Modeling Large Time Series for Efficient
Approximate Query Processing

Kasun S. Perera! ™), Martin Hahmann', Wolfgang Lehner!,
Torben Bach Pedersen?, and Christian Thomsen?

! Database Technology Group, Technische Universitit Dresden, Dresden, Germany
{kasun.perera,martin.hahmann,wolfgang.lehner}@tu-dresden.de
2 Department of Computer Science, Aalborg University, Aalborg, Denmark
{tbp,chr}@cs.aau.dk

Abstract. Evolving customer requirements and increasing competition
force business organizations to store increasing amounts of data and
query them for information at any given time. Due to the current growth
of data volumes, timely extraction of relevant information becomes more
and more difficult with traditional methods. In addition, contemporary
Decision Support Systems (DSS) favor faster approximations over slower
exact results. Generally speaking, processes that require exchange of data
become inefficient when connection bandwidth does not increase as fast
as the volume of data. In order to tackle these issues, compression tech-
niques have been introduced in many areas of data processing. In this
paper, we outline a new system that does not query complete datasets
but instead utilizes models to extract the requested information. For
time series data we use Fourier and Cosine transformations and piece-
wise aggregation to derive the models. These models are initially created
from the original data and are kept in the database along with it. Subse-
quent queries are answered using the stored models rather than scanning
and processing the original datasets. In order to support model query
processing, we maintain query statistics derived from experiments and
when running the system. Our approach can also reduce communication
load by exchanging models instead of data. To allow seamless integration
of model-based querying into traditional data warehouses, we introduce
a SQL compatible query terminology. Our experiments show that query-
ing models is up to 80 % faster than querying over the raw data while
retaining a high accuracy.

1 Introduction

In the current age of information, data is generated at an unprecedented state
and stored in increasing volume. As today’s economy and society run on knowl-
edge, organizations not only need to keep massive amounts of data but also must
be able to extract information from them. This concerns every imaginable area
of modern life from stock market fluctuations and news feeds in social networks
to renewable energy supply and vehicle travel patterns in traffic control systems.
As the volume of gathered data grows bigger in all these application scenarios

© Springer International Publishing Switzerland 2015
A. Liu et al. (Eds.): DASFAA 2015 Workshops, LNCS 9052, pp. 190-204, 2015.
DOI: 10.1007/978-3-319-22324-7_16

Modeling Large Time Series for Efficient Approximate Query Processing 191

two major problems emerge. First, data must be kept in order to utilize it, which
requires sophisticated storage systems. Second, querying the data becomes more
demanding and poses new challenges for the information extraction process.

While the type of generated data varies with each application domain, time
series are one of the most common formats of data as they capture the change/be-
haviour of certain measures/objects over time. This is why analyzing and query-
ing time series data is an important part in many decision making processes. For
example, a company that sells certain products is interested in sales patterns
occurring in the past in order to make decisions about the future. Such queries
often include average values, counts and sums for items in certain periods of
time or geographic regions. In order to obtain the most up-to-date information,
these queries are issued repeatedly which means large amounts of data must be
loaded, copied and processed frequently. As data volume increases while compu-
tational resources are often constrained, query processing of large data becomes
inefficient with regards to time. Although the answers that are generated are
exact, decision making often favours an approximate answer at the right time
over an exact one that is available too late. Before introducing our model-based
database system we would like to define what a model is in our context. A model
18 a representation, gemerally a simplified description, especially a mathemati-
cal one, of a system or process to assist in calculations and predictions [5]. As
an example systematic sample from a Fast Fourier Transformation (FFT) of a
complex signal can be seen as a model of the original signal.

Contemporary literature suggests different methods for different approximate
queries and generally associate one model with one or more queries. This app-
roach limits the utilization of models as a model designed for one query cannot
be used for a different query. In this work we propose a system that maintains
a pool of models within database itself such that queries can either be answered
with individual models or with a combination of ’general-purpose’ models. By
utilizing a model-based representation of the underlying data we are able to
generate approximate answers much faster than exact answers from the original
data. In addition our representative models have a small memory footprint and
still provide query results with high accuracy. In the remainder of this paper
we first outline the concept of our system, then describe early results for model
creation and querying on time series data and finally give an outlook regarding
the future potential of our approach.

