
2015 Neuchâtel’s Cast-as-Intended
Verification Mechanism

David Galindo, Sandra Guasch(B), and Jordi Puiggaĺı

Scytl Secure Electronic Voting, Barcelona, Spain
sandra.guasch@scytl.com

Abstract. Cast-as-intended verification seeks to prove to a voter that
their vote was cast according to their intent. In case ballot casting is made
remotely through a voting client, one of the most important dangers a
designer faces are malicious voting clients (e.g. infected by a malware),
which may change the voter’s selections. A previous approach for achiev-
ing cast-as-intended verification in this setting uses the so-called Return
Codes. These allow a voter to check whether their voting options were
correctly received by the ballot server, while keeping these choices pri-
vate. An essential ingredient of this approach is a mechanism that allows
a voter to discard a vote that does not represent their intent. This is
usually solved using multiple voting, namely, if the return codes received
by the voter do not match their choices, they cast a new vote. However,
what happens if voters are not allowed to cast more than one ballot (aka
single vote casting)? In this paper we propose a simple ballot casting
protocol, using return codes, for allowing a voter to verify votes in a sin-
gle vote casting election. We do so without significantly impacting the
number of operations in the client side. This voting protocol has been
implemented in a binding election in the Swiss canton of Neuchâtel in
March 2015, and will be the canton’s new voting platform.

Keywords: Electronic voting protocols · Binding election · Cast-as-
intended verifiability · Malicious voting client · Return codes

1 Introduction

Switzerland has a long history on direct participation of its citizens in deci-
sion making processes. Besides traditional elections where voters choose their
representatives in the Federal Assembly, citizens can participate in several other
voting events. Citizens can propose popular voting initiatives on their own (after
having obtained enough popular support by collecting signatures), and then par-
ties and governments themselves (at the communal, cantonal or federal level) can
organize referendums in order to ask the citizens for their opinion on a new law
or a modification of the Constitution, among others. At the end, Swiss citizens
have the chance to participate in 3–4 voting processes a year in average.

Remote electronic voting was first introduced in Switzerland in three cantons:
Geneva, Zurich and Neuchâtel [14]. The first binding trials were held in 2004.
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-22270-7 1



4 D. Galindo et al.

Nowadays 14 cantons offer the electronic voting channel to their electors, which
until recently has been restricted to be used by up to 10 % of the eligible voters.
In 2011 the Federal Council of Switzerland started a task force for studying the
security issues of electronic voting. As a result, the Federal Council published,
in 2013, a report with the requirements for extending the use of the electronic
voting systems to a larger part of the electorate. This framework [11], which
became binding in January 2014, provides requirements of functionality, security,
verifiability and testing/certification which allow the electronic voting systems
to be extended to 30 %, 50 % or up to 100 % of the electorate. More specifically,
while current electronic voting systems may be allowed to be used for up to
30 % of the electorate provided that they fulfil a certain set of functional and
security requirements, systems to be used for up to 100 % of the electorate are
required to additionally provide verifiability features. Although the modality of
electronic voting (DRE, remote, ...) is not specified in the report, it refers to
electronic voting systems where the vote is cast electronically. In this paper, we
will talk specifically of remote electronic voting systems.

Verifiability in remote electronic voting is traditionally divided in three types,
which are related to the phase of the voting process which is verified [5]. The first
step to audit is the vote preparation at the voting client application run in the
voter’s device. This application is usually in charge of encrypting the selections
made by the voter prior to casting them to a remote server so that their secrecy
is ensured. Cast-as-intended verification methods provide the voters with means
to audit that the vote prepared and encrypted by the voting client application
contains what they selected, and that no changes have been performed. Recorded-
as-cast verification methods provide voters with mechanisms to ensure that,
once cast, their votes have been correctly received and stored at the remote
voting server. Finally, counted-as-recorded verification allows voters, auditors
and third party observers to check that the result of the tally corresponds to
the votes which were received and stored at the remote voting server during the
voting phase.

According to the report by the Federal Council, systems to be used for up to
the 50 % of electors are required to provide methods for cast-as-intended verifi-
cation, and systems for up to 100 % of the electorate are required to addition-
ally provide methods for recorded-as-cast and counted-as-recorded verification,
while also enforcing the separation of duties on operations impacting the privacy,
integrity and verifiability of the system.

Our Contribution. In this paper we present a protocol which provides cast-
as-intended verification, according to the requirements of the Federal Council
for systems to be used by up to 50 % of the electorate. The protocol has the
particularity of only allowing voters to cast one vote through the electronic
channel, and therefore gives provisions for ensuring that such vote is considered
to be cast only in case that it represents the voter intention, by means of a
confirmation phase executed by the voter. The protocol is an evolution of the
so-called Norwegian voting protocol [15,16,23] that was used in the Norwegian
elections in 2011 and 2013. Importantly, it substantially improves the Norwegian



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 5

scheme by not needing to rely on the strong assumption that two independent
server-side entities do not collude to preserve voter privacy. Furthermore, the
scheme also represents a great performance improvement of the voting client
application compared with the original Puiggali-Guasch scheme [6], from which
the Norwegian scheme was initially derived.

