all a ∈ Σ,
the transition function δ′ is defined for states i ∈ F by

δ′(i, a) =

⎧
⎪⎨

⎪⎩

(qi,a, 1), if qi,a ∈ Q − F ;
qi,a, if qi,a ∈ F ;
p1, if δ(i, a) is undefined.

242 T. Ng et al.

For states (i, j) ∈ Q − F × {1, . . . , k + 1}, δ′ is defined

δ′((i, j), a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qi,a, if qi,a ∈ F ;
(qi,a,min{j + 1, ϕ(qi,a)}), if ϕ(qi,a) or j + 1 ≤ k;
(qi,a, k + 1), if ϕ(qi,a) and j + 1 > k;
pj+1, if δ(i, a) is undefined.

Finally, we define δ′ for states p� for � = 1, . . . , k − 1 by δ′(p�, a) = p�+1. The
machine A′ has three types of states. The first type consists of final states of A.
The second type are new states p�, which form a chain of error states. When a
transition that was undefined in A is encountered during some computation, A′

is taken to the chain of error states pi. The third type of states consists of states
of A which are not final states and are paired with a counter. For a state (i, j),
the counter component j keeps track of the distance of the current computation
to the closest final state of A.

On input w ∈ Σ∗, there are three cases to consider. Let x ∈ L be a closest
string to w according to the prefix distance dp.

1. First, suppose that x = wx′ for some x′ ∈ Σ∗. Then w ∈ E(L, dp, k) if and
only if |x′| ≤ k. Consider the computation on w, which must end in some
state (i, j). Otherwise, the computation either ends in a final state, in which
case x = w, or it ends in some state p�, which cannot be the case as w is
a proper prefix of a word in L. Since x is the closest word in L to w, there
must be a shortest path of length |x′| in the original DFA A from state i to
a final state of A. By definition, (i, j) is a final state if j = ϕ(i) ≤ k. Thus,
j = ϕ(i) = |x′| and (i, j) is a final state if and only if j = |x′| ≤ k.

2. Next, suppose that w = xw′ for some w′ ∈ Σ∗. In this case, w ∈ E(L, dp, k)
if |w′| ≤ k. The machine reaches some final state f of A once it reads all of
x. Then the machine continues reading w′ until it reaches some state q ∈ Q′.
The state q is either a state (i, j) or a state p�, since otherwise, q ∈ F and
w′ = ε.
(a) Consider q = (i, j). By definition, (i, j) is a final state if j ≤ k. Since x

is a closest word in L to w, j = |w′| must be the distance of the current
computation from the closest final state f unless |w′| > k, in which case
j = k + 1. Otherwise, there was some state (i′, j′) that was encountered
during the computation of w′ with a final state f ′ that was closer than f .
Thus, if |w′| > k, then j = k+1 and (i, j) is not a final state. Otherwise,
j = |w′| ≤ k and (i, j) is a final state.

(b) Now consider when q �= (i, j) and let w′ = w′
1w

′
2. The computation from

f on w′
1 reaches some state q′ = (i′, j′) for which there is no transition

in A defined for the first symbol of w′
2. By the same reasoning as above,

j′ = |w′
1| < k. Since an undefined transition was encountered on the first

symbol of w′
2, the machine goes to state p|w′

1|+1. From state p|w′
1|+1, the

machine reads the rest of w′
2. Now, if |w′| > k, then |w′

2| > k − |w′
1| and

the computation on the rest of w′
2 fails when it reaches pk and there are

State Complexity of Prefix Distance 243

no further transitions. Otherwise, |w′| ≤ k and the computation of w′
2

ends in a state p|k′
1|+|k′

2|, which is a final state since |w′| = |w′
1|+|w′

2| ≤ k.
3. Finally, suppose that w = pw′ and x = px′ with p,w′, x′ ∈ Σ∗ such that p is

the longest common prefix of w and x. Note that if w′ = ε, then it becomes
Case 1, and if x′ = ε, then Case 2 applies. Thus w ∈ E(L, dp, k) if and only
if |w′| + |x′| ≤ k. In this case, A′ reads w until it reaches a state (ip, jp) on
the prefix p. At this point, reading x′ from (ip, jp) will take the machine to
some final state f , while reading w′ from (ip, jp) takes the machine to some
other state q ∈ Q′. Note that |x′| ≤ k, since otherwise |x′| + |w′| > k, and
jp = ϕ(ip) = |x′|, since otherwise x would not be a closest word to w. Now,
q is either of the form (i, j) or a state p�.
(a) Suppose q is of the form (i, j). Then j is either |w′| + |x′| or k + 1.

If |w′| > k − |x′|, then j = k + 1 and (i, j) is not a final state. If
j ≤ |w′|+ |x′|, then there must be some final state f ′ closer to a state on
the computation path of w′ from (ip, jp) which cannot be the case if x is
a closest word to w. Thus, j = |w′| + |x′| ≤ k and (i, j) is a final state.

(b) Now, suppose q �= (i, j) and let w′ = w′
1w

′
2. The computation from

(ip, jp) on w′
1 reaches some state q′ = (i′, j′) for which there is no tran-

sition in A on the first symbol of w′
2. By the same reasoning as above,

j′ = |w′
1| < k − |x′|. Since an undefined transition was encountered on

the first symbol of w′
2, the machine goes to state p|w′

1|+|x′|+1. From state
p|w′

1|+|x′|+1, the rest of w′
2 is read. If |w′

2| > k − (|w′
1| + |x′|), then the

computation of w′
2 falls off at pk. Otherwise, the computation ends in

state p|w′
2|+|w′

1|+|x′|. We have

|w′
2| + |w′

1| + |x′| = |w′| + |x′| ≤ k

and thus, p|w′
2|+|w′

1|+|x′| is a final state.

The set of states Q′ has (n− f) · (k +1)+ k + f elements but they cannot all
be reachable. Based on the definition of the transitions of δ′ we observe that if
there is a transition entering a state (q, j), q ∈ Q − F , 1 ≤ j ≤ k + 1, then ϕ(q)
must be at least j. Thus, all elements of the set

Sur = {(q, j) | q ∈ Q − F, 1 ≤ j ≤ k + 1, j > ϕ(q)}

are unreachable as states of A′. Since increasing the number of final states of
A by one decreases the cardinality of Q′ by k and decreases the cardinality of
Sur by at most k, it is clear that an upper bound for the cardinality of the set
of potentially reachable states Q′ − Sur is obtained by choosing f = 1. Using
the observation that all useful states must reach a final state, in the case when
F = {qf} is a singleton set, the cardinality of Sur is minimized when, in the
DFA A for each 1 ≤ i ≤ k, exactly one non-final state qi has a shortest path of
length i that reaches qf . In this case Sur = {(qi, j) | i < j ≤ k + 1, i = 1, . . . , k}
and |Sur| = k(k+1)

2 .
We have verified that at most n·(k+1)−k(k+1)

2 states of A′ can be reachable.
�

244 T. Ng et al.

The lower bound construction that we present uses an alphabet with variable
size. We will show later that it is impossible to reach the upper bound (for all n)
with an alphabet of fixed size.

Lemma 1. For n > k ∈ N, there exists a DFA An with n states over an alphabet
of size n + 1 such that

sc(E (L(A), dp , k) ≥ n · (k + 1) − k(k + 1)
2

.

Proof. We define a DFA An = (Qn,Σn, δn, q0, F) (Fig. 1) by choosing

Qn = {0, . . . , n − 1}, Σn = {a, b, c1, . . . , cn−1},

q0 = 0, F = {0}, and the transition function is given by

– δn(q, a) = q for all q ∈ Qn,
– δn(q, b) = q + 1 mod n for q = 1, . . . , n − 1,
– δn(0, ci) = i for i = 1, . . . , n − 1,

Note that for every state q ∈ Qn, we have ϕ(q) = n − q.

0start

1 2

· · ·

n− 2n− 1

...

c1

b

b

b

b

a

a a

aa

c2

cn−2

cn−1

b

Fig. 1. The DFA An.

We transform An into the DFA A′
n = (Q′

n,Σn, δ′
n, q′

0, F
′) by following the

construction from Proposition 2. To determine the reachable states of Q′
n, we

first consider states of the form (i, j) ∈ (Qn − {q0}) × {1, . . . , k + 1}. For states
i ∈ Qn − {q0} with ϕ(i) > k, we can reach state (i, j) via the word cia

j for

State Complexity of Prefix Distance 245

j = 1, . . . , k + 1. For states i ∈ Qn − {q0} with ϕ(i) ≤ k, we can reach state
(i, j) via the word cia

j for j = 1, . . . , ϕ(i). However, states (i, j) with j > ϕ(i)
are unreachable by definition of A′

n. Thus the number of unreachable states in
(Qn − {q0}) × {1, . . . , k + 1} is

n−1∑

i=n−k

|{i} × {ϕ(i) + 1, . . . , k + 1}| =
k∑

i=1

|{i + 1, . . . , k + 1}| =
k∑

i=1

i =
k(k + 1)

2
.

Now consider states p1, . . . , pk. The state p� is reachable on the word b�. Finally,
0 is reachable since it is the initial state. Thus, the number of reachable states is

(n − 1) · (k + 1) − k(k + 1)
2

+ k + 1 = n · (k + 1) − k(k + 1)
2

.

Now, we show that all reachable states are pairwise inequivalent. First, note
that 0 can be distinguished from any other state by the word ε. Next, we dis-
tinguish states of the form (i, j) from states of the form p� via the word akbn−i.
From state (i, j), reading ak takes the machine to state (i,min{ϕ(i), k + 1}).
Subsequently reading bn−i takes the machine to the final state 0. However, for
every state p�, reading ak forces the machine beyond state pk, after which there
are no transitions defined.

Next, without loss of generality, we let � < �′ and consider states p� and p�′ .
From above, the state p� can be reached by a word b� and p�′ is reached by a
word b�′

. Choose z = ak−�. The string z takes state p� to the state pk, where
it is accepted. However, the computation on string z from state p�′ is undefined
since �′ + k − � > k.

Finally, we consider states of the form (i, j). Let i < i′ and consider states
(i, j) and (i′, j′). Recall that (i, j) can be reached by a word cia

j and (i′, j′) is
reached by a word ci′aj′

. Let z = bn−i+k. From state (i, j), the word z goes to
state 0 on bn−i. Then by reading bk from state 0, we reach state pk and thus,
cia

j · z ∈ E(L(An), dp, k). However, when reading z from state (i′, j′), we reach
state 0 on bn−i′

, since i′ > i. We are then left with bi′−i+k. Reading bk takes us
to state pk, where we still have bi′−i and no further defined transitions. Thus,
ci′aj′ · z �∈ E(L(An), dp, k).

Next, we fix i and let j < j′. The state (i, j) is reachable by the word cia
j

and (i, j′) is reachable by cia
j′

. First, consider the case when ϕ(i) > k. Then let
z = ak − j. Reading z from (i, j) takes us to state (i, k), which is a final state,
so we have cia

j · z ∈ E(L(An), dp, k). However, from (i, j′), reading z brings us
to state (i, k + 1) and we have cia

j′ · z �∈ E(L(An), dp, k).
Now, consider the case when ϕ(i) ≤ k. Let z = cia

k−j−1. From state (i, j),
reading ci takes the machine to state pj+1 and reading ak−j−1 puts the machine
in state pk. Thus, cia

j · z ∈ E(L(An), dp, k). From (i, j′), reading z takes us to
state pk with aj′−j still unread since j′ + k − j − 1 > k and thus with no further
transitions available, we have cia

j′ · z �∈ E(L(An), dp, k).
Thus, we have shown that there are n · (k + 1) − k(k+1)

2 reachable states and
that all reachable states are pairwise inequivalent.
�

246 T. Ng et al.

Taking Proposition 2 together with Lemma 1, we get the following theorem.

Theorem 1. For n > k ≥ 0, if sc(L) = n then

sc(E (L, dp , k)) ≤ n · (k + 1) − k(k + 1)
2

and this bound can be reached in the worst case.

The proof of Lemma 1 uses an alphabet of size n+1. To conclude this section
we observe that the general upper bound cannot be reached by languages defined
over a fixed alphabet.

Proposition 3. Let A be a DFA with n states. If the state complexity of
E(L(A), dp, n) equals n · (k + 1) − k(k+1)

2 , then the alphabet of A needs at least
n − 1 letters.

4 Nondeterministic State Complexity

We consider the nondeterministic state complexity of neighbourhoods of a reg-
ular language with respect to the prefix-, the suffix- and the substring distance,
respectively.

4.1 Prefix and Suffix Distance

We consider first neighbourhoods with respect to the prefix distance, and the
results for the suffix distance are obtained as a consequence of the fact that
the nondeterministic state complexity of a regular language L is the same as the
nondeterministic state complexity of the reversal of L and using the observation
ds(x, y) = dp(xR, yR) for all strings x and y.

We give an upper bound for the nondeterministic state complexity of the
neighbourhood of radius k with respect to the prefix distance dp and give a
matching lower bound construction.

Proposition 4. Let k ≥ 0 and L be a regular language recognized by an NFA
with n states. Then there is an NFA recognizing E(L, dp, k) with at most n + k
states.

Proof. Let A = (Q,Σ, δ,Q0, F) be the NFA recognizing L. We define an NFA
A′ = (Q′,Σ, δ′, I, F) for the language E(L, dp, k) by

– Q′ = Q ∪ {p1, . . . , pk}, I = Q0,
– F ′ = F ∪ {p1, . . . , pk} ∪ {q ∈ Q | ϕ(q) ≤ k}.

Recall that for q ∈ Q, ϕ(q) denotes the length of the shortest string that takes
q to a final state. The transition function is defined for all a ∈ Σ by

State Complexity of Prefix Distance 247

– δ′(q, a) = δ(q, a) ∪ {p1} for all q ∈ F ,
– δ′(q, a) = δ(q, a) ∪ {pϕ(q)+1} for all q ∈ Q with ϕ(q) < k,
– δ′(pi, a) = pi+1 for i = 1, . . . , k − 1.

�
Using the fooling sets of Proposition 1 we get a matching lower bound.

Lemma 2. For n, k ∈ N, there exists a DFA A with n states over Σ = {a, b}
such that any NFA for E(L(A), dp, k) requires n + k states.

Theorem 2. For a regular language L ⊆ Σ∗ recognized by an NFA with n states
and an integer k ≥ 0,

nsc(E (L, dp , k)) ≤ n + k .

There exists a DFA A with n states such that for all k ≥ 0,

nsc(E (L(A), dp , k)) = n + k .

We get the results for the suffix distance neighbourhoods as a corollary
of Theorem 2 and the observation that, for all strings x and y, ds(x, y) =
dp(xR, yR).

Corollary 1. Let k ≥ 0 and L be a regular language recognized by a DFA with
n states. Then there is an NFA recognizing E(L, ds, k) with at most n+k states.

The following lemma is a symmetric variant of the lower bound construc-
tion for prefix distance neighbourhoods. As a consequence of Corollary 1 and
Lemma 3 we then get a tight bound for the nondeterministic state complexity
of suffix neighbourhoods.

Lemma 3. For n, k ∈ N, there exists a DFA A with n states over Σ = {a, b}
such that any NFA for E(L(A), ds, k) requires n + k states.

Theorem 3. For a regular language L ⊆ Σ∗ recognized by an NFA with n states
and an integer k ≥ 0,

nsc(E (L, ds , k)) ≤ n + k .

There exists a DFA A with n states such that for all k ≥ 0,

nsc(E (L(A), ds , k)) = n + k .

4.2 Substring Distance Neighbourhoods

A neighbourhood with respect to the substring distance can be recognized by
an NFA that, roughly speaking, makes k + 1 copies of the NFA A recognizing
the original language. Later we will show that the construction is optimal.

Lemma 4. If A is an n-state NFA and k ∈ N0, the neighbourhood
E(L(A), df , k) can be recognized by an NFA with (k + 1) · n + 2k states.

248 T. Ng et al.

Proof sketch. Combining the constructions used for Proposition 4 and Corol-
lary 1, an NFA B for the language E(L(A), df , k) uses a chain of k states both
at the beginning and at the end of the computation to keep track of the length
of the nonmatching prefixes (respectively, suffixes) of the input and a word of
L(A). After processing the prefixes, the NFA B has to “remember” the sum of
the lengths of the nonmatching prefixes (which can be up to k), and for this
reason B is equipped with k + 1 copies of the original NFA A.
�
Although both the upper bound and the construction used in the proof of
Lemma 4 differ significantly from the corresponding bound and construction
for prefix distance (or suffix distance) neighbourhoods, it turns out that for the
lower bound, we can use the same cyclic languages.

Lemma 5. There exists a DFA A with n states such that, for all k ≥ 0,

nsc(E(L(A), df , k)) ≥ (k + 1) · n + 2k.

Proof sketch. By choosing Σ = {a, b} and L = (an)∗, the minimal incomplete
DFA for L has n states. Define

S1 = {(b�ai, an−ibk−�) | 0 ≤ i ≤ n − 1, 0 ≤ � ≤ k},

S2 = {(anbj , bk−j) | 1 ≤ j ≤ k}, S3 = {(bj , bk−jan) | 1 ≤ j ≤ k}.

When k ≤ n, it can be verified that S1 ∪ S2 ∪ S3 is a fooling set for E(L, df , k).
When n < k, we can modify the definition of S2 and S3 to construct a fooling
set of cardinality (k + 1) · n + 2k for E(L, df , k).
�
As a consequence of Lemmas 4 and 5 we have an exact bound for the nonde-
terministic state complexity of neighbourhoods with respect to the substring
distance:

Theorem 4. If L has an NFA with n states and k ∈ N0,

nsc(E(L, df , k)) ≤ (k + 1) · n + 2k.

For every n ∈ N there exists a DFA A with n states such that for all k ∈ N0,
nsc(E(L(A), df , k)) = (k + 1) · n + 2k.

5 Conclusion

We have given a tight bound for the deterministic state complexity of neighbour-
hoods with respect to the prefix distance and tight bounds for the nondetermin-
istic state complexity of the prefix, suffix and substring distance neighbourhoods.

Due to the fact that the reversal of a regular language L can be recognized by
an NFA having the same size as an NFA for L, the bounds for the nondetermin-
istic state complexity of suffix neighbourhoods were obtained as a corollary of
the corresponding bounds for prefix neighbourhoods. The situation is essentially
different for DFAs since, for a DFA A with n states, the incomplete DFA recog-
nizing L(A)R needs in the worst case 2n − 1 states. Obtaining tight bounds for
the deterministic state complexity of neighbourhoods with respect to the suffix
distance, or the substring distance, remains an open problem.

State Complexity of Prefix Distance 249

References

1. Apostolico, A.: Maximal words in sequence comparisons based on subword compo-
sition. In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010.
LNCS, vol. 6060, pp. 34–44. Springer, Heidelberg (2010)

2. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43, 185–190 (1992)

3. Calude, C.S., Salomaa, K., Yu, S.: Additive distances and quasi-distances between
words. J. Univ. Comput. Sci. 8(2), 141–152 (2002)

4. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theor. Comput. Sci. 286(1), 117–138 (2002)

5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin Heidelberg
(2009)

6. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual
operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-
2011-8 www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf to appear
in Computer Science Review

7. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata – a survey. Inf. Comput. 209, 456–470 (2011)

8. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J.
Automata Lang. Comb. 9, 293–309 (2004)

9. Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-
puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014)

10. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.
205, 1307–1316 (2007)

11. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between
regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M.
(eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Heidelberg (2014)

12. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS 111, 70–86 (2013)

13. Lothaire, M.: Applied Combinatorics on Words, Ch. 1 Algorithms on Words. Ency-
clopedia of Mathematics and It’s Applications 105. Cambridge University Press,
New York (2005)

14. Ng, T., Rappaport, D., Salomaa, K.: Quasi-distances and weighted finite automata.
In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 209–219.
Springer, Heidelberg (2015)

15. Povarov, G.: Descriptive complexity of the hamming neighborhood of a regular lan-
guage. In: Language and Automata Theory and Applications, pp. 509–520 (2007)

16. Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18(06), 1407–1416 (2007)

17. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer-Verlag, Berlin (1997)

www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf

(Un)decidability of the Emptiness Problem
for Multi-dimensional Context-Free Grammars

Daniel Pr̊uša(B)

Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical
University, Zikova 1903/4, 166 36 Prague 6, Czech Republic

prusapa1@cmp.felk.cvut.cz

Abstract. We study how dimensionality and form of context-free pro-
ductions affect the power of multi-dimensional context-free grammars
over unary alphabets. Attention is paid to the emptiness decision prob-
lem. It is an open question whether or not it is decidable for two-
dimensional Kolam type context-free grammars of Siromoney. We show
that the undecidability can be proved in the three-dimensional setting.
For the two-dimensional variant, we present several results revealing that
the process of generating is still much more complex than that one of
the classical one-dimensional context-free grammar.

Keywords: Picture languages · Multi-dimensional context-free
grammars · Emptiness problem · Undecidability

1 Introduction

The theory of two-dimensional languages generalizes notions from the theory of
formal languages. The basic entity, which is the string, is replaced by a rectan-
gular array of symbols, called a picture. A motivation for such a generalization
comes from the area of image processing, image recognition and two-dimensional
pattern matching.

Several models of two-dimensional automata and grammars have been
proposed to recognize/generate pictures. The early models of context-free
picture grammars include matrix and Kolam type grammars of Siromoney
et al. [17,18]. Kolam grammars were independently proposed by Matz [8] and by
Schlesinger [15,16] who designed them as a tool for structural pattern recogni-
tion. Two extensions of the grammars are known – two-dimensional context-free
grammars of Pr̊uša [13] and regional tile grammars of Pradella et al. [12]. The
grammars are also related to the grid grammars of Drewes et al. [3].

It is a well known phenomenon that the two-dimensional topology changes
a lot of properties of accepted/generated languages. For example, the four-way
finite automaton of Blum and Hewitt [1], which is the straightforward general-
ization of the two-way finite automaton, is more powerful with nondeterminism
than without it. Questions concerning decidability are another example. Several
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 250–262, 2015.
DOI: 10.1007/978-3-319-22360-5 21

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 251

problems decidable in the one-dimensional setting become undecidable. This is
the case of the emptiness or finiteness problems for finite automata.

Multi-dimensional arrays are the natural extension of pictures. Especially
three- and four-dimensional structures arising in application areas such as
computer animation, virtual reality systems or motion image processing have
practical importance. Three- and four-dimensional automata were studied e.g.
in [6,19].

At first sight, increasing the dimensionality may seem less appealing as
the two-dimensional case already includes the core complexity of the multi-
dimensional topology. However, we can find problems whose solution required
a greater effort in the two-dimensional setting. The problem of whether or not
the language of connected pictures over {0, 1} (a connected picture has at most
one connected component of 1’s) is accepted by a four-way finite automaton
was open for a long time. Nakamura answered this negatively first in the three-
dimensional setting [9]. He showed later that the negative result is also valid in
the two-dimensional setting [10].

In this paper, we face a similar situation. We study complexity of context-free
grammars with respect to their dimensionality and the form of their productions.
The considered criterion is decidability of the emptiness problem. While it is
an open question, whether the problem is decidable for Kolam grammars, it
is undecidable for the more general grammars of Pr̊uša [14]. We extend this
result by showing its decidability for matrix grammars and undecidability for
three-dimensional Kolam grammars. We also present results indicating that two-
dimensional Kolam grammars generate quite complex unary languages.

We give the basic notions and notations on picture languages and defini-
tions of two-dimensional context-free grammars in Sect. 2. Results related to the
emptiness problem for two- and three- dimensional grammars are presented in
Sects. 3 and 4, respectively. In Sect. 5, we show which functions and equations
can be represented by the two-dimensional Kolam grammar. Finally, we conclude
with a summary and discussion in Sect. 6.

