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Abstract. One way to build secure electronic voting systems is to use
Mix-Nets, which break any correlation between voters and their votes.
One of the characteristics of Mix-Net-based eVoting is that ballots are
usually decrypted individually and, as a consequence, invalid votes can
be detected during the tallying of the election. In particular, this means
that the ballot does not need to contain a proof of the vote being valid.

However, allowing for invalid votes to be detected only during the tal-
lying of the election can have bad consequences on the reputation of the
election. First, casting a ballot for an invalid vote might be considered as
an attack against the eVoting system by non-technical people, who might
expect that the system does not accept such ballots. Besides, it would be
impossible to track the attacker due to the anonymity provided by the
Mix-Net. Second, if a ballot for an invalid vote is produced by a software
bug, it might be only detected after the election period has finished. In
particular, voters would not be able to cast a valid vote again.

In this work we formalize the concept of having a system that detects
invalid votes during the election period. In addition, we give a general
construction of an eVoting system satisfying such property and an effi-
cient concrete instantiation based on well-studied assumptions.

Keywords: Electronic voting systems · Mix-Nets · Formal definitions

1 Introduction

Even though many electronic voting schemes have been proposed, we could argue
that two of the most important conceptual categories are Homomorphic Tallying
based voting schemes and Mix-Net based voting schemes. Both types of schemes
consist on having the voter encrypt her selected voting option on her voting device
and having an electoral authority decrypting these encrypted voting options, after
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some anonymization procedure. This anonymization procedure is what defines
each category and has implications on the whole voting system.

In Homomorphic Tallying based voting systems [8], the anonymization pro-
cedure consists on homomorphically aggregating the encryptions of the voting
options from different voters to obtain the encryption of the aggregated selec-
tions. For instance, if each voter computes as many encryptions as voting options
exist in the election, the aggregate would be the encryption of the number of
votes for the first voting option, the encryption of the number of votes for the
second voting option and so on. This would imply that electoral authorities only
need to compute one decryption operation per voting option in the election,
whereas each voter would need as many encryptions.

This does not fit well within our paradigm, since electronic voting is an
extremely asymmetric scenario: the computational power of a single voter’s
device is much smaller than the computational power of the electoral authority.
This is due to two factors. First, the resources available to a single voter (per-
sonal computers, smartphones or tablets) are usually considerably lower than
those available to electoral authorities (multiple servers with many cores per
server), specially in big elections. Second, the recent trend seems to be to imple-
ment the voting client in JavaScript, which performance is orders of magnitude
lower than Java or C, the languages in which the back-end of the system is
usually implemented. There are technologies which improve the performance of
JavaScript but they are not available in all web browsers. Finally, the time it
takes to tally an election is less critical than the time it takes to cast a vote. As
estimated in [2], encrypting a single candidate in the JavaScript implementation
of Helios, the most popular implementation of a Homomorphic Tallying-based
voting system, takes up to 1 s. This clearly does not scale well when hundreds
or thousands of candidates are eligible.

On the other hand, in Mix-Net based voting systems [7], the computational
cost for the voter is much smaller than the computational cost for the elec-
toral authority and even smaller than the computational cost in a Homomor-
phic Tallying-based scheme. This is achieved by changing the anonymization
procedure, which consists on shuffling the encrypted voting options to break any
correlation between the ballot and the voter. In this case, the voter only needs
to encrypt an encoding of her selected voting options, which might be as efficient
as computing a single encryption. On the other hand, the electoral authority will
need to decrypt all the ciphertexts individually, but that’s a reasonable trade-off.

To have a fair comparison between these two categories of voting systems,
one has to consider how many voting options exist in an election. If the election is
a single referendum answer, there will be usually three answers (yes, no, blank),
which implies that using a Homomorphic Tallying-based system is more than
reasonable. However, there are elections where a voter might choose between
close to a thousand candidates. We find such an example in elections where
tens of parties are eligible in an election, each party having close to a hundred
candidates and a voter being able to choose candidates from any party, in which
case the benefits of using a Mix-Net-based system outweight its disadvantages.
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Lastly, it should be noted that the Damg̊ard Jurik cryptosystem [9] allows
encrypting several candidates in a single ciphertext, pushing the boundaries of
Homomorphic Tallying-based voting systems. However, only a certain number
of candidates can be encrypted, which depends on the number of voters. Above
this number, more than one ciphertext needs to be computed and casting a
ballot becomes more costly. Determining at which point Mix-Net-based systems
outperform Homomorphic Tallying-based systems (with respect to the voting
client) is outside the scope of this paper.

1.1 The Problem of Invalid Votes

When building a Homomorphic Tallying based voting system, a technical req-
uisite is that the voter must construct a proof that her vote conforms to the
election rules. Otherwise, the homomorphic aggregation of invalid votes could
produce completely unreasonable results. Current Homomorphic Tallying based
systems consider this requirement, so we can consider it a solved problem.

Mix-Net-based systems do not have this requirement. As votes are individu-
ally decrypted, it can be checked whether each decrypted vote conforms to the
election rules and, in case it does not, consider it an invalid vote. From a tech-
nical perspective this is completely reasonable, we do not need to ask voters for
a proof of her vote conforming to the election rules in order to have a secure
Mix-Net-based system. Indeed, this is how paper voting systems work nowadays.

