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    Chapter 5   
 Pathobiology of Hepatitis B Virus-Induced 
Carcinogenesis       

       Francesca     Guerrieri    ,     Laura     Belloni    ,     Natalia     Pediconi    , and     Massimo     Levrero    

            Introduction 

 Hepatocellular carcinoma ( HCC)   is one of the most frequent solid tumors worldwide, 
with more than 250,000 new HCC cases annually and an estimated 500,000–600,000 
deaths/year [ 1 ,  2 ], and because of its very poor prognosis is the second cause of 
cancer death worldwide [ 3 ]. 

 HCC development is driven by multiple viruses (HBV, HCV)    and chronic meta-
bolic alterations that lead to chronic infl ammation, DNA damage, and epigenetic 
and genetic changes that affect both “common” and “etiology specifi c”  oncogenic 
pathways  . The clinical and molecular heterogeneity of HCC translates into “ molec-
ular signatures”   that identify discrete molecular subgroups of HCC and stratify 
patients according to prognosis. 

 Numerous signaling modules are deregulated in HCC, including growth factor 
signaling (e.g., IGF, EGF, PDGF, FGF, HGF), cell differentiation (WNT, Hedgehog, 
Notch), and angiogenesis (VEGF).  Intracellular mediators   such as RAS and AKT/
mTOR also play a role in HCC development and progression. The use of novel 
molecular technologies such as next-generation sequencing (NGS) has enabled the 
identifi cation of pathways previously underexplored in the HCC fi eld, such as chro-
matin remodeling and autophagy. 
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 Different molecular mechanisms are involved in  aberrant pathway activation  , 
including point mutations, chromosomal aberrations and epigenetically driven 
downregulation. Importantly, whereas mutations and chromosomal aberrations 
have been predominantly found in tumor tissues, with the notable exception of the 
recently reported TERT promoter mutations, deregulation of signaling pathways 
and epigenetic changes are also detected early in the natural history of HCC devel-
opment, at the stage of cirrhosis or dysplastic  nodules  . 

 Chronic infl ammation, double-strand breaks (DSBs) accumulation, epigenetic 
modifi cations, chromosomal instability, and early neo-angiogenesis are the major 
driving forces in hepatocytes transformation, HCC development and progression. 
All “etiologic”  factors   (i.e., chronic HBV and HCV infections, chronic metabolic 
alterations) seem to act through overlapping and non-overlapping mechanisms that 
fi nally converge on these pathways. 

 Recent views on the molecular pathogenesis and classifi cation of HCCs and their 
impact on the design of new therapeutic approaches can be found in Refs.  4 – 10 . In 
this chapter, we focus on the molecular characterization of HBV-related HCCs and 
the role of HBV genetic variability, HBV integration into the host genome and wild- 
type and mutated/truncated viral proteins to HBV  carcinogenesis  .  

     Epidemiology and Risk Factors   

 Chronic hepatitis B infection remains a major public health problem worldwide 
despite the availability of the HBV vaccine since the early 1990s and the decreased 
incidence of HBV new infections in most countries [ 2 ]. Over 400 million people 
chronically infected with HBV are at high risk of developing liver cirrhosis and 
hepatocellular carcinoma (HCC)    [ 11 ], making HBV the most common carcinogen 
after tobacco. Recent estimates attribute to HBV over 50 % of HCC cases worldwide 
[ 1 ,  2 ]. Because of geographic variations in the incidence of hepatitis B, the fraction 
of HCC attributable to HBV varies signifi cantly, representing less than 20 % of all 
cases of HCC in the USA and up to 65 % in China and Far East; Europe is divided 
into a low-risk (18 %) area (west and north Europe) and a high-risk (51 %) area (east 
and south Europe) [ 3 ]. The role of HBV in HCC may be greater than that depicted 
by sero-epidemiologic studies, as suggested by the increased risk of developing 
HCC in patients with occult HBV infection [defi ned as persistence of free and/or 
integrated forms of HBV-DNA in the liver in the absence of the viral marker HBsAg 
in the serum [ 12 ]] and after hepatitis B surface antigen (HBsAg) clearance [ 13 – 17 ]. 

 The lifetime risk of developing HCC is 10- to 25-fold greater for chronic HBV 
carriers, as compared with non-infected populations [ 18 ]. Important epidemiologic 
features of HBV-related HCC include younger age at presentation compared with 
HCC cases related to alcohol, non-alcoholic steato-hepatitis, and HCV and the 
absence of cirrhosis in one-third of patients with HCC [ 11 ,  18 ]. 

 Several virus-related, host-related, dietary, and lifestyle factors are associated 
with an increased risk of HCC in patients who are chronically infected by 
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HBV. Increasing age, refl ecting longer exposure to HBV, and male gender have long 
been known to enhance the risk for HCC [ 18 ]. More recently, evidence has emerged 
that gender disparity in HCC risk may also refl ect protection against this tumor by 
estrogen via complex networks involving hepatocyte nuclear factor-4a [ 19 ] and IL6 
signaling [ 20 ]. Hepatitis severity and coinfection with hepatitis D virus and hepati-
tis C virus (HCV), or human immunodefi ciency virus (HIV) have been also found 
to augment the risk of HCC in chronic HBV infection. Alcohol consumption, a well 
established independent risk factor for HCC, also plays a synergistic role with a 
more than twofold increase of the carcinogenic risk of HBV [ 21 ].  Tobacco smoking   
is also associated with an increased risk of HCC in patients with HBV-related cir-
rhosis, with evidence of a quantitative relationship between smoking and cancer 
risk. HCC frequency is particularly high in Asia and Africa due to the high fre-
quency of viral hepatitis infections and to Afl atoxin B1 (AFB1) exposure [ 1 ,  22 ]. 
Other known etiological factors of HCC development, including hemochromatosis, 
steatosis, nonalcoholic fatty liver diseases, and diabetes, often act as co-factors of 
overt and occult HBV  infection   for HCC development [ 19 ,  21 – 23 ].  

