
Using Complex Correspondences for Integrating
Relational Data Sources

Valéria Pequeno1(B), Helena Galhardas2, and Vânia M. Ponte Vidal3

1 INESC-ID, Taguspark, Oeiras, Portugal
vmp@inesc-id.pt

2 Instituto Superior Técnico, Universidade de Lisboa and INESC-ID,
Taguspark, Oeiras, Portugal

helena.galhardas@tecnico.ulisboa.pt
3 Universidade Federal do Ceará, Fortaleza, Brazil

vvidal@lia.ufc.br

Abstract. Data Integration (DI) is the problem of combining a set of
heterogeneous, autonomous data sources and providing the user with a
unified view of these data. Integrating data raises several challenges, since
the designer usually encounters incompatible data models characterized
by differences in structure and semantics. One of the hardest challenges is
to define correspondences between schema elements (e.g., attributes) to
determine how they relate to each other. Since most business data is cur-
rently stored in relational databases, here present a declarative and for-
mal approach to specify 1-to-1, 1-m, and m-to-n correspondences between
relational schema components. Differently from usual approaches, our
(CAs) have semantics and can deal with outer-joins and data-metadata
relationships. Finally, we demonstrate how to use the CAs to generate
mapping expressions in the form of SQL queries, and we present some
preliminary tests to verify the performance of the generated queries.

Keywords: Schema matching · Correspondence assertions · Data
integration · Relational model

1 Introduction

A DI system aims at integrating a variety of data obtained from different data
sources, usually autonomous and heterogeneous, and providing a unified view of
these data, often using an integrated schema. The integrated schema makes a
bridge between the data sources and the applications that access the DI system.
Data in a DI system can be physically reconciled in a repository (materialized
data integration approach), or can remain at data sources and is only consoli-
dated when a query is posed to the DI system (virtual data integration approach).
A data warehouse system [1] is a typical example of the first approach. As exam-
ples of the second approach, we can cite federated information systems [2] and
mediator systems [3]. In the present work, both scenarios can be used, but in
this paper we will focus on the materialized integration approach.
c© Springer International Publishing Switzerland 2015
J. Cordeiro et al. (Eds.): ICEIS 2014, LNBIP 227, pp. 57–74, 2015.
DOI: 10.1007/978-3-319-22348-3 4

58 V. Pequeno et al.

One of the hardest problems to solve in DI is to define mappings between
the integrated schema (the target) and each data source schema, known as the
schema mapping problem. It consists of two main tasks: i) schema matching to
define/generate correspondences (a.k.a. matches) between schema elements (e.g.,
attributes, relation, XML tags, etc.); and ii) schema mapping to find data trans-
formations that, given data instances of a source schema, obtain data instances
of the target schema.

The result of schema matching is a set of correspondences that relate elements
of a source schema to elements of the target schema, where an element can be
a relation name or attribute in the relational model. These correspondences can
be described using a Local-as-view (LAV), a Global-as-view (GAV), or a Global
and Local-asview (GLAV) language. In summary, in a LAV approach, each data
source is described as a view over the integrated schema. In a GAV approach,
the integrated schema is expressed as a view over the data sources. Finally, the
GLAV combines the expressive power of both GAV and LAV. Once the schema
matching is performed, the correspondences are used to generate the schema
mappings. For example, a schema mapping can be codified through an SQL
query that transforms data from the source into data that can be stored in the
target.

Extensive research on schema matching has been carried out in recent
years [4,5]. The majority of the works on this subject identifies 1-1 correspon-
dences between elements of two schemas. For example, a 1-1 correspondence
can specify that element title in one schema matches element film in another
schema, or that relation genre matches relation category

1. This kind of
schema matching is known in the literature as basic matching. Good surveys
can be found in [6,7].

While basic matching is common, it leaves out numerous correspondences of
practical interest, in particular when we consider DI systems. Thus, more com-
plex matches are necessary. A complex matching specifies 1:n, m:n, or n:1 corre-
spondences between elements of two schemas. For example, it may specify that
totalPrice corresponds to unitPrice * quantity; or that name matches con-
catenate(firstName, lastName), where concatenate is a function that applies
to two strings and returns a concatenated string; or even that the average
departmental salary avgWage corresponds to grouping the salaries (salary)
of all employees (emp) by department (dept). Works in [8,9] are examples of
approaches that deals with complex matches.

Some researchers go beyond dealing with complex matches and add semantics
to the correspondences to improve the overall matching quality. In the Sect. 2,
we explain more about complex matches and show a motivation example. The
remainder of the paper is structured as follows. In Sect. 3, we present the neces-
sary background in Correspondence Assertions (CAs), the formalism used in this
work to specify correspondences between elements of schemas. In Sect. 4, we pro-
pose new CAs to deal with join operators and metadata. Section 5 shows how to

1 We use bold to represent attribute names and uppercase to represent relation
names.

Using Complex Correspondences for Integrating Relational Data Sources 59

generate mapping expressions from CAs. Section 6 shows some preliminary tests
to evaluate our approach. Section 7 describes the related work. Finally, Sect. 8
concludes and describes future work.