Despite proofs of ballot well-formedness not being necessary to implement
a secure eVoting system, the lack of such proofs might affect the reputation of
the system. Firstly, from a non-technical voter’s perspective, it is reasonable to
assume that if the voting interface does not allow for an invalid vote to be cast
then invalid votes should be impossible to cast. Therefore, modifying the voting
client to cast an invalid vote might be seen as an attack against the system, even
if it has no effect on the result on the election. Besides, it would be impossible
to track the attacker due to the anonymity provided by the Mix-Net. The paper
voting scenario is slightly different: in paper voting the voting interface allows
voters to easily cast an invalid ballot. In addition, should there be a software
bug which created invalid votes inadvertently, this would be only detected at
the tallying phase. Depending on the amount of invalid votes, the election might
even have to be restarted – with the reputation loss that it represents.

1.2 Introducing Vote Validatability

In this work we introduce the concept of vote validatability, which attempts to
solve the problem mentioned above. We consider that an electronic voting system
has vote validatability if it can be publicly verified that a ballot contains a vote
conforming to the election rules – we want to be able to detect whether a vote is
invalid before it is decrypted. This means that (a) no invalid votes will appear
during the tallying of the election and (b) any software bug in the voting devices
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will be detected during the election period, so it can be quickly fixed, providing
the voters another attempt to vote before the end of the election.1

As we discussed above, Homomorphic Tallying systems have vote validatabil-
ity since it is a requisite in order to have a secure voting system, in contrast with
Mix-Net-based systems. Adding this property to a Mix-Net-based scheme is not
a theoretical problem: there are inefficient cryptographic tools such as general-
purpose zero-knowledge proofs which can be used to achieve it. The challenge is
thus using appropriate proofs to retain low computational cost from the voters’
side, which is one of the advantages of using a Mix-Net-based system.

There is a trivial approach to achieve vote validatability: considering all pos-
sible contents of a ballot as valid. This can be done by defining an encoding
for all-but-one eligible candidates and assigning any other encoding to the last
candidate. However, this has some drawbacks. First, having several encodings
for the same candidate opens the door to facilitating vote selling by making it
possible to introduce the voter’s identity in the encoding of the candidate. In
addition, requiring a specific encoding might limit the amount of features of the
eVoting system, such as the so called return codes [11], which require that each
candidate has only one encoding, or using special encodings to aggregate encryp-
tions before the tallying, as also done in [11]. Therefore, we prefer a modular
solution to vote validatability which does not require a specific encoding of the
candidates.

In this work, we introduce a formal definition for the concept of vote vali-
datability in Sect. 3. Then, we give a general construction of a Mix-Net-based
scheme achieving vote validatability and privacy. This construction is based on
basic cryptographic primitives and is given in Sect. 4, along with its security
properties. Finally, we give a concrete, efficient instantiation of a Mix-Net-based
system with vote validatability in Sect. 5.

2 Preliminaries

2.1 Encryption Schemes

An encryption scheme consists of three probabilistic polynomial time (p.p.t.)
algorithms: KeyGenEnc,Enc,Dec. On input a security parameter 1k, the
KeyGenEnc algorithm outputs a public key pk and a secret key sk, implicitly
defining a message space Me. The Enc algorithm takes as input the public key
pk and a message m ∈ Me and outputs a ciphertext C. Dec takes as input
a secret key sk and a ciphertext C and outputs a message m ∈ Me or halts
outputting ⊥.

An encryption scheme is NM-CPA (Non-Malleability under a Chosen Plain-
text Attack) if, loosely speaking, no adversary can find a non-trivial relation
between the plaintexts hidden in some ciphertexts generated by him, querying
the encryption oracle as in the IND-CPA experiment [5].
1 There could be bugs in the software which verifies vote validatability. However, this

verification can be done in parallel by different implementations done by different
entities, leveraging this risk.
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2.2 Signature Schemes

A signature scheme consists of three p.p.t. algorithms KeyGenSign,Sign,
VerifySign. On input a security parameter 1k, the KeyGenSign algorithm out-
puts a public key pk and a secret key sk, implicitly defining a message space
Ms. The Sign algorithm takes as input the secret key sk and a message m ∈ Ms

and outputs a signature σ. The VerifySign algorithm takes as input a public key
pk and a signature σ and outputs success (1) or reject (0).

One usual notion of security for a signature scheme is EUF-CMA [13]. In such
a scheme, no adversary is able to forge a new valid signature for any message
not already signed, regardless the number of signatures issued.

2.3 Pseudo-Random Permutations

A Pseudo-Random Permutation family [15] is a family of efficient functions F(·) :
X → X parametrized by a key k ∈ KPRP .

The pseudo-random property of a PRP family states that it is difficult to
distinguish the outputs of a function Fk for a random key k ∈ KPRP from those
of a function f chosen at random from the space of random permutations of X .

2.4 Non-Interactive Zero-Knowledge Proof of Knowledge

Let R be a relation, containing pairs (x,w) such that, given (x,w) it can be
verified in polynomial time whether (x,w) ∈ R. We call x the statement and
w the witness. We define the language LR as the set of statements x for which
there exists a witness w such that (x,w) ∈ R.

A non-interactive zero-knowledge proof of knowledge (NIZKPK) for a lan-
guage LR consists of three p.p.t. algorithms: GenCRS,Prove,VerifyProof. GenCRS
takes as input a security parameter 1k and outputs a common reference string
crs. Prove takes as input the common reference string crs, a statement x and a
witness w such that (x,w) ∈ R and outputs a proof π. VerifyProof takes as input
a common reference string crs, a statement x and a proof π and outputs 1 if it
accepts the proof or 0 if it rejects it.