    HBV Viral heterogeneity and HCC 

 As discussed in the previous chapters, the HBV genome is, in plasma circulating 
infectious HBV particles, a circularized linear partially double-stranded DNA of 
about 3200 nucleotides [ 24 ]. Once entered the cell, HBV DNA is converted into a 
covalently closed circular DNA (HBV cccDNA) that accumulates in the nucleus of 
infected cells as a stable episome and is organized into nucleosomal structures 
[ 25 – 27 ]. HBV  cccDNA   is responsible for persistent HBV infection of hepatocytes 
and is the template for the transcription of all viral mRNAs, including the pre-
genomic HBV RNA (pgRNA), the obligatory replicative intermediate, which is 
reverse transcribed by the viral  polymerase   to produce the fi rst HBV DNA strand 
and sustain the viral replication in cytoplasmic core particles [ 28 ]. Chromatin-
modifying enzymes, cellular transcription factors, and the viral proteins HBx and 
HBc are recruited on the cccDNA mini-chromosome to regulate its transcription 
and, ultimately, viral replication [ 25 – 27 ,  29 – 31 ]. The integration of viral DNA into 
the host genome, that occurs randomly in regenerating infected  hepatocytes   [ 24 ], 
contributes to viral pathogenesis both by cis-acting mechanisms and by the con-
tinuous expression of  trans -acting wild type and truncated HBx or truncated pre-
S/S polypeptides bearing enhanced transforming properties [ 32 ]. The goal of 
therapy in  chronic hepatitis B (CHB)         is the persistent suppression of HBV replica-
tion [ 33 ]. Due to the lack of direct effect on the cccDNA in the nucleus, a sustained 
suppression of HBV replication by NUCs does not lead to cccDNA elimination 
(eradication) [ 26 ]. Long-term inhibition of HBV replication by NUCs has resulted 
into a reduction of the risk of HCC in non-cirrhotic patients by preventing progres-
sion to  cirrhosis   whereas in cirrhotic patients the reduced rates of anticipated liver 
mortality due to clinical decompensation, has often translated into increased rates 

5 Pathobiology of Hepatitis B Virus-Induced Carcinogenesis



98

of HCC- related mortality or, at best, a marginal effect on HCC development in 
long-term follow-ups [ 33 ,  34 ]. 

 The risk of developing HCC also correlates with HBV genotype, HBV genomic 
mutations, and HBV replication [ 14 ,  15 ]. At least eight different HBV  genotypes   
have been identifi ed (A-H) where the nucleotide sequence varies by at least 8 %. 
HBV genotype C has been associated with a higher risk of HCC development [ 35 ]. 
However, the fi ndings are not univocal and no fi rm conclusion can be drawn on 
whether HBV genotypes harbor different oncogenic potential. HBV replication 
drives both disease severity and progression and the persistence of high-serum 
HBV-DNA levels correlate in the clinical setting with liver damage accumulation, 
evolution to cirrhosis, and HCC development [ 14 ]. 

 Variability of HBV  genome   is basically attributed to lack of proofreading by the 
HBV polymerase and the high copy number of the virus that lead to the selection of 
HBV quasi-species containing several mutations within their viral genome. Some of 
these mutations may provide a replicative advantage to the virus while others are 
detrimental. The accumulation of mutations refl ects the duration of active HBV 
infection, the strength of the immune response and the selection pressure exerted by 
 exogenous factors   such as antiviral therapies and vaccinations [ 36 ]. HBV mutations 
are not distributed randomly over the entire genome but cluster in particular regions 
such as the basal core promoter (BCP)/preCore region and the preS/S region [ 37 ]. 

 The double-mutation T1762/A1764 in the basal core promoter is signifi cantly 
associated (OR: 6.72) with the development of HCC in both genotypes B and C [ 38 ] 
and can be detected in plasma up to 8 years before HCC diagnosis suggesting a pos-
sible use of this mutation as a strong predictive biomarker, at least in some geo-
graphical areas [ 38 ]. 

 Several HBV variants with point mutations, deletions, or insertions in the preS1 
and preS2 sequences are often found in patients with long-lasting chronic hepatitis 
B (CHB) [ 37 ] and variants defective for the M envelope protein are the most fre-
quently selected [ 39 – 44 ]. A role of HBV  preS mutants      in the pathogenesis of HCC 
is supported by a large number of experimental and clinical evidence [ 45 – 50 ]. A 
meta-analysis of 43 studies and ~11,500 HBV-infected patients has shown that 
infection with preS mutants is associated with a 3.77-fold increased risk of HCC 
[ 51 ] and the predictive value of preS deletion mutants has been recently confi rmed 
in a prospective study [ 45 ]. The HBV variants commonly associated with HCC 
include (a) mutations of the preS2 start codon and/or deletions in the 5′-terminal 
half of the preS2 region and (b) deletions in the 30-terminal half of the preS1 region 
[ 52 ,  53 ]. These preS deletion deletions correspond to viral regions containing B or 
T cells epitopes and are thought to represent HBV immune escape variants [ 54 ]. 
Both preS1 and preS2 mutations may lead to unbalanced production of the different 
envelope proteins and the accumulation of mutated L protein in the ER of hepato-
cytes, resulting in the activation of the  ER stress signaling pathway   [ 48 ,  55 – 61 ]. ER 
stress can generate reactive oxygen species and cause oxidative DNA damage, 
genomic instability, and ultimately favor HCC development [ 48 ,  62 – 66 ]. 

 HBV mutants with premature stop codon at position 172 or 182 of the S gene 
have been frequently found in patients with cirrhosis and HCC [ 67 – 70 ] and 
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nucleos(t)ide analogues (NUCs) can select mutants in the B, C, and D domain of the 
reverse transcriptase/DNA polymerase (Pol) associated with pharmacological resis-
tance [ 71 ]. Since the HBV surface gene overlaps completely, on a different  open 
reading frame (ORF)        , with the Pol gene, some changes in Pol ORF selected by 
NUCs can affect the overlapping surface gene. The rtA181T/ sW172* mutation, 
selected by lamivudine or adefovir, results in the generation of a stop codon in the 
S ORF and the production of a truncated S protein with a dominant negative secre-
tion defect that accumulates within the hepatocyte leading to ER stress and activa-
tion of oncogenic cellular pathways to be cited [ 71 ]. Importantly, the emergence of 
the rtA181T/sW172* mutant associated with an increased risk of developing HCC 
in patients [ 72 ].  

