SVIS: Large Scale Video Data Ingestion
into Big Data Platform

Xiaoyan Guo®™), Yu Cao, and Jun Tao

EMC Labs China, Beijing, China
{xiaoyan.guo,yu.cao,simon.tao}@emc.com

Abstract. Utilizing big data processing platform to analyze and extract
insights from unstructured video streams becomes emerging trend in
video surveillance area. As the first step, how to efficiently ingest video
sources into big data platform is most demanding but challenging prob-
lem. However, existing data loading or ingesting tools either lack of video
ingestion capability or cannot handle such huge volume of video data. In
this paper, we present SVIS, a highly scalable and extendable video data
ingestion system which can fast ingest different kinds of video source into
centralized big data stores. SVIS embeds rich video content processing
functionalities, e.g. video transcoding and object detection. As a result,
the ingested data will have desired formats (i.e. structured data, well-
encoded video sequence files) and hence can be analyzed directly. With a
highly scalable architecture and an intelligent schedule engine, SVIS can
be dynamically scaled out to handle large scale online camera streams
and intensive ingestion jobs. SVIS is also highly extendable. It defines
various interfaces to enable embedding user-defined modules to support
new types of video source and data sink. Experimental results show that
SVIS system has high efficiency and good scalability.

1 Introduction

With rapid development of big data technologies, more and more vertical indus-
tries, such as Internet, Finance, Healthcare, are placed into big data processing
platform to extract hidden values from their data by utilizing state-of-the-art
big data analytics [1]. Video surveillance analytics is another emerging trend
to extract insights from unstructured video stream data [2]. Surveillance videos
are in nature of great magnitude, and hence require the powerful processing
capability of big data platform.

However, loading or ingesting video surveillance data, the first step before
data can be analyzed by big data platform, is particularly challenging [3]. Firstly,
unstructured video data is of diverse types of sources (e.g. online camera streams,
historical video files) and encoding formats (e.g. H.264, MJPEG, MPEG4). How
to automatically and efficiently transcode and transform video data to be tack-
leable by big data platform remains as a challenging problem. Secondly, video
data is of huge volume. The resolution of IP cameras is increasing rapidly. There
are extremely huge number of online cameras in city-wide surveillance systems.

© Springer International Publishing Switzerland 2015
A. Liu et al. (Eds.): DASFAA 2015 Workshops, LNCS 9052, pp. 300-306, 2015.
DOI: 10.1007/978-3-319-22324-7_31

SVIS: Large Scale Video Data Ingestion into Big Data Platform 301

As such, ingesting systems must be scalable and efficient enough to handle huge
volume of video data and intensive ingestion workloads. Thirdly, certain video
content analytics work need to be conducted within ingestion systems in order to
obtain timely analytics results, e.g. real-time determining potential incidents. As
a result, it is desirable or even necessary that the ingestion system has real-time
video processing functionalities.

There are many existing systems in big data ecosystem to realize data load-
ing or data ingestion work. Flume [4], Sqoop [5], Kafka [6], Scribe [7] and
Chukwa [8] are all distributed, reliable and available systems to efficiently ingest
large amounts of data, especially log data, from different data sources into cen-
tralized big data stores, such as HDFS, HBase, relational SQL database, etc.

However, all these systems are not perfectly suitable to address video inges-
tion jobs. They lack video processing capability, and hence it is difficult to ingest
video data especially video streaming data directly from IP cameras. They do
not have good flexibility and extendability so that it is difficult to extend them
to support new types of data source and data sink. These systems usually utilize
batch loading, emphasizing more on ingestion throughput rather than latency.
While in video surveillance area, real-time ingestion is a desired feature.

In this paper, we thereby present SVIS, a scalable and extendable video data
ingestion system which can fast ingest diverse video sources into big data stores.
SVIS integrates rich video processing functionalities. It is able to transcode and
transform video data of different source types, and then directly pipeline them
to video analytics applications. SVIS can easily scale out to support large scale
video surveillance systems. It can be conveniently extended to support new video
sources and data sinks.

Our principal contributions in this paper are summarized as follows.

1. We design and build a highly scalable video ingestion framework, which is
able to handle huge volume of video data and extremely intensive ingestion
jobs.