A NIZKPK must satisfy the properties of completeness, witness extraction
and zero-knowledge (see, for instance, [16]). Intuitively, completeness states that
VerifyProof will always return 1 on correctly generated proofs. Witness extraction
states that (a) there exists an algorithm ExtGenCRS which outputs a common
reference string c̃rs, indistinguishable from a common reference string output by
GenCRS, and a trapdoor key tk; and (b) that there exists an algorithm Extract
that, on input the trapdoor key tk, a statement x and a valid proof π it returns
a witness w such that (x,w) ∈ R. Finally, zero-knowledge states that (a) there
exists some SimGenCRS which outputs a common reference string c̃rs, indistin-
guishable from a common reference string output by GenCRS, and a simulation
key fk; and (b) that there exists an algorithm SimProve that, on input a state-
ment x and the simulation key fk it can generate a proof indistinguishable from
a proof generated using the Prove algorithm with a valid witness.
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3 Definitions

In this section we present the syntactical definition of an eVoting scheme and we
define some security properties. We have not considered all the desirable security
properties of an eVoting scheme – all the end-to-end verifiability properties,
including the handling of voters’ credentials, are considered to be out of the
scope of this paper. However, the solution given in this paper can be combined
with the usual techniques for achieving end-to-end verifiability.

3.1 Syntactical Definition

We now give the syntax of a voting scheme. We will consider single-pass voting
schemes as defined in [5], which are characterized by the fact that voters interact
with the system only by submitting their ballots.

We will consider the following entities regarding an election. First, election
authorities are in charge of defining the election parameters, generating any
required cryptographic keys and tallying the result of the elections. The bulletin
board is a repository of information containing public keys and ballots. It can
be read by any entity but only the bulletin board manager and the election
authorities can write to it. Voters participate in the election by choosing their
preferred voting options and submitting their ballots. For the sake of simplicity,
we will assume that there is only one election authority. This assumption can be
avoided with well-known tools such as multi-party computation.

A voting scheme is parametrized by the set of possible votes V, a result space
R and a result function ρ : (V ∪ {⊥})∗ → R, where ⊥ denotes an invalid vote.

The result function states how votes should be tallied, i.e., which counting
function should be applied to votes. One such result function which we are
interested in is the multiset function. As defined in [4], the multiset function
discloses the sequence of all the cast votes, in a random order. In this case, an
invalid vote is treated as any other vote.2

A voting scheme is defined by the following p.p.t. algorithms:

– Setup(1λ) on input a security parameter 1λ it outputs an election public key
pk and an election secret key sk.

– Vote(pk, v) on input the election public key pk and a vote v ∈ V, outputs a
ballot b.

– ValidateBallot(BB, b) takes as input a bulletin board BB and a ballot b. It
outputs either success (1) or reject (0).

– Tally(sk,BB) on input the election secret key sk and the bulletin board BB.
It outputs the tally r ∈ R together with a proof of correct tabulation Π.

– VerifyTally(BB, r,Π) takes as input the bulletin board BB, the tally r and a
proof of correct tabulation Π. It outputs either success (1) or reject (0).

A single-pass protocol is executed in three phases.
2 As in [4], the result function can be used to model revote policies. In this work we

just consider the scenario where each voter can only cast one vote.
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1. In the setup phase, the election authority runs the Setup algorithm. It pub-
lishes the election public key pk in the bulletin board BB and keeps the
election secret key sk.

2. In the voting phase, each voter can vote. To vote, the voter chooses a vote v
and retrieves the public key pk from the bulletin board. Both v and pk are
used to create a ballot b using the Vote algorithm, which is sent to the bulletin
board manager. The bulletin board manager then executes the ValidateBallot
algorithm on the ballot. If the algorithm returns 1, then the bulletin board
manager adds the ballot to the bulletin board. Otherwise, it rejects the bal-
lot and notifies both the voter and the electoral authority for auditability
purposes.

3. In the counting phase, the election authority runs the Tally algorithm on the
bulletin board using the election secret key. The output of the Tally algorithm,
which consists of the result r and the correct tabulation proof Π, is published
to the bulletin board. The proof Π can then be verified by any entity using
the VerifyTally algorithm.

A voting system as defined above is correct if, when the three phases are run
with all the participants behaving correctly, then (a) the result r output by the
Tally algorithm is equal to the evaluation of the result function ρ on the voting
options corresponding to the ballots cast by the voters and (b) the algorithm
VerifyTally on input the result of the Tally algorithm returns success.

3.2 Privacy

Intuitively, a voting system has ballot privacy if an adversary with access to all
the ballots and the public key of the election is not able to get any information
about the voters’ preferences. Formalizing this intuition turns out to be non-
straightforward, and it is not until recently that good definitions have been given.
We adopt the formalization given in [4], a game-based definition of ballot privacy,
proven to be equivalent to the intuitive simulation-based security notion.

Ballot privacy is defined by using two experiments between an adversary A
and a challenger C. As usual, the goal of the adversary is to distinguish between
the two experiments. In both experiments, the adversary may corrupt voters and
submit ballots on their behalf. In addition, for each honest voter the adversary
can specify two votes to be used for casting her ballot. However, the electoral
authority is assumed to remain honest. Depending on the experiment, the chal-
lenger will cast a ballot containing either of those two votes. To prevent trivial
attacks, the same tally is always shown to the adversary regardless of which
experiment is being played.