2 Motivating Example

Consider a motivating example with the source schemas S1 and S2 in Fig. 1,
which contain information about movies. S1 keeps a catalog of movies with
information about different types of media (dvd, blue rays, etc.) in which the
movies are available. The names of the relations and attributes are mostly self-
explanatory. Some non-self-explanatory attributes in S1 have the following mean-
ing: id is the movie identifier, year is the year of a movie, film is the title of
a movie, number is the tape identifier, name can be a producer or a director
name, and role can be producer or director. FK1 and FK2 are foreign keys.
We use the notation FK(R:L, S:K) to denote a foreign key, named FK, where
R and S are relation names and L and K are list of attributes from R and S,
respectively, with the same length. FK1 is the foreign key of tape that refers
to movie and FK2 is the foreign key of movieMakers that refers to movie.
S2 stores general information about movies and the places (in different cities)
where movies are being shown. We assume that S1 can store older movies than
S2. Some non-self-explanatory attributes in S2 have the following meaning: rate
is the classification of the movie with regard the audience, location and city
are, respectively, the cinema and the name of the city where the movie is shown,
and time is the date when the movie is shown.

Fig. 1. Example of source schemas and a integrated schema.

The integrated schema M, also shown in Fig. 1, provides a unified user view
of movies currently shown in cinemas of Lisbon. It is populated by information
from schemas S1 and S2. The relation movie stores movies shown currently at
a cinema. The relation filmMakers keeps information about professionals of
show businesses. The relation schedule contains information about the schedule
of movies shown in Lisbon. The relation remakes keeps the years of movies for

60 V. Pequeno et al.

which there is at least one remake. The relation rating stores the classification of
movies with regard to suitability audience. Some non-self-explanatory attributes
in M have the following meaning: description is the summary of a movie,
nvYear is the year of the most recent version of a movie, ovYear is the year
of the older versions of a movie, and quantity is the total of movies with the
same rating.

Given the schemas S1, S2, and M, we can consider the correspondences
between the source schemas S1 and S2, and the target schema M. As an exam-
ple, we can state that M.schedule corresponds to S2.showTime, because both
relations store information regarding the same real world concept2. However,
in this correspondence, it is not clear that M.schedule only keeps schedules
about movies shown in Lisbon. The additional information: M.schedule corre-
sponds to S2.showTime when S2.showTime.city = “Lisbon”, specifies better
the matching.

The works reported in [10–12] and [5](chap. 3) propose schema matching
approaches that can specify correspondences to deal with situations as required
in the example The reader can see more proposals to add semantics to schema
matching in [8,10,12,13]. However, the following situations have not been fully
covered yet:

1. Correspondences Between Relations Involving Join Conditions Other than
Equality of Attributes. Consider the relation M.remakes that keeps a list of
remakes with the years of the oldest versions. Knowing that S2.film keeps
current movies and S1.movie may contain older versions of the same movie,
we want to indicate which of the current movies are remakes and store this
information in M.remakes. The correspondence between these relations can
be specified as: M.remakes corresponds to S2.film join S1.movie where
S2.film.title = S1.movie.film and S2.film.year > S1.movie.year. Usual
schema matching approaches cannot specify this correspondence, because join
conditions are not explicitly defined in schema matching. Moreover, join paths
are normally automatically discovered in the schema mapping phase [14],
and the algorithms used can only find equi-join conditions, so they cannot
automatically discover the condition S2.film.year > S1.movie.year. Hence,
we need a schema matching approach that makes it possible to specify the
join between relations and allows general join conditions containing operators
different from equality.

2. Correspondences Between Relations Involving Outer-joins (Full, Left, or
Right). We want to indicate how M.movie is related to source schemas S1

and S2. M.movie and S2.film represent the same concept of the real world
(i.e., both relations store current movies shown at some cinema). However, it
is not enough to specify that M.movie matches S2.film, because there are
attributes in S1.movie (namely, category and summary) that contain infor-
mation required in the schema of M.movie. Hence, we should specify that

2 We use a path representation: an attribute A of a given relation R in a given database
schema D is referred to as D.R.A. For simplicity, we omit the database schema when
the context is clear.

Using Complex Correspondences for Integrating Relational Data Sources 61

M.movie is related to both S1.movie and S2.film. However, it is not correct
we simply match M.movie to S1.movie because S1.movie can store movies
that are not being shown in a cinema anymore and M.movie can store recent
movies that are not available in dvds yet. In summary, we should specify that:
M.movie corresponds to S2.film left outer-join S1.movie on S2.film.title =
S1.movie.film and S2.film.year = S1.movie.year. Note that the condition
S2.film.title = S1.movie.film and S2.film.year = S1.movie.year guaran-
tees that we refer to a same movie stored in both S1.movie and S2.film.
Again, we cannot specify this type of correspondence since joins (and their
variants) are not explicitly defined in current schema matching approaches.

3. Correspondences Between Data and Metadata. Consider the relations
S1.movieMakers and M.filmMakers. Both keep information about the
relationship between a movie, a producer, and a director. We want to
indicate that M.filmMakers corresponds to S1.movieMakers since they
represent the same concept in the real world. In addition, we want to spec-
ify the correspondences between the attributes of these relations. Know-
ing that S1.movieMakers.name can be a producer name or a director
name, we would like to specify that M.filmMakers.producer corresponds
to S1.movieMakers.name when S1.movieMakers.role = “producer”
and that M.filmMakers.director corresponds to S1.movieMakers.name
when S1.movieMakers.role = “director”. However, we cannot spec-
ify these correspondences using traditional schema matching approaches,
because these correspondences involve semantics not covered yet by these
approaches. Actually, we can only specify that M.filmMakers.producer
matches to S1.movieMakers.name and M.filmMakers.director matches
to S1.movieMakers.name.