This protocol has been implemented and used for a binding election in the
canton of Neuchâtel, in the federal referendum conducted on March 8th 2015.
From 111,080 eligible voters, 23,927 were registered at the citizen electronic
portal Guichet Unique [20] (from which the electronic voting application could
be accessed) and 5,132 chose to cast their vote electronically using this protocol,
which represents 21,45 % of the voters who had the chance to use the electronic
voting channel. General participation in the referendum, all voting channels
considered, was 41,24 %.

The paper is structured as follows: the related work and the main contribu-
tions are detailed in Sect. 2. The syntax and a formal description of the solution
are provided in Sect. 3. The building blocks and the instantiation of the protocol
implemented for the election in Neuchâtel are presented in Sects. 4 and 5. Then,
some details on the usability and verifiability aspects are provided in Sect. 6.
Finally, an informal analysis on the security aspects of the protocol is provided
in Sect. 7 and the conclusions are shown in Sect. 8.

2 Related Work

There have been several proposals of cast-as-intended verification schemes dur-
ing the last decade. In [9], Benaloh presents the Immediate decryption scheme,
where the voter’s device encrypts a vote and the voter is allowed to challenge
the encryption generated. In case they choose to challenge it, the device reveals
the randomness which was used to perform the encryption of the voting options.
Using this randomness, the voter can check that the encrypted vote was con-
structed correctly. After the audit, the voting options are encrypted again with
fresh randomness prior to casting the vote, so that the voter cannot use the
randomness provided for audit as a proof to a third party of how they voted.
However, this approach presents several drawbacks, such as usability (this ran-
domness is a rather large string, cumbersome to be typed by a voter), and the
fact that it does not allow for simple verification (i.e. verification must be done
using a secondary computing device, under the assumption that at least one
of the two devices is not compromised). This approach is used by the Helios
voting system [2–4] and in the Wombat system [24]. A similar approach is used
in VoteBox [25], by disclosing audited votes in the poll station local network in
order to allow them to be verified.

A different approach consists on using the so-called return codes, which are
targeted against malicious voting clients while enjoying some degree of usability
[6,15,18,19,23]. In these proposals the voter selects their voting options and the
voting client sends an encrypted vote to the remote voting servers, where return
codes are calculated from the encrypted vote and sent back to the voter for ver-
ification. Voters possess a verification card where return codes (pre-computed



6 D. Galindo et al.

in a configuration phase) are shown against matching voting options, and veri-
fication can be made by rather simple visual inspection. The current proposals
assume that the voter can cast multiple votes. If the return codes do not match
the selected voting options, then voters can cast another vote that invalidates
the previous one (typically, this would happen if the voting client is malicious
and encrypts voting options independently of the voter). However, some coun-
tries do not allow voters to cast multiple votes (such as France or Switzerland
[11,22]), so it is important to provide a proposal for these cases. Still, multiple
voting is also used as a countermeasure for vote selling and voter coercion in
such schemes, so they have to be taken into account when single voting is used1.

One possible solution to support single vote casting is to add a confirmation
phase to validate the vote after checking the return codes. In the first phase, the
vote is encrypted and sent to the voting server, which calculates the return codes,
stores the vote and communicates the return codes to the voter. In the second
phase, the voter, after inspection of the return codes, sends a confirmation code
to the voting server, that stores it together with the ballot as a proof that the
vote has been confirmed by the voter. Only votes with a valid voter confirmation
code will be taken into account during the tally phase.

The return codes are computed from the probabilistic encryption of voting
options, but at the same time they have to be deterministic: during the vot-
ing phase, the values computed by the server-side from an encrypted vote have
to match those computed during the verification card generation phase (which
happens at election configuration time) for the same set of voting options. There-
fore, the randomness from the voting options encryption has to be removed for
computing the return codes, which poses a serious risk on the vote secrecy. This
was solved in the Norwegian voting system [15,16,23] by splitting the genera-
tion of the return codes in two independent entities: a ballot box server and a
code generation server, which were assumed not to collude. To prevent these
components from colluding and compromising the election privacy [15,16], both
components were located in independent locations and managed by different
companies. However, this approach is not always feasible to implement (the
economic and organizational cost of setting up two different and independent
environments are high).

In contrast, in the Puiggali-Guasch [6] scheme one of the previous indepen-
dent entities is embedded in the voting client application. In their proposal there
is no need of two separate components at the server-side of the voting platform,
although then vote casting becomes computationally more expensive for the vot-
ing client (2,5 times more exponentiations than in the Norwegian protocol are
required approximately). This is important considering the fact that the cryp-
tographic operations done at the voting application level are often performed
using web technologies such as Java Applets or Javascript, so the performance
is slowed down when compared to a C/assembly implementation that uses lower

1 For example, the risk of voter coercion or vote selling in Switzerland is assumed to
be affordable given the fact that many voters already use the postal channel.



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 7

level instructions. Naturally, ballot construction and casting needs to be executed
in an acceptable time-frame to prevent voter disenfranchisement.