    Genetic Alterations in HBV-Related HCC 

 Extensive evidence indicates that HCC is an extremely heterogeneous tumor at the 
genetic and molecular and genetic level with a complex mutational landscape and 
multiple transcription and signaling pathways involved [ 73 – 75 ]. 

 Genetic host factors are thought to play an important role in the development of 
HCC during HBV infection and several studies of family clusters, mostly performed 
in the Far East, have identifi ed  single-nucleotide polymorphisms (SNPs)         associated 
with an increased HCC risk as compared to the control populations [ 76 ]. Risk- 
associated SNPs in chromosome 8p12 have been associated with DLC1 locus 
(Deleted in Liver Cancer 1) deletion or chromosomal loss in patients with HBV- 
related HCC [ 77 ]. Additional SNPs associated with HCC development in patients 
with chronic hepatitis B were identifi ed in the CTL-4 (cytotoxic T-lymphocyte anti-
gen 4) gene [ 78 ] and the KIF1B locus in chromosome 1p36.22 [ 79 ] but, overall, 
their predictive power seems to be low and need to be validated in larger cohorts of 
multiple ethnicity. 

 HBV-related tumors generally harbor a higher rate of chromosomal abnormali-
ties than tumors linked to other risk factors [ 80 ], likely due to the ability of HBV to 
generate genomic instability through both viral DNA integration and the activity of 
the  X protein   (see below). HBV-related HCCs are characterized by higher frequen-
cies of  TP53 mutations   at, as well as outside, the afl atoxin B1-related codon 249 
hotspot mutation [ 74 ], and AXIN1 [ 80 ], whereas activating  β-catenin mutations   are 
more frequent in non HBV-related HCCs [ 80 ]. IRF2 inactivation, that leads to 
impaired TP53 function, was found exclusively in HBV-related tumors [ 81 ]. A 
recent whole-exome sequencing analysis of 243 HCCs [ 82 ] identifi ed, by integrat-
ing mutations, focal amplifi cations and homozygous deletions, 161 putative driver 
genes associated with 11 pathways altered in >5 % of the tumors [TERT promoter 
mutations activating telomerase expression (60 %); WNT/β-catenin (54 %); phos-
phoinositide 3-kinase (PI3K)-AKT-mTOR (51 %); TP53/cell cycle (49 %); 
 mitogen- activated protein kinase (MAPK) (43 %); hepatic differentiation (34 %); 
epigenetic regulation (32 %); chromatin remodeling (28 %); oxidative stress (12 %); 
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interleukin (IL)-6/JAK-STAT (9 %); transforming growth factor (TGF)-β (5 %)]. 
New genes found to be recurrently mutated in HCC included β-catenin inhibitors 
(ZNRF3, USP34 and MACF1), hepatocyte-secreted proteins (APOB and FGA), 
and the TGF-β receptor ACVR2A.  TERT promoter mutation   were usually an early 
event, whereas FGF3, FGF4, FGF19, or CCND1 amplifi cation and TP53 and 
CDKN2A alterations appeared at more advanced stages in aggressive tumors. 
HCV infection, metabolic syndrome, and hemochromatosis did not show signifi -
cant associations. Alcohol-related HCCs were signifi cantly enriched in CTNNB1, 
TERT, CDKN2A, SMARCA2 and HGF alterations. IL6ST mutations were found in 
HCCs with no known etiology. HBV-related HCCs were more frequently mutated 
in TP53 [ 82 ]. 

  Genome-wide transcriptomic analysis   of well-annotated HCCs identifi es sub-
groups of HCC associated with specifi c clinical and genetic characteristics [ 73 ,  83 ]. 
In the study from Boyault et al. [ 83 ] the G1–G2 subgroups demonstrated overex-
pression of fetal stage-associated genes and were controlled by parental imprinting; 
G3 tumors were characterised by  TP53 mutations   and demonstrated adverse clinical 
outcome; G4 was a heterogeneous subgroup of tumours; G5–G6 subgroups were 
strongly related to  β-catenin mutations  , leading to Wnt pathway activation. G1 and 
G2 tumors were both related to HBV infection and displayed frequent activation of 
the PI3K/AKT pathway, but differed for the overexpression of genes expressed in 
fetal liver and controlled by parental imprinting (G1) and the frequent mutation of 
the PIK3CA and TP53 genes (G2) [ 83 ]. In a more extended study focused on the 
molecular characterization of HBV-related HCCs Amaddeo and colleagues [ 84 ] 
confi rmed that the TP53 gene was the most frequently mutated gene in HBV-related 
HCC (41 % vs 16 %, in non-HBV tumors) and that inactivation of the IRF2 tumor- 
suppressor gene, that controls p53 protein activation, was exclusively identifi ed in 
HBV-HCC (7 %) but also showed that HBV-related HCCs display a wide genomic 
diversity and were distributed in all G1–G6 transcriptomic subgroups. In particular 
G2 and G3 profi les were enriched and genes associated with progenitor features 
(EpCAM, AFP, KRT19, and CCNB1) were signifi cantly overexpressed in HBV- 
related HCCs compared to HCCs related to other etiologies [ 84 ]. G4–G6 profi les 
characterized a small subset of HBV-related HCCs in older patients with other 
 cofactors   such as HCV, alcohol consumption, or NASH. 

  microRNAs      [small noncoding single-stranded RNAs that regulate gene expres-
sion, primarily at the posttranscriptional level] are increasingly recognized as key 
players in the regulation of liver functions and in hepato-carcinogenesis [ 85 ]. Using 
global miRNA profi ling of HCC cell lines or liver tissue, the expression of several 
 miRNAs   has been found to be either upregulated (miR-18, miR-21, miR-221, miR- 
222, miR-224, miR- 373, and miR-301), or downregulated (miR- 122, miR-223, 
miR-125, miR-130a, miR-150, miR-199, miR-200, and let-7 family members) in 
HCC [ 85 ]. Differences between HCV- and HBV-related HCC associated miRNAs 
are emerging. miR143, miR34, and miR-19 are upregulated in HBV-related HCC 
and promote the more aggressive biological phenotype of HBV-related HCCs [ 86 , 
 87 ]. Downregulation of Let 7a by HBx is associated with upregulation of STAT3- 
induced cell proliferation [ 88 ].  HBx suppression   of miR-152 leads to upregulation 
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of DNMT1, which methylates the promoters of many tumor suppressors [ 89 ]. 
Finally, miR26 expression is low in HBV-related HCCs and lower in man than in 
women and associate with a poor survival and lower response to adjuvant therapy 
with interferon-α [ 90 ].  