2 Model-Based Database System Concept

It is obvious that large volumes of data can significantly reduce the runtime
efficiency of complex queries in traditional database systems. One approach to
tackle this issue is to materialize query results. While being a useful approach,
query materialization does not provide full flexibility and scalability as materi-
alized queries have to be updated whenever there are changes to the query or
the data. To overcome this limitation while still increasing query performance
we propose a model-based database system which runs queries against repre-
sentative models to produce approximate results. This offers multiple benefits:

192 K.S. Perera et al.

(1) models have a smaller memory footprint than the raw data, (2) maintaining
a pool of different models for the same data allows to select an optimal model
for each issued query, and (3) models can be used to re-generate the approxi-
mated original data with high accuracy. In this section we outline the concept of
a system that enhances query efficiency by representing data with models and
executing queries over these models.

When a query is issued against our model-based database system, the data-
base engine decides whether to use a model or the conventional database app-
roach to answer the query. The conventional approach is to scan and fetch the
required raw data from the storage (usually disk storage) and execute the query
over the dataset. If the decision is to use models, an appropriate stored model
is accessed and approximate results are produced. Figure 1 depicts the overall
architecture of the query processing system. After the query engine decides that
a query will be answered with a model, it selects those models that produce
the best possible results for the given query. In order to make this decision, the
system maintains statistics of past queries that were executed on both models as
well as raw data. This means, our proposed system undergoes an initial learning
phase before it can fully apply the model based approach. During this phase,
query statistics for queries running over raw data as well as models are recorded.

User Query

}

Query Engine
Selector

2

Data Query Enging,

[Aodel Query Engine

Query Statistics
Parsing Parsing

A 4 A
Oplimizing Construction Maintenance Opdmzag

Execution Execution
Model Store Data Store

A

Approximate
Results

_/—\ _/\

Exact Results

Fig. 1. Overall system architecture with both model and data query engines

Modeling Large Time Series for Efficient Approximate Query Processing 193

The major part of the result-generation process takes place in the query
processor. It is responsible for parsing the user query, extracting query com-
ponents, optimizing the operations and finally executing the optimized query.
Similar to the data query processor, the first step of the model query processor
is to parse the user query into identifiable query objects. During parsing it is
necessary to identify parts that relate to model query processing (optimization
and execution) and other query operations. The proposed query parser extracts
query objects such as Projections (SELECT avg(productsales)), Source Relations
(FROM sales), Selections (WHERE product="vxz’ or WHERE date BETWEEN
start to end), Model Selections (USE MODEL modelCategory) as well as error-
and time-bound parameters. An example of such a query is given below:

SELECT avg(sales)

FROM sales

WHERE date BETWEEN 01-01-2010 to 31-12-2013
USE MODEL modelCategory

ERROR WITHIN 10 %

RUNTIME WITHIN 5 SECONDS;

One of our main goals is the seamless integration of models into the database
system in order to enable users to perform the same SQL query that they would
run on raw data. In addition we add specific parameters to the query syntax
namely TIMEOUT, ACCURACY, and MODEL. A sample query syntax that
employs these new parameters is shown above. Our taxonomy is similar to [1]
and [6]. The given example shows that users can explicitly define which model
should be used to answer the query. In addition the user can define an error
bound for the results. This directly affects query performance as approximate
results can be generated from high-level models with less accuracy in a very
short time, or from low-level models with high accuracy at the cost of a longer
running time. In our model hierarchy, high-level models refer to coarse grained
models with low accuracy and low-level model with high accuracy that represent
the original data with fine granularity.

An important part of our proposed system is the query optimization which
uses stored query statistics to decide the optimal set of models to answer a query
within given time and accuracy constraints.

3 Model Querying for Time Series Data

While we focus on the modeling of time series data in this paper, our system can
be extended to other types of data with different sets of models. In this section
we describe an early stage of our system for time series data, where we focus
on query efficiency and accuracy on large time series.

Our system employs a model pool where different models, built on the original
data, are stored to answer user queries. Our goal is to store multiple models of
the same data, so that queries with different parameters can be answered by a

194 K.S. Perera et al.

stored model or combination of them. For simplicity we define our time series
as T'S = (t1,v1), (t2,v2), ..., (tn, vs) where T'S defines the whole time series and
(tz,vy) defines an individual (time, value) pair of the time series. A final model
built on the original time series T'S is referred to as X(7'S) and is a collection
of sub-models of o(ts) such that each represents a smaller part of the larger
time series. The transformation of T'S into the model ¥(T'S) is described in the
following sub section.