In this paper, we present a modification of the protocol [23] which, while
very similar to [6] in the sense that it moves the operations of one of the server-
side entities to the voting client application, reduces dramatically the number of
operations to be performed at the voting client application (as it will be shown
in Sect. 5, the cost of encryption and of proofs computation does not depend
on the number of options anymore). Moreover, we add a confirmation phase in
order to support single vote casting, so that it fulfils the requirements of the
Swiss Federal Council [11].

3 Single Voting with Return Codes

We start by presenting a syntax for a voting scheme with return codes, which
will be later used to describe the protocol2. We build on existing definitions of
single-pass voting schemes, such as [10], and enrich them by adding a second
interaction of the voter with the system, in order to confirm a cast vote.

3.1 Syntax

The scheme has the following participants: Election Authorities, who are in
charge of setting up the election, computing the tally and publishing the results;
Voters, who participate in the election by choosing their preferred options; Reg-
istrars, who are responsible for providing to the voters all the information they
need to vote and, in particular, the return codes that provide the cast-as-intended
integrity property; the Voting Server, which receives, processes and stores the
ballots cast by eligible voters in the Ballot Box, and may as well publish some
information; the Voting Device, which is in charge of casting a ballot given the
voting options selected by the voter; the Code Generator, which is in charge
of generating return codes from the ballots cast by the voting device. Finally,
Auditors, who are responsible for verifying the integrity of the procedures run
in the counting phase.

We assume that non-cryptographic election specifications such as the sets of
administrators and voter identities are fixed in advance. Furthermore we assume
a counting function ρ : (V ∪ {⊥})n → R is given, where V s is the set of voting
options, ⊥ denotes abstention, n is the number of voters and R is the set of
results. Voters may use credentials in order to be able to cast their ballots.
However, how the voters obtain and use such credentials is out of the scope of
this presentation.

There exists a public bulletin board PBB to which every algorithm in the
voting scheme has read-only access to. As is common in the literature, some
authorized parties have writing append-only access to it.
2 As usual, the terms “scheme” and “protocol” can be read interchangeably without

much loss of precision.



8 D. Galindo et al.

The voting scheme is characterized by the following protocols/algorithms:

– Setup(1λ) is an interactive protocol run by the election authorities. On input a
security parameter 1λ, it generates and outputs an election public key pke and
an election private key ske. In addition, it generates a global code generation
public/private key pair (pkc, skc), a signing public/private key pair (pks, sks),
and the set of values which will represent the voting options: V = {v1, . . . , vk}.
The public keys pke, pkc and pks, and the set of voting options V , are implicit
inputs to the remaining algorithms.

– Register(id, skc, sks) is an interactive protocol run by the registrars. It takes
as input a voter identity id, the global code generation private key skc and the
signing private key sks. It outputs a voter’s code generation public/private
key pair (pkid, skid), a set of voter return codes linked to voting options
{vi, RCidi }k

i=1, a voter confirmation value CVid, a voter finalization value FCid

and a validity proof for such finalization code, ΠFCid . Additionally, the regis-
trars publish a set of reference values {RFidi }k

i=1 that are linked to the codes
{RCidi }k

i=1. We sometimes refer to the set
{{vi, RCidi }k

i=1, CV
id, FCid

}
as the

Verification Card.
– Vote(id, skid, {vj1 , . . . , vjt}) is a probabilistic algorithm run at the voting

device. It receives as input a set of values {vj1 , . . . , vjt}, the voter identifier
id ∈ ID and the voter’s code generation private key skid; outputs a ballot b.

– ProcessBallot(BB, b, id, pkid) is run by the voting server. It receives as input a
ballot box BB, a ballot b, an identity id and a voter’s code generation public
key pkid. It outputs 1 in case of success, 0 otherwise.

– RCGen(b, id, skc) is an algorithm run by the code generator. On input a ballot
b, the voter identifier id and the global code generation private key skc, it
outputs an (unordered) set of return codes {RCid} if the operation is successful,
or ⊥ in case of error/rejection. Typically this algorithm will look-up at PBB
to check the list of legitimate reference values

{{RFidi }k
i=1

}
id∈ID

.
– RCVerif({vj1 , . . . , vjt}, {RCid}, {vi, RCidi }k

i=1) is an algorithm run by the voter.
On input a set of voting options {vj1 , . . . , vjt}, a set of return codes {RCid}
and a voting card {vi, RCidi }k

i=1, it outputs 1 if {RCidji }t
i=1 = {RCid} as sets, 0

otherwise.
– Confirm(CVid, id, skid) is a simple algorithm run by the voting device. On

input a voter confirmation value CVid, the voter identity id, and the voter
code generation private key skid, it outputs a confirmation message CMid.

– FCGen(CMid, id, skc,ΠFCid) is an algorithm run by the code generator. It
receives as input a confirmation message CMid, a voter identity id, the global
code generation private key skc and the proof ΠFCid . It outputs a finalization
code FCid if the operation is successful, or ⊥ in case of error/rejection.