2. We integrate rich video content processing functionalities into our ingestion
system, e.g. transcoding video into frame sequence files and detecting objects
within video frames. As a result, data ingested into big data store is exactly
of the desired format that can be analyzed in the straight-forward way. Real-
time analytics at edge nodes can also be easily realized.

3. We define various extendable interfaces to support user-defined modules. As
a result, the users can develop their own modules and embed them into the
system to support specific video sources and sinks.

4. We define a video ingestion DSL (Domain-Specific Language) to allow users
to define their own ingestion jobs by declarative interfaces. We build an intel-
ligent schedule engine to guarantee efficiency and fault-tolerance of the inges-
tion jobs.

5. We conduct comprehensive experiments to demonstrate the efficiency and
scalability of our video ingestion system in two scenarios of ingesting large
historical video files and intensive online camera streams.

302 X. Guo et al.

2 Video Data Ingestion System

The SVIS video data ingestion system moves huge volume of video data from
different sources into a centralized repository. Figurel shows the deployment
topology of SVIS system in a real video surveillance system. Data sources of
SVIS system are not only historical video files but also online video streams,
e.g. online IP cameras. SVIS system ingests video data not only within campus
local network but also from wide area network. It is able to ingest video data
into diverse data sinks, such as HDFS, structured database, and NoSQL data
store. It is also capable to directly ingest and pipeline video data to online video
analytics applications.

Ingestion
Video Source tocal)}~ Manager
57 Area Y
\}/ Networl\'
e

e
L
. Ingest
L n/ Collector Processor ngester
~ &

=
3 ‘gg
Camera ANt Video File \

Wide Area

Network . > ' HDFS Clusters

/ <
videoSource (roear Y~ | M. | | | | W |______ |M
Area e l -
o Networl L al
& .
% =/ S | l | Video Analysis
@
i . £ 1

Fig. 1. System architecture

Ingestion Job Abstraction. To enhance system scalability and provide flexible
and extendable interfaces, we abstract the ingestion job into three sub-tasks,
which encapsulates the same kind of work unit into reusable modules. The three
abstractive ingestion modules are collector, processor and ingester.

The collectors implement drivers to collect data from different types of data
sources. They poll data from external video sources and then pipeline them to
other modules. The first module in an ingestion job must be a collector.

The processors include rich built-in video processing functionalities, such as
video transcoding, object detection and feature extraction. They receive video
data from the collectors and perform video processing and video analytics at the
edge node. The analytics results of processors are delivered to the ingesters or
other processors. The processor is optional in an ingestion job. There are also
multiple processors in a job to conduct a series of video processing tasks.

The ingesters implement drivers to write data into different data stores. They
receive video data or analytics results from collectors or processors, and then
ingest them into desired data sinks. The ingester is always the last module in an
ingestion job.

SVIS: Large Scale Video Data Ingestion into Big Data Platform 303

In our video ingestion system, a video ingestion job is represented as a DAG,
where the vertices are the instances of abstractive ingestion modules (i.e. collec-
tors, processors, and ingesters), the edges are the established message queues to
transfer data between two instances. An ingestion job is first scheduled into a
DAG by the schedule engine and then executed accordingly. As such, the video
data flows from video sources to collectors, processors and ingesters and finally
arrives in data sinks.

System Overall Architecture. The middle of Fig. 1 depicts the high-level sys-
tem architecture of SVIS video ingesting system, which consists of the following
three major functional components: ingestion manager, ingestion workers and
message bus.

Ingestion manager is responsible for scheduling job execution, launching
ingestion jobs, monitoring runtime status of ingestion jobs and managing the
whole ingestion cluster. By effectively scheduling and distributing an ingestion
job to multiple ingestion workers and monitoring their status, it guarantees high
scalability, load balance and fault-tolerance of the ingestion system.

Ingestion workers are responsible for executing the ingestion jobs actually.
An ingestion worker is a node to execute one of the three ingestion modules
mentioned in above section, i.e. collector, processor and ingester. The ingestion
workers are scheduled by the ingestion manager. An ingestion job is represented
as a DAG. For each vertex, the ingestion manager launches a corresponding
ingestion worker to do the task. The ingestion workers can be dynamically added
or removed according to the ingestion workload. It guarantees good flexibility
and scalability of the ingestion system.