3.1 Model Construction

In the current version of our system, we use the described approaches to represent
and query large time series data. In this section we describe how we construct
a model pool to represent time series data. While we focus on individual time
series in this paper, we plan to extend our model pool for multiple time series so
that one model can represent different similar time series. We focus on large time
series with millions of points. Generally, different patterns emerge in different
periods of long time series. This is why it is necessary to consider a large time
series as a collection of continuous smaller time series, which in general show
more manageable patterns within a given range. Models derived from these sub-
time-series have a higher accuracy as they only need to represent a compact set of
local changes. The model construction process that turns the original time series
into a model is depicted in Fig.2. It starts by decomposing the long original
time series into smaller parts and then models each part using the modeling
approaches we describe in the next section. Each part of the original time series
is considered as a single model and stored in a matrix along with a partition ID
that indicates the part of the original time series the model represents.

The models created that way are then combined to generate query results.
When a given time series T'S is partitioned into smaller parts (tsi, tsq, ...), each
part is going through a model construction phase. In this phase, an initial model
is constructed on each partition ts; and passed on to the model evaluation. There,
it is tested for accuracy against the original data and added to the model pool if
it reaches a user-defined accuracy level. If the model fails the accuracy test, an
update is performed in order to adjust model parameters and increase accuracy.
If a model fails to maintain adequate accuracy bounds then raw data for that

E P Model
: —» Partitioning > 5
Evaluation
[X1,%2,X310ccrerrnes xn] [x1,x2,x3...xk]

Model [x1,x2,x3...xm]

Transformation || Construction

Fig. 2. Step-by-step construction of models from time series.

Modeling Large Time Series for Efficient Approximate Query Processing 195

particular part of the time series is stored. The sequence of model evaluation and
update is repeated until the given accuracy criteria are fulfilled. In the following,

we describe the set of representative models that we use to transform 7T'S into
3(TS).

Aggregation over Time Granularity. Segmenting a time series into several
meaningful smaller parts and using these individual parts for queries over the
original time series is a widely used approach in many applications. An exam-
ple of a segmentation-based system for similarity pattern querying is Landmark
[8] by Perng et al. It proposes a method to choose landmark points—points
of the time series which best describe its pattern—and uses them in similarity
checks. For our implementation we use time granularity aggregation, i.e. the
mean, to represent the underlying time series. Piece-wise polynomial integration
and regression has been used as a data reduction technique where it is used to
reduce the frequency by aggregating nearby points. One such example is Best-
Time [10] where the authors use piece-wise aggregation to reduce the frequency
of original time series in to manageable frequency. For example if the frequency in
original time series is 5 Hz and required frequency is 1 Hz, the deduction process
aggregates 5 points using interpolation or regression method and present it with
1 point. In our aggregated mean time series each original segment is represented
by its mean value. Thus an approximated version of the original time series is
created. The number of points used for aggregation can be defined by the user.
Using more points for the aggregation leads to a more compressed but also more
coarse-grained model that can compromise accuracy. In our implementation we
used 5, 10 and 20 points as aggregation levels which are similar to compressed
levels in other types of models.

Discrete Fourier Transformation. Discrete Fourier Transformation (DFT)
is a widely known technique to represent complex signals, using a collection
of symmetric signals, where each signal is represented with two components.
A mathematical representation of DFT decomposition can be described as:

N-1
X = Z Lo TR (1)
n=0

where g, ...,z y_1 are complex numbers. Evaluation of this equation has O(N?)
time complexity that can be reduced to O(NlogN) with Fast Fourier Transfor-
mation algorithms such as CooleyTukey or Prime-factor FFT.

A time series can be viewed as a signal when we consider it as a continuous
signal rather than discrete values in discrete time points. Thus, we use FFT
to analyze and represent our time series. When using DFT/FFT it returns a
collection of components with the same number of points in the input time
series. Not all these components are important as the latter part is a repetition
of the first part in a mirror form. In order to obtain an approximation, a fewer
number of FFT components is adequate.