    Epigenetic Mechanisms in HBV-Related HCC 

 The principal mechanisms involved in chromatin remodeling and the epigenetic 
control of gene expression are DNA methylation, enzymatic covalent   histone 
modifi cations   (e.g., acetylation, methylation, and phosphorylation) and nucleosomal 
re-structuring by ATP- dependent   chromatin re - modeling complexes . 

 Global hypo-methylation of DNA with selective hyper-methylation of tumor- 
suppressor genes promoters containing CpG islands, have been shown to modify 
gene expression patterns in the liver before HCC appearance. A number of  tumor- 
suppressor genes  , including RASSF1A, p16/INK4A, APC, E-cadherin, SOCS-1, 
IGF-binding protein 3 (IGFBP3), and glutathione  S -transferase P1 (GSTP1), have 
been shown to be silenced by DNA methylation in a large proportion of liver tumors, 
and this process often starts at pre-neoplastic (cirrhotic) stages [ 91 ]. A higher rate 
of promoter  methylation   for specifi c genes such as pl6INK4A, E-cadherin, ASPP1, 
and ASPP1 has been observed in HBV-related tumors compared to non-viral tumors 
[ 91 ,  92 ]. Using genome-wide methylation profi ling, Villaneueva and collegues [ 93 ] 
have identifi ed and validated a 36-probes methylation signature able to accurately 
predict survival in HCC patients. This signature correlated with known predictors of 
poor outcome and identifi ed patients with the mRNA signatures of proliferation and 
progenitor cell features. The study confi rmed a high prevalence of genes known to 
be deregulated by aberrant methylation in HCC (e.g., RSSFA1, APC, NEFH, IGF2, 
RAFF5, NKX6.2, SFRP5) and other solid tumors (e.g., NOTCH3 in acute leuke-
mias; NSD1 in glioblastoma; ZIC1 in colorectal cancer) and described new poten-
tial candidate epidrivers in HCCs (e.g., SEPT9, a tumor suppressor described in 
colon and ovarian cancer; ephrin-B2 ligand EFNB2, reported hyper-methylated in 
patients with acute leukemia; homeobox A9, forkhead box G1 and runt-related tran-
scription factor 3, involved in TGF-b receptor-signaling; FGF8 and FGF6) [ 93 ]. 

 HDAC1, 2, and 3 are overexpressed in 30–50 % of HBV-related HCCs and 
HDAC3 is an independent predictor of tumor recurrence following  liver transplan-
tation   [ 94 ]. A signifi cant upregulation of several HDACs (namely, HDAC1, 2, 3, 4, 
5, and 11) was also described in HCV-related HCCs where DNA copy gains in 
 HDAC3 and HDAC5  correlated with their mRNA upregulation [ 95 ]. Importantly, 
combining the pan-HDAC inhibitor panobinostat and sorafenib strongly potenti-
ated treatment effi cacy and improved survival in HCC xenograft models [ 95 ]. 
Pathologic activation of  Ezh2 and PRC2 , either through Ezh2 overexpression or 
 Ezh2-activating mutations  , is among the most common alterations observed in a 
wide variety of  cancerous tissue types  , including non-Hodgkin’s lymphoma, pros-
tate, breast and HCCs [ 96 – 103 ]. Increased expression of EzH2 is frequently 

5 Pathobiology of Hepatitis B Virus-Induced Carcinogenesis



102

detected in HCC tissues, correlate with the aggressiveness and/or poor prognosis of 
HCCs and may help to discriminate between pre-neoplastic/dysplastic lesions and 
cancer [ 104 ,  105 ]. Similarly, an increased expression of the G9a histone methyl-
transferase has also been reported in HCC [ 105 ]. Knockdown of EzH2 expression 
in HCC cells is suffi cient to reverse tumorigenesis in a  nude mouse model  , thus 
suggesting a potential therapeutic value of EzH2 inhibition in HCC [ 106 ]. An 
HCC-specifi c long noncoding RNA (lcn) [lncRNA-HEIH] associates with EzH2 to 
repress EzH2 target genes and facilitate HCC tumor growth in HBV-related HCCs 
[ 107 ] and, in particular, EzH2-mediated repression of Wnt antagonists has been 
found to promote β-catenin-dependent hepato-carcinogenesis [ 108 ]. On the other 
hand, animal models of HBx- and HBV-mediated tumorigenesis downregulate the 
chromatin modifying proteins Suz12 [another PRC2 component] and ZnF198 [part 
of the LSD-Co-RESR-HDAC1 repressor complex] in liver tumors [ 109 ]. Suz12/
Znf198 downregulation is accompanied, both in animal models and human HBV-
related HCCs, by the overexpression of a number of Suz12/PRC2 direct target 
genes, including the hepatic cancer stem cell markers BAMBI and EpCAM [ 110 ]. 

 Several studies also identifi ed mutations in a group of  chromatin regulators   
( ARID1A ,  ARID1B ,  ARID2 ,  MLL , and  MLL3 ) in approximately 20 % of all tumors, 
including virus- and alcohol-related HCCs [ 81 ,  111 – 113 ]. ARID1A and ARID1B 
are crucial and mutually exclusive subunits of the SWI/SNF ATPase-powered 
nucleosome re-modeling complex. ARID2 is a subunit of the poly-bromo- and 
BRG1-associated (PBAF) remodeling complex, which is implicated in the control 
of ligand-dependent transcription by nuclear receptors. Inactivating mutations in 
 ARID1A , and its role as a tumor suppressor have been reported in several malignan-
cies, including ovarian, colorectal, and gastric cancer [ 114 – 117 ].  