For compactness, we present the two experiments as a single experiment
which depends on a bit β ∈ {0, 1}. Both experiments assume given the set of
voting options V, the result space R, the result function ρ and use an algorithm
SimProof(BB, r) which, given a bulletin board and a result, simulates a correct
tabulation proof. The experiment Expβ is run in these phases:
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1. Setup phase. The challenger sets up two empty bulletin boards BBL and
BBR. It runs the Setup(1λ) protocol to obtain the election public key pk and
the election private key sk. It then posts pk on both bulletin boards. The
adversary is given read access to either BBL if β = 0 or BBR if β = 1.

2. Voting phase. The adversary may make two types of queries:
– Vote(vL, vR) queries. The adversary provides two votes vL, vR ∈ V. The

challenger runs Vote(pk, vL) and Vote(pk, vR) obtaining two ballots bL

and bR respectively. C then obtains new versions of the boards BBL and
BBR by running ValidateBallot(BBL, bL) and ValidateBallot(BBR, bR)
and updating the boards accordingly.

– Ballot(b) queries, which model queries made on behalf of corrupt voters.
The adversary provides a ballot b, with which ValidateBallot(BBL, b) is
run by the challenger. If the algorithm returns 1, BBL is updated and
ValidateBallot(BBR, b) is executed, updating BBR accordingly. Otherwise,
if the algorithm returns 0, it does nothing.

3. Tallying phase. The challenger evaluates Tally(sk,BBL) obtaining the
result r and the proof of correct tabulation Π. If β = 0, the challenger
publishes (r,Π) on the bulletin board BBL. If β = 1, the challenger runs
SimProof(BBR, r) obtaining a simulated proof Π ′ and posts (r,Π ′) on the
bulletin board BBR.

4. Output. The adversary A outputs a bit α, which depends on A, V, R, ρ and
SimProof.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 provides
ballot privacy if there exists an algorithm SimProof such that for any p.p.t.
adversary A the following advantage is negligible in the security parameter λ.

Advpriv
V,R,ρ,SimProof(λ):=|Pr[α = 1|β = 1] − Pr[α = 1|β = 0]|

We remark that honest voters are assumed to generate the ballots correctly
(i.e., proper randomness is used and it is not leaked to the adversary).

3.3 Strong Consistency

In order to define vote validatability we will first define the notion of strong
consistency. Strong consistency states that the tally of the bulletin board must
correspond to the result of applying the result function to the contents of the
ballots in the bulletin board. As shown in [4], this property is needed to avoid
having leaky tallying algorithms.

In our case, we also use it to define what a meaningful content extractor is.
This content extractor will be useful to define the concept of vote validatability.

Strong consistency is given by the following game, where we assume given
election parameters (V, R, ρ) and uses an algorithm Extract(sk, b) which takes
the election secret key and a ballot and outputs either a vote or the error symbol
⊥ denoting an invalid vote.
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1. Setup Phase. The challenger runs Setup(1λ) to obtain the election public key
pk and the election secret key sk. It gives both pk and sk to the adversary A.

2. Bulletin Board(BB). The adversary submits a bulletin board BB to the
challenger.

3. Output. The challenger runs Tally(sk,BB) to obtain a result r and a correct
tabulation proof Π. The output of the game is a bit γ, which depends on A,
V, R, ρ and SimProof. This bit is defined as 1 if r �= ρ(Extract(sk,BB)) and
0 otherwise, where Extract is applied on the bulletin board by applying it to
each individual ballot.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 has strong
consistency with respect to an extract algorithm Extract if the following condi-
tions are satisfied:

(i) For any (pk, sk) in the image of Setup, for any vote v ∈ V it is satisfied
that Extract(Vote(pk, v)) = v

(ii) For any p.p.t. adversary A, the following advantage is negligible in the
security parameter λ:

Advs−const
V,R,ρ,SimProof(λ):= Pr[γ = 1]

3.4 Vote Validatability

We now present the definition of vote validatability, which is the first contribu-
tion of this paper. Simply stated, vote validatability states that a ballot which
passes all validations must correspond to a valid vote. This is modeled by stating
that the algorithm Extract, the one from the strong consistency property, never
returns the error symbol ⊥ on ballots for which ValidateBallot returns 1.

Vote validatability is given by the following game, which assumes that the
election parameters (V, R, ρ) are given and uses an algorithm Extract(sk, b),
which takes the election secret key and a ballot and outputs either a vote or
the error symbol ⊥ denoting an invalid vote.

1. Setup phase. The challenger runs Setup(1λ) to obtain the election public
and private keys (pk, sk), giving both of them to the adversary.

2. Ballot(b). The adversary submits a ballot b to the challenger.
3. Output. The output of the game is a bit δ, which depends on A, V, R, ρ and

SimProof. This bit is defined as 1 if Extract(sk, b) =⊥ and ValidateBallot = 1,
and as 0 otherwise.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 has vote
validatability with respect to an extract algorithm Extract if the following con-
ditions are satisfied:

(i) The voting protocol for (V, R, ρ) is strongly consistent with respect to
Extract

(ii) For any p.p.t. adversary A, the following advantage is negligible in the
security parameter λ:

Advval
V,R,ρ,SimProof(λ):= Pr[δ = 1]
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One implication of the definition given above is that, if the protocol has vote
validatability, then it must be satisfied that, for any honestly-generated keys and
any adversarially generated bulletin board, the result output by the tally can be
obtained with only valid votes, r ∈ ρ(V∗).