2 Two-Dimensional Context-Free Grammars

We use the common notation and terms on pictures and picture languages (see,
e.g., [4]). If Σ is a finite alphabet, then Σ∗,∗ is used to denote the set of all
rectangular pictures over Σ, that is, if P ∈ Σ∗,∗, then P is a two-dimensional
array of symbols from Σ. If P has m rows and n columns, we say it is of size
m × n, and we write P ∈ Σm,n, �1(P) = m and �2(P) = n. If P is a square
picture of size n × n, we shortly say P is of size n. We also write am,n to denote
the picture over {a} of size m × n. The empty picture Λ is defined as the only
picture of size 0 × 0. Moreover, Σ+,+ is the set of non-empty pictures, i.e.,
Σ+,+ = Σ∗,∗

� {Λ}. Each a ∈ Σ is also treated as a picture of size 1 × 1.
Two (partial) binary operations are introduced to concatenate pictures. Let

A be a picture of size k × � such that aij is the symbol in the i-th row and j-th
column. Similarly, let B be a picture of size m×n with symbols bij . The column

252 D. Pr̊uša

concatenation A �B is defined iff k = m, and the row concatenation A �B is
defined iff � = n. The products are specified by the following schemes:

A �B =

⎡

⎢
⎣

a11 . . . a1� b11 . . . b1n

...
. . .

...
...

. . .
...

ak1 . . . ak� bm1 . . . bmn

⎤

⎥
⎦ and A �B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 . . . a1�

...
. . .

...
ak1 . . . ak�

b11 . . . b1n

...
. . .

...
bm1 . . . bmn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Beside that, both operations are always defined when at least one of the operands
is Λ. In this case, Λ is the neutral element, so Λ �P = P �Λ = Λ �P = P �Λ = P
for any picture P .

The operations extend to picture languages. For L1, L2 ∈ Σ∗,∗, we define

L1
�L2 = {P | P = P1

�P2 ∧ P1 ∈ L1 ∧ P2 ∈ L2},

L1
�L2 = {P | P = P1

�P2 ∧ P1 ∈ L1 ∧ P2 ∈ L2}.

Definition 1. A two-dimensional Kolam grammar (2KG) is a tuple G =
(VN , VT ,P, S0), where VN is a finite set of nonterminals, VT is a finite set of
terminals, S0 ∈ VN is the initial nonterminal and P is a finite set of productions
in one of the following forms:

N → a (1) S0 → Λ (2)

N → AB (3) N → A
B

(4)

where N,A,B ∈ VN and a ∈ VT .

Definition 2. Let G = (VN , VT ,P, S0) be a 2KG. For each N ∈ VN , L(G, N) is
the set of pictures generated by G from N . All these sets are the smallest sets
fulfilling the following rules.

1. If N → a is a production in P then a ∈ L(G, N),
2. if S0 → Λ is in P then Λ ∈ L(G, S0),
3. if N → AB is in P, P = P1

�P2, P1 ∈ L(G, A) and P2 ∈ L(G, B), then
P ∈ L(G, N), and

4. if N → A
B

is in P, P = P1
�P2, P1 ∈ L(G, A) and P2 ∈ L(G, B), then

P ∈ L(G, N).

The picture language generated by G is defined as L(G) = L(G, S0).

Example 3 (Square pictures). Let G = (VN , VT ,P, Q) be a 2KG where VN =
{R,C,U,Q}, VT = {a} and P is the set of productions

R → a, R → RR, C → a, C → C
C

,

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 253

Q → a, Q → U
R

, U → QC .

Then, L(G, R) consists of all one-row pictures of a’s, L(G, C) consists of all one-
column pictures of a’s, L(G, U) consists of pictures of size n × (n + 1), n ∈ N

+,
and L(G, Q) = L(G) is the picture language of non-empty square pictures.

Example 4 (Exponentially sized pictures). Let G = (VN , VT ,P, E) be a 2KG
where VN = {A,R,D,E}, VT = {a} and P is the set of productions

R → a, R → RR, A → a, E → AA, E → D
R

, D → E E .

Again, L(G, R) consists of all one-row pictures of a’s. The picture languages
L(G,D) and L(G, E) = L(G) consist of all pictures over {a} of size n× 2n+1 and
n × 2n, respectively (n ∈ N

+). Recursive patterns applied in both examples are
depicted in Fig. 1.

Q C

R1

n

n 1

R

E E

1

n

2n 2n

Fig. 1. Schemes showing how pictures (n+1)×(n+1) and (n+1)×2n+1 in Examples 3
and 4, respectively, are assembled from smaller parts.

A matrix grammar can be seen as a special type of Kolam grammar with
the usage of productions restricted in the following way. Productions of type (3)
generate a row of nonterminals from S0, then productions of type (4) gener-
ate columns of terminals of the same length from the nonterminals. A formal
definition follows.

Definition 5. A two-dimensional matrix grammar (2MG) is a tuple G = (V1, V2,
VT ,P, S0) where

– (V1 ∪ V2, VT ,P, S0) is a 2KG,
– S0 ∈ V1,
– if N → AB is a production in P then N ∈ V1,

– if N → A
B

is a production in P then N,A,B ∈ V2, and

– if N → a is a production in P then N ∈ V2.

The two-dimensional context-free grammar from [13] is a generalization
of 2KG. Productions have general matrices of terminals and nonterminals on
their right-hand sides. It is known, that the generative power increases when

254 D. Pr̊uša

increasing size of the matrices. However, we will consider here only the basic
productions (1)-(4) of 2KG and productions of the form

N → A1 A2

A3 A4
(5)

where all Ai and N are nonterminals. A picture P is generated by a grammar
G from N using production (5) iff there are pictures Pi ∈ L(G, Ai) such that

P = (P1
�P2) �(P3

�P4) = (P1
�P3) �(P2

�P4).

This extension is sufficient for a Turing machine simulation presented in [14] (all
the productions used there can be turned into 2×2 form, however, not into 1×2,
2× 1 form). We denote such a grammar as 2CFG. The ability to simulate Turing
machines implies the undecidability of the emptiness problem for 2CFG.

3 Emptiness Problem

The emptiness problem is decidable for one-dimensional context-free grammars
thanks to the well known pumping lemma (a.k.a. uvwxy Theorem).

Theorem 6 ([5]). Let G = (VN , VT ,P, S) be a context-free grammar in the
Chomsky normal form. Let p = 2|VN |−1 and q = 2|VN |. If z ∈ L(G) and |z| > p,
then z can be written as z = uvwxy, where |vwx| ≤ q and |vx| > 0, such that
for each i ∈ N, uviwxiy ∈ L(G).

Let CFG denote the one-dimensional context-free grammar in the Chomsky nor-
mal form. It can be treated as a two-dimensional grammar generating one-row
pictures. Let X be a class of two-dimensional grammars and Xn its subset of gram-
mars with exactly n nonterminals. Define σ : X → Z, δX : N

+ → N
+ as follows:

σ(G) = −1 if L(G) = ∅,

σ(G) = min
P∈L(G)

max{�1(P), �2(P)} if L(G) �= ∅,

δX(n) = max
G∈Xn

σ(G).

This means δX(n) is the maximum among sizes of the smallest objects gen-
erated by grammars from Xn. Sizes of pictures are compared by their largest
dimension. Theorem 6 implies that δCFG = O(2n). Moreover, context-free gram-
mars with n nonterminals generating the only string of length 2n can be con-
structed, thus δCFG = Θ(2n). Since there is a parsing algorithm for each 2CFG [13],
showing that δX is recursive proves decidability of the emptiness problem for
X ∈ {2KG, 2MG}.

Theorem 7. δ2MG(n) = O(2n3
).

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 255

Proof. Let G = (V1, V2, VT ,P, S) be a 2MG. Denote n = |VN |. Assume there
is P ∈ L(G). By inspecting how P is generated, we show it is always possible
to generate a picture whose dimensions do not exceed O(2n3

). To obtain P ,
productions of type (3) generate a string w ∈ (V1)+ from S. Then, nonterminals
of w are substituted by one-column pictures of the same length. It thus holds

L =
⋂

N∈V (w)

L(G, N) �= ∅

where V (w) is the set of all nonterminals appearing in w.
If |w| > 2n, it is possible to generate w′ over V (w) of length O(2n) instead

of w (Theorem 6). The language L is the intersection of unary context-free lan-
guages where each context-free grammar has at most n nonterminals. Results
in [11] show that each such a grammar has an equivalent deterministic finite
automaton (DFA) with O(2n2

) states. Thus, L is accepted by the product
automaton of at most n DFAs. It has O(2n3

) states. If it accepts a nonempty
language, it accepts a string of length O(2n3

). Hence, L(G) contains a picture
with O(2n) rows and O(2n3

) columns. 	

We use Knuth’s up-arrow notation to denote the power tower operation. For
a ∈ N

+ and b ∈ Z, we define

a ↑↑ b = 1 if b ≤ 0, a ↑↑ b = aa
. .

.
a

︸ ︷︷ ︸
b

if b ≥ 1.

Theorem 8. δ2KG(n) = Ω(2 ↑↑ n−8
2).

Proof. For n ∈ N
+, define 2KG Gn = (Vn, {a},Pn, Fn) so that Vn = {R,C,U,Q,

A,D,E} ∪ {F1, . . . , Fn} ∪ {H1, . . . , Hn−1} and Pn is the union of the set of
productions from Example 3, Example 4 and the following productions:

F1 → a, Fi+1 → Hi

Q
, Hi → Fi E, ∀i ∈ {1, . . . , n − 1}.

By induction on i, observe that |L(Gn,Hi)| = 1 and |L(Gn, Fi)| = 1 for all
admissible i. Let Pi be the only picture in L(Gn, Fi). Denote ri = �1(Pi) and
ci = �2(Pi). It holds

c1 = 1, r1 = 1,

ci+1 = ci + 2ri , ri+1 = ri + ci+1,

which implies
ri ≥ ci, ci+1 ≥ ci + 2ci ≥ 2ci ∀i ∈ N

+.

The number of rows as well as columns of Pn is thus at least 2 ↑↑ (n − 1). Since
|Vn| = 2n+6 and thus n− 1 = (|VN |− 8)/2, we derive δ2KG(k) = Ω(2 ↑↑ k−8

2). 	

The following theorem is a kind of pumping lemma for very wide or very high
pictures. It also gives a constraint on the relation between the number of rows
and columns of the smallest picture generated by a 2KG.

256 D. Pr̊uša

Theorem 9. Let L be a picture language over {a} generated by a 2KG with a
set of nonterminals VN . Let am,n be a picture in L. It holds that n ≥ 2m|VN |

implies am,n+i·n! ∈ L and m ≥ 2n|VN | implies am+i·m!,n ∈ L for all i ∈ N.

Proof. W.l.o.g, we prove the theorem for wide pictures. To simplify the nota-
tion within the proof, we write (m,n) to denote the picture am,n. Let G =
(VN , {a},P, S0) be a 2KG. Define one-dimensional context-free grammar G′ =
(VN , {a},P ′, S0) where P ′ consists of those productions in P which are in the
form (1), (2) and (3). For every N ∈ VN and m ∈ N

+, define picture language
L(N,m) as follows:

L(N,m) = {P |P ∈ L(G, N) ∧ �1(P) = m ∧ �2(P) ≥ 2m|VN |}.

Proceed by induction on m. Let P be a picture in L(N, 1). It is a one-row picture
of length n = �2(P) ≥ 2|VN |. Theorem 6 is applicable and it yields (1, n+ j ·k) ∈
L(N, 1) for every j ∈ N and some 1 ≤ k ≤ n, thus (1, n + i · n!) ∈ L(N, 1) for
every i ∈ N by choosing j = i · (n!/k).

Let m > 1. A picture P ∈ L(N,m) can be written as

1. P = P1
�P2 where P1 ∈ L(G, A1), P2 ∈ L(G, A2), N → A1

A2
∈ P, or

2. P = P1
�P2 where P1 ∈ L(G, A1), P2 ∈ L(G, A2), N → A1 A2 ∈ P.

Assume, w.l.o.g, that the initial nonterminal S0 is not a part of the right-hand
side of any production, hence P1, P2 are nonempty. Denote again n = �2(P).
In the first case it holds P1 = (m1, n), P2 = (m2, n) where m1,m2 < m, P1 ∈
L(A1,m1) and P2 ∈ L(A2,m2). The induction hypotheses yields (m1, n+i ·n!) ∈
L(A1,m1) and (m2, n + i · n!) ∈ L(A2,m2) for every i ∈ N. It is thus possible to
generate any (m,n + i · n!) from N .

In the second case, consider a more extensive decomposition of P defined
as follows. Take a picture Pi, i ∈ {1, 2} with the maximal number of columns.
There is again a production of type (2) or (3) and a decomposition of Pi into
two parts proving that Pi ∈ L(G, Ai). The process decomposing a picture with
the maximal number of columns can be repeated at most 2|VN | − 1 times until
one of two following states is reached:

1. P = U1
�. . . �Us where s = 2|VN |, or

2. P = U1
�. . . �Uj−1

�(Uj
�Uj+1) �Uj+2

� . . . �Us where s ≤ 2|VN |.

Let Bi be that nonterminal on the right-hand side of the production used during
the decomposition process to produce Ui, so it holds Ui ∈ L(G, Bi). In the
first case, only one-row productions of P ′ are used, we can thus write N ⇒∗

G′

B1 . . . Bs, meaning that a sentential form of length s = 2|VN | is generated from
N in G′. Theorem 6 applies to it. Substituting Ui’s for Bi’s in the pumped
sentential forms proves that (m,n + j · k) ∈ L(N,m) for k ≤ n and all j ∈ N.
Again, choosing j = i · (n!/k) shows that (m,n + i · n!) ∈ L(N,m) for all i ∈ N.

In the second case, let U = Uj
�Uj+1 denote the picture decomposed as the

last one. Its number of columns is maximal when compared to the number of

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 257

columns of pictures Ui, i ∈ {1, . . . , s} \ {j, j + 1}, hence �2(U) ≥ �2(P)/s ≥
2m|VN |/2|VN | = 2(m−1)|VN |. Since �2(Uj), �2(Uj+1) ≤ m − 1, by the induction
hypotheses, it is possible to pump Uj and Uj+1 so that any (m,n + i · n!) is
generated from N . 	

4 Three-Dimensional Kolam Grammar

The three-dimensional Kolam Grammar (3KG) extends 2KG. It generates three-
dimensional arrays called cuboids. Analogously to context-free productions of
type (3) and (4), additional type performing concatenation in the third dimen-
sion (the depth) is added. For a cuboid P , its depth is denoted as �3(P).

The well known undecidable Post Correspondence Problem (PCP) is defined
as follows. Let α1, . . . , αn and β1, . . . , βn be two finite lists of strings over {0, 1}.
The task is to decide whether there is a finite sequence of indices (ik)1≤k≤K with
K ≥ 1 and 1 ≤ ik ≤ n for all k, such that αi1 . . . αiK = βi1 . . . βiK .

Theorem 10. The emptiness problem is not decidable for 3KG.

Proof. For a given instance of PCP α1, . . . , αn and β1, . . . , βn, we show how to
construct a 3KG G = (VN , {a},P, S) such that L(G) �= ∅ iff the PCP instance has
a solution. The grammar G will have two nonterminals A and B generating repre-
sentatives of all strings αi1 . . . αiK and βi1 . . . βiK , respectively. For convenience,
we treat positive integers as binary strings and vice versa. Let In = {1, . . . , n}
and � = �log2(n + 1)�. For i ∈ In, define code(i) as the binary string of length �
which represents i (i.e., the string is i written in binary, possibly supplemented
by leading zeros to reach length �). For a finite sequence of indices I = (ik)1≤k≤K

where every ik ∈ In, define

code(I) = 1 code(i1) code(i2) . . . code(iK),

strα(I) = 1αI1αi2 . . . αiK , strβ(I) = 1βI1βi2 . . . βiK .

Moreover, define Pα = cubα(I) and Pβ = cubβ(I) as the cuboids over {A}
such that �1(Pα) = �2(Pα) = �1(Pβ) = �2(Pβ) = code(I), �3(Pα) = strα(I) and
�3(Pβ) = strβ(I). Let I ′ be I prolonged by one more element j = iK+1 ∈ In.
Assume code(j) = c1 . . . c� and αj = a1 . . . am where ci, ai ∈ {0, 1}. Cuboid
cubα(I ′) can be obtained from cubα(I) by prolonging its size. We can observe
that doubling cubα(I) as depicted in Fig. 2 changes its number of columns (writ-
ten in binary) from �2(cubα(I)) to �2(cubα(I))0. If the doubling is followed
by appending a picture of width 1, the resulting number of columns equals
�2(cubα(I))1. Repeating these operations, it is thus possible to append bits to
reach length �2(cubα(I))c1 . . . c�. If A generates cubα(I), then the described
process is represented by productions

Aj
1 →

{
AA if c1 = 0
AAC if c1 = 1 , Aj

i+1 →
{

Aj
i Aj

i if ci = 0
Aj

i Aj
i C if ci = 1

, i = 1, . . . ,m−1.

258 D. Pr̊uša

code(I)

code(I)

strα(I)

code(I1) code(I2)

strα(I1) strα(I2)

Fig. 2. Encoding of code(I) and strα(I) by cubα(I). Doubling the cuboid by applying a
context-free production appends bit 0 to its width written in binary. It is not applicable
to pictures – it would be possible to concatenate different representatives along the side
representing strα(I) when there are I1 �= I2 such that strα(I1) = strα(I2).

where C is a nonterminal generating all cuboids of size s × 1 × t with s, t ∈ N
+.

Productions with three non-terminals on the right-hand side are used for brevity
and can be easily turned into the Chomsky normal form. Similar productions can
be added to change height and depth (nonterminal Aj

m is taken as the starting
point instead of A). If also productions generating cubα(I0) from A for all one-
element sequences I0 are added (there are finitely many such cuboids, suitable
productions thus exist), we obtain a complete set of productions generating
cubα(I) from A for all I. Analogously, there is a set of productions generating
all cubβ(I) from B. Finally, for the initial nonterminal S, we add production
S → AB. A cuboid is generated from S only if the input PCP has a solution.

Note that, as explained in Fig. 2, the construction is not applicable to
pictures. 	

5 Representable Functions

In this section, we further illustrate the complexity of 2KG over unary alphabets
by showing which functions and equations it can express. A characterization of
representable functions is known e.g. for tiling systems [4].

Definition 11. A function f : N
+ → N

+ is called representable by 2KG if the
picture language L(f) = { an,f(n) | n ∈ N

+ } is generated by a 2KG.

We will utilize the fact that the class of languages generated by 2KG is closed
under the concatenation operations.

Lemma 12. Let G1 = (V1, VT ,P1, S1), G2 = (V2, VT ,P2, S2) be 2KG. Then,
L(G1) �L(G2) as well as L(G1) �L(G2) can be generated by a 2KG.

Proof. W.l.o.g, assume V1 ∩ V2 = ∅ and S /∈ V1 ∪ V2. Then, e.g., L(G1) �L(G2)
is generated by G = (V1 ∪ V2, VT ,P1 ∪ P2 ∪ {S → S1 S2}, S). 	

Lemma 13. If f , g are two functions representable by 2KG and c ∈ N

+, then
cf and f + g are also representable by 2KG.

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 259

Proof. We can write L(f +g) = L(f) �L(g) and L(cf) = L(�c/2�f) �L(�c/2�f),
which can be recursively applied to reduce the multiplier c to 1. By Lemma 12,
the concatenation products can be generated by 2KG. 	

Lemma 14. For every d ∈ N, function f(n) = nd is representable by 2KG.

Proof. We prove the lemma by induction on d. If d = 0, the constant function
f(n) = 1 is represented by a 2KG generating all one-column pictures. If d =
1, function f(n) = n is represented by the picture language of squares from
Example 3. Let d > 1. For n > 1, an application of the binomial theorem gives

nd = ((n − 1) + 1)d = (n − 1)d +
d∑

i=1

(
d

i

)

(n − 1)d−i = (n − 1)d + h(n − 1)

where h denotes a function. By the induction hypothesis and Lemma 13, there
is a 2KG G = (VN , {a},P,H) such that L(G) = L(h). Extend G to G′ = (VN ∪
{S,U,R}, {a},P ′, S) where S, U , R are not contained in VN and P ′ is P extended
by productions

R → a, R → R R, S → a, S → U
R

, U → S H.

Then, L(G′) = L(nd). 	

Lemma 15. The exponential function f(n) = 2n is representable by 2KG.

Proof. L(2n) is the picture language from Example 4. 	

Taking into account Theorem 9, we can observe that functions which are of a
greater than exponential growth cannot be represented by a 2KG.

Corollary 16. If f is representable by 2KG then f(n) = 2O(n).

Note that all the presented results coincide with those known for functions rep-
resentable by tiling systems [4].

Proposition 17. Let f1, . . . , fm and g1, . . . , gn be functions representable by
2KG. There is a 2KG G computable uniformly in representatives of the functions
such that

m∑

i=1

fi(xi) =
n∑

j=1

gj(yj)

has a solution (x1, . . . , xm, y1, . . . , yn) ∈ (N+)m+n iff L(G) �= ∅.
Proof. Define languages

L1 =
(
L(f1) �{a}+,+

)
� . . . �

(
L(fm) �{a}+,+

)
,

L2 =
(
L(g1) �{a}+,+

)
� . . . �

(
L(gn) �{a}+,+

)
,

L3 = L1
�L2.

260 D. Pr̊uša

The language of nonempty pictures {a}+,+ can be easily generated by a 2KG.
For any x1, . . . , xm ∈ N

+ and y1, . . . , yn ∈ N
+, there is a picture in L1 and L2

with
∑m

i=1 f(xi) and
∑n

i=1 g(yi) columns, respectively. The language L3 is thus
nonempty if and only if the equation has a solution. 	

Example 18 (Exponential Diophantine Equations). A Diophantine equation is a
polynomial equation with integral coefficients and one or more unknowns. The
existence of an integral solution is undecidable for it [7]. An exponential Dio-
phantine equation is an extension with unknowns occurring also as exponents.
We have proved that 2KG can represent a subclass of these equations, namely
equations of the form

f(x1, . . . , xm, y1, . . . , yn) = c +
m∑

i=1

aix
di
i +

n∑

j=1

bj2yj = 0 (6)

where c, ai, bj ∈ Z and di ∈ N
+ for all i = 1, . . . ,m, j = 1, . . . , n. Note that

Proposition 17 is applicable after rearranging the equation by moving summands
with negative coefficients to the right-hand side.

It is unlikely that the solvability of (6) is undecidable. On the other hand, the
smallest solution can be a vector of very large integers. For example, components
of the smallest positive integral solution to

x3 + y3 = 4981z3

have over 16 million digits [2]. This coincides with the smallest picture generated
by a 2KG representing this equation. It is thus worth to give another important
lower bound on δ2KG. For all n ∈ N

+, δ2KG(n) equals or is greater than the largest
integer among smallest solutions of equations (6) which can be represented by a
2KG with n nonterminals.

2MG

2KG

2CFG

3KG

undecidable

?decidable

X CFG 2MG 2KG 2CFG 3KG

δX Θ (2n) O
(
2n3

)
Ω 2 ↑↑ n−8

2

)
NR NR

Fig. 3. A summary: (un)decidability of the emptiness problem and bounds on func-
tion δ for the studied multi-dimensional context-free grammars (NR stands for non-
recursive).

6 Conclusion

In Fig. 3, we summarize our main findings, complemented by related known
results. We have shown that the emptiness problem is undecidable for the

(Un)decidability of the Emptiness Problem for Multi-dimensional Grammars 261

three-dimensional Kolam grammar. The presented proof is easier than the rather
technical proof for 2CFG in [14]. Increasing dimensionality therefore seems to have
a stronger effect than strengthening the form of productions.

Decidability of the emptiness problem remains open for 2KG. This problem
is challenging and important. Showing its decidability would result in revealing
a significant difference between two- and three-dimensional world of languages.
The presented results however indicate that proving the decidability (assuming
it holds) can be very difficult. The derived exponentiation tower lower bound
shows that the function δ2KG has a very rapid growth. Moreover, the process
of generating pictures by 2KG includes the complexity of some exponential Dio-
phantine equations.