The ingestion workers share and transfer data via a configured messaging
queue, the message bus shown in Fig. 1. The message bus provides multiple mes-
saging patterns according to different ingestion topologies. It guarantees great
reliability and high availability of the ingestion data.

The complete workflow of an ingestion job is described as follows. The inges-
tion manager accepts the ingestion request and ingestion job definition from the
user. It then schedules and breaks down the ingestion job into a DAG ingestion
topology, i.e. independent ingestion tasks, which can be directly executed by
the ingestion workers. According to the ingestion topology, the ingestion man-
ager launches a series of ingestion workers and distributes the ingestion tasks to
them. The ingestion workers understand the task definitions and execute them
in coordination of the ingestion manager. The ingestion workers transfer data
via message bus and ingest video data into desired data sinks. During the inges-
tion, ingestion manager periodically collects tuntime status of each ingestion
worker and monitor the ingestion progress. Once a task is failed, it restarts the
corresponding ingestion worker and re-execute the task.

Video Ingestion Extendable API. There are varied video sources and video
sinks in different video surveillance systems. It is impossible to implement a one-
size-fits-all ingestion system to support all the data sources and sinks. As such,
we abstract the video ingestion job into three fundamental modules, i.e. collector,
processor and ingester. For each module, we define abstractive interfaces for the

304 X. Guo et al.

ingester:
collector: - name: ingesterl
- name: collectorl sinkType: gfxd
sourceType: videoFile moduleType: FaceGFXDIngester
moduleType: VideoFileFrameCollector parallelism: 1
parallelism: 1) inputQueue: FaceDetectionQ2
outputQueue: FaceDetectionQl property:
property: jdbcURL:
host: - "jdbc:gemfirexd://phd10:1527/"
- "10.62.98.123" tableName:
fﬂePaEh:)) . - "FaceDetectionCam4"”
- "/root/videoclips/7fgate.mp4 persistProperty:
- "HDFS"
processor: queuepipe:
- name: processorl - name: FaceDetectionQl
moduleType: FaceDetectionProcessor type: rabbitMQ
parallelism: 1
inputQueue: FaceDetectionQl - name: FaceDetectionQ2
outputQueue: FaceDetectionQ2 type: rabbitMQ

Fig. 2. DSL example of the ingestion job

users to implement user-defined modules to extend the system to support new
specific types of data source and data sink.

For collector module, the users need to implement the interface to obtain

data from data source. For ingester module, the users need to implement the
interface to write data into corresponding data sink. For processor module, the
users need to implement the interfaces to process and analyze the video data in
order to gain intermediate results. After defining a module, the user can embed it
into the ingestion system. The module will then be available and can be included
in an ingestion job.
Video Ingestion DSL. We define a video ingestion DSL (Domain-Specific Lan-
guage) to allow users to define their own ingestion jobs by declarative interfaces.
With the declarative language, the users can define an ingestion job in a quite
straight-forward way. The users can also be able to dynamically submit or stop
an ingestion job easily.

With the declarative language, the users need to define the properties of col-
lectors, ingesters and desired processors, desired parallelism degree, and queue
pipe topology among these modules. All the definitions can be configured in a
YAML or JSON configuration file. Figure 2 shows an example of YAML config-
uration file of ingesting a video file into HDFS and conducting face detection
processing in the meantime.

3 Experimental Study

Experiment Setup. We setup a 10-node video ingestion cluster on 10 physical
servers with 16 GB RAM and Xeon E5-2640@2.00 GHz 4 core CPU. They were
connected by 1 Gbps network. We deployed 1 ingestion manager node, 8 ingestion
worker nodes, and 1 RabbitMQ server node serving as the message bus.

There were two types of video sources: video files and online camera streams.
We generated video files of different encodings and sizes. We also setup 20 IP

SVIS: Large Scale Video Data Ingestion into Big Data Platform 305

mpd=2 mpd=4 =pd=8 M network bandwidth
300 1200
——1GB —#—10GB 20GB —

780 774

250 999 993
1000
210.0 211.8 835 862 846 869 885
- 185.1 803 772
165.0 800
o
2 150 600
E 106.2 %68 943
100 .\I——.\S:O 3 400
50 200
127 123 11.9 10.0
¢ - % — 0 Ll 1 sl
168

10GB 20GB
Video File Size

bitrate (Mbps)

2 4 8 Theoretically
Parallelism Degree optimal

Fig. 3. Experimental results of ingesting video files into HDFS

cameras to provide online RTSP stream data. These cameras were configured
with FPS of 20 and frame resolution of 800*600.