     Direct Oncogenic Roles of HBV   

 The long latency period between HBV infection and HCC and the strong relation 
between HCC incidence and age has often been used to support an indirect role of 
HBV in hepatocytes transformation. Increasing evidence suggests, however, that 
HBV contributes to HCC by directly promoting growth factor-independent prolif-
eration, resistance to growth inhibition, tissue invasion and metastasis, angiogene-
sis, reprogramming of energy metabolism, and resistance to apoptosis, i.e., the host 
gene expression pathways and cellular phenotypes that are recognized as  hallmarks 
of cancer   [ 4 ,  118 ]. The ability of HBV-encoded proteins to blunt both the innate and 
adaptive immune responses favors the persistence virus replication and contributes 
to HCC by sustaining chronic infl ammation without viral clearance. Notably, most 
virus-induced changes in host gene expression that promote HCC also support virus 
replication and/or protect virus-infected hepatocytes from cytokine- and cell- 
mediated damage or destruction. 

 HBV can promote carcinogenesis by three different  mechanisms   (Fig.  5.1 ). First, the 
integration of viral  DNA   into the host genome contributes to chromosome instability 
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  Fig. 5.1     HBV carcinogenesis  . HBV contributes to HCC by ( a ) insertional mutagenesis due to 
integration of the viral DNA into host chromosomes; ( b ) increased genomic instability caused by 
both viral integration and the activity of the viral protein HBx; ( c ) modifi cations of the epigenome 
promoted by HBx and HBc; ( d ) modulation of cell death and proliferation pathways by the pro-
longed expression of viral proteins (wild-type and mutant HBx, LHB envelope proteins, truncated 
MHB proteins, HBc)       

[ 119 ]. HBV DNA integration in host chromosomes, although dispensable for viral 
replication, is detected in about 80 % of HCCs [ 32 ]. Second, classic retrovirus- like 
insertional  mutagenesis   can occur. HBV integration at specifi c genomic sites pro-
vides a growth advantage to a clonal cell population that eventually accumulates 
additional mutations. HBV integrations within the retinoic acid receptor ß (RARß) 
and the cyclin A as target genes [ 32 ] provided the fi rst evidence and additional 
genes were later found to be targeted by HBV integration in tumors, including 
recurrent HBV DNA integration into the  hTERT gene   encoding the catalytic sub-
unit of telomerase [ 120 – 123 ]. More recently, next-generation sequencing (NGS) 
studies of ~400 HBV integration breakpoints from over 100 HBV-positive HCCs 
confi rmed that HBV integration is more frequent in the tumors (86.4 %) than in 
adjacent liver tissues (30.7 %). Approximately 40 % of HBV breakpoints within the 
HBV genome are located near the viral enhancer and the X gene and core open 
reading frames and copy-number variations (CNVs) are increased at HBV break-
point locations indicating that HBV integration likely induces chromosomal insta-
bility [ 113 ]. Multicentric tumor pairs develop from independent mutations [ 111 ]. 
Most HBV breakpoints fall near coding genes, mainly into exons or regulatory 
regions, including the TERT, MLL4 (mixed-lineage leukemia protein 4), CCNE1 
(Cyclin 1), SENP5 (Sentrin-specifi c protease 5), ROCK1 (Rho-associated coiled- 
coil containing protein kinase 1) genes, whose expression was upregulated in tumors 
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versus the normal tissue [ 111 ,  113 ]. More recently, Lau and coworkers [ 124 ] have 
reported the integration of HBV sequences into the host long interspersed nuclear 
element (LINE) and the generation of a HBx-LINE1 chimeric transcript in 21 out of 
90 HBV-related HCC patient tumors that is signifi cantly associated with poor 
patient outcome [ 124 ]. Mechanistically, the  HBx-LINE1 transcript   acts as a long 
noncoding RNA by increasing the nuclear localization of β-catenin and by activat-
ing Wnt signaling and its oncogenic properties are independent from its protein 
product [ 124 ]. Notably, HBx-LINE1 fusion transcripts were not detected in 50 
HBV-related HCCs from Europe [ 125 ]. The high frequency of this oncogenic tran-
script might be restricted to the Hong Kong population where HBV genotype C is 
predominant and remains to be validated in other independent series of HCC. The 
third direct mechanism of HBV carcinogenesis is based on the ability of  viral pro-
teins   (HBx, HBc, and preS) to affect many cell functions, including cell prolifera-
tion and cell viability and to sensitize liver cells to mutagens. In transgenic mouse 
models, unregulated expression of the HBV X and large S proteins are associated 
with hepatocarcinogenesis [ 59 ,  126 ].

      HBx  Protein   

 HBx regulatory protein is both required for HBV cccDNA transcription/viral repli-
cation [ 29 ,  127 ], and thought to contribute to HBV  oncogenicity  . Although the 
mechanisms underlying these pleiotropic activities of HBx have not been fully elu-
cidated, regulation of transcription, through direct nuclear (transcription and chro-
matin) and/or indirect cytoplasmic (cell signaling)  mechanisms  , is thought to play 
an important role (Fig.  5.2 ). In the following subsections we provide a rather com-
prehensive description of the vast scientifi c literature reporting on HBx activities 
over almost two decades. We have underlined wherever possible the relevance of 
those results that have been generated in the context of HBV replication/infection 
systems and/or conformed in either in vivo animal models or through the ex vivo 
evaluation of CHB- and HBV-related HCC patients samples.