196 K.S. Perera et al.

Discrete Cosine Transformation. Similar to DFT, Discrete Cosine Trans-
formation also decomposes a given signal to simpler components and uses these
components to get an approximated signal. DCT is widely used in image and
signal compression as it has a strong energy compression behavior. DCT-II is
the most common compression technique and can be formalized as:

X =]:Z_:lencos U\Tf <n + ;) k} (2)

where kK = 0,..., N — 1 and xg,...,xny_1 are real numbers in contrast to the
complex numbers in DFT/FFT.

The selection of DCT or DFT is based on user requirements. Model construc-
tion for DCT is more expensive than for DFT. In contrast DCT models have a
smaller memory footprint compared to DFT models with the same number of
components. As we suggest offline and online model construction, we evaluate
both approaches in our experiments.

3.2 Query Computation over Models

In its current state, our implementation supports standard SQL aggregate
queries like AVG, SUM and Histogram analysis. Because our query results
are approximations, they significantly increase the run-time efficiency of query
processing. As SUM queries are one of the most widely used aggregation query
types, we first demonstrate how they can be answered with FFT and DCT mod-
els. Assume a query such as;

SELECT avg(sales)

FROM sales

WHERE date BETWEEN 01-01-2010 to 31-12-2013
USE MODEL DCT

ERROR WITHIN 10 %

After parsing the query, the DCT model category is selected to run the query
and decides the model parameters using the given error boundaries. The number
of sub-models which are used in the query depends on the WHERE predicate.

We denote that each model has its own way of calculating aggregation para-
meters. We begin by defining our models as X(T'S) = [o(¢s1),0(ts1), ..., 0 ()]
where o(ts;) = [c1,ca, C3, ..., ¢;] and k is the number of FFT/DCT components.
Each o(ts;) represents a single partition (size C) of the main time series and its
index corresponds to the partition ID. The inherent feature of FFT and DCT
transformation is the first component which is also known as the base component.
This component is a summation of all points from the original signal. Thus cal-
culating SUM—and also AVERAGE—queries can be performed as follows: We
define Start Point (SP) and End Point(EP) of the queried time series, "%’ as the
modulo operator and ’/’ as the integer division. The reason for integer division is,

Modeling Large Time Series for Efficient Approximate Query Processing 197

the resulting value can directly used as the index to access the model. For simplic-
ity we consider an FFT model but the same applies for DCT models too.

C —i2rk & [EP/C]
Z 00 (ts|sp/c))lile
Qsvm = E = + E o(tsp)[1]+
n=SP%C C p=[SP/C] (3)

% —i2rk 2
EPZ S yo(tsippyo)lile?mre
C

We consider o(ts|sp/c|) as a vector taken from the matrix representation of
the larger model ¥(T'S) with its partition ID matching the raw ID [SP/C|. As
shown here it is not necessary to approximate the full length of the queried time
series but only the head and tail parts. This is due to the inherent feature of DCT
and DFT transformation. In both DCT and DFT the inverse transformation
from only the first component defines the base components which is the mean
value of all the points being considered for transformation.

4 Evaluation

We are currently in the process of implementing the model query processor,
thus our initial results are based on finding sufficient query statistics to support
the model query processing. For example we want to evaluate when we should
use the model query processor based on queried data length etc. We also store
statistics such that given the query parameters, we can select different models.
In order to show the efficiency and effectiveness of our approach we conduct
extensive experiments with different time series, under different settings. We
have implemented two models from the signal processing domain known as DFT
(also known as FFT) and DCT to use with our time series. We also implemented
an approximated aggregate model to be used with time series data.

Data: We have conducted our experiments with different datasets. We obtained
NREL wind data set! where we extract data from 50 different wind turbines.
We also use the UK Energy Demand data set which has a pretty nice seasonal
pattern. Most of our results are based on the NREL wind dataset. As individual
time series from the NREL wind dataset contains only around 157000 data points
each with 10mins resolution. In order to derive sufficiently large time series, we
extend the original time series by permutation with other time series in the
dataset. The resulted time series have around 3140000 data points.

Experimental Setup: We used a standard personal computer with an Intel Core
i5 processor, 8GB RAM with Windows 8.1 Operating System. We used R to
implement our system. In order to implement standard query processing, which
reads raw data and produce results, we use standard R functions SUM and
AVERAGE. Thus, base results of our experiments are from standard R functions.