There were two types of data sinks in our experiments: HDFS and Gemfire
XD [9]. The write speed of HDFS was about 50 MB/s. Gemfire XD is a main-
memory based, distributed low latency data store for structured data and key-
value data. HDFS and Gemfire XD were both deployed in a 10-node cluster.

Efficiency of Ingesting Large Video Files. We conducted experiments to
ingest large volume of video files into HDFS and studyed ingestion speed and
efficiency. We generated three video files with size of 1 GB, 10 GB and 20 GB
and parallel ingested them with different parallelism degrees. Greater parallelism
degree indicates that more ingestion workers are employed by SVIS ingestion sys-
tem. Figure 3 shows the experimental results: left figure shows the total ingestion
time of each file, right figure shows the achieved ingestion bitrate of each file.

Due to write speed of HDFS and network bandwidth, the largest throughput
is bounded at 1000Mbps. From the experimental results, we can find that with
a proper parallelism degree, the ingestion system can reach particularly high
ingestion throughput that is about 85 % of the optimal throughput.

Latency and Scalability of Ingesting Intensive Omnline Camera
Streams. We conducted experiments to ingest online camera streams into Gem-
fire XD. We increased ingestion workload (by increasing the ingested camera
number from 1 to 20) and evaluated the latency and throughput of our ingestion
system. Figure4 shows the experimental results: left figure shows the average
ingestion latency and total FPS achieved for each workload, right figure shows
the achieved detail FPS of each camera when ingesting the 20-camera workload.

The latency represents the time interval of a video frame between generated
by the camera and ingested into Gemfire XD. While camera number and total
workload are increasing, the average latency is slightly increasing. However, the
largest latency is bounded at 40ms, which is less than the generation interval of
frames (i.e. 1000ms / 20fps = 50 ms). As such, our ingestion system can achieve
real-time ingestion capability that is able to catch up with the generation speed
of camera frames.

In addition, the total FPS is linear increasing along with the increasing of
ingestion workload (i.e. camera number). It proves that there is no frame loss
during the ingestion. We can hence conclude that the overall performance of our
SVIS video ingestion system is linearly scalable.

306 X. Guo et al.

[T T N

Latency (ms)

00 | 400 25
80 —&— Average 350
60 ‘ Latency 2 -
w© | —m—Total FPS 300
20 | 250 15
00 ‘ 200 £8
80 | 150 10
60
\ 100
40 5
2 ‘ 50
0 ‘ 0 0 -
5 10 15 20 0 s 10 15 20

Camera ID
Camera Number

Fig. 4. Experimental results of ingesting online camera streams into gemfire XD

References

1. Han, Hu, Wen, Yonggang, Chua, Tat-Seng, Li, Xuelong: Toward scalable systems
for big data analytics: a technology tutorial. IEEE Access 2, 652—-687 (2014)

2. Devasena, C.L., Revath, R., Hemalatha, M.: Video surveillance systems - A survey.
IJCSI Int. J. Comput. Sci. Issues 8(4), 1 (2011)

3. Intel: Extract, Transform, and Load Big Data with Apache Hadoop. White Paper
(2013)

4. Apache Flume. http://flume.apache.org/

5. Apache Sqoop. http://sqoop.apache.org/

6. Apache Kafka: A high-throughput distributed messaging system. http://kafka.
apache.org/

7. Scribe. http://sourceforge.net/projects/scribeserver/

8. Apache Chukwa. https://chukwa.apache.org/

9. Pivotal Gemfire XD. http://www.pivotal.io/big-data/pivotal-gemfire-xd

http://flume.apache.org/
http://sqoop.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://sourceforge.net/projects/scribeserver/
https://chukwa.apache.org/
http://www.pivotal.io/big-data/pivotal-gemfire-xd

	SVIS: Large Scale Video Data Ingestion into Big Data Platform
	1 Introduction
	2 Video Data Ingestion System
	3 Experimental Study
	References