It is even possible that the emptiness problem is undecidable for 2KG. This
would also be an interesting finding, saying that quite elementary context-free
productions are very powerful in the two-dimensional setting.

Acknowledgement. The author would like to thank Markus Holzer for his sugges-
tions that became the basis for this paper. This work was supported by the Czech
Science Foundation under grant no. 15-04960S.

References

1. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proceedings of the
8th Annual Symposium on Switching and Automata Theory (SWAT 1967), FOCS
1967, pp. 155–160. IEEE Computer Society, Washington, DC (1967)

2. Bremner, A.: Positively prodigious powers or how Dudeney done it? Math. Mag.
84(2), 120–125 (2011)

3. Drewes, F., Ewert, S., Klempien-Hinrichs, R., Kreowski, H.: Computing raster
images from grid picture grammars. J. Automata, Lang. Comb. 8(3), 499–519
(2003)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
New York (1997)

5. Hopcroft, J., Ullman, J.: Formal languages and their relation to automata.
Addison-Wesley, Reading (1969)

6. Ito, T., Sakamoto, M., Okabe, H., Furutani, H., Kono, M., Ikeda, S.: Marker versus
inkdot over three-dimensional patterns. Artif. Life Robot. 13(1), 65–68 (2008)

7. Matiyasevich, Y.: Hilbert’s tenth problem: Diophantine equations in the twentieth
century. In: Bolibruch, A., Osipov, Y., Sinai, Y. (eds.) Mathematical Events of the
Twentieth Century, pp. 185–213. Springer, Heidelberg (2006)

8. Matz, O.: Regular expressions and context-free grammars for picture languages.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294.
Springer, Heidelberg (1997)

9. Nakamura, A.: Three-dimensional connected pictures are not recognizable by finite-
state acceptors. Inf. Sci. 66(3), 225–234 (1992)

10. Nakamura, A.: Two-dimensional connected pictures are not recognizable by finite-
state acceptors. Inf. Sci. 69(1–2), 55–64 (1993)

262 D. Pr̊uša

11. Pighizzini, G., Shallit, J., Wang, M.: Unary context-free grammars and pushdown
automata, descriptional complexity and auxiliary space lower bounds. J. Comput.
Syst. Sci. 65(2), 393–414 (2002)

12. Pradella, M., Cherubini, A., Reghizzi, S.C.: A unifying approach to picture gram-
mars. Inf. Comput. 209(9), 1246–1267 (2011)

13. Pr̊uša, D.: Two-dimensional Languages. Ph.D. thesis, Faculty of Mathematics and
Physics, Charles University, Prague, Czech Republic (2004)

14. Pr̊uša, D.: Non-recursive trade-offs between two-dimensional automata and gram-
mars. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 352–363. Springer, Heidelberg (2014)

15. Schlesinger, M.I.: Matematiceskie sredstva obrabotki izobrazenij (Mathematic
tools for image processing). Naukova Dumka, Kiev (1989) (in Russian)

16. Schlesinger, M.I., Hlaváč, V.: Ten Lectures on Statistical and Structural Pattern
Recognition (Computational Imaging and Vision). 1st edn. Springer, Heidelberg,
May 2012

17. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and
picture languages. Comput. Graph. Image Proces. 1(3), 284–307 (1972)

18. Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewrit-
ing rules. Inf. Control 22(5), 447–470 (1973)

19. Uchida, Y., Ito, T., Sakamoto, M., Uchida, K., Ide, T., Katamune, R., Furutani, H.,
Kono, M., Yoshinaga, T.: Cooperating systems of four-dimensional finite automata.
Artif. Life Robot. 16(4), 555–558 (2012)

On the Disambiguation of Weighted Automata

Mehryar Mohri1,2 and Michael D. Riley2(B)

1 Courant Institute of Mathematical Sciences, New York, NY, USA
2 Google Research, New York, NY, USA

riley@google.com

Abstract. We present a disambiguation algorithm for weighted
automata. The algorithm admits two main stages: a pre-disambiguation
stage followed by a transition removal stage. We give a detailed descrip-
tion of the algorithm and the proof of its correctness. The algorithm is
not applicable to all weighted automata but we prove sufficient conditions
for its applicability in the case of the tropical semiring by introducing
the weak twins property. In particular, the algorithm can be used with
all acyclic weighted automata and more generally any determinizable
weighted automata. While disambiguation can sometimes be achieved
using determinization, our disambiguation algorithm in some cases can
return a result that is exponentially smaller than any equivalent deter-
ministic automaton. We also present some empirical evidence of the space
benefits of disambiguation over determinization in speech recognition and
machine translation applications.

1 Introduction

Weighted finite automata and transducers are widely used in applications. Most
modern speech recognition systems used for hand-held devices or spoken-dialog
applications use weighted automata and their corresponding algorithms for
the representation of their models and their efficient combination and search
[2,18]. Similarly, weighted automata are commonly used for a variety of tasks in
machine translation [9] and other natural language processing applications [10],
computational biology [6], image processing [1], optical character recognition [5],
and many other areas.

A problem that arises in several applications is that of disambiguation of
weighted automata: given an input weighted automaton, the problem consists
of computing an equivalent weighted automaton that is unambiguous, that is
one with no two accepting paths labeled with the same string. The need for
disambiguation is often motivated by the computation of the marginals given
a weighted transducer, or the common problem of determining the most prob-
able string or more generally the n most likely strings, n ≥ 1, of a lattice, an
acyclic weighted automaton generated by a complex model, such as those used in
machine translation, speech recognition, information extraction, and many other
natural language processing and computational biology systems. A lattice com-
pactly represents the model’s most likely hypotheses. It defines a probability

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 263–278, 2015.
DOI: 10.1007/978-3-319-22360-5 22

264 M. Mohri and M.D. Riley

distribution over the strings and is used as follows: the weight of an accept-
ing path is obtained by multiplying the weights of its component transitions
and the weight of a string obtained by summing up the weights of accepting
paths labeled with that string. In general, there may be many accepting paths
labeled with a given string. Clearly, if the lattice were unambiguous, a stan-
dard shortest-paths or n-shortest-paths algorithm [8] could be used to efficiently
determine the n most likely strings. When the lattice is not unambiguous, the
problem is more complex and can be solved using weighted determinization [19].
An alternative solution, which we will show has benefits, consists of first finding
an unambiguous weighted automaton equivalent to the lattice and then running
an n-shortest-paths algorithm on the resulting weighted automaton.

In general, one way to determine an equivalent unambiguous weighted
automaton is to use the weighted determinization algorithm [16]. This, however,
admits several drawbacks. First, weighted determinization cannot be applied to
all weighted automata. This is both because not all weighted automata admit
an equivalent deterministic weighted automaton but also because even for some
that do, the weighted determinization algorithm may not halt. Sufficient condi-
tions for the application of the algorithm have been given [3,16]. In particular
the algorithm can be applied to all acyclic weighted automata. Nevertheless, a
second issue is that in some cases where weighted determinization can be used,
the size of the resulting deterministic automaton is prohibitively large.

This paper presents a new disambiguation algorithm for weighted automata
extending to the weighted case the algorithm of [17] – the weighted case is sig-
nificantly more complex and this extension non-trivial. As we shall see, our
disambiguation algorithm applies to a broader family of weighted automata
than determinization: we show that, for the tropical semiring, if a weighted
automaton can be determinized using the algorithm of [16], then it can also
be disambiguated using the algorithm presented in this paper. Furthermore,
for some weighted automata, the size of the unambiguous weighted automaton
returned by our algorithm is exponentially smaller than that of any equiva-
lent deterministic weighted automata. In particular, our algorithm leaves the
input unchanged if it is unambiguous, while the size of the automaton returned
by determinization for some unambiguous weighted automata is exponentially
larger. We also present empirical evidence that shows the benefits of weighted
disambiguation over determinization in applications. Our algorithm applies in
particular to unweighted finite automata. Note that it is known that for some
non-deterministic finite automata of size n the size of an equivalent unambiguous
automaton is at least Ω(2

√
n) [22], which gives a lower bound on the time and

space complexity of any disambiguation algorithm for finite automata.
Our disambiguation algorithm for weighted automata is presented in a gen-

eral way and for a broad class of semirings. Nevertheless, the algorithm is limited
in several ways. First, not all weighted automata admit an equivalent unam-
biguous weighted automaton. But, even for some that do, our algorithm may
not succeed. The situation is thus similar to that of weighted determinization.
However, we present sufficient conditions based on a new notion of weak twins

On the Disambiguation of Weighted Automata 265

property under which our algorithm can be used. In particular, our algorithm
applies to all acyclic weighted automata and more generally to all determinizable
weighted automata. Our algorithm admits two stages. The first stage called pre-
disambiguation constructs a weighted automaton with several key properties,
including the property that paths leaving the initial state and labeled with the
same string have the same weight. The second stage consists of removing some
transitions to make the result unambiguous. Our disambiguation algorithm can
be applied whenever pre-disambiguation terminates.

We refer to [17] for an extensive discussion of disambiguation algorithms
for unweighted automata and finite-state transducers, in particular the algo-
rithm of Schützenberger. In the weighted case, we already mentioned and dis-
cussed weighted determinization [16] as a possible disambiguation algorithm in
some cases. A procedure was described by [14] for the special case of the disam-
biguation of finitely ambiguous min-plus automata, which is a straightforward
application of Schützenberger’s algorithm for the disambiguation of functional
transducers. That procedure does not extend to the general case of weighted
automata we are considering because in the general case, the removal of tran-
sitions causing ambiguity cannot be executed correctly in that way.1 An alter-
native procedure was also described by [13][pp. 598–599] for constructing an
unambiguous weighted automaton (when it exists) in the specific case of poly-
nomially ambiguous min-plus weighted automata. The construction is rather
intricate and further relies on the prior determination of a threshold value Y .
The authors do not give an explicit algorithm for computing Y but state that it
can be inferred from [13, Proposition 5.1]. However, the corresponding procedure
seems intractable. In fact, as indicated by the authors, the cost of determining
Y using that property is super-exponential. The authors of [13] do not give the
running-time complexity of their procedure and do not detail various aspects,
which makes a comparison difficult. But, our algorithm is much simpler and
seems to be significantly more efficient. Our algorithm is also more general since
it applies in particular to weighted automata over the tropical semirings that
verify the weak twins property and that may be exponentially ambiguous. It
is also given for a broader family of semirings. While we are not presenting
guarantees for its applicability for semirings different from the tropical semiring,
its applicability for at least acyclic weighted automata for those semirings is
clear. One advantage of the procedures described by [13] is that the existence
of an unambiguous weighted automaton is first tested, though that test proce-
dure appears also to be very costly. Finally, let us mention that an algorithm of
Eilenberg [7] bears the same name, disambiguation, but it is in fact designed for
an entirely different problem.

1 The removal of ambiguous transitions requires the following key property which
is guaranteed by our R-pre-disambiguation algorithm: after removal of ambiguous
transitions, the weight of a remaining path must be precisely the same as the weight
assigned to the string labeling that path by the original automaton. Let us also
emphasize that the procedure of [14] is not a special instance of our algorithm and
in particular does not benefit from the crucial use of the relation R∗.

266 M. Mohri and M.D. Riley

The paper is organized as follows. In Sect. 2, we introduce some preliminary
definitions and notation relevant to the description of our algorithm. Section 3
describes our pre-disambiguation algorithm and proves some key properties of
its result. We describe in fact a family of pre-disambiguation algorithms parame-
terized by a relation R over the set of pairs of states. A simple instance of that
relation is for two states to be equivalent when they admit a path labeled by the
same string leading to a final state. In Sect. 4, we describe the second stage, which
consists of transition removal, and prove the correctness of our disambiguation
algorithm. In Sect. 5, we introduce the notion of weak twins property which we
use to prove the sufficient conditions for the application of pre-disambiguation
and thus the full disambiguation algorithm. The proofs for this section are given
in the case of weighted automata over the tropical semiring. Finally, in Sect. 6, we
present experiments that compare weighted disambiguation to determinization
in speech recognition and machine translation applications. Our implementation
of these algorithms used in these experiments is available through a freely avail-
able OpenFst library [4]. Detailed proofs for most of our results are given in the
[20].

2 Preliminaries

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗ and
by ε the empty string for which |ε| = 0.

The weighted automata we consider are defined over a broad class of semi-
rings. A semiring is a system (S,⊕,⊗, 0, 1) where (S,⊕, 0) is a commutative
monoid with 0 as the identity element for ⊕, (S,⊗, 1) is a monoid with 1 as the
identity element for ⊗, ⊗ distributes over ⊕, and 0 is an annihilator for ⊗.

A semiring is said to be commutative when ⊗ is commutative. Some
familiar examples of (commutative) semirings are the tropical semiring (R+∪
{+∞},min,+,+∞, 0) or the semiring of non-negative integers (N,+,×, 0, 1).
The multiplicative operation of a semiring (S,⊕,⊗, 0, 1) is said to be cancella-
tive if for any x, x′ and z in S with z �= 0, x ⊗ z = x′ ⊗ z implies x = x′. When
that property holds, the semiring (S,⊕,⊗, 0, 1) is also said to be cancellative.

A semiring (S,⊕,⊗, 0, 1) is said to be left divisible if any element x ∈ S−{0}
admits a left inverse x′ ∈ S, that is x′ ⊗ x = 1. (S,⊕,⊗, 0, 1) is said to be weakly
left divisible if for any x and x′ in S such that x⊕x′ �= 0, there exists at least one
z such that x = (x ⊕ x′) ⊗ z. When the ⊗ operation is cancellative, z is unique
and we can then write: z = (x ⊕ x′)−1 ⊗ x.

Weighted finite automata (WFAs) are automata in which the transitions
are labeled with weights in addition to the usual alphabet symbols which are
elements of a semiring [15]. A WFA A = (Σ,Q, I, F,E, λ, ρ) over S is a 7-tuple
where: Σ is the finite alphabet of the automaton, Q is a finite set of states,
I ⊆ Q the set of initial states, F ⊆ Q the set of final states, E a finite multiset
of transitions which are elements of Q × Σ × S × Q, λ:I → S an initial weight
function, and ρ:F → S the final weight function mapping F to S.

On the Disambiguation of Weighted Automata 267

A path π of a WFA is an element of E∗ with consecutive transitions. We
denote by orig[π] the origin state and by dest[π] the destination state of the path.
A path is said to be accepting or successful when orig[π] ∈ I and dest[π] ∈ F .

We denote by w[e] the weight of a transition e and similarly by w[π] the weight
of path π = e1 · · · en obtained by ⊗-multiplying the weights of its constituent
transitions: w[π] = w[e1] ⊗ · · · ⊗ w[en]. When orig[π] is in I, we denote by
wI [π] = λ(orig[π]) ⊗ w[π] the weight of the path including the initial weight of
the origin state. For any two subsets U, V ⊆ Q and any string x ∈ Σ∗, we denote
by P (U, x, V) the set of paths labeled with x from a state in U to a state in V
and by W (U, x, V) the ⊕-sum of their weights:

W (U, x, V) =
⊕

π∈P (U,x,V)

w[π].

When U is reduced to a singleton, U = {p}, we will simply write W (p, x, V)
instead of W ({p}, x, V) and similarly for V . To include initial weights, we denote:

WI(x, V) =
⊕

π∈P (I,x,V)

wI [π].

We also denote by δ(U, x) the set of states reached by paths starting in U and
labeled with x ∈ Σ∗. The weight associated by A to a string x ∈ Σ∗ is defined by

A(x) =
⊕

π∈P (I,x,F)

wI [π] ⊗ ρ(dest[π]), (1)

when P (I, x, F) �= ∅. A(x) is defined to be 0 when P (I, x, F) = ∅.
A state q of a WFA A is said to be accessible if q can be reached by a path

originating in I. It is coaccessible if a final state can be reached by a path from q.
Two states q and q′ are co-reachable if they each can be reached by a path from
I labeled with a common string x ∈ Σ∗. A WFA A is trim if all states of A are
both accessible and coaccessible. A is unambiguous if any string x ∈ Σ∗ labels at
most one accepting path. The intersection of two WFAs is a WFA that satisfies
(A1 ∩ A2)(x) = A1(x) ⊗ A2(x).

In all that follows, we will consider weighted automata over a weakly left
divisible cancellative semiring.2

3 R-Pre-disambiguation of Weighted Automata

3.1 Relation R over Q × Q

Two states q, q′ ∈ Q are said to share a common future if there exists a string
x ∈ Σ∗ such that P (q, x, F) and P (q′, x, F) are not empty. Let R∗ be the relation
defined over Q × Q by q R∗ q′ iff q = q′ or q and q′ share a common future in
2 Our algorithms can be straightforwardly extended to the case of weakly left divisible

left semirings [3].

268 M. Mohri and M.D. Riley

A. Clearly, R∗ is reflexive and symmetric, but in general it is not transitive.
Observe that R∗ is compatible with the inverse transition function, that is, if
q R∗ q′, q ∈ δ(p, x) and q′ ∈ δ(p′, x) for some x ∈ Σ∗ with (p, p′) ∈ Q2, then
pR∗ p′. We will also denote by R0 the complete relation defined by q R0 q′ for all
(q, q′) ∈ Q2. Clearly, R0 is also compatible with the inverse transition function.

The construction we will define holds for any relation R out of the set of
admissible relations R defined as the reflexive relations over Q × Q that are
compatible with the inverse transition function and coarser than R∗. Thus, R
includes R∗ and R0, as well as any reflexive relation R compatible with the
inverse transition function that is coarser than R∗, that is, for all (q, q′) ∈ Q2,
q R∗ q′ =⇒ q R q′. Thus, for a relation R in R, two states q and q′ that share the
same future are necessarily in relation, but they may also be in relation without
sharing the same future. Note in particular that R is always reflexive.

3.2 Construction

Fix a relation R ∈ R. For any x ∈ Σ∗, and q ∈ δ(U, x), we also denote by δq(U, x)
the set of states in δ(U, x) that are in relation with q:

δq(U, x) = δ(U, x) ∩ {p:pR q}.

Note that, since R is reflexive, by definition, δq(I, x) contains q. We will assume
that WI(x, {p1, . . . , pt}) �= 0 for any x ∈ Σ∗, otherwise the subset corresponding
to x needs not be constructed. For any x ∈ Σ∗ and q ∈ δ(I, x), we define the
weighted subset s(x, q) by

s(x, q) =
{

(p1, w1), . . . , (pt, wt):
({p1, . . . , pt} = δq(I, x)

)

∧ (∀i ∈ [1, t], wi = WI(x, {p1, . . . , pt})−1 ⊗ WI(x, pi)
)}

.

For a weighted subset s, define set(s) = {p1, . . . , pt}. For any automaton A define
A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) as follows:

Q′ = {(q, s(x, q)):x ∈ Σ∗, q ∈ δ(I, x)}
I ′ = {(q, s(ε, q)):q ∈ I} and F ′ = {(q, s(x, q)):x ∈ Σ∗, q ∈ δ(I, x) ∩ F}

E′ =
{

((q, s), a, w, (q′, s′)):(q, s), (q′, s′) ∈ Q′, a ∈ Σ,

∃x ∈ Σ∗ | s = s(x, q) = {(p1, w1), . . . , (pt, wt)},

s′ = s(xa, q′) = {(p′
1, w

′
1), . . . , (p

′
t′ , w′

t′)},

q′ ∈ δ(q, a), w =
t⊕

i=1

(
wi ⊗ W (pi, a, set(s′))

)
,

∀j ∈ [1, t′], w′
j = w−1 ⊗

(t⊕

i=1

wi ⊗ W (pi, a, p′
j

)}

On the Disambiguation of Weighted Automata 269

and ∀(q, s) ∈ I ′, s = {(p1, w1), . . . , (pt, wt)}, λ′((q, s)) =
⊕

i∈[1,t]

λ(pi).

∀(q, s) ∈ F ′, s = {(p1, w1), . . . , (pt, wt)}, ρ′((q, s)) =
⊕

pi∈F
i∈[1,t]

(wi ⊗ ρ(pi)).

Note that in definition of the transition set E′ above, the property set(s′) =
δq′(set(s), a) always holds. In particular, if p′ is in δq′(set(s), a), then there is a
path from I to some p ∈ set(s) labeled x and a transition from p to p′ labeled
with a and p′ R q′ so p′ is in set(s′). Conversely, if p′ is in set(s′) then there
exists p reachable by x with a transition labeled with a from p to p′. Since p′ is
in set(s′), p′ is in δq′(I, xa), thus p′ R q′. Since there exists a transition labeled
with a from q to q′ and from p to p′, this implies that pR q. Since pR q and p is
reachable via x, p is δq(I, x).

When the set of states Q′ is finite, A′ is a WFA with a finite set of states
and transitions and is defined as the result of the R-pre-disambiguation of A.
In general, R-pre-disambiguation is thus defined only for a subset of weighted
automata, which we will refer to as the set of R-pre-disambiguable weighted
automata. We will show later sufficient conditions for an automaton A to be
R-pre-disambiguable in the case of the tropical semiring. Figure 1 illustrates the
R-pre-disambiguation construction.

3.3 Properties of the Resulting WFA

In this section, we assume that the input WFA A = (Σ,Q, I, F,E, λ, ρ) is R-pre-
disambiguable. In general, the WFA A′ constructed by R-pre-disambiguation is
not equivalent to A, but the weight of each path from an initial state equals the
⊕-sum of the weights of all paths with the same label in the input automaton
starting at an initial state.

Proposition 1. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
the following equalities hold for any path π ∈ P (I ′, x, (q, s)) in A′, with x ∈ Σ∗

and s = {(p1, w1), . . . , (pt, wt)}:

wI [π] = WI(x, set(s)) and ∀i ∈ [1, t], wI [π] ⊗ wi = WI(x, pi).

The proof of this proposition, as well as others not included here due to space
limitations, can be found in the full version of this paper [20].

Proposition 2. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
for any accepting path π ∈ P (I ′, x, (q, s)) in A′, with x ∈ Σ∗ and (q, s) ∈ F ′, the
following equality holds:

wI [π] ⊗ ρ′((q, s)) = A(x).

270 M. Mohri and M.D. Riley

0

1

a/1

4a/4

6

a/6

2b/2
c/3

5b/5

7c/6

3/1

a/4

b/5

a/6
c/7

b/8

(0, 1)

 (1, 1/11)
 (4, 4/11)
 (6, 6/11)

a/11

 (4, 4/5)
 (1, 1/5)

a/5

 (6, 6/7)
 (1, 1/7)

a/7

 (2, 1/11)
 (5, 10/11)

b/2

 (2, 1/13)
 (7, 12/13)

c/(39/11)

 (5, 10/11)
 (2, 1/11)

b/(22/5)

 (7, 12/13)
 (2, 1/13)

c/(39/7)

(3, 1)/1

a/(64/11)

b/(5/11)

a/(4/13)

b/(101/13)

a/(64/11)

c/(70/11)

b/(101/13)

Fig. 1. Illustration of the R-pre-disambiguation construction in the semiring
(R+,+,×, 0, 1). Initial states are depicted by a bold circle (always with initial weight
1 in figures here) and final states by double circles. For each state (q, s) of the result,
the subset s is explicitly shown. q is the state of the first pair in s shown. The weights
are rational numbers, for example 1

11 ≈ .091.

Proof. Let s = {(p1, w1), . . . , (pt, wt)}. By definition of ρ′, we can write

wI [π] ⊗ ρ′((q, s)) = wI [π] ⊗ ⊕

pi∈F
i∈[1,t]

(wi ⊗ ρ(pi)) =
⊕

pi∈F
i∈[1,t]

(wI [π] ⊗ wi ⊗ ρ(pi)).