In order to deal with these situations, we propose to use a formalism based on
CAs [10,15]. Using CAs, we can declaratively specify basic and complex match-
ings with semantics. We propose to adapt CAs to be able to express schema
matching between relational schemas, as well as to extend this formalism with
new types of CAs to deal with joins, outer-joins, and data-metadata relation-
ships. Finally, we demonstrate how mapping expressions in the form of SQL
queries can be generated from CAs.

3 Background

In this section, we present the basic terminology used in this paper. We also
review the different classes of CAs, and adapt them to the Relational Data
Model (RDM).

3.1 Basic Concept and Notation

We assume that the reader is familiar with the relational concepts. We denote
a relation schema as R(A1, A2, . . . , An), and a foreign key as FK(R:L, S:K).
We say that FK relates R and S.

62 V. Pequeno et al.

A relational schema is a pair S= (R, Ω), where R is a set of relation schemas
and Ω is a set of relational constraints such that: (i) Ω has a unique primary key
for each relation schema in R; (ii) if Ω has a foreign key of the form FK(R:L,
S: K), then Ω also has a constraint indicating that K is the primary key of S.
Given a relation schema R(A1, A2, . . . , An) and a tuple variable t over R, we
use t[Ai] to denote the projection of t over Ai.

Let S= (R, Ω) be a relational schema and R and T be relation names of
relation schemas in R. We denote � = FK1• FK2 • · · · • FKn−1 a path from R

to T iff there is a list R1, . . . , Rn of relation schemas in S such that R1 = R,
Rn = T, and FKi relates Ri and Ri+1. We say that tuples of R reference tuples
of T through �.

3.2 Correspondence Assertions

We use Correspondence Assertions (CAs) in order to express schema matchings
between schema elements. CAs are formal expressions of the general form ψ:
T ← S, where ψ is the name of the CA, T is an expression formed by elements
of the target schema, and S is an expression formed by elements of a source
schema. The symbol “←” means “is matched from”.

In accordance to [10], there are four types of CAs: Relation Correspondence
Assertion (RCA), Attribute Correspondence Assertion (ACA), Summation Cor-
respondence Assertion (SCA), and Grouping Correspondence Assertion (GCA).
RCAs and SCAs specify the relationship between relations of distinct schemas,
while ACAs and GCAs specify the relationship between attributes of relations
of distinct schemas. We now shortly describe each type of CA, adapting them to
the RDM. In the remainder of this Section, consider: Si= (Ri, Ωi) be relational
schemas for 1 ≤ i ≤ n, with Ri being relation names of relation schemas in Ri.

Definition 1. Let σ be a selection over R2. A Relation Correspondence Asser-
tion RCA is an expression of one of the following forms:

1. ψ: S1[R1] ← S2[R2]
2. ψ: S1[R1] ← S2[R2σ]
3. ψ: S1[R1] ← S2[R2] − S3[R3]

4. ψ: S1[R1] ←
⋃n

i=1 Si[Ri]

5. ψ: S1[R1] ←
⋂n

i=1 Si[Ri] �

In Definition 1, we say that ψ matches R1 and Ri, for 1 ≤ i ≤ n. RCAs
express the various kinds of semantic equivalent relationships. Two relations R1

and R2 are semantically equivalent if they represent the same real concept and
there is a 1-to-1 correspondence between their instances. ψ1, shown in Fig. 2, is
an example of a RCA.

ψ1 specifies that M.schedule is semantically equivalent to S2.showTime

when the condition S2.showTime.city = “Lisbon” is satisfied. This means that
only a subset of tuples of S2.showTime, those that satisfy the condition are
involved in the match.

Before we define an Attribute Correspondence Assertion (ACA), we need
introduce the concept of attribute expression, as follows:

Using Complex Correspondences for Integrating Relational Data Sources 63

Fig. 2. Examples of correspondence assertions.

Definition 2. Let R2 and T be relation names in R2, with A being an attribute
of R2 and B an attribute of T. Let also � be a path from R2 to T. An attribute
expression E over R2 is an expression with one of the following forms:

1. S2[R2] • A 2. S2[R2] • �/B. �

Definition 3. Let Ai be attributes of R1 (for 1 ≤ i ≤ n). Let also Ej, for
1 ≤ j ≤ m, be attribute expressions over R2. An Attribute Correspondence
Assertion (ACA) is an expression of one of the following forms:

1. ψ: S1[R1] • A1 ← E1

2. ψ: S1[R1] • A1 ← ϕ(E1, E2, . . . , Em)
3. ψ: S1[R1] •A1 ←(E1, p1); . . . ; (Em; pm);v
4. ψ: S1[R1](A1, . . . , An)←(E1, . . . ,En)

Where ϕ is a function over attributes of R2, pj (for 1 ≤ j ≤ m) are boolean
conditions over attributes of R2, and v is a value. We say that ψ matches R1

and R2. �

ACAs specify the relationship between the attributes of relations that are
matched by a RCA. They allow to define 1:1, 1:n, n:1, or m:n relationships
between attributes of relations of different schemas. For example see the ACA ψ2

presented in Fig. 2. It specifies the correspondence between M.schedule.movie
and S2.film.title through a path from showTime to film.