! http://www.nrel.gov/gis/data_wind.html

http://www.nrel.gov/gis/data_wind.html

198 K.S. Perera et al.

Run Time - SUM Query

< Models o
o Raw A& FFT + DCT X Mean /

Run Time (s)

1:1:1>A/“7$
/O

6——0

r——

T T T T T T
35 4.0 4.5 5.0 55 6.0

Log(Queried Data Length)

Fig. 3. Running time for different query lengths on different models and running time
of the original raw data for Wind Data time series.

4.1 AVG and SUM Queries

One of our query parameters is the query run time. When a query is being issued
with time bounds it is necessary to select suitable models. Thus we conduct
experiment on query run time for SUM query against different models and the
results are depicted in Fig.3. As depicted in Fig.3, we observe a significant
improvement in performance wrt. query run time for SUM query when using
the model based approach. One reason for this improvement is that IO which is
significantly lower for models than for raw data. We can justify from our results
that models with low memory footprint have better run-time performance. In
this experiment models are one order of magnitude smaller than the raw data.
We maintain these statistics in our query statistics such that future queries can
be answered using the optimal approach (Raw Data or Models). We notice a
break-even point at around 5.7 on the x-axis such that if the queried data length
is larger than 10°7 then the model query processor should be used to answer the
query. The selection of models depends on the individual model characteristics
and specified query parameters such as error boundaries.

Our models are adjustable such that a more compressed representation
decreases query run time but also increase the error. Thus we evaluate query run
time against compression factor. The results are depicted in Fig. 4 where it is visi-
ble that run time decreases significantly when we increase the compression. Having
these results in our statistics helps to decide which model(s) to use for a particular
query depending on the query parameters. Comparing Figs. 4(a) and (b) we can
see that the model with compression factor 20 is roughly 3—4 times faster than the
models with compression factor of 5. From that we can devise, Run Time and the
Compression Factor are linearly proportional.

Use of models for information querying has an inherent problem. The mod-
els are abstract representations of the underlying data. The results obtained
from the model do not exactly match with the result obtained from the raw
data. Thus, we perform experiments to evaluate the accuracy of the results with
respect to the same query issued on the raw data and experiment’s results are
depicted in Fig. 5. It can be seen that the larger the queried data, the better the

Modeling Large Time Series for Efficient Approximate Query Processing 199

Run Time - SUM Query - CF 5

Models /° N
© Actual & FFT 4 DCT X Mean /
w o

B e
o 5
E 2 a-a”
< /+/+ +
=l a
© /e/
e p—t"—"
& e fp——t d— ”D
—

Log(Queried Data Length)

(a) Compression Factor 5

Run Time - SUM Query - CF 20

Models /
o Actual A FFT + DCT X Mean o°

15

Run Time (s)
AN

S

o Q:ﬁﬁ +t
K“ﬁ’t’t“&ﬂtié#t#

o—2°

o e
S T T T T T

3.5 4.0 45 5.0 55 6.0

Log(Queried Data Length)

(b) Compression Factor 20

Fig. 4. Comparison of query run time changes with respect to compression

accuracy. Using our models, we approximate the points in head and tail parts
of the time series being queried. The body part of the time series is calculated
directly from the models associated with that part. There is no approximation
needed for that part.

We also noted statistics on accuracy changes when the compression factor
differs. In the previous experiment we show that higher compression leads to
models with a lower memory footprint that have a lower execution time during
query processing. It is also necessary to store the accuracy of different compres-
sion level to better answer user queries. Figure6 depicts accuracy changes for
compression factors 5 and 20 where we see high error in more compressed mod-
els. With these statistics the user always has the ability to trade off between
performance and accuracy.

In our proposed method, we provide the functionality to the user where
he/she can specify the query parameters like time boundary and accuracy bound-
ary. Thus, in our model pool we store different models to support such specific
parameters. In some cases we create simpler models from original stored mod-
els. Due to this flexibility it is necessary to evaluate the result accuracy with
respect to the model specification. We use the compression factor as the model
complexity where less compression means the model is more detailed and high
compression means model is less detailed, thus, provides a more abstract repre-
sentation. The results are shown in Table 1.

200

K.S. Perera et al.