Plugging in the expression of (wI [π] ⊗ wi) given by Proposition 1 yields

wI [π] ⊗ ρ′((q, s)) =
⊕

pi∈F
i∈[1,t]

(WI(x, pi) ⊗ ρ(pi)). (2)

By definition of R-pre-disambiguation, q is a final state. Any state p ∈ δ(I, x)∩F
shares a common future with q since both p and q are final states, thus we must
have pR q, which implies p ∈ set(s). Thus, the ⊕-sum in (2) is exactly over the
set of states δ(I, x) ∩ F , which proves that wI [π] ⊗ ρ′((q, s)) = A(x). ��
Proposition 3. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′ρ′) be the finite automaton
returned by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Then,
any string x ∈ Σ∗ accepted by A is accepted by A′.

Proof. Let (q0, a1, w1, q1) · · · (qn−1, an, wn, qn) be an accepting path in A with
a1 · · · an = x. By construction, ((q0, s0), a1, w

′
1, (q1, s1)) · · · ((qn−1, sn−1), an, w′

n,
(qn, sn)) is a path in A′ for some w′

i ∈ S and with si = s(a1 · · · ai, qi) for all
i ∈ [1, n] and s0 = ε and by definition of finality in R-pre-disambiguation, (qn, sn)
is final. Thus, x is accepted by A′. ��

On the Disambiguation of Weighted Automata 271

Fig. 2. Illustration of the proof of Lemma 1. The lemma proves the existence of the
dashed transitions and the dashed state when (q, s) �= (q′, s′) and x �= x′.

4 Disambiguation Algorithm

Propositions 1, 2 and 3 show that the strings accepted by A′ are exactly those
accepted by A and that the weight of any path in A′ accepting x ∈ Σ∗ is
A(x). Thus, if for any x, we could eliminate from A′ all but one of the paths
labeled with x, the resulting WFA would be unambiguous and equivalent to A.
Removing transitions to achieve this objective without changing the function
represented by the WFA turns out not to be straightforward. The following two
lemmas (Lemmas 1 and 2) and their proofs are the critical technical ingredients
helping us define the transition removal and prove its correctness. This first
lemma provides a useful tool for the proof of the second.

Lemma 1. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned
by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Let (q, s) and
(q′, s′) be two distinct states of A′ both admitting a transition labeled with a ∈ Σ
to the same state (q0, s0) (or both final states), and such that (q, s) ∈ δ(I ′, x) and
(q′, s′) ∈ δ(I ′, x) for some x ∈ Σ∗. Then, if (q, s) ∈ δ(I ′, x′) for some x′ �= x,
x′ ∈ Σ∗, there exists a state (q′, s′′) ∈ δ(I ′, x′) with (q′, s′′) �= (q, s) and such
that (q′, s′′) admits a transition labeled with a to (q0, s0) (resp. is a final state).

Proof. Figure 2 illustrates the proof of the lemma. First, note that since s =
s(q, x) and s′ = s(q′, x), q = q′ implies (q, s) = (q′, s′). By contraposition, since
(q, s) �= (q′, s′), we must have q �= q′. Since both q0 ∈ δ(q, a) and q0 ∈ δ(q′, a)
in A (or both q and q′ are final states), q and q′ share a common future, which
implies q R q′. Since (q′, s′) is reachable by x in A′ from I ′, q′ must be reachable
by x from I in A. This, combined with q R q′, implies that q′ must be in set(s).
Since (q, s) ∈ δ(I ′, x′), all states in set(s) must be reachable by x′ from I in A,
in particular q′. Thus, by definition of the R-pre-disambiguation construction,
A′ admits a state (q′, s(q′, x′)), which is distinct from (q, s) since q �= q′. If (q, s)
admits a transition labeled with a to (q0, s0), then we have s0 = s(q0, x′a).
If (q′, s′) also admits a transition labeled with a to (q0, s0), then q′ admits a
transition labeled with a to q0 and by definition of the R-pre-disambiguation
construction, (q′, s(q′, x′)) must admit a transition by a to (q0, s(q0, x′a)) =
(q0, s0). Finally, in the case where both (q, s) and (q′, s′) are final states, then q′

is final in A and thus (q′, s(q′, x′)) is a final state in A′. ��

272 M. Mohri and M.D. Riley

Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned by the R-
pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). For any state (q0, s0)
of A′ and label a ∈ Σ, let L(q0, s0, a) = ((q1, s1), . . . , (qn, sn)), n ≥ 1, be the list
of all distinct states of A′ admitting a transition labeled with a ∈ Σ to (q0, s0),
with q1 ≤ · · · ≤ qn. We define the processing of the list L(q0, s0, a) as follows: the
states of the list are processed in order; for each state (qj , sj), j ≥ 2, this consists
of removing its a-transition to (q0, s0) if and only if there exists a co-reachable
state (qi, si) with 1 ≤ i < j whose a-transition to (q0, s0) has not been removed.3

Note that, by definition, the a-transition to (q0, s0) of the first state (q1, s1) is
kept.

We define in a similar way the processing of the list F =
((q1, s1), . . . , (qn, sn)), n ≥ 1, of all distinct final states of A′, with an arbi-
trary order q1 ≤ · · · ≤ qn as follows: the states of the list are processed in order;
for each state (qj , sj), j ≥ 1, this consists of making it non-final if and only
if there exists a co-reachable state (qi, si) with i < j whose finality has been
maintained. By definition, the finality of state (q1, s1) is maintained.

Lemma 2. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the finite automaton returned
by the R-pre-disambiguation of the WFA A = (Σ,Q, I, F,E, λ, ρ). Let (q0, s0) be
a state of A′ and a ∈ Σ, then, the automaton A′′ resulting from processing the
list L(q0, s0, a) accepts the same strings as A′. Similarly, the processing of the
list of final states F of A′ does not affect the set of strings accepted by A′.

Assume that A is R-pre-disambiguable. Then, this helps us define a disam-
biguation algorithm Disambiguation for A defined as follows:

1. construct A′, the result of the R-pre-disambiguation of A;
2. for any state (q0, s0) of A′ and label a ∈ Σ, process L(q0, s0, a); process the

list of final states F .

Theorem 1. Let A = (Σ,Q, I, F,E, λ, ρ) be a R-pre-disambiguable weighted
automaton. Then, algorithm Disambiguation run on input A generates an
unambiguous WFA B equivalent to A.

Proof. Let A′ = (Σ,Q′, I ′, F ′, E′, λ′, ρ′) be the WFA returned by R-pre-disambi-
guation run with input A. By Lemma 2, the set of strings accepted after process-
ing the lists L(q0, s0, a) and F remains the same4. Furthermore, in view of the
Propositions 1, 2 and 3, the weight of the unique path labeled with an accepted
string x in B ⊗-multiplied by its final weight is exactly A(x). Finally, by defini-
tion of the processing operations, the resulting WFA is unambiguous, thus B is
an unambiguous WFA equivalent to A. ��

3 This condition can in fact be relaxed: it suffices that there exists a co-reachable state
(qi, si) with i < j since it can be shown that in that case, there exists necessarily
such a state with a a-transition to (q0, s0).

4 The lemma is stated as processing one list, but from the proof it is clear it applies
to multiple lists.

On the Disambiguation of Weighted Automata 273

Fig. 3. Example illustrating the full disambiguation algorithm applied to a non-acyclic
WFA. (a) WFA A over the tropical semiring. (b) WFA A′ obtained from A by applica-
tion of pre-disambiguation. (c) WFA A′′ result of our disambiguation algorithm applied
to A. A′′ is obtained from A′ by removal of the transition from state 2 labeled with
c/2 and trimming. (d) WFA obtained from A by application of determinization.

Differing numberings of the states can lead to different orderings in each list
and thus to different transition or finality removals, thereby resulting in different
weighted automata, with potentially different sizes after trimming. Nevertheless,
all such resulting weighted automata are equivalent.

Figure 3 gives an example illustrating the pre-disambiguation and transition-
removal stages of our disambiguation algorithm and also shows the result of
determinization.

5 Sufficient Conditions

The definition of siblings and that of twins property for weighted automata were
previously given by [16] (see also [3]). We will use a weaker (sufficient) condition
for R-pre-disambiguability.

Definition 1. Two states p and q of a WFA A are said to be siblings if there
exist two strings x, y ∈ Σ∗ such that both p and q can be reached from an initial
state by paths labeled with x and there are cycles at both p and q labeled with y.

Two sibling states p and q are said to be twins if for any such x and y,
W (p, y, p) = W (q, y, q). A is said to have the twins property when any two
siblings are twins. It is said to have the R-weak twins property when any two

274 M. Mohri and M.D. Riley

0

1
a/1

2

a/1

b/1

3/0c/1

b/2

4
c/1

c/1

5/0

c/2

c/1 d/2
(0, 0)

(1, 0)
a/1

(2, 0)

a/1

b/1

(3, 0)c/1

b/2

(4, 0)c/1

(3, 0)
(5, 1)

/0
c/1

(5, 1)
(3, 0)

/0

c/1

c/1

(5, 0)/0d/2

c/1

)b()a(

Fig. 4. (a) Weighted automaton A that cannot be determinized by the weighted deter-
minization algorithm of [16]. (b) A has the weak twins property and can be disam-
biguated by Disambiguationas shown by the figure. One of the two states in dashed
style is not made final by the algorithm. The head state for each of these states, is the
state appearing in the first pair listed.

siblings that are in R relation are twins. When A admits the R∗-weak twins
property, we will also say in short that it admits the weak twins property.

The results given in the remainder of this section are presented in the specific
case of the tropical semiring. To show the following theorem we partly use a proof
technique from [16] for showing that the twins property is a sufficient condition
for weighted determinizability.

Theorem 2. Let A be a WFA over the tropical semiring that admits the R-weak
twins property. Then, A is R-pre-disambiguable.

The theorem implies in particular that if A has the twins property then A
is R-pre-disambiguable. In particular, any acyclic weighted automaton is R-pre-
disambiguable.

A WFA A is said to be determinizable when the weighted determinization
algorithm of [16] terminates with input A (see also [3]). In that case, the output
of the algorithm is a deterministic automaton equivalent to A.

Theorem 3. Let A be a determinizable WFA over the tropical semiring, then
A is R-pre-disambiguable.

By the results of [11], this also implies that any polynomially ambiguous
WFA that has the clones property is R-pre-disambiguable and can be disam-
biguated using Disambiguation. There are however weighted automata that
are R-pre-disambiguable and thus can be disambiguated using Disambigua-
tion but that cannot be determinized using the algorithm of [16]. Figure 4 gives
an example of such a WFA. To see that the WFA A of Fig. 4 cannot be deter-
minized, consider instead B obtained from A by removing the transition from
state 3 to 5. B is unambiguous and does not admit the twins property (cycles at
states 1 and 2 have distinct weights), thus it is not determinizable by theorem
12 of [16]. Weighted determinization creates infinitely many subsets of the form

On the Disambiguation of Weighted Automata 275

{(1, 0), (2, n)}, n ∈ N, for paths from the initial state labeled with abn. Precisely
the same subets are created when applying determinization to A.

On the tropical semiring, define −A as the WFA in which each non-infinite
weight in A is replaced by its negation. The following result can be proven in a
way that is similar to the proof of the analogous result for the twins property
given by [3].5

Theorem 4. Let A be a trim polynomially ambiguous WFA over the tropical
semiring. Then, A has the weak twins property iff the weight of any cycle in
B = Trim(A ∩ (−A)) is 0.

This leads to an algorithm for testing the weak twins property for polyno-
mially ambiguous automata in time O(|Q|2 + |E|2). It was recently shown that
the twins property is a decidable property that is PSPACE-complete for WFAs
over the tropical semiring [12]. It would be interesting to determine if the weak
twins property we just introduced is also decidable.

6 Experiments

In order to experiment with weighted disambiguation, we implemented the algo-
rithm (using the R∗ relation) in the OpenFst C++ library [4]. For comparison, an
implementation of weighted determinization is also available in that library [16].

For a first test corpus, we generated 500 speech lattices drawn from a random-
ized, anonymized utterance sampling of voice searches on the Google Android
platform [21]. Each lattice is a weighted acyclic automaton over spoken words
that contains many weighted paths. Each path represents a hypothesis of what
was uttered along with the automatic speech recognizer’s (ASR) estimate of the
probability of that path. Such lattices are useful for passing compact hypothesis
sets to subsequent processing without commitment to, say, just one solution at
the current stage.

The size of a lattice is determined by a probability threshold with respect to
the most likely estimated path in the lattice; hypotheses within the threshold
are retained in the lattice. Using |A| = |Q| + |E| to measure automata size, the
mean size for these lattices was 2384 and the standard deviation was 3241.

The ASR lattices are typically non-deterministic and ambiguous due to both
the models and the decoding strategies used. Determinization can be applied
to reduce redundant computation in subsequent stages; disambiguation can be
applied to determine the combined probability estimate of a string that may be
distributed among several otherwise identically-labels paths.

Disambiguation has a mean expansion of 1.23 and a standard deviation of
0.59. Determinization has a mean expansion of 1.31 and a standard deviation of
1.35. For this data, disambiguation has a slightly less mean expansion compared
to determinization but a very substantially less standard deviation.

5 In [3], the authors use instead the terminology of cycle-unambiguous weighted
automata, which coincides with that of polynomially ambiguous weighted automata.

276 M. Mohri and M.D. Riley

Fig. 5. Unambiguous automaton over the alphabet {a, b, c} accepting the language
L = {(a + b)k−1b(a + b)n−kcak:1 ≤ k ≤ n}. For any k ≥ 0, Uk serves as a shorthand
for (a + b)k.

As a second test corpus, we used 100 automata that are the compact rep-
resentation of hypothesized Chinese-to-English translations from the DARPA
Gale task [9]. These automata may contain cycles due to details of the partic-
ular translation system, which provides an interesting contrast to the acyclic
speech case. Some fail to determinize within the allotted memory (1 GB) and
about two-thirds of those also fail to disambiguate, possible when cycles are
present.

Considering only those which are both determinizable and disambiguable,
disambiguation has a mean expansion of 4.53 and a standard deviation of 6.0.
Determinization has a mean expansion of 54.5 and a standard deviation of 90.5.
For this data, disambiguation has a much smaller mean and standard deviation
of expansion compared to determinization.

As a final example, Fig. 5 shows an acyclic unambiguous (unweighted)
automaton whose size is in O(n2). No equivalent deterministic automaton can
have less than 2n states since such an automaton must have a distinct state for
each of the prefixes of the strings {(a + b)k−1b(a + b)n−k:1 ≤ k ≤ n}, which are
prefixes of L. Thus, while our disambiguation algorithm leaves the automaton
of Fig. 5 unchanged, determinization would result in this case in an automaton
with more than 2n states.

7 Conclusion

We presented an algorithm for the disambiguation of WFAs. The algorithm
applies to a family of WFAs defined over the tropical semiring verifying a suffi-
cient condition that we described, which includes all acyclic and, more generally,
all determinizable WFAs. Our experiments showed the favorable properties of
this algorithm in applications related to speech recognition and machine trans-
lation. The algorithm is likely to admit a large number of applications in areas
such as natural language processing, speech processing, computational biology,
and many other areas where WFAs are commonly used. The study of the theo-
retical properties we initiated raises a number of novel questions which include
the following: the decidability of the weak twins property for arbitrary WFAs,
the characterization of WFAs that admit an equivalent unambiguous WFA, the
characterization of WFAs to which our algorithm can apply and perhaps an

On the Disambiguation of Weighted Automata 277

extension of our algorithm to a wider domain, and finally the proof and study
of these questions for other semirings than the tropical semiring.

Acknowledgments. We thank Cyril Allauzen for discussions about the topic of this
research. This work was partly funded by the NSF award IIS-1117591.

References

1. Albert, J., Kari, J.: Digital image compression. In: Handbook of Weighted
Automata. Springer, Heidelberg (2009)

2. Allauzen, C., Benson, E., Chelba, C., Riley, M., Schalkwyk, J.: Voice query refine-
ment. In: Interspeech (2012)

3. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Automata, Lang. Comb. 8(2), 117–144 (2003)

4. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst Library
(2007). http://www.openfst.org

5. Breuel, T.M.: The OCRopus open source OCR system. In: Proceedings of
IS&T/SPIE 20th Annual Symposium (2008)

6. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Camb. Univ. Press, Cambridge
(1998)

7. Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York
(1974)

8. Eppstein, D.: Finding the k shortest paths. SIAM J. Comp. 28(2), 652–673 (1998)
9. Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., Riley, M.: Hierarchical

phrase-based translation representations. In: Proceedings of EMNLP, pp. 1373–
1383 (2011)

10. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Comput.
Linguist. 20(3), 331–378 (1994)

11. Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for
polynomially ambiguous min-plus-automata. ITA 42(3), 553–581 (2008)

12. Kirsten, D.: Decidability, undecidability, and pspace-completeness of the twins
property in the tropical semiring. Theor. Comput. Sci. 420, 56–63 (2012)

13. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In: STACS, pp. 589–600 (2009)

14. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

15. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Germany (1986)

16. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

17. Mohri, M.: On the disambiguation of finite automata and functional transducers.
Int. J. Found. Comput. Sci. 24(6), 847–862 (2013)

18. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-
state transducers. In: Handbook on Speech Proc. and Speech Comm. Springer,
Heidelberg (2008)

19. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem. In
Interspeech (2002)

http://www.openfst.org

278 M. Mohri and M.D. Riley

20. Mohri, M., Riley, M.D.: On the disambiguation of weighted automata. ArXiv
1405.0500, May 2014

21. Schalkwyk, J., Beeferman, D., Beaufays, F., Byrne, B., Chelba, C., Cohen, M.,
Kamvar, M., Strope, B.: Your word is my command: Google search by voice: A
case study. In: Advances in Speech Recognition, pp. 61–90. Springer, Heidelberg
(2010)

22. Schmidt, E.M.: Succinctness of description of context-free, regular and unambigu-
ous languages. Ph.D. thesis, Dept. of Comp. Sci., University of Aarhus (1978)

Checking Whether an Automaton
Is Monotonic Is NP-complete

Marek Szyku�la(B)

Institute of Computer Science, University of Wroc�law,
Joliot-Curie 15, 50-383 Wroc�law, Poland

msz@cs.uni.wroc.pl

Abstract. An automaton is monotonic if its states can be arranged in
a linear order that is preserved by the action of every letter. We prove
that the problem of deciding whether a given automaton is monotonic is
NP-complete. The same result is obtained for oriented automata, whose
states can be arranged in a cyclic order. Moreover, both problems remain
hard under the restriction to binary input alphabets.

Keywords: Automaton · Monotonic · Oriented · Complexity · Np-
complete · Linear order · Cyclic order · Partial order · Order-preserving ·
Transition semigroup

1 Introduction

We deal with complete deterministic finite (semi)automata A = 〈Q,Σ, δ〉, where
Q is the set of states, Σ is the input alphabet, and δ : Q×Σ → Q is the transition
function defining the action of Σ on Q. This action naturally extends to the
action of δ(q, w) words for any q ∈ Q, w ∈ Σ∗.

Monotonic automata are those that admit a linear order of the states. The
same qualification is applied to transformation semigroups. Formally, an automa-
ton A is monotonic if there exists a linear order ≤ of Q such that if p ≤ q then
δ(p, a) ≤ δ(q, a), for all p, q ∈ Q and a ∈ Σ. We call such an order ≤ an under-
lying linear order of A. It is clear that if the actions of all letters preserve the
order, then also the actions of all words do so.

The class of monotonic automata is a subclass of aperiodic ones [21], which
recognize precisely star-free languages, and form one of the fundamental classes
in the theory of formal languages. An automaton is aperiodic if no transfor-
mation of any word has a nontrivial cycle. Checking whether an automaton is
aperiodic is known to be PSPACE-complete [8]. On the other hand, checking
whether an automaton is nonpermutational, where no transformation acts like
a permutation of a nontrivial subset of Q, can be easily done in O(|Σ| × |Q|2)
time [14]. Such results may be useful in improving algorithms recognizing star-
free languages to work better in particular cases. The complexity problems for

M. Szyku�la—Supported in part by Polish NCN grant DEC-2013/09/N/ST6/01194.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 279–291, 2015.
DOI: 10.1007/978-3-319-22360-5 23

280 M. Szyku�la

various subclasses of regular languages are widely studied (see [6] for regogniz-
ing convex, and [15] for locally testable languages, and [13] for a survey). The
languages of monotonic automata do not have bounded level in the dot-depth
hierarchy of star-free languages [4].

Monotonic semigroups were studied by Gomes and Howie [11] for their maxi-
mum size (they use the term order-preserving). These semigroups play an impor-
tant role as building-blocks in the constructions of the largest aperiodic semigroups
known so far ([5,7]).

Monotonic automata have been considered, in particular, in connection with
the problems of synchronizing automata. An automaton is said to be synchro-
nizing if there is a word w such that |Qw| = 1; such a word is called a reset
word. The Černý conjecture, which is considered one of the most longstanding
open problem in automata theory, states that every synchronizing automaton
has a reset word of length at most (|Q| − 1)2. Ananichev and Volkov [1] have
proved that a synchronizing monotonic automaton has a reset word of length at
most |Q| − 1. They have also proved the same bound for a larger class of gen-
eralized monotonic automata [2]. Volkov have introduced a still larger class of
weakly monotonic automata [28], which contains all aperiodic ones, and proved
that strongly connected automata in this class possess a synchronizing word of
length |Q|(|Q| + 1)/6. Finally, Grech and Kisielewicz have generalized this to
the class of automata respecting intervals of a directed graph, and they have
proved that the Černý conjecture holds for each automaton in this class, pro-
vided it holds for smaller quotient automata. These results could be also useful
in computational verification of the conjecture for automata of limited size, pro-
vided we could efficiently recognize and skip from computations automata that
belong to a class for which the conjecture has been proven [17,18]. Therefore it
is important to consider computational complexity of the related problems.

The term monotonic was also used by Eppstein [9] for automata whose states
can be arranged in a cyclic order that is preserved by the actions of the letters.
Following [1] we call such automata oriented automata. They form a broader class,
containing monotonic automata, which has certain applications in robotics (part-
orienters, see Natarajan [22]). Eppstein has established the tight upper bound for
the length of the shortest reset words of an oriented automaton (|Q| − 1)2, and
provided an algorithm working in O(|Σ| × |Q|2) time for finding such a word.
However, this algorithm requires the cyclic order to be given.

Note that the problem of finding the shortest reset word is hard in general
[23] (also for approximation [3,10] and some restricted classes [20]). But due to
possible practical applications, there are many exponential algorithms that can
deal with fairly large automata and polynomial heuristics (e.g. [16,19,24,25,27]).
Also, hardness does not exclude a possibility of using a polynomial algorithm
for some easily tractable classes (cf. slowly synchronizing [16]).

Here we prove that the problem of checking whether a given automaton is
monotonic is NP-complete, even under restriction to binary alphabets (Sect. 2).
We also obtain that checking whether an automaton is oriented is NP-complete
under the same conditions (Sect. 3). It follows that, unfortunately, they are
hardly recognizable, and it is hard to find a preserved linear (cyclic) order of

Checking Whether an Automaton Is Monotonic Is NP-complete 281

a monotonic (oriented) automaton. In particular, we cannot efficiently apply the
polynomial Eppstein algorithm [9] to compute a shortest reset word in the cases
oriented automata, without knowing a cyclic order. On the other hand, checking
whether an automaton admits a nontrivial partial order is easy (Sect. 4).

2 Monotonic Automata

The problem MONOTONIC can be formulated as follows: given an automaton
A, decide if A is monotonic. This is the unrestricted version, where the alphabet
can be arbitrary large. For a given k ≥ 1, the restricted problem to k-letter
alphabets of the input automaton we call MONOTONICk.

We show that MONOTONIC is NP-complete, as well as MONOTONICk

for any k ≥ 2. The problem is easy if the alphabet is unary.

Proposition 1. A unary automaton is monotonic if and only if the transforma-
tion of the single letter does not contain a cycle of length ≥ 2. MONOTONIC1

can be solved in O(|Q|) time, and a monotonic order can be found in O(|Q|)
time if it exists.