Definition 4. Let σ be a selection over R2. Let also A’i attributes of R2 (for
1 ≤ i ≤ m). A Summation Correspondence Assertion (SCA) is an expression of
one of the following forms:

1. ψ: S1[R1] ⇐ groupby(S2[R2](A′
1,A′

2, . . . ,A′
m))

2. ψ: S1[R1] ⇐ groupby(S2[R2σ](A′
1,A′

2, . . . ,A′
m))

3. ψ: S1[R1] ⇐ normalise(S2[R2](A′
1,A′

2, . . . ,A′
m))

4. ψ: S1[R1] ⇐ normalise(S2[R2σ](A′
1,A′

2, . . . ,A′
m)) �

In Definition 4, we say that ψ matches R1 and R2. SCAS specify 1:n, n:1, m:n
relationships between relations with distinct schemas. Here we use the symbol
“⇐” instead of “←” in order to emphasize that the correspondence is not 1:1
as is usual in the most part of schema matching approaches. SCAS are used
to describe the summary of a relation whose tuples are related to the tuples of
another relation by gathering them into logical groups. This means that a SCA
has only the necessary information to indicate which grouping field is involved in

64 V. Pequeno et al.

the relationship and the process used to grouping the tuples. ψ3 shown in Fig. 2
is a simple example of a SCA.

GCAs specify the relationship 1:1, 1:n, n:1, or m:n between attributes of
relations that are matched by a SCA.

Definition 5. Let A be an attribute of R1. Let also E i, for 1 ≤ i ≤ m, be
attribute expressions over R2. A Grouping Correspondence Assertion (GCA) is
an expression of one of the following forms:

1. ψ: S1[R1] • A ⇐ E1

2. ψ: S1[R1] • A ⇐ ϕ(E1, E2, . . . , Em)
3. ψ:S1[R1]•A⇐(E1, p1);. . . ;(Em; pm);v
4. ψ: S1[R1] • A ⇐ γ(E1).

5. ψ: S1[R1] • A ⇐ γ(ϕ(E1, E2, . . . , Em))

6. ψ: S1[R1] • A ⇐ γ(E1, p).

7. ψ: S1[R1]•A ⇐ γ(ϕ(E1, E2, . . . , Em), p)

Where ϕ is a function over attributes of R2, pj (for 1 ≤ j ≤ m) are boolean
conditions over attributes of R2, v is a value, and γ is one of the aggregate
functions: sum (summation), max (maximum), min (minimum), avg (average),
or count. We say that ψ matches R1 and R2. �

Consider the relations S2.film and M.rating. ψ4, represented in Fig. 2, spec-
ifies that M.rating.quantity corresponds to the counting of all distinct values
of S2.film.rate.

Definition 6. Let S1, S2, . . . , Sn and T be relational schemas; R1 be a relation
schema of T, and R2 a relation schema of some Si, 1 ≤ i ≤ n. Let also Ej

(for 1 ≤ j ≤ m) be expressions as defined in Definition 2. A schema matching
between schemas S1, S2, . . . , Sn and the schema T is a set M of CAs such that:

1. if M has an ACA ψ such that ψ matches R1 and R2, then M has a RCA ψ′

that matches R1 and R2.
2. if M has a GCA ψ such that ψ matches R1 and R2, then M has a SCA ψ′

that matches R1 and R2.
3. if M has a RCA ψ such that ψ matches R1 and R2, then M has an ACA

ψ′: S1[R1](A1, . . . ,An) ← (E1, . . . , En) that matches R1 and R2. �

4 Specifying New CAs

In Sect. 1, we identified the following types of relationships between schemas
elements that are not properly handled in current schema matching approaches:
(1) matches involving explicit join conditions; (2) matches involving outer-joins;
and (3) matches involving data-metadata. Join (and outer-join) relationships
can express one-to-one or many-to-many correspondences between the relations
involved. Matches involving data-metadata can express many-to-many corre-
spondences between the relations involved. So, we extend our previous defini-
tions of RCA and SCA in order to better specify these types of matchings. In
the following text consider Si relational schemas, Ri relation schemes of Si (for
1 ≤ i ≤ 3), θ a join condition between R2 and R3, and Aj attributes of R2 (for
1 ≤ j ≤ n)

Using Complex Correspondences for Integrating Relational Data Sources 65

Definition 7. A Relation Correspondence Assertion (RCA) is an expression of
one of the following forms:

1. Expressions shown in Definition 1
2. ψ: S1[R1] ← S2[R2] �	 S3[R3]θ
3. ψ: S1[R1] ← S2[R2] ��	 S3[R3]θ

4. ψ: S1[R1] ← S2[R2] �	� S3[R3]θ
5. ψ: S1[R1] ← S2[R2] ��	� S3[R3]θ

�

Definition 8. A Summation Correspondence Assertion (SCA) is an expression
of one of the following forms:

1. Expressions shown in Definition 4
2. ψ: S1[R1] ⇐ S2[R2] �� S3[R3]θ
3. ψ: S1[R1] ⇐ S2[R2] ��� S3[R3]θ

4. ψ: S1[R1] ⇐ S2[R2] ��� S3[R3]θ
5. ψ: S1[R1] ⇐ S2[R2] ���� S3[R3]θ
6. ψ:S1[R1]⇐metadata(S2[R2](A1,. . . ,An)) �

Consider the three examples about join, outer-join, and data-metadata cor-
respondences described in Sect. 1. The correspondence between M.remakes and
both S1.movies and S2.film can be specified by the SCA ψ5 shown in Fig. 3. ψ5

specifies that M.remakes corresponds to a join between S1.movies and S2.film
where the join condition: S2.film.title= S1.movie.film and S2.film.year >
S1.movie.year is satisfied.

Fig. 3. Examples of CAs involving joins, outer-joins and data-metadata.

The correspondence between M.movie and both S2.film and S1.movie can
be specified by the RCA ψ6, shown in Fig. 3. ψ6 specifies that M.movie corre-
sponds to a left outer-join between S2.film and S1.movie.

The correspondence between M.filmMakers and S1.movieMakers can be
specified by the SCA ψ7, shown in Fig. 3. ψ7 specifies that M.filmMakers cor-
responds to grouping S1.movieMakers by the attribute id, being that a data-
metadata translation should be performed (i.e., some data should be converted
into metadata).

Once the schema matching is finished, the CAs generated can be used, for
example, to generate mapping expressions that convert data sources into data
target. We propose that the mapping expressions are automatically generated in
the form of SQL queries, which are used to load the relations (the materialized
views) of the integrated schema.

66 V. Pequeno et al.

5 From CAs to Mapping Expressions

In our proposal, the process to create queries to transform data from a schema
to another one consists of three steps:

1. Indicate the source schemas and the integrated schema using a high-level data
model. In our case, we use the RDM.

2. Define the CA that formally specify the relationships between the integrated
schema and the source schemas.

3. Generate a set of queries based on the CAs generated in step 2, in order to
populate the relations of the integrated schema.

In order to illustrate our approach, consider the integrated schema M and
the sources schemas S1 and S2 shown in Fig. 1.

Now, we should define CAs between M and S1, and CAs between M and
S2. In our work, the CAs are specified using a GAV approach rather than a
LAV one. One of reasons for our choices was due to the GAV approach makes
the query answering easier than LAV one, both in materialized and in virtual
integration approaches.

The process to generate the CAs consists of the following steps:

1. To each relation R
T of the target T do:

(a) Identify the correspondences at a relation level (i.e., if there is a RCA or
a SCA matching a target relation R

T and some source relation R
S).

(b) Identify the correspondences at an attribute level: (1) identify the ACAs
between the attributes of RT and R

S (if there is a RCA between R
T and

R
S); (2) identify the GCA between the attributes of RT and R

S (if there
is a SCA between R

T and R
S).

(c) Determine which RCA and SCA can be combined to form a single CA.

In the current work, CAS were manually specified. However, we can use tradi-
tional schema matching tools (e.g.,[8,9]) as a starting point to find basic match-
ings. Then these basic matchings can be enriched through our formalism (using
the CAs).

Some examples of RCAs, ACAs, SCAs, and GCAs between elements of M
and the source schemas S1 and S2 can be found in Figs. 3 and 4.

The final step in the process of creating queries to transform data from
a schema to another is the generation of the queries. In our proposal, they
are defined based on the definition of the schemas and the CAs. Here we use
SQL syntax of MySQL, since MySQL is an open source database that allows to
combine the information from many databases in a single query. However, our
CAs can be used to generate queries in any SQL syntax or even other federating
queries languages as SchemaSQL [16].

Let M be a set of CAs that defines a matching between the source schemas
S1, S2 and the integrated schema G, that is, M satisfies the conditions stated
in Definition 6. Algorithm 1 shows the procedure to automatically generate the
statements of SQL queries from the CAs in M.

Using Complex Correspondences for Integrating Relational Data Sources 67

Fig. 4. Examples of ACAs and GCAs.

The Algorithm 1 generates a set of SQL queries, one for each relation schema
R

T in the integrated schema. First it spans all ACAs and GCAs that relates
attributes of RT , and puts the correct value in lists S, J, and LA, in accordance
to the type of the CA. S keeps the relation schemas that will be included in the
FROM clause, J keeps the join conditions that will be included in the WHERE
clause, and LA keeps the attributes that will be included in the SELECT clause.
The procedure G SQL ACA(), shown in Algorithm 2, spans the ACAs, while the
procedure G SQL GCA(), shown in Algorithm 3, spans the GCAs. After, the
algorithm spans the RCAs and SCAs, of RT , in order to create the SQL query
to load R

T , using templates in Table 1. In accordance to type of CA besides S,
J, and LA, other variables are needed to keep the join conditions that will be
included in the ON clause (θ), the relation schema that will be included in (inner,
outer, left, or right) JOIN clause (RJ), and the grouping attributes that will be
included in the GROUP BY clause (G). Due to space limitations, Algorithms
1, 2, and 3, as well as the Table 1, do not cover the whole set of CAs as defined
in Definitions 3, 5, 7, and 8.