        HBx, Chromatin and Viral/Cellular Transcriptional Control 

 HBx is recruited to the cccDNA minichromosome in HBV-replicating cells to 
increase transcription of the nuclear  cccDNA minichromosome   [ 29 ,  127 ]. In the 
absence of HBx, cccDNA-bound histones are hypoacetylated, and the cccDNA 
transcribes signifi cantly less pgRNA [ 29 ]. HBx also binds and blocks the inhibitory 
activity on HBV transcription exterted by the PRMT1 methyl-transferase [ 30 ] and 
the Tudor-domain protein Spindlin-1 [ 128 ]. Additional mechanisms by which HBx 
can potentiate HBV replication include the down-regulation of DNMT3A 
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expression through the induction of miR-101 [ 129 ], induction of endocytosis and 
autophagy that are required for viral replication [ 130 – 132 ], binding to the UV-DDB1 
protein [ 133 ], and elevation of cytosolic calcium levels [ 134 ]. 

 ChIP-Seq genome-wide  analysis   of HBx chromatin recruitment in HBV- 
replicating cells revealed a specifi c binding of HBx to a large number of new and 
known HBx target sequences [ 135 ], including protein-coding  genes and ncRNAs   
[16 lncRNA promoters and 32 lncRNA intragenic regions, 44 snoRNA, 3 snRNA, 
and 75 microRNA promoter regions]. 39 out of the 75 HBx-targeted  miRNAs   are 
classifi ed as intragenic and 15 of them display HBx peaks in the promoter region of 
their target genes. Multiple transcription factors seem to mediate the recruitment of 
HBx on the target chromatin (i.e., E2F1, CREB, β-catenin, NFkB) [ 135 ]. Pathway 
analysis of the protein-coding genes and miRNAs potentially regulated by HBx 
showed an enrichment in genes/ncRNAs involved in cell metabolism, chromatin 
dynamics and cancer but also in genes/ncRNAs that modulate HBV replication. 
(Ras, calcium transport, endocytosis, MAPK/WNT pathways, Src, the EGF/HGF 
family). Functional experiments identifi ed new mechanisms by which HBx, in addi-
tion to its activity on the viral cccDNA, boosts HBV replication, mediated by direct 
transcriptional activation of genes and miRNAs that potentiate endocytosis (RAB 
family) and autophagy (ATGs, beclin-1, miR-33a) and the transcriptional repres-
sion of miRNAs (miR-138, miR-224, miR-596) that directly target the HBV pgRNA 
and would inhibit HBV replication [ 135 ]. 

 Mechanistically, the activity of HBx on transcription of both cellular genes and 
the viral genome rely on the interaction with transcription factors and chromatin 
modifying enzymes and the modulation gene expression through  epigenetic modi-
fi cations   (Fig.  5.3 ). Indeed, HBx binds several nuclear proteins involved in the regu-
lation of transcription including component of the  basal transcriptional machinery   
(RPB5, TFIIB, TBP, TFIIH), coactivators (CBP, p300, and PCAF) and transcription 
factors (ATF/CREB, ATF3, c/EBP, NF-IL-6, Ets, Egr, SMAD4, Oct1, RXR recep-
tor, p53) [ 4 ]. HBx binds in vivo to the promoters of a number of CREB-regulated 
genes and increases the recruitment of CBP/p300 to these promoters leading to 
increased gene expression [ 136 ]. More recently, the same group has also shown that 
HBx prevents the inactivation of CREB by a PP1 (protein phosphatase 1)/HDAC1 
complex [ 31 ].

   HBx also increases total DNA methyltransferase (DNMT) activity by the upreg-
ulation of DNMT1, DNMT3A1, and DNMT3A2 [ 137 ] and, by relocating DNMT3a 
[ 138 ], selectively facilitates the regional hypermethylation of the promoters of cer-
tain tumor-suppressor genes, such as p16/INK4A (Fig.  5.3 ). 

 Animal models of HBx- and HBV-mediated tumorigenesis downregulate the 
chromatin-modifying proteins Suz12 [a component of the polycomb repressive 
complex 2—PRC2, that directs the (tri)methylation of lysine 27 on histone 3 
9H3K27Me3) and gene silencing] and ZnF198 [that stabilizes the LSD-Co-RESR- 
HDAC1 repressor complex] in liver tumors [ 110 ].  SUZ12 and ZNF198   are tar-
geted to poly-ubiquitibnation and proteasomal degradation by a Plk1-dependent 
phosphorylation that is enhanced by the long noncoding RNA HOTAIR that serves 
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as a bridge between the PRC2 and the LSD-Co-RESR-HDAC1 repressor com-
plexes [ 139 ]. Suz12/Znf198 downregulation is accompanied, both in animal mod-
els and human HBV-related HCCs, by the overexpression of a number of Suz12/
PRC2 direct target genes, including the hepatic cancer stem cell markers BAMBI 
and EpCAM [ 110 ] (Fig.  5.3 ). EpCAM over-expression in hepatic cells that have 
lost Suz12 is mediated by HBx and involves an active demethylation of CpG 
dinucleotides fl anking NF-κB-binding sequences and the formation of a multi-
protein complex containing the transcription factor RelA, the methyltransferase 
EZH2, the TET2 enzyme catalyzing the conversion of 5-methylcytosine to 
5- hydroxymethylcytosine, and the catalytically inactive DNMT3L [ 140 ] (Fig.  5.3 ).  

    HBx, Oxidative Stress, and  Apoptosis   

 HBx has been shown to have both pro-apoptotic and anti-apoptotic properties, 
depending on its levels, the cell context (i.e., quiescent hepatocytes, neoplastic or 
preneoplastic liver cells with defective growth control, liver progenitor cells) and 
the experimental system used. In HBV replicating cells HBx promotes cytosolic 
calcium signaling, resulting in Ca2+ accumulation in mitochondria, increased levels 
of ROS [ 134 ] and the activation of the PYK2 and SRC kinases, which also promote 
HBV replication [ 32 ]. HBx also binds to mitochondrial voltage-dependent anion- 
selective channel protein 3 (VDAC3) [ 141 ], leading to membrane depolarization, 
reactive oxygen species (ROS) production [ 141 ] and eventually apoptosis [ 142 ]. 
Ca2+ signaling and increase ROS levels trigger ER stress and the unfolded protein 
response (UPR) [ 143 ]. On the other hand, high levels of HBx have been reported to 
block tumor necrosis factor-α (TNFα)- and FAS-mediated apoptosis by activation 
of NFκB [ 144 ], suggesting that infected hepatocytes may survive immune-mediated 
damage whereas uninfected hepatocytes undergo apoptosis in CLD.  