Proof. We simply check if the transformation of the single letter of A contains a
cycle of length ≥ 2, that is δ(q1, a) = q2, δ(q2, a) = q3, . . . , δ(q�, a) = q1 for some
distinct states q1, . . . , q�. If so, then from q1 < q2 (or dually q1 > q2) it follows
that q2 < q3, . . . , q� < q1—a contradiction with that < is an order. Thus the
automaton is not monotonic.

Otherwise we have an acyclic digraph of the transformation, and we can fix
some order on the connected components (sometimes called clusters). Each such
a component form a rooted tree. We can perform an inverse depth-first search
(DFS) starting from the root. Then p ≤ q if p is in a component before that
of q, or they are in the same component but p was visited later than q during
the inverse DFS in this component. So if p ≤ q from the same component,
then δ(p, a) was visited later than δ(q, a), or δ(p, a) = δ(q, a). Thus the order is
preserved. These operations can be done in O(|Q|) time. �	
Clearly, MONOTONIC is in NP, as we can guess an underlying linear order and
check if the action of each letter preserves it (this can be done in O(|Σ|×|Q|) time).

Proposition 2. MONOTONIC is in NP.

2.1 MONOTONIC Is NP-complete

We reduce MONOTONE-NAE-3SAT to MONOTONIC.
NAE-3SAT (NOT-ALL-EQUAL) is a variant of 3SAT, where a clause

is satisfied if it contains at least one true and one false literal. The variant
MONOTONE-NAE-3SAT additionally restricts instances so that every lit-
eral is a positive occurrence of a variable (negations are not allowed). From
Schaefer’s Theorem [26], we have that NAE-3SAT is NP-complete as well as
MONOTONE-NAE-3SAT.

282 M. Szyku�la

As an instance I of MONOTONE-NAE-3SAT we get a set of n boolean
variables V = {v1, . . . , vn}, and a set of m clauses C = {C1, . . . , Cm}, each one
with exactly 3 literals. A literal is a positive occurrence of a variable vi. The
problem is to decide if there exists a satisfying assignment σ : V → {0, 1} for I,
that is, for each clause Ci ∈ C, Ci contains at least one true literal (vj ∈ Ci with
σ(vj) = 1) and at least one false literal (vj ∈ Ci with σ(vj) = 0). We can assume
that each variable occurs at least one time, and no variable appears more than
once in a clause. Note that the complement of a satisfying assignment for I is
also satisfying.

Definition of AI . We construct AI = 〈Q,Σ, δ〉 as follows. For each variable
vi ∈ V we create a pair of states pi, qi. We also add a unique state s (sink).

For a j-th clause Cj = (vf , vg, vh) (we fix the order of variables in clauses), we
create the clause gadget as follows. We add three states xj , yj , zj and three letters
aj , bj , cj , which correspond to the three occurrences of the variables vf , vg, vh,
respectively. The action of these letters is defined as follows:

• δ(pf , aj) = xj and δ(qf , aj) = yj ;
• δ(pg, bj) = yj and δ(qg, bj) = zj ;
• δ(ph, cj) = zj and δ(qh, cj) = xj ;
• δ(pi, aj) = pi and δ(qi, aj) = qi, for i < f ;
• δ(pi, bj) = pi and δ(qi, bj) = qi, for i < g;
• δ(pi, cj) = pi and δ(qi, cj) = qi, for i < h;
• δ(u, e) = s, for the other states u and each e ∈ {aj , bj , cj}.

So the actions of letters aj , bj , cj send every state from Q \ {pi, qi} either to
itself or to s. The clause gadget is presented in Fig. 1.

xj

yj zj

pf

qf

pg qg

ph

qhaj

aj

bj bj

cj

cj

Fig. 1. The clause gadget for a j-th clause (vf , vg, vh)

In Fig. 2 the construction of AI is presented, with the action of a1 as an
example, in the case when variable v2 is the first literal in clause C1.

In summary, we have |Q| = 2n + 3m + 1 states and |Σ| = 3m letters.

Checking Whether an Automaton Is Monotonic Is NP-complete 283

p1

q1

. . .

. . .

pf

qf

. . .

. . .

pn

qn

x1

y1

z1

. . .

. . .

. . .

xj

yj

zj

. . .

. . .

. . .

xk

yk

zk

s

Fig. 2. The action of the letter aj , where vf is the first variable in Cj

Correctness of the Reduction

Theorem 1. AI is monotonic if and only if I has a satisfying assignment.

Proof. Suppose that AI is monotonic with the underlying linear order ≤. We
define an assignment σ for I: σ(vi) = 0 if pi < qi, and σ(vi) = 1 otherwise. We
show that σ is satisfying for I.

Assume for the contrary that there is a clause Cj = (vf , vg, vh), where all the
three variables evaluate to 0. This means that pf < qf , pg < qg, and ph < qh.
From that ≤ is preserved, we have:

• δ(pf , aj) = xj < yj = δ(qf , aj);
• δ(pg, bj) = yj < zj = δ(qg, bj);
• δ(ph, cj) = zj < xj = δ(qh, cj).

Thus xj < yj < zj < xj , a contradiction with that ≤ is an order. The argument
holds in the dual way in the case with all the three variables evaluated to 1.
Hence, σ must be satisfying.

Now, suppose that there is a satisfying assignment σ. We define a linear order
≤ and show that it is preserved. To do so, we define τ : Q → N, which for states
q ∈ Q assigns pairwise distinct natural numbers that will determine ≤.

First, for any 1 ≤ i ≤ n let:

• τ(pi) = 2i − 1 and τ(qi) = 2i if σ(vi) = 0;
• τ(pi) = 2i and τ(qi) = 2i − 1 if σ(vi) = 1.

For u ∈ {xj , yj , zj} we define τ(u) ∈ {2n + 3j − 2, 2n + 3j − 1, 2n + 3j},
depending on the assignment of the variables in Cj = (vf , vg, vh). Assignment σ
uniquely determines the relation between xj , yj , zj in an underlying linear order.
Each of the six satisfying combinations of σ(vf), σ(vg), σ(vh) defines an acyclic
relation between xj , yj , zj , which is enforced by the action of the letters aj , bj , cj .
For instance, if σ(vf) = 0, then pf < qf , which implies δ(pf , aj) = xj < yj =
δ(qf , aj). If σ(vg) = 0 then yj < zj . Then it must be σ(vh) = 1 and zj > xj .

284 M. Szyku�la

If σ(vg) = 1 then yj > zj , and we have either zj < xj < yj if σ(vh) = 0, or
xj < zj < yj otherwise. This is dual for σ(vf) = 1.

Finally we define τ(s) = 3n + 3m + 1. Hence, in our order ≤, first there are
states pi, qi sorted increasingly by i. The order between pi and qi depends on
the assignment. Next, there are states from clause gadgets xj , yj , zj sorted by j.
The exact order on particular xj , yj , zj depends on the assignment as described
above. Finally s is the last state with u ≤ s for any u ∈ Q. The order is shown
in Fig. 2 (from left to right).

Now we show that ≤ is indeed an underlying linear order. Consider a letter
aj for any 1 ≤ j ≤ k, and let Cj = (vf , vg, vh). We show that for every pair of
distinct states the order ≤ is preserved.

• For the pair pf , qf , if pf < qf then also δ(pf , aj) = xj < yj = δ(qf , aj), and if
pf > qf then δ(pf , aj) = xj > yj = δ(qi, aj), since we have chosen the order
of xj , yj , zj to be consistent with σ, as described above.

• For pf (or qf) and u ∈ Q\{pf , qf}, if pf < u then δ(pf , aj) = xj < δ(u, aj) = s.
If u < pf then δ(u, aj) = u < xj = δ(pi, a

j
i). The same holds for qf mapped

to yj .
• For distinct states u, v ∈ Q \ {pf , qf} with u < v, if δ(u, aj) = u, then either

δ(v, aj) = v > u or δ(v, aj) = s > u. If δ(u, aj) = s then also δ(v, aj) = s.

The same arguments work for letters bj and cj . It follows that any letter preserves
≤, so ≤ is an underlying linear order of AI . �	
We can state our main

Theorem 2. The problem of checking whether a given automaton is monotonic
is NP-complete.

2.2 Reduction from MONOTONIC to MONOTONIC2

Let A = 〈Q,Σ, δ〉 be an automaton with Q = {v1, . . . , vn} and Σ = {a1, . . . , ak}
with k ≥ 3. We construct a binary automaton BA = 〈QB, {a, b}, δB〉 such that
A is monotonic if and only if BA is monotonic.

QB consists of kn states qi
j for 1 ≤ i ≤ k, 1 ≤ j ≤ n, and a unique state s

(sink). Now we define the action of a. For each state qi
j with 1 ≤ i ≤ k − 1 and

1 ≤ j ≤ n, we define δB(qi
j , a) = δB(qi+1

j). For each qk
j we define δB(qk

j , a) = s.
Finally δ(s, a) = s. The action of b in each set {qi

1, . . . , q
i
n} corresponds to the

action of the i-th letter of Σ on Q: For 1 ≤ i ≤ k and 1 ≤ j ≤ n, if δ(vj , ai) = vg

then we define δB(qi
j , b) = qi

g. Finally δ(s, b) = s. The construction of BA is
shown in Fig. 3.

Theorem 3. BA is monotonic if and only if A is monotonic.

Proof. Suppose that A is monotonic with the underlying linear order ≤A. We
define the linear order ≤B on the states of BA. For 1 ≤ i, f ≤ k and 1 ≤ j, g ≤ n,
let qi

j ≤B qf
g if and only if i < f , or i = f and vj <A vg. Also, let qi

j <B s

Checking Whether an Automaton Is Monotonic Is NP-complete 285

q11

q12

. . .

q1n

q21

q22

. . .

q2n

. . .

. . .

. . .

. . .

qk1

qk2

. . .

qkn

s

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Fig. 3. The action of a in BA

for each i, j. The order ≤B is linear, since ≤A is linear. We show that ≤B is an
underlying linear order of BA.

Clearly, the actions of both letters preserve ≤B on states qi
j and s. Consider

a pair qi
j , q

f
g with qi

j ≤B qf
g . Then i ≤ f by definition. Consider the following

cases:

• If i < f , then δB(qi
j , a) = δB(qi+1

j , a) <B δB(qf
g , a), since δB(qf

g , a) is either
qf+1
g or s. Also, for some x, y, δB(qi

j , b) = qi
x <B qf

y = δB(qf
g), since i < f .

• If i = f , then vj <A vg by definition. If i = k then δB(qi
j , a) = δB(qi

g, a) = s;
otherwise δB(qi

j , a) = qi+1
j ≤B qi+1

g = δB(qi
g, a) from vj <A vg. Also, vj <A vg

implies δ(vj , ai) = vx ≤A vy = δ(vg, ai) for some x, y. So δB(qi
j , b) = qi

x ≤B
qi
y = δB(qi

g, b).

Thus ≤B is an underlying linear order of BA.
Now, suppose that BA is monotonic with an underlying linear order ≤B.

We define ≤A on the states of A: for 1 ≤ j, g ≤ n, vj <A vg if and only if
q1j <B q1g . Observe that for any j
= g, q1j <B q1g implies qi

j <B qi
g for each

2 ≤ i ≤ k due to the action of a. Consider two states vj , vg with vj < vg

and the i-th letter ai. By definition q1j <B q1g , and so qi
j <B qi

g. This implies
δB(qi

j , b) = qi
x ≤B qi

y = δB(qi
g, b) for some x, y, and it follows that q1x ≤B q1y.

Thus δ(vj , ai) = vx ≤A vy = δ(vg, ai), and the order ≤A is an underlying linear
order of A. �	
As a corollary we obtain that MONOTONIC2 is also NP-complete. We can
reduce an instance of MONOTONE-NAE-3SAT with n variables and m
clauses to a binary automaton with 3m(2n + 3m + 1) + 1 states.

Corollary 1. The problem of checking whether a given binary automaton A is
monotonic is NP-complete.

286 M. Szyku�la

v1

v2

v3

v4

v5

v6

v7

v8

v9

Fig. 4. The cyclic order (v1, v2, . . . , v9) (clockwise) of a unary automaton

3 Oriented Automata

The following definition of oriented automata is due to Eppstein [9] (who used
the term monotonic). An automaton is oriented if there is a cyclic order of the
states preserved by the action of the letters. Formally, there is a cyclic order
q1, . . . , qn such that for every a ∈ Σ, the sequence δ(q1, a), . . . , δ(qn, a), after
removal of possibly adjacent duplicate states (the last is also adjacent with the
first), is a subsequence of a cyclic permutation qi, . . . , qn, q1, . . . , qi−1 of the cyclic
order, for some 1 ≤ i ≤ n. Note that if q1, . . . , qn is a cyclic order then also
qi, . . . , qn, q1, . . . , qi−1 is for every 1 ≤ i ≤ n. Figure 4 presents a cyclic order of
some unary oriented automaton. Every monotonic automaton is oriented, since
if a linear order is preserved, then it is also preserved as a cyclic order. But the
converse does not necessarily hold.

Let ORIENTED be the problem of deciding if a given automaton is oriented.
As before, we consider ORIENTEDk with the restriction to k-letter alphabets.
Again, ORIENTED1 can be easily solved in O(n) time due to the following

Proposition 3. A unary automaton is oriented if and only if all cycles in the
transformation of the single letter have the same length. There is an algorithm
solving the problem ORIENTED1 and finding a cyclic order if it exists, and
working in O(|Q|) time.

Proof. Let a be the single letter of the alphabet and n = |Q|. Suppose that
(c1, . . . , ck) and (d1, . . . , d�) are two cycles in the transformation of a, with 1 ≤
k < �. Then, the transformation of ak has the cycle (d1, dk, . . . , d(m−1)k mod �)
of length m, for some 2 ≤ m ≤ �. On the other hand it has the fixed point c1.
Let q1, . . . , qn−1, qn = c1 be a cyclic order of the states of the automaton. Since
the transformation of ak has a cycle of length ≥ 2 (which does not involve c1),

Checking Whether an Automaton Is Monotonic Is NP-complete 287

there are two states qi, qj with i < j < n, δ(qi, a
k) = qf , and δ(qj , a

k) = qg, such
that f > g. It follows that δ(qi, c1) = qf , δ(qj , c1) = qg, δ(c1, ak) = c1 violates the
cyclic order q1, . . . , qg, . . . , qf , . . . , qn = c1, since (qf , qg, c1) is not a subsequence
of any cyclic permutation of the cyclic order—a contradiction.

Assume now that we have m cycles of the same length k:

(c11, . . . , c
1
k), (c21, . . . , c

2
k), · · · , (cm

1 , . . . , cm
k),

so cj
i is the i-th state of the j-th cycle, and δ(cj

i) = cj
i mod k+1. We can com-

pute a cyclic order by breadth-first search (BFS) in the inverse digraph of the
transformation of a. The constructed cyclic order will have the form

Q1
1, c

1
1, . . . , Q

m
1 , cm

1 , · · · , Q1
k, c1k, . . . , Qm

k , cm
k ,

where Qj
i are sequences of states that do not lie on a cycle. Let �(q) (level) be

the smallest integer i such that δ(q, ai) is a state on a cycle. To simplify the
notation, let i ⊕ j be (i − 1 + j) mod k + 1.

The algorithm starts from the list (c11, . . . , c
m
1 , · · · , c1k, . . . , cm

k) of all cycle
states; they are considered as visited in the 0-th step in this order. In the i-th
step (i ≥ 1), the algorithm processes the list of visited states from the (i − 1)-th
step in the order in which they were visited. For each state p from the list, the
algorithm computes all states q such that δ(q, a) = p and q is not a cycle state;
so it visits precisely all the states q with �(q) = i. For every visited state q, it
appends q to the end of the new list of visited states in the current step. For
a visited q, we have the corresponding cycle state cf

g = δ(q, a�(q)), from which
q was reached (possibly indirectly). The algorithm appends q to the beginning
of Qf

j with j = (nk + g − 1 − i) ⊕ 1; for example, if g = 1, then for i =
1, 2, 3, . . . , k − 1, k, k + 1, . . . we have j = k, k − 1, . . . , 2, 1, k, . . ., respectively.

To illustrate the algorithm, consider the automaton from Fig. 4. We start
from the list (c1, c2, c3) = (v2, v6, v9) of the one cycle, and empty Q1, Q2, Q3. In
the first step, from state v2 we reach v8, from v6 we do not reach any state, and
from v9 we reach v5. Hence, Q3 = (v8) as v2 = c1, and Q2 = (v5) as v9 = c3.
Then, in the second step, from v8 we reach v4 and v3, and from v5 we do not
reach any state; hence, we append v4 and v3 to the beginning of Q2, obtaining
Q2 = (v3, v4, v5). In the third step, from v4 we reach v1, so Q1 becomes (v1).
Finally, in the last fourth step, from v1 we reach v7, obtaining Q3 = (v7, v8).
The final order is so

Q1, c1, Q2, c2, Q3, c3 = v1, v2, v3, v4, v5, v6, v7, v8, v9.

We can show that the resulted cyclic order is indeed preserved by the action
of a. Observe that δ(cj

i , a) = cj
i⊕1, and if q ∈ Qj

i then δ(q, a) ∈ Qj
i⊕1 or δ(q, a) =

cj
i⊕1. Hence, the sequence Qj

i , c
j
i is mapped into Qj

i⊕1, c
j
i⊕1, and it remains to

show that for each Qj
i = (p1, . . . , ps), the sequence δ(p1, a), . . . , δ(ps, a), δ(cj

i , a)
is a subsequence of Qj

i⊕1, c
j
i⊕1. Consider < as the order in these sequences, and

let u, v be two states from Qj
i ∪ {cj

i} with u < v. If v = cj
i then we have

288 M. Szyku�la

δ(u, a) ≤ δ(v, a) = cj
i⊕1, a. If u = pf , v = pg then u < v means that the algorithm

appended u after v, so u was visited after v. They were directly reached from
δ(u, a) and δ(v, a), respectively. If δ(v, a) = cj

i then δ(u, a) ≤ δ(v, a) clearly holds,
and if δ(u, a) = cj

i then also δ(v, a) = cj
i . Otherwise, δ(u, a), δ(v, a) ∈ Qj

i⊕1 and it
follows that δ(u, a) was visited after δ(v, a) by the algorithm, so δ(u, a) > δ(v, a).
As usual breadth-first search, this procedure works in O(|Q|) time. �	
To show hardness, we reduce the NP-complete problems MONOTONIC and
MONOTONICk (with k ≥ 2) to ORIENTED and ORIENTEDk, respec-
tively.

Proposition 4. Let A+1 be an automaton obtained from A = 〈Q,Σ, δ〉 by
adding a unique state s with δ(s, a) = s for every a ∈ Σ. Then the following
are equivalent:

• A is monotonic;
• A+1 is monotonic;
• A+1 is oriented.

Proof. Clearly A+1 is monotonic if and only if A is monotonic, and if A+1 is
monotonic then it is also oriented. It remains to show that if A+1 is oriented
then A+1 is monotonic.

Assume that A+1 is not monotonic but is oriented, and let q1, . . . , qn, s be a
preserved cyclic order of the states of A. Since no state is mapped to s, except s,
and s is mapped to itself under the action of every letter, q1, . . . , qn is a preserved
cyclic order of the states of A. Since A is not monotonic, q1, . . . , qn is not an
underlying linear order of A. So there are two states qi, qj ∈ Q and a ∈ Σ, with
i < j, δ(qi, a) = qf , and δ(qj , a) = qg, such that f > g. It follows that δ(qi, a) =
qf , δ(qj , a) = qg, δ(s, a) = s violates the cyclic order q1, . . . , qg, . . . , qf , . . . , qn, s
of the states of A, since (qf , qg, s) is not a subsequence of any cyclic permutation
of the cyclic order. Thus A+1 cannot be oriented and not monotonic. �	
Corollary 2. The problem of checking whether a given automaton is oriented
is NP-complete, even under the restriction to binary alphabets.

4 Discussion

We have proved that checking whether an automaton is monotonic or oriented is
NP-complete. However, several related problems remain open. The complexity
of determining whether an automaton is generalized monotonic [2], and weakly
monotonic [28] is not known. The class of generalized monotonic automata
strictly contains the class of monotonic ones, and the class of weakly monotonic
automata strictly contains the class of generalized monotonic ones. Also, it
remains open what is the complexity of checking whether an automaton respects
intervals of a directed graph [12]; this is the widest of the classes containing the
classes of generalized and weakly monotonic automata.

Checking Whether an Automaton Is Monotonic Is NP-complete 289

It can be observed that if the alphabet is unary then the classes of generalized
and weakly monotonic automata are precisely the class of monotonic automata.
However, it is not difficult to check that automata AI from the construction
from Subsect. 2.1 are generalized, and so weakly monotonic, regardless of the
instance I; thus our proof of NP-completeness of testing monotonicity does not
work for these wider classes.

On the other hand, for the class of automata preserving a nontrivial partial
order, the membership problem can be easily solved in polynomial time. An
automaton preserves a partial order ≤, if p ≤ q implies δ(p, a) ≤ δ(q, a) for
every p, q ∈ Q, a ∈ Σ. A partial order is nontrivial if at least one pair of
states is comparable. In contrast to monotonic automata, not all pairs of states
must be comparable, but at least one. This class contains monotonic, generalized
monotonic, and weakly monotonic automata, but not oriented, and is a subclass
of automata respecting intervals of a directed graph. From [12] it follows that if
the Černý conjecture is true for all automata outside this class (admitting only
trivial partial orders), then it is true for all automata.

Proposition 5. Checking whether an automaton preserves a nontrivial partial
order and finding it if exists can be done in O(|Σ| × |Q|6) time and O(|Q|2)
working space.

Proof. For each pair of distinct states p, q ∈ Q, we try to construct a partial order
< with p < q. So at the beginning of constructing, all states are incomparable
and we order p < q. When ordering a pair x, y ∈ Q with x < y, we take all
the consequences δ(x, a) < δ(y, a) for every a ∈ Σ with δ(x, a)
= δ(y, a). Of
course, this also involves that x′ < y′ for every x′ < δ(x, a) and y′ > δ(y, a).
For each newly ordered pair we repeat the procedure of taking consequences.
If a contradiction is found, that is, if we need to order x < y but they have
been already ordered so that x > y, the construction fails and we start from
another pair p, q. If for some pair p, q all the consequences are taken without a
contradiction, we have found a preserved partial order with p < q.

Clearly, if the algorithm finds a partial order, then x ≤ y implies δ(x, a) ≤
δ(y, a) as it has taken all the consequences, so the order is preserved. Conversely,
if there exists a preserved nontrivial partial order ≤, then p < q for some pair of
states, and the consequences cannot lead to a contradiction. Hence, the algorithm
will find the minimal partial order with p < q that is preserved and is contained
in ≤.

Concerning the complexity, we need to process O(|Q|2) pairs. The con-
structed partial order can be simply stored as a directed acyclic graph. For every
p, q, we start from the empty digraph with one edge (p, q). For each ordered pair
{x, y} we need to take or check O(|Σ|) consequences, and we order O(|Q|2) pairs.
Taking a consequence and updating the constructed partial order takes O(|Q|2)
time, due to the possibly quadratic size of {z ∈ Q | z < x} × {z ∈ Q | z > y}.
These together yield in O(|Σ| × |Q|6) time, and the need of storing digraphs
yields in O(|Q|2) space. �	

290 M. Szyku�la

The algorithm from Proposition 5 may be modified for finding an underlying
linear order of the given automaton. To do so, after finding a partial order that
is not yet linear, we need to order another pair that is not yet comparable, say
{x, y}. Here we must consider both possibilities x < y and x > y to check if one of
them finally leads to a linear order. Hence, this results in super-exponential worst
case running time. However, based on some of our experimental evidence, this
algorithm is practically much more efficient than the naive checking of all linear
orderings: in most cases of not monotonic automata we can find a contradiction
quickly, without the need to enumerate directly all orderings.