Accuracy - SUM Query

B Models
A FFT + DCT X Mean

0.8

06

Error %

5.0 55 6.0
Log(Queried Data Length)

Fig. 5. Accuracy of SUM query on NREL wind dataset

Accuracy - SUM Query

[Up—
© | \ Models
© \ A FFT + DCT X Mean
©
Qo \
< | \
= © \
B e o \
5 o \
X
o
s
- SX
e
o
s

Log(Queried Data Length)

(a) Compression Factor 5

Accuracy - SUM Query

Models
z - A FFT 4+ DCT X Mean
w
L
8
i o2
m
o
s . . sb-dais
35 4.0 4.5 5.0 55 6.0

Log(Queried Data Length)

(b) Compression Factor 20

Fig. 6. Comparison of query accuracy changes with respect to compression

Modeling Large Time Series for Efficient Approximate Query Processing 201

Table 1. De-compression error of different models in different compression levels

Model
Compression | Measure | FFT DCT Aggregate
10 RMSE |4.269471 | 7.42458 | 15.00886
MAPE |4.27367 |8.048909 | 17.77352
5 RMSE | 2.236411 | 3.552057 | 9.980734
MAPE |1.851273|4.050521 | 10.51729
4 RMSE | 1.879704 | 2.84323 |6.990188
MAPE |1.399919 | 3.025598 | 6.728125

4.2 Histogram Query

Histograms are a widely used analysis tool in the business domains and used as
a metadata statistic in database and data warehouse domains for query opti-
mization. A histogram shows the data distribution and we generate histogram
from our models and analyze the accuracy of the generated histograms compare
to histograms created using the original data. An example is shown in Fig.7
where top left histogram represents original data, top right histogram repre-
sents reconstructed data using FF'T model. Bottom left histogram and bottom
right histogram represent DCT model and Mean aggregated model reconstructed
histograms respectively. We want to analyze our decompression accuracy with
respect to data distribution and similar to [9] we conduct Histogram Error Rate
(HER) analysis where HER(x) = ZlBﬁ;iﬂ(gigi(m)l, defines error with respect
to total bin differences in the histogram. BThe HER is 0.044, 0.063 and 0.152 for

Actual FFT

300
300

200

200

100
100

Power Generation

Aggregated

336

300
300

200
200

114
%

100
100

59 59
35 49 50

T T T 1 T T T 1
o 50 100 150 200 o 50 100 150 200

Power Generation Power Generation

Fig. 7. Histogram representation of raw data and decompressed data from models in
NREL Wind Dataset

202 K.S. Perera et al.

FFT, DCT and Mean Aggregated models respectively. Mean aggregated model
has three times higher error compared to FFT model. The compression factor
in this experiment is 10 for all 3 models.

From our findings we can devise that different models have different charac-
teristics. When we maintain all these models in our model pool together with
their characteristics on different queries, it is necessary to select the optimal
model to answer given query. Thus, our next step is to implement the model
adviser which is responsible selecting the model to be used.

5 Related Work

Approximate query processing has been used in many application domains and
new methods have been introduced to deal with general and application specific
problems. Among these approaches, sampling based methods, histogram based
methods and wavelet based methods are to name few.

BlinkDB [1] is a sampling based database system which provides approximate
answers with time and error bounds. BlinkDB proposes stratified sampling which
supports offline (samples are pre-calculated for the given query) as well as online
sample creation when a new query is issued and cannot be answered by existing
samples in the database. The system handles WHERE and GROUP BY queries
and create samples accordingly. BlinkDB also maintains Error Latency Profile
which are created with respect to sample size and their response time and rel-
ative error. BlinkDB cannot be used with time series data, which doesn’t have
multiple dimensions in contrast our models supports time series data. Interpret-
ing a time series as a signal is a common technique in time series analysis. This
approach gives the flexibility to use signal analysis methods to use on time series.
One such approach is presented in [9] where they used FFT is used to compress
original time series and represent it then through sampled Fourier components
with residuals of original and approximated signal. They propose only histogram
query analysis where we define SUM and AVERAGE queries over transformed
models. We also introduce DCT models. Wavelet analysis (both continuous and
discrete) is widely used in data analysis [2], in particular time series analysis. Dis-
crete Wavelet transform-based time series and mining has been proposed in [3].
The proposed system can only handles multidimensional data and doesn’t work
well with time series data in comparison to our system. More recent work on
approximate query over temporal data is presented in [7] which focuses on Fre-
quency Domain Transformation which includes DFT, DCT and DWT. MauveDB
[5] and its early implementation of model based data access [4] is another attempt
to represent the underlying data through the models to provide a complete view
of the data. MauveDB uses regression based models to represent the underlying
data and does not provide compression. MauveDB presents a new abstraction
level over the real data with errors and missing values to present a complete view
to the users. This abstraction is built by using models represent to underlying
data. As this layer provides transparency to the user, the user can still use SQL
queries to derive information, and this information is provided by using models
in the abstraction layer.