We want to remark that vote validatability does not depend on the secrecy of
the election secret key. However, it assumes that the Setup is run honestly. Even
though this can be achieved by distributing the trust among multiple authorities,
we have decided to give the definition assuming that there is only one authority
for the sake of simplicity.

4 General Construction

4.1 Core Idea

In an electronic voting system, voters might be able to vote for more than one
candidate, so we will consider a generic scenario in which votes are subsets
of n distinct candidates from a larger but specified list of them. Treating the
set of votes as the set of combinations of candidates would result in a terribly
inefficient system. Therefore, each of the selected candidates will be encrypted
independently. To prove that each candidate hidden in its respective encryption
belongs to the list of candidates, we will use a set membership protocol based
on digital signatures. In addition, we will use another technique to demonstrate
that the candidates hidden in these encryptions are distinct.

The main idea of our new construction is inspired by the set membership
protocol proposed by Camenisch et al. [6]. In that work, the authors construct a
protocol for proving that a value is a commitment to a member of a pre-defined
set. Their protocol works as follows. First, there is a trusted third party which
produces signatures on each element of the set. Then, the prover constructs a
zero-knowledge proof that she knows a signature on the committed value which
verifies under the trusted third party’s secret key. When the encryption scheme
and the signature scheme being used have nice structural properties, the size of
the proof is small and constant on the size of the set. In our case, the electoral
authority will sign all candidates, and the voter will prove that she knows a
signature on each selected candidate. However, this would still allow the voter
to choose repeated candidates.

To detect this last situation, we use a technique inspired by the compact
e-cash scheme given in [3]. In e-cash, detecting double-spending is essential,
and this problem is similar to detecting repeated candidates in a vote. We will
ask the voter to choose a pseudo-random permutation key and to publish the
image of each chosen candidate under the pseudo-random permutation defined
by such key. Given that the pseudo-random permutation is deterministic, if the
voter chooses the same candidate more than once this will be detected by any
entity. Finally, the prover needs to prove that the images of the pseudo-random
permutation correspond to the candidates which she encrypted and that she
knows a signature for each candidate.
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In Sect. 4.2 we describe a generic protocol built on the mentioned crypto-
graphic primitives. In general, computing non-interactive proofs of knowledge
for such statements might be inefficient. In Sect. 5 we show that by instantiating
the cryptographic primitives with adequate schemes the resulting protocol can
be made as efficient as currently deployed e-voting systems.

4.2 Detailed Protocol

We begin by characterizing the set of allowed votes V. Given a set of candidates
V, we define the set of votes as V = {v | v ⊂ V ∧ |v| = n} for some fixed value
of n. Here, we are assuming that a voter must vote for n candidates. We can
handle blank votes and undervotes by designating n different blank candidates.

Our voting scheme uses a common setup generation algorithm, ComSetupGen,
in order to generate some common information that might be shared among the
rest of algorithms like, for instance, the description of a mathematical group.
This will be useful for efficiency reasons.

It also uses, as building blocks, an encryption scheme (KeyGenEnc, Enc,Dec),
a signature scheme (KeyGenSign,Sign,VerifySign), a PRP family F(·) and a NIZK
proof system (GenCRS, Prove,VerifyProof) for the relation R defined as:

R = {(x,w)| x = (C1, . . . , Cn, p1, . . . , pn, pke, pks)∧
w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn, k)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(VerifySign(pks, σ1, ν1), . . . ,VerifySign(pks, σn, νn)) = (1, . . . , 1)∧
(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

The algorithms are then defined as follows:
Setup(1λ) starts by running the ComSetupGen algorithm to generate the

common setup information cs, which will be used by GenCRS, KeyGenEnc and
KeyGenSign. Then the algorithm runs GenCRS to generate the common ref-
erence string crs, KeyGenEnc to generate a pair of public/private encryption
keys (pke, ske) and KeyGenSign to generate a pair of public/private signing keys
(pks, sks), all of which may depend on the common setup information cs. This
implicitly defines the message space for the encryption scheme Me and the mes-
sage space for the signature scheme Ms. We require that there exist two injec-
tive mappings η1, η2 such that η1(V) ⊂ Me and η2(V) ⊂ Ms. For the sake of
simplicity we will assume that V = Me = Ms. Then, for each ν ∈ V, the algo-
rithm produces a signature on it, σν = Sign(sks, ν). The election public key is
defined as pk = (crs, pke, pks, {σν}ν∈V) and the election secret key is defined as
sk = (pk, ske).

Vote(pk, v) parses pk as (crs, pke, pks, {σν}ν∈V) and v as (ν1, . . . , νn). It
then samples fresh randomness (r1, . . . , rn) and runs the (Enc(pke, ν1, r1), . . . ,
Enc(pke, νn, rn)) obtaining ciphertexts C = (C1, . . . , Cn). Next, it selects a fresh
random PRP key k ∈ KPRP and computes (p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))
Finally, it computes a NIZK proof π for the statement x = (C1, . . . , Cn,
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p1, . . . , pn, pke, pks) and witness w = (ν1, . . . , νn, r1, . . . , rn, σν1 , . . . , σνn
, k). The

ballot is defined as b = (C, π, {pi}n
i=1).