References

1. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. In: Ésik, Z.,
Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg
(2003)

2. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata.
Theor. Comput. Sci. 330(1), 3–13 (2005)

3. Berlinkov, M.V.: Approximating the minimum length of synchronizing words is
hard. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 37–47.
Springer, Heidelberg (2010)

4. Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite.
J. Comput. Sys. Sci. 16(1), 37–55 (1978)

5. Brzozowski, J., Li, B., Liu, D.: Syntactic complexities of six classes of star-free
languages. J. Automata Lang. Comb. 17(2–4), 83–105 (2012)

6. Brzozowski, J., Shallit, J., Xu, Z.: Decision problems for convex languages. Inform.
Comput. 209(3), 353–367 (2011)

7. Brzozowski, J., Szyku�la, M.: Large aperiodic semigroups. In: Holzer, M., Kutrib,
M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 124–135. Springer, Heidelberg (2014)

8. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theor.
Comput. Sci. 88(1), 99–116 (1991)

9. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

10. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In:
Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162.
Springer, Heidelberg (2011)

11. Gomes, G., Howie, J.: On the ranks of certain semigroups of order-preserving
transformations. Semigroup Forum 45, 272–282 (1992)

12. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals
of a directed graph. Discrete Math. Theor. Comput. Sci. 15(3), 61–72 (2013)

13. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inf. Comput. 209(3), 456–470 (2011)

14. Iván, S., Nagy-György, J.: On nonpermutational transformation semigroups with
an application to syntactic complexity (2014). http://arxiv.org/abs/1402.7289

15. Kim, S.M., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the
local testability problem of deterministic finite automata. IEEE Trans. Comput.
40(10), 1087–1093 (1991)

16. Kisielewicz, A., Kowalski, J., Szyku�la, M.: Computing the shortest reset words of
synchronizing automata. J. Comb. Optim. 29(1), 88–124 (2015)

http://arxiv.org/abs/1402.7289

Checking Whether an Automaton Is Monotonic Is NP-complete 291

17. Kisielewicz, A., Szyku�la, M.: Generating small automata and the Černý conjecture.
In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer,
Heidelberg (2013)

18. Kisielewicz, A., Szyku�la, M.: Synchronizing Automata with Large Reset Lengths
(2014). http://arxiv.org/abs/1404.3311

19. Kud�lacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Sys. Appl. 39(14), 11746–11757 (2012)

20. Martyugin, P.V.: Complexity of problems concerning reset words for some partial
cases of automata. Acta Cybernetica 19, 517–536 (2009)

21. McNaughton, R., Papert, S.A.: Counter-Free Automata, volume 65 of MIT
Research Monographs. The MIT Press, Cambridge (1971)

22. Natarajan, B.K.: An algorithmic approach to the automated design of parts orien-
ters. In: 27th Annual Symposium on Foundations of Computer Science, pp. 132–142
(1986)

23. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010)

24. Rho, J.-K., Somenzi, F., Pixley, C.: Minimum length synchronizing sequences of
finite state machine. In: Proceedings of the 30th ACM/IEEE Design Automation
Conference (DAC1993), pp. 463–468 (1993)

25. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Advanced Lectures. LNCS, vol.
3472, pp. 5–33. Springer, Heidelberg (2005)

26. Schaefer, T.J.: The Complexity of Satisfiability Problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing (STOC), pp. 216–226.
ACM (1978)

27. Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random
automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D.
(eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)

28. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theor.
Comput. Sci. 410(37), 3513–3519 (2009)

http://arxiv.org/abs/1404.3311

On the Semantics of Regular Expression
Parsing in the Wild

Martin Berglund1 and Brink van der Merwe2(B)

1 Ume̊a University, Ume̊a, Sweden
mbe@cs.umu.se

2 University of Stellenbosch, Stellenbosch, South Africa
abvdm@cs.sun.ac.za

Abstract. We introduce prioritized transducers to formalize capturing
groups in regular expression matching in a way that permits straight-
forward modelling of and comparison with real-world regular expression
matching library behaviors. The broader questions of parsing seman-
tics and performance are discussed, and also the complexity of deciding
equivalence of regular expressions with capturing groups.

1 Introduction

Few formal language research results have greater practical reach than regular
expressions. As a result the practical implementations [5] have in many ways
surged ahead of research, with new features which require underpinnings differ-
ent from the original theory. Practical implementations perform matching as a
form of parsing, using capturing groups, outputting what subexpression matched
which substring. A popular implementation strategy, still very common [2], is
a worst-case EXPTIME depth-first search for such parses. A more formal app-
roach suggests using finite transducers, outputting annotations on the string to
signify the nature of the match [9]. This is complicated by the matching seman-
tics dictating a single output string for each input string, using rules to determine
a “highest priority” match among the potentially exponentially many possible
ones (for contrast e.g. [3] discusses non-deterministic capturing groups).

The pNFA (prioritized non-deterministic finite automaton) model of [2] (sim-
ilar results were also published mere weeks later in [7]) provides the right level of
abstraction to model the matching time behavior of regular expression match-
ers. However, for matchers based on an input directed depth first search, it does
not provide an understanding of why practical regular expression matchers often
(indirectly) use the pNFA model, and in particular, there is no notion of when
one pNFA is equivalent to another. By adding output to pNFA to obtain pTr
(prioritized transducers), we obtain a better understanding of the usefulness of
the prioritized automata/transducer model, and we also have the notion of equiv-
alence of pTr, which is defined in terms of equality of the underlying functions
represented by the pTr. A regular expression to transducer construction is done
in [9], but it is remarked that translating regular expression matching directly
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 292–304, 2015.
DOI: 10.1007/978-3-319-22360-5 24

On the Semantics of Regular Expression Parsing in the Wild 293

into transducers is highly non-trivial. In Sect. 3, where we discuss conversion
from regular expression to pTr, it will become clear that pTr are a perfect fit
when converting regular expressions to transducers. We also discuss a linear-
time matching algorithm for pTr (i.e. determining the image of input strings),
generalizing e.g. [6] which operates directly on expressions, and mirroring work
by Russ Cox [4] which is to a great extent not formally published.

The outline of the paper is as follows. In the next section, we define priori-
tized automata and transducers. After that, we show how to adapt the standard
Thompson construction, from [10], for converting regular expressions to non-
deterministic finite automata, to the more general setting of converting regular
expressions to prioritized transducers. This is followed by a normal form for pri-
oritized transducers, so called flattened prioritized transducers, that simplifies
the following discussions on deciding equivalence of and parsing with pTr.

2 Definitions

Let dom(f) and range(f) denote the domain and range of a function f respec-
tively. When unambiguous let a function f with dom(f) = S generalize to S∗

and P(S) element-wise. By P(S), we denote the power set of a set S. The car-
dinality of a (finite) set S is denoted by |S|. We denote by N the set of natural
numbers, i.e. the set {1, 2, 3, . . .}. The empty string is denoted ε. An alphabet Σ
is a finite set of symbols with ε /∈ Σ. We denote Σ ∪{ε} by Σε. For any string w
let πS(w) be the maximal subsequence of w containing only symbols from S (e.g.
π{a,b}(abcdab) = abab). For sequences s = (z1,1, . . . , z1,n) . . . (zm,1, . . . , zm,n) ∈
(Z1 × . . . × Zn)∗, we denote by σi(s) the subsequence of tuples obtained from s
by deleting duplicates of tuples in s and only keeping the first occurrence of each
tuple, where equality of tuples are based only on the value of the ith component
of a tuple (e.g. σ1((1, a)(2, a)(1, b)(3, b)(2, c)) = (1, a)(2, a)(3, b)). For each k > 1,
we denote by Bk the alphabet of k types of brackets, which will be represented
as {[1,]1, [2,]2, . . . [k,]k}. The Dyck language Dk over the alphabet Bk is the set
of strings representing well balanced sequences of brackets over Bk.

As usual, a regular expression over an alphabet Σ (where ε, ∅ /∈ Σ) is either
an element of Σ ∪{ε, ∅} or an expression of one of the forms (E |E′), (E ·E′), or
(E∗), where E and E′ are regular expressions. Some parentheses can be dropped
with the rule that ∗ (Kleene closure) takes precedence over · (concatenation),
which takes precedence over | (union). Further, outermost parentheses can be
dropped, and E ·E′ can be written as EE′. The language of a regular expression
E, denoted L(E), is obtained by evaluating E as usual, where ∅ stands for
the empty language and a ∈ Σ ∪ {ε} for {a}. The size of E, denoted |E|, is
the number of symbols appearing in E. A capturing group is any parenthesized
subexpression, e.g. (E). The matching procedure will also produce information
about which substring(s) are matched by each capturing group. Thus brackets in
regular expressions are used both for precedence and capturing, and in Java1 a
1 Java is a registered trademark of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

294 M. Berglund and B. van der Merwe

non-capturing subexpression E is indicated by (?:E). The precise matching and
capturing semantics follow from Sect. 3. When we say that E matches a string w
we mean that all of w is read by E, as opposed to vwv′ ∈ L(E), for v, v′ ∈ Σ∗,
as some implementations do. This substring matching can be simulated in our
model with the expression .∗?(R).∗, where E∗? and E∗ denotes respectively the
lazy and greedy (both to be defined in Sect. 3) Kleene closure of E.

For later constructions we require a few different kinds of automata and trans-
ducers. First (non-)deterministic finite automata (and runs for them), followed
by the prioritized finite automata from [2], which are used to model the regular
expression matching behaviors exhibited by typical software implementations.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F) where: (i) Q is a finite set of states; (ii) Σ is the input alpha-
bet; (iii) q0 ∈ Q is the initial state; (iv) δ : Q × Σε → P(Q) is the transition
function; and (v) F ⊆ Q is the set of final states.

A is ε-free if δ(q, ε) = ∅ for all q. A is deterministic if it is ε-free and
|δ(q, α)| ≤ 1 for all q and α. The state size of A is denoted by |A|Q, and defined
to be |Q|.
Definition 2. For a NFA A = (Q,Σ, q0, δ, F) and w ∈ Σ∗, a run for w is a
string r = s0α1s1 · · · sn−1αnsn ∈ (Q ∪ Σ)∗, with s0 = q0, si ∈ Q and αi ∈ Σε

such that si+1 ∈ δ(si, αi+1) for 0 ≤ i < n, and πΣ(r) = w. A run is accepting if
sn ∈ F . The language accepted by A, denoted by L(A), is the subset {πΣ(r) | r
is an accepting run in A} of Σ∗.

Now for the prioritized NFA variant, as defined in [2].

Definition 3. A prioritized non-deterministic finite automaton (pNFA) is a
tuple A = (Q1, Q2, Σ, q0, δ1, δ2, F), where if Q := Q1 ∪ Q2, we have: (i) Q1 and
Q2 are disjoint finite sets of states; (ii) Σ is the input alphabet; (iii) q0 ∈ Q is
the initial state; (iv) δ1 : Q1 × Σ → Q is the deterministic, but not necessarily
total, transition function; (v) δ2 : Q2 → Q∗ is the non-deterministic prioritized
transition function; and (vi) F ⊆ Q1 are the final states.

Remark 4. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F) the corresponding finite
automaton nfa(A) is given by nfa(A) = (Q1 ∪ Q2, Σ, q0, δ̄, F), where δ̄(q, α) =
{δ1(q, α)} if q ∈ Q1, and δ̄(q, ε) = {q1, . . . , qn} if q ∈ Q2 with δ2(q) = q1 . . . qn.

Next we define runs for pNFA. An accepting run for a string w in a pNFA A,
is defined to be the highest priority accepting run of w in nfa(A), not repeating
the same ε-transition in a subsequence of consecutive ε-transitions. Prioritized
NFA are thus on a conceptual level closely related to unambiguous NFA, since
in an pNFA there is at most one accepting run for an input string. The repeated
ε-transition restriction is made to ensure that we consider only finitely many
of the runs in nfa(A) for a given input string w, when determining the highest
priority path (referred to as a run in A) for w, and also to ensure that regular
expression matchers based on pNFA/pTr do not end up in an infinite loop during
(attempted) matching.

On the Semantics of Regular Expression Parsing in the Wild 295

Definition 5. For a pNFA A = (Q1, Q2, Σ, q0, δ1, δ2, F), a path of w ∈ Σ∗

in A, is a run s0α1s1 · · · sn−1αnsn of w in nfa(A), such that if αi = αi+1 =
. . . = αj−1 = αj = ε, with i ≤ j, then (sk−1, sk) = (sl−1, sl), with i ≤ k, l ≤
j, implies k = l – i.e. a path is not allowed to repeat the same transition in
a sequence of ε-transitions. For two paths p = s0α1s1 · · · sn−1αnsn and p′ =
s′
0α

′
1s

′
1 · · · s′

m−1α
′
ms′

m we say that p is of higher priority than p′, p > p′, if
p �= p′, πΣ(p) = πΣ(p′) and either p′ is a proper prefix of p, or if j is the first
index such that sj �= s′

j, then δ2(sj−1) = · · · sj · · · s′
j · · · . An accepting run for

A on w is the highest-priority path p = s0α1s1 · · · αnsn such that πΣ(p) = w
and sn ∈ F . The language accepted by A, denoted by L(A), is the subset of Σ∗

defined by {πΣ(r) | r is an accepting run in A} . Note that L(A) = L(nfa(A)).

Our definition of pNFA, compared to the one in [2], is slightly less general, since
we assume that F ⊆ Q1, instead of F ⊆ Q. This restriction was introduced to
simplify our definitions, and the more general pNFA can be converted to pNFA
with F ⊆ Q1, by introducing one new state qF ∈ Q1 and δ2 transitions from
the old accepting states q ∈ Q2 to qF , where we give the new δ2 transitions for
example the highest priority of all δ2 transitions at q. In [7], an ordered NFA,
very similar to our definition of pNFA, is defined, with a single set of states Q
and a transition function δ : Q×Σ → Q∗. We can simulate this with our pNFA,
by decomposing q 	→ δ(q, a) into q 	→δ1(,a) qa 	→δ2() δ(q, a), where q ∈ Q1

and qa ∈ Q2. Note that we introduced pNFA (and runs in pNFA in Definition 5)
mainly as an aid in defining runs in prioritized transducers in Definition 9 below.

Example 6. In Fig. 1(a), a Java based pNFA A for the regular expression (a∗)∗,
constructed as described in [2], is given. The accepting run for the string an, in A,
is q0q1(q2aq1)nq0q3. Since there are for the input strings an, n ≥ 0, exponentially
many paths in A, a regular expression matcher using an input directed depth
first search (without memoization as in Perl), such as the Java implementation,
will take exponential time to attempt to match the strings anx, for n ≥ 0.

(a)

q0 q1 q2

q3

a

(b)

q0 q1 q2 q3

q4

q5

q6

q7

[1

]1

a

Fig. 1. (a) Java based pNFA for the regular expression (a∗)∗, i.e., the pNFA A =
({q2, q3}, {q0, q1}, {a}, q0, {(q2, a, q1)}, {[q0, (q1, q3)], [q1, (q2, q0)]}, q3). (b) Java based
pTr with Σ1 = {a} and Σ2 = {[1,]1}, for (a∗)∗. Lower priority transitions are indicated
by dashed edges.

Recall that a transducer T (see for example [11], Definition 3.1) is a tuple
(Q,Σ1, Σ2, q0, δ, F), where Q is a finite set of states, Σ1 and Σ2 the input and
output alphabets respectively, δ ⊆ Q×Σε

1 ×Σ∗
2 ×Q the set of transitions, q0 the

initial state and F the set of final states. Accepting runs are defined as for NFA,

296 M. Berglund and B. van der Merwe

but in a run when moving from state q to q′ while reading input x and using
the transition (q, x, y, q′), the string y is also produced as output. The state size
of T , denote by |T |Q, is the number of states in T , the transition size, |T |δ, is
the sum of (1 + |y|) over all transitions (q, x, y, q′), and the size of T , denoted
by |T |, is |T |Q + |T |δ. A transducer T defines a relation R(T) ⊆ Σ∗

1 × Σ∗
2 , con-

taining all pairs (v, w) for which there is an accepting run reading input v and
producing w as output while moving from the first to last state in the accept-
ing run (i.e. v and w are the concatenation of the input symbols and output
strings respectively, of all the transitions taken in the accepting run). As usual,
we denote by dom(T) the set {v ∈ Σ∗

1 | (v, w) ∈ R(T)}, and by range(T) the set
{w ∈ Σ∗

2 | (v, w) ∈ R(T)}. For functional transducers (see [8], Chapter 5), the
relation R(T) is a function, and we write T (v) = w if (v, w) ∈ R(T). Prioritized
string transducers, defined next, also define relations, in this case contained in
Σ∗

1 × (Σ1 ∪ Σ2)∗, which are in fact functions, and the notation R(T), dom(T),
range(T), and T (v) = w if (v, w) ∈ R(T), will thus also be used.

Definition 7. A prioritized non-deterministic finite transducer (pTr) is a tuple
T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F), where if Q := Q1∪Q2, we have: (i)Q1 and Q2

are disjoint finite sets of states; (ii) Σ1 is the input alphabet; (iii)Σ2, disjoint
from Σ1, is the group identifier or output alphabet; (iv)q0 ∈ Q is the initial state;
(v)δ1 : Q1 × Σ1 → Q is the deterministic, but not necessarily total, transition
function; (vi)δ2 : Q2 → (Σ∗

2 ×Q)∗ is the non-deterministic prioritized transition
and output function; and (vii)F ⊆ Q1 are the final states.

The state size of T is |T |Q := |Q1| + |Q2|, the δ1 transitions size |T |δ1 :=∑
q∈Q1,a∈Σ1

|δ1(q, a)| where |δ1(q, a)| = 1 if δ1(q, a) is defined and 0 otherwise,
the δ2 transitions size |T |δ2 :=

∑
q∈Q2

|δ2(q)| where |δ2(q)| equals
∑

i(1 + |wi|)
if δ2(q) = (w1, q1) . . . (wn, qn) (and |δ2(q)| = 0 if δ2(q) = ε), the transitions size
|T |δ := |T |δ1 | + |T |δ2 , and finally, the size of T is |T | := |T |Q + |T |δ.
Remark 8. It is only in Sect. 3, when we construct pTr from regular expressions,
where the assumption Σ1 ∩ Σ2 = ∅ is required.

Going forward, when discussing a pTr T without being specific on the tuple, we
assume that T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F).

Next we define the semantics of pTr, which make them define partial functions
from Σ∗

1 to (Σ1 ∪ Σ2)∗. The pTr are viewed as devices which consume strings
in their domain, which is a subset of Σ∗

1 , to produce output by decorating the
input string with symbols from Σ2. For a pTr T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F),
pnfa(T) is the pNFA (Q1, Q2, Σ1, q0, δ1, δ

′
2, F) obtained from T with δ′

2(q) =
q1 . . . qn if δ2(q) = (w1, q1) . . . (wn, qn) for some wi ∈ Σ∗

2 . For a pTr T , the runs
in pnfa(T) determine the decorated output string, in (Σ1 ∪Σ2)∗, produced from
a given input string in Σ∗

1 . When applying the function δ1 on (q, α), T produces
α as output, where when using δ2 on q with δ2(q) = (w1, q1) . . . (wn, qn), one of
the wi’s is produced as output.

Definition 9. Let T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) be a pTr, and let Q denote
Q1 ∪ Q2 and Σ the set Σ1 ∪ Σ2. An accepting run for v ∈ Σ∗

1 in T is a string

On the Semantics of Regular Expression Parsing in the Wild 297

r = s0α1s1 · · · sn−1αnsn ∈ (Q ∪ Σε)∗, si ∈ Q and αi ∈ (Σ1 ∪ Σ2)∗, such that
πQ∪Σ1(r) is an accepting run of v in pnfa(T), and if si ∈ Q2, with i < n, then
the sequence of tuples defined by δ2(si) contains (αi+1, si+1) (and not necessarily
at position (i + 1) of δ2(si)). The pTr T defines a partial function from Σ∗

1 to
Σ∗ by T (v) = w, if there is an accepting run r for v in T with πΣ(r) = w.

Remark 10. Note that for pTr we may assume that δ2(q) = (w1, q1) . . . (wn, qn)
implies that the states q1, . . . , qn are pairwise distinct, since if qi = qj with i < j,
then if the remainder of the input is not accepted from qi, it will also not be
accepted from qj , and thus (wj , qj) may be removed from δ2(q).

Example 11. In Fig. 1(b), a pTr T for the regular expressions (a∗)∗, constructed
by the procedure described in the next section, is given. In this case, only the
substrings matched by the subexpression a∗, are captured, and the captured
substrings are enclosed by the pair of brackets in B1 = {[1,]1}. Also, dom(T) is
a∗, and T (an) = [1an]1 for n ≥ 0. It should be pointed out that the Java regular
expression matcher in fact only prohibits duplicates of the ε transitions q1 → q2
and q3 → q4 (in Fig. 1(b)) in a sequence of ε transitions, and thus in the Java case
we have T (an) = [1an]1[1]1 for n ≥ 1. In general, the Java matcher only prohibits
duplicates of the ε transitions f1 → q1 in the lazy and greedy Kleene closure in
Figs. 2(c) and (d) in the next section. For the regular expressions R = (a)(a∗)
and R′ = (a∗)(a), we have L(R) = L(R′), but the corresponding pTr T and
T ′ are not equivalent, since T (an) = [1a]1[2an−1]2 �= [1an−1]1[2a]2 = T ′(an), for
n = 1, or n ≥ 3. Note that the same subexpression in a regular expression may
capture more than one substring, for example, if T ′′ is a pTr for (a∗| b)∗, then
T ′′(apbqar) = [1ap]1[1b]1 . . . [1b]1[1ar]1, for p, q, r > 0.

3 Converting Regular Expressions into pTr

Next we give a Java based construction to turn a regular expression E into an
equivalent pTr J̄p(E) (refer to Fig. 2 for reference). If for a pTr T , we denote
by u(T) the string transducer obtained by ignoring the priorities in T , then
for w ∈ L(E), u(J̄p(E))(w) gives all possible ways in which E can match w
with capturing information indicated, while J̄p(E)(w) selects the highest priority

(a)

[F1] F2]]

(b)

[

F1

F2

]

(c)

f0 f1 q1

f0

[

F1

]
(d)

f0 f1 q1

f0

[

F1

]

Fig. 2. Java based regular expression to pTr constructions for (a) (F1F2) (b) (F1 |F2)
(c) (F ∗

1) and (d) (F ∗?
1). Lower priority transitions are indicated by dashed edges. The

pair of brackets [,] are used to indicate the substring or substrings captured by each
of F1F2, F1 |F2, F ∗

1 , and F ∗?
1 respectively.

298 M. Berglund and B. van der Merwe

match from u(J̄p(E)(w)). Due to space limitations, it is not possible to describe
the matching semantics of regular expression with capturing groups in terms of
a non-deterministic parser or other means, and show that the constructed pTr
produces equivalent output, but we hope that it will at least be intuitively clear
that this can be done. See also [2] for a thorough argument for the pNFA case,
which may be extended to pTr with some effort. As indicated in Example 11,
we opt to deviate from the Java matching semantics (and follow RE2 matching
semantics [4]) in cases where the Java matcher follows a non-empty capture of a
subexpression F (with F being part of a larger subexpression F ∗), by an empty
capture with F . Our construction is similar to the Java based regular expression
to pNFA constructions given in [2] (and the classical Thompson construction
[10]), with the additional detail of adding a group opening symbol on the tran-
sition leaving the initial state, and a group closing symbol on the transition
incoming to the final state, for the pTr constructed for each subexpression of E.
Where required, a new initial state and/or final state is added to the construc-
tions from [2], so that there is only a single δ2 transition from the initial state,
and similarly, only a single incoming δ2 transition to the final state of a pTr.

We denote the set of subexpressions of E by SUB(E). Assume F1, . . . , Fk

are the subexpressions in SUB(E), with the order obtained from a preorder tra-
versal of the parse tree of E, or equivalently, ordered from left to right, based
on the starting position of each subexpression in the overall regular expres-
sion. Note if the same subexpression appears more than once in E, we regard
these occurrences as distinct elements in SUB(E). Also, let t : SUB(E) → N

be defined by t(Fi) = i. To simplify our exposition of the regular expression
to pTr construction procedure, we assume that matches by all subexpressions
are captured, and that the pair of brackets [i,]i ∈ Bk indicates matches by the
i-th subexpression. The more general case of placing brackets only around the
substrings matched by subexpressions that is marked as capturing subexpres-
sions, is obtained by replacing some of the pairs of brackets by ε (in our pTr
constructions) and renumbering the remaining brackets appropriately.