    HBx, Epithelial–Mesenchymal Transition, and  Fibrogenesis   

 Epithelial–mesenchymal transition ( EMT)   plays multiple roles in the pathogenesis 
of CLD by promoting fi brogenesis, tumor progression, and metastasis.  TGFβ   is 
central to EMT by inducing collagen synthesis and promoting transcription factors 
that suppress epithelial markers [ 145 – 147 ]. HBx upregulates TGFβ1 [ 148 ] by 
SMAD-dependent (via stabilization of the SMAD4 complex) [ 149 ] and non-
SMAD- dependent pathways (via activation of RAS–ERK and PI3K–AKT) [ 150 ]. 
HBx, similar to HCV core [ 151 ,  152 ], also seems to convert TGFβ1 signaling from 
negative to positive growth regulation and shift TGFβ responses from tumor sup-
pression to EMT.  Liver fi brogenesis   (type 2 EMT) and HCC metastasis (type 3 
EMT) are also mediated by miR 21, which is upregulated by NFκB in HBV- 
associated HCC [ 153 ]. As miR 21 activation usually occurs early during HBV CLD 
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progression, when ROS and HBx stimulates NF-κB and AP1, these observations 
link HBx, chronic infl ammation, and hepatocytes transformation. HBx-stimulated 
SRC signaling promotes EMT [ 154 ] by destabilization of adherens junctions [ 155 ]. 
 HBx   also suppresses E cadherin by promoter DNA methylation and by upregulating 
SNAIL [ 156 ].  

    HBx, Hypoxia, and  Angiogenesis   

 Cirrhotic nodules have a “relative” defect of vasculature that may generate local 
reductions in oxygen tension and hypoxia, upregulate HIF1α expression, and pro-
mote angiogenesis. HBx binds to and stabilizes HIF1α and stimulates HIF1α tran-
scription [ 157 ], thus promoting angiogenesis and cell “stemness.” HBx also 
promotes angiogenesis by upregulating the pro-angiogenic growth factor angiopoi-
etin 2 (ANG2) [ 158 ]. HIF1α is also stabilized by increased insulin-like growth fac-
tor receptor 1 (IGFR1), epidermal growth factor receptor (EGFR) and PI3K–AKT 
signaling that are all activated by HBx [ 159 ].  

    HBx and Hepatic Stem/Progenitor cells ( HSCs/HPCs)   

 Stemness markers [such as NANOG, OCT4, SOX2, and Krüppel-like factor 4 (KLF 
4)] are reactivated and expressed in HCC [ 160 ]. About 20–40 % of HCCs display 
phenotypic markers of hepatic progenitor cells (HPCs)       [ 161 ,  162 ] and share a com-
mon transcriptional signature with normal HPCs in cDNA microarray-based analy-
sis [ 163 ]. HCCs expressing progenitor cell features have a worse prognosis and 
higher recurrence after treatment compared to HCCs, which are negative for these 
markers analysis [ 163 ]. Although a clinicopathological analysis of surgically 
resected HCC specimens suggested that EpCAM +  CSCs were more frequently 
detected in HBV-related HCCs than in HCV-related HCCs [ 162 ] a validation on 
larger independent cohorts including HCCs from multiple etiologies is still lacking. 
HPCs (also called oval cells in rodent models of carcinogenesis) are small epithelial 
cells that can differentiate towards both hepatocytes and cholangiocytes and are 
located in the smallest branches of the biliary tree (canal of Herring and/or the 
ductular compartment). In animal models, liver cancers can originate from hepato-
cytes as well as from immature progenitor cells [ 164 ]. HBx promotes the expression 
of NANOG, KLF4, OCT4, and MYC as well as EpCAM (epithelial cell adhesion 
molecule) and β-catenin [ 160 ]. Stabilization of β-catenin transcriptionally upregu-
lates EpCAM [ 160 ] and promotes the transcription of stemness genes in association 
with TCF/LEF1, OCT4, and NANOG. EpCAM+ cells display CSC-like properties 
and generate invasive tumours in HCC xenograft experiments [ 162 ]. HBx also pro-
motes the expression of miR 181 family members, which upregulate EpCAM [ 165 ] 
and are highly expressed in embryonic livers, in  HSC  , and in patients with 
α-fetoprotein (AFP)-positive tumours [ 165 ].  
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    HBx, Senescence, and  Telomeres   

 Infl ammation, oxidative, and oncogenic stress accelerate cellular senescence in 
chronic HBV (and HCV) infections. In cirrhotic livers, hepatocytes display 
decreased proliferation rates with a dominant replicative senescence phenotype, 
critically shortened telomeres and reduced regenerative potential [ 1 ]. Indeed, the 
length of telomeres progressively shortens from normal liver to chronic liver dis-
ease, and reaches the shortest levels in HCC [ 166 ,  167 ]. Senescence limits the pro-
liferation of damaged cells and reduces the risk of malignancy by triggering the 
expression of tumor suppressors [ 168 ]. Transformed hepatocytes must bypass 
senescence and can survive despite critically shortened telomeres. Many studies 
have indeed showed that 80–90 % of HCCs display a high telomerase activity 
[ 169 ]. TERT promoter mutations activating telomerase expression represent the 
single most frequent genetic alteration in HCC [ 170 ,  171 ] but are less represented 
in HBV- related HCCs that re-activate TERT by other mechanisms including the 
integration of HBV DNA sequences into the TERT gene [ 111 ,  113 ,  121 ,  122 ] and 
the upregulation of TERT expression by HBx and PreS2 proteins [ 172 ]. Despite 
TERT activation telomers remain very short in HCC cells, predisposing to occa-
sional telomere instability, chromosomal instability and polyploidy [ 172 ]. Indeed, 
the majority of HCC cells display a high incidence of chromosome instability that, 
similar to the accumulation of senescent cells [ 1 ], is already evident in cirrhotic 
liver tissues and increases during the hepato-carcinogenesis process [ 173 ]. LOH 
rate is higher in HBV-related HCCs [ 173 ] and HBx directly induces chromosomal 
instability by affecting the mitotic checkpoints [ 174 ]. HBx also binds and inacti-
vates p53 and interacts with the DNA repair protein DDB1, which in turn affect 
repair functions and allow the accumulation of genetic changes [ 32 ]. RAS signaling 
and the AKT–ARF–p53–p21 and RAS–MEK–ERK–INK4A/p16–RB pathways, 
linked to oncogene-induced senescence (OIS) [ 175 ], are both active in HCC and are 
activated by HBx [ 176 – 178 ]. At the same time, HBx contributes to overcoming 
senescence by: a) upregulating DNA methyltransferases (DNMTs) [ 89 ]; b) inhibit-
ing the p53 nucleotide excision repair and transcription-coupled repair functions 
[ 179 ]; and c) decreasing the expression of the p53 activators ASPP1 and ASPP2 
[ 92 ]. HBx also suppresses the cyclin-dependent kinase (CDK) inhibitors INK4A 
and p21 via promoter methylation, resulting in the inactivation of the RB tumor 
suppressor [ 180 ]. miR 221, which is upregulated in HBV- (and HCV)-related 
HCCs, blocks the expression of the CDK inhibitor p27 and promotes tumor growth 
and progression by activation of the PI3K–AKT–mTOR pathway [ 181 ].  HBx   also 
interacts with the peptidyl-prolyl cis/trans isomerase Pin1 and this interaction leads 
to HBx stabilization, enhanced HBx-mediated transactivation of target genes, and 
increased cellular proliferation [ 182 ].  
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    HBx, Tumor Promotion, and Tumor  Progression   