– Tally(BB, ske, {ΠFCid}id∈ID) is an interactive protocol run by the election
authorities. It takes as input the ballot box BB, the election private key ske

and the set of validity proofs {ΠFCid}id∈ID. It outputs a result r ∈ R and a
proof π of the tally correctness, or ⊥.

– Verify(PBB, r,π) is an interactive protocol run by the auditors/election
observers. It takes as input the bulletin board PBB, the tally result r and



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 9

the proof π of correct tally. The output is 1 if their verification succeeds, 0
otherwise.

3.2 Workflow

Configuration Phase: Election authorities define the set ID of voter identities
participating in the election and run the Setup algorithm. They publish the
election public key pke, the global code generation public key pkc, the set of
voter identities ID, the signing public key pks and the set of voting options V in
the bulletin board. They provide the global code generation private key skc to
both the registrars and the code generator. Finally the signing private key sks

is provided to the registrars.

Registration Phase: Voters register to participate in the election. To register, a
voter first provides their identity id ∈ ID to the registrars, who run the Register
algorithm. The outputs (pkid, skid), {vi, RCidi }k

i=1, CV
id, and FCid are provided

to the voter, while the voter’s code generation public key pkid, the proof ΠFCid

and the reference values {RFidi }k
i=1 are published in the bulletin board PBB.

Voting phase: This phase consists of several steps:

1. The voter authenticates through the voting device to the voting server. If
the authentication is successful, the values id, pkid are stored in the voting
device. The voter chooses a set of voting options {vj1 , . . . , vjt} ∈ V and enters
them into the voting device as her choices for the election, together with the
private key skid

3. The voting device then runs the Vote protocol and produces
a ballot b. The ballot b and the voter identity id are sent to the voting server.

2. Upon reception of (b, id), the voting server calls the ProcessBallot algorithm.
In case the result of the execution is 1, the ballot box BB is updated with the
ballot b and the voter identity id, with the state ballot received. Otherwise,
the voting device is notified of the error.

3. The code generator is notified of the new update in BB and executes the
RCGen algorithm with the newly arrived ballot. In case the operation is suc-
cessful, a set of return codes {RCid} is generated and sent to the voting server,
which updates the status of the ballot in the BB to return code generated, and
forwards the return codes to the voting device. In case the operation is not
successful the voting device is notified accordingly.

4. The voting device shows the voter the set of generated return codes {RCid}.
The voter is then asked to confirm the ballot cast by providing the confir-
mation value CVid to the voting device, which they will do only in case the
RCVerif algorithm accepts. The voting device then runs Confirm and outputs
a confirmation message CMid, which is sent to the voting server together with
the voter identity id.

3 How this key is provided to the voting device in the Neuchâtel protocol is explained
in Sect. 6.1.



10 D. Galindo et al.

5. The voting server forwards the confirmation message CMid to the code gener-
ator, which executes the FCGen algorithm. If the operation is successful, the
resulting finalization code FCid is sent back to the voting sever, which stores it
together with the ballot, updates the ballot status to confirmed and forwards
FCid to the voting device. In case the operation is not successful, the voter is
notified accordingly.

6. Finally, the voter checks whether the displayed finalization code FCid matches
the value FCid received during registration. In case of a successful verification,
the received finalization code serves the voter as a confirmation of the correct
submission and confirmation of their vote. Otherwise, they complain to the
election administrators, and might need to cast their vote using a different
channel (i.e. at a polling station).

Counting Phase: The election authorities run the interactive protocol Tally on
BB, obtaining and publishing in the bulletin board the result r and the proof π,
or set r =⊥ in case of error. The auditors run the Verify protocol. In case their
output is 1, the result r is announced to be fair. Otherwise, an investigation is
opened to detect the reason of failure.

3.3 Trust Assumptions

The following conditions are assumed in order to provide cast-as-intended veri-
fication and voter privacy with the proposed protocol:

For cast-as-intended verifiability, it is assumed that the following entities,
as pairs, are not simultaneously malicious: the voting device and (1) the code
generator, (2) the registrar, or (3) the voting server; (4) the code generator and
the registrar.

For privacy, the following conditions are necessary: (1) the voting device
is not compromised; (2) the election authorities are honest; (3) the verification
card contents are only known to the voter.

4 Building Blocks

Encryption scheme. Our protocol uses the ElGamal asymmetric encryption
scheme [13], which consists of three algorithms: key generation, encryption and
decryption (KGen,Enc,Dec). The key generation algorithm KGen takes on input
a subgroup G which has a generator g of order q of elements in Z

∗
p, where p is a

safe prime such that p = 2q +1 and q is a prime number. It outputs an ElGamal
public/secret key pair (pk, sk), where pk ∈ G such that pk = gsk mod p and
sk ∈ Zq. On input m ∈ G and the public key pk, the Enc algorithm chooses a
random r ∈ Zq and computes (c1, c2) = (gr, pkr ·m). The Dec algorithm receives
(c1, c2) and the private key sk and outputs m = c2/csk

1 .