For a regular expression E we define a prioritized transducer T := J̄p(E)
such that dom(T) = L(E), and range(T) is contained in the shuffle of dom(T)
and the Dyck language Dk. In fact, taking some F which is a subexpression of
E, and v ∈ dom(T), if T (v) contains the substring [t(F)w]t(F), where [t(F) and
]t(F) are matching brackets, then πΣ1(w) ∈ L(F) (recall that πΣ1(w) is obtained
from w by deleting all brackets). Also, all output symbols from Σ1 in T (v), are
between matching brackets.

The classical Thompson construction converts the parse tree T of a regular
expression E into an NFA, which we denote by Th(E), by doing a postorder
traversal on T . An NFA is constructed for each subtree T ′ of T , equivalent to
the regular expression represented by T ′. In [2] it was shown how to modify
this construction to obtain a Java based pNFA denoted by Jp(E), instead of
the NFA Th(E), from E. Here we take it one step further, and modify the
construction of Jp(E) to return a pTr, denoted by J̄p(E), from E. Just as in
the case of the constructions for Th(E) and Jp(E), we define J̄p(E) recursively

On the Semantics of Regular Expression Parsing in the Wild 299

on the parse tree for E. For each subexpression F of E, J̄p(F) has a single
initial state with no incoming transitions and a single outgoing δ2 transition,
and a single final state with a single incoming δ2 transition and no outgoing
transitions. The constructions of J̄p(∅), J̄p(ε), J̄p(a), and J̄p(F1 ·F2), given that
J̄p(F1) and J̄p(F2) are already constructed, are defined as for Th(E), splitting
the state set into Q1 and Q2 in the obvious way. We also place the symbol
[t(F)∈ Σ2 on the δ2 transition leaving the initial state of J̄p(F) and]t(F) on the
transition incoming to the final state of J̄p(F) (adding a new initial and/or final
state if required).

When we construct J̄p(F1|F2) from J̄p(F1) and J̄p(F2), and J̄p(F ∗
1) from

J̄p(F1), the priorities of newly introduced δ2-transitions require attention. We
also consider the lazy Kleene closure F ∗?

1 . In the constructions (i) and (ii) below,
we assume J̄p(Fi) (i ∈ {1, 2}) has initial state qi and the final state fi. Fur-
thermore, δ2 denotes the prioritized transition function in the newly constructed
pTr J̄p(F). All non-final states in J̄p(F) that are in J̄p(Fi) inherit their out-
going transitions from J̄p(Fi). (i) If F = F1|F2 then J̄p(F) is constructed by
introducing new initial and final states q0 ∈ Q2 and f0 ∈ Q1, an additional new
state q′ ∈ Q2, merging the states f1, f2 ∈ Q1 into a state denoted by f ∈ Q2,
and defining δ2(q0) = ([t(F), q

′), δ2(q′) = (ε, q1)(ε, q2) and δ2(f) = (]t(F), f0). (ii)
If F = F ∗

1 then we add new initial and final states q0 ∈ Q2 and f0 to Q1, and
change f1 from being a state in Q1, to be in Q2. We define δ2(q0) = ([t(F), f1)
and δ2(f1) = (ε, q1)(]t(F), f0). The case F = F ∗?

1 is the same, except that
δ2(f1) = (]t(F), f0)(ε, q1). Thus J̄p(F ∗) tries F as often as possible whereas
J̄p(F ∗?) does the opposite.

Example 12. In Fig. 3(a), a pTr T for the regular expression (ε | b)∗(b∗) is given.
This regular expression has a subexpression F ∗, such that F matches ε. This is
the so called problematic case in regular expressions matching, briefly discussed
in [9]. In this example, the subexpression (ε | b)∗ will first match only ε, and
will attempt to match more of the input string only if an overall match can not
be achieved. Thus for the given pTr T , we have that T (b) = [1]1[2b]2. Regular
expression matchers, such as RE2 [4], uses different matching semantics in the
problematic case. The problematic case is also present in regular expressions with
no explicit ε symbols, such as (a∗ | b)∗(b∗). In Fig. 3(c) a pTr is given again for
(ε | b)∗(b∗), but this time obtained by using the modified greedy Kleene closure
construction in Fig. 3(b). Note that T ′(b) = [1b]1[2]2, corresponding to how RE2
only matches non-empty words with F in a subexpression F ∗.

4 A Normal Form for Prioritized Transducers

To simplify later constructions, we introduce flattening for pTr in this section.
The main simplification obtained by flattening is that δ2 loops such as q1 → q2 →
q3 → q1 in Example 11 are removed, making it unnecessary to require that there
are no repetition of the same δ2 transition in a subsequence of transitions without
δ1 transitions, as in Definition 5. These δ2 loops are found in pTr obtained from
problematic regular expressions, as discussed in Examples 11 and 12.

300 M. Berglund and B. van der Merwe

(a)

[1 J̄p(ε)

J̄p(b)

]1

[2

J̄p(b)

]2

(b)

F

(c)

J̄p((ε|b))

J̄p((b∗))

Fig. 3. (a) Java based pTr for (ε| b)∗(b∗), (b) alternative F ∗ construction, and (c) pTr
for (ε| b)∗(b∗) using alternative F ∗ construction. Lower priority transitions are indicated
by dashed edges.

Definition 13. A pTr T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) is flattened if δ2(q) ∈
(Σ∗

2 × Q1)∗ for all q ∈ Q2.

We denote by rT (Q2) the subset of Q2 defined by Q2 ∩ ({q0} ∪ {δ(q, α) | q ∈
Q1, α ∈ Σ1}), i.e. all Q2 states reachable from a Q1 state in one transition, and
also the state q0 if it is in Q2. We denote the flattened pTr constructed in the
proof of the next theorem, and equivalent to T , by flat(T).

Theorem 14. flat(T) can be constructed in time O(|Q1||Σ1| + |rT (Q2)||T |δ2).
Proof. We start with some preliminaries required to define flat(T). For a pTr T ,
a sequence p1 · · · pn is a δ2-path if δ2(pi) = · · · (wi+1, pi+1) · · · for all 1 ≤ i < n
and (pi, pi+1) = (pj , pj+1) only if i = j. The string w2 · · · wn, obtained from
the definition of a δ2-path, is denoted by oT (p1 · · · pn). Let PT be the set of δ2-
paths. For p1 · · · pn, p′

1 · · · p′
m ∈ PT having p1 = p′

1, we define p1 · · · pn > p′
1 · · · p′

m

if and only if either (i) p′
1 · · · p′

m is a proper prefix of p1 · · · pn, or (ii) the least i
such that pi �= p′

i is such that δ2(pi−1) = · · · pi · · · p′
i · · · . Note this is similar to

the definition of priorities of paths in Definition 5, but in this case restricted to
δ2-paths, and allowing any starting state in Q2. Let Pq,q′ = max{p1 · · · pn ∈ PT |
p1 = q, pn = q′}, that is, the highest priority δ2-path from q to q′ (if it exists).

We let flat(T) be (Q1, rT (Q2), Σ1, Σ2, q0, δ1, δ
′
2, F), where δ′

2 is defined as
follows. For q ∈ Q′

2, let Pq,q1 < · · · < Pq,qn be all highest-priority δ2-paths
which end in a state qi ∈ Q1, ordered according to priority. We define δ′

2(q) :=
(oT (Pq,q1), q1) · · · (oT (Pq,qn), qn). To compute δ′

2, with duplicate tuples removed
as in Remark 10, in time O(|rT (Q2)||T |δ2), repeat the following procedure for
each q ∈ rT (Q2): Determine the highest priority δ2-path starting at q and ending
in a state in Q1. If the ending state is q1 ∈ Q1 (determining Pq,q1), remove q1
and all transitions going to or coming from q1 from T , to obtain the pTr Tq1 .
Repeat the procedure in Tq1 , successively finding all Pq,q′ with q fixed, in order.
Note that computing rT (Q2) takes O(|Q1||Σ1|) time. �

Example 15. For the pTr T corresponding to the regular expression (a∗)∗ and
discussed in Example 11, the pTr flat(T) is given in Fig. 4. Note that the flat-
tening procedure removed the δ2 loop q1 → q2 → q3 → q1 from T . As noted in

On the Semantics of Regular Expression Parsing in the Wild 301

Example 11, Java matchers do not keep track of all δ2 transitions in order to
avoid repeated δ2 transitions. When using this Java way of determining which
paths are legal and which not, the flattened procedure in the proof of Theorem 14
can be modified, and when applied to T , we obtain an almost identical flattened
pTr, but with output]1 [1]1 on the transition from q5 to q7.

q0 q6 q5

q7

[1

a

[1]1]1

Fig. 4. flat(T) for T in Fig. 1(b). The dashed edges are lower priority.

Remark 16. Note that |flat(T)|Q ≤ |T |Q, |flat(T)|δ1 = |T |δ1 and |flat(T)|δ2 ≤
|T |δ2 , i.e. flat(T) is of the same size or smaller than T .

Remark 17. All Q2 states, with the exception of q0 when q0 ∈ Q2, can be
removed from a flattened pTr. To see this, redefine δ2 to be the identity on
Q1 and let δ = δ2 ◦ δ1. Thus we can redefine a pTr to have a single transition
function δ : Q1×Σ1 → (Q1×Σ∗

2)∗ (except for the transitions from q0 if q0 ∈ Q2),
if we are willing to allow prioritized non-determinism on input from Σ1.

5 Equivalence and Parsing with Prioritized Transducers

Regular expressions R and R′ are equivalent if the pTr J̄p(R) and J̄p(R′) are
equivalent. In general, deciding equivalence of string transducers is undecidable,
but in [8] it is shown that equivalence of functional transducers is decidable, but
PSPACE-complete. In [9], the equivalence of regular expressions through trans-
ducers, is approached by first formulating the semantics of regular expression
matching as a non-deterministic parser, then transforming the parser into first a
transducer with regular lookahead, and then into a functional transducer without
lookahead. For non-problematic regular expressions R, a functional transducer
of size 2O(|R|) is obtained. Thus to decide equivalence of regular expressions with
capturing groups, equivalence is decided on the corresponding functional trans-
ducers. We obtain a similar result for a larger class of regular expressions and
regular expression matching semantics, through equivalence of pTr.

Theorem 18. A pTr T can be converted into an equivalent functional trans-
ducer TF with |TF |Q = |T |Q2|T |Q , and |TF | in O(|T | 2|T |Q).

Proof (Sketch). Let T = (Q1, Q2, Σ1, Σ2, q0, δ1, δ2, F) and A the NFA obtained
from T by ignoring output and priorities of T . Let QA be the states of A, which
is of course just (Q1 ∪ Q2). The set of states of TF is (Q1 ∪ Q2) × 2QA . On the
(Q1∪Q2) part of the states of TF , TF behaves like T with priorities ignored, and

302 M. Berglund and B. van der Merwe

the subsets of QA, which form the 2nd component of the states of TF , is used to
take priorities of δ2 transitions in T into account. Each time we are at a state
q ∈ Q2 in T with δ2(q) = (w1, q1) · · · (wk, qk), TF chooses non-deterministically
a transition q → qi (with output wi) in the first component of states of TF , and
keep track with subsets from QA, that the input would not have been accepted
if we took q → qj for j < i. Note as we reach the next state on a path taken in
T , we keep on tracking, in the 2nd component of the states of TF , all states of
T that could be reached, on the given input, from higher priority transitions we
did not take at previous Q2 states encountered. The accept states of TF are the
states (q,X) with q ∈ F and X ∩ F = ∅. Note TF is a functional transducer,
since the relation defined by T is a function. �

Corollary 19. (a) For prioritized transducers T1 and T2, equivalence can be
decided in time O((|T1|2|T1|Q + |T2|2|T2|Q)2). (b) Equivalence of regular expres-
sions R1 and R2 with capturing groups, can be decided in time 2O(|R1|+|R2|).

Proof. (a) For pTr T1 and T2, first check that dom(T1) = dom(T2), which can
obviously be done in the stated time complexity bound. Now convert T1 and T2

into functional transducers TF1 and TF2 , and use Theorem 1.1 in [8] that states
that the complexity of deciding if the transducer T1 ∪ T2 is functional (and thus
that T1 and T2 are equivalent, since dom(T1) = dom(T2)), is quadratic in the
number of transitions in T1 ∪ T2. For (b) use (a) and the fact that for a regular
expression R, |J̄p(R)| ≤ c|R|, for some constant c. �

Remark 20. Note that deciding equivalence of pTr and regular expressions with
capturing groups is at least PSPACE-hard, since it is PSPACE-complete already
to check if the domains of pTr are equal.

Remark 21. The transducer construction in the proof of Theorem 18 must be
close to ideal, as the worst-case state complexity of a transducer TF equivalent
to a pTr T is bounded from below by 2|T |Q . This is so since one can for any NFA
A, construct a pTr T , with Σ2 = {β, β′}, having T (w) = βw for w ∈ L(A) and
T (w) = β′w for all w /∈ L(A) (a similar example is obtained by constructing
a pTr for the regular expression (R)|(Σ∗

1), with R corresponding to A). Simply
let δ2(q0) = (β, qA)(β′, qΣ∗

1
), with q0 the initial state of T , qA the initial state of

A, and qΣ∗
1

a sink accept state. Now consider the class of NFA A, for which the
complement of L(A) can only be recognized by NFA with at least 2|A|Q states.
Then if T ′

F is obtained from TF by removing transitions having β as output,
dom(T ′

F) will be equal to the complement of L(A). Thus T ′
F and also TF , will

require at least 2|A|Q states.

Some specifics of real-world matchers can be generalized away, such as the
Σ2 subsequences a real-world pTr outputs always forming a Dyck language
(as in Sect. 3). One which we need to consider however, as including it saves
memory in the parsing algorithm, is that the strings in range(T) are not output
in practice, but rather matchers will walk through a string w in dom(T), and
will once the string has been accepted, output for each symbol in α ∈ Σ2 in T (w),

On the Semantics of Regular Expression Parsing in the Wild 303

the index of the last occurrence of α in T (w). This limits the possible memory
usage, notably it means that the amount of data output by a matching an input
string w with T is bounded by |Σ2| log(|w|).
Definition 22. For a pTr T with w ∈ dom(T), let T (w) = v0α1 · · · vn−1αnvn,
where vi ∈ Σ∗

2 and αi ∈ Σ1 for each i. Then the slim parse output of T on w is
a function sT : Σ2 → {⊥, 0, . . . , n} such that for each β ∈ Σ2 we have β ∈ vf(β),
but β /∈ vf(β)+j for any j ∈ N. If β /∈ v1 · · · vn, sT (β) = ⊥.

For a pTr T and a string w = α1 · · · αn ∈ dom(T), we next describe a linear (in
the length of the input string) algorithm to compute the slim parse output of T ,
where T is flattened. Let f, f ′, f⊥ : Σ2 → N∪{⊥}. For v ∈ Σ∗

2 and k ∈ N, define
f ′ := U(f, v, k) by letting f ′(β) = k for β ∈ v, and f ′(β) = f(β) otherwise. Also,
f⊥(β) = ⊥ for all β ∈ Σ2. Define Δ(q, f, i) = (q1, U(f, β1, i)) · · · (qn, U(f, βn, i))
when q ∈ Q2 and δ2(q) = (β1, q1) · · · (βn, qn), and Δ(q, f, i) = (q, f) for q ∈ Q1.
Now for the steps in the algorithm. (i) Let S0 = Δ(q0, f⊥, 0). (ii) Given Si =
(q1, f1) · · · (qm, fm), where i < n, then Si+1 = σ1(Δ(q′

1, f1, i) · · · Δ(q′
m, fm, i)),

where q′
j = δ1(qj , αi+1) for each j. (iii) If Sn = (q1, f1) . . . (qm, fm) and i is the

smallest index such that qi ∈ F , then sT (w) = fi. If no state qi is in F , the
string w is rejected.

Theorem 23. The slim parsing algorithm runs in linear time in the length of
the input string, and is correct, i.e. with input a pTr T and w ∈ dom(T), it
returns the slim parse for T on w, and if w �∈ dom(T), it rejects the input w.

Proof (Sketch). Since highest priority paths in a flattened pTr may be deter-
mined by DFS, a pTr can be translated into a deterministic stack machine with
output. Each Si can be associated with the stack content at a particular stage of
the DFS, with the left-most tuple being the top element of the stack. It follows
from the argument in Remark 10 that duplicates of tuples with the same state
can be removed from the stack. In contrast to a stack machine, the given algo-
rithm simply processes all stack elements in parallel. Clearly, from the description
of the slim parsing algorithm, it runs in linear time in the length of the input
string. �

6 Conclusions and Future Work

In this paper we brought together several different angles on regular expres-
sions into one formal framework. This enables us to talk both about the match-
ing behaviors of less than ideal real-world matchers as in [2], while allowing a
modelling of the special features of those matchers without being tied to their
algorithmic choices. Still, there is ample room for continued work. For example,
there are a lot of additional operators in regex libraries that should be analyzed.
A special example is pruning operators, such as atomic subgroups, and the cut
operator of [1], which interact deeply with the matching procedure. From a the-
oretical perspective, the next step should be to determine the precise complexity
class for equivalence in Corollary 19.

304 M. Berglund and B. van der Merwe

References

1. Berglund, M., Björklund, H., Drewes, F., van der Merwe, B., Watson, B.: Cuts in
regular expressions. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907,
pp. 70–81. Springer, Heidelberg (2013)

2. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Ésik, Z., Fülöp, Z., (eds.)
Proceedings of the 14th International Conference on Automata and Formal Lan-
guages, pp. 109–123 (2014)

3. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)

4. Cox, R.: Implementing regular expressions (2007). http://swtch.com/rsc/regexp/.
(Accessed 3 March 2015)

5. Friedl, J.: Mastering Regular Expressions, 3rd edn. O’Reilly Media Inc., Sebastopol
(2006)

6. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

7. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. CoRR, abs/1405.7058 (2014)

8. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

9. Sakuma, Y., Minamide, Y., Voronkov, A.: Translating regular expression matching
into transducers. J. Applied Logic 10(1), 32–51 (2012)

10. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 419–
422 (1968)

11. Wang, J.: Handbook of Finite State Based Models and Applications. 1st edn.
Chapman & Hall/CRC, Boca Raton (2012)

http://swtch.com/rsc/regexp/

Tool Demonstration Papers

Introducing Code Adviser: A DFA-driven
Electronic Programming Tutor

Abejide Ade-Ibijola1(B), Sigrid Ewert1, and Ian Sanders2

1 School of Computer Science, University of the Witwatersrand,
Johannesburg, South Africa

researcher@abejide.com, sigrid.ewert@wits.ac.za
2 School of Computing, University of South Africa, Florida, South Africa

sandeid@unisa.ac.za

Abstract. In this paper, we demonstrate a software system called Code

Adviser that attempts to understand and find semantic bugs in stu-
dent programs written in C++ programming language. To do this, Code
Adviser has to take a model solution from a lecturer (or expert), gen-
erate many variations of the model solution, and compare student pro-
grams to the most similar model solution. The student’s program to be
checked for correctness is normalized, granulated and abstracted to a
string of semantic tokens — we call this the abstraction stage. Similarly,
the model solutions are taken through the abstraction stage and the
program strings representing all model solutions are abstracted to deter-
ministic finite automaton (DFA) for the programming problem. Code

Adviser then uses some algorithms to make inference on student’s pro-
gram correctness. If the student’s program string is accepted by the prob-
lem’s DFA, it is reported as correct. Else, we make inferences on what
the bug could be. Code Adviser is a promising proof of concept, and
more work is currently being done to improve its inference and make it
available to student programmers.

Keywords: Bug detection · Semantic bugs · Program strings

1 Introduction

Computer-aided teaching of programming at first year still remains a difficult
task for one simple reason — dealing with the large variability in programs.
Many tools have attempted to perform a variety of compilation-related tasks on
computer programs using techniques such as lexical analysis, program slicing,
control and data-flow analysis, and input-output (IO) analysis. These techniques
are useful for validating, assessing or marking student programs. Some tools built
on these techniques are: Cloud Coder [8,12], Auto Grader [7], Lackwit [11], and
JRipples [4].

There have been other attempts to support the student’s comprehension
process by abstracting student programs to a friendly visual or textual repre-
sentation using tools such as: NOPRON [1] for narrating program steps; tools
c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 307–312, 2015.
DOI: 10.1007/978-3-319-22360-5 25

308 A. Ade-Ibijola et al.

based on the ATS1 technology [5] for summarizing large programs; and Code
Crawler [10], DynaRIA [3] and SHriMP Views [13] for visualisation.

However, the comprehension task is an Artificial Intelligence task that
involves understanding the problem, knowing all possible solutions, comparing
the student’s solution to the repository of solutions and pointing out the seman-
tic bugs in the student’s program — just like the human expert would do. For
this, the popular approach is the knowledge base approach — often aided by
other previously stated techniques. This involves making inferences based on
program beacons [6], keeping static bug clichès [2], and keeping repositories of
possible programs with all possible bugs [9]. Methods used for this task often
struggle to cope with the variability in student programs for the comprehension
task. Code Adviser attempts to achieve this task using a different approach.

2 How Code Adviser Works

In this section we demonstrate how Code Adviser works with the aid of a simple
diagram shown in Fig. 1.

Fig. 1. Automatic tutoring model

In order to understand student programs, detect semantic bugs and suggest
possible repairs, Code Adviser:

1. takes a model program for a programming problem written in C++ with a
number of test cases, cleans up and granulates the model program,

2. generates all possible variations of the model program,
3. constructs a DFA from the solution space, taking each solution as a string,
1 Automated Text Summarisation.

Introducing Code Adviser: A DFA-driven Electronic Programming Tutor 309

4. attempts to compare a buggy student program to the finite list of program
strings accepted by the problem’s DFA, and

5. depending on the student’s plan and output correctness, it reports on discov-
ered bugs and suggest repairs or declares the student’s program as correct.

3 Acting Intelligent

To seemingly act intelligent, Code Adviser had to manipulate both the student’s
and expert’s program strings to give specific feedbacks that is not only helpful
to the student, but also demonstrates the wealth of knowledge it has about the
student’s program. Code Adviser achieved this by:

1. reporting the percentage of similarity of the student’s and expert’s programs
by calculating the Levenshtein distance between the program strings of both
programs,

2. discussing with the student in first person with statements such as Ask me
. . ., I think you should . . ., and Your program is . . .,

3. explaining bugs in the student’s terms, i.e. with the variables in the student’s
programs and not the ones in the model solution, and

4. pointing to the buggy lines.

4 One Step Bug Repair

Code Adviser does a top-down one-step repair2. It starts with the first mis-
matched program statement in the novice’s program and prompts the student
to correct it. If entire program bugs has been corrected, it informs the novice
and terminates. Else, it points the student to the next bug.

5 Discussing Bug Repair

When Code Adviser discovers a bug, it explains how to repair the bug to the
novice programmer using bug discussion modules. Hence, if the bug repair is
to add a new line that displays the value of the variable called sum, Code
Adviser says:

I think you should insert an additional line after Line <line number here>.
The new line should display the value of sum.

Try this and seek my advise again.

More examples of how the Code Adviser handles the bug discussion are pre-
sented in Sect. 6.
2 Repairing bugs, one bug at a time, starting from the first line in a program (the
initial symbol) to the last line.

310 A. Ade-Ibijola et al.

6 Code Adviser in Action

In this section, we demonstrate how Code Adviser report bugs and discusses bug
repairs. In Fig. 2, Code Adviser uses a grid view control to show each program
line with a feedback and a general note on program’s correctness. In this case
the program is correct and the student gets a corresponding message.