 Despite the large number of published studies, we still lack a unifying picture of HBx 
role in liver carcinogenesis that reconcile all HBx reported activities. Both wild-type 
HBx and truncated HBx proteins could demonstrate oncogenic functions and pro-
mote tumorigenesis [ 183 – 186 ]. However, it is not yet clear whether mutated HBx 
proteins “gain” oncogenic functions or rather “lose” activities that would restrain the 
oncogenic potential of wild-type HBx or that would not be no longer required for 
tumor progression. The recent demonstration in a large series of HBV- related HCCs 
that premature stop codon and large deletions leading to a complete inactivation of 
the HBx gene are selected and accumulate in the tumors in contrast to the surround-
ing non-tumor liver tissues in more than 70 % of the tumors suggests that HBx inac-
tivation could have a role in liver carcinogenesis or tumor progression. The reported 
correlation between HBx inactivating mutations, the presence of TP53 mutations, a 
G1–G3 transcriptomic profi le [ 83 ], an abnormal expression of onco- fetal genes 
(EPCAM, AFP and KRT19), and poorer prognosis [ 84 ] adds a further layer of com-
plexity to the understanding of  HBx   contribution to HCC development.  

    HBc Protein 

 We and others have shown that the HBV  capsid protein   HBc not only binds the 
HBV minichromosome, i.e., the cccDNA nuclear replicative intermediate [ 25 ,  27 ] 
but also a subset of cellular genes involved in innate immunity, infl ammatory 
responses, and the control of cell proliferation [ 187 – 189 ].  

     PreS/S Proteins   

 The potential pro-oncogenic role of mutated envelope proteins has been confi rmed 
in many studies in transgenic mice and cell cultures [ 48 ,  61 ,  190 – 193 ]. PreS2 
mutants may induce cyclin A and cyclooxygenase-2 overexpression leading to cell 
proliferation and anchorage-independent growth [ 65 ,  66 ]. PreS2 mutated proteins 
also directly interact with the Jun activation domain-binding protein 1 (JAB1), thus 
triggering cyclin-dependent kinase (Cdk) inhibitor p27 degradation, Retinoblastoma 
hyper-phosphorylation and cell cycle progression [ 64 ]. Cyclin A is located in the 
cytoplasm rather than in the nucleus in preS2 mutant-transgenic mice where favors 
centrosome over-duplication and consequently chromosome instability [ 61 ,  66 ]. 
Finally, the ER stress response induced by preS-mutated proteins increases vascular 
endothelial growth factor-A (VEGF-A) expression [ 193 ]. PreS/S sequences deleted 
at the 3′-end and producing functionally active MHBst are found in many viral 
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integrates from HBV-associated HCCs [ 50 ,  190 ,  194 – 196 ]. MHBst proteins retained 
in the ER trigger a PKC dependent activation of c-Raf-1/MEK/Erk2 signal trans-
duction cascade, induction of AP-1 and NF-kB transcription factors, and an 
enhanced proliferative activity of hepatocytes [ 191 ,  197 ]. MHBst directly interact 
with a preS2-responsive DNA region in the hTERT promoter, resulting in the 
upregulation of telomerase activity and in the promotion of HCC development 
[ 192 ]. On the other hand, the  inappropriate   expression and accumulation of wild-
type large envelope protein in ER membranes can be directly cytotoxic to the hepa-
tocyte and initiate a cascade of events that ultimately progress to malignant 
transformation [ 59 ,  198 ].   

    Conclusions 

 HBV is a major risk factor worldwide for developing HCC. HBV contributes to 
hepatocellular carcinoma (HCC) development through direct and indirect mecha-
nisms. Productive HBV infections triggers infl ammation, continuous necrosis medi-
ated by the immune response against infected hepatocytes, and cell regeneration 
favoring the accumulation of genetic and epigenetic lesions. HBV DNA integration 
into the host genome occurs at early steps of clonal tumor expansion and induces 
genomic instability and eventually direct insertional mutagenesis. Prolonged expres-
sion of the viral regulatory protein HBx and the large envelope protein deregulate the 
cellular transcription program and proliferation control and sensitize liver cells to 
carcinogenic factors. Epigenetic changes targeting the expression of tumor suppres-
sor genes occur early in the development of HCC. A major role is played by HBx 
that is recruited on cellular chromatin and modulates chromatin dynamics at specifi c 
gene loci. Genome wide approaches begin to identify homogeneous subgroups of 
HBV-related tumors with defi ned genotypes and signaling pathways alterations.     
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