Voting options. The voting options V = {v1, . . . , vk} are chosen as small
bit-length primes belonging to the group G. A vote is encoded as the product
of voting options chosen by the voter (prior to encryption), and the individual



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 11

voting options are recovered via factorisation after decryption. Therefore, it has
to be ensured that the product of t of such primes, where t is the number of
selections a voter can make, is not larger than p.

Pseudo-random function family. A function family is a map F : K × D →
R, where K is the set of keys, D is the domain and R is the range. A pseudo-
random function family (PRF) is a family of efficiently computable functions,
with the following property: a random instance of the family is computationally
indistinguishable from a random function, as long as the key remains secret. We
use the HMAC algorithm as a PRF [7], parametrized by the key K.

Signature scheme. A signature scheme is defined by three probabilistic algo-
rithms SignKeyGen,Sign,SignVerify, that stand for key generation, signature
generation and signature verification. Our protocol uses the RSA signature algo-
rithm with the hash variant (or RSA Full Domain Hash signature scheme (RSA-
FDH) [8]), therefore the key generation algorithm SignKeyGen outputs a pair of
keys (pks, sks), for which pks = {pkrsa, Nrsa}, Nrsa = p ·q where p and q are two
distinct primes, and sks = skrsa. The signature algorithm Sign takes as input a
message m, which is not restricted to a specific space, and the private key sks,
and outputs σ = H(m)skrsa mod Nrsa, where H denotes a hash function. The
signature verification algorithm SignVerify takes as input the public key pks, the
message m and the signature σ, and checks that H(m) = σpkrsa mod Nrsa. It
outputs 1 if successful, 0 otherwise.
Non-interactive zero-knowledge proofs of knowledge. We use

EqDLG(g1, . . . , gn, h1, . . . , hn),

a generalization of the NIZK proof system [12], to prove in zero-knowledge that
logg1

h1 = logg2
h2 = . . . = loggn

hn for g1, . . . , gn, h1, . . . , hn ∈ G (with proof
builder ProveEq and proof verifier VerifyEq); and the NIZK proof system [26]
PrDLG(g, h) to prove in zero-knowledge the knowledge of logg h for g, h ∈ G

(with proof builder ProveDL and proof verifier VerifyDL). G is a hash function
mapping strings to Zq.

5 A Protocol for Cast-as-Intended Verification
with Single Voting

The protocol implemented for the elections in Neuchâtel consists of the following
algorithms:

– Setup(1λ): the algorithm chooses a group G and runs KGen to generate an
encryption key pair (pk, sk). As discussed before, the voting options V =
{v1, . . . , vk} are chosen as small bit-length primes belonging to the group G.
The algorithm then generates a random K to choose a pseudorandom function
fK ∈ F , and chooses hash functions H,G.
The election public key is pke = (pk,G,H,G), and the election private key
is ske, where ske = sk if there is only one trustee; alternatively ske consists



12 D. Galindo et al.

of the shares of sk if there are several trustees (for instance, by using [21]).
Finally, the global code generation key pair is set to pkc =⊥, skc = K, and
SignKeyGen is run and the result is set to be the signing key pair (pks, sks)4.

– Register(id, skc, sks): the algorithm runs KGen with input G to generate a
keypair (pk, sk) which is set to be the voter public/private code generation5

key pair (pkid, skid) ∈ G×Zq. Then it generates the voter confirmation value
CVid by selecting a random element from G. For each voting option vi ∈ V it
computes the corresponding return code RCidi = fskc

(vskid

i ), and computes the
finalization value FCid = fskc

((CVid)skid). The validity proof for the finalization
code ΠFCid is computed by running Sign(FCid, sks). Finally, the set of reference
values {RFidi }k

i=1 is generated by computing RFidi = H(RCidi ) for each return
code.

– Vote(id, skid, {vj1 , . . . , vjt}): the algorithm receives the voting options selected
by the voter as input, sets v =

∏t
l=1 vjl and encrypts them, obtaining

(c1, c2) = Enc(pk, v). The algorithm then makes a partial computation of the
return codes corresponding to such voting options using the voter private key
skid: (vskid

j1
, . . . , vskid

jt
)6. Finally, it also computes (cskid

1 , cskid

2 ). The following
NIZK proofs are computed to prove the correct computation of these values:

• A proof πenc ← ProveDL(g, c1), which proves knowledge of the random-
ness used for computing the encryption of v.

Two proofs to demonstrate that the voting options in the ciphertext (c1, c2)
and the voting options used to for the partial computation of return codes are
the same:

• A proof πexp ← ProveEq(g, c1, c2, pkid, c
skid

1 , cskid

2 ) which proves that
(cskid

1 , cskid

2 ) are computed by raising the ciphertext (c1, c2) to the voter’s
code generation private key skid corresponding to the public key pkid.

• A proof πprod ← ProveEq
(
g, pk, cskid

1 , cskid

2 · (vskid

j1
, . . . , vskid

jt
)−1

)
which

proves that the ciphertext (cskid

1 , cskid

2 ) is the encryption of the product
(vskid

j1
· · · vskid

jt
) under the election public key pke.