In Algorithms 2, we assumed that ϕ() is a pre-defined SQL function or a
user-defined function on SQL. In Algorithms 3, JAux, and Aux are lists used
when it is necessary to create temporary tables in SQL. This occurs when the
SQL query is created from a SCA of metadata. JAux stores the joins that will
be included in the WHERE clause of the temporary table, while Aux keeps the
relation schema that will be the alias of the temporary table.

In Table 1, Att() is a function that returns the list of attribute names of a
relation schema. We use the short word outer join to emulate a UNION of a
LEFT JOIN and a RIGHT JOIN, since MySQL does not support directly full
outer-joins.

The SQL queries generated by our algorithms can be used to compute the
data target once, and to recompute them at pre-stablished times in order to
maintain the target data up-to-date (this approach is named rematerialization).
Generally, a more efficient approach is to periodically modify only part of the tar-
get data to reflect updates in data sources (this approach is named incremental
maintenance). Rematerialization is adequate, for example, when the integrated
schema is firstly populated, or in situations involving complex operations.

68 V. Pequeno et al.

Algorithm 1 . Generate the SQL query to load a integrated schema G from the

sources.

for all relation schema N = R
T in G do

Let ψR be a RCA or SCA of RT

if ψR is a RCA then G SQL ACA(R
T ,ψR)

else G SQL GCA(R
T ,ψR)

append [RT] to S
switch ψR do

case ψR: G[RT] ← S[R]
if J = [] then use template T1
else use template T3

case ψR: G[RT] ← S1[R1] ∪ S2[R2]
append [R2] to RJ
θ keeps join conditions formed by primary key attributes of R1 and R2
if J = [] then use template T7
else use template T8

case ψR: G[RT] ← S1[R1] ��� S2[R2]θ
append [R2] to RJ
if J = [] then use template T5
else use template T6

case ψR: G[RT] ⇐ metadata(S[R](A))
append [A] to AL
if J = [] then use template T13
else use template T4

case ψR: G[RT] ⇐ normalise(S[R](A))
append [A] to G
Use template T15

end switch
end for

Algorithm 2. G SQL ACA().

Input: R
T , ψR

Let S[R] be a source’s relation in ψR

for all attribute AT in R
T do

while ∃ψA/ψA is an ACA of AT relating it to some atribute of S[R] do

if ψA: G[RT] • AT ← S[R] • A1 then append [A1] to LA

if ψA: G[RT] • AT ← ϕ(S[R] • A1, S[R] • A2, . . . , S[R] • Am) then append
[ϕ(A1, A2, . . . , Am)] to LA

end while
end for

Figure 5 presents the SQL query to transform data fromS1.movie and S2.film
to M.movie from the RCA ψ6 and ACA ψ8, ψ9, ψ10, and ψ11. The “select” clause
(in line 2) is derived based on ACAS ψ8, ψ9 , ψ10 and ψ11. The “from” clause (in
line 3) implements a join operation as specified by RCA ψ6. The “on” clause (in
line 4) is based on the join condition indicated in the end of ψ6.

Fig. 5. Query definition to populate M.movie from S2.film and S1.movie.

Using Complex Correspondences for Integrating Relational Data Sources 69

Algorithm 3. G SQL GCA().

Input: R
T , ψR

Let S[R] be a source’s relation in ψR

for all attribute AT in R
T do

while ∃ψA/ψA is an GCA of AT relating it to some atribute of S[R] do

if ψA: G[RT] • AT ← S[R] • A1 then append [A1] to LA

if ψA: G[RT] • AT ← S[R] • �/Bk then
for all FK in � do

Let R1 and R2 be relation schemas related by FK

Let [a1, . . . , an] and [b1, . . . , bn] be lists of key attributes of, respectively, R1 and R2
append [R1, R2] to S
append [a1 = b1, . . . , an = bn] to J
append [B] to LA

end for
if ψA:G[RT] • AT ← (S[R] • A1, p1) and ψR is of metadata then

append [A1] to LA
append [Temp R] to Aux
append [p1] to JAux

end while
end for

Table 1. Templates to generate SQL Statements induced by RCAS and ACAS.

Figure 6 presents the definition of the query to transform data from
S1.movieMakers to M.filmMakers. For this query, we have to define a
nested select statement to each case-base GCA that relates attributes of
S1.movieMakers to attributes of M.filmMakers. Each nested select state-
ment must be joined through an outer-join in order to guarantee both: i)
that duplicate tuples will be merged properly, and 2) not duplicate tuples will
be stored in M.filmMakers. Thus, the clauses “from” (line 3), “outer join”
(line 7), and “on” (line 12) correctly implement the data-metadata relationship
specified by the SCA ψ7. The “on” clause (line 12) is based on the attribute
indicated in ψ7. The first nested select statement (lines 4 to 6) is defined based
on the GCAS ψ12 and ψ14. The second nested select statement (lines 8 to 11) is
similar to the first one, but now it is based on ψ13 and ψ14. The “select” clause
in line 2 is based on the left-hand side of GCAs ψ12, ψ13 and ψ14.