ValidateBallot(BB, b) recovers pk from the bulletin board BB and parses it
as pk = (crs, pke, pks, {σν}ν∈V). Upon reception of a ballot b, which parses it
as b = (C, π, {pi}n

i=1), it is checked if in the bulletin board there is another
ballot b′ such that C ′

j = Ci for any i, j ∈ {1, . . . , n}. If any such ballot is found,
the algorithm stops and returns 0. Otherwise, the algorithm checks that the
values (p1, . . . , pn) are distinct, returning 0 if they are not. If the values are
distinct, the algorithm returns the output of VerifyProof using the statement
x = (C1, . . . , Cn, p1, . . . , pn, pke, pks).

Tally(sk,BB) after individual ballot b ballot has been processed with
ValidateBallot, during the tallying algorithm they are decrypted and the result
function is computed. The decryption procedure is defined as follows.

1. (ν̃1, . . . , ν̃n) = (Dec(ske, C1), . . . ,Dec(ske, Cn)) is computed.
2. It is checked that ν̃1, . . . , ν̃n ∈ V.
3. It is checked that (ν̃1, . . . , ν̃n) are pairwise different.
4. If any of such checks fail, v is assigned the value ⊥. Otherwise, v is assigned

the value (ν̃1, . . . , ν̃n).

Then, ρ is applied to the resulting decryptions {v}. Note that, for each v, either
v ∈ V or v =⊥, so ρ can be applied. The output of ρ is defined as the result and
the proof of correct tabulation is defined to be the empty string ε

Note that, as the proof of correct tabulation is the empty string ε, VerifyTally
can be the algorithm which returns 1 on any input.

Security of Our Scheme. Finally, we give the security properties fulfilled by
our scheme. Let (KeyGenEnc,Enc,Dec) be a NM-CPA secure encryption scheme,
let F(·) be a PRP family, let (GenCRS,Prove,VerifyProof) be a NIZK proof sys-
tem, and let (KeyGenSign, Sign,VerifySign) be an EUF-CMA signature scheme.
Let ρ be the counting function which outputs its inputs randomly permuted and
let Extract be the decryption procedure of the Tally algorithm. Then, the protocol
defined above (i) has ballot privacy, and (ii) has vote validatability for any V,
with respect to ρ,Extract. These two results are formally stated in Theorems 1
and 3, which are found along with their proof in Appendix A.

5 Concrete Instantiation

We now give a concrete instantiation of the voting protocol given above. In
order to give the concrete instantiation, we just need to define which encryp-
tion scheme, signature scheme, pseudo-random permutation family and non-
interactive zero-knowledge proof of knowledge scheme the protocol will use. With
regard to our instantiation, the candidates will be encoded as n randomly sam-
pled elements of G1.

The ComSetupGen algorithm will output a type-III bilinear group as a com-
mon setup cs, i.e., a tuple (p,G1,G2,GT , e,G,H), where p is a prime, G1,G2,GT
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are groups of order p, G,H generate G1,G2 respectively, e is a non-degenerate
bilinear map and there is no efficiently computable homomorphism from G1 to
G2 or viceversa. Besides, the Decisional Diffie-Hellman assumption [18] holds in
G1 and in G2.

Encryption Scheme. The protocol will use the Signed ElGamal [17] encryption
scheme in G1, which is NM-CPA secure [5].

Signature Scheme. The signature scheme that we will use is the structure-
preserving signature scheme given in [1]. A structure-preserving signature scheme
is characterized by having messages, signatures and verification keys to be group
element and having a verification procedure that only consists on evaluating
product-pairing equations.

The signature works as follows. On a common setup (p,G1,G2,GT , e,G,H),
an extra random element X ∈ G1 is added to the public parameters. The secret
key is a value v ∈ Zp and the public key is computed as V = Hv. The signature
on M ∈ G1 is then (R,S, T ) = (Hr,M

v
r , S

v
r G

1
r ) for a random r. To verify a sig-

nature it is checked if e(S,R) = e(M,V )e(X,H) and e(T,R) = e(S, V )e(G,H).

Pseudo-Random Permutation Family. We will define the set of candidates,
V, as a set containing n randomly sampled group elements from G1. This allows
us to define the pseudo-random function Fk : G1 → G1 where Fk(g) = gk and
k ∈ Z

∗
p. As we assume that the Decisional Diffie-Hellman assumption holds in

G1, this function family is pseudo-random when we restrict the input to V.3

Non-Interactive Zero-Knowledge Proof of Knowledge. Finally, we have
to give the NIZKPK scheme that we will use. We will use the Groth-Sahai Proof
System [14] but we will frame it as a Commit-and-Prove scheme as done in [10].
A Commit-and-Prove scheme is similar to a NIZKPK scheme with the difference
that a Commit-and-Prove scheme explicitly splits the process of committing to
secret values and proving statements related to such values. In addition, [10]
introduces type-based commitments, where the type indicates how the commit-
ment should be computed. For example, the type “encryption” indicates that
the secret value should be encrypted, as opposed to using the more expensive
commitment operation.

We first remark that the encryption and signature schemes must use the
same algebraic groups that the NIZKPK scheme. Therefore, at the beginning of
the Setup algorithm, the common setup (p,G1,G2,GT , e,G,H) is generated and
will be used to generate the crs and the keys of the encryption and signature
schemes. There is no loss of generality since the groups are generated in the same
way in ComSetupGen and, respectively, in GenCRS, KeyGenEnc and KeyGenSign.