The result of the above computations is a ballot b consisting of

b =
(
id, (c1, c2), (vskid

j1
, . . . , vskid

jt
), (cskid

1 , cskid

2 ), pkid, π
enc

, π
exp

, π
prod

)
.

4 Note that skc is not considered to be divided in shares in this protocol. This is due
to the fact that the secrets for computing the return codes (skc and skid) belong
to two different entities that are assumed not to collude for providing vote secrecy.
However, distributing skc might be considered to weaken the trust assumptions.

5 Notice that this is formally an encryption key pair, but it is being used here differ-
ently.

6 As explained in Sect. 2, return codes have to be computed between two entities which
are assumed not to collude, in order to ensure vote secrecy. In this implementation,
the voting device computes a partial computation in the Vote algorithm, while the
voting server computes the final values in the ProcessBallot algorithm.



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 13

– ProcessBallot(BB, b): in the first place, the algorithm checks if there already
exists a ballot for the voter identity id in the ballot box BB; if this is the
case, it outputs 0. Otherwise, it continues by validating the NIZK proofs
πenc,πexp,πprod. In case all the validations are successful, 1 is returned.

– RCGen(b, id, skc): the algorithm computes the set of return codes contained
in ballot b as follows:

• Computes the final return code value RCidjl = fskc
(vskid

jl
) for each of the

partially computed return codes (vskid

j1
, . . . , vskid

jt
) from b.

• Checks that
{
RCidj1 , . . . , RC

id
jt

}
is a subset of {RFidi }k

i=1. In a positive case,

the set of return codes {RCid} =
{
RCidj1 , . . . , RC

id
jt

}
is output. In a negative

case, ⊥ is returned.
– Confirm(CVid, id, skid): the algorithm computes CMid = (CVid)skid .
– FCGen(CMid, id, skc,ΠFCid): runs SignVerify(pks, FCid,ΠFCid), where FCid =

fK(CMid). FCid is returned if the signature verification is successful, ⊥ oth-
erwise.

– Tally(BB, ske, {ΠFCid}id∈ID): for all the ballots in the ballot box which have
a finalization code FCid stored together with the ballot, this algorithm runs
SignVerify(pks, FCid,ΠFCid) to select the ones which have been confirmed by
the voters. The resulting set is shuffled, and then for each ballot it runs
Dec({c1, c2}, ske) and obtains the cleartext v (in case ske was divided in
shares, a secret reconstruction algorithm [21] is used to recover the private
key previous to decryption). The cleartext v is factorized to recover from
v = vβ1

1 · · · vβk

k the factors vi such that βi = 1. The small primes representing
the voting options vi are then used to compute the final result r.

6 Usability and Vote Correctness Layers

The protocol described in the previous sections may pose significant usability
problems to the voters. In order to cast a vote, the voter is asked to type in the
voting device a series of secret values from their voting card, such as the confir-
mation value CMid and the private key skid. In order to confirm their vote, the
voter is asked to compare the return codes RCid shown by the voting device with
those in their verification card. The same applies to the finalization code FCid.

The problem is that, according to current cryptographic key length recom-
mendations [1], the aforementioned values have a length of 256 or 2048 bits,
depending on whether they are the output of a symmetric or an asymmetric key
cryptographic operation. To be more concrete, in case a Base32 encoding is used
to represent such values, this implies 52 and 410 characters, respectively. It is
clearly not realistic to ask a voter to perform such task.

Therefore, an additional layer for improving usability is required on top of
the protocol from Sect. 5. This layer allows to reduce the length of the values
in the verification card, and to provide the voter’s code generation key to the
voting device in a way that is transparent to the voter. This usability layer was
used in the referendum conducted in Neuchâtel.



14 D. Galindo et al.

6.1 Private Key Provision

Details about the authentication layer have been deliberately omitted in previous
sections, for the sake of clarity. In Neuchâtel there are two layers of authenti-
cation: the first one is handled by the citizen portal Guichet Unique [20], and
the second one is managed by the electronic voting system. This second layer
consists on a username/PIN-based authentication. The PIN is generated during
registration and printed onto the voter’s verification card, while the username
is provided by the first layer of authentication, i.e. the Guichet Unique. The
authentication layer managed by the electronic voting system is used not only
to qualify a user as an authorized voter in the election, but also to transparently
provide her with some cryptographic secrets, such as the voter’s code generation
key pair (pkid, skid).

6.2 Short Return Codes

The usability layer is in charge of generating short values {sRCid}k
i=1, sFC

id, that
are printed in the verification card. One key ingredient of this layer is the length
of such values, which actually represents a neat trade-off between usability and
security: the longer they are, the harder it is to guess them by a corrupted voting
device, but the harder is to use them by the voter. Specifically, in Neuchâtel they
are of 4 and 7 numeric digits respectively7.

Additionally, the registrar secretly generates a table which relates each code
sRCidi or sFCid to the corresponding long codes RCidi or FCid. We call this table
the mapping table, and mapping to each one of the correspondences. During the
voting phase, the code generator uses this table to obtain the corresponding
short codes. The mapping table is designed to be an injective function from
codes {RCid}k

i=1, FC
id to short codes {sRCid}k

i=1, sFC
id.