Modeling Large Time Series for Efficient Approximate Query Processing 203

6 Conclusion and Future Work

Due to the large amount of data being generated by today’s applications, it
is necessary to introduce new information extraction methods as opposed to
traditional database systems. In this paper we suggests a model based database
system which underlying data is represented by models and queries are answered
using models instead of using data. As a start we use models on time series
data and show that it is possible to improve the performance by using models.
Querying over proposed DFT (FFT), DCT and aggregation models have run-
time efficiency gain upto 80 % as compared to querying over the original raw
data and query results have high accuracy with less than 5% of Mean Absolute
Percentage Error (MAPE) with reference to exact answers.

As directions for future work, we suggest maintaining query statistics to
determine when to use model based query processor and when to use data query
processor. Our model-based database system implementation starts with time
series representation as time series is the simplest form of data. Even though
our model-based database system can apply only to few scenarios in time series
domain, our system will have higher impact when representing data with many
dimensions. In such cases models used for simple time series cannot be used as
implemented now. Thus an extension of the current models to capture multiple
dimensions as well as completely new set of models will be introduced in our
future research.

Acknowledgment. This research has been funded by the European Commission
through the Erasmus Mundus Joint Doctorate, Information Technologies for Business
Intelligence - Doctoral College (IT4BI-DC).

References

1. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: Blinkdb:
queries with bounded errors and bounded response times on very large data. In:
Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys
2013, pp. 29-42. ACM (2013)

2. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query
processing using wavelets. In: Proceedings of the 26th International Conference on
Very Large Data Bases, VLDB 2000, pp. 111-122. Morgan Kaufmann Publishers
Inc. (2000)

3. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet
transform-based time series analysis and mining. ACM Comput. Surv. 43(2), 6:1-
6:37 (2011)

4. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-
driven data acquisition in sensor networks. In: Proceedings of the 30th International
Conference on Very Large Data Bases - Volume 30, VLDB 2004, pp. 588-599.
VLDB Endowment (2004)

5. Deshpande, A., Madden, S.: Mauvedb: supporting model-based user views in data-
base systems. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2006, pp. 73-84. ACM (2006)

204

10.

K.S. Perera et al.

Khalefa, M.E., Fischer, U., Pedersen, T.B., Lehner, W.: Model-based integration
of past and future in timetravel. Proc. VLDB Endow. 5(12), 1974-1977 (2012)
Khurana, U., Parthasarathy, S., Turaga, D.S.: FAQ: a framework for fast approxi-
mate query processing on temporal data. In: Proceedings of the 3rd International
Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications, BigMine 2014, 24 August 2014,
pp- 29-45 (2014)

Perng, C.-S., Wang, H., Zhang, S., Parker, D.: Landmarks: a new model for
similarity-based pattern querying in time series databases. In: 2000 Proceedings
of 16th International Conference on Data Engineering, pp. 33-42 (2000)

Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time series streams with
multi-scale compressed trickles. Proc. VLDB Endow. 2(1), 97-108 (2009)

Spiegel, S., Schultz, D., Albayrak, S.: BestTime: finding representatives in time
series datasets. In: Calders, T., Esposito, F., Hiillermeier, E., Meo, R. (eds.) ECML
PKDD 2014, Part III. LNCS, vol. 8726, pp. 477-480. Springer, Heidelberg (2014)

	Modeling Large Time Series for Efficient Approximate Query Processing
	1 Introduction
	2 Model-Based Database System Concept
	3 Model Querying for Time Series Data
	3.1 Model Construction
	3.2 Query Computation over Models

	4 Evaluation
	4.1 AVG and SUM Queries
	4.2 Histogram Query

	5 Related Work
	6 Conclusion and Future Work
	References