In addition, the Commit-and-Prove scheme given in [10] allows us to treat the
ElGamal encryption of a value as a commitment of type “encryption”, where the

3 Technically, it is a Pseudo-Random Function [12] from V to G1 where F(·) is injective
for any k ∈ Z

∗
p. Therefore, an adversary restricted to only evaluate the function in

points from V can not distinguish those evaluations from randomly sampled elements,
which is sufficient for the security reduction to work.
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randomness used for the encryption is the randomness used for the commitment.
The encryption scheme is thus embedded into the NIZKPK scheme, instead of
being an independent scheme, as assumed in the general construction. However,
we can still adapt the security proof to keep it sound as we now describe.

We will consider the conjunction of two proofs. The first one is a zero-
knowledge proof for the language defined by the relation

R1 = {(x,w)| x = (C1, . . . , Cn, pke, pks)∧
w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(VerifySign(pks, σ1, ν1), . . . ,VerifySign(pks, σn, νn)) = (1, . . . , 1)}

For this proof, the prover computes a commitment to each value of the sig-
nature and builds proofs for satisfiability of the verification equations.

We now need to see that the Commit-and-Prove scheme in [10] is Zero-
Knowledge for the language defined by R1. In other words, we need to see that
exists a simulator. As seen in [10], this reduces to check that there are no terms
in pairing product equations which prevent simulation. Those terms are pairings
where in each side of the pairing there is either a public, non-equivocable value4

or a value which commitment type is “encryption”. Going back to the verification
equations of the signature scheme, we see that there are none of these terms.
Therefore, there exists a simulator for the statement defined by R1.

The second zero-knowledge proof is defined by the relation

R2 = {(x,w)| x = (C1, . . . , Cn, p1, . . . , pn, pke)∧
w = (ν1, . . . , νn, r1, . . . , rn, k)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

For the proof for the relation R2, we will consider the multi-exponentiation
equations νk

i = pi, where νi and k are secret values. The prover computes a
commitment on k and builds a proof for satisfiability of this equation using Ci

as a commitment to νi. Both the commitments on the signatures and the proofs
will be included in π. As noted in [10], multi-exponentiation equations are always
simulatable.

Note that Groth-Sahai proofs are not extractable for exponents such as k.
However, the proof of our scheme having vote validatability only needs to extract
the values ν1, . . . , νn and their corresponding signatures.

5.1 Efficiency

Each Signed ElGamal encryption consists of 2 elements in G1 and 2 elements in
Zp. Each value pi consists of a single element in G1.
4 In [10] the authors define equivocable values as the generators of the group. However,

it can be seen that values for which the simulator knows the discrete logarithm w.r.t.
the generator of the group are also equivocable.
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When looking at the proof π, we have to consider both the proof for the
language defined by R1 and the language defined for R2. For the proof for the
language defined by R1, we have that in the structure-preserving signature of [1]
each signature consists of three elements. A Groth-Sahai commitment on a single
element consists on 2 elements in G1. As we have to commit to n signatures, the
number of elements is 6n elements in G1. Furthermore, there are two verification
equations per signature and a Groth-Sahai proof for a single of such equation
consists of 4 elements in G1 and 4 elements in G2. Therefore, the proofs for all
the verification equations consist on 8n elements in G1 and 8n elements in G2.

When considering the proof for the language defined by R2, we have to
commit to k, which has a cost of 2 elements in G2, and compute the Groth-
Sahai proofs. A Groth-Sahai proof for an equation of the form νk = p consists
on 2 elements in G1 and 4 elements in G2, and we have to compute n of them.

In total, we get that a ballot consists of 19n elements in G1, 12n+2 elements
in G2 and 2n elements in Zp. The cost is linear in n (the number of candidates
encoded in each vote). Moreover, the constant factor is relatively small.

6 Conclusions

We have formalized the definition of vote validatability in order to give an accu-
rate meaning to avoid voters from casting invalid votes, both if done in purpose
or as a consequence of a software bug. Besides creating a construction based
on generic building blocks and general-purpose zero-knowledge proofs, we have
provided a concrete instantiation. We have shown that its efficiency fits into the
device’s computational capacity of voters in current elections.

There are other alternatives which may improve the performance of our con-
struction achieving the same security properties. First, a cryptographic accu-
mulator could be used to prove that candidates are valid. This approach could
reduce the length of the ballot but would make the scheme to rely on the Random
Oracle Model. Second, much of the cost of the ballot comes from the NIZKPK
proof for the language defined by R1. A choice of a different structure-preserving
signature scheme might improve the efficiency of our system.

A Proofs of Security Theorems

We prove the security for the construction given in Sect. 4.2.

Theorem 1. Let (KeyGenEnc,Enc,Dec) be a NM-CPA secure encryption
scheme, let F(·) be a PRP family and let (GenCRS,Prove,VerifyProof) be a NIZK
proof system. Then, the protocol defined in Sect. 4.2 has ballot privacy.

Proof. Recall that privacy is defined as the indistinguishability of two experi-
ments which depend on a bit β. We will refer to them as Expβ for β ∈ {0, 1}.
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Let SimVote1(pk, v) be the Vote algorithm of the protocol given in Sect. 4.2
but, instead of using the Prove algorithm to generate π it uses the SimProve algo-
rithm. Moreover, let SimVote2(pk, v) to be the SimVote1 algorithm but, instead
of using a PRP it uses a truly random permutation.

Consider experiments Expβ,0 = Expβ , Expβ,1 to be the experiment which are
the same as Expβ,0 but the challenger runs SimGenCRS instead of GenCRS and
it runs SimProve instead of Prove. Finally, let Expβ,2 be the experiments which
are identical to Expβ,1 but in which the challenger uses a truly random function
instead of a PRP in order to cast ballots.