Our implementation of the mapping table contains one entry for each (long)
return code RCidi of the form: [H(RCidi ), ERCidi

(sRCidi )], where H denotes a hash
function, and Ek(m) denotes the encryption of the message m with a symmetric
encryption algorithm8 and a secret key k.

An additional entry is computed in the same way with the (long) finalization
code FCid and the short finalization code sFCid.

6.3 Vote Correctness

Additionally, we use the mapping table to ensure that a ballot that is accepted
by the voting server, contains valid choices as per the election. For example, in
case a ballot contains some v′

j �∈ V , the (long) return code computed by the code

7 Since the voting device has only one chance to show the values to the voter, a brute
force attack succeeds with probability at most 10−4t in changing the value of t voting
choices without detection.

8 The SHA-256 hash and the AES-128 symmetric encryption algorithms are used in
the implementation made in Neuchâtel.



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 15

generator as fskc
(v′skid

j ) will not find an entry on the mapping table described
above (and the same happens for the reference values {RFidi }k

i=1 in the underlying
protocol). Moreover, there is other information that can be checked: imagine the
scenario where a voter can select one party list, and then can give some weight
to individual candidates. Metadata can be added to the return code mechanism,
so that it is verified that a vote contains voting options which fulfill this rule
without breaking the voter privacy.

In the case of the Neuchâtel voting protocol, type identifiers such as ′party′

or ′candidate′ are added in the ballot cast by the voter, and then used to
compute the return codes at the server. The ballot cast by the voter, then, has
the following contents:

b =
(
id, (c1, c2), (vskid

j1
-′party′, . . . , vskid

jt
-′candidate′), (cskid

1 , cskid

2 ), pkid, . . .
)

In a first step the type identifiers are checked (in the example, that there is
only one type identifier for party list and that the rest are for candidates). In the
second step, these type identifiers are added to the computation of the return
codes:

RCidjl = fskc
(vskid

jl
vskid

jl
, ′party′ or ′candidate′),

where ’,’ denotes a concatenation. The same is done in the configuration
phase, when generating the mapping table. Therefore, an invalid combination of
partial return code (vskid

jl
) and of type identifier will result on an entry of the

table only with negligible probability, given the properties of cryptographic hash
functions.

7 (Informal) Security Analysis

The protocol is focused on preventing a corrupt voting client from changing
the voter intention without being detected, while maintaining the privacy of
such voter in front of a malicious voting server/code generator. In this section
we informally discuss how these security properties are fulfilled given the trust
assumptions presented in Sect. 3.3.

7.1 Cast-as-Intended Verifiability

The voting device can try to modify the voter’s intention without detection in
two ways: (i) by showing to the voter return codes which do not correspond to
the maliciously modified contents of the vote (but that correspond with those
of the voter’s choices); (ii) by confirming a vote without the participation of the
voter.

For the first attack, the voting device could try to send a ballot where the
encrypted options do not correspond to the partial computation of return codes.
However, in that case the proofs πexp,πprod would not be successfully verified by
the voting server. The collaboration of the code generator is needed to generate



16 D. Galindo et al.

the return codes. However, the only way the code generator receives a ballot cast
by the voting device is that the voting server verifies the proofs first. Therefore,
the code generator and the voting device cannot collaborate in case of a honest
voting server and the only strategy the voting device can follow is to guess the
return codes the voter expects. A brute force attack cannot be done in this case,
since the voter will detect consecutive attempts of displaying wrong return codes.

A possibility for the second attack is that the voting device generates a fake
cofirmation message, so that the code generator computes a fake finalization
value. Even in case the code generator does not verify the proof of validity of
this finalization value (because it colludes with the voting device), the election
authorities or the auditors would detect that it is fake at the counting or audit
phases, so that the vote would not be counted. The alternative is that the voting
device guesses a valid confirmation message. In order to limit the possibility of
a brute force attack, the voting server allows a limited number of retries.

7.2 Privacy

Privacy in electronic voting is understood as the property of maintaining the
intention of a voter unknown. Besides recovering the voter selections or the
encryption randomness from the voting device (which we assume that cannot
happen because for privacy the voting device is assumed to be honest), there are
two ways to attack the voter privacy in this scheme.

The first one is to target the voting options encryption. This can be done
by brute forcing the encryption, by decrypting the votes without shuffling them
(so that they could be connected to the voter’s identities), or by recovering
the shuffling permutation. However, according to the assumptions previously
detailed and using a strong encryption algorithm, none of these attacks are
feasible.

The second attack is to target the return code generation mechanism. The
ballot cast by the voter includes some partial computations of the return codes,
which consist on the voter selections raised to some exponent known by the
voting device. As far as it does not reveal such secret exponent, neither the
voting server nor the code generator (even in coalition) can compute back the
voter’s original voting options (see [15] for the analysis). Given that the relation
between return codes and voting options is only known to the voter, neither the
voting server nor the code generator (or any third party who could have access to
them) can use the generated return codes to infer which are the choices selected
by the voter.