Fig. 2. Code Adviser finding no bugs in program

In Fig. 3 we show how Code Adviser reports a semantically buggy program,
pointing to the line and using a bug discussion module to explain what needs to
be done to fix the bug.

7 Reflections on Automatic Tutoring

This paper has presented a brief demonstration of Code Adviser a tool that
supports the teaching of programming at first year undergraduate level. Code
Adviser is not a robust tool, it is a proof of concept that we have used to
demonstrate how a tool can be used to tutor student programmers based on
DFAs of alternative solutions and bug detection algorithms.

Introducing Code Adviser: A DFA-driven Electronic Programming Tutor 311

Fig. 3. Code Adviser suggesting a repair

Acknowledgment. This work is based on research supported by the National
Research Foundation (NRF) of South Africa. Any opinion, findings and conclusions
or recommendations expressed in this material are those of the authors and therefore
the NRF does not accept liability in regard thereto.

References

1. Ade-Ibijola, A., Ewert, S., Sanders, I.: Abstracting and narrating novice programs
using regular expressions. In: Proceedings of the Annual Conference of the South
African Institute for Computer Scientists and Information Technologists. pp. 19–
28. ACM (2014)

2. Al-Omari, H.M.A.: Conceiver: A program understanding system. Ph.D. thesis,
University Kebangsaan Malaysia (1999)

3. Amalfitano, D., Fasolino, A.R., Polcaro, A., Tramontana, P.: Dynaria: a tool for
ajax web application comprehension. In: IEEE 18th International Conference on
Program Comprehension, pp. 46–47. IEEE (2010)

4. Buckner, J., Buchta, J., Petrenko, M., Rajlich, V.: JRipples: a tool for program
comprehension during incremental change. In: International Workshop on Program
Comprehension. vol. 5, pp. 149–152 (2005)

5. Haiduc, S., Aponte, J., Marcus, A.: Supporting program comprehension with source
code summarization. In: ACM/IEEE 32nd International Conference on Software
Engineering, vol. 2, pp. 223–226 (2010)

6. Harris, N., Cilliers, C.: A program beacon recognition tool. In: 7th International
Conference on Information Technology Based Higher Education and Training. pp.
216–225. IEEE (2006)

7. Helmick, M.T.: Interface-based programming assignments and automatic grading
of Java programs. ACM SIGCSE Bull. 39(3), 63–67 (2007)

8. Hovemeyer, D., Hertz, M., Denny, P., Spacco, J., Papancea, A., Stamper, J., Rivers,
K.: Cloudcoder: building a community for creating, assigning, evaluating and shar-
ing programming exercises. In: Proceeding of the 44th ACM Technical Symposium
on Computer Science Education. pp. 742–742. ACM (2013)

9. Johnson, W., Soloway, E.: PROUST: knowledge-based program understanding.
IEEE Trans. Software Eng. 3, 267–275 (1985)

10. Lanza, M., Ducasse, S., Gall, H., Pinzger, M.: Codecrawler-an information visual-
ization tool for program comprehension. In: Proceedings of the 27th International
Conference on Software Engineering, pp. 672–673. IEEE (2005)

11. O’Callahan, R., Jackson, D.: Lackwit: a program understanding tool based on
type inference. In: International Conference on Software Engineering, Vol. 97, pp.
338–348 (1997)

312 A. Ade-Ibijola et al.

12. Papancea, A., Spacco, J., Hovemeyer, D.: An open platform for managing short
programming exercises. In: Proceedings of the 9th Annual International ACM Con-
ference on International Computing Education Research, pp. 47–52. ACM (2013)

13. Storey, M., Best, C., Michand, J.: SHriMP views: An interactive environment for
exploring java programs. In: Proceedings of the 9th International Workshop on
Program Comprehension, pp. 111–112. IEEE (2001)

BSP : A Parsing Tool for Ambiguous
Regular Expressions

Angelo Borsotti1, Luca Breveglieri1,
Stefano Crespi Reghizzi2(B), and Angelo Morzenti1

1 Dipartimento di Elettronica, Informazione E Bioingegneria (DEIB), Politecnico di
Milano, Piazza Leonardo Da Vinci N. 32, 20133 Milano, Italy

angelo.borsotti@mail.polimi.it,

{luca.breveglieri,stefano.crespireghizzi,angelo.morzenti}@polimi.it
2 Dipartimento di Elettronica, Informazione E Bioingegneria (DEIB), CNR - IEIIT,

Politecnico di Milano, Piazza Leonardo Da Vinci N. 32, 20133 Milano, Italy

Abstract. BSP (Berry-Sethi Parser) is a new SW tool for parsing
ambiguous regular expressions (r.e.). Given a r.e., the BSP tool gen-
erates a DFA. Then the DFA processes the given input string, recognizes
it and outputs, depending on user choice, all the syntax trees or just the
one selected by either the Greedy or the POSIX criterion. The BSP tool
is a HTML page including JavaScript code, and can be executed by any
browser. It is self-documented and is intended for educational purposes.
See http://github.com/breveglieri/ebs (see also [1] for details).

1 Tool Description

The BSP (Berry-Sethi Parser) SW tool is a web-based HTML page, available
on the GitHub system at http://github.com/breveglieri/ebs. This tool allows a
user to interactively play with regular expressions (r.e.): matching and parsing
strings, displaying DFA’s and parse trees, watching animations of the matching
and parsing algorithm, and comparing the parse trees obtained by different dis-
ambiguation criteria. As such, the intended use of this tool is educational, with
no particular attention paid to the optimization or efficiency of the parser DFA
construction or of the string parsing process.

The tool provides a graphic representation (as well as a textual one) of the -
Abstract Syntax Trees (AST) of the r.e.’s , the parse trees of the strings, and the
DFA’s that perform as parsers. The graphical representations obtained for such
objects tend to be somehow large, exceeding the size of the browser windows
when the r.e.’s are complex or the strings are long. Anyway, this is not too
annoying, since the intent is to allow the users to reason about r.e.’s and to
figure out the outcome of the algorithms, which is best done with small inputs.

The tool implements the parsing algorithm published in [1], which is a gen-
eralization of the classical Berry-Sethi algorithm to build a pure recognizer. Our
tool adds the capability of parsing the string and building its syntax tree(s), as

Work partially supported by PRIN “Automi e Linguaggi Formali”, Italy.

c© Springer International Publishing Switzerland 2015
F. Drewes (Ed.): CIAA 2015, LNCS 9223, pp. 313–316, 2015.
DOI: 10.1007/978-3-319-22360-5 26

http://github.com/breveglieri/ebs
http://github.com/breveglieri/ebs

314 A. Borsotti et al.

well as to select a specific tree when the parsed string is ambiguous. To internally
verify its results, it implements also the Okui and Suzuki algorithm [4].
Tool input. The input field “RE” holds the r.e., which has this syntax:

empty string, a, r r, r | r, (r), [r], (r)+, (r)∗, a+, a∗ a ∈ Σ

Specifications:

– empty string means no character at all (corresponds to ε)
– a is a character that is not a meta-symbol: |, (), [], ∗ and +
– r r is the concatenation of two or more regular expressions
– r | r is the alternative (union) of two or more regular expressions
– (r) is a group that represents the enclosed regular expression
– (r)+ is the enclosed regular expression repeated one or more times
– (r)∗ is the enclosed regular expression repeated zero or more times
– a+ is an abbreviated form of (a)+ (similarly for a∗)
– spaces (blanks) can be used everywhere

The field “input” holds the string to be recognized (matched) and/or parsed. The
use of terminal characters whose glyphs have a direct visual representation (such
as letters or digits) is preferable to the ones that do not (e.g., combining Unicode
characters), which might not be represented clearly by certain web browsers.

Disambiguation policy. The radio buttons “Posix” and “Greedy” allow the
user to choose which disambiguation criterion has to be used to select the prior
parse tree: the Greedy one is defined in [2] and the POSIX one is defined in
[3]. Notice that disambiguation is done only when the marking of the regular
expression is of the type “fully marked” (see below).

RE marking. To construct the parser DFA, the tool applies a new algorithm
that, as the classic Berry-Sethi one, starts from a marked r.e. Three kinds of
r.e. marking can be chosen by using the radio buttons “fully marked”, “partly
marked” or “numerically marked”:

fully marked all the elements of the r.e. are marked with a multilevel index,
which identifies the corresponding inner node or leaf in the AST of the r.e.

partly marked all the elements of the r.e. are marked with a multilevel index,
except concatenations and alternatives (which can be indirectly identified by
their left and right immediate neighbouring symbols)

numerically marked as partly marked, but the marks are simple numbers

Notice that only the “fully marked” option allows the tool to select the prior tree
in accordance with the chosen disambiguation criterion. The other two marking
options are a simplification, still sufficient to properly visualize the syntax tree(s).

Tree drawing. The checkbox “show all trees” makes the tool display all the
parse trees of the input string at the end of the page. The user can then select
them two by two and compare them (see below).

BSP: A Parsing Tool for Ambiguous Regular Expressions 315

Matching and / or parsing. The “go” button makes the tool match the input
string and parse it, i.e., build its syntax tree(s). Also the r.e., annotated with
the chosen marking, and its AST, are displayed. The “DFA” button allows the
user to see the parser DFA (see below). Under the AST and DFA drawings, the
linearized forms of the syntax tree(s) of the matched string are shown, followed
by the prior tree (only when the option “fully marked” is checked), or by all the
syntax trees (only when the option “show all trees” is checked), in graphic form.

Parser DFA. Upon pressing the “DFA” button, a textual representation of the
parser DFA is shown, including (see [1] for an explanation of the terms):

– the Initial set
– the Follow sets
– the list of the states, each state with:

• the list of its items, each with its finished string and item identifiers
• the list of transitions, each with its label and target state

– the final states are flagged “final”

All this syntactic information in the node is used by the parser to build the
syntax tree(s), and to select the prior one if requested (details in [1]).

A graphical representation of the DFA follows. It is an interactive one, which
allows the user to perform these operations:

– enlarge it on the left by clicking the left border and dragging it
– enlarge it at the bottom by clicking the bottom border and dragging it
– move the states by clicking and dragging them (arcs can be moved similarly)
– reshape the arcs by hovering on them and then moving one of the three knots

that are displayed for a few seconds

Parsing Animation. When the DFA is displayed, two more buttons appear:
“play” and “stop”. The first starts an animation that shows how the DFA is
traversed during recognition. A road runner walks the arcs that lead one to
travel from the initial state to a final state. The traversed states blink. The
runner stops in a final state. On traversing a state, a box is displayed below the
DFA and shows the items in the state. The current state being traversed has
a blinking box. This phase is highlighted on the right of the “stop” button by
the word “matching”, and likewise the next phases are indicated. Then the next
phases are shown:

– the items that belong to some path starting from the initial state and ending
in a final item of a final state, are depicted in acqua and made blinking as
they are visited (this is the “marking” phase)

– the items that belong to paths that are not part of the prior tree, are then
colored in beige (this is the “pruning” phase)

The “stop” button allows the user to pause the matching process at any time.

Tree Comparison. When all the trees are displayed and there are at least two
of them (ambiguous input string), it is possible to compare pairs of trees:

316 A. Borsotti et al.

– by hovering a tree with the mouse, a dashed box appears around it, and by
clicking on it, the border changes to solid, indicating that the tree has been
selected

– hovering on a second tree and clicking on it, makes it selected and compared
with the other one

– the winner, i.e., the one with higher priority, is flagged with a king crown
– in both trees, the path that starts from the root and ends in the node that

represents the first distinguishing node (i.e., the first one, visiting the tree in
preorder, that is present in one tree and not in the other) has yellow nodes
showing the position index (of the corresponding node in the AST) and the
length of its yield

Selecting another tree automatically deselects the last one selected and immedi-
ately compares the new tree.

Suggested Browsers. The tool is tested to work with Chrome and Firefox.

2 Future Developments

An efficient implementation in Java of the same algorithm is under way. We
plan to use it to compare the performances (e.g., execution time) of our parsing
algorithm with respect to the performances of the existing ones.

References

1. Borsotti, A., Breveglieri, L., Crespi Reghizzi, S., Morzenti, A.: From ambiguous
regular expressions to deterministic parsing automata. In: Drewes, F. (ed.) CIAA.
LNCS, vol. 9223, pp. 35–48. Springer, Heidelberg (2015)

2. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
618–629. Springer, Heidelberg (2004)

3. IEEE: std. 1003.2, POSIX, regular expression notation, section 2.8 (1992)
4. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position

automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA
2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011)

Author Index

Ade-Ibijola, Abejide 307
Adiga, Abhijin 21

Berglund, Martin 292
Bollig, Benedikt 3
Borsotti, Angelo 35, 313
Breveglieri, Luca 35, 313
Broda, Sabine 49

Caron, Pascal 63
Cavadas, Sílvia 49
Crespi Reghizzi, Stefano 35, 313

Dang, Zhe 76
Dementyev, Dmitry 76

Ewert, Sigrid 307

Fernau, Henning 89
Ferreira, Miguel 49
Fischer, Thomas R. 76

Giaquinta, Emanuele 102
Gruber, Hermann 114
Gusev, Vladimir V. 127

Héam, Pierre-Cyrille 140, 153
Hoffmann, Stefan 165
Holzer, Markus 114
Hulden, Mans 176
Hutton, William J. III 76

Jakobi, Sebastian 114
Joly, Jean-Luc 140, 153

Kuhlman, Chris J. 21
Kushik, Natalia 188
Kutrib, Martin 199

Madejski, Grzegorz 211
Marathe, Madhav V. 21
Mignot, Ludovic 63
Miklarz, Clément 63
Mohri, Mehryar 263
Moreira, Nelma 49
Morzenti, Angelo 35, 313

Nakanishi, Masaki 224
Ng, Timothy 238

Paramasivan, Meenakshi 89
Průša, Daniel 250

Rappaport, David 238
Ravi, S.S. 21
Riley, Michael D. 263
Rosenkrantz, Daniel J. 21

Salomaa, Kai 238
Sanders, Ian 307
Schmid, Markus L. 89
Staiger, Ludwig 165
Stearns, Richard E. 21
Szykuła, Marek 127, 279

van der Merwe, Brink 292

Watson, Bruce W. 13
Wendlandt, Matthias 199

Yakaryılmaz, Abuzer 224
Yevtushenko, Nina 188

	Preface
	Organization
	Invited Papers
	Automata and Logics for Concurrent Systems:Five Models in Five Pages
	Resource Automatic Structures for Verificationof Boundedness Properties
	Finite-State Technologyin Natural Language Processing
	Hardware Implementationsof Finite Automata and Regular Expressions
	Contents
	Invited Papers
	Automata and Logics for Concurrent Systems: Five Models in Five Pages
	1 Introduction
	2 Finite Automata
	3 Class Memory Automata
	4 Nested-Word Automata
	5 Asynchronous Automata
	6 Message-Passing Automata
	7 Conclusion
	References

	Hardware Implementations of Finite Automata and Regular Expressions
	1 Introduction
	2 Typical Solutions
	2.1 Abstractions
	2.2 Implementations
	2.3 Gaps in Current Solutions

	3 New Implementations
	4 Ongoing and Future Work
	References

	Regular Papers
	Complexity of Inferring Local Transition Functions of Discrete Dynamical Systems
	1 Introduction
	1.1 Motivation
	1.2 Problems Considered and Summary of Results
	1.3 Related Work

	2 Definitions and Problem Formulation
	2.1 Formal Definition of the SyDS Model
	2.2 Additional Terminology and Notation
	2.3 Problem Formulations
	2.4 Preliminary Results

	3 Threshold Inference from Homogeneous Behavior Specifications
	3.1 Inferring Thresholds from Stable Configurations
	3.2 Inferring Thresholds from Unstable Configurations

	4 Inference from Heterogeneous Collections of Behavior
	4.1 The Complexity of ITSUC
	4.2 Fixed Parameter Tractability of ITSUC

	5 Future Research Directions
	References

	From Ambiguous Regular Expressions to Deterministic Parsing Automata
	1 Introduction
	2 Basic Definitions
	3 Parser Construction
	4 Tree and Complexity
	5 Disambiguation Criteria
	6 Conclusion
	References

	Deciding Synchronous Kleene Algebra with Derivatives
	1 Introduction
	2 Deciding Synchronous Kleene Algebra
	2.1 Partial Derivative Automata for SKA
	2.2 Equivalence of SKA Expressions
	2.3 Implementation and Experimental Results

	3 Deciding Synchronous Kleene Algebra with Tests
	3.1 SKAT and Guarded Synchronous Strings
	3.2 Automata for Guarded Synchronous Strings
	3.3 Partial Derivatives for SKAT

	4 Experimental Results
	5 Conclusion
	References

	On the Hierarchy of Block Deterministic Languages
	1 Introduction
	2 Preliminaries
	2.1 Languages and Automata Basics
	2.2 One-Unambiguous Regular Languages
	2.3 Block Deterministic Regular Languages

	3 Previous Results on Block-Deterministic Languages
	4 A Witness for the Infinite Hierarchy
	References

	Security of Numerical Sensors in Automata
	1 Introduction
	2 Preliminaries
	3 Maximal Mutual Information
	4 Secure Numerical Sensing in Automata
	4.1 Secure Numerical Sensing w.r.t. Estimated Mutual Information Rate
	4.2 Secure Numerical Sensing in Automata

	5 Conclusions
	References

	Jumping Finite Automata: Characterizations and Complexity
	1 Introduction
	2 Operations on Languages and Their Properties
	3 Alphabetic Shuffle Expressions
	4 Representations and Normal Forms
	5 Comparing JFA and REG
	6 Complexity of Parsing
	References

	Run-Length Encoded Nondeterministic KMP and Suffix Automata
	1 Introduction
	2 Notions and Basic Definitions
	3 The Shift-And and BNDM Algorithms
	4 RLE-Based Encoding of the Nondeterministic KMP and Suffix Automata
	4.1 Computation of j

	5 The Variants of Shift-And and BNDM
	6 Comparison with the 1-Factorization Encoding
	7 Conclusions
	References

	More on Deterministic and Nondeterministic Finite Cover Automata
	1 Introduction
	2 Preliminaries
	3 Lower Bound Techniques for Cover Automata
	4 Conversions Between Finite Automata and Cover Automata
	4.1 From Finite Automata to Cover Automata
	4.2 From Cover Automata to Finite Automata

	5 Determinization of Finite Cover Automata
	6 Average Size Comparisons of Finite Cover Automata
	7 Conclusions
	References

	On the Number of Synchronizing Colorings of Digraphs
	1 Introduction
	2 General Statements
	3 Experimental Investigation of Digraphs
	3.1 Algorithms
	3.2 Experimental Results from Exhaustive Enumeration
	3.3 Experiments on Random Digraphs

	4 Digraphs with Specific Synchronizing Ratios
	5 Conclusions and Open Problems
	References

	On the Uniform Random Generation of Non Deterministic Automata Up to Isomorphism
	1 Introduction
	1.1 Theoretical Background on NFA
	1.2 Theoretical Background on Markov Chains

	2 Random Generation of Non Deterministic Automata Using Markov Chain
	3 Random Generation of Non Deterministic Automata upto Isomorphism
	3.1 Metropolis-Hastings Algorithm
	3.2 Counting Automorphisms
	3.3 Isomorphism Problem for Automata with a Bounded Degree
	3.4 Practical Computation Using Labelings
	3.5 Experiments

	4 Conclusion
	References

	Random Generation and Enumeration of Accessible Deterministic Real-Time Pushdown Automata
	1 Introduction
	2 Formal Background
	3 Random Generation and Enumeration of RDPDA
	3.1 Enumeration of RDPDA
	3.2 Random Generation

	4 Influence of the Accepting Condition
	4.1 Emptiness of Accepted Languages
	4.2 Empty-Stack Reachability
	4.3 Reachability (with No Stack Condition)
	4.4 A Rejection Algorithm for Reachable Complete RDPDA

	5 Conclusion
	References

	Subword Metrics for Infinite Words
	1 Introduction
	2 Notation and Preliminaries
	3 The CANTOR Topology and Regular -Languages
	3.1 Basic Properties of the CANTOR Topology
	3.2 Regular -Languages

	4 Topologies Defined by Subword Metrics
	4.1 Shift-Invariance
	4.2 Balls in (X,I) and (X,)
	4.3 Non-Preservation of Regular -Languages

	5 Completeness and Compactness
	6 Subword Complexity
	References

	From Two-Way to One-Way Finite Automata---Three Regular Expression-Based Methods
	1 Introduction
	2 Notation and Definitions
	3 Overview
	4 Method 1: 2DFA to 1NFA/1DFA
	5 Construction Details
	6 Method 2: 2NFA to 1DFA by Complement Construction
	6.1 A Note on the Construction

	7 Method 3: 2NFA to 1DFA Directly
	8 Implementations
	9 Practical Concerns
	10 Conclusion
	References

	Describing Homing and Distinguishing Sequences for Nondeterministic Finite State Machines via Synchronizing Automata
	1 Introduction
	2 Preliminaries
	3 Describing the Set of All Homing Sequences of a Nondeterministic FSM via a Synchronizing Automaton
	4 Describing the Set of All Distinguishing Sequences of a Nondeterministic FSM via a Synchronizing Automaton
	5 Conclusion
	References

	Expressive Capacity of Concatenation Freeness
	1 Introduction
	2 Preliminaries and Definitions
	3 Limits of Concatenation-Free Expressions
	4 Closure Properties
	5 Relations with Other Subregular Families
	References

	The Membership Problem for Linear and Regular Permutation Languages
	1 Introduction
	2 Preliminaries
	3 The Non-uniform Membership Problem for PermLin
	4 The Uniform Membership Problem for PermReg
	5 Parameterized Complexity of the Uniform Membership Problem
	6 Conclusions
	References

	Classical and Quantum Counter Automata on Promise Problems
	1 Introduction
	2 Definitions
	3 Main Results
	3.1 Separation of Exact 1Q1CAs and 1D1CAs
	3.2 Separation of Las Vegas 1P1CAs and 1D1CAs
	3.3 A New Result on Blind Counter Automata

	References

	State Complexity of Prefix Distance
	1 Introduction
	2 Preliminaries
	3 State Complexity of Prefix Neighbourhoods
	4 Nondeterministic State Complexity
	4.1 Prefix and Suffix Distance
	4.2 Substring Distance Neighbourhoods

	5 Conclusion
	References

	(Un)decidability of the Emptiness Problem for Multi-dimensional Context-Free Grammars
	1 Introduction
	2 Two-Dimensional Context-Free Grammars
	3 Emptiness Problem
	4 Three-Dimensional Kolam Grammar
	5 Representable Functions
	6 Conclusion
	References

	On the Disambiguation of Weighted Automata
	1 Introduction
	2 Preliminaries
	3 R-Pre-disambiguation of Weighted Automata
	3.1 Relation R over Q Q
	3.2 Construction
	3.3 Properties of the Resulting WFA

	4 Disambiguation Algorithm
	5 Sufficient Conditions
	6 Experiments
	7 Conclusion
	References

	Checking Whether an Automaton Is Monotonic Is NP-complete
	1 Introduction
	2 Monotonic Automata
	2.1 MONOTONIC Is NP-complete
	2.2 Reduction from MONOTONIC to MONOTONIC2

	3 Oriented Automata
	4 Discussion
	References

	On the Semantics of Regular Expression Parsing in the Wild
	1 Introduction
	2 Definitions
	3 Converting Regular Expressions into pTr
	4 A Normal Form for Prioritized Transducers
	5 Equivalence and Parsing with Prioritized Transducers
	6 Conclusions and Future Work
	References

	Tool Demonstration Papers
	Introducing Code Adviser: A DFA-driven Electronic Programming Tutor
	1 Introduction
	2 How Code Adviser Works
	3 Acting Intelligent
	4 One Step Bug Repair
	5 Discussing Bug Repair
	6 Code Adviser in Action
	7 Reflections on Automatic Tutoring
	References

	BSP: A Parsing Tool for Ambiguous Regular Expressions
	1 Tool Description
	2 Future Developments
	References

	Author Index