Due to the zero-knowledge property of the NIZK proof system, Expβ,0 and
Expβ,1 are indistinguishable for β ∈ {0, 1}. Besides, Expβ,1 and Expβ,2 are indis-
tinguishable for β ∈ {0, 1} due to the pseudo-randomness of the PRP. Now the
only thing left is to prove that Exp0,2 and Exp1,2 are indistinguishable.

Consider the Enc2Vote scheme [5], where the result function ρ is the multiset
function. The scheme is defined as follows: the Setup algorithm runs KeyGenEnc
to produce a public key pke and a secret key ske. Then, pk is set to be pke and
sk is set to be (pke, ske). The Vote algorithm takes as input a vote v and a public
key pke and outputs b defined by b = Enc(pke, v, r) for some fresh randomness
r. ValidateBallot looks if the ballot b already appears on the bulletin board BB:
it returns 1 if it does already appear and 0 otherwise. Tally decrypts all ballots
b on the bulletin board obtaining votes v and evaluates r = ρ(v), outputting
an empty proof of correct tabulation. Observe that Enc2Vote implicitly assumes
that V = Me, the message space of the encryption scheme. As shown in [5], the
following is satisfied:

Theorem 2. Let (KeyGenEnc,Enc,Dec) be an NM-CPA secure encryption
scheme. Then, Enc2Vote has ballot privacy.

Finally, we reduce the privacy of our scheme to the privacy of Enc2Vote.

Lemma 1. Let A1 be a p.p.t. adversary that interacts which challenger C and
outputs a bit αA1 such that |Pr[αA1 = 1|Exp0,2] − Pr[αA1 = 1|Exp1,2]| is non-
negligible. Then, there exists an adversary A2 that breaks the ballot privacy prop-
erty of the Enc2Vote scheme.

In our reduction, A1 will interact with A2, which will act as the challenger
for A1. At the same time, A2 will interact with the privacy challenger C. The
reduction is as follows:

In the Setup phase, C will run ComSetupGen, outputing cs and posting it
to the bulletin board. It will also run KeyGenEnc, keeping the private key for
itself and publishing the public key pke to the bulletin board. Then, A2 will run
the GenCRS and the KeyGenSign algorithms and will produce signatures on each
voting option, posting all the information to the bulletin board.

In the Voting phase, when A1 submits a Vote query, A2 will submit n Vote
queries to C, one for each pair of candidates. The challenger C will answer with
n pairs of ciphertexts (C0,1, . . . , C0,n) and (C1,1, . . . , C1,n). A2 will then sample
two pairs of random values (p0,1, . . . , p0,n) and (p1,1, . . . , p1,n) of the target space
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of the PRP. Finally, it will create ballots b0 = (C0,1, . . . , C0,n, p0,1, . . . , p0,n, π0)
and b1 = (C1,1, . . . , C1,n, p1,1, . . . , p1,n, π1) where π0 and π1 will be simulated.
A2 will post these ballots to the respective bulletin boards. Finally, when A1

submits a Ballot(b) query, A2 will run the ValidateBallot algorithm and will
create a Ballot(b′) for C with b′ = (C1, . . . , Cn) from b.

It is straightforward to see that the output of A2 in its interaction with A1

is correctly distributed, which implies that the reduction is sound.

Theorem 3. Let ρ be the counting function which outputs its inputs randomly
permuted. Let (GenCRS,Prove,VerifyProof) be a NIZKPK proof system and let
(KeyGenSign, Sign,VerifySign) be an EUF-CMA signature scheme. Let Extract
be the decryption procedure of the Tally algorithm of the protocol defined in
Sect. 4.2. Then, the protocol defined in Sect. 4.2 has vote validatability for any
V, with respect to ρ,Extract.

Proof. Strong consistency of the protocol follows by construction. Therefore we
only need to show that, on correctly generated (pk, sk) no adversary can con-
struct a ballot b such that ValidateBallot returns 1 but Extract returns ⊥.

Let Exp0 be the vote validatability experiment and let Exp1 be identical
to Exp0 but instead of using GenCRS the challenger uses ExtGenCRS. These two
experiments are indistinguishable by the properties of the NIZKPK. Now assume
that an adversary A1 is able to output a ballot b in the experiment Exp1 such
that ValidateBallot = 1 and Extract(sk, b) =⊥. Then, we build an adversary A2

which breaks the EUF-CMA of the signature scheme.
The reduction is straightforward: A2, interacting with an EUF-CMA chal-

lenger asks for signatures on {ν}ν∈V . Then, it interacts with A1, posing as
a vote validatability challenger. It runs all the algorithms as in the proto-
col but uses ExtGenCRS, keeping the trapdoor key tk for itself, and using
the answers from the EUF-CMA challenger as the signatures on the voting
options. When A1 outputs a ballot b, A2 uses Extract on π to obtain a witness
w = (ν̃1, . . . , ν̃n, r1, . . . , rn, σν̃1 , . . . , σν̃n

, k)) such that (x,w) ∈ R. This means
that VerifySign(pks, σν̃i

, ν̃i) = 1 for i ∈ {1, . . . , n}. Extract(sk, b) might return ⊥
either because (i) some Dec(ske, Ci) =⊥, (ii) some ν̃i = ν̃j for i �= j or (iii) some
ν̃i �∈ V. However, (i) and (ii) are ruled out due to w being a valid witness, so the
only possibility is (iii). Then, A2 can submit (ν̃i, σν̃i

) as its EUF-CMA forgery.
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