70 V. Pequeno et al.

Fig. 6. Query definition to populate M.filmMakers from S1.movieMakers.

6 Empirical Evaluation

We have performed some preliminary tests to verify that our approach is
tractable for reasonably sized input.

6.1 Study Case Scenario

For our evaluation, we create a case study to simulate a situation close to the real
world. We need to integrate information of three different sources: IES, FSP, and
CDV to get a more complete information about Brazil’s universities. IES contains
data about Brazil’s universities (name, city, state, etc.). It has a single relation
(ies 2011) with 26 attributes and 2366 tuples3. FSP contains data about the
ranking of the Brazil’s universities (ranking, university, grade, etc.). It has two
relations, but only one of them (ranking, with 13 attributes and 191 tuples)
was used in the evaluation4. CDV contains data about the living cost of some
cities of Brazil. It has a single relation (livingCost) with 5 attributes and 84
tuples5.

The integrated schema, named G, contains the necessary structure to keep
the information required by the designer. It contains 8 relations with a total of
31 attributes and 8 foreign keys, as can be saw in the Fig. 7.

6.2 Method

We measure the performance of the data translation (i.e., the run time of
the queries to load the schema G). For our tests, we have used a Macbook
Pro/2.3GHz Intel Core (4GB of RAM and 499Gb of HD) running OSx 10.9.5.
All databases were locally stored in this machine using the MySQL 5.6.

We first manually defined the CAs, with the aid of a tool implemented by
us. For this case study, we defined 3 RCAs, 5 SCAs of normalize, 31 ACAs,
3 IES data was extract from http://www.dados.gov.br/dataset/instituicoes-de-

ensino-superior.
4 FSP data was extract from http://ruf.folha.uol.com.br/2014/rankingdeuniversi

dades/.
5 CDV data was extract from http://wwwcustodevida.com.br/brasil.

http://www.dados.gov.br/dataset/instituicoes-de-ensino-superior
http://www.dados.gov.br/dataset/instituicoes-de-ensino-superior
http://ruf.folha.uol.com.br/2014/rankingdeuniversidades/
http://ruf.folha.uol.com.br/2014/rankingdeuniversidades/
http://wwwcustodevida.com.br/brasil

Using Complex Correspondences for Integrating Relational Data Sources 71

Fig. 7. The integrated schema G.

and 8 GCAs, being a total of 52 CAs. Using the Algorithm 1, we generate 8
SQL queries: 5 queries of group by, 2 simple select-from queries, and 1 more
complex query that simulates the outer join operator. Some queries use stored
functions defined to looks for the value of a primary key in a target relation
based on the attribute value of a source relation.

For data translation test, we measured the time that MySQL took to load
each target relation using the queries generated by the Algorithm 1. Due to the
run time of SQL queries can change depending on internal and external factors,
we ran each query by 50 times and took the average to each 10 executions. All
tests were performed locally in a same machine and only the MySQL server
and MySQLWorkbench were running at the time. The result of the test can be
observed through the chart shown in Fig. 8.

Fig. 8. Run time query by quantity of executions chart.

72 V. Pequeno et al.

6.3 Discussion

We noted that the run time to most queries are more or less constant and below
that 60 ms. It is not a surprise that the queries with higher execution time were
those to load fsp ranking (about 200ms) and university (about 590 ms),
because both has more tuples to load than the others. Considering the number
of tuples of the university (more than 2000) and that the query generated is a
bit complex (includes left-join, right-join, union all, and 5 stored functions), we
believe that 590 ms is a good performance.

7 Related Work

Schema matching is an important step of the data integration process. Typically,
1:1 correspondences between two different schemas are manually defined using
a GUI or are (semi-) automatically discovered using matchers (usually through
heuristics). Each correspondence, in general, only specifies which elements refer
to a same attribute or relation in the real world [17]. AgreementMaker [4], and
OII Harmony [9] are some examples of tools for schema matching. Agreement-
Maker [4] can match schemas and ontologies using schema information as well as
instance-level data to generate the correspondences. OII Harmony [9] combines
multiple matchers algorithms based on natural-language processing to identify
correspondences between schemas.

Correspondences such as those defined/generated in [4,9] do not provide all
necessary information for discovering expressions to transform data sources in
data target (i.e., the mapping expressions), the next phase in the schema map-
ping process. Richer models for specifying correspondences between schemas
were proposed by [8,11–13] and [5](chap. 3). These approaches allow to define
one-to-one or many-to-one attribute correspondences (i.e., association between
attributes of two schemas). COMA++ [8] is a generic prototype for schema
and ontology matching, schema-based and instance-based, and support a semi-
automatic or manual enrichment of simple 1:1 correspondences into more com-
plex mapping expressions including functions to support data transformations.
[13] describes the IMAP system, which semi-automatically discovers complex
matches, using different kinds of information such as domain knowledge, and
domain integrity constraints to improve matching accuracy. [5](chap. 3) and [11]
allow to express conditional correspondences (i.e., the value of an attribute A
is the same of an attribute B if a given condition is satisfied). More closely to
our approach is the work in [12]. In [12], the authors allow to manually specify
one-to-one correspondence assertions between elements of Entity Relationship
models. Although they cannot specify many-to-many matches, their correspon-
dences have some semantic and allow to specify relationships such as: equiva-
lence, union, intersection, and selection.