Finally, a voter cannot copy a vote of another voter and cast it as it was theirs,
so that they receive return codes matching those in their voting card. In order
to do that they need to compute the exponentiation the original selections to an
exponent they know (while not knowing the selections themselves). Otherwise,
they would get return codes that they would not be able to understand (because
they would belong to another verification card).



2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 17

8 Conclusions

In this paper, we have presented a technique for cast-as-intended verification
in the case of single voting. This mechanism improves on the performance and
infrastructure requirements of previous proposals using return codes. Besides a
syntax (that could be useful to design other return code-based voting protocols)
and a formal description of the scheme, we have provided various details on the
implementation of this mechanism for the new Internet voting platform of the
Swiss canton of Neuchâtel, where it has already been used for a binding federal
election in March 2015. These details include techniques applied to improve
the usability of the system, and to check that the contents of an encrypted
vote are correct before being added to the ballot box, without breaking vote
privacy. Finally, an informal security analysis has been provided. As a future
work we foresee the formalization of the security properties of the scheme and a
rigorous study of their fulfillment, as well as further improvements with respect
to usability and computational cost.

Acknowledgements. We are thankful to the comments and suggestions made by the
anonymous reviewers.

References

1. Crytographic key length recommendation (2015). http://www.keylength.com
2. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)

USENIX Security Symposium, pp. 335–348. USENIX Association, Berkeley (2008)
3. Adida, B., de Marneffe, O., Pereira, O.: Helios voting system. http://heliosvoting.

org
4. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university

president using open-audit voting: analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections (2009)

5. Adida, B., Neff, C.A.: Ballot casting assurance. In: Wallach, D.S., Rivest, R.L.
(eds.) 2006 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT
2006, Vancouver, BC, Canada, 1 August 2006. USENIX Association (2006)

6. Allepuz, J.P., Castelló, S.G.: Internet voting system with cast as intended verifica-
tion. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 36–52.
Springer, Heidelberg (2012)

7. Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. Cryptology ePrint Archive, Report 2006/043 (2006)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. CCS 1993, pp. 62–73. . ACM, New York (1993)

9. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006. EVT 2006, p. 5. USENIX Associa-
tion, Berkeley (2006)

10. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions
for private ballot submission. Cryptology ePrint Archive, Report 2012/236 (2012)

http://www.keylength.com
http://heliosvoting.org
http://heliosvoting.org


18 D. Galindo et al.

11. Chancellery, S.F.: Explications relatives à l’ordonnance de la chancellerie fédérale
sur le vote électronique (OVotE) (2013). http://www.bk.admin.ch/themen/pore/
evoting/07979

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

13. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

14. Gerlach, J., Gasser, U.: Three case studies from Switzerland: E-voting (2009)
15. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,

Report 2010/380 (2010)
16. Gjosteen, K.: The Norwegian internet voting protocol. Cryptology ePrint Archive,

Report 2013/473 (2013)
17. Kripp, M.J., Volkamer, M., Grimm, R. (eds.): 5th International Conference on

Electronic Voting 2012, (EVOTE 2012), Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC, 11–14 July 2012, Castle Hofen, Bre-
genz, Austria, LNI, vol. 205. GI (2012)

18. Lipmaa, H.: Two simple code-verification voting protocols. Cryptology ePrint
Archive, Report 2011/317 (2011)

19. Malkhi, D., Margo, O.: E-voting without ‘Cryptography’. In: Blaze, Matt (ed.) FC
2002. LNCS, vol. 2357. Springer, Heidelberg (2003)

20. Neuchatel: Guichet unique citizen portal. https://www.guichetunique.ch/
21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

22. Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France. In:
Kripp et al. [17], pp. 189–195

23. Puigalli, J., Guasch, S.: Cast-as-intended verification in Norway. In: Kripp et al.
[17], pp. 49–63

24. Rosen, A., Ta-shma, A., Riva, B., Ben-Nun, J.: Wombat voting. http://www.
wombat-voting.com/

25. Sandler, D., Derr, K., Wallach, D.S.: Votebox: a tamper-evident, verifiable elec-
tronic voting system. In: van Oorschot, P.C. (ed.) USENIX Security Symposium,
pp. 349–364. USENIX Association, Berkeley (2008)

26. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

http://www.bk.admin.ch/themen/pore/evoting/07979
http://www.bk.admin.ch/themen/pore/evoting/07979
https://www.guichetunique.ch/
http://www.wombat-voting.com/
http://www.wombat-voting.com/

	2015 Neuchâtel's Cast-as-Intended Verification Mechanism
	1 Introduction
	2 Related Work
	3 Single Voting with Return Codes
	3.1 Syntax
	3.2 Workflow
	3.3 Trust Assumptions

	4 Building Blocks
	5 A Protocol for Cast-as-Intended Verification with Single Voting
	6 Usability and Vote Correctness Layers
	6.1 Private Key Provision
	6.2 Short Return Codes
	6.3 Vote Correctness

	7 (Informal) Security Analysis
	7.1 Cast-as-Intended Verifiability
	7.2 Privacy

	8 Conclusions
	References