[10] specify one-to-one and many-to-many basic, complex, and semantic
matches between elements of object-relational schemas. They can specify most
part of the correspondences specified in [12] and other more complex. For exam-
ple, they can deal with aggregate functions, denormalisations, and grouping (i.e.,
group by in SQL). Joins and outer-joins are implicitly defined based on the

Using Complex Correspondences for Integrating Relational Data Sources 73

integrity constraints or match functions6. A distinguished feature of the app-
roach proposed in [10] is that it allows to match, in the same correspondence,
relations and attributes of two or more schemas. Yet, the information they pro-
vide is not sufficient, since they do not explicitly enable the specification of join
paths and its variants, nor to deal with data-metadata relationships.

Data-metadata translations between elements of different relational schemas
have been studied extensively. SchemaSQL [16] and FIRA/FISQL [18] are the
most notable works on this subject. SchemaSQL [16] is a SQL-like metadata
query language that uses view statements to restructure one column of val-
ues of a relation into metadata in another one. FISQL [18] is a sucessor of
SchemaSQL and it is equivalent to the query algebra FIRA. Both SchemaSQL
and FIRA/FISQL were proposed to provide interoperability in relational multi-
database systems. Our SCA of metadata was based on the promote metadata
operator of FIRA.

8 Conclusions

This paper focused on present CAs that deal with 1:1 and m:n matchings between
schemas components, including correspondences involving aggregations, joins,
and metadata. We emphasize that, in our approach, the CAs can specify basic
and complex correspondences with semantics. Using CAs, we shown how SQL
queries can be automatically generated to populate relations (views) of a global
schema.

We presented some preliminary tests to evaluate the performance of the
queries generated from CAs. We intend to realize more tests to evaluate the
performance to different types of queries and other datasets.

We currently are working in as specifying complex correspondences between
relational schemas and (RDF). Some initial work was published in [19]. We intent
extend the initial proposal with the CAs presented here.

Acknowledgements. This work was partially supported by national funds through
FCT - Fundação para a Ciência e a Tecnologia, under the project PEst-OE/EEI/
LA0021/2013, DataStorm Research Line of Excellency funding (EXCL/EEI-ESS/
0257/2012) and the grant SFRH/BPD/76024/2011. We are especially grateful to Diego
Cardoso (UFC, Brazil) for the implementation of the algorithms.

References

1. Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Ware-
house Lifecycle Tookit, 2nd edn. Wiley, Indianapolis (2008)

2. Popfinger, C.: Enhanced Active Databases for Federated Information Systems.
PhD thesis, Heinrich Heine University Düsseldorf (2006)

6 Match functions are functions that determine if two different instances represent the
same concept in the real world.

74 V. Pequeno et al.

3. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

4. Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: efficient matching for large
real-world schemas and ontologies. Proc. VLDB Endow. 2(2), 1586–1589 (2009)

5. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer, Heidelberg (2011)

6. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

7. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

8. Massmann, S., Raunich, S., Aumueller, D., Arnold, P., Rahm, E.: Evolution of the
COMA match system. In: The 6th Intl. Workshop on Ontology Matching. (2011)

9. Mork, P., Seligman, L., Rosenthal, A., Korb, J., Wolf, C.: The Harmony integration
workbench. J. Data Semant. 11, 65–93 (2008)

10. Pequeno, V.M., Pires, J.C.M.: Using perspective schemata to model the ETL
process. In: ICMIS 2009, pp. 332–339. World Academy of Science, Engineering
and Technology (2009)

11. Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting context into schema
matching. In: VLDB, pp. 307–318 (2006)

12. Vidal, V.M.P., Lóscio, B.F.: Updating multiple databases through mediators. In:
ICEIS 1999, pp. 163–170 (1999)

13. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: IMAP: Discovering
complex mappings between database schemas. In: ACM SIGMOD, pp. 383–394
(2004)

14. Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and
refinement of schema mappings. In: ACM SIGMOD, pp. 485–496. ACM (2001)

15. Pequeno, V.M., Apaŕıcio, J.N.: Using correspondence assertions to specify the
semantics of views in an object-relational data warehouse. In: ICEIS 2005, pp.
219–225 (2005)

16. Lakshmanan, L., Sadri, F., Subramanian, I.: SchemaSQL - a language for inter-
operability in relational multi-database systems. In: VLDB, pp. 239–250. Morgan
Kaufmann (1996)

17. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann,
Waltham (2012)

18. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Trans. Database Syst. 30, 624–660 (2005)

19. Pequeno, V.M., Vidal, V.M.P., Casanova, M.A., Neto, L.E.T., Galhardas, H.: Spec-
ifying complex correspondences between relational schemas and rdf models for gen-
erating customized R2RML mappings. In: IDEAS 2014, pp. 96–104. ACM (2014)

	Using Complex Correspondences for Integrating Relational Data Sources
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Basic Concept and Notation
	3.2 Correspondence Assertions

	4 Specifying New CAs
	5 From CAs to Mapping Expressions
	6 Empirical Evaluation
	6.1 Study Case Scenario
	6.2 Method
	6.3 Discussion

	7 Related Work
	8 Conclusions
	References

